
Piaget and Computational Thinking

Sylvia da Rosa Zipitŕıa

Institute of Computing, Facultad de Ingenieŕıa, Universidad de la República
darosa@fing.edu.uy

Abstract. In this article I present a theoretical framework for the con-
cept computational thinking. I do so in response to some of the problems
and consequences of the lack of viable theoretical foundations; especially
in relation to the development in recent years of many educational prac-
tices that claim the term computational thinking. I therefore introduce
my extension of Jean Piaget’s general law of cognition which arose as
a result of my empirical research on novice learners knowledge of the
concept of a program as an executable object. Said empirical study is
briefly described in this paper as a means to highlight the key to my ex-
tension of Piaget’s general law, which is the insight of how the thought
processes and methods involved in cases where the subject must instruct
an action to a computer differ from those in which the subject instructs
another subject, or performs the action themselves. My theory explains
the difference between algorithmic thinking and computational thinking
by adequately locating it in the specificities of the subject instructing
a computer. Hence, in this article I claim that my extension of Piaget’s
law offers a more empirically thorough and theoretically sound way for-
ward in the conceptual development of computational thinking than the
alternatives that are being debated in academia to the present day.

Keywords: Learning to program · Novice learners · Piaget’s theory.

1 Introduction

In this article I discuss the concept of computation thinking (hereinafter CT).
More specifically, I discuss the recent upsurge of interventions that use the term
computation thinking to describe certain ideas and practices in educational set-
tings, as well as the academic debates that these educational ideas and practices
have sparked in recent years. My intention is to bring clarity to a concept that is
becoming increasingly popular in practice and, while it is intensely discussed and
debated, has theoretical contours that remain poorly defined. I argue that the
popularity of the concept in educational practice has been producing teaching
tools and interventions that, not only obscure the very purpose of applying com-
putational thinking in education, but also fail to produce the desired outcomes
in student learning.

CT as it is being debated in recent years is a concept that, among other
things, is not easily distinguished from other related concepts such as, for exam-
ple, algorithmic thinking.



2 Sylvia da Rosa Zipitŕıa

The problem of conceptual vagueness is not a problem in itself. However,
certain practices and applications of diffuse concepts can become problematic.
Concepts that appear to offer new insights which could potentially be converted
into practical tools to be applied in various fields can become immensely popu-
lar. There is a risk, however, of a concept being sabotaged by its own popularity
as its theoretical development is intersected by its practical application in un-
foreseen ways. This is particularly true at the interface of policy and research
which implies a complex interaction of interests, institutionalised processes and
techniques that ultimately produce a wide range of (not always desirable) policy
interventions and results.

The case of the introduction of computer science as a discipline in educa-
tional policy is an example of the difficulties that can emerge in such contexts.
Since the expression ”Computational Thinking” was first introduced in 2006 by
Jeannette Wing, a review of education literature [6, 4, 25, 2, 21, 5, 3], shows a di-
versity of approaches, encompassing definitions, interventions and assessments,
that continually generate the most diverse opinions and interpretations, but fail
to offer a satisfactory conceptual landscape within which such a wide range of
ideas and practices can be contained.

CT has been making the transition from computer science concept into edu-
cational tool and suffers, like many concepts before it, from a disconnect between
its theory and its practical application, making it vulnerable to confusion and
misuse. As Denning writes:

The absence of clear definitions and substantiated claims, ”... leave teachers
in the awkward position of not knowing exactly what they supposed to teach or
how to assess whether they are successful.” Peter Denning in [4].

In fact, the application of a concept that is theoretically weak can even be
counterproductive. As Paulson notes:

”Unless somebody can come up with a more insightful definition, it is indeed
time to retire ’computational thinking’”. Lawrence C. Paulson in [7].

Indeed, before the promised potential of CT is lost in misguided practice
it is the task of researchers (myself included) to map the current theoretical
landscape of computational thinking and identify how it can be moved forward.

I therefore begin with a brief literature review of the emergence and trajec-
tory of CT, and the conceptual challenges produced since it has been applied,
particularly in education.

