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When you are working with data...

and you are thinking about a model to use, it is useful to remember that:

Data Modeling Culture - Algorithm Modeling Culture

Supervised - Unsupervised

Supervised: Clasification - Regression

Types of variables, Missing Values

Accuracy of the method is important but it is even more important over test data.

Multiplicity of good models: aggregation methods

Occam’s razor dilemna: simpler is better? Simplicity vs Accuracy?

Curse of Dimensionality? Handicap or blessing?

(The focus)..is on solving the problem instead of asking what data model (they can create).
The best solution could be an algorithmic model, or may be a data model, or may be a
combination. But the trick to being a scientist is to be open to using a wide variety of tools,
Breiman, The two cultures.

All models are wrong, but some are useful, Georges Box (1919-2013)
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Examples

Predict whether an email is spam or not spam.

Predict whether a patient is prone to heart disease.

Estimate the ozone rate in a city taking into account climatic variables.

Predict the absence or presence of a species in a given environment.

Predicting customer leaks for a financial institution.

Identify handwritten figures of postcards in envelopes.

Split a population into several subgroups.
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Statistical Learning
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Example

Dataset Advertising:

> datos=read.csv("Advertising.csv",header=T,sep=",")

> datos[,-1]

TV Radio Newspaper Sales

1 230.1 37.8 69.2 22.1

2 44.5 39.3 45.1 10.4

3 17.2 45.9 69.3 9.3

4 151.5 41.3 58.5 18.5

5 180.8 10.8 58.4 12.9

In this case, each row of the dataset is an independent realization of the random multivariate
variable (X ,Y ) where:

X = (X1,X2,X3) is the input vector:
X1 budget allocated to advertising by television (TV)
X2 budget allocated to advertising by radio (Radio)
X3 budget allocated to advertising by newspaper (Newspaper)

Y (Sales) is the amount of sales made and is the output variable (response), dependent
variable.

In general we will want models of the general form:

Y = f (X1, . . . ,Xp) + ϵ

where X1,X2, . . . ,Xp are predictor variables e Y is the response variable,
ϵ is the error term, independent of X and with mean 0.
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Framework of Machine Learning

General framework:
L a data basis.

We search about f : X → Y a good predictor or a good explainer.

Supervised Learning: L = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y ⊂ Rd × R
X : input variable, independent variable, explanatory (real o multidimensional), continuous,
categorical, binary, ordinal.
Y : output variable, dependent variable, real o categorical.

Classification: y ∈ {−1, 1} (binary) or y ∈ {1, . . . ,K} (multiclass).
Regression: y ∈ R.

Unsupervised Learning L = {x1, . . . , xn} ⊂ X ⊂ Rd

Clustering
Density estimation

In all cases, the sample L is a collection of n independents realization of a multivariate
random variable (X ,Y ) or X
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A little formality

Let see how three famous problem in Statistics can be viewed as statistical learning problem.

Consider a loss function L, i.e L(y , u) which measures the cost of deciding u = f (x) for the input
x knowing that y is the true output.

Ejemplos:

1 L(y , u) = 1{y ̸=u} (classification)

2 L(y , u) = (y − u)2 (regression)

3 L(u) = −log(u) (density estimation)

We look for a function fC (the original), among all the functions of a certain class C, that
minimizes the expected value of L (which we call risk or Expected Predictive Error), i.e:

fC = Argmin
f∈C

RL(f ) = Argmin
f∈C

E
(
L(Y , f (X )

)
The choice of C depends on the nature of the phenomenon being modeled, the hypotheses and
experience on the data available, the opinion of the experts, etc.
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A little formality

In practice, this predictor is constructed from a data set L = {(x1, y1), (x2, y2), . . . , (xn, yn)}
where xi ∈ X ⊂ Rd and yi ∈ Y = {1, . . . ,K} or yi ∈ Y ⊂ R where it supposed that all the n
labeled observations of L are independent realization of the variable (X ,Y ) with unknown
distribution law.
As it is impossible to lead with the expected risk (as distribution of (X ,Y ) is unknown), the goal
consists to minimize the empirical risk

Rn,L(f ) =
1

n

n∑
i=1

L
(
yi , f (xi )

)
That is to search a function f̂n ∈ C such that:

f̂n = Argmin
f∈C

Rn,L(f ) = Argmin
f∈C

1

n

n∑
i=1

L
(
yi , f (xi )

)
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The classification problem

For example, in a classification problem if y ∈ {1, . . . ,K}, we use as loss function
L(x , y , u) = 1{u ̸=y}.

