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Preface

In the field of modelling it is easier to find academic papers, guidelines
tailored to specific disciplines and handbooks of numerical simulation rather
than plain textbooks of broad appeal. The various academic communities
go about modelling largely independently of each other. Is this an indication
that modelling is not a science but a craft, as argued by epistemologists? In
other words, is it because it is impossible to define a single set of rules to
encode natural or man-made systems into sets of mathematical rules called
models?

If modelling is in fact characterized by such heterogeneity and lack of
systematization, it might seem overly ambitious to offer a set of good
practices of universal application in sensitivity analysis. Furthermore, if
one looks at the available literature, in most instances ‘sensitivities’ are
understood as derivatives of a particular output versus a particular input
(such as elasticities in economics). This is not surprising, as contemporary
researchers – like the authors of the present volume – are likely to have
received more training in calculus than in Monte Carlo methods and to
have seen more Jacobians and Hessians than Russian roulettes. A minority
of sensitivity analysis practitioners (mostly in statistics, risk analysis and
reliability) actively use importance measures such as those described in this
book, whereby the influence of factors on outputs is assessed by looking
at the entire input space rather than at a point in that space. Slowly these
methods are finding their way into more recent modelling guidelines in other
disciplines (see, for example, those of the Environmental Protection Agency
in the USA, EPA, 2001). The purpose of this book is to offer to students an
easy-to-read manual for sensitivity analysis covering importance measures
and to show how these global methods may help to produce more robust
or parsimonious models as well as to make models more defensible in the
face of scientific or technical controversy.
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1
Introduction to Sensitivity
Analysis

1.1 MODELS AND SENSITIVITY ANALYSIS

What is a model? What model input is considered in a sensitivity

analysis? What is the role of uncertainty and sensitivity analyses in

model building? Main approaches to the propagation of uncertainty

within and across models. Implications for model quality.

1.1.1 Definition

A possible definition of sensitivity analysis is the following: The study of
how uncertainty in the output of a model (numerical or otherwise) can be
apportioned to different sources of uncertainty in the model input (Saltelli
et al., 2004). A related practice is ‘uncertainty analysis’, which focuses
rather on quantifying uncertainty in model output. Ideally, uncertainty
and sensitivity analyses should be run in tandem, with uncertainty analysis
preceding in current practice.

For this definition of sensitivity analysis to be of use, it must first be made
clear what is meant here by ‘model’, numerical or otherwise, as well as by
the terms ‘input’ and ‘output’ which will be used throughout this book.

Global Sensitivity Analysis. The Primer A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,
D. Gatelli, M. Saisana and S. Tarantola © 2008 John Wiley & Sons, Ltd



2 INTRODUCTION TO SENSITIVITY ANALYSIS

1.1.2 Models

A view of modelling that may help to illustrate the role of sensitivity analysis
in the scientific process is offered in Figure 1.1, taken from the work of
biologist Robert Rosen (1991) (see also Saltelli et al., 2000, pp. 3–4). On
the left in Rosen’s diagram we have the ‘world’, that is the system which
forms the subject of our investigation. We have reason to believe that the
system, whether natural or artificial, is governed by rules which we have
the ambition to uncover, or to use to our advantage. To this end we craft
or hypothesize a set of structures in a model (depicted on the right-hand
side of the figure). For example, a hypothesized growth mechanism for a
species contained in the world can be translated into a differential equation
in a model. While our species continues growing and dying quietly in the
world, following the forces of its own systemic causality (which we aim
to understand), our differential equation can be solved using the rules of
mathematical calculus. The intuition of Rosen is that while the species
in the world obeys rules, and the differential equation in the model has
‘rules’ as well, whether formal or mathematical, no ‘rule’ whatsoever can
dictate how one should map the hypothesized rules in the world onto the
rules in the model. In the words of Rosen, while the world and the model
are each internally ‘entailed’, nothing entails the world with the model.
Among the reasons for this paradox is the fact that the portion of the world
captured by the model is an arbitrary ‘enclosure’ of an otherwise open,
interconnected system.1 This is the case when the world is part of a natural
system, the main concern of Rosen’s inquiry. Yet experience has shown
that even when the world is indeed a well-defined and closed system, for
instance an artefact, an artificial device or a piece of machinery, different

N

Natural
system

F

Formal
system

Decoding

Encoding

Entailment Entailment

Figure 1.1 Modelling after Rosen (1991)

1 Even more so when the purpose of a model is to learn about the nonobservable parts of a
system.
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modellers can generate different nonequivalent descriptions of it, that is,
models whose outputs are compatible with the same set of observations but
whose structures are not reconcilable with one another.

While this may be disturbing to a student accustomed to the beauty and
apparent self-evidence of physical laws, practitioners of modelling have
come to live with the rather unpleasant reality that more than one model
may be compatible with the same set of data or evidence. Some have gone
so far as to coin a word for this paradox: equifinality – Beven (1993,
2001), see also Saltelli et al. (2004, pp. 173–178) – meaning that different
models can lead to the same end. Others refer to the phenomenon as model
indeterminacy.

Since Galileo’s time scientists have had to deal with the limited capacity
of the human mind to create useful maps of ‘world’ into ‘model’. The
emergence of ‘laws’ can be seen in this context as the painful process
of simplification, separation and identification which leads to a model of
uncharacteristic simplicity and beauty.

1.1.3 Models and Uncertainty

What makes modelling and scientific inquiry in general so painful is uncer-
tainty. Uncertainty is not an accident of the scientific method, but its
substance.2

Modellers and philosophers of science have debated the issue of model
indeterminacy at length (Oreskes et al., 1994). Most modellers today would
probably agree that a model cannot be validated, in the sense of ‘be proven
true’. Rather, it is more defensible and correct to say that a model has
been extensively corroborated, meaning by this that the model has survived
a series of tests – be they formal, of internal consistency, or relative to
the model’s capacity to explain or predict the ‘world’ in a convincing and
parsimonious way.

When models fail publicly, the ensuing controversy can be devastating
for the scientific parties involved.3 Models are often used in highly polar-
ized contexts and uncertainty may be used instrumentally. ‘All parties deal
with environmental information in a selective way, or even manipulate it’,
observed a Dutch environmental scientist (In ’t Veld, 2000). Fabricated

2 ‘That is what we meant by science. That both question and answer are tied up with uncer-
tainty, and that they are painful. But that there is no way around them. And that you hide
nothing; instead, everything is brought out into the open’ (Høeg, 1995).
3 For the modelling credibility crisis in the Netherlands’ RIVM Laboratories see Van der Sluijs
(2002). See also Mac Lane (1988) for another example.
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Figure 1.2 Uncertainty/stakes diagram after Funtowicz and Ravetz (1990)

uncertainty is a common concern in relation to important disputes over
health or the environment (Michaels, 2005).

In short, models are part of the scientific method and hence subject
to epistemological debate. A way of framing present-day debate on the
scientific method is offered by Post-Normal Science (PNS, see Figure 1.2
and Funtowicz and Ravetz, 1990, 1993; Funtowicz et al., 1996).

In PNS one distinguishes between three types of scientific production
modes, depending on the system’s uncertainties and the stakes involved.
Applying this to modelling, different requirements and practices pertain:

• In applied science, when a model is written and employed within a closed
consortium of experts who are the sole users of the model, e.g. when
this is used to solve a circumscribed chemical kinetics problem;

• In ‘consultancy’ when the model is more likely to be scrutinized, e.g.
as part of a cost–benefit analysis for the construction of a new road or
bridge that will affect a community;

• When computing climate sensitivity in the context of global change.
In this latter case we are in the domain of PNS, where science (and
its models) is called on to provide evidence under circumstances of
conflicting stakes and beliefs.

Like scientific theories, models may be given pedigrees which help us
to judge their quality. Pedigrees take account of past usage of the model,
status of its proponents, degree of acceptance by peers and so on (Van der
Sluijs, 2002; Craye et al., 2005). In pedigrees, model quality is more closely
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associated with ‘fitness for purpose’ – that is, with a specific purpose – than
with the model’s intrinsic fabric.

A post-normal view of the modes of scientific production in relation to
policy is given in Funtowicz (2004). Models as metaphors are discussed in
Ravetz (2006).

1.1.4 How to Set Up Uncertainty and Sensitivity Analyses

As mentioned at the beginning of the chapter, our definition of sensitivity
analysis involves models, model input and model output. We now try to
define model input in relation to the nature and purpose of the model, as
well as to the set-up of the uncertainty and sensitivity analyses. A model
can be:

• Diagnostic or prognostic. In other words, we try to distinguish between
models used to understand a law and models used to predict the
behaviour of a system given a supposedly understood law. Models can
thus range from wild speculations used to play what-if games (e.g. models
for the existence of extraterrestrial intelligence) to models which can be
considered accurate and trusted predictors of a system (e.g. a control
system for a chemical plant).

• Data-driven or law-driven. A law-driven model tries to put together
accepted laws which have been attributed to the system, in order to
predict its behaviour. For example, we use Darcy’s and Ficks’ laws to
understand the motion of a solute in water flowing through a porous
medium. A data-driven model tries to treat the solute as a signal and to
derive its properties statistically. Advocates of data-driven models like to
point out that these can be built so as to be parsimonious, i.e. to describe
reality with a minimum of adjustable parameters (Young et al., 1996).
Law-driven models, by contrast, are customarily overparametrized, as
they may include more relevant laws than the amount of available data
would support. For the same reason, law-driven models may have a
greater capacity to describe the system under unobserved circumstances,
while data-driven models tend to adhere to the behaviour associated with
the data used in their estimation. Statistical models (such as hierarchical
or multilevel models) are another example of data-driven models.

Many other categorizations of models are possible,4 and the definition of
model input depends on the particular model under study. For the purpose

4 Bell et al. (1988) distinguish between formal (axiomatic), descriptive and normative models
(rules an agent should follow to reach a target). The examples in this book are descriptive
models.
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Uncertainty
and sensitivity

analysis Inference

Estimated
parameters

Input dataModel

(→Estimation)

Figure 1.3 Parametric bootstrap version of uncertainty and sensitivity analyses

of uncertainty and sensitivity analyses we could liberally classify as input
everything that can drive a variation in the output of the model.

Consider the scheme in Figure 1.3. Here we have observations (assumed
error-free for simplicity’s sake) and a model whose parameters are esti-
mated from the data. Estimation can take different courses. Usually it is
achieved by minimizing, e.g. by least squares, some measure of distance
between the model’s prediction and the data. At the end of the estimation
step, ‘best’ parameter values as well as their errors are known. At this
point we might consider the model ‘true’ and run an uncertainty analysis
by propagating the uncertainty in the parameters through the model, all the
way to the model output. In this case the estimated parameters become our
factors.

One way of doing this is through Monte Carlo analysis, in which we
look at the distribution functions of the input parameters, as derived from
the estimation. For example, we may have the following scheme:

• We start from a factor � ∼ N ��̄����, which reads: after estimation �
is known to be normally distributed with mean �̄ and standard devia-
tion ��.

• Likewise for factors ��� and so on. Contrary to what logic would
suggest, and for the sake of simplicity, we assume that the factors are
independent of each other. This issue is discussed later in the chapter.

• For each of these factors, we draw a sample from the respective
distributions, i.e. we produce a set of row vectors ���j����j�� 	 	 	 � with
j = 1�2� 	 	 	 �N in such a way that ���1����2�� 	 	 	 ���N�� is a sample
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from N��̄���� and likewise for the distribution function of the other
factors. ⎡

⎢⎢⎢⎢⎣
��1� ��1� ��1� 	 	 	
��2� ��2� ��2� 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

��N−1� ��N−1� ��N−1� 	 	 	
��N� ��N� ��N� 	 	 	

⎤
⎥⎥⎥⎥⎦ (1.1)

• We can then compute (‘run’ is the conventional term) the model for all
vectors ���j����j�� 	 	 	 � thereby producing a set of N values of a model
output Yj .

5 ⎡
⎢⎢⎢⎢⎣

y�1�

y�2�

	 	 	
y�N−1�

y�N�

⎤
⎥⎥⎥⎥⎦ (1.2)

These steps constitute our uncertainty analysis. From these we can
compute the average output, its standard deviation, the quantiles of its
distribution, confidence bounds, plot the distribution itself and so on. It is
clear that in this analysis, sometimes called a ‘parametric bootstrap’,6 our
inputs are the model’s parameters. Having performed this uncertainty anal-
ysis we can then move on to a sensitivity analysis, in order to determine
which of the input parameters are more important in influencing the uncer-
tainty in the model output. However, we defer this step in order to continue
our discussion of model input.

Note that for the purpose of the uncertainty analysis just described we
consider as relevant inputs only our estimated parameters. All other types
of information fed into the model, e.g. the observations, physical or math-
ematical constants, internal model variables (e.g. number of grid points if
the model needs a mesh), are disregarded – that is, we do not allow them
to vary and hence they cannot cause variation in the output.

In Figure 1.4 we have played the uncertainty analysis game differently by
sampling the observations rather than the parameters. We have a limited
set of observations, and we are aware that different subsets of these could

5 Note that this model output Yj may be different from the model output used in the estimation
step.
6 Bootstrapping is the process of repeatedly sampling ‘with replacements’. For example, if we
want to estimate the average sum of three Bingo chips, we could do this by extracting three
random chips from the Bingo bag, computing their average, putting the chips back into the
bag and extracting again. With a sufficiently large number of extractions we could determine
the average sum being sought, and this strategy would be called a bootstrap of the Bingo chips.
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(→Estimation)

Estimation of
parameters

Loop on boot-
replica of the

input data
Model

Inference

(→Bootstrap of the
modelling process)

(→Model
identification)

Figure 1.4 Bootstrapping of the modelling process (Chatfield, 1993)

potentially lead us to try one model rather than another to fit the data.
What we can do in order to be fair to the data is to select a subset of the
observations, choose a model based on these data using a pre-established
model selection rule, estimate the corresponding parameters using the same
sampled data, and run the model to compute Yj . We have drawn the
sample with replacement, and we can now repeat the process, identifying a
potentially different (or indeed the same) model, estimating the parameters
(which may differ in number from those of the previous run if the model is
different), and so on for a total of N times, until we yield our desired sample
for the uncertainty analysis. This approach can be called ‘bootstrapping of
the modelling process’ (Chatfield, 1993).

The input for this uncertainty analysis is the data which have been boot-
strapped, since we have assumed that all the rest (from model selection to
parametric estimation) is done automatically given the data and hence adds
no variation to model output.

Finally in Figure 1.5 we compare a set of plausible models with the
data. Using Bayesian analysis it is possible to derive posterior probabilities
for the models as well as distributions of the related parameters (Saltelli
et al., 2004). Once this model update and parameter estimation step is
complete, a model averaging can be used in uncertainty analysis. This is
done by propagating the uncertainty through the system by sampling both
the model and the parameters according to their distributions, to produce a
sample of model outcome Yj . This procedure is known as Bayesian model
averaging,7 and the inputs in this case are both models and parameters, or

7 For a thorough account of this approach see Kass and Raftery (1995) and Hoeting et al.
(1999). See Saltelli et al. (2004, pp. 151–192) for related sensitivity issues.
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Figure 1.5 Bayesian model averaging

more precisely the probabilities of the different model representations and
the distributions of the parameters. In a Monte Carlo framework, a trigger
variable would be sampled to select a model according to its posterior
probability, while the parameters would also be sampled and the model
outcome determined. A sensitivity analysis could be executed at this point,
and a question that it might address is the following: how much of the
uncertainty is due to the model selection and how much to the estimation
of the parameters?

1.1.5 Implications for Model Quality

The superficial illustration given above of approaches to uncertainty and
sensitivity analyses has shown that what constitutes an input for the analysis
depends upon how the analysis is set up. The input is that which is allowed
to vary in order to study its effect on the output. A sensitivity analysis will
in turn instruct the modellers as to the relative importance of the inputs in
determining the output. An obvious consequence of this is that the modeller
will remain ignorant of the importance of those variables which have been
kept fixed. This is of course a hazard for the modeller, as a variable deemed
noninfluential and kept fixed could haunt the results of the analysis at
a later stage. For example, it would be unfortunate for the modeller to
discover a posteriori that the mesh size had been too large, and that the
number of grid points had had a dramatic effect on the model output.

It seems, therefore, that one should be as careful and objective as possible
in deciding on the input for uncertainty and sensitivity analyses. Clearly,
the more variables we promote to the rank of input, and allow to vary, the
greater the variance to be expected in the model prediction. This could lead
to a situation in which we discover that, having incorporated all uncertain-
ties, the model prediction varies so wildly as to be of no practical use. This
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trade-off has been brilliantly summarized by the econometrician Edward
E. Leamer (1990):

I have proposed a form of organized sensitivity analysis that I call ‘global sensi-
tivity analysis’ in which a neighborhood of alternative assumptions is selected and
the corresponding interval of inferences is identified. Conclusions are judged to
be sturdy only if the neighborhood of assumptions is wide enough to be credible
and the corresponding interval of inferences is narrow enough to be useful.

Note Leamer’s emphasis on the need for ‘credibility’ in the selection of
assumptions. The easiest way to invalidate a model is to demonstrate it
fragile with respect to shaky assumptions. Note, however, that the trade-off
may not be as dramatic as one might expect, and that increasing the number
of input factors does not necessarily lead to an increased variance in model
output. Practitioners have recorded that in most uncertainty and sensitivity
analyses the input factors’ importance is distributed similarly to wealth
in nations, with a few factors creating almost all the uncertainty and the
majority making only a negligible contribution. Hence, if the ‘key’ factors
have been judiciously chosen, adding further variables to the analysis may
add to its completeness and defensibility without adversely increasing the
variance in the output.