More specifically, I review the two perspectives that have been most relevant
in the recent trajectory of CT; on the one hand, the literature seeking to define
CT using computational models. On the other hand, the literature that define
CT based on the cognitive sciences, hence taking psychological processes into
consideration. I emphasise these two perspectives in the review because both
build on areas that are relevant to the development of CT (i.e. computer and
thought).

Other literature, such as papers based on other approaches (for instance CHB
or assessing CT), do not significantly add further insight to the analysis and has
therefore been excluded from the review.



Piaget and Computational Thinking 3

The paper is organised into the following sections: 1 Introduction; subsection
1.1 CT in the literature; section 2; Algorithmic thinking; subsection 2.1 The
general law of cognition; section 3 Extending the general law of cognition: com-
putational thinking; subsection 3.1 The experience prior to the theory; section
4 Conclusions; section 5 Acknowledgements and finally References.

1.1 CT in the literature

The expression ”Computational Thinking” was introduced in 2006 by Jeannette
Wing, [22], where she characterises CT as: solving problems, designing systems,
and understanding human behaviour, by drawing on the concepts fundamental
to computer science. In her article Wing makes the remark that CT is done by
humans, not machines. Since then, many researchers have continued to develop
and define the concept, including Wing herself (see later on this section).

In [4], Peter Denning makes a brief historical review from the roots of algorithmic-
computational thinking, including references of several computer science re-
searchers like Donald Knuth, Edsger Dijkstra, Seymour Papert, among oth-
ers. These authors have mentioned in one or another form the way of think-
ing when solving algorithmic problems and representing their solutions as algo-
rithms, characteristic of computer science. The focus of the majority of authors
is on CT as a term meant to encompass a set of concepts and thought processes
that aid in formulating problems and their solutions in different fields in a way
that could involve computers. In most of the cases, these include; abstraction,
recognising patterns, logical reasoning, automation, testing, generalising, data
representation and so forth.

In an effort to clarify the specificity of CT, computer science researchers
have sought to link CT to a specific computational model; a strategy which they
believe could provide CT with a much needed conceptual clarity. Among others,
Denning is responding to Alfred Aho’s words from [1], where Aho emphasises
the relevance of computational models, not only in computer science but also
in other disciplines. Denning, in agreement with Aho, points out the absence of
any mention of computational models as one of the main sources of ambiguity
in the definitions of CT.

Further, Denning argues that the problem lies in failure to realize the fact
that computational concepts (abstraction, recognising patterns, logical reason-
ing, automation, testing, generalising, data representation and so forth) consti-
tute a computational model. Others, however, such as [7], Lawrence C. Paulson
downplay the impact of relying to computational models for defining computa-
tional thinking; mainly because ”All disciplines rely on models”.

While many computer science researchers have been debating the issue of
whether the problem of the confusion surrounding CT can be addressed by spec-
ifying to which computational model does that CT refer, other authors present
a different perspective without making references to computational models or
even computational concepts.



4 Sylvia da Rosa Zipitŕıa

These authors offer a view much more centred around the cognitive sciences
and mental processes. For this reason, much of their debate is concerned with
who is the thinker in CT and where does the processing occur.

For instance, Wing, Cuny and Snyder in [24] write: ”Informally, computa-
tional thinking describes the mental activity in formulating a problem to ad-
mit a computational solution. The solution can be carried out by a human or
machine, or more generally, by combinations of humans and machines”. While
developing this thought, Wing has had to make changes to her initial defini-
tion in order to include ” thinking process where solutions are represented in
a form that can be effectively carried out by an information-processing agent”
(https://www.cs.cmu.edu/~CompThink/ (accessed 25/04/18)).

The change in Wings definition reflects the philosophical view which acknowl-
edges the dual ontology of programs. A program is both the text (algorithm) and
the object executed by a machine. Wings turn to the thinking agent is correct in
that it is focused on the thought processes involved in CT. For instance, when
talking about CT many computer science researchers refer to abstraction as a
computer science technique, while Wing talks of abstraction as a cognitive tool:
”Abstractions are the ’mental’ tools of computing.” [23] page 3721.

