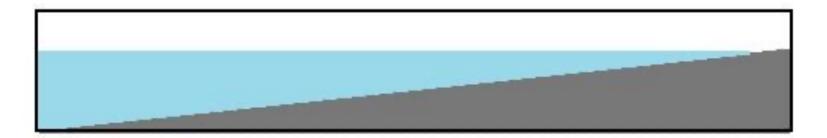


Example 1

Study of a Solitary wave run-up

Maria Maza (mazame@unican.es)


Study of a solitary wave run-up and run-down on a beach

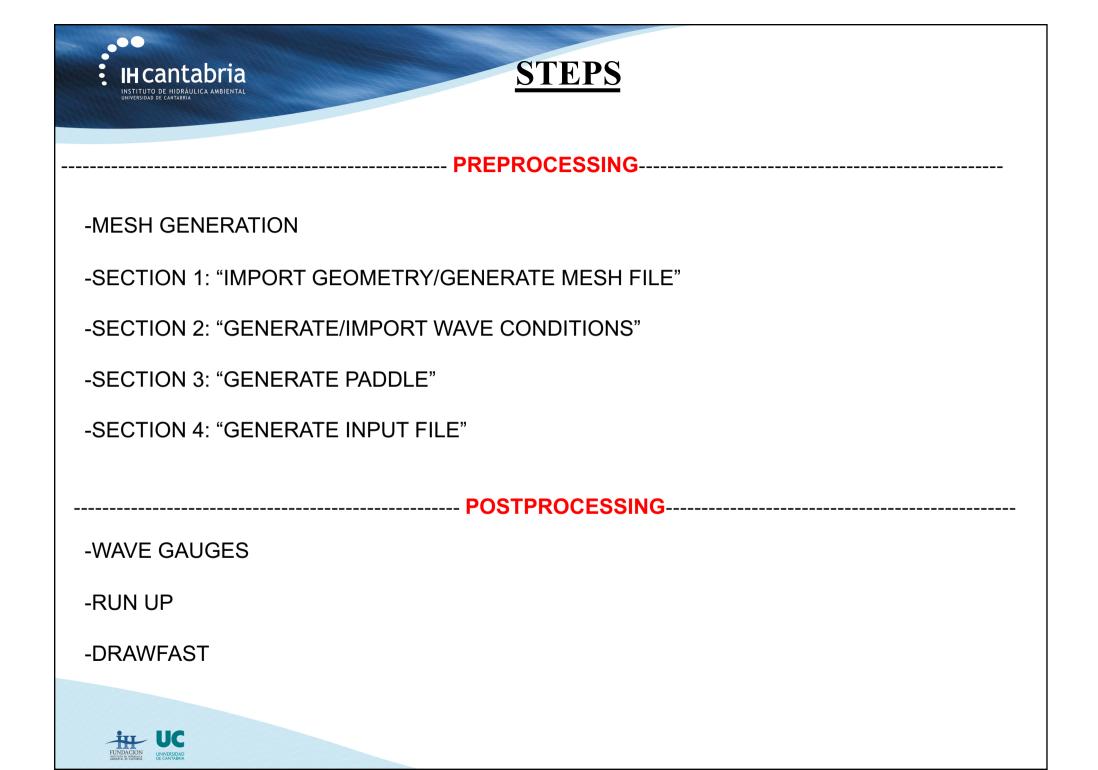
The mechanisms of solitary wave run-up and run-down on a beach are studied.

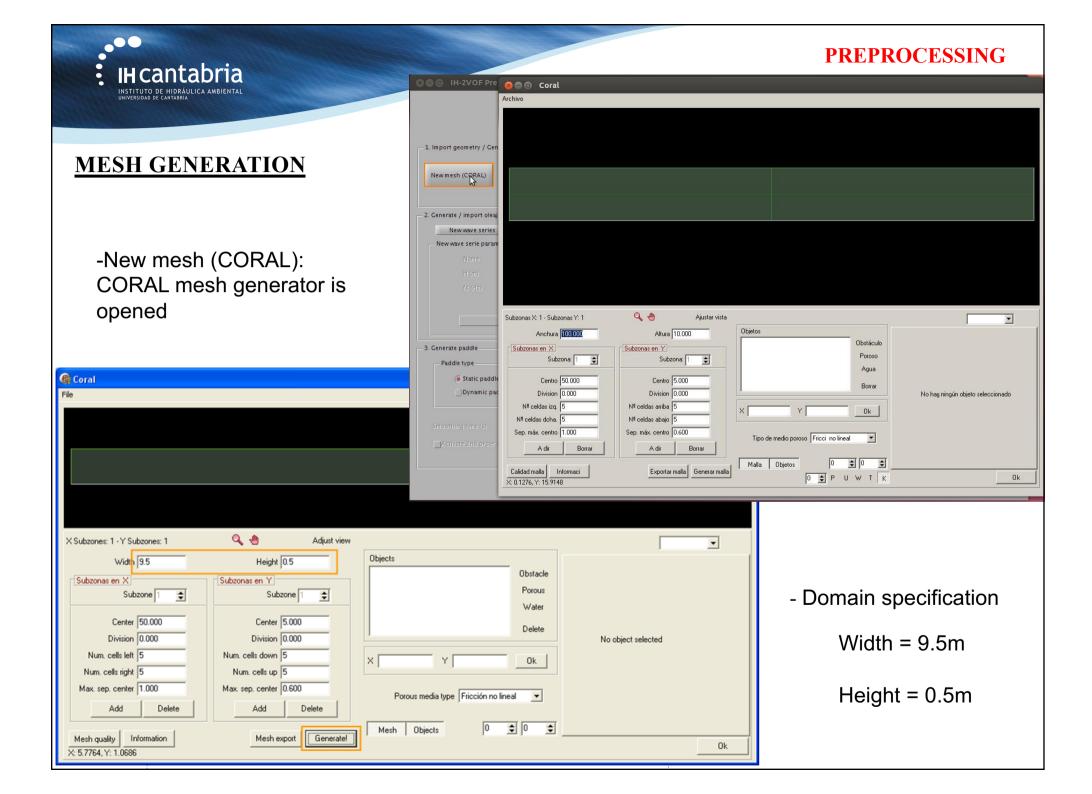
The selected test problem is a breaking solitary wave run-up on a mild slope. The detailed laboratory setup for the breaking solitary wave study is referred to Synolakis (1986).