As mentioned, the quality of a model is largely a function of its fitness for
purpose. If modelling is a craft and models cannot be proven true (because
of the pervasive nature of uncertainty and the difficulty of separating obser-
vation from observer and facts from values),8 then the modeller has a
moral obligation, and indeed it is in the modeller’s own practical interest,
to be as rigorous as possible when assessing the robustness of model infer-
ence. Doing so should produce better and more parsimonious models, and
will strengthen the analyst’s defence of the results in the case of scientific
controversy or public policy debate.

1.2 METHODS AND SETTINGS FOR SENSITIVITY
ANALYSIS – AN INTRODUCTION

What methods are available? How can a particular method be

related to a problem-specific question? How can we define a factor’s

importance unambiguously? Suggested practices.

8 ‘Values’ here mean ethical judgements. Cases in which the separation of facts and values
becomes arduous are many, e.g. when models try to assess the impact of the adoption of new
technologies, the relevanceof environmental threats, distributional issues in economicsand soon.
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1.2.1 Local versus Global

As we shall learn in the following chapters, sensitivity analysis can serve a
number of useful purposes in the economy of modelling. It can surprise the
analyst, uncover technical errors in the model, identify critical regions in
the space of the inputs, establish priorities for research, simplify models and
defend against falsifications of the analysis. In the context of models used
for policy assessment, sensitivity analysis can verify whether policy options
can be distinguished from one another given the uncertainties in the system,
and so on. What methods would one choose to perform sensitivity analysis
for any or all of the above?

It is not by chance that most of the sensitivity analyses met in the literature
are based on derivatives. Indeed the derivative 
Yj/
Xi of an output Yj

versus an input Xi can be thought of as a mathematical definition of the
sensitivity of Yj versus Xi.

Sometimes computer programs that implement complex physical, chem-
ical or genetic models are augmented by special routines that allow the
efficient computation of large arrays of system derivatives, which are subse-
quently used for model calibration, model reduction or verification and
model inversion (Rabitz, 1989; Turanyi, 1990; Varma et al., 1999; Cacuci,
2003; Saltelli et al., 2000, pp. 81–101).

The derivative-based approach has the attraction of being very efficient in
computer time. The model needs to be executed few times compared to the
dimension of the array of derivatives to be computed. However, it is inef-
ficient in terms of the analyst’s time. One has to intervene in the computer
program, inserting ad hoc coding, to perform this operation efficiently. Yet
the fatal limitation of a derivative-based approach is that it is unwarranted
when the model input is uncertain and when the model is of unknown
linearity. In other words, derivatives are only informative at the base point
where they are computed and do not provide for an exploration of the rest
of the space of the input factors. This would matter relatively little for linear
systems, in which the property at a point away from the baseline can be
computed quickly by linear extrapolation using first-order point derivatives,
but it would matter greatly for nonlinear ones. The focus of this book is on
quantitative uncertainty and sensitivity analysis in the presence of uncer-
tain inputs. We shall therefore make use of methods based on exploring
the space of the input factors, based on the consideration that a handful
of data points judiciously thrown into that space is far more effective, in
the sense of being informative and robust, than estimating derivatives at
a single data point in the centre of the space. In this book, when we use
derivatives, or rather incremental ratios such as �Yj �Xi +�Xi�−Yj�Xi��/�Xi,
we will normally compute them at a set of different points in the space of
the input factors, in order to obtain an average response of Yj when moving
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a factor Xi of a step �Xi at different points in the input space, i.e. for
different values of X∼i.

9

However, in order to introduce the methods of sensitivity analysis, we
shall start from derivatives, taking a very simple test case.

1.2.2 A Test Model

Imagine the model has a linear error-free form

Y =
r∑

i=1

�iZi (1.3)

where the input factors are X = ��1��2� 	 	 	 �r�Z1�Z2� 	 	 	 Zr�.
We have dropped the subscript j of the model output Y for simplicity.

Model equation (1.3) has just a single output variable. Let us assume first
that the �’s are fixed coefficients, so that the true (active) factors for model
(1.3) are just the Z1�Z2� 	 	 	 Zr . Y could be a composite indicator, for
example a sustainability index or a greenhouse gas emission index, in which
the �’s are the weights attached by experts to the individual Z-variables. For
the sake of the example we consider the weights fixed, while the individual
variables have been characterized as independent and distributed normally
with mean zero, i.e.

Zi ∼ N �0��Zi
� i = 1�2� 	 	 	 � r (1.4)

If the model were indeed a composite indicator with ‘standardized’ vari-
ables10 all �Zi

’s would be equally one.
It is easy to verify (see the Exercises) that, given the Equations (1.3, and

1.4), Y will also be normally distributed with parameters

ȳ =
r∑

i=1

�iz̄i (1.5)

�Y =
√

r∑
i=1

�2
i �

2
Zi

 (1.6)

9 Here, and in the following, X∼i denotes the vector of all factors but Xi.
10 Standardization of a variable is achieved by subtracting from the variable its sample mean
and dividing the result by its standard deviation.
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For the sake of the example we would also like to assume that for this
particular index the variables have been ordered from the less uncertain to
the most uncertain, i.e.

�Z1
< �Z2

< 	 	 	 < �Zr
�

and that the weights �’s are all equal and constant:

�1 = �2 = 	 	 	 = �r = constant (1.7)

1.2.3 Scatterplots versus Derivatives

Figure 1.6 shows the scatterplots Y�Zi that we obtain by performing
a Monte Carlo experiment with our model. As already mentioned (and
described in more detail in Chapter 2), Monte Carlo methods are based
on sampling factors’ values from their distribution. In most cases factors
are assumed independent so that the samples are taken from the marginal
distribution of each factor. An input sample is thus produced:

M =

⎡
⎢⎢⎢⎢⎢⎣

z
�1�
1 z

�1�
2 	 	 	 z

�1�
r

z
�2�
1 z

�2�
2 	 	 	 z

�2�
r

	 	 	 	 	 	 	 	 	 	 	 	

z
�N−1�
1 z

�N−1�
2 	 	 	 z

�N−1�
r

z
�N�
1 z

�N�
2 	 	 	 z

�N�
r

⎤
⎥⎥⎥⎥⎥⎦ (1.8)

Computing Y for each row of matrix (1.8) using model (1.3) produces the
desired output vector

Y =

⎡
⎢⎢⎢⎢⎣

y�1�

y�2�

	 	 	
y�N−1�

y�N�

⎤
⎥⎥⎥⎥⎦ (1.9)

where y�1� is the value obtained by running Equation (1.3) with the input
given by the row vector z

�1�
1 � z

�1�
2 � 	 	 	 � z

�1�
r , and so on for the other rows of

matrix (1.8).
With this sample of model input and output one can produce r scatter-

plots by projecting in turn the N values of the selected output Y (assumed
here to be a scalar) against the N values of each of the r input factors.
These scatterplots can be used to investigate the behaviour of models.
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Figure 1.6 Scatterplots of Y versus Z1� 	 	 	 �Z4. Which is the most influential
factor? One can compare occupancy of quadrants I and III versus that of II and IV
to decide where the positive linear relationship is stronger

The scatterplots show that Y is more sensitive to Z4 than it is to Z3, and
that the ordering of the input factors by their influence on Y is

Z4 > Z3 > Z2 > Z1 (1.10)

Such a conclusion can be drawn from Figure 1.6, as there is more shape
(or a better pattern) in the plot for Z4 than for Z3, and so on.

However, if we used the straightforward derivative of Y versus Zi for the
sensitivity analysis, i.e. if we decided upon the relative importance of the
Zi’s using the measure

S
p
Zi

= 
Y


Zi

� (1.11)

which gives S
p
Zi

= �i for Equation (1.3), we would have to conclude that
all factors are equally important, based on Equation (1.7), irrespective of
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the values in �. This is clearly not reasonable. Note that we have used
the superscript p for ‘partial derivative’ in Equation (1.11), and that the
derivative is nonnormalized, i.e. it is based on the raw values of both
input and output. Note also that the scatterplots in Figure 1.6 are more
convincing than formula (1.11) as a sensitivity analysis tool. This is a rather
general conclusion. Input/output scatterplots are in general a very simple
and informative way of running a sensitivity analysis – we will use them
often in this book, since they can provide an immediate visual depiction
of the relative importance of the factors. For example, a scatterplot with
little ‘shape’, e.g. plot Z1 in Figure 1.6, which presents a rather uniform
cloud of points over the range of the input factor on the abscissa, is an
almost sure sign that the parameter is less influential than factor Z4. We say
‘almost’ because there are instances in which a bidimensional scatterplot
can be deceiving, leading to type II errors (nonidentification of an influential
factor).11 These are, however, very special cases, see Saltelli et al. (2004,
pp. 160–161).

Most sensitivity analysis measures developed by practitioners aim to
preserve the rich information provided by scatterplots in condensed format.
The challenge for sensitivity analysis, in situations with many input factors,
is how to rank the factors rapidly and automatically without having to look
at many separate scatterplots. Another problem with scatterplots is that
some uncertain factors might be sets, that is, groups of factors, and while
compact sensitivity measures can be defined for sets, the sensitivities of sets
cannot be visualized via simple two-dimensional scatterplots.12

1.2.4 Sigma-normalized Derivatives

Can we improve Equation (1.11) in such a way as to obtain a sensitivity
measure that would rank the input factors consistently with Figure 1.6? A
good possibility is

S�
Zi

= �Zi

Y

�Y 
Zi

 (1.12)

11 In sensitivity analysis, we refer to type I error when erroneously defining as impor-
tant a noninfluential factor. Type II error occurs when we classify an important factor as
noninfluential. It is nowadays common practice in modelling to include a third type of error:
type III. This is typically a framing error, where right answers are sought for the wrong ques-
tion. Sensitivity analysis is unable to help against type III errors. To make an example, if the
range of plausible values for a factor taken as input for a sensitivity analysis is totally off the
mark, the result of the sensitivity analysis will be of little help.
12 In fact, one can force multidimensional scatterplots into a bidimensional plane by scanning
the space of the input factors with a search curve. See Chapter 5.
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This derivative is normalized by the input–output standard deviations
(hence the � in the superscript). Applied to model (1.3) this would
give S�

Zi
= ��Zi

/�Y ��i. Squaring this and comparing with the square of

�Y =
√∑r

i=1 �2
i �

2
Zi

(Equation (1.6) above) we obtain

�2
Y =

r∑
i=1

�2
i �

2
Zi

and
(
S�

Zi

)2 =
(

�Zi

�Y

�i

)2

(1.13)

which gives �2
Y = �2

Y

∑r
i=1

(
S�

Zi

)2
, and finally

r∑
i=1

(
S�

Zi

)2 = 1 (1.14)

Measure (1.12) is more convincing than measure (1.11), see Table 1.1: first,
because the relative ordering of the Zi’s now depends on both vectors, �
and �, just as it should; and second, because the sensitivity measures are
neatly normalized to one.

Note that Equation (1.12) is a measure recommended for sensitivity
analysis by a guideline of the Intergovernmental Panel for Climate Change
(IPCC) (1999, 2000).

1.2.5 Monte Carlo and Linear Regression

Let us return briefly to the scatterplots of Figure 1.6. As mentioned, these
are the result of a Monte Carlo simulation in which a matrix such as

M =

⎡
⎢⎢⎢⎢⎢⎣

z
�1�
1 z

�1�
2 	 	 	 z

�1�
r

z
�2�
1 z

�2�
2 	 	 	 z

�2�
r

	 	 	 	 	 	 	 	 	 	 	 	

z
�N−1�
1 z

�N−1�
2 	 	 	 z

�N−1�
r

z
�N�
1 z

�N�
2 	 	 	 z

�N�
r

⎤
⎥⎥⎥⎥⎥⎦ (1.15)

Table 1.1 Derivatives and normalized derivatives for the model
(1.3, 1.4), where r = 4, � = �2�2�2�2� and � = �1�2�3�4�

Sa
Zi

(
S�

Zi

)2

Z1 2 0036
Z2 2 014
Z3 2 031
Z4 2 056



METHODS AND SETTINGS FOR SENSITIVITY ANALYSIS 17

has been fed into model (1.3) to produce the desired output vector

Y =

⎡
⎢⎢⎢⎢⎣

y�1�

y�2�

	 	 	
y�N−1�

y�N�

⎤
⎥⎥⎥⎥⎦ (1.16)

where y�1� is the value obtained running Equation (1.3) with the input given
by the row vector z

�1�
1 � z

�1�
2 � 	 	 	 � z

�1�
r , and so on for the other rows of the

matrix.
Note that N is the size of the Monte Carlo experiment (N = 1000 in

Figure 1.6). N corresponds to the number of times we have computed
Equation (1.3). In a sensitivity analysis experiment we shall have in general,
instead of Equation (1.3), a computer program that calculates Y . Running
the program to obtain a vector as Equation (1.9) is customarily the most
expensive part of the analysis in terms of computer time, as the model may
be complicated, while the sensitivity analysis measures are easy to compute.
Thus N is referred to as the cost of the analysis. Note that computer
time is not to be confused with analysis time. A derivation of the factors’
uncertainty distribution such as Equation (1.4) is in practice the most time-
consuming and financially expensive part of an analysis, especially when
this is based on formal elicitation of expert opinion (Helton et al., 2006;
see also Saltelli et al., 2000, pp. 101–152).

Note also that care has to be taken so that each column

z
�1�
1

z
�2�
1

	 	 	

z
�N�
1

in matrix (1.8) is a sample from the respective distribution Zi ∼ N�z̄i��Zi
�. In

general, and unless otherwise specified, we assume that the input factors are
independent of each other, so that each one can be independently sampled
from its marginal distributions (Equation (1.4) in the present examples).

As mentioned above, analysts would like to summarize the results in plots
such as Figure 1.6 with a single number per scatterplot. This is, after all,
what a sensitivity measure is intended to do. The most popular method
for this is to try a simple linear regression on the data of matrix (1.8) and
vector (1.9), of the form

y�i� = b0 +
r∑

j=1

bZj
z

�i�
j � (1.17)
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where the coefficients b0� bZj
are determined by least-square computation,

based on the squared differences between the y-values produced by the
regression (meta)model13 and the actual model output produced by the
Monte Carlo simulation. Because the points have been generated using a
linear model, we expect that the linear regression will re-discover it, i.e.
we would expect that b̂0 � 0� b̂Zi

� �i� i = 1�2� 	 	 	 � r, where the symbol �
means that this is what we would obtain if N were large enough and the
hat denotes estimates as in standard usage.

Results for the points in Figure 1.6 (N = 1000) are given in Table 1.2.14

All available software for regression analysis will compute not only
b̂0� b̂Zi

, but also their standardized equivalents �̂Zi
= b̂Zi

�Zi
/�Y . The �’s

are known as standardized regression coefficients (sometime indicated with
their initial as SRC), and are in general more widely used than the raw
regression coefficients b’s. For our model (1.3), the regression coefficients,
again for N tending to infinity, will tend to

�̂Zi
= b̂Zi

�Zi
/�Y � �i�zi

/�Y  (1.18)

Comparing this formula with that previously obtained for the �-normalized
derivatives, i.e. S�

Zi
= ��Zi

/�Y ��i, we can conclude that in the special case
of our model (1.3) the two measures of sensitivity coincide:

�̂Zi
= S�

Zi
for model (1.3) (1.19)

Table 1.2 Linear regression coefficients and standardized coefficients
for the model of Equations (1.3), (1.4), where r = 4, � = �4�3�2�1�
and � = �2�2�2�2�, N = 1000

b �2
Zi

SZi
Analytic (see Exercises)

Intercept 0
Z1 2 0034 0.03
Z2 2 014 0.13
Z3 2 031 0.3
Z4 2 053 0.53

13 Metamodels are surrogate models which are built to substitute for computationally inten-
sive simulation models. Metamodels can be built with a variety of strategies (e.g. simple
linear regression as discussed above) and purposes (e.g. to perform a sensitivity analysis). See
Chapter 5.
14 The results in Table 1.2 have been obtained with a simple piece of software for regression
analysis. Yet, as explained in the next chapter, given that our model (1.3, 1.4) is linear, and
the model does not contain any error term, we could have computed exact (analytic) values
of the regression coefficients using only five runs and then applying the Kramer formula for a
system of five equations (runs) in the five unknowns b0� 	 	 	 b4.
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As a result it will also be true for the �’s that

r∑
i=1

(
�̂Zi

)2 = 1 (1.20)

when the model is linear.
The fact that the two measures coincide for our model can be generalized

only to linear models and no further. If the model is nonlinear, the two
measures will be different. Yet the �’s will be a more robust and reliable
measure of sensitivity even for nonlinear models. First of all, the �’s are
multidimensionally averaged measures. Unlike S�

Zi
, which is computed at

the midpoint of the distribution of Zi while keeping all other factors fixed at
their midpoint, �̂Zi

is the result of an exploration of the entire space of the
input factors – the limit being in the dimension N of the sample. For small
N and large r, however, the �’s will be rather imprecise. Even in sensitivity
analysis there is no such thing as a free meal, and one cannot expect to have
explored a high-dimensionality space with a handful of points. Nevertheless
a handful is better than just one. Statistical significance tests are available
for the �’s, so that the analysts can at least know the extent of the problem.

