SEGUNDO PARCIAL - SÁBADO 06 DE JULIO DE 2024

Múltiple opción

Versión 1. Sean $V = \mathbb{R}_2[x], W = \mathbb{R}_1[x] y...$

1	2	3	4	5	6
C	С	A	С	В	В

VERSIÓN 2. Sean $(\mathbb{R}^3, \mathbb{R}, +, .)$ con...

1	2	3	4	5	6
В	D	A	A	D	D

Ejercicios de Desarrollo

Desarrollo 1 (18 pt.)

a) Sean $(V, K, +, ., <, >_V)$, $(W, K, +, ., <, >_W)$ Espacios Vectoriales, $T: V \to W$ una T.L. Defina la adjunta de T.

Sol: Una adjunta de T es cualquier transformación $H:W\to V$ tal que

$$\langle T(v),w\rangle_W=\langle v,H(w)\rangle_V\,,\forall v\in V,\forall w\in W.$$

b) Defina Operador Lineal autoadjunto y enuncie el Teorema Espectral para operadores autoadjuntos.

Sol: Sea $(V, I\!\!K, +, .)$ un espacio vectorial con producto interno y $T: V \to V$ un operador lineal. Decimos que T es un operador autoadjunto sii es igual a su adjunto, es decir, $T = T^*$. El Teorema espectral dice que todo operador autoadjunto sobre un espacio complejo o real se diagonaliza en una base ortonormal.

c) Enuncie y demuestre el Teorema Espectral para matrices simétricas (cada resultado previo que se use debe ser claramente enunciado).

Sol: El teorema nos dice que para toda matriz real simétrica A existe una matriz ortogonal P tal que $P^{-1}AP$ es diagonal.

Dem: Dada una matriz A, el operador Tx = Ax sobre \mathbb{R}^n con el producto usual tiene matriz asociada A respecto a la base canónica \mathbb{E} , que es ortonormal para el P.I. usual. Como A es simétrica, y $\mathbb{E}(T^*)\mathbb{E} = (\mathbb{E}(T)\mathbb{E})^t$, entonces T es un operador autoadjunto (se usa aquí la representación del adjunto en base ortonormal, que dice que dicha matriz es la traspuesta de la matriz asociada del operador, y que si dos operadores tienen la misma matriz asociada en la misma base son el mismo).

Luego, por el Teorema Espectral para operadores autoadjuntos, existe una base ortonormal $I\!\!B$ de V de vectores propios de T, o sea que $I\!\!B(T)I\!\!B$ es diagonal.

Pero $_{\mathbb{B}}(T)_{\mathbb{B}} = _{\mathbb{B}}(Id)_{\mathbb{E}\mathbb{E}}(T)_{\mathbb{E}\mathbb{E}}(Id)_{\mathbb{B}} = P^{-1}AP$, con $P = _{\mathbb{E}}(Id)_{\mathbb{B}}$ que es ortogonal pues sus columnas son las coordenadas en base canónica de los vectores de la base ortonormal \mathbb{B} de \mathbb{R}^n , y por lo tanto coinciden con ellos.

Desarrollo 2 (12 pt.)

a) Sea $(V, \mathbb{K}, +, ., <, >_V)$ un espacio vectorial con producto interno y dimensión finita. Defina $T: V \to V$ operador lineal ortogonal en V y matriz ortogonal en $\mathcal{M}_n(\mathbb{K})$.

Sol.: Un operador es ortogonal ($I\!\!K = I\!\!R$) si es invertible y su inversa es igual a su adjunto. Es decir, $T: V \to V$ es ortogonal si existe T^{-1} y además $T^{-1} = T^*$. Una matriz es ortogonal sii es invertible y su inversa es igual a su traspuesta. Es decir,

 $A \in \mathcal{M}_n(\mathbb{R})$ es ortogonal si existe A^{-1} y además $A^{-1} = A^t$.

 i. Enuncie una condición necesaria y suficiente sobre la matriz asociada de un operador para que el operador sea ortogonal.

Sol.: Una tal condición es que sus columnas sean una BON de \mathbb{R}^n .

ii. Sea $V=\mathbb{R}^3$ con el producto interno habitual y $T:\mathbb{R}^3\to\mathbb{R}^3$ transformación lineal tal que $T(x,y,z)=\frac{1}{3}\left(-x+2y+2z,2x-y+2z,2x+2y-z\right)$. Demuestre que T es un operador ortogonal diagonalizable y encuentre una base ortonormal que diagonalice a T.

Sol.: Para $I\!\!E$ base canónica de $I\!\!R^3$.

$$\mathbf{E}(T)\mathbf{E} = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

Cada columna tiene norma al cuadrado igual a (1+4+4)/9=1 y son ortogonales pues sus productos internos dos a dos son cero. Por lo tanto las columnas forman una BON de \mathbb{R}^3 y el operador es ortogonal.

Como no tenemos un Teorema Espectral para operadores ortogonales, en principio no se sabe si T es diagonalizable. Calculando los valores y vectores propios, encontramos que un vector propio es el (1,1,1) con valor propio 1, y el complemento ortogonal de $S_1=[(1,1,1)]$ es el subespacio propio S_{-1} asociado al valor propio -1. Consideramos una base ortonormal $I\!\!B=\left\{\frac{1}{\sqrt{2}}(1,-1,0),\frac{1}{\sqrt{6}}(1,1,-2)\right\}$ de S_{-1} , tenemos que $I\!\!B\cup\left\{\frac{1}{\sqrt{3}}(1,1,1)\right\}$ es una base ortonormal de vectores propios que diagonaliza a T.

Vale notar que como la matriz E(T) es simétrica, podríamos haber deducido que T además de ortogonal es autoadjunto, y por lo tanto es diagonalizable en una BON de \mathbb{R}^3 aplicando el Teorema Espectral para operadores autoadjuntos. El resto de los cálculos sigue igual.