A uniform slope 1:0.05 constitutes the unique obstacle considered in this case.

Water depth is equal to 0.25m and a **solitary wave** with a wave height equal to **0.07m** is considered. Grimshaw theory is selected to reproduce this solitary wave.

- **Objectives**: Study the run-up and run-down of a solitary wave on a beach


CREATE NEW CASE


-Select directory, Select Folder

- Create New Case

🗙 🖨 🗉 🛛 IH-2VOF Main Menu		
File Preprocessing Postprocessing		
	8 IH-2VOF	CASE NOT SELECTED
(home/nicolas/EXAMPLES/	Enter a name for the new case Example1 Ok Cancel	Ceometric domain : Not available
	- Wave serie	Summary
	Name : Serie type :	- Mesh file not generated
	H (m) : T (s) :	- Paddle not generated
▼	Length (s) :	Input file not generated
Run simulation Delete case		



MESH GENERATION: Defining the elements

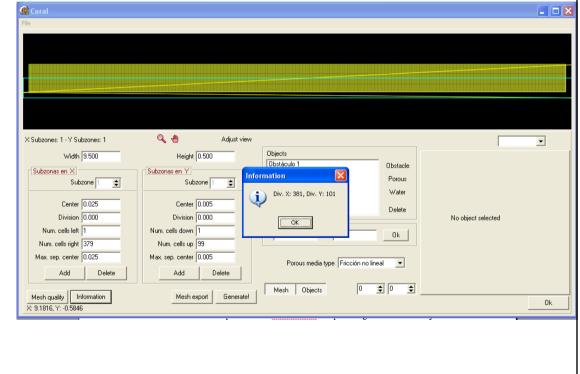
Introduce the element obstacle which represents the bathymetry (1:20 bottom slope)

Introduce the element water (0.25 m working water depth)

Element	Vertices	X Coordinate	Y Coordinate
	1	-0.1	-0.005
Bathymetry	2	9.6	0.4836
	3	9.6	-0.1
	1	-0.1	-0.1
Motor	2	-0.1	0.25
Water	3	10.6	0.25
	4	10.6	-0.1

PREPROCESSING

MESH GENERATION: Spatial discretization


Uniform grid system in both the horizontal and the vertical directions

```
At least 10 cells per wave height! (H=0.07 m)
\Delta y = 0.005 \text{ m}
```

```
Limit the aspect ratio \Delta x / \Delta y!
\Delta x = 0.025 \text{ m}
```

 $\Delta x/\Delta y=5$, it is a bit large value... However... long wave regime (horizontal velocities>>vertical velocities) ==> $\Delta x/\Delta y=5$ is ok!

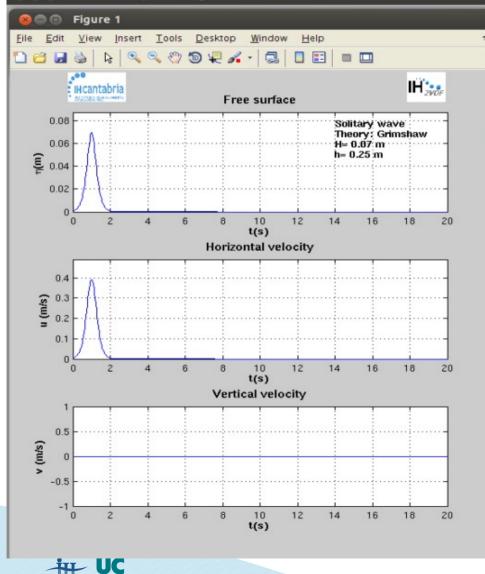
total number of cells in the numerical domain = 381×101

SECTION 1 : "IMPORT GEOMETRY/GENERATE MESH FILE"

-Saving the generated mesh its ".dat" file appears in green in the GUI .