Finally, by computing
∑r

i=1

(
�̂Zi

)2
or a related statistic, one will obtain a

number, in general less than one, equal to the fraction of linearity of the
model. More precisely, this number – known as the model coefficient of
determination, and written as R2

Y – is equal to the fraction of the variance
of the original data which come from our model (Equations 1.3, 1.4, in
this case), which is explained by the regression model of Equation (1.17).
Again, this fraction should be equal to one for our model; however, to
give a different example, if R2

Y were instead to be of the order of 0.9, then
the model would be 90% linear and one could use the �’s for sensitivity
analysis, at the risk of remaining ignorant of some 10% of the variance of
the problem.15

Note that
r∑

i=1

(
�̂Zi

)2 = 1 =
r∑

i=1

(
b̂Zi

�Zi
/�Y

)2
� (1.21)

so that
r∑

i=1

(
b̂Zi

�Zi

)2 = �2
Y = V�Y �� (1.22)

where V�Y � indicates the variance of Y . Equation (1.22) is to highlight that
both Equations (1.12) and (1.20) are variance decomposition formulas. As a

15 This discussion holds for linear regression. More sophisticated metamodelling techniques
which can overcome these shortcomings are described in Chapter 5.
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sensitivity analysis tool, these formulas allow us to decompose the variance
of the model output, taken as a descriptor of output uncertainty. Although
most practitioners tend to agree on this usage of variance as a proxy for
uncertainty, one should remember that the two things are not identical. For
example, a measure of uncertainty could be defined on the basis of entropy
of model output (see Saltelli et al., 2000, pp. 56–57). In this book we shall
use variance decomposition schemes for sensitivity analysis whenever the
setting of the analysis allows it.

Wrapping up the results so far, we have seen formulas for decomposing
the variance of the model output of interest according to the input factors.
Yet we would like to do this for all models, independently of their degree
of linearity; that is, we would like to be able to decompose the variance of
Y even for models with a low R2

Y . We want to find what is referred to in
the literature as a ‘model-free’ approach. One such ‘model-free’ sensitivity
measure is based on averaged partial variances, which we now move on to
describe along two separate lines.

1.2.6 Conditional Variances – First Path

We have a generic model

Y = f�X1�X2� 	 	 	 �Xk� (1.23)

like model (1.3) above. Each X has a nonnull range of variation or uncer-
tainty and we wish to determine what would happen to the uncertainty of
Y if we could fix a factor. Imagine that we fix factor Xi at a particular value
x∗

i . Let VX∼i
�Y � Xi = x∗

i � be the resulting variance of Y , taken over X∼i (all
factors but Xi). We call this a conditional variance, as it is conditional on
Xi being fixed to x∗

i . We would imagine that, having frozen one potential
source of variation (Xi), the resulting variance VX∼i

�Y � Xi = x∗
i � will be less

than the corresponding total or unconditional variance V�Y �. One could
therefore conceive of using VX∼i

�Y � Xi = x∗
i � as a measure of the relative

importance of Xi, reasoning that the smaller VX∼i
�Y � Xi = x∗

i �, the greater
the influence of Xi. There are two problems with this approach. First, it
makes the sensitivity measure dependent on the position of point x∗

i for
each input factor, which is impractical. Second, one can design a model that
for particular factors Xi and fixed point x∗

i yields VX∼i
�Y � Xi = x∗

i � > V�Y �,
i.e. the conditional variance is in fact greater than the unconditional (see the
Exercises at the end of this chapter). If we take instead the average of this
measure over all possible points x∗

i , the dependence on x∗
i will disappear.
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We write this as EXi

(
VX∼i

�Y � Xi�
)
. This is always lower or equal to V�Y �,

and in fact:

EXi

(
VX∼i

�Y � Xi�
)+VXi

(
EX∼i

�Y � Xi�
)= V�Y � (1.24)

Hence a small EXi

(
VX∼i

�Y � Xi�
)
, or a large VXi

(
EX∼i

�Y � Xi�
)
, will

imply that Xi is an important factor. Note that, by Equation (1.24),
VXi

(
EX∼i

�Y � Xi�
) ≤ V�Y �. The conditional variance VXi

(
EX∼i

�Y � Xi�
)

is
called the first-order effect of Xi on Y and the sensitivity measure:

Si = VXi

(
EX∼i

�Y � Xi�
)

V�Y �
(1.25)

is known as the first-order sensitivity index of Xi on Y . Si is a number
always between 0 and 1.16 A high value signals an important variable. And
vice versa? Does a small value of Si flag a nonimportant variable? We leave
this question for later and move directly on to the second path for Si.

1.2.7 Conditional Variances – Second Path

Let us go back to the scatterplots of Figure 1.6. We have said before that
what identifies an important factor is the existence of ‘shape’ or ‘pattern’
in the points, while a uniform cloud of points is a symptom (though not a
proof) of a noninfluential factor. What, then, constitutes shape? We could
say that we have a pattern when the distribution of Y -points over the
abscissa, i.e. over the factor Xi, is nonuniform. In other words, if the Xi axis
is cut into slices, does one see differences in the distribution of Y -points over
the slices (Figure 1.7)? Does the mean value of Y in each slice vary across
the slices (Figure 1.8)? From Figure 1.7 (which is the same as Figure 1.6,
with the addition of ‘slices’) and Figure 1.8 we can see that factor Z4 is
more influential than Z1, and that the ordering of factors by importance
is Z4 > Z3 > Z2 > Z1, according to how much the mean value of Y varies
from one slice to another.

We thus suggest as a sensitivity measure the quantity:

Variation over the slices of the expected value of Y within each slice.

16 Here and in the following we shall tend to use the synthetic notation Si when the factors
considered are labelled X, while we use the lengthier notation, e.g SZi

or S�i
, when the factor

has a symbol different from X.
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Figure 1.7 Cutting the scatterplots into slices 	 	 	

Taking the limit of this for very thin slices we rediscover VXi

(
EX∼i

�Y � Xi�
)
.

Note indeed that the expected value of Y over a very thin slice corre-
sponds to keeping Xi fixed while averaging over all-but-Xi, which is exactly
EX∼i

�Y � Xi�. The variance operator is also easily understood.
The issue of cutting the scatterplot into slices will be taken up again in

Chapter 5 in the context of metamodelling, at which point a useful approxi-
mation of the function expectation value in the slices will be introduced. We
anticipate here that EX∼i

�Y � Xi� will be the best predictor of Y based on Xi.

1.2.8 Application to Model (1.3)

Having defined the new sensitivity measure Si we are eager to apply it
to our model of Equation (1.3). It will come as no surprise that for our
well-behaved, linear model we obtain
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Figure 1.8 	 	 	 and taking the average within each slice. Looking at the ordinate,
it is clear that Z3 and Z4 control more variation than Z1 and Z2

SZi
= VZi

(
EZ∼i

�Y � Zi�
)

V�Y �
= �2

Zi
(1.26)

(See Table 1.2 for a comparison between �2
Zi

and the analytic value of
SZi

.) The identity of Equation (1.26) holds for linear models, as we would
expect given that SZi

is a model-free generalization of �2
Zi

. For nonlinear
models the two measures will differ, as we shall see in a moment. Another
important difference between SZi

and �2
Zi

is that while
∑r

i=1 �2
Zi

= 1 only
for linear models, the relationship

∑r
i=1 SZi

= 1 holds for a larger class: that
of additive models. By definition, a model is additive when it is possible
to separate the effects of its input variables in a variance decomposition
framework. For example, Y =∑

i Z
2
i is a nonlinear, additive model in the

Z’s; Y =∏
i Zi is nonlinear and nonadditive.

For nonadditive models the first-order terms do not add up to one,
i.e.

∑r
i=1 SZi

≤ 1. This is also how nonadditive models are defined. We
shall turn to this presently, after first discussing the need for ‘settings’ in
sensitivity analysis.
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1.2.9 A First Setting: ‘Factor Prioritization’

Experience shows that a poor definition of the objective of the sensitivity
analysis (i.e. the reason we are investigating the importance of the factors,
and indeed what we mean by ‘importance’) can lead to confused or incon-
clusive results. There are many statistics which can be used for sensitivity
analysis, and one can easily imagine a table showing for each uncertain
factor a battery of statistical measures defining the factor’s importance. In
general, each measure of sensitivity will produce its own ranking of factors
by importance. Since this is the case, how can we tell which factor is impor-
tant? To avoid this kind of confused result, it is in the analyst’s best interests
to define beforehand what definition of a factor’s importance is relevant
for the exercise in question. We call this a ‘setting’ (Saltelli et al., 2004,
pp. 49–56). A setting is a way of framing the sensitivity quest in such a way
that the answer can be confidently entrusted to a well-identified measure.
By way of example, we describe here the Factor Prioritization (FP) setting.

In this setting one assumes that all factors, e.g. all Z’s in Equation (1.3),
have a true, albeit unknown value.17 Ideally all factors could be ‘discovered’
by the appropriate experiments. If all experiments have the same cost, our
quest or venture is to identify which factor, once ‘discovered’ and fixed at
its true value, would reduce V�Y � the most.

One way to answer this question would be to determine or discover the
value of the factors, for example, through more measurements. Yet if we
were to do this we would have gone beyond uncertainty and sensitivity
analyses. The challenge, therefore, is to identify the appropriate factors
before any of them are measured or discovered, i.e. when the value to
which each factor should be fixed is unknown. This suggests that a good
contender for the title of ‘most influential factor’ would be that factor which,
on average, once fixed, would cause the greatest reduction in variance.
‘On average’, in this case, means that we must average the fixing of the
factor over the distribution of the factor itself. It is straightforward to
see that in this setting EXi

(
VX∼i

�Y � Xi�
)

is the measure to use. The lower
EXi

(
VX∼i

�Y � Xi�
)
, and hence the higher VXi

(
EX∼i

�Y � Xi�
)
, the more probable

it is that factor Xi is the factor that one should measure first in order to
reduce the variance most. We have thus linked the FP setting to a measure,
the first-order sensitivity index Si. This is a gamble, as we do not know

17 In most circumstances one will have factors susceptible of determination, for which
a true unknown value can be hypothesized (e.g. the failure rate of a component type,
the value of an activation energy for a chemical reaction), as well as factors intrinsically
uncertain (the time of failure of a specific component, the wind direction at a given time
and location). These are termed epistemic and stochastic uncertainties respectively. For
the purpose of illustrating the setting it is convenient to imagine all factors epistemically
uncertain.
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the position of the true value of a factor over its distribution. Someone
actually measuring a given factor could still beat our sensitivity analysis-
based guess and reduce the variance by more than we have guessed, or
reduce the variance using a factor other than the one we identified via
sensitivity analysis.

1.2.10 Nonadditive Models

In order to gain confidence with nonadditivity in models, we return to the
input for our elementary model (1.3), Y =∑r

i=1 �iZi, and complicate it by
allowing both the Z’s and the �’s to become factors – the �’s are no longer
constants. We do this to generate a nonadditive model, as we shall see
presently. The additivity of a model depends upon the characteristics of its
input factors, so that it is sufficient to change a constant of the model into a
factor in order to change the model from additive to nonadditive, although
the model is left unchanged in the form (1.3). Our input description becomes

Zi ∼ N�z̄i��Zi
� z̄i = 0

�i ∼ N��̄i���i
� �̄i = ic

i = 1�2� 	 	 	 � r (1.27)

The distribution of the Z’s remains unchanged, while the �’s, so far
constant, become input factors with normal distribution. Their mean is not
zero as it is for the Z’s, but rather some number other than zero – we shall
explain why in the Exercises at the end of this chapter. For the sake of
the example we have made the means of the �’s nonequivalent and equal
in value to the product of the integer i (used as counter) and a positive
constant c. This is simply a way to make the means of the �’s increase, so
that Equation (1.7) is no longer true. Instead

�̄1 < �̄2 < 	 	 	 �̄r  (1.28)

The input factors for the analysis are

X = �Z1�Z2� 	 	 	 �Zr��1��2� 	 	 	 ��r� (1.29)

and the total number of factors is k = 2r. We now perform another Monte
Carlo experiment, sampling both the Z’s and the �’s from their respective
distributions in Equation (1.27). Remember that we assume all factors inde-
pendent, so each factor is sampled from its marginal distribution with no
consideration of where the other factors are sampled. How the Monte Carlo
sample is used to produce estimates Ŝi of the first-order sensitivity measures
Si is explained later in this book (see Chapter 4). We anticipate the results
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Table 1.3 First-order indices Si (analytic) and squared
standardized regression coefficient �2

i for model (1.3, 1.27),
where r = 4, c = 0�5, � = �1�2�3�4� for both �i and Zi, and
N = 40�000 for the regression analysis. Such a large sample
was used to show the convergence between Si and �2

i

Si �2
i

Z1 00006 0
Z2 0009 0.01
Z3 0046 0.05
Z4 0145 0.14
�1 0 0
�2 0 0
�3 0 0
�4 0 0

in Table 1.3, where the squared standardized regression estimates �̂2 are
also reported for comparison.

It is evident from Table 1.3 that while ŜZi
are still greater than zero, the

Ŝ�i
are practically zero. Furthermore

k∑
i=1

ŜXi
=

r∑
i=1

ŜZi
+

r∑
i=1

Ŝ�i
< 1 (1.30)

We had already anticipated that for a nonadditive model the sum of the
first-order indices would be less than one.

However, it might seem puzzling that the � input factors seem to have
no influence. In fact, it is not difficult to understand why S�i

must be zero
(Figure 1.9).

Let us go back to our definition of Si, Equation (1.25):

Si = VXi

(
EX∼i

�Y � Xi�
)

V�Y �
� (1.31)

and let us compute it for �i,

S�i
=

V�i

(
EX∼�i

�Y � �i�
)

V�Y �
 (1.32)

We focus on the inner expectation EX∼�i
�Y ��i� which we now have to write

explicitly as EX∼�i
�Y � �i = �∗

i � in order to remind ourselves that we have
fixed �i.
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Zi

Y

ωi
∗

Figure 1.9 Y versus Zi for fixed values of X∼Zi

Note that EX∼�i
now means that the mean is taken over all Zj ’s, including

Zi, and over all �j ’s but �i.
Figure 1.9 shows the plot of Y versus Zi for a fixed nonzero value of �∗

i

of input factor �i in the case that all the remaining �j ’s, with j �= i, are
fixed to zero. This straight line will be shifted up or down vertically when
the �j ’s, with j �= i, are fixed to values other than zero.

Positive and negative values of Y will hence be equally probable and
equally distributed, so that EX∼�i

�Y � �i = �∗
i � will be zero. Figure 1.10

shows how this emerges from Monte Carlo generated scatterplots of Y
versus Zi and Y versus �i. It is clear that if EX∼�i

�Y � �i = �∗
i � is zero for

any value �∗
i , its variance over all possible values of �∗

i will also be zero,
so that both V�i

�EX∼�i
�Y � �i�� and S�i

will be zero for all factors �i.
We now understand that the measure S�i

is zero, but we retain the belief
that factors �i should have some influence, especially since this is suggested
by the conical pattern evident in Figure 1.10. It seems therefore that there
may be a problem with our sensitivity measure. A regression coefficient
�̂�i

would produce a straight horizontal line through the horizontal conical
plot of Y versus �i in Figure 1.10. However, it is clear from the shape of
this plot that variable �j is influential. A possible interpretation is that �̂�i

fails as a sensitivity measure in this case. Does the fact that S�i
is zero imply

that also S�i
fails?

Indeed it is unfair to say that ��i
fails in Figure 1.10. ��i

is a linear
measure, so clearly it should not be used on a nonlinear model. S�i

, however,
is a model-free measure, and must be applicable to nonlinear models. Indeed
this is the case, and we can say that if S�i

is zero, this means that �i has
no effect on Y ‘at the first order’ (recall that we have thus far discussed
first-order sensitivity indices). The reader familiar with experimental design
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Figure 1.10 Scatterplots of Y versus Z4 and versus �4 for model (1.3, 1.27), at
sample size N = 1000. The first-order sensitivity index for Z4 is greater than zero
while that for �4 is zero
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will already have guessed that the effect of �i must be captured by some
higher-order effect, as we now proceed to discuss.

1.2.11 Higher-order Sensitivity Indices

We continue our game with conditioned variances by playing with two
factors instead of one. Take for instance

V�E�Y � Zi�Zj��

V�Y �
� (1.33)

with i �= j. We have dropped the indices of both the E and V operators.
Indeed we do not need them if we accept the convention that the argument
conditioning the inner operator, Zi�Zj in this case, is also the set over which
we apply the outer operator, i.e. the variance is taken over Zi�Zj (we should
have written VZi�Zj

). By default, the inner operator, the average E, must
be taken over all-but-�Zi�Zj�. What would happen if we could compute
(1.33), with i �= j, and compare it with the corresponding measure for the
individual factors Zi�Zj? We would observe that

V�E�Y � Zi�Zj��

V�Y �
= SZi

+SZj
for i �= j� (1.34)

while

V�E�Y � �i��j��

V�Y �
= 0� (1.35)

and

V�E�Y � Zi��i��

V�Y �
> SZi

+S�i
 (1.36)

We anticipate from Chapter 4 that, given two generic factors Xi�Xj , the
following result holds:

V�E�Y � Xi�Xj�� = Vi +Vj +Vij� (1.37)

where

Vi = V�E�Y � Xi��

Vj = V�E�Y � Xj�� (1.38)

Vij = V�E�Y � Xi�Xj��−Vi −Vj
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The term Vij is the interaction term between factors Xi�Xj . It captures that
part of the response of Y to Xi�Xj that cannot be written as a superposition
of effects separately due to Xi, and Xj . Recalling our previous examples of
Y =∑

i Z
2
i (a nonlinear, additive model) and Y =∏

i Zi (nonlinear, nonad-
ditive), the latter model will have nonzero second-order terms such as Vij ,
while the former model will not.

Looking at Equations (1.37, 1.39) and remembering that for our model all
S�i

are zero, we are now ready to grasp the results of Equations (1.34–1.36)
(see also Table 1.4).

• Equation (1.34) holds because the interaction term between Zi and Zj is
zero, which is evident from the form of Equation (1.3).

