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Abstract

This paper deals with the tuning of observer-based estimators. Initially, these algorithms were designed for estimating on-line
kinetic parameters, like speci"c growth rates, in bioprocesses, and have proved to be very successful in practical applications. Here
a systematic tuning approach that allows a decoupled estimation of each parameter and the assignment of the estimator dynamics
independently of the process dynamics is proposed. The presented approach is illustrated on an animal cell culture example in
numerical simulation and with real-life data. ( 2000 Elsevier Science ¸td. All rights reserved.
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1. Introduction

A key question in (bio)process control is how to moni-
tor reactant and product concentrations and process
parameters like reaction rates in a reliable and cost
e!ective manner. However, it appears that in many prac-
tical applications, only some of the concentrations of the
components involved that are critical for quality control
are available for on-line measurement. For instance, dis-
solved oxygen concentration and gaseous #owrates are
available for on-line measurement while the concentra-
tion values of biomass, substrates and/or synthesis
products are often available via o!-line analysis. An
interesting alternative which circumvents and exploits
the use of a model in conjunction with a limited set of
measurements are Luenberger or Kalman observers. In
these techniques, a model, which includes states that are
measured as well as states that are not measured, is used
in parallel with the process and the model states may
then be used for feedback. This con"guration may be
used to reduce the e!ect of noise on measurements as well

as to reconstruct the states that are not measured. An
introduction to these ideas can be found in e.g. Kwaker-
naak and Sivan (1972). These concepts were originally
developed for linear problems. Because of the nonlinear
characteristics of the bioprocess dynamics, it is of interest
to extend these concepts and exploit particular structures
for biochemical engineering application problems. Lin-
earized versions (the linearized tangent model) of the
process dynamics are computed from a Taylor's series
expansion of a state space model around some equilib-
rium point and the observer theory referred to above can
be applied. This idea is developed in Bastin and Dochain
(1990). These modi"ed observers, particularly the ex-
tended Kalman "lter, have found applications in some
(bio)chemical processes (e.g. Stephanopoulos & San,
1984; Tsobanakis, Lee, Phillips & Georgakis, 1992;
Caminal, Lafuente, Lopez-Santin, Poch & Sola, 1987,
Wells, 1971; MacGregor, Kojub, Penlidis & Hamielec,
1986; Kiparissides, MacGregor & Hamielec, 1981).

One of the reasons for the popularity of the extended
Kalman "lter is that it is easy to implement since the
algorithm can be derived directly from the state space
model. However, since (as is the extended Luenberger
observer) it is based on a linearized model of the process,
the stability and convergence properties are essentially
local and valid around an equilibrium point, and it is
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rather di$cult to guarantee its stability over wide ranges
of operation. Ljung (1979) shows that the extended
Kalman "lter for state and parameter estimation of linear
systems may give biased estimates or even diverge if it
is not carefully initialized. It must also be pointed
out that the derivation of the extended Kalman "lter is
based on some stochastic assumptions on the measure-
ment and process noises, which might be questionable in
practice.

One reason for the problem of convergence of ex-
tended Kalman "lter is that, in order to guarantee the
(arbitrarily chosen) exponential convergence of the ob-
server, the process must be locally observable, i.e.
the linearized tangent model must be observable and
ful"ll the classical observability rank condition. This
condition, as it turns out, is restrictive in many practical
situations and may account for the failure of extended
Kalman "lter to "nd widespread application (e.g. Bastin
& Dochain, 1990; Bastin & Levine, 1990; Dochain
& Chen, 1992).

Another problem is that the theory for the extended
Luenberger and Kalman observers is developed using
a perfect knowledge of the system parameters, in particu-
lar of the process kinetics: it is di$cult to develop error
bounds and there is often a large uncertainty on these
parameters.

It appears from the above remarks that there is a clear
incentive to develop new methodologies for the on-line
estimation of the unmeasured concentration variables in
biochemical reaction systems that do not rely on the
explicit use of kinetic models. The design of monitoring
tools for the on-line estimation of process variables and
parameters has been quite an active research area over
the past 20 years (see e.g. Bastin & Dochain, 1986;
Dochain, Perrier & Ydstie, 1992; Doyle III, 1997; Good-
win, Mc Innis & Long, 1980). Alternative approaches
have been proposed to extended Kalman "lter that
use process physics in a more direct manner to develop
nonlinear observers applicable to the estimation problem
of (bio)chemical reactors. The proposed observers
are based on the well-known nonlinear model of the
process without the knowledge of the process kinetics
being necessary. For state estimation, these observers
have been called asymptotic observers; for parameter
estimation, observer-based estimators have been de-
veloped in particular; these are the objects of the present
paper.