-Mesh characteristics are exported to a "Mesh.mes"

IH cantabria	Example 1	Folder : //home/nicolas/E	AMPLES/Example1
Import geometry / Generate mesh fill Import ge CorAL Generate	eometry Mesh_example_1.DAT 0.5	Ceometry sketch :	6 7 8
2. Generate / import wave series	Still water level (m) 0.25 0	1 2 3 4 5	6 7 8
New wave serie parameters Wave series Solitary H (m) fs (Hz) 30		No wave series s	elected
3. Generate paddle	191191212 WAVE 251122		
Paddle type (© Static paddle Dynamic paddle	Dynamic paddle position	Simulation length (s) Initial dt (s) 0.005 Fluid density (kg/m3) 1000	Save for the entire domain VOF Horizontal velocity Vertical velocity Pressures Turbulence
Smoothing time (s) 10	Generate Paddle	Right boundary absorption Wave gauges Fs (Hz) 30	Sampling frequency (Hz) Save input file Input file not generat
Activate 2nd order generation	Paddle not generated	Run-up Pressure	



SECTION 2 : "GENERATE/IMPORT WAVE CONDITIONS"

😑 🗉 🛛 IH-2VOF Preprocessir

FUNDACION INSTITUTO DE HIDRÁBLICA ANDIENTAL DE CANTABBIA UNIVERSIDAD DE CANTABRIA

		Ge	ometry sketch :				
!			!				
	_						
2	3	٠	5	6	7	8	9
lected wav	e series						
Name	solitary_v	wave	Wave series typ	e	Solitary	s	how wave s.
older	/hor	me/nic	olas / EXAM PLES /	Example1	./wave_series	s/solitary_wa	ave/
				_			
Seneration	theory		Grimshaw				
ength (s).	20		Sampling frequ	uency (Hz)		30	
			Sampling frequ	uency (Hz)		30	
.ength (s) H (m)	20		Sampling frequ	uency (Hz)		30	
			Sampling frequ	uency (Hz)		30	
H (m)	0.07		Sampling frequ	uency (Hz)		30	
H (m) Generate in	0.07				for the entire		
H (m) Generate in Simulation	0.07 nput file n length (s)		20	Save	for the entire VOF	: domain	
H (m) Generate in	0.07 nput file n length (s)		20	Save	for the entire	e domain ocity	
H (m) Cenerate in Simulation Initial dt (0.07 nput file n length (s)		20	Save	for the entire VOF Horizontal vel Vertical veloci Pressures	e domain ocity	
Generate in Simulation Initial dt (Fluid den: Initia Left bo	0.07 nput file n length (s) s) sity (kg/m 3) oundary abso	rption	20 0.005 1000	Save	for the entire VOF Horizontal vel Vertical veloci	e domain ocity	
Generate in Simulation Initial dt (Fluid den: Initia Left bo	0.07 nput file n length (s) s) sity (kg/m3)	rption	20 0.005 1000	- Save	for the entire VOF Horizontal vel Vertical veloci Pressures	e domain ocity ty	10
Generate in Simulation Initial dt (Fluid den: Initia Left bo	0.07 nput file n length (s) s) sity (kg/m3) bundary abso boundary abso	rption	20 0.005 1000	- Save	for the entire VOF Horizontal vel Vertical veloci Pressures Turbulence pling frequent	e domain ocity ty	10

SECTION 3 : "GENERATE PADDLE

Static wave paddle

Both the mean velocities and free surface displacement are specified on the inflow boundary based on the selected analytical solution

1. Import geometry / Generate mesh	h file		Coor	etry sketch :	
Impor	rt geometry Mesh_example_1.DAT		Geon	retry sketch.	
New mesh (CORAL)	ate mesh file Mesh file generated			!	
	Still water level (m) 0.25 0	1 2	3 4	5 6	7
2. Generate / import wave series		😮 💿 💿 Figure	- 2		
New wave series	Import wave series Reconstruct wave ser	ies		Desktop Windo	w <u>H</u> elp
New wave serie parameters				9 4 4 · 3	
	 Name 	Hcanta	bria		1
H (m)		* 2000 AND	Velocity fie	ld: Horizontal co	mponent (m/s)
(5 (FIZ) 30		0.4 -			
	Theory Boussinesq 👻				
	Generate wave series	€ ^{0.3} > 0.2			
		0.1			
Paddle type	Dynamic paddle position	0	5	10	15
💿 Static paddle	Initial position (m)		Volesity fi	t(s) eld: Vertical con	an an ant (m/a)
ODynamic paddle	Maximum position (m)		Velocity II	eiu. vertical con	iponent (m/s)
		0.4 -			
Smoothing time (S)	0	Ē ^{0.3}			
Activate 2nd order generation	Generate Paddle	→ 0.2			
	Static paddle generated	0.1 -			
			5	10	15
		0	3	t(s)	15

PREPROCESSING

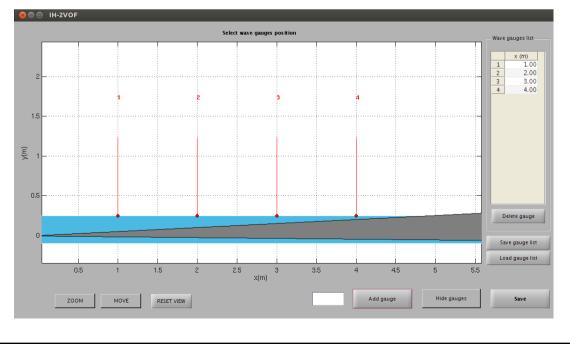
SECTION 4 : "GENERATE INPUT FILE"