• Equation (1.35) holds because the S�i
and S�j

as well as their interaction
term are zero.

• Equation (1.36) can be rewritten as

V�E�Y � Zi��j��

V�Y �
= SZi

+S�i
+SZi��i

�

where S�i
= 0, SZi��i

= VZi��i
/V�Y � and the term VZi��i

is the only type of
nonzero second-order term in model (1.3).

If we now sum all the nonzero first-order and and second-order terms we
get

Table 1.4 First- and second-order indices for model (1.3,
1.27, analytic), where r = 4, c = 0�5, � = �1�2�3�4� for both
�i and Zi

Factor Si�Sij Factor Sij Factor Sij

Z1 00006 Z1��2 0 Z3��3 0183
Z2 0009 Z1��3 0 Z3��4 0
Z3 0046 Z1��4 0 Z4��1 0
Z4 0145 Z2�Z3 0 Z4��2 0
�1 0 Z2�Z4 0 Z4��3 0
�2 0 Z2��1 0 Z4��4 0578
�3 0 Z2��2 0036 �1��2 0
�4 0 Z2��3 0 �1��3 0

Z1�Z2 0 Z2��4 0 �1��4 0
Z1�Z3 0 Z3�Z4 0 �2��3 0
Z1�Z4 0 Z3��1 0 �2��4 0
Z1��1 0002 Z3��2 0 �3��4 0
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r∑
i=1

(
SZi

+SZi�i

)= 1 (1.39)

This means that even for a nonadditive model we have found a
way to recover (that is, to understand) 100% of the variance of Y .
Thus variance-based sensitivity measures provide a theoretical framework
whereby – provided one has the patience to compute all interaction terms –
one can achieve a full understanding of the model’s sensitivity pattern.
Patience is indeed required, as in principle a model can have interactions
of even higher order. Again anticipating one result from Chapter 4, a full
analysis of a model with k factors is composed of

∑
i

Si +
∑

i

∑
j>i

Sij +
∑

i

∑
j>i

∑
l>j

Sijl + 	 	 	 +S123 	 	 	 k = 1 (1.40)

Model (1.3) can only have nonzero terms up to the second order, and this
can be seen ‘by inspection’, as the structure of the model is very simple. In
practical applications the subject model of our analysis will be a computer
program, and the only way to ascertain whether an interaction exists or not
will be to estimate it numerically. The problem is that the series development
of Equation (1.40) has as many as 2k −1 terms. For k = 3 this gives just 7
terms, i.e. S1� S2� S3S12� S23� S13� S123; for k = 10 it gives 1023, too many to
look at in practice.

In fact, the variance-based analysis can help us in these circumstances, by
computing for each factor a ‘total effect’ term, which we describe next.

1.2.12 Total Effects

What is a total effect term? Let us again use our extended model
(1.3, 1.27), and ask what we would obtain if we were to compute
V
(
E
(
Y � X∼�i

))
/V�Y �. We are conditioning now on all factors but �i. In

other words

V�E�Y �X∼�i
��

V�Y �
= V �E �Y � �1��2� 	 	 	 ��i−1��i+1� 	 	 	 �r�Z1�Z2� 	 	 	 �Zr��

V�Y �


(1.41)

By analogy with our discussion of second-order terms, Equation (1.41)
should include all terms of any order that do not include factor �i. As the
sum of all possible sensitivity terms must be 1, the difference
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(
1− V�E�Y �X∼�i

��

V�Y �

)

must be made up of all terms of any order that include �i. For our model,
which has only first- and second-order terms, this gives

(
1− V�E�Y �X∼�i

��

V�Y �

)
= S�i

+SZi�i
(See Table 1.5) (1.42)

To consider a different example, for a generic three-factor model, one
would have

ST 1 =
(

1− V �E �Y � X−1��

V�Y �

)
= S1 +S12 +S13 +S123 (1.43)

and

ST 2 = S2 +S12 +S23 +S123

ST 3 = S3 +S13 +S23 +S123�

where STi denotes the total effect of factor Xi. We recall that we tend to
use the synthetic notation (Si� STi�Vi� Sij) when the factors considered are
labelled X, while we use the lengthier notation (SZi

� STZi
�V�i

� SZi�i
) when

the factor has a symbol other than X.

Table 1.5 First-order and total effects
for model (1.3, 1.27, analytic), where
r = 4, c = 0�5, � = �1�2�3�4� for both
�i and Zi

Si STi

Z1 00006 Z1 0.003
Z2 0009 Z2 0.045
Z3 0046 Z3 0.229
Z4 0145 Z4 0.723
�1 0 �1 0.002
�2 0 �2 0.036
�3 0 �3 0.183
�4 0 �4 0.578
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We have argued in a series of works (Saltelli et al., 2004, and references
therein) that a good, synthetic, though nonexhaustive characterization of
the sensitivity pattern for a model with k factors is given by the total set
of first-order terms plus the total effects. For a system with 10 factors this
makes 20 terms rather than 1023.

One last observation about the total effect terms is the following. For the
algebraic rule already mentioned in Equation (1.24) we have

EXi

(
VX∼i

�Y � Xi�
)+VXi

(
EX∼i

�Y � Xi�
)= V�Y ��

and hence

STi = 1− V �E �Y � X∼i��

V�Y �
= E �V �Y � X∼i��

V�Y �
 (1.44)

Equipped with this new sensitivity measure, the total effect, we are now
ready to introduce another useful ‘setting’ for sensitivity analysis.

1.2.13 A Second Setting: ‘Factor Fixing’

One use of sensitivity analysis is to simplify models. If a model is used
systematically in a Monte Carlo framework, so that input uncertainties
are always propagated through the output, it might be useful to ascertain
which of the input factors can be fixed anywhere in their range of variation
without appreciably affecting a specific output of interest Y . This could
help to simplify a model in a greater sense, since we might be able to
condense (lump) an entire section of our model if all factors entering that
section are noninfluential. From the preceding discussion it will be clear
that Si = 0 is a necessary but insufficient condition for fixing factor Xi.
This factor might be involved in interactions with other factors such that,
although its first-order term is zero, there might be nonzero higher-order
terms. This is exactly what happened with our factors �i in the model (1.3,
1.27).

Imagine now that a factor Xi is truly noninfluential. Let us compute
VXi

�Y � X∼i = x∗
∼i�, where we have fixed a point x∗

∼i in the multidimensional
space X∼i. If factor Xi is noninfluential, then VXi

�Y � X∼i = x∗
∼i� must be

zero, as the value of Y is totally determined by X∼i and there will be
no variance over Xi. Averaging over non-Xi will not change the result,
so that EX∼i

(
VXi

�Y � X∼i�
)

must be zero as well. Based on our convention
of not indicating the conditioning argument, we can also write this as
E �V �Y � X∼i�� = 0. These considerations prove that if Xi is noninfluential,
then STi = 0 by Equation (1.44) above.
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Conversely, if STi = 0 for factor Xi, then E �V �Y � X∼i�� = 0. As the vari-
ance can only be a positive number, the fact that the mean E �V �Y � X∼i��
is zero implies that V �Y � X∼i = x∗

∼i� is identically zero for any value of x∗
∼i,

which proves that Xi is noninfluential – there is no point in the hyperspace
of X where Xi has an effect. This demonstrates that STi = 0 is a necessary
and sufficient condition for Xi being noninfluential.

Note that the model simplification underpinned by the ‘factor fixing’
setting can become very important when models need to be audited, for
example in the face of a scientific controversy or for use in policy assessment.
In these situations one might wish to optimize the ‘relevance’ R of a model,
defined as the ratio (Beck et al., 1997):

R = number of factors that truly induce variations in the output of interest

total number of factors in the model


This approach would guard against the criticism that an overly complex
model was being used by one party to obfuscate or discourage investigation.

The concepts of parsimony or simplicity in the context of modelling
are illustrated by the works of Peter C. Young (Young et al., 1996;
Young, 1999a), who recommends the use of data-driven models, in which a
minimum of parameters are inferred directly from the data, as an alternative
to law-driven, usually overparametrized models. To give an example, the
hydrogeology of a catchment area can be modelled with a complex model
based on Darcy’s laws or with a low-order model based on direct interpreta-
tion of precipitation and runoff time series. Such a parsimonious description
of the system can also be thought of as a complement to a law-driven
model. More generally, for models to be used in impact assessment or other
regulatory settings, it might be advisable to have a back-of-the-envelope
version of the general model for the purpose of negotiating assumptions
and inferences with stakeholders. Sensitivity analysis may be instrumental
in deriving such a simplified model.

The foregoing discussion of possible settings for sensitivity analysis allows
us to make a few more observations on the rationale for sensitivity analysis.

1.2.14 Rationale for Sensitivity Analysis

Possible motivations for sensitivity analysis are:

• Model corroboration. Is the inference robust? Is the model overly depen-
dent on fragile assumptions?
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• Research prioritization. Which factor is most deserving of further anal-
ysis or measurement? ⇒ factor prioritization setting.

• Model simplification. Can some factors or compartments of the model
be fixed or simplified? ⇒ factor fixing setting.

• Identifying critical or otherwise interesting regions in the space of the
input factors. Identifying factors which interact and which may thus
generate extreme values. This is important, for example in system
reliability.

• Prior to parameter estimation, to help set up the (actual or numerical)
experiment in those conditions in which the sensitivity of the output to
the factor to be estimated is the greatest.

To illustrate the last point, imagine that one has actual measurements
against which to compare model predictions. Ideally, predictions and
measurements can feed into an estimation step. Yet before this is done, it is
worth investigating what drives, for instance, the sum of the squared differ-
ences between model prediction and actual measurements. Only factors
with this type of influence are good candidates for the estimation step. In
this way the analyst can decide which experimental conditions are more
interesting for the subsequent estimation (Saltelli et al., 2004, pp.151–191).

We have already mentioned that uncertainty and sensitivity analyses can
be run in tandem to ascertain whether different policies (e.g. strategies to
alleviate an environmental problem) are indeed different from one another
when compared in the overall space of the uncertainties. An example of
such an analysis is found in Saltelli et al. (2000 pp. 385–397).

It is worth noting in this case that high uncertainty in the inference is not
synonymous with low quality in the resulting assessment. Though uncertain,
the assessment might still allow policy A to be distinguished from policy B
(implying high quality) while the opposite is also possible, i.e. that the model
might not allow these options to be distinguished even with only moderate
uncertainties in the inference (implying a low-quality assessment). On a
similar ground, when confronted with a plurality of stakeholders’ views
and beliefs as to how an issue should be tackled or framed, we may use
sensitivity analysis to ascertain whether – within the latitude of the different
framings and assumptions – we still can reach some robust inference, i.e. a
high-quality assessment. We would call such an inference – or the resulting
preferred policy – ‘socially’ robust, as it is compatible with such a plurality
of viewpoints. On the contrary, we might find that the different framings
give rise to such great latitude in the resulting inference that no robust
policy can be identified.

Another general consideration with respect to the global, explorative
nonparametric methods for the sensitivity analysis just described is that
these have a better chance of being resilient towards type II errors than
local (derivative-based) methods. The possibility of important factors
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being overlooked or dangerous or critical combinations of input factors
neglected decreases with the level of exploration of the space of the
input factors (Farrell, 2007). The attention paid in global methods to
interaction effects is also a protection against type II errors. In Saltelli
et al. (2005) we show that, for even a relatively simple and well-
studied chemical reactor system, global sensitivity analysis and attention
to the interactions can lead to the identification of a larger ‘runaway’
portion in the space of the input factors than could previously be
identified.

Some of the motivations just described would demand being able to
apportion uncertainty not only among factors, but also among sets of
factors, for example to distinguish data uncertainty from experts’ uncer-
tainty, system uncertainty from policy option uncertainty and so on. We
offer a few tools for this in the following.

1.2.15 Treating Sets

An additional interesting feature of variance-based methods is that they
allow for a concise treatment of the sensitivity of sets of factors. Referring
again to model (1.3, 1.27), we can imagine computing a variance
measure conditioned on a subset of the input factors, e.g. on the set �,
S� = V �E �Y � ��� /V �Y �. From the description in the previous sections it
is easy to understand that S� will include all first-order terms related to
� plus second- and higher-order product terms including only members
of �. We already know that these are all zero. We can likewise compute
SZ = V �E �Y � Z�� /V �Y � for the set Z. This similarly contains all nonzero
first-order terms plus the null second- and higher-order terms internal to Z.
Finally we can compute

S��Z = V�Y �−S� −SZ� (1.45)

which will contain all cross-product terms not involved in S�� SZ. Going
back to our example of Equation (1.3) as a composite indicator with weights
� given by experts and variables Z coming from statistical offices, with
Equation (1.45) we have apportioned variance between data and experts
and an interaction between the two.

Similarly, we could share the uncertainty in Y among the couples Ai =
��i�Zi� and apply

∑
i

SAi
+∑

i

∑
j>i

SAiAj
+∑

i

∑
j>i

∑
l>j

SAiAjAl
+ 	 	 	 = 1 (1.46)
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As we already know that for our model all cross-product terms with i �= j
are zero, this can be reduced to the convenient

r∑
i

SAi
= 1� (1.47)

in which uncertainty is divided among ‘themes’, each theme comprising
an indicator and its weight. It is easy to imagine similar applications. For
example, one could divide uncertainty among observational data, estima-
tion, model assumptions, model resolution and so on.

1.2.16 Further Methods

So far we have discussed the following tools for sensitivity analysis:

• derivatives and sigma-normalized derivatives;
• regression coefficients (standardized);
• variance-based measures;
• scatterplots.

We have shown the equivalence of sigma-normalized coefficients
S�

i = �Zi

Y/�Y 
Xi, regression coefficients �i and variance-based first-order

sensitivity indices Si for linear models, as well as how Si is a model-free
extension of the variance decomposition scheme to models of unknown
linearity. We have discussed how nonadditive models can be treated in the
variance-based sensitivity framework. We have also indicated that scatter-
plots are a powerful tool for sensitivity analysis and shown how Si can
be interpreted in relation to the existence of ‘shape’ in an Xi versus Y
scatterplot.

At a greater level of detail (Ratto et al., 2007) one can use modern regres-
sion tools (such as state-space filtering methods) to interpolate points in the
scatterplots, producing very reliable E �Y � Xi = x∗

i � curves. The curves can
then be used for sensitivity analysis. Their shape is more evident than that
of dense scatterplots (compare Figure 1.7 with Figure 1.8). Furthermore,
one can derive the first-order sensitivity indices directly from those curves,
so that an efficient way to estimate Si is to use state-space regression on the
scatterplots and then take the variances of these.

In general, for a model of unknown linearity, monotonicity and additivity,
variance-based measures constitute a good means of tackling settings such
as factor fixing and factor prioritization. We shall discuss one further setting
before the end of this chapter, but let us first consider whether there are
alternatives to the use of variance-based methods for the settings so far
described.
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Why might we need an alternative? The main problem with variance-
based measures is computational cost. Estimating the sensitivity coefficients
takes many model runs (see Chapter 4). Accelerating the computation of
sensitivity indices of all orders – or even simply of the Si� STi couple – is
the most intensely researched topic in sensitivity analysis (see the filtering
approach just mentioned). It can reasonably be expected that the estimation
of these measures will become more efficient over time.

At the same time, and if only for screening purposes, it would be useful to
have methods to find approximate sensitivity information at lower sample
sizes. One such method is the Elementary Effect Test.

1.2.17 Elementary Effect Test

The Elementary Effect Test is simply an average of derivatives over the space
of factors. The method is very simple. Consider a model with k independent
input factors Xi� i = 1�2� 	 	 	 � k, which varies across p levels. The input
space is the discretized p-level grid �. For a given value of X, the elementary
effect of the ith input factor is defined as

EEi = �Y �X1�X2� 	 	 	 �Xi−1�Xi +�� 	 	 	 Xk�−Y �X1�X2� 	 	 	 �Xk��

�
� (1.48)

where p is the number of levels, � is a value in �1/�p−1�� 	 	 	 �1−1/�p−1��,
X = �X1�X2� 	 	 	 Xk� is any selected value in � such that the transformed
point �X+ ei�� is still in � for each index i = 1� 	 	 	 � k, and ei is a vector of
zeros but with a unit as its ith component. Then the absolute values of the
EEi, computed at r different grid points for each factor, are averaged

�∗
i = 1

r

r∑
j=1

�EE
j
i � (1.49)

and the factors ranked according to the obtained mean �∗
i .

In order to compute efficiently, a well-chosen strategy is needed for
moving from one effect to the next, so that the input space is explored with
a minimum of points (see Chapter 3).

Leaving aside computational issues for the moment, �∗ is a useful measure
for the following reasons:

1. It is semi-quantitative – the factors are ranked on an interval scale;
2. It is numerically efficient;
3. It is very good for factor fixing – it is indeed a good proxy for STi;
4. It can be applied to sets of factors.
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Due to its semi-quantitative nature the �∗ can be considered a screening
method, especially useful for investigating models with many (from a few
dozen to 100) uncertain factors. It can also be used before applying a
variance-based measure to prune the number of factors to be considered.
As far as point (3) above is concerned, �∗ is rather resilient against type
II errors, i.e. if a factor is deemed noninfluential by �∗ it is unlikely to be
identified as influential by another measure.