The development of new state and parameter es-
timators in order to palliate the de"ciencies of classical
observers encountered in areas like process control is
a very active reserach area. Other options like neural
networks based estimators (e.g. Cannon & Slotine, 1995)
and H

=
based estimators (e.g. Reza Moheimani, Satkin

& Petersen, 1996) have been proposed in the literature.
Compared to these approaches, the observer-based es-
timator presents the following speci"c characteristics: it

does not need to introduce a black-box (nonlinear) mod-
elling of the uncertain parameters, and the stability anal-
ysis does not lead to conservative tuning rules (as may be
the case with H

=
based algorithms).

The observer-based estimator has initially been de-
signed to estimate on-line speci"c growth rates in biop-
rocesses (Bastin & Dochain, 1986), then extended to the
on-line estimation of kinetic parameters (Bastin
& Dochain, 1990). It proved to be very successful in
a large variety of bioprocess applications in the "elds of
food processes, pharmaceutical processes and environ-
mental processes (e.g. Atroune, Cheruy, Flandrois & Car-
ret, 1988; Bastin & Dochain, 1990; Bourrel, Dochain,
Babary & Queinnec, 1999; Claes & Van Impe, 1998;
Oliveira, Ferreira, Oliveira & Feyo de Azevedo, 1996;
Flaus, Pons, Cheruy & Engasser, 1989; Pomerleau, Per-
rier & Bourque, 1995; Pomerleau & Viel, 1992; Sulmon,
1997). If the stability properties of the estimation algo-
rithm are well understood (Bastin & Dochain, 1990), the
tuning of such estimators aimed at tracking parameters
that are typically time-varying deserves particular atten-
tion: this matter has already been studied in (Oliveira,
Ferreira, Oliveira, & Feyo de Azevedo, 1996) and (Pom-
erleau & Perrier, 1990), which propose a calibration
strategy of the estimator design parameters independent
of the values of the state variables. In this paper, it is
proposed to further develop the tuning approach. This is
achieved via two steps: a state transformation, and the
re-arrangement of the estimator state vector entries. At
this point the main objective of the present paper is to
systematize the tuning approach. The basic stability and
convergence properties of the estimator shall only be
recalled brie#y. Finally the observer-based estimator is
designed for a larger class of dynamical systems.

The paper is organized as follows. Section 2 is con-
cerned with the design of the observer-based estimator.
Section 3 deals with the derivation of the tuning rules.
And in Section 4, the tuning of the estimation algorithm
is illustrated on an animal cell culture example via nu-
merical simulations and real-life data.

2. Design of the observer-based estimator

2.1. Dynamical system equations

Consider a system whose dynamics are described by
the following equations:

dx

dt
"F

1
(x)h#F

2
(x), (1)

where x is the state vector (dim(x)"n), h is the vector of
(unknown) parameters (dim(h)"p), and F

1
(x) and F

2
(x)

are (matrix), generally nonlinear, functions of the state
vector x. A typical example is the mass and energy
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Fig. 1. Schematic view of the animal cell culture stirred tank reactor.

balance equations of reaction systems, including chem-
ical and biochemical stirred tank reactors (STRs) (Fig. 1)
(see Bastin & Dochain, 1990; Dochain, 1994):

dx

dt
"KG(x)h#F!Q!Dx, (2)

where x,K,G(x)h,F,Q, and D are the vector of process
component concentrations (g/l) (plus the temperature (K)
in case of energy balance), the stoichiometric or yield
coe$cient matrix, the reaction rate vector (g/l/h), the
feedrate vector (g/l/h), the gaseous out#ow rate vector
(g/l/h), and the dilution rate (h~1) (which is more precise-
ly the ratio of the in#uent #ow rate over the reaction
medium volume), respectively. The mass and energy bal-
ance dynamic model given above is indeed composed of
two terms: transport dynamics (F!Q!Dx) due to the
#ow of matter through the reactor, and conversion
(KG(x)h) due to the (bio)chemical transformations.

Other dynamical systems with structure given by (1)
can be found, e.g. in electrical systems (e.g. Ortega
& Espinosa, 1993; Mbihi, Dochain & Turgeon, 1993).