IH cantabria	Example1	Folder : /home/nicolas	/EXAMPLES/Example1
Import geometry / Generate mesh fi	ile	Geometry sketch :	
New mesh (CORAL)	geometry Mesh_example_1.DAT 0.5	· · · · · ·	
Generate	still water level (m) 0.25 0	1 2 3 4 5	6 7 8 9
Generate / import wave series		Selected wave series	
Newwave series	Import wave series Reconstruct wave series	Name solitary_wave Wave series type	solitary Showway
New wave serie parameters		Folder /home/nicolas/EXAMPLES/	Example1/wave_series/solitary_wave/
Wave series Solitary	 Neme 		
		Generation theory Grimshaw	
H (m)		Generation meory	
H (m) fs (Hz) 30	Length (9)	Length (s) 20 Sampling frequ	iency (Hz) 30
	Length (s) Theony Boussinesq 💌		iency (Hz) 30
fs (Hz) 30		Length (s) 20 Sampling frequ	iency (Hz) 30
fs (Hz) 30	Trieory Boussinesq 💌	Length (s) 20 Sampling frequ	
(5.(Hz) 30	Trieory Boussinesq 💌	Length (s) 20 Sampling frequ	Save for the entire domain
(S.(Hz) 30	Theory Boussinesq Generate wave series	Length (s) 20 Sampling frequ H (m) 0.07	Save for the entire domain
rs(riz) 30 Generate paddle Paddle type	Theory Boussinesq Cemerate wave series Dynamic paddle position	Length (s) 20 Sampling frequ H (m) 0.07 - 4. Generate input file Simulation length (s) 20	Save for the entire domain VOF VOF Vertical velocity
rs(riz) 30 Cenerate paddle Paddle type @ Static paddle	Theory Boussinesq Generate wave series Dynamic paddle position Initial position (m)	Length (s) 20 Sampling frequ H (m) 0.07 - 4. Generate input file Simulation length (s) 20 Initial dt (s) 0.005	Save for the entire domain VOF Horizontal velocity Vertical velocity Pressures Turbulence
rs(riz) 30 Cenerate paddle Paddle type @ Static paddle	Theory Boussinesq Generate wave series Dynamic paddle position Initial position (m)	Length (s) 20 Sampling frequ H (m) 0.07 4. Generate input file Simulation length (s) 20 Initial dt (s) 0.005 Fluid density (kg/m3) 1000	Save for the entire domain VOF Horizontal velocity Pressures
(s.(1z) 30 Generate paddle Paddle type @ Static paddle Dynamic paddle	Theory Boussinesq Generate wave series Dynamic paddle position Initial position (m)	Length (s) 20 Sampling frequ H (m) 0.07 - 4. Generate input file Simulation length (s) 20 Initial dt (s) 0.005 Fluid density (kg/m3) 1000 ✓ Left boundary absorption	Save for the entire domain VOF Horizontal velocity Pressures Turbulence

- Simulation length = 20 s
- Initial dt = 0.005 s

-Absorption on at the left boundary only!

- VOF and horizontal velocity fields are saved

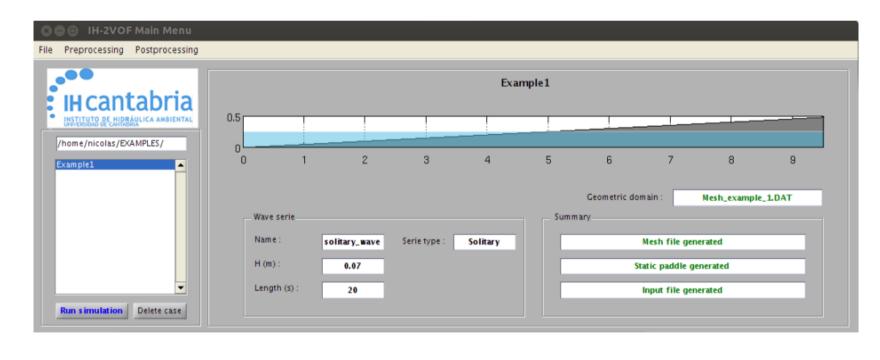

SECTION 4 : "GENERATE INPUT FILE" – *Wave gauges*

Different wave gauges are disposed in the domain to measured the wave conditions and overtopping.