Also, in [25, 26] the authors present their interpretation of CT taking princi-
ples from cognitive sciences.

In [25] the author describes his framework based on the computational the-
ory of mind which basically claims that computational processing of information,
regardless of the underlying device (electronic or biological), can facilitate and
generate cognition (page 21). The author describes the type of computation at
two levels, on the one hand, as forms of an associative/distributive processing,
that the author also identifies as a bottom-up or inductive and top-down or de-
ductive (pages 22-24) processes, and on the other hand as modelling/simulation
types of computation at higher levels (page 27). The author describes how this
associative/distributive processing can be found in the explanations of how learn-
ing take place in mind (page 23) of different disciplines, namely epistemology,
psychology, neuroscience, computer science.

Since the processing of information can be carried out by an electronic or
biological underlying device (page 21), his interpretation of CT is then that it
is the same as thinking and therefore everyone does CT (page 29).

What distinguishes electronic CT consists of ” ... thinking caused by certain
uses of electronic computing devices by a biological agent (page 30)”. That
means that if the thinker uses electronic computing devices, then he/she develops
”electronic computational thinking skills”.

2 Algorithmic thinking

In response to the literature reviewed here, I begin by stating the following: In
order to articulate a theory of the concept of CT the words computational and
thinking’ must both be consider, and more importantly, the link between the
two is key in this regard. Articulating a solid theoretical definition of CT is not



Piaget and Computational Thinking 5

a computational problem, or a psychological one. Each science or discipline is
able to answer the questions it is fit to problematise. CT is a problem for the di-
dactics of computer science (didactics of computer science1). This is the science
of, among other things, the mental processes involved when dealing with the
problem of teaching computers to solve algorithmic problems; that is, the prob-
lem of learning how to program. In order to contribute to elaborate theoretical
founded solutions for those problems, I offer a didactical model from Piaget’s
theory -Genetic Epistemology- to do research on learning to program.

Piaget studied the mental processes involved in algorithmic thinking in depth,
and his theory provides psychological explanations substantiated with broad
empirical research. I have extended some principles of his theory to explain the
mental processes of CT.

2.1 The general law of cognition

Piaget’s theory -Genetic Epistemology- explains the construction of knowledge
and offers a model that can be used in all domains and at all levels of develop-
ment. The central point of Piaget’s theory has been to study the construction of
knowledge as a process and to explain how the transition is made from a lower
level of knowledge to a level that is judged to be higher [10]. The supporting in-
formation comes mainly from two sources: first, from empirical studies of the
construction of knowledge by subjects from birth to adolescence (giving rise to
Piaget’s genetic psychology) [8, 9], and second, from a critical analysis of the
history of sciences, elaborated by Piaget and Garćıa to investigate the origin
and development of scientific ideas, concepts and theories [12].

In Piaget’s theory, human knowledge is considered essentially active, that
is, knowing means acting on objects and reality, and constructing a system of
transformations that can be carried out on or with them [10]. The more gen-
eral problem of the whole epistemic development lies in determining the role
of experience and operational structures of the individual in the development
of knowledge, and in examining the instruments by which knowledge has been
acquired before their formalisation. This problem was studied in depth by Pi-
aget in his experiments about genetic psychology. From these he formulated a
general law of cognition [8, 9], governing the relationship between know-how and
conceptualisation, generated in the interaction between the subject and the ob-
jects that he/she has to deal with to solve problems or perform tasks. It is a
dialectic relationship, in which sometimes the action guides the thought, and
sometimes the thought guides the actions.

Piaget represented the general law of cognition by the following diagram

C ← P → C’

where P represents the periphery, that is to say, the more immediate and exterior
reaction of the subject confronting the objects to solve a problem or perform

1 Also called didactics of informatic or computer science education.



6 Sylvia da Rosa Zipitŕıa

a task. This reaction is associated to pursuing a goal and achieving results,
without awareness neither of actions nor of the reasons for success or failure. The
arrows represent the internal mechanism of the (algorithmic) thinking process,
by which the subject becomes aware of the coordination of his/her actions (C
in the diagram) -that is the method or algorithm she/he has employed- the
modifications that these impose to objects, as well as of their intrinsic properties
(C’ in the diagram), -that is the data structures-. The process of the grasp of
consciousness described by the general law of cognition constitutes a first step
towards the construction of concepts.