2.2. Example: animal cell culture

Throughout the paper the following bioprocess
example shall be used as a guiding thread: an animal cell
culture. The choice of this example from the numerous
examples available in the literature in general, and from
the authors' practical experience in particular, is obvious-
ly arbitrary.

The animal cell culture considered here is a human
embryo kidney (HEK-293) cell culture (Siegwart et al.,
1999). It has been shown in Siegwart et al. (1999) that the
process is characterized by the following reaction net-
work:

k
1
S#k

2
CPX#k

3
G, (3)

k
4
SPX#k

5
¸, (4)

where S,C, X,G and ¸ represent the glucose, dissolved
oxygen, yeast, carbon dioxide and lactate, respectively.
Reactions (3) and (4) are an oxidation (respiration) reac-
tion on glucose, and a glycolysis (fermentation) on glu-
cose, respectively. The dynamics of the process in
a stirred tank reactor (Fig. 1) are given in the matrix
format (2) by the following vectors and matrices:

x"C
S

C

X

G

¸
D , K"C

!k
1

!k
4

!k
2

0

1 1

k
3

0

0 k
5
D ,

G(x)h"C
k
R
X

k
F
XD , (5)

F"C
DS

in
Q

in
0

0

0 D , Q"C
0

0

0

Q
1

0 D , (6)

k
j

( j"1,2, 5) are yield coe$cients, S
in

is the in#uent
glucose concentration (g/l), Q

in
is the oxygen feedrate

(g/l/h), Q
1

is the CO
2

out#ow rate (g/l/h), and k
i

(i"R,F) are the speci"c growth rates (1/h) associated to
each growth reaction.

The di!erent possibilities for distributing terms in G(x)
and h are now brie#y discussed. The above model formu-
lation suggests the following distribution (this is the one
considered below):

G(x)"C
X 0

0 XD , h"C
k
R

k
F
D. (7)

Many other options are possible, depending on the level
of knowledge and uncertainty one has in the process
kinetics. As a matter of illustration, one may consider:

1. That the whole reaction rate vector is unknown:

G(x)"I, h"C
k
R
X

k
F
XD. (8)

2. Or that, in accordance with kinetics laws, the reaction
rates are explicitely related to the limiting substrates
(the simplest way to express this is to write:
k
R
"o

1
SC, and k

F
"o

2
S), and then to assume that

the parameters o
i
are unknown; then

G(x)"C
SCX 0

0 SXD, h"C
o
1

o
2
D. (9)
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3. Or that one has some knowledge of the kinetics model
structure (e.g. the Monod model), and that the max-
imum speci"c growth rates k

max,i
(i"1, 2) are un-

known while the a$nity constants K
S1

, K
S2

, K
C1

are
known; this leads to the following de"nitions for G(x)
and h:

G(x)"C
SCX

(K
S1

#S)(K
C1

#C)
0

0
SX

K
S2

#SD ,

h"C
k
max,1

k
max,2

D . (10)

2.3. Observer-based estimator

Assume that:

H1. the p parameters h are unknown and possibly time-
varying (with bounded time variations DDdh/dtDD
(M);

H2. p state variables are available for on-line measure-
ment.
From assumption H2, a state partition can be de-
"ned

x"C
x
1

x
2
D (11)

x
1

being the measured variables, and x
2

the un-
measured ones. The dynamical equations can then
be rewritten as follows:

dx
1

dt
"F

11
(x)h#F

21
(x), (12)

dx
2

dt
"F

12
(x)h#F

22
(x). (13)

Further assume that:
H3. F

11
can be written as the product of two p]p

matrices: F
11

"F
3
(x)F

4
(x) with F

4
a diagonal

matrix (F
4
"diagM f

4,i
N, i"1 to p) and F

3
being

full rank for all admissible values of x (for
(bio)chemical processes for instance, only positive
values of the state variables (i.e. concentrations and
possibly temperature) are considered);

H4. F
11

(x) and F
21

(x) are known functions of x.

Under assumption H3, it may be possible to build an
open-loop observer to reconstruct the time evolution of
x
2

independently of the unknown parameters h. In the
particular example of reaction systems, such an observer
has asymptotically stable dynamics as long as the dilu-
tion rate D is persistently exciting (i.e., here, not equal to
zero for too long), and is called an asymptotic observer
(see Bastin & Dochain, 1990). Another example of such

open loop observers can be found in Ortega and
Espinosa (1993) for induction motors. In the following,
we consider that states included in x

2
are either access-

ible for on-line measurement or available via such ob-
servers, or that the dynamics of x

1
are independent of x

2
.