1.2.18 Monte Carlo Filtering

While �∗ is a method of tackling factor fixing at lower sample size, the next
method we present is linked to an altogether different setting for sensitivity
analysis. We call this ‘factor mapping’ and it relates to situations in which
we are especially concerned with a particular portion of the distribution of
output Y . For example, we are often interested in Y being above or below
a given threshold. If Y were a dose of contaminant, we might be interested
in how much (how often) a threshold level for this contaminant is being
exceeded. Or Y could be a loss (e.g. financial) and we might be interested in
how often a maximum admissible loss is being exceeded. In these settings
we tend to divide the realization of Y into ‘good’ and ‘bad’. This leads to
Monte Carlo filtering (MCF, see Saltelli et al., 2004, pp. 151–191 for a
review). In MCF one runs a Monte Carlo experiment producing realizations
of the output of interest corresponding to different sampled points in the
input factor space, as for variance-based or regression analysis. Having
done this, one ‘filters’ the realizations, e.g. elements of the Y -vector. This
may entail comparing them with some sort of evidence or for plausibility
(e.g. one may have good reason to reject all negative values of Y ). Or one
might simply compare Y against thresholds, as just mentioned. This will
divide the vector Y into two subsets: that of the well-behaved realizations
and that of the ‘misbehaving’ ones. The same will apply to the (marginal)
distributions of each of the input factors. Note that in this context one is
not interested in the variance of Y as much as in that part of the distribution
of Y that matters – for example, the lower-end tail of the distribution may
be irrelevant compared to the upper-end tail or vice versa, depending on
the problem. Thus the analysis is not concerned with which factor drives
the variance of Y as much as with which factor produces realizations of Y
in the forbidden zone. Clearly, if a factor has been judged noninfluential by
either �∗ or STi, it will be unlikely to show up in an MCF. Steps for MCF
are as follows:

• A simulation is classified as either B, for behavioural, or B, for nonbe-
havioural (Figure 1.11).

• Thus a set of binary elements is defined, allowing for the identification of
two subsets for each Xi: one containing a number n of elements denoted
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X Y

(X |B )

(X |B )
B

B

Figure 1.11 Mapping behavioural and nonbehavioural realizations with Monte
Carlo filtering

�X � B� and a complementary set
(
X � B

)
containing the remaining n =

N −n simulations (Figure 1.11).
• A statistical test can be performed for each factor independently,

analysing the maximum distance between the cumulative distributions
of the �X � B� and

(
X � B

)
sets (Figure 1.12).

If the two sets are visually and statistically18 different, then Xi is an
influential factor in the factor mapping setting.

X
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Figure 1.12 Distinguishing between the two sets using a test statistic

18 Smirnov two-sample test (two-sided version) is used in Figure 1.12 (see Saltelli et al., 2004,
pp. 38–39).



POSSIBLE PITFALLS FOR A SENSITIVITY ANALYSIS 41

1.3 NONINDEPENDENT INPUT FACTORS

Throughout this introductory chapter we have systematically assumed that
input factors are independent of one another. The main reason for this
assumption is of a very practical nature: dependent input samples are more
laborious to generate (although methods are available for this; see Saltelli
et al., 2000) and, even worse, the sample size needed to compute sensi-
tivity measures for nonindependent samples is much higher than in the case
of uncorrelated samples.19 For this reason we advise the analyst to work
on uncorrelated samples as much as possible, e.g. by treating dependen-
cies as explicit relationships with a noise term.20 Note that when working
with the MCF just described a dependency structure is generated by the
filtering itself. The filtered factors will probably correlate with one another
even if they were independent in the original unfiltered sample. This could
be a useful strategy to circumvent the use of correlated samples in sensi-
tivity analysis. Still there might be very particular instances where the use
of correlated factors is unavoidable. A case could occur with the para-
metric bootstrap approach described in Figure 1.3. After the estimation
step the factors will in general be correlated with one another, and if a
sample is to be drawn from these, it will have to respect the correlation
structure.

Another special instance when one has to take factors’ dependence into
consideration is when analyst A tries to demonstrate the falsity of an uncer-
tainty analysis produced by analyst B. In such an adversarial context, A
needs to show that B’s analysis is wrong (e.g. nonconservative) even when
taking due consideration of the covariance of the input factors as explicitly
or implicitly framed by B.

1.4 POSSIBLE PITFALLS FOR A SENSITIVITY
ANALYSIS

As mentioned when discussing the need for settings, a sensitivity analysis
can fail if its underlying purpose is left undefined; diverse statistical tests
and measures may be thrown at a problem, producing a range of different
factor rankings but leaving the researcher none the wiser as to which

19 Dependence and correlation are not synonymous. Correlation implies dependence, while
the opposite is not true. Dependencies are nevertheless described via correlations for practical
numerical computations.
20 Instead of entering X1 and X2 as correlated factors one can enter X1 and X3, with X3 being
a factor describing noise, and model X2 as a function of X1 and X3.
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ranking to believe or privilege. Another potential danger is to present sensi-
tivity measures for too many output variables Y . Although exploring the
sensitivity of several model outputs is sound practice for testing the quality
of the model, it is better, when presenting the results of the sensitivity anal-
ysis, to focus on the key inference suggested by the model, rather than to
confuse the reader with arrays of sensitivity indices relating to intermediate
output variables. Piecewise sensitivity analysis, such as when investigating
one model compartment at a time, can lead to type II errors if interactions
among factors of different compartments are neglected. It is also worth
noting that, once a model-based analysis has been produced, most modellers
will not willingly submit it to a revision via sensitivity analysis by a third
party.

This anticipation of criticism by sensitivity analysis is also one of the 10
commandments of applied econometrics according to Peter Kennedy:

Thou shall confess in the presence of sensitivity. Corollary: Thou shall anticipate
criticism [· · · ] When reporting a sensitivity analysis, researchers should explain
fully their specification search so that the readers can judge for themselves how
the results may have been affected. This is basically an ‘honesty is the best policy’
approach, advocated by Leamer, (1978, p. vi) (Kennedy, 2007).

To avoid this pitfall, an analyst should implement uncertainty and sensi-
tivity analyses routinely, both in the process of modelling and in the oper-
ational use of the model to produce useful inferences.

Finally the danger of type III error should be kept in mind. Framing
error can occur commonly. If a sensitivity analysis is jointly implemented
by the owner of the problem (which may coincide with the modeller) and a
practitioner (who could again be a modeller or a statistician or a practitioner
of sensitivity analysis), it is important to avoid the former asking for just
some ‘technical help’ from the latter upon a predefined framing of the
problem. Most often than not the practitioner will challenge the framing
before anything else.

1.5 CONCLUDING REMARKS

1. We have just shown different settings for sensitivity analysis, such as:

• factor prioritization, linked to Si;• factor fixing, linked to STi or �∗;
• factor mapping, linked to MCF;
• metamodelling (hints).
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The authors have found these settings useful in a number of applications.
This does not mean that other settings cannot be defined and usefully
applied.

2. We have discussed fitness for purpose as a key element of model quality.
If the purpose is well defined, the output of interest will also be well
identified. In the context of a controversy, this is where attention will be
focused and where sensitivity analysis should be concentrated.

3. As discussed, a few factors often account for most of the variation.
Advantage should be taken of this feature to simplify the results of
a sensitivity analysis. Group sensitivities are also useful for presenting
results in a concise fashion.

4. Assuming models to be true is always dangerous. An uncer-
tainty/sensitivity analysis is always more convincing when uncertainty
has been propagated through more than just one model. Using a parsi-
monious data-driven and a less parsimonious law-driven model for the
same application can be especially effective and compelling.

5. When communicating scientific results transparency is an asset. As the
assumptions of a parsimonious model are more easily assessed, sensitivity
analysis should be followed by a model simplification.

The reader will find in this and the following chapters didactic examples
for the purpose of familiarization with sensitivity measures. Most of the
exercises will be based on models whose output (and possibly the associ-
ated sensitivity measures) can be computed analytically. In most practical
instances the model under analysis or development will be a computational
one, without a closed analytic formula.

Typically, models will involve differential equations or optimization algo-
rithms involving numerical solutions. For this reason the best available prac-
tices for numerical computations will be presented in the following chapters.
For the Elementary Effects Test, we shall offer numerical procedures devel-
oped by Campolongo et al. (1999b, 2000, 2007). For the variance-based
measures we shall present the Monte Carlo based design developed by Saltelli
(2002) as well as the Random Balance Designs based on Fourier Amplitude
Sensitivity Test (FAST-RBD, Tarantola et al., 2006, see Chapter 4). All these
methods are based on true points in the space of the input factors, i.e. on actual
computations of the model at these points. An important and powerful class
of methods will be presented in Chapter 5; such techniques are based on meta-
modelling, e.g. on estimates of the model at untried points. Metamodelling
allows for a great reduction in the cost of the analysis and becomes in fact the
only option when the model is expensive to run, e.g. when a single simulation
of the model takes tens of minutes or hours or more. The drawback is that
metamodelling tools such as those developed by Ratto et al. (2007) are less
straightforward to encode than plain Monte Carlo. Where possible, pointers
will be given to available software.
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1.6 EXERCISES

1. Prove that

V�Y � = E�Y 2�−E2�Y �

2. Prove that for an additive model of two independent variables X1 and
X2, fixing one variable can only decrease the variance of the model.

3. Why in �∗ are absolute differences used rather than simple differences?
4. If the variance of Y as results from an uncertainty analysis is too large,

and the objective is to reduce it, sensitivity analysis can be used to suggest
how many and which factors should be better determined. Is this a new
setting? Would you be inclined to fix factors with a larger first-order
term or rather those with a larger total effect term?

5. Suppose X1 and X2 are uniform variates on the interval [0, 1]. What is
the mean? What is the variance? What is the mean of X1 +X2? What is
the variance of X1 +X2?

6. Compute Si analytically for model (1.3, 1.4) with the following values:
r = 2�� = �1�2� and � = �2�1�.

7. Write a model (an analytic function and the factor distribution functions)
in which fixing an uncertain factor increases the variance.

8. What would have been the result of using zero-centred distributions for
the �’s in Equation (1.27)?

1.7 ANSWERS

1. Given a function Y = f �X� where X = �X1�X2� · · ·Xk� and X ∼ p �X�
where p �X� is the joint distribution of X with

∫
p �X� dX = 1, then the

function mean can be defined as

E�Y � =
∫

f �X� p �X�dX�

and its variance as

Var�Y � =
∫

�f�X�−E�Y ��2p�X�dX

=
∫

f 2�X�p�X�dX+E2�Y �−2
∫

E�Y �f�X�p�X�dX

= E�Y 2�+E2�Y �−2E2�Y �

= E�Y 2�−E2�Y �

Using this formula it can easily be proven that Var�Y � = Var�Y + c�,
with c an arbitrary constant. This result is used in Monte Carlo-based



ANSWERS 45

variance (and conditional variance) computation by rescaling all values
of Y subtracting E�Y �. This is done because the numerical error in the
variance estimate increases with the value of Y .

2. We can write the additive model of two variables X1 and X2 as
Y = f1 �X1�+ f2 �X2�, where f1 is only a function of X1 and f2 is only a
function of X2.

Recalling that the variance of �Y � can be written as V�Y � = E
(
Y 2
)−

E2 �Y �, where E stands for the expectation value, and applying it to Y
we obtain

V�Y � = E
(
f 2
1 + f 2

2 +2f1f2

)−E2 �f1 + f2�

Given that E �f1f2� = E �f1� E �f2� for independent variables, then the above
can be reduced to

V�Y � = E
(
f 2
1

)+E
(
f 2
2

)−E2 �f1�−E2 �f2��

which can be rewritten as

V�Y � = V �f1�+V �f2� �

which proves that fixing either X1 or X2 can only reduce the variance of Y .
3. Modulus incremental ratios are used in order to avoid positive and

negative values cancelling each other out when calculating the average.
4. It is a new setting. In Saltelli et al. (2004) we called it the variance

cutting setting, when the objective of sensitivity analysis is the reduction
of the output variance to a lower level by fixing the smallest number of
input factors. This setting can be considered as relevant in, for example,
risk assessment studies. Fixing the factors with the highest total effect
term increases our chances of fixing, besides the first-order terms, some
interaction terms possibly enclosed in the totals, thus maximizing our
chances of reducing the variance (see Saltelli et al., 2004).

5. Both X1 and X2 are uniformly distributed in �0�1�, i.e.

p�X1� = p�X2� = U�0�1�

This means that p�Xi� is 1 for Xi ∈ �0�1� and zero otherwise. Thus

E�X1� = E�X2� =
∫ 1

x=0
p�x�xdx =

[
x2

2

]1

0

= 1
2



Further:

Var�X1� = Var�X2� =
∫ 1

x=0
p�x�

(
x− 1

2

)2

dx =
∫ 1

x=0

(
x2 −x+ 1

4

)
dx
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= �
x3

3
− x2

2
+ 1

4
x�1

0 = 1
3

− 1
2

+ 1
4

= 1
12

E�X1 +X2� = E�X1�+E�X2� = 1�

as the variables are separable in the integral.
Given that X1 +X2 is an additive model (see Exercise 1) it is also true

that

Var�X1 +X2� = Var�X1�+Var�X2� = 1
6



The same result is obtained integrating explicitly

Var�X1 +X2� =
∫ 1

x1=0

∫ 1

x2=0
p�x� �x1 +x2 −1�2 dx1dx2

6. Note that the model (1.3, 1.4) is linear and additive. Further, its prob-
ability density function can be written as the product of the factors’
marginal distributions (independent factors). Writing the model for r = 2
we have

Y�Z1�Z2� = �1Z1 +�2Z2

with

Z1 ∼ N �0�1� or equivalently p�Z1� = 1

�Z1

√
2�

e− �Z1�
2

2�2
Z1

and a similar equation for p�Z2�. Note that by definition the distributions
are normalized, i.e. the integral of each p�Zi� over its own variable Z1 is
1, so that the mean of Y can be reduced to

E�Y � = �1

∫ +�

−�
Z1p�Z1�dZ1

+�2

∫ +�

−�
Z2p�Z2�dZ2



These integrals are of the type
∫

xe−x2
dx, whose primitive −e−x2

/2
vanishes at the extremes of integration, so that E�Y � = 0. Given that the
model is additive, the variance will be

V�Y � = VZ1
+VZ2

= V ��1Z1�+V ��2Z2� 

For either Z1 or Z2 it will be

VZi
= V ��iZi� = �2

i V �Zi�

We write

V�Zi� = E�Z2
i �−E2�Zi� = E �Z2

i �
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and

E�Z2
i � = 1√

2��Zi

∫ �

�
z2

i e−z2
i /2�2

Zi dzi

The tabled form is ∫ +�

−0
t2e−at2

dt =
√

�

4
�

which gives with an easy transformation

E�Z2
i � = �2

Zi

so that

VZi
= �2

i �
2
Zi

and

V�Y � = �2
1�

2
Z1

+�2
2�

2
Z2

and

SZi
= �2

i �
2
Zi

V�Y �


Inserting the values � = �1�2� and � = �2�1� we obtain V�Y � = 8 and
SZ1

= SZ2
= 1

2 .
The result above can be obtained by explicitly applying the formula

for Si to our model:

SZi
= V�E�Y � Zi��

V�Y �
�

which entails computing first E�Y � Zi = z∗
i �. Applying this to our model

Y = �1Z1 +�2Z2 we obtain, for example, for factor Z1:

E�Y � Z1 = z∗
1� =

∫ +�

−�
p�z1�p�z2� ��1z

∗
1 +�2z2�dz1dz2 = �1z

∗
1

Hence VZ1
– the variance over z∗

1 of �1z
∗
1 – is, as before, equal to �2

1�
2
Z1

and

SZi
= �2

i �
2
Zi

�2
1�

2
Z1

+�2
2�

2
Z2
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7. We consider the model Y = X1 · X2, with the factors identically
distributed as

X1�X2 ∼ N �0���

Based on the previous exercise it is easy to see that

E�Y � = E �X1X2� = E �X1�E�X2� = 0�

so that

V�Y � = E
(
X2

1X2
2

)= E
(
X2

1

)
E
(
X2

2

)= �4

If X2 is fixed to a generic value x∗
2, then

E �X1x
∗
2� = x∗

2E �X1� = 0

as in a previous exercise, and

V�Y � X2 = x∗
2� = V �X1x

∗
2� = E

(
X2

1 �x∗
2�

2
)

= �x∗
2�

2 E
(
X2

1

)= �x∗
2�

2 �2

It is easy to see that V �X1x
∗
2� becomes bigger than V�Y � whenever the

modulus of x∗
2 is bigger than �.

Further, from the relation

V�Y � X2 = x∗
2� = �x∗

2�
2�2

one gets

E�V�Y � X2�� = �4 = V�Y �

Given that

E�V�Y � X2��+V�E�Y � X2�� = V�Y �

it must be that

V�E�Y � X2�� = 0�

i.e. the first-order sensitivity index is null for both X1 and X2. These
results are illustrated in the two figures which follow.

Figure 1.13 shows a plot of VX∼2
�Y � X2 = x∗

2�, i.e. VX1
�Y � X2 = x∗

2� at
different values of x∗

2 for � = 1. The horizontal line is the unconditional
variance of Y . The ordinate is zero for x∗

2 = 0, and becomes higher than
V�Y � for x∗

2 ∼ 1.
Figure 1.14 shows a scatterplot of Y versus x∗

1 (the same shape would
appear for x∗

2). It is clear from the plot that whatever the value of
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Figure 1.14 Scatterplot of Y versus x∗
1

the abscissa, the average of the points on the ordinate is zero, i.e.
EX∼1

�Y � X1� = EX2
�Y � X1� = 0. It is also clear from Figure 1.14 that even

VX1

(
EX2

�Y � X1�
)

will be zero, such that both S1 and S2 are zero for this
model and all variance is captured by the second-order term, i.e. S12 = 1.
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8. Referring to the previous exercise it is clear that if both Zi and
�i are centred in zero, all first-order terms will be zero and the
model will be purely interactive. In this case the only nonzero
terms are the four interactions (second order) relative to the couples
�Z1��1� � · · · �Z4��4�.