Piaget also describes the cognitive instrument enabling these processes, which
he calls reflective abstraction and constructive generalisation [8, 11], accounting
for the principles and mechanisms involved in algorithmic thinking.

Reflective abstraction is described as a two-fold process: First, it is a projec-
tion (transposition) to the plane of thought of the relations established in the
plane of actions. Second, it is a reconstruction of these relations in the plane of
thought adding a new element: the understanding of conditions and motivations.
The motor of this process is called by Piaget the search of reasons of success (or
failure).

The two phases of the cognitive instrument of generalisation, described in
are: inductive generalisation and constructive generalisation. In the first phase,
the individual transfers to new objects what has been previously constructed,
without taking into account the transformations of the knowledge required for
the conditions of the new situation. Because of constructive generalisation, the
individual understands the new conditions giving rise to structures, opening the
possibility of studying new elements and integrating the constructions of the
previous stages as particular cases [11].

3 Extending the general law of cognition: computational
thinking

The construction of knowledge about algorithms and data structures is a process
regulated by the general law of cognition. Over the years I have investigated the
construction of knowledge by novice learners of algorithms and data structures.
My research methodology is based on applying Piaget’s general law of cogni-
tion to make students solve problems (for instance sorting, counting, searching
elements [14–16, 19, 17, 13]) and reflect about the method they employ and the
reasons for their success (or failure), as a first step towards the conceptualisation
of algorithms and data structures.

However, in the case that the object on which knowledge is to be constructed
is a program, some challenges appear, which are inherent to the relevance of
the machine that executes it. I developed the extension of Piagets general law
of cognition as I identified the need to describe cases where the subject must
instruct an action to a computer. The thought processes and methods involved
in such cases differ from those in which the subject instructs another subject, or
performs the action themselves.



Piaget and Computational Thinking 7

As Simon Papert says in [20] page 28, referring to the programming of a turtle
automata, ”Programming the turtle starts by making one reflect on how one does
oneself what one would like the Turtle to do”. In other words: ”programming an
automata that solves a problem, starts by making the student reflect on how
he/she does herself what he/she would like the automata to do”.

To programming an automata solving a problem, the learners have to es-
tablish a causal relationship between the algorithm (he/she acting on objects),
and the elements relevant to the execution of the program (the computer acting
on states). Not only they have to be able to write the algorithm (the text) and
represent it as an automata and/or as pseudo-code, but also they have to be
able to understand the conditions that make the computer run the program.

The generalisation of Papert’s words above can be described as: programming
an automata starts by making one reflect on

how one does oneself︸ ︷︷ ︸
what one would like the automata to do

The causal relationship between the first row and the second row is the key of
the knowledge of a machine executing a program. It is indicated with the brace
in above description.

By way of analogy with Piaget’s law we describe this relationship in the
following diagram

C ← P → C ′︸ ︷︷ ︸
newC ←− newP −→ newC ′

where newP is characterised by a periphery centred on the actions of the subject
and the objects he/she acts on. The centres newC and newC’ represent awareness
of what happens inside the computer. The subject reflecting on his/her role as
problem solver becomes aware of how to do to make the computer solve the
problem.

The diagram describes an extension of the law of cognition to encompass not
only algorithmic thinking (first row) but also computational thinking (second
row).

Piaget identified that the construction of knowledge of methods (algorithms)
and objects (data structures) occurs in the interaction between C, P and C’.
Likewise, I claim that the construction of knowledge of the execution of a pro-
gram takes place in the internal mechanisms of the thinking process; marked by
the arrows between newC, newP and newC’. In other words, the general law of
cognition remains applicable to the thinking process represented by the arrows;
in both lines of the diagram pictured above.