In the context of stirred tank reactors (STRs),

F
3
"K

1
, F

4
"G(x) (14)

with K
1

the yield coe$cient matrix associated to x
1
.

Note that by constructing and assuming H2, the matrix
G(x) is a p]p matrix. Assumption H4 then means that
the feedrates F

1
(associated to x

1
), the gaseous out#ow

rates Q
1

(associated to x
1
), the dilution rate D are known

(via on-line measurements or user's choice), as well as the
stoichiometric (yield) coe$cients in K

1
and the function

G(x).
The design of the observer-based estimator is based on

(12) and follows indeed the line of reasoning for the
design of Luenberger observers. This gives the following
estimator equations:

dx(
1

dt
"F

11
(x)hK #F

21
(x)!)(x

1
!x(

1
), (15)

dhK
dt

"[F
11

(x)]T!(x
1
!x(

1
). (16)

The basic motivation of the above structure for the
estimator is the following. Like in a classical observer, the
estimator equations are the combination of the process
model (F

11
(x)hK #F

21
(x)) and correction terms

(!)(x
1
!x(

1
) and [F

11
(x)]T!(x

1
!x(

1
)) on the mea-

sured variables. In the above observer-based estimator,
the parameters h are assimilated as states without dy-
namics. The weighting factor [F

11
(x)]T in (16) is indeed

the term multiplying the unknown parameter in the
model equation: its introduction in the estimator equa-
tion derives from classical estimator design (e.g. Good-
win & Payne, 1977) and it is usually called the regressor.

2.4. Example: animal cell culture (continued)

Assume that the glucose concentration S and the lac-
tate concentration ¸ are accessible for on-line measure-
ments, and that the objective is to estimate on-line the
speci"c growth rates. Then the vectors and matrices of
the observer-based estimator specializes as follows:

x
1
"C

S

¸D, F
11

"K
1
X"C

!k
1
X !k

4
X

0 k
5
X D,

h"C
k
R

k
F
D (17)

F
21

"F
1
!Q

1
!Dx

1
"C

DS
in

0 D!Dx
1
. (18)
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Fig. 2. Comparison with the extended Kalman "lter.

2.5. A comparison with the extended Kalman xlter

Before going further, it may be useful to gain an insight
about the observer-based estimator by comparing it with
the extended Kalman "lter (extended Kalman "lter), at
least in a simple bioprocess example. Consider a simple
microbial growth process in a stirred tank reactor (STR).
The dynamic mass balances for biomass and substrate
are expressed by the following equations:

dX

dt
"kX!DX, (19)

dS

dt
"!k

1
kX#DS

in
!DS. (20)

Assume that the biomass concentration X is available for
on-line measurement and that the objective is to estimate
on-line the speci"c growth rate k. The observer-based
estimator (OBE) is given by the following equations:

dXK
dt

"k( X!DX#u
1
(X!XK ), (21)

dk(
dt

"c
1
X(X!XK ) (22)

and the extended Kalman "lter) takes the following form
(see Fig. 2):

dXK
dt

"k( XK !DXK #r
11

(X!XK ), (23)

dk(
dt

"r
22

(X!XK ), (24)

dr
11

dt
"2(k(!D)r

11
#2XK r

12
!r2

11
, (25)

dr
12

dt
"(k(!D)r

12
#XK r

22
!r

11
r
12

, (26)

dr
22

dt
"!r2

12
#p, (27)

where p is the weighting factor of the extended Kalman
"lter quadratic criterion and r

11
, r

12
, r

22
are the entries

of the gain matrix R (see e.g. Bastin & Dochain, 1990;
Kwakernaak & Sivan, 1972) for further details). First,
note the extended Kalman "lter is more complex and is
required to "x four parameters (p, r

11
(0), r

12
(0), r

22
(0)).

The performance of both observers is illustrated when
k is constant (steady state) and under the following con-
ditions:

k"
k
max

S

K
S
#S

, k
max

"0.33 h~1, K
S
"5 g/l, (28)

D"0.05 h~1, k
1
"2, S

in
"5 g/l,

X(0)"2.05 g/l, S(0)"0.89 g/l, (29)

k( (0)"0, XK (0)"0, u
1
"0.5, c

1
"0.24, (30)

p"0.01, r
11

(0)"1, r
12

(0)"!99, r
22

(0)"10 000.

