

Práctico 0 - Repaso de conjuntos y funciones

Para realizar estos ejercicios sugerimos leer el material "Conceptos básicos de Matemática", capítulos 1 y 2.

Conjuntos

- 1. Sean los conjuntos
 - $A = \{e, s, t, u, d, i, a, r\}.$
 - $B = \{m, a, t, e, m, a, t, i, c, a, s\}.$
 - $C = \{e, s\}.$
 - $D = \{f, a, s, c, i, n, a, n, t, e\}.$
 - (a) Describa los conjuntos $A \cup B$, $A \cup D$, $A \cap B$, $A \cap D$.
 - (b) Compruebe que *C* es subconjunto de *A*, *B* y *D*.
 - (c) Demuestre que $A \cap D \subseteq B \cap D$.
 - (d) Compruebe que $A \setminus D = A \setminus B$.
 - (e) Demuestre que $\{f, r, a, n, c, e, s\} \subseteq A \cup D$.
 - (f) Compruebe que $\{t, i, a\}$ es subconjunto de A, B y D.
- 2. Sean los conjuntos $A = \{0, 1\}$, $B = \{1, 0\}$, $C = \{0, \{1\}\}$, $D = \{\{0\}, 1\}$, $E = \{\{0\}, \{0, 1\}\}$ y $F = \{\{0\}, \{1, 0\}\}$. Indique si las siguientes expresiones son correctas, y justifique.
 - (a) $A \subseteq B$.
 - (b) A = B.
 - (c) $A \subseteq C$.
 - (d) $A \subseteq D$.
 - (e) A = D.
 - (f) $E \subseteq F$.
 - (g) $F \subseteq E$.
 - (h) $A \in E$.
 - (i) $A \subseteq E$.
 - (j) $A \cap B = A$.
 - (k) $E \cap F = \{1, 0\}.$
 - (1) $E \cup F = \{0\} \cup A$.
 - (m) $B \subseteq F$.
- 3. Sea $A = \{\emptyset, \{\emptyset\}\}\$ (\emptyset es el conjunto vacío). Indique si las siguientes expresiones son correctas, y justifique.
 - (a) A es el conjunto vacío.
 - (b) $\emptyset \subseteq A$.
 - (c) $\emptyset \in A$.
 - (d) $\{\emptyset\} \in A$.
 - (e) $\{\emptyset\} \subseteq A$.
 - (f) $A \cap \{\emptyset\} = \{\emptyset\}.$
 - (g) $A \cap \emptyset = \emptyset$.
 - (h) $A \cup \{\emptyset\} = A$.

- (i) $A \cap \{\emptyset\} = \emptyset$.
- 4. Sea $A = \{xy \mid x, y \in \mathbb{N}\}$. Demuestre que $A = \mathbb{N}$, donde \mathbb{N} denota el conjunto de los números naturales.
- 5. Sean *A*, *B* y *C* tres conjuntos tales que $A \subseteq B \subseteq C \subseteq A$. Demuestre que

$$A = B = C$$
.

Más aún, si A_1, A_2, \dots, A_n son n conjuntos tales que

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq A_1$$
,

demuestre que

$$A_1 = A_2 = \cdots = A_n$$
.

- 6. Sean A, B, C tres conjuntos cualesquiera. Demuestre las leyes de De Morgan:
 - (a) $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$.
 - (b) $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$.
- 7. Dé una interpretación geométrica de los conjuntos $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ y $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^3$, donde \mathbb{R} denota el conjunto de los números reales.
- 8. En el plano \mathbb{R}^2 describa geométricamente el conjunto $\mathbb{N} \times \mathbb{N}$. Haga lo mismo con el conjunto $\mathbb{Z} \times \mathbb{Z}$, donde \mathbb{Z} denota el conjunto de los números enteros.

Relaciones de Equivalencia

9. Considere la relación ~ en el conjunto ℤ definida por

$$x \sim y \Leftrightarrow \exists k \in \mathbb{Z} \text{ tal que } x - y = 3k.$$

Demuestre que \sim es una relación de equivalencia y que el conjunto cociente \mathbb{Z}/\sim está formado por las clases de equivalencia [0], [1] y [2].

- 10. Sea X el conjunto de todas las rectas en el plano. En X defina la relación ∼ como
 - a) $x \sim y$ si x es paralela a y.
 - b) $x \sim y$ si x es perpendicular a y.

Asuma que toda recta es paralela a sí misma. Demuestre entonces que la relación en (a) es una relación de equivalencia. Describa las clases de equivalencia generadas. ¿Es la relación definida en (b) una relación de equivalencia?

Funciones

11. Se dice que la función $f: \mathbb{R} \to \mathbb{R}$ es lineal si

$$f(cx_1 + x_2) = cf(x_1) + f(x_2),$$

en donde $c, x_1, x_2 \in \mathbb{R}$. Determine cuáles de las siguientes funciones son lineales:

- (a) f(x) = x.
- (b) $f(x) = 3x^2$.
- (c) f(x) = x + 1
- (d) $f(x) = 2x^3 + 1$.
- (e) f(x) = mx donde m es una constante.
- (f) f(x) = mx + k donde m y k son constantes.

- 12. Demuestre que la función $f: A \to B$ es una biyección si, y sólo si cumple la siguiente propiedad: dado $b \in B$ el conjunto $f^{-1}(\{b\}) \subseteq A$ tiene un solo elemento.
- 13. Sean $f: A \to B$ y $g: B \to C$ dos funciones. Demuestre que:
 - (a) Si f y g son inyectivas entonces $g \circ f$ es inyectiva.
 - (b) Si f y g son sobreyectivas entonces $g \circ f$ es sobreyectiva.
 - (c) Si f y g son biyectivas entonces $g \circ f$ es biyectiva.
- 14. Hallar $(f \circ f \circ f)(x)$ para $f : \mathbb{R} \setminus \{1\} \to \mathbb{R}$ definida por $f(x) = \frac{1}{1-x}$.
- 15. Sea $f:A\to B$ una función de A en B y sean X_1 y X_2 subconjuntos de A. Demuestre que
 - a) $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$.
 - b) $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$
 - c) Compruebe que $f(X_1 \cap X_2) = f(X_1) \cap f(X_2)$ si y sólo si f es inyectiva.