Gauge	X(m)
1	1
2	2
3	3
4	4

Press the button *Wave gauges - Add gauge*

Gauges positions are specified



PREPROCESSING

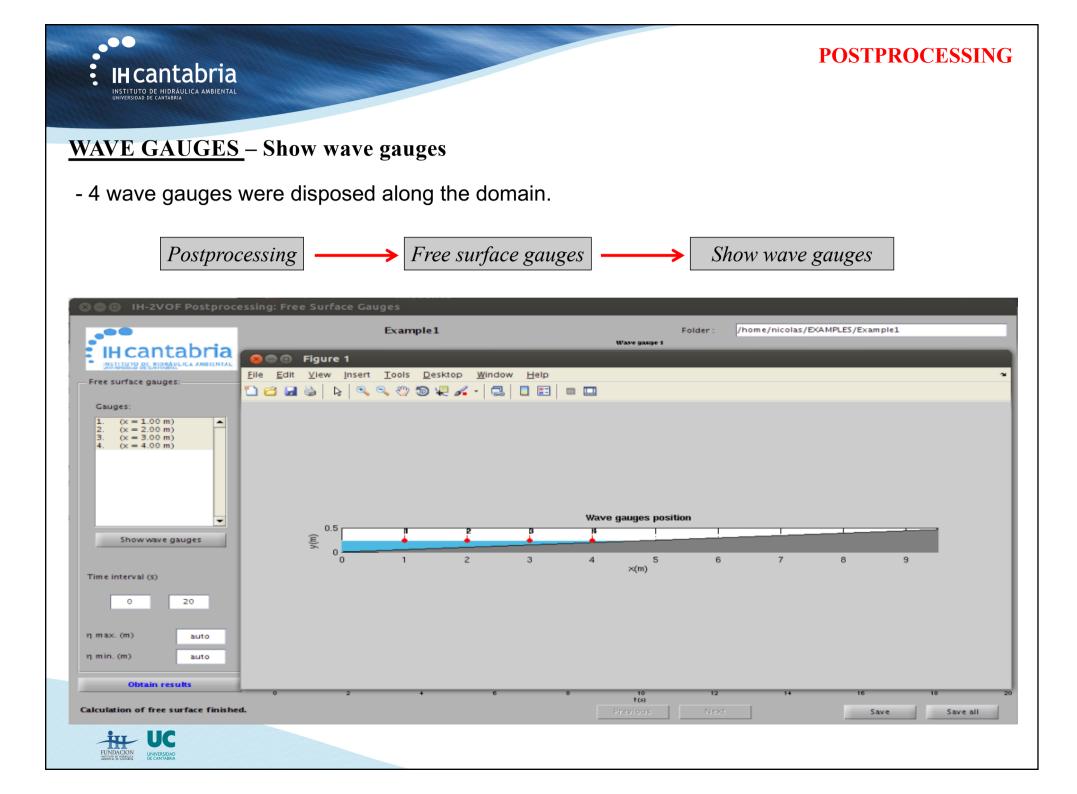
SUMMARY

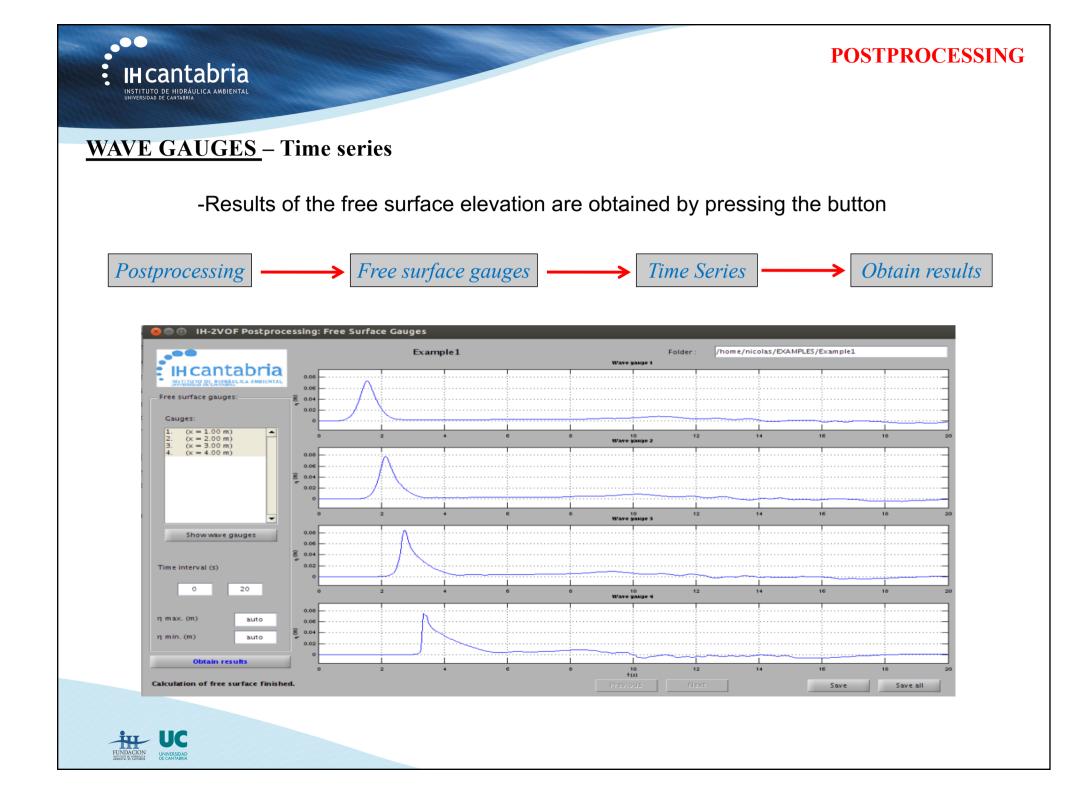
All the variables are defined The input file is saved

→ the case is ready to be simulated

The simulation which will starts by pressing the button

Run simulation

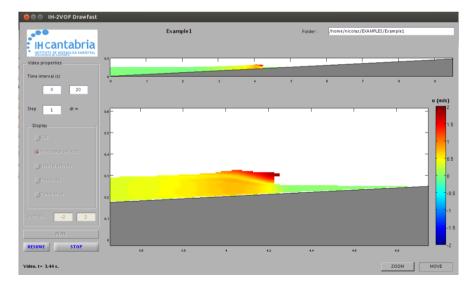

POSTPROCESSING


In the present example different aspects are analyzed:

- Free surface evolution
- Visual analysis
- Validation with laboratory data

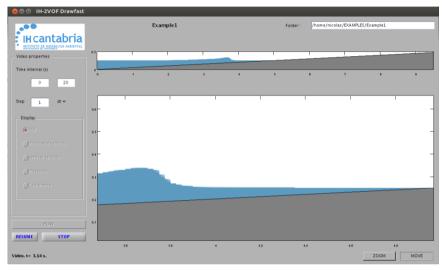
: IH cantabria					Exa	mple1				
· INSTITUTO DE HIDRÁULICA AMBIENTAL	0.5	1	1	!		1_		_		
/home/nicolas/EXAMPLES/	0	1	2	3	4	5	6	7	8	9
							Geometric do	main :	Mesh_example	e_1DAT
	Wase	e serie				Sum	n ary	courses.		
	Nam	e :	solitary_wave	Serie type :	Solitary			Mesh file g	enerated	
	H (m):	0.07				5	tatic paddle	generated	
	Leng	gth (s) :	20					Input file g	enerated	
Run simulation Delete case										