The associated risk with L is:
RL(f ) = P

(
Y ̸= f (X )

)
and the empirical risk is

RL,n(f ) =
1

n
#{i : f (xi ) ̸= yi}

The function that minimizes RL(f ) is

f ∗(x) = Argmax
k∈{1,...,K}

P(Y = k|X = x)

and predicts the class k that maximizes the posterior probability of Y knowing X . This classifier
is known as Bayes classifier and can be interpreted as follows:, the problem is reduced in looking
for that function that minimizes the amount of errors committed on the sample.

M.Bourel (IMERL, FING, UdelaR) Clase 4 30 de agosto de 2024 11 / 46



The classification problem

For example, in a classification problem if y ∈ {1, . . . ,K}, we use as loss function
L(x , y , u) = 1{u ̸=y}.

The associated risk with L is:
RL(f ) = P

(
Y ̸= f (X )

)
and the empirical risk is

RL,n(f ) =
1

n
#{i : f (xi ) ̸= yi}

The function that minimizes RL(f ) is

f ∗(x) = Argmax
k∈{1,...,K}

P(Y = k|X = x)

and predicts the class k that maximizes the posterior probability of Y knowing X . This classifier
is known as Bayes classifier and can be interpreted as follows:, the problem is reduced in looking
for that function that minimizes the amount of errors committed on the sample.

M.Bourel (IMERL, FING, UdelaR) Clase 4 30 de agosto de 2024 11 / 46



The classification problem

Suppose our problem is binary and we want to classify the observations into two categories: 0 and
1. In this case the Bayes classifier is the function f ∗ that minimizes the probability of being wrong:

f ∗ = Argmin
f :X→{0,1}

P(f (X ) ̸= Y )

We will prove that

g(x) = Argmax
y∈{0,1}

P(Y = y |X = x) =

{
1 si P(Y = 1|X = x) ≥ 1

2
0 si P(Y = 1|X = x) < 1

2

= f ∗(x)

Demostración.
If g(x) = Argmax

y∈{0,1}
P(Y = y|X = x) and let considerer f : X → {0, 1} another classifier and x ∈ X . We have that

P(f (X ) ̸= Y |X = x) = 1 − P(f (X ) = Y |X = x).

As P(Y = g(X )|X = x) = máx
{
P(Y = 0|X = x), P(Y = 1|X = x)

}
we have :

P(f (X ) ̸= Y |X = x) − P(g(X ) ̸= Y |X = x) = P(Y = g(X )|X = x) − P(Y = f (X )|X = x) ≥ 0

Then:
∀ x ∈ X P(g(X ) ̸= Y |X = x) ≤ P(f (X ) ̸= Y |X = x)

and therefore, if F is the distribution law of X , we get that:

P(g(X ) ̸= Y ) =

∫
P(g(X ) ̸= Y |X = x) dF (x) ≤

∫
P(f (X ) ̸= Y |X = x) dF (x) = P(f (X ) ̸= Y ) ∀ f ⇒ g = f ∗

M.Bourel (IMERL, FING, UdelaR) Clase 4 30 de agosto de 2024 12 / 46



The classification problem

Suppose our problem is binary and we want to classify the observations into two categories: 0 and
1. In this case the Bayes classifier is the function f ∗ that minimizes the probability of being wrong:

f ∗ = Argmin
f :X→{0,1}

P(f (X ) ̸= Y )

We will prove that

g(x) = Argmax
y∈{0,1}

P(Y = y |X = x) =

{
1 si P(Y = 1|X = x) ≥ 1

2
0 si P(Y = 1|X = x) < 1

2

= f ∗(x)

Demostración.
If g(x) = Argmax

y∈{0,1}
P(Y = y|X = x) and let considerer f : X → {0, 1} another classifier and x ∈ X . We have that

P(f (X ) ̸= Y |X = x) = 1 − P(f (X ) = Y |X = x).