(31)

The initial value of the gain matrix R is chosen so as to be
a positive-de"nitive matrix. Note that the observer-based
estimator converges (as expected from the theoretical
stability and convergence properties of the estimator, see
Bastin & Dochain, 1990) while the extended Kalman
"lter tends to "x k( to a value close to 22 h~1 (i.e. more
than two orders of magnitude away from the correct
value (0.05 h~1). Even if in this simple example it would
not be di$cult to set the extended Kalman "lter design
parameters to values that will give a good estimate of k, it
illustrates the potential di$culty to calibrate properly the
extended Kalman "lter in more complex situations, and
its failure to "nd widespread application in (bio)chemical
processes.

3. Tuning of the observer-based estimator: theory

The theoretical stability analysis of the above ob-
server-based estimator is available in Bastin and
Dochain (1990): the main requirements are the negative
de"niteness of )T!#!) and the persistence of excita-
tion of F

11
(x). However, its tuning may be di$cult and

intricate in practice, because of the close interaction of
the unknown parameters in the estimator equations, and
because its dynamics depends on the process variables.
The latter may be of minor importance if the system is
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operated around a steady state, but it will become crucial
if the system covers a large range of operating conditions
(as for fed-batch and batch reactors, or process start-ups
and grade changes) possibly with large variations of the
state variables, and as a consequence of the matrix
F
11

(x). Good tracking capabilities of the parameters'
variations are particularly essential in these circumstances.
However, in the above form (15), (16) of the observer-based
estimator, tuning may give very conservative values for the
design parameters ! and ), and result in bad tracking
performance in some of the operating regions.

The above objectives for the tuning of the observer-
based estimator can be achieved by considering "rst the
following two steps in the reformulation of the algorithm:

1. a state transformation;
2. the re-arrangement of the estimator state vector en-

tries.

3.1. A state transformation

Consider the following state transformation:

z"F~1
3

x. (32)

Then the dynamic equations of the system can be rewrit-
ten as follows:

dz

dt
"F

4
(x)h#F~1

3
(x)F

21
(x). (33)

Due to the above transformation, only one state variable
is associated with each unknown parameter h. In the
speci"c case of stirred tank reactors, the invertibility of
F
3

("K
1
) results from the independence of the p reac-

tions and of the p measured variables (see Bastin
& Dochain, 1990). The above transformation has been
already proposed in Pomerleau and Perrier (1990) and
Oliveira et al. (1996).

The observer-based estimator can now be re-designed
on the basis of Eq. (33) :

dz(

dt
"F

4
(x)hK #F~1

3
(x)F

21
(x)!)(z!z( ), (34)

dhK
dt

"!(z!z( ). (35)

Due to the transformation (32), the observer-based es-
timator is now reformulated in a decoupled format for
the unknown parameters h

i
(i"1,2, p). Because of the

decoupled estimation formulation, an obvious choice for
the matrices ) and ! are diagonal matrices:

)"diagM!u
i
N, !"diagMc

i
N, u

i
'0, c

i
'0,

i"1,2, p. (36)

In the above formulation of the estimation scheme, we
have removed the regressor term F

4
(x) (G(x) in the STR

example) from the estimation equation of h (35) (see (50)):
since one of its main role is to explicitely transfer the
coupling between the unknown parameters and the mea-
sured variables, its presence is not anymore essential.

3.2. Re-arrangement of the estimator state vector entries

The "nal step before the formulation of the tuning rule
consists of a re-arrangement of the estimator's equations.
Let us gather each variable z

i
with its related parameter

h
i
and re-arrange the entries of the vector [z, h]T in the

following order in a vector f:

f"C
z
1

h
1

z
2

h
2

2

z
p

h
p

D. (37)

3.3. Basic tuning rule

Let us "rst de"ne the estimation error:

e"f!fK . (38)

The estimation error dynamics are readily derived from
Eqs. (33)}(35):

de

dt
"Ae#b (39)

with a block diagonal matrix A with 2]2 blocks:

A"diagMA
i
N, A

i
"C

!u
i

f
4,i

(x)

!c
i

0 D, i"1,2, p

(40)

and b equal to:

b"C
0

dh
1

dt
0

dh
2

dt
2

0
dh

p
dt

D. (41)
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The characteristic equation of the matrix A, det(jI!A),
is equal to

det(jI!A)"
p
<
i/1

(j2#u
i
j#c

i
f
4,i

(x)). (42)