Click "Postprocessing"



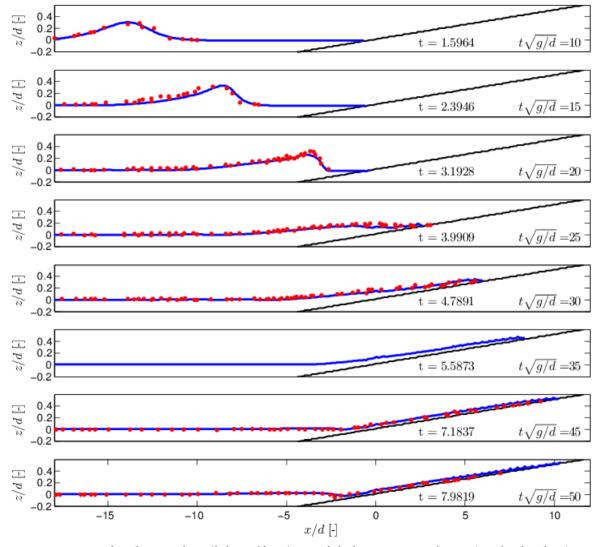
DRAWFAST

- A video of the different variables chosen before the simulation can be seen.


-Choose the initial time, final time and time step

-The lower panel allows a zoom of the area of interest

Horizontal Velocity drawfast



VOF drawfast

VALIDATION

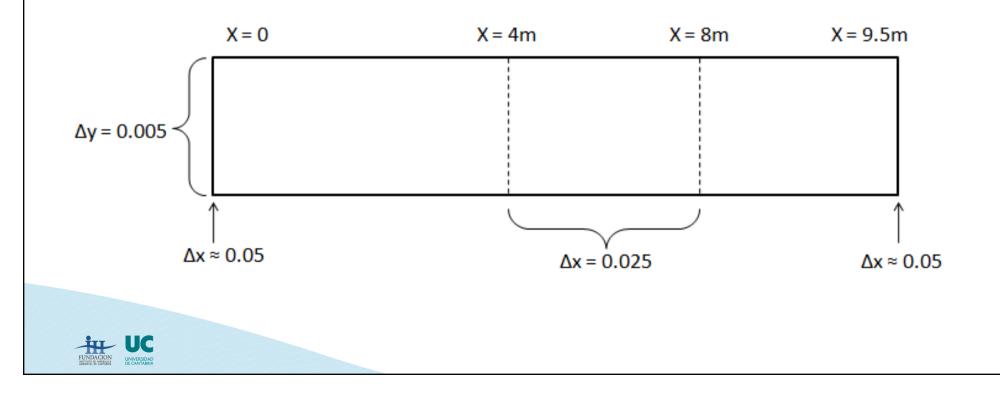
Validation against laboratory data (Synolakis 1986)

numerical results (blue line) and laboratory data (red circles)

The length scale is normalized by the still water depth *d*

The time scale is normalized by t(g/d)^1/2

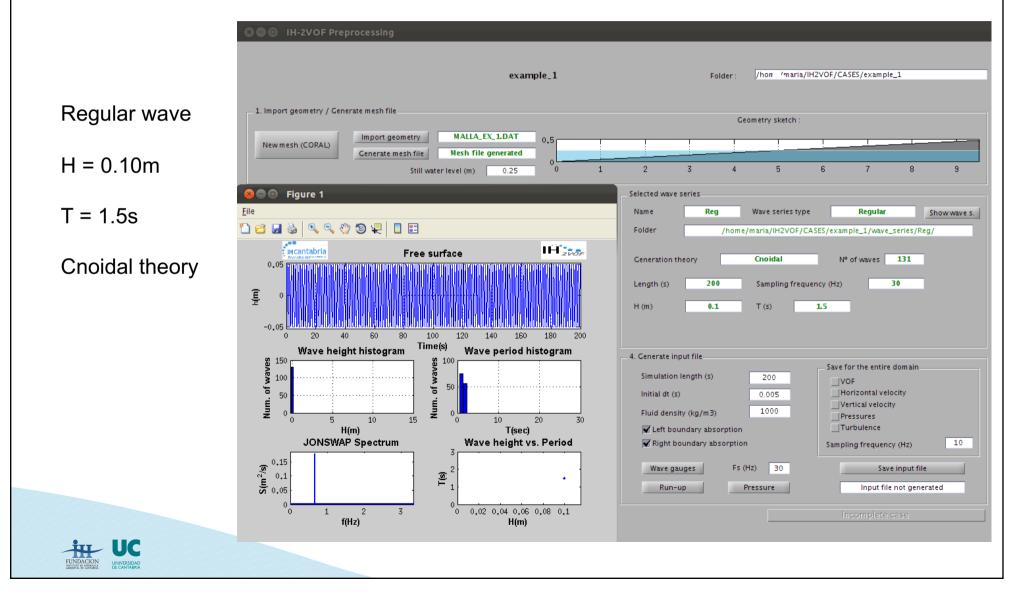
Use the matlab script validation_example1.mat to generate the plot