As P(Y = g(X )|X = x) = máx
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{
P(Y = 0|X = x), P(Y = 1|X = x)

}
we have :

P(f (X ) ̸= Y |X = x) − P(g(X ) ̸= Y |X = x) = P(Y = g(X )|X = x) − P(Y = f (X )|X = x) ≥ 0

Then:
∀ x ∈ X P(g(X ) ̸= Y |X = x) ≤ P(f (X ) ̸= Y |X = x)

and therefore, if F is the distribution law of X , we get that:

P(g(X ) ̸= Y ) =

∫
P(g(X ) ̸= Y |X = x) dF (x) ≤

∫
P(f (X ) ̸= Y |X = x) dF (x) = P(f (X ) ̸= Y ) ∀ f ⇒ g = f ∗

M.Bourel (IMERL, FING, UdelaR) Clase 4 30 de agosto de 2024 12 / 46



The classification problem

Suppose our problem is binary and we want to classify the observations into two categories: 0 and
1. In this case the Bayes classifier is the function f ∗ that minimizes the probability of being wrong:

f ∗ = Argmin
f :X→{0,1}

P(f (X ) ̸= Y )

We will prove that

g(x) = Argmax
y∈{0,1}

P(Y = y |X = x) =

{
1 si P(Y = 1|X = x) ≥ 1

2
0 si P(Y = 1|X = x) < 1

2

= f ∗(x)

Demostración.
If g(x) = Argmax

y∈{0,1}
P(Y = y|X = x) and let considerer f : X → {0, 1} another classifier and x ∈ X . We have that

P(f (X ) ̸= Y |X = x) = 1 − P(f (X ) = Y |X = x).
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The classification problem

Another justification of Bayes Classifier; if Y ∈ {1, . . . ,K} then:

RL(f ) = Argmin
f∈C

E(X ,Y )

(
L(Y , f (X )

)
= Argmin

f∈C
EX

[
EY|X=x(L(Y , f (X ))|X = x)

]
= Argmin

f∈C
EX

(
K∑

k′=1

L(k ′, f (x))P(Y = k ′|X = x)

)

We have to minimize pointwise this quantity:

f (x) = k∗ = Argmin
k∈{1,...,K}

K∑
k′=1

L(k ′, k)P(Y = k ′|X = x)

Suppose we have two classes 1 and 2, then if k = 1:

L(1, 1)P(Y = 1|X = x) + L(2, 1)P(Y = 2|X = x) = P(Y = 2|X = x) = 1− P(Y = 1|X = x)

and if k = 2:

L(1, 2)P(Y = 1|X = x) + L(2, 2)P(Y = 2|X = x) = P(Y = 1|X = x) = 1− P(Y = 2|X = x)

then
f (x) = Argmin

k∈{1,2}
(1− P(Y = k|X = x)) = Argmax

k∈{1,2}
P(Y = k|X = x)
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The classification problem

In the multiclass context, that is when there are more than two categories and the set of labels is
{1, . . . ,K}, the Bayes’ classifier is the one that assigns the label k to observation x that has the
highest posterior probability, that is to say

f ∗(x) = Argmax
k∈{1,...,K}

P(Y = k|X = x)

The Bayes classifier produces the smallest error that any classifier can make. The error if X = x0 is

1− max
k∈{1,...,K}

P(Y = k|X = x0)

and therefore the error rate, covering all the possible values x0 of X is

1− E
(

max
k∈{1,...,K}

P(Y = j |X )

)
This quantity is called Bayes error rate. However, in real problems, not knowing the distribution,
it is impossible to calculate Bayes error rate.

Many algorithms try to estimate posterior probabilities and classify the observation in that class
that maximize it (KNN, CART, Boosting, etc.)

M.Bourel (IMERL, FING, UdelaR) Clase 4 30 de agosto de 2024 14 / 46



The classification problem

In the multiclass context, that is when there are more than two categories and the set of labels is
{1, . . . ,K}, the Bayes’ classifier is the one that assigns the label k to observation x that has the
highest posterior probability, that is to say

f ∗(x) = Argmax
k∈{1,...,K}

P(Y = k|X = x)

The Bayes classifier produces the smallest error that any classifier can make. The error if X = x0 is

1− max
k∈{1,...,K}

P(Y = k|X = x0)

and therefore the error rate, covering all the possible values x0 of X is

1− E
(

max
k∈{1,...,K}

P(Y = j |X )

)

This quantity is called Bayes error rate. However, in real problems, not knowing the distribution,
it is impossible to calculate Bayes error rate.