The key idea of the tuning rule consists of choosing each
c
i

inversely proportional to the corresponding term
f
4,i

(x):

c
i
"

c6
i

f
4,i

(x)
, c6

i
'0, i"1,2, p. (43)

With the choice above, the characteristic equation (42) is
rewritten as follows:

det(jI!A)"
p
<
i/1

(j2#u
i
j#c6

i
) (44)

and the observer-based estimator dynamics are now in-
dependent of the state variables. Such a choice corres-
ponds to a Lyapunov transformation (see Perrier
& Dochain, 1993). It is obviously valid for values of
f
4,i

(x)O0: this condition is usually met easily in
(bio)process applications, as will be illustrated in the
following section.

The values of the design parameters can then be set
to arbitrarily "x the estimator's dynamics for each un-
known parameter h

i
. Since the estimator reduces via the

transformations to a set of independent second-order
linear systems, the classical rules for assigning the dy-
namics of second-order linear systems apply straighfor-
wardly here. The reader is therefore referred to the
classical automatic control textbooks for further in-
formation on the subject. However, the following basic
guidelines are suggested.

One important guideline is to choose real poles:

u2
i
!4c6

i
*0. (45)

The objective is then to avoid inducing oscillations in the
estimation of the parameters that do not correspond to
any physical phenomenon related to the estimated reac-
tion rates.

Pomerleau and Perrier (1990) suggest choosing double
poles, i.e.

c6
i
"

u2
i

4
. (46)

Oliveira et al. (1996) propose as an alternative to choose
complex poles with a damping factor equal to 0.7 in
order to increase the speed of convergence of the es-
timator with a reduced overshoot. (Generally speaking,
the damping factor can be freely chosen; the choice may
then depend on the type and nature of the application,
of the time variations of the parameter to be estimated,

and of the noise on the measured data. This means that
there are two design parameters per estimated para-
meters.)

Then the tuning of the estimation algorithm reduces to
the choice of one design parameter, u

i
, per estimated

parameter. This allows to have a design procedure that
has the double advantage of being simple (one design
parameter) and #exible (each parameter estimation can
be tuned di!erently if needed, e.g. if the time variations of
the parameters are di!erent).

So far, we have suggested that it is possible to assign
arbitrarily the dynamics of the estimator. However in
the presence of noisy data, it appears that indeed a com-
promise has to be made between a fast estimator conver-
gence and a good noise rejection. A detailed and
somewhat involved study is performed in Bastin and
Dochain (1990) (pp. 162}172) to analyze the performance
of the observer-based estimator both in theory and in
numerical simulation in the presence of bounded noisy
data in the particular case of the estimation of the speci"c
growth rate of a simple microbial growth process (al-
ready mentioned in Section 2.5). The theoretical optim-
ization analysis is based on the evaluation of the
asymptotic properties of the estimator and results in the
following optimal value for u

1
:

u
1,opt

"2S
k
1
M

1
a(k

1
M2

2
#S

max
M

2
)
, 0(a(1,

(47)

where M
1

and M
2

are the upper bounds on the time
derivative of k and on the measurement noise, respective-
ly, and S

max
the maximum value of the in#uent substrate

concentration S
in
. This result is probably rather conser-

vative because it is based on upper bounds for the
measurement noise, the time variation of k and the in#u-
ent substrate concentration, but it is qualitatively con-
"rmed by numerical simulation studies which also give
a value of the design parameters that minimizes the
estimation error. Because it is conservative, the theoret-
ical optimum has to be interpreted with care, but since it
is qualitatively correct, our suggestion (also based on our
practical experience), in the presence of noisy measure-
ment, is to perform numerical simulations with plausible
reaction rate model and noise in order to get a "rst initial
guess for the design parameter values which can then be
adjusted when applied to the real process.

4. Tuning of the observer-based estimator: application to
animal cell culture

For stirred tank reactors, transformation (32) special-
izes as follows:

z"K~1
1

x (48)
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and the observer-based estimator equations then become

dz(

dt
"G(x)hK #K~1(F!Q)!Dz!)(z!z( ), (49)

dhK
dt

"!(z!z( ). (50)

In the animal cell culture example, it is written as follows:

z"C
z
1

z
2
D"C

!