My extension of Piaget’s law was not initially developed as a theoretical
description of ’computational thinking’. Instead, I formulated the theory in order
to accurately account for the specificities of the subject instructing a computer
to solve a problem.



8 Sylvia da Rosa Zipitŕıa

In the process of applying Piaget’s theory to investigate those specificities,
I identified the need to extend Piaget’s general law of cognition to address the
passage from algorithmic to computational thinking.

As is often the case, the need to extend the theory became visible in practice;
during an empirical study [18]. One of the objectives of said study was to make
the students aware of the causal relationship between their actions and the events
in the computer.

For the study I sought to formulate questions related to actions, that would
trigger a thought process which could redirect students’ attention, away from
themselves and their actions, towards the events taking place in the computer.

This process is what led to the extension of Piagets general law of cognition.

In order to clarify further how my extension of Piagets general law emerged,
I will offer a brief description of the empirical study I have made reference to in
this paper. This is not an example of the application or verification of a theory.
It is a fundamental element of the emergence and development of the theoretical
framework I am introducing in this paper. The need to include both theory and
practice to develop a framework is not linked to the need to justify the practical
use of theory; it simply reflects the dialectical relationship between them.

3.1 The experience prior to the theory

The empirical study which eventually led to the formulation of new theory was
carried out in 2017 with average school students between 13 and 15 of an ordinary
public High School in Uruguay. The aims of the study were for students; on the
one hand, to play a simple video game and to express the rules of they themselves
playing the game as an algorithm in natural language, on the other hand, to
design an automata for a program that plays the game, and finally to write and
execute a program that plays the game. Examples of students answers, some
illustrating the success of the new questions, are included.

The game (called Lumber Jack (https://tbot.xyz/lumber)) consists of help-
ing the woodcutter, Jack, to cut a large tree, as shown in figure 1. As Jack
hits the tree with the ax, the tree descends a fixed unit. Jack must prevent the
branches of the tree from touching his head, if this happens, then the game ends.

The player can move Jack to the left or to the right by pressing two arrow
buttons on the screen or the keyboard keys. Each time Jack moves he gives an
ax blow on the side of the tree where he has been positioned himself. The player
must choose where to position Jack to avoid being hit by the branches of the
tree as it descends. It is always possible to dodge the branches that appear since
the combination of having branches on the left and on the right is never given.

The students are asked to play the game for a while and then to describe
how they play in natural language in their own words. They described actions
and objects related to themselves; as exemplified by the quotes below:



Piaget and Computational Thinking 9

Fig. 1. Game playing sequence with row 2 highlighted

1. I try to play on the phone ... it is uncomfortable ... I use a notebook as
support to improve my posture. I get frustrated when I do not succeed and I
start again; paying attention to any mistakes in order to correct them. When
I start I look up the tree to anticipate movement ... I change the position of
my fingers; with index fingers it’s better.

2. I go slowly when I see a branch and I go faster if there is no branch. I try
to prevent. I go slower when it approaches.

3. Jack is cutting the trunk; moving to the right and left depending on where
the branches appear. When the branch is on the right side Jack runs to the
left and when the branch appears on the left side Jack moves to the right.

The most notable observation at this stage is that the players did not notice
that Jack’s movement depends on the actions of the player (for instance, at the
third quote the player describes Jack’s movements as independent from his/her
own actions of pressing the keys/buttons.) In other words, there is a lack of
awareness of the causal relationship between what the player does and what
Jack does.

Keeping in mind my task of inducing students’ reflection on how he/she does
herself what he/she would like the program to do, I set out to design questions
aimed to direct students’ attention away from newP (e.g. what they do with
their fingers or how they feel) to newC and newC’ (Jack’s positions, branches
states at the row above Jack and what has to be done for not losing ). By this I
mean, to be aware of the causal relationship between their own actions (perceive
the branches, press the keys/buttons) and the events in the computer (Jack’s
positions, the descending branches, the key/buttons events).