Many algorithms try to estimate posterior probabilities and classify the observation in that class
that maximize it (KNN, CART, Boosting, etc.)

M.Bourel (IMERL, FING, UdelaR) Clase 4 30 de agosto de 2024 14 / 46



The classification problem

In the multiclass context, that is when there are more than two categories and the set of labels is
{1, . . . ,K}, the Bayes’ classifier is the one that assigns the label k to observation x that has the
highest posterior probability, that is to say

f ∗(x) = Argmax
k∈{1,...,K}

P(Y = k|X = x)

The Bayes classifier produces the smallest error that any classifier can make. The error if X = x0 is

1− max
k∈{1,...,K}

P(Y = k|X = x0)

and therefore the error rate, covering all the possible values x0 of X is

1− E
(

max
k∈{1,...,K}

P(Y = j |X )

)
This quantity is called Bayes error rate. However, in real problems, not knowing the distribution,
it is impossible to calculate Bayes error rate.

Many algorithms try to estimate posterior probabilities and classify the observation in that class
that maximize it (KNN, CART, Boosting, etc.)

M.Bourel (IMERL, FING, UdelaR) Clase 4 30 de agosto de 2024 14 / 46



The regression problem

In a regression problem we use as loss function L(y , u) = (u − y)2 and look at a function
f : Rd → R that minimizes risk RL(f ) = E(X ,Y )

[
(Y − f (X ))2

]
The function that minimizes RL(f )

is the conditional expectation

f ∗(x) = m(x) = E(Y |X = x)

Instead of minimizing theoretical risk we minimize empirical risk RL,n(f ) =
1
n

n∑
i=1

(
yi − f (xi )

)2
and

then the solution is the function that minimizes the least squares method.

Demostración.

If f : Rd → R then: E
[
(f (X )− Y ))2

]
= E

[
(f (X )−m(X ) +m(X )− Y ))2

]
=

E
[
(f (X )−m(X ))2

]
+E

[
(m(X )− Y ))2

]
=
∫ (

f (x)−m(x)
)2
dF (x) +E

[
(m(X )− Y ))2

]
where F

is the cumulative function of X and it is clear that expression above is minimum if f = m.
In this calculation we use that E(X ,Y )

[
(f (X )−m(X ) +m(X )− Y ))2

]
=

E(X ,Y )

[
(f (X )−m(X ))2

]
+ E(X ,Y )

[
(m(X )− Y )2

]
+ 2E(X ,Y )((f (X )−m(X ))(m(X )− Y )) and

the last term is null because

E(X ,Y )((f (X )−m(X ))(m(X )− Y )) = EX

[
EY |X ((f (X )−m(X ))(m(X )− Y )|X )

]

= EX

[
(f (X )−m(X ))EY |X (m(X )− Y |X )

]
= EX

(f (X )−m(X ))(m(X )− EY |X (Y |X )︸ ︷︷ ︸
m(X )

)

 = 0
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Density Estimation

We use as loss function L(g(x)) = − log(g(x)). The associated risk is
RL(g) = −

∫
log(g(x))f (x) dx and the empirical risk is

RL,n(g) = −
1

n

n∑
i=1

log (g(xi )) = −
1

n
log

(
n∏

i=1

g(xi )

)

To find the function that minimize the empirical risk is equivalent to find the function that
maximize the log-likelihood. Then It is straightforward to show that maximizing the log-likelihood
is equivalent to minimize the Kullback-Leibler divergence

K(f , g) =

∫
log

(
f (x)

g(x)

)
f (x) dx

For Jensen’s inequality, it is easy to prove that K(f , g) ≥ 0 but K does not satisfies symmetric
condition and triangular inequality
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Approach errors

Let summarize the different functions previously encountered:

f is the theoretical predictor (we don’t know it).

fC is the best among all possible predictors within a class of functions C (we don’t know it).

f̂n is the predictor we use in practice, the function that minimizes empirical risk:
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Approach errors

Modelling error (associated with bias): f − fC
It depends on the choice of class C. Observe that if we consider as the family of all possible
functions, we will have overfitting.