S

k
1

!

k
4

k
1
k
5

¸

¸

k
5

D. (51)

This leads to the following formulation of the observer-
based estimator:

dz(
1

dt
"k(

R
X!Dz

1
!

1

k
1

DS
in
#u

1
(z

1
!z(

1
),

dk(
R

dt
"c

1
(z

1
!z(

1
), (52)

dz(
2

dt
"k(

F
X!Dz

2
#u

2
(z

2
!z(

2
),

dk(
F

dt
"c

2
(z

2
!z(

2
). (53)

4.1. Numerical simulation

In order to illustrate the performance of the observer-
based estimator and of the proposed tuning rule, numer-
ical simulation results are shown. These have been per-
formed on the basis of a dynamical model of the animal
cell culture presented in Section 2.2. The process is run in
fedbatch mode, i.e. with a variable volume<, given by the
following mass balance equation:

d<

dt
"F

in
, (54)

where F
in

is the in#uent #ow rate, related to the dilution
rate as follows:

D"F
in
/<. (55)

The simulation model requires kinetic models for both
speci"c growth rates; these have been found experi-
mentally to have qualitatively the following structures
(see Siegwart et al., 1999):

k
R
"k

max,1

S

K
R
#S

K
L

K
L
#¸

, (56)

k
F
"k

max,2

S

K
F
#S

, (57)

i.e. a Monod structure, plus inhibition of respiration by
the lactate. The parameters of the model are equal to (see
Siegwart et al., 1999):

k
max,1

"0.055 h~1, K
R
"10 mM,

K
L
"50 mM, (58)

k
max,2

"0.045 h~1, K
F
"10 mM, (59)

k
1
"1.7, k

4
"8.5, k

5
"17. (60)

The variables are initialized at the following values:

X(0)"0.18 106 cells/ml, S(0)"21 mM,

¸(0)"0.13 mM, (61)

<(0)"19 L, <
f
"19.05 L, F"0.5 mL/h,

S
in
"3.3 M. (62)

The time duration of the simulated operation is 110 h, i.e.
100 h with a constant #ow rate, and 10 h batch. The value
of the biomass concentration X is given via an asymp-
totic observer (Bastin & Dochain, 1990), which takes here
the following form:

dZ

dt
"!DZ#

1

k
1

DS
in
, (63)

XK "Z!

S

k
1

!

k
4
!k

1
k
1
k
5

¸. (64)

The initial estimated speci"c growth rates have been set
to the following values:

k(
R
(0)"0 h~1, k(

F
(0)"0 h~1. (65)

In the numerical simulations, Z has been initialized by
considering 20% error on the initial value of the biomass,
i.e. Z(0)"1.2X(0)#S(0)/k

1
#(k

4
!k

1
)¸(0)/k

1
/k

5
.

The organization of the "gures is similar in the Figs. 3,
5 and 6: Figs. a and b present the concentration of
glucose and lactate, Figs. c and d the estimation results of
the speci"c growth rates k

R
and k

F
, Fig. e presents the

biomass concentration (simulated value in Figs. 3e and
5e, o!-line data in Fig. 6e, compared to the asymptotic
observer estimation; Fig. 5e presents also the observer-
based estimation validation, see below), and Fig. f gives
the volume.

Fig. 3 shows the convergence for di!erent values of
u

1
and u

2
(1 h~1, 10 h~1): note that as expected the

convergence speed increases as u
i
does. Fig. 4 illustrates

the advantage of the estimator design (43) developed
here over the classical one (16). The same values of
the design parameters have been considered:
u

i
"10, c

i
"c6

i
"25 (i"1, 2). Note that if the perfor-

mance of both estimator designs are similar in the second
part, the performance with the classical design is worse
than the pole-placement design in the "rst part. Fig. 5
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Fig. 3. Numerical simulation of the observer-based estimator with di!erent gains.

Fig. 4. Comparison of our design ( - - ) with the classical one ( . - ) for u
i
"10.

illustrates the performance of the estimator with a square
wave of the maximum speci"c growth rates
k
max,1

(0.055P0.155 at time t"20, 40, 60, and 80) and
k
max,2

(0.045P0.145 at time t"30, 50, 70 and 100) and
u

1
and u

2
equal to 10 h~1: note that, although X is

increasing throughout the process operation of more
than one order of magnitude (0.18P6), the convergence
rate remains the same and is not a!ected by the value
of X.