1.8 ADDITIONAL EXERCISES

1. Given the function

f�x� = sin�X1 sin�X2 sin�X3���

with X1�X2�X3 distributed normally with mean zero, can you guess
what the first-order indices will be?

2. Consider the model �1Z1 +�2Z2 with �1��2 as fixed constants and

Zi ∼ N ��Zi
��Zi

�� i = 1�2

with

�Zi
�= 0� i = 1�2

and compute the variance-based sensitivity indices S1� S2.
3. Consider the model Y = X1 · X2, where the two factors are normally

distributed as

Xi ∼ N ��i��i�� i = 1�2

with

�i �= 0� i = 1�2

and compute the variance-based sensitivity indices S1� S2, and S12.
4. Given a set of standardized variables X1�X2� 	 	 	 �Xk (all variables have

thus zero mean and unit standard deviation), and a linear polynomial
of the form f �X1�X2� 	 	 	 �Xk� = a0 +∑k

i=1 aiXi, where a0�a1� · · · �ak are
constants, write the formula for the first-order indices Si.

5. Repeat the previous exercise, for the case where both the a0�a1� · · · �ak

and the X1�X2� 	 	 	 �Xk are normally distributed:

Xi ∼ N
(
�Xi

��Xi

)
and

ai ∼ N
(
�ai

��ai

)
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1.9 SOLUTIONS TO ADDITIONAL EXERCISES

1. The first-order indices will be zero.
2. The solution is

SZi
= �2

i �
2
Zi

V�Y �

as for the case with

�Zi
= 0� i = 1�2

3. The solution is

S1 = �2
2�

2
1(

�2
1�

2
2 +�2

2�
2
1 +�2

1 �2
2

)
and analogous formula for S2, while

S12 = �2
1 �2

2(
�2

1�
2
2 +�2

2�
2
1 +�2

1 �2
2

) 
4. It is simply

Si = a2
i∑k

i=1 a2
i

�

i.e. each sensitivity index is proportional to the square of its coefficient.
5. The problem is additive in a0 and in the k sets �ai�Xi�. Using this and

the results from Exercise 3 it is easy to derive the solution.

Sai
= �2

Xi
�2

ai

V

SXi
= �2

ai
�2

Xi

V

SaiXi
= �2

ai
�2

Xi

V

V =
k∑

i=1

(
�2

ai
�2

Xi
+�2

Xi
�2

ai
+�2

ai
�2

Xi

)


By putting a0 = 0 the above solution can be used to compute the sensi-
tivity indices for model (1.3, 1.27).
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2
Experimental Designs

2.1 INTRODUCTION

When have researchers done similar experimental studies in the past?

How does sensitivity analysis differ from previous studies?

In 1948, the National Heart Institute enlisted the help of over 5000 resi-
dents of the town of Framingham, Massachusetts. Researchers interviewed
the volunteers and examined them physically, recording numerous details
about their health and lifestyles; they subsequently revisited Framingham
every two years for follow-up examinations. The purpose of the study was
to investigate the incidence of heart disease and to determine the circum-
stances that gave rise to it. The pioneering Framingham Heart Study (NIH,
2002) revealed connections between lifestyle choices (smoking, physical
activity), medical conditions (e.g. high blood pressure) and the contraction
of heart disease.

The scale of the Framingham study doubled in 1971 when a new genera-
tion of descendants was incorporated into the investigation, and other health
studies have used even larger groups of people. For instance, the Harvard
Nurses Health Study (Hankinson, 2001) tracks over 100 000 women in an
investigation of the effects of diet on the development of chronic diseases.
Such large studies can screen many factors and many combinations of
factors. They can also discriminate among factors (e.g. which is more effec-
tive in avoiding heart attacks: losing weight or taking up physical activity?).

Global Sensitivity Analysis. The Primer A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,
D. Gatelli, M. Saisana and S. Tarantola © 2008 John Wiley & Sons, Ltd
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However, even very large general studies are not appropriate to obtain
certain kinds of information, such as the best treatment of very rare diseases or
theeffectivenessofexperimentalasopposedtostandardtreatments. Inconsid-
eringrarediseases,a large studymaynotcontainenoughpeople suffering from
the disease to get good statistical results. In determining the effectiveness of
new treatments there are more powerful techniques available, such as pairing
individuals with similar conditions and lifestyles. In a double-blind experi-
ment, researchers give one of the pair the standard treatment, and the other the
experimental treatment, without anyone knowing who has received which.
A study of this kind may require only a few dozen individuals to determine
whether the new treatment is promising enough to merit further study.

In carrying out sensitivity analysis of simulation models researchers are
faced with similar choices. A large randomized study can answer most
sensitivity analysis questions, but at a large cost in terms of computer execu-
tion time and data management. In contrast, careful use of experimental
designs can often answer more specific questions, with an investment of
fewer resources.

In recent years, companies with large databases of customers and sales
have often benefited from investigating possible connections among the
fields of the database. A new discipline called data mining has emerged to
organize research in this area. Data mining techniques can be applied to a
simulation data set generated in a randomized fashion.

By contrast, sensitivity analysis tends to focus more on the application
of a suitable experimental design to extract specific types of data. The
strength of sensitivity analysis techniques is that they can be tuned to elicit
information not readily available to data mining techniques.

Sensitivity analysis uses and extends experimental techniques originally
developed for scientific research. By the early twentieth century, exper-
imental research had become quantitative and comparative, teasing out
experimental results from raw data using powerful statistical techniques. It
was at this time that statisticians like Fisher and ‘Student’ (William Sealey
Gosset) developed the theory of distributions like Student’s-t and the chi-
square distribution, useful in statistical testing.

In the design of experiments, a researcher has several variables that can
be controlled (e.g. temperature, velocity, concentration, duration) There
may be other variables that cannot be controlled but which can affect the
results of an experiment (such as air pressure and humidity, genetic effects,
unknown material defects). The goal is to determine how and how much
each variable affects one or more measurements.

The set-up of simulation results for sensitivity analysis can be quite similar
to the set-up for physical experimentation, so the results of the last century
of experimental design are applicable. But there are also some differences
that lead us into experimental regimes that would not be feasible for physical
experimentation.
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Experimental simulations allow us, for example, to explore the behaviour
of complex systems. There may be many more variables involved than a
physical experimenter would be able to handle, especially when exploring
law-driven models. (For example, researchers could use simulations to inves-
tigate possible environmental effects of toxic materials.) Complex systems
can have physical, chemical, biological and environmental components, all
acting in concert and influencing one another.

To understand the effect of parameters in complex systems, we must first
examine their effects in simple systems.

2.2 DEPENDENCY ON A SINGLE PARAMETER

How do we characterize a single parameter? What standards should

we follow in designating its probability distribution? How do we

sample values for parameters with different distributions? What

possible effects could a single parameter have?

If an output variable depends on only a single parameter, one might
think that a sensitivity analysis would be straightforward. It is true that
identifying the influential parameter is a minor matter. In the notation of
Chapter 1, there is only one sensitivity coefficient S1 = 1, indicating that
X1 accounts for all the variance in the output. Nevertheless, characterizing
the influence can still be a challenge. Some simple strategies for dealing
with the single-parameter case can be generalized to sensitivity analysis of
larger numbers of parameters. Conversely, sensitivity analysis of a complex
model may degenerate to a study of the single dominant parameter. A
multivariate approach should be able to generate useful information even
in this constricted case.

Without loss of generality, call the single parameter X1. In later sections
we will expand the discussion to cover a set of k parameters �Xr�r=1�k that
can affect an output simultaneously.

Assume that X1 has a finite domain, from 0 to 1. This is one way
of characterizing the domain of X1, of several that have been used in
the past. For instance, in cases where two-level designs are employed, it
is traditional to designate the domain of a parameter to be �−1�1�, and
this convention will be followed in Section 2.4. The two discrete levels
used in this type of design are designated ±1. If the design also uses a
midpoint for X1, 0 represents the midpoint. In other designs with s > 2
discrete levels, it is customary to designate the levels as 0, 1, � � � s −1, and
this approach will also be used in discussing Latin hypercube sampling.
Eventually, however, samples for X1 will be transformed to the standard
continuous domain �0�1�.
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If we begin the analysis with a variable that has a finite domain other than
�0�1�, or even an infinite domain, we can normalize it by a transformation,
so that the normalized value lies in this interval. The transformation can
also remove a physical unit, like metres or degrees, converting the parameter
to a standard form.

For instance, let parameter Z1 be a continuous random variable, with
a probability density function (pdf) fZ1

�z	, and a cumulative distribution
function (cdf) FZ1

�z	 = ∫ z

−� fZ1
�z′	dz′. Let X1 be a transformed variable based

on Z1 according to the following equation:

X1 = FZ1
�Z1	
 (2.1)

Then the domain of X1 is the interval �0�1�, by the definition of cdf. While
Z1 has an arbitrary domain and physical unit, X1 is restricted to �0�1�,
and as a cumulative probability, is unitless. Moreover, we can assume that
X1 is uniformly distributed across the interval, rather than concentrated
in one part of the interval. This again follows from the transformation in
Equation (2.1). Whatever distribution Z1 has, when X1 is defined as the
value of Z1’s cdf, X1 automatically acquires a uniform distribution from 0
to 1, since

FX1
�x	 = Pr

{
FZ1

�Z1	 � x
} = x (2.2)

in this interval.
Given a normalized parameter value X1 between 0 and 1, an analyst can

determine the associated value for Z1 through the inverse transformation

Z1 = F −1
Z1

�X1	
 (2.3)

If X1 is uniformly distributed over �0�1�, then Z1 will follow the distribution
specified by FZ1

�z	. For many standard distributions, the mapping between
Z1 and X1 can be inverted in this way without ambiguity. Therefore, since
we can use normalized variables in an analysis if necessary, we will simply
assume that our single parameter X1 is uniformly distributed in the unitless
interval �0�1�.

To analyse the effect of this single, uniformly distributed parameter X1,
an analyst chooses an experimental design that will extract the maximum
information about the influence of X1 on a simulation outcome Y . Stan-
dard strategies assume the model is a black box, and that the only way
of extracting information is through simulations. If other sources of infor-
mation are available (e.g. the slope of the response curve, found by taking
derivatives), then they may be used to modify the strategy.

What possible types of influence could X1 have on Y ? Consider
Figure 2.1. It shows a few of the infinite possibilities. In each panel of the
figure, Y is plotted as a function of X1. Figure 2.1(a) shows the influence of a
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a

d

b

e

c

f

Figure 2.1 Examples of single-variable functions

parameter that has no effect at all on Y . In large models, there may be many
parameters like this. They appear in a model for completeness, and they
may affect some other output, but not the output of interest. Alternatively,
the parameter’s distribution may be so narrow that its possible variation, if
any, has little effect on the output of interest. The variable X1 could even
be the transformed representation of a constant parameter Z1, so that all
values of X1 between 0 and 1 correspond to a single fixed value of Z1.

Figures 2.1(b)–(d) show common forms of smooth dependencies.
Figures 2.1(b) and (c) are respectively linear and quadratic polynomials. The
former is completely determined by two points, and its extreme values occur
at the endpoints of the interval. The quadratic polynomial is completely
determined by three points. Extreme values of a nonlinear curve may occur
as a local extremum within the interval, like the maximum in Figure 2.1(c),
or at an endpoint, like the minimum value in the same figure. Note that
in Figure 2.1(c), the initial slope of the curve is opposite in sign to the
average slope one would deduce from the two endpoints alone. In contrast
to these two polynomials, Figure 2.1(d) shows an asymptotic curve that
cannot easily be represented by a low-order polynomial. It has endpoint
extrema, and most of the variation occurs over the left half of its domain.

Figure 2.1(e) and (f) show discontinuous functional forms. Figure 2.1(f)
is highly variable, and could represent a signal affected by a large amount
of noise. In that case it would be worth repeating some of the simulations
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with identical parameter values, to determine if the results vary from one
simulation to another because of stochastic components of the model,
implemented with a pseudo-random number generator. If the variations are
repeatable, arising from small changes in X1, the sensitivity analyst will face
a significant challenge in characterizing the nature of this dependence.

Any of these functional forms can be easily implemented in a computer
model. Some features of a function, such as the discontinuity in Figure 2.1(e)
or the oscillations in 2.1(f), could be caused either by design or by accident,
possibly as a result of a software defect. One of the main roles of sensitivity
analysis is to ‘stress’ a model, by subjecting it to unusual parameter values
or combinations of values. The benefit of stressing the code is to determine
whether it can handle such inputs without failing, and to see if the results
produced remain plausible and realistic.

In the analysis to follow, we shall assume that the analyst will be simu-
lating quantities that behave like most physical quantities, and therefore
that the function Y = Y�X1	 is mostly continuous and may have at most a
small, finite number of jump discontinuities.

2.3 SENSITIVITY ANALYSIS OF A SINGLE
PARAMETER

How do we perform sensitivity analysis on a single parameter? How

should parameter values be selected? What is stratified sampling? How

do different sampling methods affect the estimation of output mean

and variance?

How much information a sensitivity analysis will reveal about a param-
eter’s influence depends on the number of sample points that are simulated
and where they are located.

2.3.1 Random Values

If the data come from a random source (e.g. random samples from a
database or a pseudo-random number generator), they will be scattered in
an uncontrolled manner across the domain of X1. Suppose the data points
are ��xi1� yi	�i=1�N , where N is the number of points in the sample. There is
a problem with such data, which can readily be corrected by experimental
design. In particular, the values for X1 are not evenly distributed across
the interval �0�1�. The density of points in one part of the interval can
differ from that in another. In fact, if examined closely, the values for X1

exhibit clusters and gaps. Clusters occur when several values are quite close
together. Gaps are regions without any points at all.
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As N grows large the density evens out and larger gaps will be filled in,
while smaller gaps remain. For this reason, random samples for X1 give rise
to unbiased estimates of the mean and variance of Y :

Ȳ = 1
N

N∑
i=1

yi

V̂Y = 1
N −1

N∑
i=1

�yi − Ȳ 	2
 (2.4)

However, a mean and variance estimated this way are uncertain. For
instance, the uncertainty in the mean estimate Ȳ can be characterized by its
standard error sȲ :

sȲ =
√√√√ 1

N 2

N∑
i=1

Var�yi� �
√

V̂Y

N

 (2.5)

Because the standard error depends on the square root of N , the uncertainty
shrinks slowly as N increases.

2.3.2 Stratified Sampling

Most designs use some sort of stratified sampling to improve the rate at
which estimated quantities converge to the true quantities. In stratified
sampling, the domain of X1 is divided into subintervals (often of equal
length), and the sampling is constrained so that each subinterval contains
the same number of sample points. The points themselves may be selected
systematically to lie at particular locations within these subintervals, or they
may be sampled randomly within each subinterval.

Figure 2.2 shows several number lines illustrating different ways of
distributing 16 points across the interval from 0 to 1. The dashed vertical

0 1

0 1

0 1

0 1

0 1

Figure 2.2 Different ways of distributing points from 0 to 1
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lines show subinterval boundaries when the interval is subdivided. The
distributions of points in the figure have the following properties:

• Top line: independently and identically distributed random points, with
visible gaps and clusters. Some of the points overlap in the figure. This
type of sample is easy to generate with a pseudo-random generator. By
Equation (2.4), it yields unbiased estimates of the mean and variance
of Y .

• Second line: a stratified sample, with eight subintervals, and two points
randomly selected within each subinterval. Equation (2.4) can be applied
to each subinterval to yield unbiased mean and variance estimates.
These can be combined under the assumption that each subinterval has
equal probability, yielding unbiased mean and variance estimates for
Y covering the entire interval. It is also possible to compare variance
among subintervals against variance within subintervals to determine if
parameter X1 has a significant influence.

• Middle line: a stratified sample, with 16 subintervals, and one point
randomly selected within each subinterval. Equation (2.4) can be applied
to each subinterval to yield unbiased mean estimates. The variance
among intervals can be estimated, but not the variance within intervals,
as there is only one point per subinterval. (However, each pair of adja-
cent intervals can be combined to reduce the situation to the previous
case.)

• Fourth line: a stratified sample, with 16 intervals, and one point at each
interval’s midpoint. Using a trapezoidal approximation (i.e. fitting a bar
graph to the data), a good estimate of the area under the curve Y = Y�X1	
in each subinterval can be computed. From this area, a mean estimate
can be produced, but it will be biased1 by the selection of subinterval
midpoints. A variance estimate among subintervals can be made, but it
is also biased.

• Bottom line: a stratified sample, with 16 subintervals, and a point at the
ends of each subinterval, for a total of 17 points instead of 16. By joining
adjacent �xi1� y	 points with a straight line, an analyst can compute a
good estimate of the area under the curve Y = Y�X1	 in each subinterval,
yielding a (biased) mean estimate. By using a straight line approximation
to the curve in each interval, (biased) variance estimates among and
within subintervals can be obtained.

There are of course many other ways of generating points for a single
parameter, and of computing mean and variance estimates, but this selection

1 A biased estimator has an expected value that is potentially different from the true value.
Redoing the analysis many times does not help to find the true value.
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provides a good starting point. The following paragraphs describe how the
computations can be done.

2.3.3 Mean and Variance Estimates for Stratified Sampling

Suppose the N points ��xi1� yi	�i=1�N come from m�N subintervals of equal
length, where m divides into N . Assume X1 is uniformly distributed, so
that these subintervals have equal probability. Assume further that there
may be another source of variation beside X1 affecting the output Y . For
example, the model may include stochastic behaviour, or other parameters
may change value from run to run in an unspecified manner.