Estimation error (associated with the variance): f̂n − fC
It is a statistical error, if the size of the sample is large, under certain hypotheses about the
class C, it is true that f̂n converge, when n tends to infinity to fC . In fact it is a convergence
of the risks (Vapnik’s theorem)

Theorem 1

The Fundamental Theorem of Learning (Vapnik, 1997) states that, under certain conditions on

the class of functions C, f̂n “converges” to fC (risks through) . These conditions are related to the
dimension of Vapnik-Chervonenkis (VC dimension) of the function class C. The VC dimension
measures “how big” is an infinite class of functions, so if C is not too large, that is, the VC
dimension is finite, is in the hypothesis of the Fundamental Theorem of Learning
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Plan

1 General Framework and Introduction to Statistical Learning
Generalities
A little formality

2 Modelling
Choosing the more adequate way
Generalization Error
Bias-variance trade-off
Challenges to the Statisticians
Overfitting

3 Some Statistical Learning methods
Linear Model
Classification and Regression Trees
Support Vector Machines
k-Nearest Neighbor
Clustering
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How estimate f ?

The goal is from a sample L = {(x1, y1), (x2, y2), . . . , (xn, yn)} estimate an unknown function f ,

finding an estimator f̂ such that
y ≈ f̂ (x)

for a new observation (x , y). As we say before, we suppose that observations of L are n
independent realizations of a multivariate random variable (X ,Y ) of unknown distribution.

1 Parametric methods. The problem of estimating f is reduced to estimate some parameters,
after assuming that f belongs to a certain family of functions.
1) An assumption is made about the shape of the model, for example linear

f (X ) = β0 + β1X1 + · · · + βpXp

where we have to estimate β0, β1, . . . , βp .
1 After the model is selected, it is trained from L. For example, in the case of the linear model,

β̂ = (X ′X )−1X ′Y

where

X =


1 x11 . . . x1p
1 x21 . . . x2p
.
.
.

.

.

.
. . .

.

.

.
1 xn1 . . . xnp


n×(p+1)

, Y =


y1
y2
.
.
.
yn

 ∈ Rn
, β̂ =


β̂0

β̂1

.

.

.

β̂p

 ∈ Rp+1
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How estimate f ?

2) Non parametric methods. No assumption is made about the nature of f . In general, it allows
covering a greater spectrum of forms for f , making the model more plausible to the true f .
However, in general, a large number of observations is needed to obtain a performant model.

|
Temp < 82.5

Wind < 7.15

Solar.R < 79.5

Temp < 77.5

Wind < 10.6

Temp < 88.5

Solar.R < 205

 61.00

 12.22

 20.97  34.56

 74.54

 83.43 102.40

 48.71

Ozone

|
Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

Sepal.Length < 5.15

Petal.Length < 4.95

setosa

versicolor versicolor

virginica virginica virginica

Iris

Figura: Classification and Regression Trees (Breiman, 1984)
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Performance vs Interpretability
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Evaluation of the model

1 In regression quality of the fitting of a predictor can be evaluated by the mean squared error
MSE:

MSE =
1

n

n∑
i=1

(
yi − f̂ (xi )

)2
It will be small if the predictions are close to the true response values and large if for some
observations the prediction and the label are very different.

However, evaluating the performance of the model on the data with which it has been
trained, is not very interesting, or at least it is not as interesting as evaluating it on fresh
data, which were not used for the estimation of f̂ .

The performance of f̂ (construct over L) is evaluated on a testing set
T = {(z1, u1), (z2, u2), . . . , (zs, us)} computing the test-MSE (generalization error):

1

s

s∑
i=1

(
ui − f̂ (zi )

)2
In practice, original data set is divided in two parts: the first, L, usually 2/3, to train the
model, and the remaining 1/3, T , to test it. Also in this way, the overfitting is avoided

2 In classification the error is measured with the misclassified rate:

1

n

n∑
i=1

1{yi ̸=ŷi}

where ŷi is the class prediction of f for observation i .
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Bias-variance trade-off

If we assume that y = f (x) + ϵ, it is possible to prove that the expected value of the MSE for a
fixed test value x0, can be decomposed as:

E
(
y0 − f̂ (x0)

)2
= Var

(
f̂ (x0)

)
+
[
Sesgo

(
f̂ (x0)

)]2
+ Var(ϵ)

As Var
(
f̂ (x0)

)
and

[
Sesgo

(
f̂ (x0)

)]2
are non negatives, it follows that E

(
y0 − f̂ (x0)

)2
has as

lower bound Var(ϵ).