ADDITIONAL CASE

Run-up produce by a regular wave train

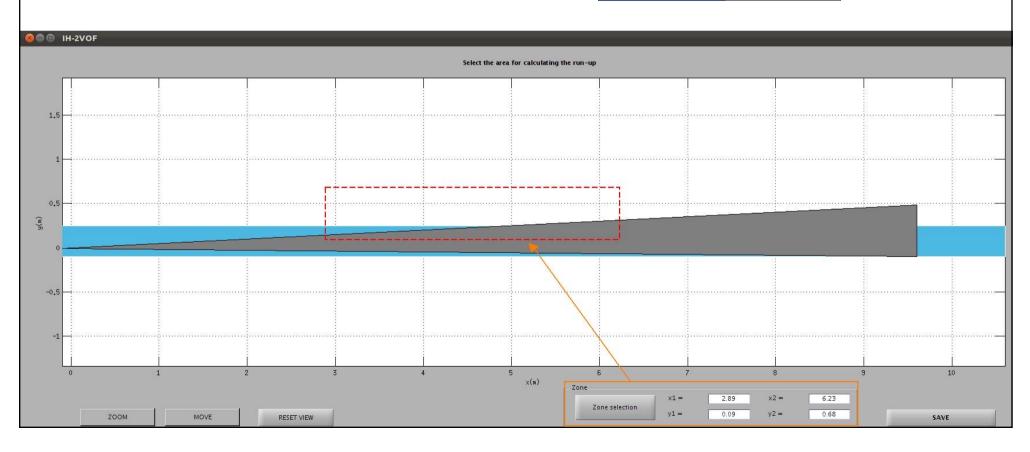
The same geometry studied in order to test **regular wave conditions** over uniform slope.

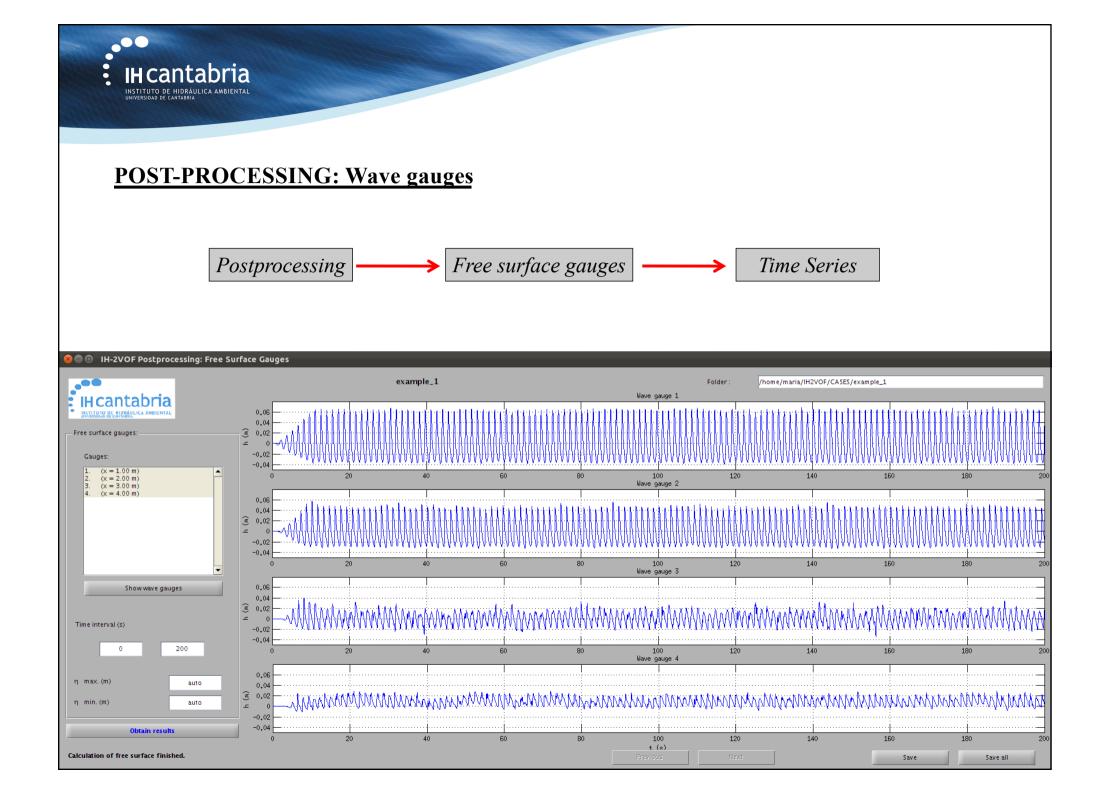
In this case, the run-up produced by a **regular wave train** with wave height equal to **0.10m** and a wave period of **1.5s** is analysed.