10 Sylvia da Rosa Zipitŕıa

Instead of asking ”describe how do you play”, then, question 1 (Q1) helps
direct the players’ attention to Jack’s different positions on the sides of the tree
(newC’). Having done that, questions 2 and 3 now induces students to explicitly
write down the rules of the game as inferences (newC).

Q1 Before starting to play, what are the possible positions that Jack can be
in, in relation to the tree?

Q2 How do you decide which buttons to press?
Q3 Can you summarise below when success and failure occur, in your own

words?

In some excerpts of students’ answers to questions 2 and 3 (Q2 and Q3)
(see below those of level 1) explicit inferences similar to ”if Jack was on such
a side and the branch on that side, then ... ” or ”if the pressed button was
such and there was a branch, then Jack ... ” appear. These reveal awareness of
the centres newC and newC’. In contrast, those of level 2, reveal that students’
thought remains at newP (that is, focused in his/her-self).

Examples of answers of level 1

– Student 20: Q3: You succeed when you press the correct buttons, for example:
Jack is on the left side and the branch is almost on top of him. You have to
go to the right so that the branch does not hit you and you die.

– Student 7: Q2: Depending on the position of the branches, the key we are
going to press is: branch on the right, we press the arrow on the left so that
Jack moves to the left.

– Student 19: Q2: You can use left or right buttons; the one you use will depend
on where Jack is. Q3: Success occurs when, for example, Jack is on the left,
there is no branch and we press the left button, or when Jack is on the right,
there is a branch and we press the left button.

– Student 18: Q3: Success occurs when we press the right button: if Jack is on
the left side and there is a branch, you press the other button.

Examples of answers of level 2

– Student 4: Q2: I decide to press the keyboard which is easier.
– Student 3: Q2: I decide to go to the opposite side in order to cut the tree.
– Student 5: Q2: With the mouse you press the arrow to the left or to the right,

and pressing the keys on the right which are > and <, or if you use the cell
phone; the fingers.

Central to the task of answering the questions is that the first question is
formulated directing students’ attention away from they themselves towards the
elements in the world model of the game (newC and newC’). They were then
able to express the causal relationship between their own actions (algorithmic
thinking) and the events in the computer (computational thinking). This fact is
a direct consequence of applying my framework of the extended general law of
cognition in designing the questions.



Piaget and Computational Thinking 11

4 Conclusions

Computational thinking is a term that is broadly discussed and used, but rarely
defined. As such, computational thinking has remained diffuse and undistin-
guished from other related terms; such as, algorithmic thinking. It is for this
reason that my study offers a significant novelty in this area. Indeed, with my
results I introduce a clear definition of the notion of computational thinking
(represented by the second line of the diagram on page 7). Further, this new
definition is adequately located in relation to the notion of algorithmic thinking
(represented by the first line of the diagram on page 7). My premise is that
the depth of my contribution to clarify ideas of computational thinking in ed-
ucational settings is not clearly visible until it is located within my theoretical
framework. Taking principles of Jean Piaget’s theory, Genetic Epistemology, I
argue that the point of departure for teaching formal knowledge must always
be at the level of knowledge that the student has already constructed. In other
words; any learning process is built stepwise and is governed by the general
law of cognition. In the specific case of learning to program, the process is gov-
erned by the new law of cognition as I have formulated it on page 7. Learning
how to think computationally, thus, is built stepwise; from the level of actions,
to the construction of concepts of computer science (i.e. algorithms and data
structures), and finally the construction of formal programs. The theoretical
contribution described in this paper provides teachers with a clear description
of the term CT, that they can use to help the students learning to program, in
a way that respects the process of learning. As a consequence the students are
educated to think algorithmically and computationally.

5 Acknowledgements

I am very grateful for comments, suggestions and corrections from to Manuela
Cabezas when writing this paper in English. The comments of the anonymous
referees are gratefully acknowledged.