We call variance to the amount that varies f̂ if we change the training set (different set of

workouts produce different f̂ ). Under ideal conditions, the estimate of f does not change
much if we change the training sets. In general, very flexible statistical models (with many
parameters) have high variance. For example in the case of simple linear regression, when we
change an element of the data set, the estimator does not vary so much. On the other hand if
the model is very adjusted, changing a point produces a significant change in the estimation.

Bias refers to the modelling error: explaining a real and complicated problem by a simpler
mathematical model. For example, linear models assume that there is a linear relationship
between Y and explanatory variables X1, . . . ,Xp which clearly has little chance of happening,
so the bias will be important. In general, flexible statistical methods have a little bias.
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(
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Sesgo
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f̂ (x0)

)]2
+ Var(ϵ)

As Var
(
f̂ (x0)

)
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[
Sesgo

(
f̂ (x0)

)]2
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(
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)2
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Bias-variance trade-off
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Bias-variance trade-off. Example

Several estimators (smoothing splines) are considered for different data sets (example extracted of
James, Witten, Hastie and Tibshirani book).
Example 1. On the left hand three estimators with different flexibility adjusting the same data
points and on the right hand the MSE curve of the flexibility on the training set (grey) and on a
generalization set (red).

M.Bourel (IMERL, FING, UdelaR) Clase 4 30 de agosto de 2024 26 / 46



Bias-variance trade-off. Example

Example 2. On the left hand three estimators with different flexibility adjusting the same data
points and on the right hand the MSE curve of the flexibility on the training set (grey) and on a
generalization set (red).
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Bias-variance trade-off. Example

Example 3. On the left hand three estimators with different flexibility adjusting the same data
points and on the right hand the MSE curve of the flexibility on the training set (grey) and on a
generalization set (red).

M.Bourel (IMERL, FING, UdelaR) Clase 4 30 de agosto de 2024 28 / 46



Bias-variance trade-off. Example

Figura: The three graphs refer to the MSE, bias and variance curves of three previous examples
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Bias-variance trade-off. Example

The choice of the model will also be important to consider it a classification problem:
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Challenges to the Statisticians

1 Data Complexity: involves many variables which are often related in complex (nonlinear)
ways.

2 Big Data (datasets with large number of observations, large number of variables, large
number of observations and variables).

3 Feature Selection: many features are available but some are redundant, leading to the feature
selection or dimension reduction problem.

4 Optimization: many methods involve finding the “best” parameters values by solving
complex and large (containing many parameters) optimization problems. Therefore, efficient
optimization techniques are required.

5 Visualization: much harder in a high dimensional space.

6 Curse of dimensionality.
In high dimension, the points are very far one of the other. Suppose we send out a
hypercubical neighborhood about a target point to capture a fraction r of the observations.
Since this corresponds to a fraction r of the unit volume, the expected edge length will be
ep(r) = r1/p . In ten dimensions e10(0,01) = 0,63 and e10(0,1) = 0,80, while the entire range
for each input is only 1.0. So to capture 1% or 10% of the data to form a local average, we
must cover 63% or 80% of the range of each input variable. Such neighborhoods are no
longer “local”. Reducing r dramatically does not help much either, since the fewer
observations we average, the higher is the variance of our fit.
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Overfitting

Notice that a very simple model will probably have a high modelling error and we will not learn
too much from the data (underfitting) whereas a model with many parameters will have a high
statistical error (overfitting).
We must achieve a compromise between both errors, in such a way that the “generalization
error” is the least as possible.

To avoid overfitting, the predictor performance (classification error, mean quadratic error) is
evaluated with a new sample called the evaluation sample, independent of the training sample.

Other ways to evaluate the predictor: cross validation, bootstrap.
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Overfitting
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Plan

1 General Framework and Introduction to Statistical Learning
Generalities
A little formality

2 Modelling
Choosing the more adequate way
Generalization Error
Bias-variance trade-off
Challenges to the Statisticians
Overfitting

3 Some Statistical Learning methods
Linear Model
Classification and Regression Trees
Support Vector Machines
k-Nearest Neighbor
Clustering
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Simple Linear Model: method of least squares

Data: L = {(x1, y1), . . . , (xn, yn)}.