By applying Equation (2.4) to each subinterval separately, we can devise
m mean and variance estimates Ȳj and V̂Yj

Ȳj = 1
N/m

∑
i

yi V̂Yj
= 1

�N/m	−1

∑
i

�yi − Ȳj 	
2 (2.6)

where in each summation, i varies over points belonging to subinterval j.
The variance estimate in Equation (2.6) applies only when m < N .

When these quantities are equal, N /m equals one point per subinterval,
and the variance calculation is invalid as it would involve division by
zero.

The global mean and variance when N/m parameter values are randomly
sampled from each subinterval are calculated as shown in the following
equations. Note that the mean estimator is still the overall sample mean.

Y = 1
m

m∑
j=1

Y j = 1
N

N∑
i=1

yi (2.7)

Ṽ a
Y = N/m

m−1

m∑
j=1

(
Y j −Y

)2
(2.8)

Ṽ w
Y = 1

m

m∑
j=1

ṼYj

 (2.9)

The two variance estimates have superscripts a and w, indicating that they
are based on the variances among and within subintervals respectively. If
Y does not depend on X1, these quantities are independent estimates of the
variance of Y . If Y does depend on X1, the ratio of one to the other is a
measure of the degree of influence of X1.

These equations apply when the points in an interval are randomly
selected. Suppose instead that there is one deterministic value in the centre
of the jth subinterval, at xj1 = �2j − 1	/2N , for j from 1 to N , as in the
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fourth line of Figure 2.2. Then estimates of the mean and variance must be
based on some model of variation within the interval. The simplest assump-
tion is that in the jth interval the function Y�X1	 is linear, with an unknown
slope aj :

y = yj +aj�x−xj1	
 (2.10)

Because the sample point is in the middle of the subinterval, contributions
from the left and right sides of the subinterval cancel each other out, and
the average value of y in the jth interval for a linear fit is

Ȳj = 1
1/N

∫ xj1

xj−1�1

(
yj +aj�x−xj1	

)
dx

= yj

(2.11)

irrespective of the value of aj .
The diagram on the right shows several different

trapezoids with different slopes, all passing
through the same point in the middle of an
interval. The area of each trapezoid (i.e. the width
by the average height) is the same. The average
value in Equation (2.11), which corresponds to
the average height of each trapezoid, is the same.
However, each of these trapezoids would have a
different variance of heights in the interval, so
it is not feasible to estimate V̂ w

Yj
. Equations (2.7)

and (2.8) still apply.
If we use endpoint values for each interval (as

in the bottom line of Figure 2.2), the simplest
model of the function Y = Y�X1	 is the line that
interpolates the two endpoints, as shown on the
right. One extra point �x01� y0	 is required for X1

at the left end of the first subinterval.
This is not a bad approximation, as shown in

Figure 2.3, where the nonpolynomial functions
from Figure 2.1 have been interpolated at 11
evenly spaced points, and joined by straight lines.
A sequence of connected straight lines like this is
called a piecewise linear fit. In the last frame of
Figure 2.3, it is clear that many more interpola-
tion points would be required to fit this jagged function, but in the other
two panels curves and discontinuities have been handled fairly well.
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Figure 2.3 Piecewise linear fits to nonpolynomial functions

In this case the linear interpolating function in the jth subinterval for
parameter X1 is

y = yj +
�x−xj1	

�xj−1�1 −xj1	
�yj−1 −yj	 (2.12)

for j from 1 to k. The average value is

Y j = 1
1/N

∫ xj1

xj−1�1

(
yj +

�x−xj1	

�xj−1�1 −xj1	
�yj−1 −yj	

)
dx

= 1
2

�yj−1 +yj	 (2.13)

and the estimated variance of Y in the jth interval is

V̂Yj
= 1

1/N

∫ xj1

xj−1�1

(
yj +

�x−xj1	

�xj−1�1 −xj1	
�yj−1 −yj	− Ȳj

)2

dx

= 1
12

�yj −yj−1	
2 (2.14)

which is the variance of a uniform variate between yj−1 and yj .
With these definitions the variance equations (2.8) and (2.9) apply. The

overall estimate of the mean is slightly different in that the endpoints are
given half as much weight as the other points.

Y = 1
N

N∑
j=1

Y j = 1
2N

�y0 +2y1 +2y2 +· · ·+2yN−1 +yN 	 
 (2.15)

One disadvantage of using endpoints is that the extreme values X1 = 0
and X1 = 1 can cause problems. Suppose X1 is a transformed version of
a normal (Gaussian) variate Z1, as defined by Equation (2.1). Then points
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X1 = 0 and X1 = 1 correspond to −� and � for Z1 respectively. Even if
infinities are avoided by truncating the distribution,2 the actual value of Y
at such extreme values is likely to be determined by the truncation points,
and by our limited knowledge of the tail behaviour of the distribution.
There could be significant uncertainty attached to these values, and yet they
could affect both mean and variance estimates significantly. If endpoints are
used, distributions should be truncated judiciously and consistently before
performing sensitivity analysis.

2.4 SENSITIVITY ANALYSIS OF MULTIPLE
PARAMETERS

How do we sample many parameters so as to obtain information about

the effect of each, or at least of the most influential? What types

of analysis should a sampling scheme support? How many influential

parameters do we expect to find? What are one-at-a-time designs and

fractional factorial designs? What is quasi-random sampling?

Suppose the analyst has the capability to manipulate a set of k parameters,
�Xr�r=1�k. This is the situation discussed in general terms in Chapter 1. Each
parameter has properties like those described in the last section for X1.
Specifically, the domain of Xr is the unitless interval from 0 to 1. Each
Xr is uniformly distributed across this domain, possibly because it is the
transformed version of some variate Zr .

For now, assume that the parameters are all statistically independent.
That is, knowing specific values for some subset of the parameters says
nothing about the distribution of the remaining parameters. That would not
typically be the case if there were a constraint linking the parameters. As
an example of a constraint, suppose that we know

∑k
r=1 Xr = k/2 exactly.

The expected value of the sum of k independent parameters is k/2, so
this constraint is consistent with what we know about each parameter.
Should the situation arise where we have specified low values for half
the parameters, however, this constraint would limit our freedom to select
the rest. There are ways of dealing with such a situation, but sensitivity
analysis is much simpler if we avoid it in the first place. In this case, we

2 Truncating the distribution means limiting the lower and upper values of Z1 to some finite
values, such as ±3 standard deviations from the mean. There would be only about a quarter
of 1% chance of sampling values further out than that for a normal variate. The modified

cdf for Z1 after truncation would be F
′
Z1

�z	 = ∫ z

�−3� fZ1
�z′	dz′

/∫ �+3�

�−3� fZ1
�z′	dz′ , which means

that sampled points from the truncated distribution using Equation (2.3) would all be slightly
different from those sampled from the original distribution.
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could change one of the parameters from a parameter to a derived quantity
Xn = k/2−∑

r �=n Xr to relieve pressure on the sampling.3

In the following discussion, we will assume that any combination of
parameter values �xr�r=1�k is equally likely. The k sampled parameter values
define a point in k-dimensional space, and sample points are uniformly
distributed throughout a k-dimensional hypercube of side 1.

2.4.1 Linear Models

As in the analysis of a single parameter, the choice of experimental design
depends on how the experimenter expects the parameters to affect the model
output. As a first approximation, the dependency can be viewed as linear in
each parameter. That is, if Y is the output, and the inputs are the k variables
X1 to Xk, the entire model being simulated would behave approximately
like so:

Y = b0 +
k∑

r=1

brXr

= b0 +b1X1 +b2X2 +· · ·+bk−1Xk−1 +bkXk (2.16)

where the br ’s are all constants that we assume are unknown at the start of
sensitivity analysis.

When the model is run with a set of parameter values, a data point
becomes available for sensitivity analysis. Any set of N simulations, where
N � k+1, can be solved for the br ’s, provided that the system of equations
that is produced is linearly independent (e.g. there can be no repeated simu-
lations). In general, N simulations will result in the following N × �k+1	
system of linear equations,⎡

⎢⎢⎢⎣
1 x11 � � � x1k

1 x21 � � � x2k











 
 






1 xN1 � � � xNk

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎝

b0

b1





bk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

y1

y2





yN

⎞
⎟⎟⎟⎠ (2.17)

which we can abbreviate as

XNkBk = YN (2.18)

using matrix notation.

3 Note that Xn would not necessarily lie in the interval �0�1�.
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The matrix XNk has 1’s in the first column, and experimental values
for the k parameters in the N simulations in the remaining columns. Bk

contains the k + 1 unknown coefficients corresponding to the intercept
b0 and the k parameters. YN contains the N output values from the N
simulations.

If N � k + 1, it is generally possible to solve these equations. If N is
strictly greater than k + 1, it will not be possible to solve the equations
exactly, unless the model is in fact linear, as the system of equations is
overdetermined. However, a solution of the least-squares type will generally
be available. Solving an overdetermined system of equations for a least-
squares solution is computationally intensive. Numerical problems can also
arise if the equations are ill-conditioned (e.g. if several points are quite
close together). Random samples (i.e. a sample where every value in XNk

outside the first column is sampled randomly) tend to be poorly conditioned
for large k because of clustering. Nevertheless, off-the-shelf software can
often solve such systems. Even general purpose spreadsheet packages like
Microsoft’s Excel have regression equation solvers that can be used to
determine good estimates of the br coefficients, provided there are not too
many of them.

With only a small number of parameters, a reasonably good sensitivity
analysis can sometimes be carried out through a regression analysis alone.
After performing an initial regression using Equation (2.17) and random
or systematically sampled parameter values, the analyst can look at the
residuals (i.e. the discrepancies between the actual values for Y , and the
values estimated using the linear model). The residuals may exhibit a pattern
that suggests additional terms for the regression model, such as quadratic
terms in one or more of the parameters.4

If N < k + 1, or if the system has dependencies that reduce its effective
size (e.g. if a simulation is repeated two or more times), there will be an
infinite number of solutions to the equations. However, that does not mean
that the equations are devoid of useful information, as we shall see later
when discussing group sampling.

2.4.2 One-at-a-time (OAT) Sampling

A sensitivity analyst can avoid or limit numerical problems in solving
Equation (2.17) by carefully selecting the data points that define XNk. One
way of simplifying XNk is to use a ‘one-at-a-time’ (OAT) design, where only

4 In this exposition there is no need to resort to the standardized regression coefficients
mentioned in Chapter 1, since the assumption that every parameter has the same uniform
distribution eliminates differences among them that can be clarified by use of SRCs.



SENSITIVITY ANALYSIS OF MULTIPLE PARAMETERS 67

one parameter changes values between consecutive simulations. Suppose,
for example, that Equation (2.17) is rewritten as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 � � � 0
1 1 0 0 0 � � � 0
1 1 1 0 0 � � � 0
1 1 1 1 0 � � � 0
1 1 1 1 1 � � � 0
























 
 






1 1 1 1 1 � � � 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

b0

b1





bk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

y1

y2





yk+1

⎞
⎟⎟⎟⎠ (2.19)

where every variable takes only two values, 0 and 1, and only one variable
changes its value between each pair of consecutive simulations. This system
of equations can be simplified by elementary row operations. In every row
but the first, subtract the entries from the previous row, yielding

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 � � � 0
0 1 0 0 0 � � � 0
0 0 1 0 0 � � � 0
0 0 0 1 0 � � � 0
0 0 0 0 1 � � � 0
























 
 






0 0 0 0 0 � � � 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

b0

b1





bk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2 −y1

y3 −y2

y4 −y3





yk+1 −yk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠


 (2.20)

This equation demonstrates that if there is any change in value between yi

and yi+1, it can only be attributed to a change in parameter xi (complicated
by random effects if the model is stochastic). The quantity yi = yi+1 −yi is
an estimate of the effect on y of changing Xi from 0 to 1. It is applicable
everywhere if the linear model is appropriate, and for some region around
the current sample point otherwise.

As another form of analysis, consider that parameter Xi takes the value
0 in exactly i simulations and the value 1 in k+1− i simulations. Estimates
of the average values of Y when parameter Xi takes the values 0 and 1 are
given by

ŷXi=0 = 1
i

i∑
j=1

yj ŷXi=1 = 1
k+1− i

k+1∑
j=i+1

yj
 (2.21)

Equation (2.21) is clearly unbalanced. For instance, if k = 15 and i = 1,
ŷXi=0 is based on one simulation result, whereas ŷXi=1 is calculated from 15
simulation results. A more balanced result can be obtained if the system of
equations in (2.19) is expanded to the 2k+1 equations below, representing
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a round trip that returns to the starting point. Note that as the first and
last equation are the same, only 2k of the equations are independent.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 � � � 0
1 1 0 0 0 � � � 0
1 1 1 0 0 � � � 0
























 
 






1 1 1 1 1 � � � 1
1 0 1 1 1 � � � 1
1 0 0 1 1 � � � 1
1 0 0 0 1 � � � 1
























 
 






1 0 0 0 0 � � � 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

b0

b1





bk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3





yk+1

yk+2

yk+3

yk+4




y1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


 (2.22)

Equation (2.23) is analogous to Equation (2.20) for this expanded set of
equations.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 � � � 0
0 1 0 0 0 � � � 0
0 0 1 0 0 � � � 0
























 
 






0 0 0 0 0 � � � 1
0 −1 0 0 0 � � � 0
0 0 −1 0 0 � � � 0
0 0 0 −1 0 � � � 0
























 
 






0 0 0 0 0 � � � −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

b0

b1





bk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2 −y1

y3 −y2





yk+1 −yk

yk+2 −yk+1

yk+3 −yk+2

yk+4 −yk+3





y1 −y2k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


 (2.23)

This system of equations can yield two estimates of the effect of changing
parameter Xi. First, the quantity

iY = 1
2

�yi+1 −yi −yk+i+1 +yk+i	 (2.24)

is a revised estimate of the effect on Y of changing Xi from 0 to 1. It
combines the two rows in Equation (2.23) where the only parameter change
is in Xi, and it would apply to the entire domain if Y varied linearly with Xi.

The other estimate, �ŷXi=1 − ŷXi=0	, is based on Equation (2.21). With
the k− 1 extra data points in Equation (2.22), the number of data points
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contributing to each of these average quantities is now more balanced, as
each uses k data points:

ŷXi=0 = 1
k

(
i∑

j=1

yj +
2k∑

j=k+i+1

yj

)
ŷXi=1 = 1

k

i+k∑
j=i+1

yj
 (2.25)

In the OAT experimental design shown here, each parameter Xi takes
only two distinct values. These have been shown as the extreme values, 0 and
1, primarily to simplify the equations. More complicated paths through the
sample space would involve much smaller changes to the parameter values,
which would allow the estimation of elementary effects, as mentioned in
Chapter 1. This approach is described in more detail in Chapter 3.

Another simplification is that the parameters have been changed in the
order X1, X2, � � � Xk. This choice simplifies Equations (2.17) through to
(2.25). However, the parameters could be changed in any order with similar
results, though the analyst would need to know the order to be able to
compute average values.

With the choices described here, each parameter change corresponds to a
move from one corner of the sample hypercube to an adjacent corner, along
an edge of the hypercube. If the order of the parameter changes is determined
randomly, the path defined by the successive parameter changes is a random
walk along the surface of the sample hypercube. In Equation (2.22), the
sample point for simulation l > k is diametrically opposite the point for
simulation l − k. (Such points, placed symmetrically with respect to the
centre of the hypercube, are called mirror points.) As a result, the design
described by Equation (2.22) is a walk along the surface of the sample
hypercube from a starting corner to the opposite corner, and then back
again following the mirror points of those used on the outward path. If
the order of the parameter changes is randomized, the path becomes a
random walk to the opposite point, followed by a return using mirror
points.

If a function Y follows a linear model as shown in Equation (2.16), the
average of two mirror point values is simply the constant b0 + 1

2

∑k
r=1 br ,

which is the value at the centre of the hypercube, where every parameter
takes the value 0
5. Averages of all the pairs of mirror points in an OAT
design give a set of values that all approximate to b0 + 1

2

∑k
r=1 br . The

variance of this set is one measure of the nonlinearity of the function.
Values other than 0 and 1 could be used in Equations (2.17)and (2.22).

Typically, an analyst would use values symmetrically placed around 0.5,
such as 0.2 and 0.8, so that points would be mirror points. The earlier
section on sampling values for a single parameter suggested an alternative,
but with only two values, the options are quite limited. A later chapter
discusses how the number of options can be expanded for this design.
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2.4.3 Limits on the Number of Influential Parameters

OAT sampling is inefficient when the number of parameters k is large and only
a few of them are influential. Each simulation changes the value of one param-
eter. If only a few parameters are influential, most of the simulations would
be devoted to determining the very small effects of noninfluential parame-
ters. These simulations would be duplicates as far as the values of influential
parameters are concerned. Very little new information would be generated.

It is not unusual to have only a few influential parameters. In fact,
even when the number of parameters is large, the number of influential
parameters is always small. Why is this the case?

The number of influential parameters in a model is akin to the number of
exceptional individuals in a group. For instance, it is common for a school to
have a small number of exceptional athletes who can outperform everyone
else at running events. Yet in some years there may be no exceptional
performances in a particular running event; all the times may be ordinary.
Do we then say that every participant is exceptional? No – we reserve that
term for situations in which one or a few athletes stand out from the rest.

Consider the scatterplot in Figure 2.4, showing values of Y resulting
from a random selection of sampled parameters. Assume Y is a linear
combination of several parameters (as in Equation 2.16), and the parameter

Marginally influential parameter Xr

Y

Figure 2.4 Xr contributes 10% of the variance of Y
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Xr against which Y is plotted explains 10% of the variance of Y . The figure
shows some influence of Xr on Y , but this parameter would be considered
only marginally influential.

