Universidad de la República Facultad de Ingeniería - IMERL

Geometría y Álgebra Lineal 2 Primer Semestre 2024

Segundo parcial - Sábado 06 de julio de 2024

Nº Prueba	Cédula	Apellido y nombre

Ejercicios múltiple opción.

Total: 30 puntos. Respuesta correcta: 5 puntos; respuesta incorrecta -1,5 puntos; no responde: 0 puntos. Sólo se consideran válidas las respuestas escritas en los casilleros y espacios correspondientes.

1	2	3	4	5	6

Ejercicio 1

Sean $(\mathbb{R}^3, \mathbb{R}, +, .)$ con el producto interno habitual, $B = \{(1,0,0), (1,1,0), (1,1,1)\}$ y una transforma-

ción lineal
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 tal que ${}_B(T)_B = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right).$

Se hacen las siguientes dos afirmaciones:

- (I) T es diagonalizable.
- (II) T es autoadjunto.

Entonces:

- a) Ambas afirmaciones son verdaderas.
- b) Solamente la afirmación (I) es verdadera.
- c) Solamente la afirmación (II) es verdadera.
- d) Ambas afirmaciones son falsas.

Ejercicio 2

Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ una simetría especular con respecto a un plano π que pasa por el origen. Se hacen las siguientes dos afirmaciones:

(I) Existe
$$B \stackrel{bon}{\to} \mathbb{R}^3$$
 tal que ${}_B(T)_B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right)$

(II) Si $B \stackrel{bon}{\to} \mathbb{R}^3$ y $B' \stackrel{bon}{\to} \mathbb{R}^3$, entonces existe una matriz ortogonal P tal que $P_B(T)_B P^t =_{B'} (T)_{B'}$. Entonces:

- a) Ambas afirmaciones son falsas.
- b) Solamente la afirmación (I) es verdadera.
- c) Solamente la afirmación (II) es verdadera.
- d) Ambas afirmaciones son verdaderas.

Ejercicio 3

Sean $V = \mathbb{R}_2[x]$, $W = \mathbb{R}_1[x]$ y $T: V \to W$ dada por T(p) = p'.

Si $p(x) = a_1 + a_2 x + a_3 x^2$ y $q(x) = a_1' + a_2' x + a_3' x^2$, se definen los siguientes productos internos en V y en W: $\langle p,q\rangle_V = \sum_{i=1}^3 a_i a_i'$, $\langle f,g\rangle_W = \int_0^1 f(x)g(x) dx$.

Sea $M = \mathcal{A}(T^*)_{\mathcal{B}}$ siendo $\mathcal{A} = \{1, x, x^2\}$ y $\mathcal{B} = \{1, x\}$ las bases canónicas de V y W respectivamente. Entonces:

a)
$$M = \begin{pmatrix} 0 & 0 \\ 1 & 1/2 \\ 1 & 2/3 \end{pmatrix}$$

b) $M = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$
c) $M = \begin{pmatrix} 0 & 0 \\ 1 & 3/2 \\ -1 & 1/2 \end{pmatrix}$
d) $M = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ -1 & 2 \end{pmatrix}$

Ejercicio 4

Sea $(V, \mathbb{R}, +, .)$ de dimensión finita, $B \xrightarrow{b} V$ y $T: V \to V$ un operador lineal. Se hacen las siguientes dos afirmaciones:

- (I) Existe un producto interno tal que B es ortonormal.
- (II) Si T es diagonalizable entonces existe un producto interno tal que T es autoadjunta. Entonces:
 - a) Ambas afirmaciones son verdaderas.
 - b) Solamente la afirmación (I) es verdadera.
 - c) Solamente la afirmación (II) es verdadera.
 - d) Ambas afirmaciones son falsas.

Ejercicio 5

Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $T(x, y, z) = \frac{1}{36} (-2x + 4y + 4z, 4x - 2y + 4z, 4x + 4y - 2z)$. Con el producto interno habitual,

- a) T es un operador ortogonal no diagonalizable.
- b) T es un operador unitario autoadjunto.
- c) T es una isometría autoadjunta.
- d) T es autoadjunto pero no es una isometría.

Ejercicio 6

Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ una simetría axial de eje e = [(1,0,2)] y $A :=_{\mathcal{E}} (T)_{\mathcal{E}}$ para la base canónica \mathcal{E} de \mathbb{R}^3 . Entonces:

- a) A no induce una forma cuadrática.
- b) A induce una forma cuadrática que es definida positiva.
- c) A induce una forma cuadrática que es semidefinida positiva.
- d) A induce una forma cuadrática que es indefinida.

Ejercicios de desarrollo.

Total: 30 puntos.

Ejercicio 1 (18 pt.)

- a) Sean $(V, K, +, ., <, >_V)$, $(W, K, +, ., <, >_W)$ Espacios Vectoriales, $T: V \to W$ una T.L. Defina la adjunta de T.
- b) Defina Operador Lineal autoadjunto y enuncie el Teorema Espectral para operadores autoadjuntos.
- c) Enuncie y demuestre el Teorema Espectral para matrices simétricas (cada resultado previo que se use debe ser claramente enunciado).

Ejercicio 2 (12 pt.)

- a) Sea $(V, \mathbb{K}, +, ., <, >_V)$ un espacio vectorial con producto interno y dimensión finita. Defina $T: V \to V$ operador lineal ortogonal en V y matriz ortogonal en $\mathcal{M}_n(\mathbb{K})$.
- b) i. Enuncie una condición necesaria y suficiente sobre la matriz asociada de un operador para que dicho operador sea ortogonal.
 - ii. Sea $V=\mathbb{R}^3$ con el producto interno habitual y $T:\mathbb{R}^3\to\mathbb{R}^3$ una T.L. dada por $T(x,y,z)=\frac{1}{3}\left(-x+2y+2z,2x-y+2z,2x+2y-z\right)$. Demuestre que T es un operador ortogonal diagonalizable y encuentre una base ortonormal que diagonalice a T.