We look for the line y = ax + b that passes as close as possible to the data.

ε

xi

b

a    +bxi

Yi
i

We find a and b that minimize the sum of
squared errors

n∑
i=1

ε2i =
n∑

i=1

(
yi − (axi + b)

)2
The simple linear regression model is

yi = axi + b︸ ︷︷ ︸
yest

+εi , ∀ i = 1, . . . , n
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Linear Model: method of least squares

The above method can be easily extended.

For example the parabola that adjusts a set of points:

y = a+ bx + cx2

(linear model on the coefficients!)

 y1
y2
y3

 =

 1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

 a
b
c

 +

 ε1
ε2
ε3


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Multiple Linear Regression

Now we want to predicto a real random variable Y ∈ R from d real variables X1, . . . ,Xd . We
consider model:

f (X ) = β0 + β1X1 + · · ·+ βdXd

As in simple linear regression, if L = {(x1, y1, ), . . . , (xn, yn)} is the data set, we look at a vector

β =


β0

β1

...
βd

 ∈ Rd+1 that minimizes

n∑
i=1

(
yi − (β0 + β1xi1 + · · ·+ βdxid )

)2
Observe that

n∑
i=1

(
yi − (β0 + β1xi1 + · · ·+ βdxid )

)2
= ||Y − Xβ||2 so we have a linear algebra

problem:

X =


1 x11 . . . x1d
1 x21 . . . x2d

.

.

.

.

.

.

.
.
.

.

.

.
1 xn1 . . . xnd


n×(d+1)

, y =


y1
y2

.

.

.
yn

 ∈ Rn, β =


β0
β1

.

.

.
βd

 ∈ Rd+1

whose solution is given by (X tX )β = X ty.
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Classification and Regression Trees (CART)

Classification And Regression Trees (Breiman 1984).

Two types of trees: regression trees to predict continuous variables and classification trees to predict categorical
variables.

The tree is constructed from binary partitions with respect to the coordinates of the data. For example if the
variables are X1, . . . ,Xd , the cut condition for the data will be of type X2 < c or X2 ≥ c if X2 is continuous or
X2 ∈ A or X2 /∈ A if X2 is categorical.

Three steps:

1 Binary separation of the data of each node in two subnodes according to some criterion;

2 Decision of the size of the tree: stop and prune criteria

3 Assigning a class or value to terminal nodes.
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CART

Example: Iris

Goal: Predict the species of the iris flower.

Data: 150 flowers

Dependent variable: Species (setosa, virginica, ver-
sicolor)

Independents variables: Sepal Length, Petal
Length, Sepal Width, Petal Width
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CART

Example: airquality

Goal: Predict the ozone level in New York.

Data: 153 days

Dependent Variable: ozone level

Independents variables Date, Solar Radiation,
Wind and Temperature
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CART

Easy to interpret, but ... very unstable: a small change in the sample leads to completely different
results.

Aggregation Methods:

1 Bagging (Breiman, 1996): average of several trees based on data re-samples.

2 Random Forests (Breiman, 2001): combines the Bagging and CART algorithms.

3 Boosting (Freund and Shapire, 1997): weighted average of trees. The weighting takes into
account the performance of each tree in each stage of the algorithm.
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Support Vector Machines (SVM)

In the classification context, SVM (Vapnik, 1995) is a method that consists of finding a curve
that separates the data as best as possible.

If the data are linearly separable:

optimo 

válido

válido
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Support Vector Machines

If the data are not linearly separable, we transform them to a space where they are:

Φ 
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k-Nearest Neighbor (k-NN)

In k-NN classification, the output is a class membership. An object is classified by a majority vote
of its neighbors, with the object being assigned to the class most common among its k nearest
neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to
the class of that single nearest neighbor.

In k-NN regression, the output is the property value for the object. This value is the average of
the values of its k nearest neighbors.
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Unsupervised Learning - Clustering

Here we have a data set but without output, that is, L = {x1, . . . , xn} where xi ∈ Rd and we
want to create K different homogeneous groups.
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