A variable mesh grid is considered:

INSTITUTO DE HIDRÁULICA AMBIENTAL UNIVERSIDAD DE CANTABRIA			X Direction		Y Directio
		Subzone 1	Subzone 2	Subzone 3	Subzone
	Center	3.975	4.025	8.025	0.005
	Division	0	4	8	0
Generated mesh	Num. cells left	110	1	1	1
	Num. cells right	1	160	40	99
	Max. sep.center	0.025	0.025	0.025	0.005
Calidad de la malla	X		0.02	- Detta2 X Detta X	
Calidad de la malla	X		0.02	Detta X	
Calidad de la malla	X			Detta X	
0.046 0.044 0.042 0.04	X		0.015	_ Detta X	esh quality

GENERATE WAVE CONDITIONS

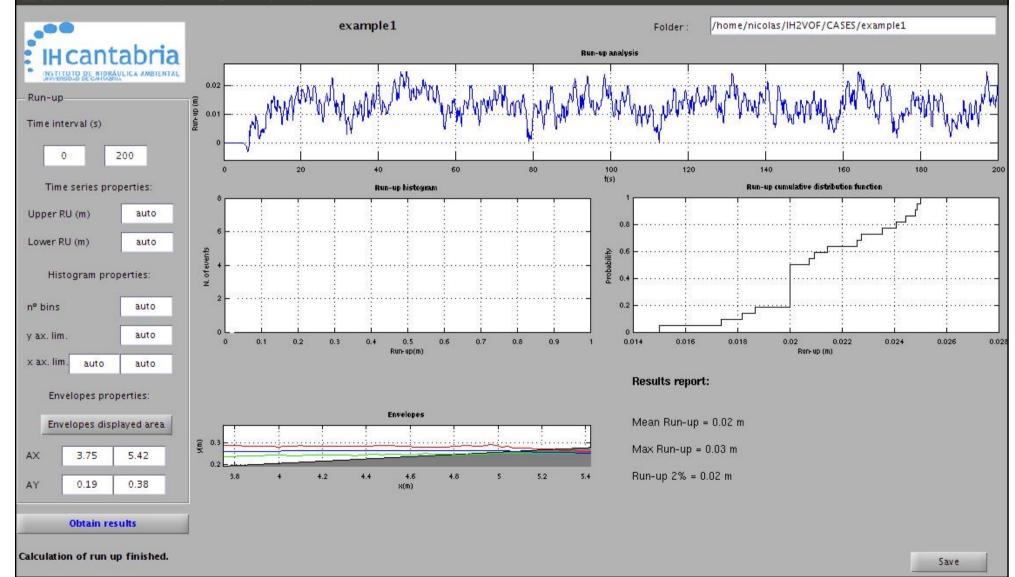


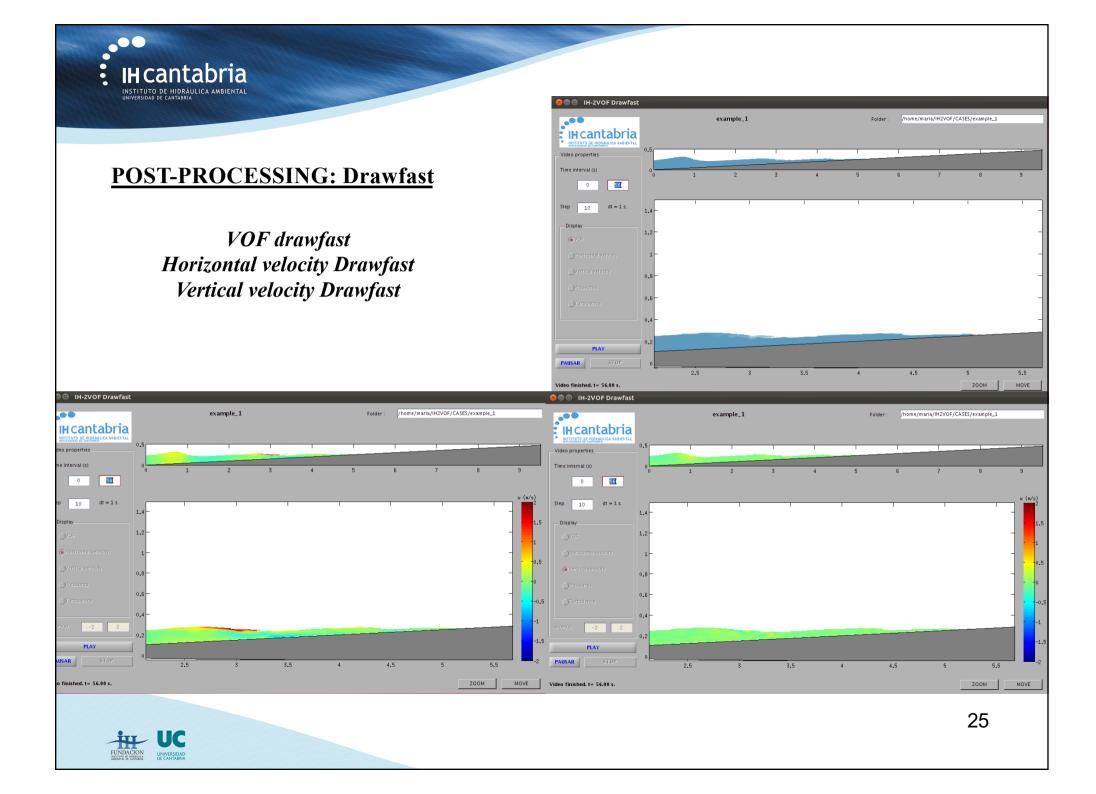


INPUT FILE

- -Wave gauges
- -Wave run-up

Gauge	X(m)
1	1
2	2
3	3
4	4





POST-PROCESSING: Run-up Analysis

😑 🗈 IH-2VOF Postprocessing: Run-up Analysis

Example 1

Study of a Solitary wave run-up

Maria Maza (mazame@unican.es)

