

MICROBIOLOGÍA ANAEROBIA II

Curso "Diseño y Operación de Sistemas Anaerobios" Cecilia Callejas <u>ceciliac@fing.edu.uy</u>

1

Organización

- 1. Introducción a fundamentos de la microbiología
- Definición de microorganismos y tamaños
- Organización celular de procariotas y eucariotas
- Comparación de estructuras celulares básicas: bacterias y arqueas
- Breve introducción a la diversidad microbiana.
- 2. Principios microbiológicos involucrados en la digestión anaerobia
- Estuctura de gránulos anaerobios: bacterias anaeróbicas, arqueas metanogénicas
- Conceptos de Ecología Microbiana en el proceso de DA
- -Herramientas de Biología Molecular y ejemplos

Diferencias entre arqueas y bacterias

Característica	Arqueas	Bacterias
Dominio	Archaea	Bacteria
Pared celular	Sin peptidoglicano; pueden contener pseudopeptidoglicano o proteínas	Contienen peptidoglicano (mureína)
Membrana celular	Enlaces éter en lípidos de membrana	Enlaces éster en lípidos de membrana
ARN polimerasa	Múltiples tipos, similares a las de eucariotas	Un tipo principal
Ribosomas	70S (pero muy similares a los de eucariotas)	70S
Ambientes	Extremos (altas temperaturas, alta salinidad, alta acidez) y ambientes normales	Ambientes variados, incluyendo normales y extremos
Metabolismo	Diversos, incluyen metanogénesis	Diversos, no incluyen metanogénesis
Genoma	Circular, con secuencias y características genéticas únicas	Circular, con secuencias y características genéticas diferentes
Reacción a antibióticos	Generalmente resistentes a antibiticos que afectan a bacterias	Generalmente sensibles a antibióticos específicos

¿Dónde encontramos microorganismos?

- Los microorganismos se encuentran en casi todos los ambientes del planeta y tienen un impacto en varias áreas que van desde ciclos biogeoquímicos, hasta aplicaciones en la industria, bioenergías o salud animal y humana.
- Animal Health
 Human Health
 Ecosystem Health
 Water & Waste

 Agriculture
 Agriculture
 Animal Health
 Mater & Waste

 Agriculture
 Biotechnology
 Industry
 Biotechnology

 Food
 Biotechnology
 Industry
 Biotechnology

Conditions
Temperature: cold \rightarrow warm \rightarrow hot Water potential: dry \rightarrow moist \rightarrow wet pf:: $0 \rightarrow 7 \rightarrow 14$
O₂: oxic → microoxic → anoxic Light: bright light → dim light → dark Osmotic conditions: freshwater → marine → hypersaline
ducido por la actividades de un organismo
í

Lodos de biomasa granular: anaerobios

Caracterísitcas: esférico, 0,5 a 3mm, alta densidad, sedimenta, produce biogas, mayor resistencia a inhibidores

En el caso de los gránulos anaerobios

- Organismos quimiótrofos: quimiheterótrofos y quimioautótrofos
- Fuente de C: orgánica (monómeros de azúcares, proteínas ác. Grasos y AGVs) e inorgánica (CO2)
- Resipración anaerobia (aceptor de e- distinto al 0₂, ambiente reductor) y/o metabolismo fermentativo
- Estas caracterísitcas generan nichos para una gran cantidad de especies de bacterias y arqueas |con metabolismo anaerobio y/o fermentativo.
- Arqueas y bacterias anaerobias

inicio

(conc.

Los micorambientes del gránulo alojan distintos grupos metabólicos

Ejemplo 1: Las vías metanogénicas cambian durante la granulación

Ejemplo 2: Digestión de efluente lácteo y aumento de pH

- Reactor UASB modificado 40m³ (Passeggi *et al.*, 2012). Escala real
- Inoculación 1300kg SSV de lodo floculento proveniente de una laguna anaerobia de frigorífico
- Régimen de alimentación intermitente: 3 días alim./4 días recirculación
- Aumento gradual de carga orgánica por aumento de caudal (q)

¿Cómo impactó el aumento de pH en la comunidad de arqueas metanogéncias?

Q-PCR de mcrA y actividad metanogénica acetoclastica

Metabolismo energético

- Se pueden clasificar según su fuente de energía en quimiótrofos o fotótrofos
- Los quimiótrofos conservan la energía ya sea por respiración o fermentación

Тіро	Fuente de energía	Fuente de carbono
Fototróficas:	Luz	
Fotoautótrofos	Luz	CO ₂
Fotoheterótrofos	Luz	Compuestos orgánicos
Quimiotróficas:	Oxidación compuestos	
Quimioliautotótrofos	Oxidación de compuestos inorgánicos	CO ₂
Quimiorganohetrótrofos	Oxidación de compuestos orgánicos	Compuestos orgánicos
		-