References

1. Aho, A.V.: Computation and Computational Thinking. The Computer Journal 55
(2012)

2. Ambrosio, A.P., da Silva, L., Macedo, J., Franco, A.: Exploring Core Cognitive
Skills of Computational Thinking. Proceedings of the 25th Annual Psychology of
Programming Interest Group Workshop (2014)

3. Borges, K., de Menezes, C., da Cruz, L.: The Use of Computational Thinking in
Digital Fabrication Projects - a case study from the cognitive perspective. IEEE:
Frontiers in Education Conference (FIE) (2017)

4. Denning, P.J.: Remaining Trouble Spots with Computational Thinking. Commu-
nications of the ACM 60 (2017)

5. Grover, S., Pea, R., Cooper, S.: Factors Influencing Computer Science Learning in
Middle School. SIGCSE’16 (2016)



12 Sylvia da Rosa Zipitŕıa

6. Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L.,
Settle, A.: Computational Thinking in K-9 Education. Proceedings of the Working
Group Reports of the 2014 on Innovation and Technology in Computer Science
Education Conference pp. 1–29 (2014)

7. Paulson, L.C.: Computational Thinking is not Necessarily Computational. Com-
munications of the ACM 60 (2017)

8. Piaget, J.: La Prise de Conscience. Presses Universitaires de France (1964)
9. Piaget, J.: Success and Understanding. Harvard University Press (1974)

10. Piaget, J.: Genetic Epistemology, a series of lectures delivered by Piaget at
Columbia University, translated by Eleanor Duckworth. Columbia University Press
(1977)

11. Piaget, J.: Recherches sur la Généralisation. Presses Universitaires de France (1978)
12. Piaget, J., Garcia, R.: Psychogenesis and the History of Sciences. Columbia Uni-

versity Press, New York (1980)
13. Sylvia da Rosa, B.R.: Didactical ideas in computer science. ITiCSE ’16: Proceed-

ings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education (2016)

14. da Rosa, S.: Designing Algorithms in High School Mathematics. Lecture Notes in
Computer Science, vol. 3294, Springer-Verlag (2004)

15. da Rosa, S.: The Learning of Recursive Algorithms from a Psychogenetic Perspec-
tive. Proceedings of the 19th Annual Psychology of Programming Interest Group
Workshop, Joensuu, Finland pp. 201–215 (2007)

16. da Rosa, S.: The Construction of the Concept of Binary Search Algorithm. Pro-
ceedings of the 22th Annual Psychology of Programming Interest Group Workshop,
Madrid, Spain pp. 100–111 (2010)

17. da Rosa, S.: The construction of knowledge of basic algorithms and data structures
by novice learners. Proceedings of the 26th Annual Psychology of Programming
Interest Group Workshop, Bournemouth, UK (2015)

18. da Rosa, S.: Students teach a computer how to play a game. LNCS of The 11th
International Conference on Informatics in Schools ISSEP 2018 (2018)

19. da Rosa, S., Chmiel, A.: A Study about Students’ Knowledge of Inductive Struc-
tures. Proceedings of the 24th Annual Psychology of Programming Interest Group
Workshop, London, UK (2012)

20. Simon Papert: Papert, S. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books (1980)

21. Tiensuu, A.: Computational Thinking in Regard to Thinking and Problem-Solving.
https://tampub.uta.fi/bitstream/handle/10024/83702/gradu06014.pdf (2012), ac-
cessed: 2018-04-23

22. Wing, J.: Computational thinking. CACM 49, 33–34 (2006)
23. Wing, J.: Computational thinking and thinking about computing. Philosophical

transitions of the Royal Society Phil. Trans. R. Soc. A 366,, 37173725 (2008)
24. Wing, J.: Computational thinking and thinking what and why?

https://www.cs.cmu.edu/ CompThink/resources/TheLinkWing.pdf (2010),
accessed: 2018-04-18

25. Yasar, O.: Epistemological, Psychological, Neurosciences, and Cognitive Essence
of Computational Thinking. Journal of Research in STEM Education pp. 19–38
(2016)

26. Yasar, O., Maleikal, J., Veronesi, P., Little, L.J.: The essence of computational
thinking and tools to promote it. American Society for Engineering Education
(2017)