4.2. Experimental results

The observer-based estimator (52), (52), (63), (64) has
been implemented on a 22 L pilot-scale bioreactor (see
Siegwart et al., 1999). Fig. 6 presents one set of experi-
mental results. The glucose (Fig. 6a) and lactate (Fig. 6b)
are measured via a FIA biosensor device. The temper-

ature and pH are maintained at constant values of 37
C and 7.2, respectively. The initial conditions were equal
to those used in the numerical simulations. During this
experiment, glucose was controlled via an adaptive lin-
earizing controller to a low value equal to 1 mM. The
observer-based estimator has been initialized as follows:

k(
R
(0)"k(

F
(0)"0.01 h~1, u

1
"u

2
"0.325 h~1. (66)

Note that in this particular instance, the same initial
conditions and design parameter values have been able
to give satisfactory results for both estimators. Because of
the lack of reliable speci"c growth rate models, the vali-
dation of the estimation is performed by biomass concen-
tration data: Fig. 6e compares the o!-line data of
biomass (o) with the estimation X

v
(dotted line) of bio-

mass based on the mass balance equation in model (5), (6)
and recontructed from the on-line estimates of the
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Fig. 5. Numerical simulation of the observer-based estimator with square wave variation of the maximum speci"c growth rates.

Fig. 6. Observer-based estimator: experimental results on an animal cell culture.
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Fig. 7. Experimental results with non-optimal design parameters.

speci"c growth rates k(
R

and k(
F
:

dX
v

dt
"k(

R
X

v
#k(

F
X

v
!DX

v
. (67)

Note that the observer-based estimator detects the de-
crease of lactate around time"120 h and gives a nega-
tive value to k(

F
. Note also that the estimation of k

R
is

pushed to negative values at the beginning of the culture
largely due to the measurement noise.

The selection of the design parameters values has typi-
cally followed the procedure described in Section 5.3.
Numerical simulations have been used to give the "rst
initial guesses based on the plausible measurement noise
and speci"c growth rate model, then they have been
adjusted in order to obtain the best validation possible
with the biomass experimental data.

It is worth noting that the sensitivity in the calibration
procedure can largely depend on one application to an-
other. Experience shows that the hydraulics play a key
role in this sensitivity. Typically, the calibration is easy
and the design parameters are very insentitive for pro-
cesses where the hydrodynamics is large compared to the
kinetics, i.e. for fedbatch reactors with large in#uent #ow
rate (and therefore large volume variations) (typical
examples are the baker's yeast applications presented in
Claes and Van Impe (1998), Pomerleau and Perrier
(1990) and Pomerleau and Viel (1992)) and for continu-
ous reactors. The calibration will be more time consum-
ing, mainly because of the high sensitivity of the
estimation results with respect to the design parameter
values, in batch processes or in fedbatch reactors with
low in#uent #ow rate. The example is particularly inter-
esting because it belongs to this class of processes. As
a matter of illustration, Fig. 7 shows the estimation
results when u

i
(i"1, 2) is equal to 0.25 (i.e. 23% vari-

ation from the best ones): note that the estimated speci"c

growth rates are smoother and that a good validation of
the biomass concentration is not capable of being gener-
ated with this set of design parameter values.

5. Conclusions

This paper has been dedicated to the tuning of ob-
server-based estimators. These type of estimators are an
alternative to classical estimators like extended Kalman
"lters that exhibit limitations when applied to systems
like chemical and biochemical processes. As indicated by
their name, they have the basic structure of observers.
The observer-based estimator presents the following spe-
ci"c characteristics: it does not need to introduce
a black-box (nonlinear) modelling of the uncertain para-
meters, and the stability analysis does not lead to conser-
vative tuning rules (as may be the case with H

=
based

algorithms). These characteristics are advantages in
many (bio)process applications. But they may also be
limitations in other instances. In this respect, hybrid
modelling (which combines mass and energy balance
models with neural networks for the kinetics) opens
an interesting avenue (e.g. Feyo de Azevedo, Dahm &
Oliveira, 1997).

A systematic tuning approach of the observer-based
estimator, which allows a decoupled estimation of each
parameter and the assignement of the estimator dynam-
ics independently of the process dynamics has been pro-
posed. The transformation that allows the decoupling is
indeed a Lyapunov transformation. The tuning only re-
quires choosing one (possibly two) design parameter(s)
per estimated parameter. The performance of the pro-
posed approach has been illustrated both in numerical
simulation and with real-life data via the practical
example of an animal cell culture.
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