The linear function in Equation (2.16) has a variance that depends on
the sum of squares of the coefficients b1, b2, � � � bk. If the number of
influential parameters in a linear model comes to be as large as 10, the least
influential parameter cannot contribute more than 10% of the variance,
and it can contribute that much only if the influential parameters are all
equally influential.

With a nonlinear function, we can use the facts that first, the sensitivity
coefficients Sij � � � l described in Chapter 1 are all nonnegative, and second,
they sum to 1. These sensitivity coefficients cannot all be influential, as they
are competing with each other to influence the output variable Y . Only
a small number can win that competition. Certainly one could not have
hundreds of influential parameters.

It is possible that there are no influential parameters for sensitivity anal-
ysis to reveal. For instance, consider the model

Y =
k∑

r=1

Xr (2.26)

in which all the parameters play exactly the same role. Sensitivity analysis
can reveal that many parameters have similar small effects, but cannot give
further insight into this model’s behaviour. All of the parameters are equally
noninfluential.

Usually, however, there are a few parameters that stand out from the
rest. So with large numbers of parameters, it is desirable to find a more
efficient approach than changing one parameter at a time.

2.4.4 Fractional Factorial Sampling

Table 2.1 shows a two-level factorial design for three parameters. These
eight simulations contain all possible combinations of low and high values
for X1, X2 and X3, where by convention ‘−1’ represents a low value, and
‘1’ represents a high value.5 These eight points occupy the eight corners
of the cube shown on the right, which represents the sample space for

5 For practical reasons it is traditional to use the bounds −1 and 1 for each parameter Xi in a
factorial design. The values in a column of the design form a contrast, a set of coefficients that
tell you how to combine simulation results to estimate the influence of a particular parameter.
Values from a factorial design can be scaled linearly to the interval �0�1�, used previously in
this chapter for parameter values, by the transformation X′

i = �Xi +1	/2.
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three parameters. In general, k parameters would require 2k simulations to
generate all combinations for a factorial design, and these combinations
would represent the corners of the corresponding k-dimensional hypercube.
One can generate full factorial designs with s > 2 levels for each parameter,
to determine behaviour at a grid of locations inside the hypercube. Then
the number of simulations would be sk, which is a much larger quantity
than 2k. Because of the explosive growth of the quantity sk, two levels are
typically used for full factorial designs, except when k is very small.

One benefit of using a full factorial design in designing simulations is that
the analyst has the data to estimate the mean Y value for each level of every
parameter Xr , by averaging over simulations where all other parameters
take all possible combinations of high and low values. One disadvantage
of using a factorial design is the enormous number of simulations required.
Using two levels, 10 parameters would require 210 = 1024 simulations, and
20 parameters would need more than a million. However, it is possible to
select a fraction of these simulations to generate a smaller, feasible design
that can still produce useful results.

Consider for example, the design for seven parameters in Table 2.2. The
original three columns from Table 2.1 now appear in columns 1, 2 and
4, and the other four columns are obtained from the original three by
multiplication as shown in the column headers. Note that exactly half the
values in each column are 1, and that half are −1. Observe also that any two
columns i and j of this design have the property that the four combinations
�1�1	, �1�−1	, �−1�1	 and �−1�−1	 each occur twice. (For instance, in the
first two columns of the table, �1�1	 occurs in rows 1 and 5, and �−1�−1	
occurs in rows 4 and 8.)

In general, if one starts with a full factorial design on two levels for
n parameters, requiring k = 2n simulations, it can be converted into a
fractional factorial (FF) design for k − 1 parameters. Tables 2.1 and 2.2

Table 2.1 A two-level full factorial design for three parameters

X1 X2 X3

1 1 1

1

–1
–1

1

1
–1

X1

X3

X2

-1 1 1
1 -1 1

-1 -1 1
1 1 -1

-1 1 -1
1 -1 -1

-1 -1 -1



SENSITIVITY ANALYSIS OF MULTIPLE PARAMETERS 73

Table 2.2 A two-level fractional factorial design for seven
parameters

X1 X2 X3 = X4 X5 = X6 = X7 =
X1X2 X1X4 X2X4 X1X2X4

1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1

1 −1 −1 1 1 −1 −1
−1 −1 1 1 −1 −1 1

1 1 1 −1 −1 −1 −1
−1 1 −1 −1 1 −1 1

1 −1 −1 −1 −1 1 1
−1 −1 1 −1 1 1 −1

started with n = 3 and produced an FF design with k = 23 = 8 simulations
for k−1 = 7 parameters. Doing this by means of taking products of columns
can be an involved and error-prone procedure. There is a much simpler way
of generating a design like that of Table 2.2, namely by using Hadamard
matrices.

A Hadamard matrix is a matrix of 1’s and −1’s with the property that
it is orthogonal (that is, the product of an n × n Hadamard matrix and
its transpose yields a multiple of the n × n identity matrix). The smallest
Hadamard matrix is H2:

H2 =
[

1 1
1 −1

]

 (2.27)

When H2 is multiplied by its transpose (which is simply H2, since it is
symmetric), the result is twice the 2×2 identity matrix, I2.

H2H
T
2 =

[
1 1
1 −1

][
1 1
1 −1

]
=
[

2 0
0 2

]
= 2I2
 (2.28)

As a generalization of Equation (2.28), HnHT
n = nIn for any n×n Hadamard

matrix Hn. A Hadamard matrix formed in this way makes a good FF design
template. It is easy to generate a 2n ×2n Hadamard matrix recursively, using
this identity:

H2n =
[

H2n−1 H2n−1

H2n−1 −H2n−1

]

 (2.29)

Specifically,

H4 =
[

H2 H2

H2 −H2

]
=

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦ (2.30)
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and one more application of the recursion in Equation (2.29) gives H8,
which is the same as Table 2.2, except that H8 has a column of 1’s on
the left.

A Hadamard matrix makes a design of Resolution III, which in practical
terms means that any two columns have an equal number of the combi-
nations �1�1	� �1�−1	� �−1�1	 and �−1�−1	, as mentioned above. We can
construct an FF design matrix with even better properties in the following
way. Define Mk for k = 2n as shown in Equation (2.31).

Mk =
[

Hk

−Hk

]

 (2.31)

The matrix Mk has k columns and N = 2k rows. It can be used as a design
of Resolution IV. That means that this design has a much stronger version
of the rule given above for any two columns in Table 2.2. Any three columns
p, q and r of Mk have the property that the eight combinations �1�1�1	,
�1�1�−1	, �1�−1�1	, �1�−1�−1	, �−1�1�1	, �−1�1�−1	, �−1�−1�1	 and
�−1�−1�−1	 appear equally often in those columns. To put it another way,
the variables Xp, Xq and Xr define a cube-shaped sample space like the one
shown beside Table 2.1. Each row in Mk then allocates values to Xp, Xq and
Xr so that they occupy one of the corners of the cube. In a design constructed
from Mk, an equal number of simulations are allocated to each corner of the
design cube, no matter which three parameters we consider. This balance
in distribution is very helpful in determining which parameter and which
combinations of parameters working together influence the value of Y .

Utilizing Mk produces a design with k = 2n columns and N = 2k = 2n+1

simulations. This is the same size as the OAT design in Equation (2.22) if
k is a power of 2. If k is not a power of 2, we can treat it as one by adding
to the set of parameters enough ‘dummy’ or spare parameters 6 to make
the total equal the next higher power of 2.

In the case of FF analysis, a parameter’s contrast (the combination of
−1’s and 1’s that appear in the design) also represents the values of several
different interactions among two or more other parameters. For instance,
in Table 2.2 X3 was explicitly defined to equal the interaction X1 ×X2. In a
design of Resolution IV, no parameter has the same contrast as any other,
nor as any two-factor interaction, but each parameter does have the same
contrast as some products of three or more other parameters. Therefore, if
a dummy parameter cannot be causing the estimated effect, it is likely that
an interaction among influential parameters is causing it.

6 They are called dummy parameters because they do not appear in the model, and therefore
cannot influence the output of the model. Dummy parameters act as sentinels. If sensitivity
analysis purports to show that a dummy parameter is influential, the analyst knows that
something else is at work.
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One advantage of using the OAT design in Equation (2.22) is that each
simulation changes only one parameter, and so, in a deterministic model,
the analyst can determine exactly what effect is caused by changing the
parameter.7 One disadvantage is that parameter values for different param-
eters may be highly correlated. In Equation (2.22), consecutive parameters
like X4 and X5 differ in value in only two equations out of the total. The
average values estimated in Equation (2.25) will therefore be quite similar.

By contrast, designs based on the matrix in Equation (2.31) require
substantial computational effort to determine the influence of each param-
eter, but the parameters themselves have independent values that are not
correlated.

One traditional measure of the effect of a parameter in FF analysis is
MEr �Y	, the main effect of parameter Xr on Y . This quantity is obtained
by taking half the difference of average Y values for the two values of the
parameter. As the following equation shows, this definition is proportional
to the dot product between the contrast for the parameter and the vector
of simulation results.

MEr �Y	 = 1
2

(
1
k

∑
xjr=1

yj −
1
k

∑
xjr=−1

yj

)

= 1
2

(
1
k

∑
xjr=1

xjryj +
1
k

∑
xjr=−1

xjryj

)

= 1
2k

2k∑
j=1

xjryj 
 (2.32)

It can be shown for a two-level FF design that the variance in the results
explained by parameter Xr alone is just

ṼYr = �MEr �Y	�2 
 (2.33)

A main effect could be estimated for OAT sampling using the estimated
means in Equation (2.25). However, the quantity iY from Equation (2.24)
typically gives a better estimate of the effect of changing Xi because
of the correlations among parameter values that affect the values in
Equation (2.25). In any case, the variance property in Equation (2.33)
would not apply to OAT sampling. It stems from the orthogonality of the
Hadamard matrix used in computing Mk.

7 Of course, this information about changing one parameter applies only at the current point
in the sample space. Changing that parameter with some other combination of values for other
parameters might have quite a different effect in a nonlinear model.
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Equation (2.33) creates a variance partitioning that is very useful in
making a quick search for influential parameters, when influence is defined
in terms of variance. Of course, the fact that the variance due to Xr is
based on the main effect, a linear estimator, emphasizes that variance due
to nonlinear effects is not accessible with this (or any other) two-level
design.

2.4.5 Latin Hypercube Sampling

A two-level FF design gives no insight into the variation of an output Y as
a result of small changes in an influential parameter Xr inside its domain.
Section 2.3 discussed how to sample values of a single parameter considered
alone. Sometimes a single influential parameter is all we need to study in
sensitivity analysis, as all other parameters may have little influence. Just as
a two-level FF design is a small fraction of two-level full factorial design, so
we can define an s-level FF design that is a small fraction of an s-level full
factorial design. How do we select such a fraction with useful properties?
The following common method of selection is called Latin hypercube (LH)
sampling.

The key objective in LH sampling is to ensure that each parameter is
individually stratified over s > 2 levels, and that each level contains the
same number of points. These conditions require that s divides into N ,
the sample size (some definitions require that s = N ). Table 2.3 shows 9
parameters and 6 levels, with each parameter having 2 simulations at each
level, for a total of 12 simulations.

Table 2.3 An LH design with 12 simulations for
9 parameters on 6 levels

X1 X2 X3 X4 X5 X6 X7 X8 X9

0 4 5 0 5 4 0 2 0
4 4 1 0 4 3 5 1 4
2 2 4 5 1 0 2 0 0
5 0 5 3 0 5 3 3 5
3 2 3 2 2 5 3 2 3
2 5 2 4 2 1 4 1 1
1 3 3 3 3 4 1 5 5
5 1 0 2 1 3 2 0 4
1 5 4 1 4 2 5 4 2
0 1 1 1 5 1 1 3 1
3 0 2 5 3 0 0 4 2
4 3 0 4 0 2 4 5 3
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A randomized design like that of Table 2.3 is easy to generate. Simply
store the quantities 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 in each column of an
array, and then randomize each column separately.8 The result is a design
in coded form, using integer values 0 to s−1, rather than parameter values
from the interval �0�1�.

Table 2.4 is also a 12×9 LH design on six levels, but it has a feature that
Table 2.3 does not. As indicated by the horizontal line separating top and
bottom, Table 2.4 consists of two LH designs, each with six simulations.
That means that in each column, the numbers 0 to 5 appear above and
below the line.

What is the practical difference between these designs? When Table 2.3 is
used to generate parameter values for simulations, an analyst can estimate
the mean value of output Y with the sample mean (Equation (2.5), but it is
difficult to assess how good the estimate is. Because of the stratification, it
is likely that the estimate is better than what a random sample of the same
size would yield, but the traditional uncertainty estimate in Equation (2.5)
does not apply.

By contrast, the repeated design in Table 2.4 permits its own uncertainty
estimates. Any statistic that can be calculated separately for the top and the
bottom of the table, such as a sample mean for Y , now has two independent

Table 2.4 A doubled LH design with 12
simulations, 9 parameters, 6 levels

X1 X2 X3 X4 X5 X6 X7 X8 X9

0 4 5 0 5 4 0 2 0
4 3 1 1 4 3 5 1 4
2 2 4 5 1 0 2 0 2
5 0 0 3 0 5 3 3 5
3 1 3 2 2 2 1 4 3
1 5 2 4 3 1 4 5 1

2 3 3 3 3 4 1 5 5
5 1 0 2 1 3 2 0 4
1 5 4 1 4 2 5 4 2
0 2 1 0 5 1 3 3 1
3 0 2 5 2 0 0 1 0
4 4 5 4 0 5 4 2 3

8 An array a of length N can be randomized using a function random�N	 that generates a
pseudo-random integer value from 0 to N − 1, and a method swap that interchanges two
entries of the array:
for ( int j = 0 ; j < N; j++ )
swap(a, j, random(N)) ;
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estimates. The uncertainty in these estimates can be obtained directly from
the standard deviation of the two. That is,

Ȳ �1� = 1
6

6∑
i=1

yi

Ȳ �2� = 1
6

12∑
i=7

yi

Ȳ = 1
2

(
Ȳ �1� + Ȳ �2�

)
(2.34)

sȲ =
√(

Ȳ �1� − Ȳ
)2 + (

Ȳ �2� − Ȳ
)2 = 1√

2

∣∣Ȳ �1� − Ȳ �2�
∣∣ 
 (2.35)

Now examine Table 2.5. It is the same as Table 2.4, except that some
randomly selected levels have been marked with a prime. Every column
now has 12 levels: 0 and 0′, 1 and 1′, …5 and 5′. If we replace these
symbols by 0, 1, 2, …11 respectively, we have an LH design with 12 levels.
But because of the way it was constructed, the bottom and top halves are
also LH designs on six levels. By constructing a two-level design this way,
we can use the uncertainty estimate of Equation (2.35), while retaining the
added benefit of using an LH sample on 12 levels. The uncertainty estimate
will probably be an overestimate as a result.

The preceding discussion has addressed the issue of generating integer
levels. To convert the integer levels to parameter values, the analyst can
choose from several options. The design’s integer value can be interpreted
as identifying one subinterval out of s equal-length subintervals. The actual
value to be used within that subinterval can be randomly generated from

Table 2.5 An LH design with 12 simulations, 9 parameters,
12 levels

X1 X2 X3 X4 X5 X6 X7 X8 X9

0′ 4′ 5 0 5′ 4 0 2 0′
4′ 3′ 1 1′ 4 3 5 1 4′
2′ 2 4′ 5 1 0 2′ 0′ 2
5 0′ 0 3 0 5 3′ 3′ 5′
3 1 3′ 2′ 2 2′ 1 4 3
1 5 2 4 3 1 4′ 5′ 1′
2 3 3 3′ 3′ 4′ 1′ 5 5
5′ 1′ 0′ 2 1′ 3′ 2 0 4
1′ 5′ 4 1 4′ 2 5′ 4′ 2′
0 2′ 1′ 0′ 5 1′ 3 3 1
3′ 0 2′ 5′ 2′ 0′ 0′ 1′ 0
4 4 5′ 4′ 0′ 5′ 4 2′ 3′
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a uniform distribution, or it can be chosen at a fixed location within
the interval (e.g. the midpoint). These are the same options illustrated in
Figure 2.2 for a single parameter. One can even divide the interval �0�1�
into s − 1 (rather than s) subintervals, and interpret the numbers in the
table as the s endpoints of these subintervals. This approach would lead
to a piecewise linear fit of Y to each influential parameter, independently.
Higher-order fits could be attempted to the mesh of points defined by
interval endpoints for two or more influential parameters.

LH designs have attractive properties because values sampled for each
parameter are stratified. In particular, one can use an LH sample mean as an
estimate of a population mean. This estimate converges to the true mean more
rapidly with increasing N than does a sample mean from a random sample.
If Y is monotonic in each of the parameters Xr , a sample mean will have less
uncertainty with LH sampling than a random sample mean at any sample size.

When the number of simulations N is much larger than the number of
parameters k, a randomized LH design can be very effective in examining the
influence of each parameter, through scatterplots and regression analysis.
However, when N � k, the effects of different parameters cannot all be
distinguished, because there are not enough data points to give independent
estimates for each one. In this case the columns of the design matrix display
excessive correlation. Excessive correlation between pairs of columns can
persist even when N is somewhat greater than k. Then LH designs need
extra structure, and that structure can be provided in various ways.

For example, orthogonal arrays are arrays of integers with properties
similar in nature to those of a Hadamard matrix, but which can be much
more complex. Orthogonal arrays can be used to generate LH samples
where there is some degree of control over the similarities between columns
for different parameters, to maximize the information available from a
design of a particular size. Table 2.6 has nine simulations for four parame-
ters operating at three levels. It has the additional balance property that each

Table 2.6 A 9 × 4 LH design on three
levels based on an orthogonal array

X1 X2 X3 X4

0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0
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pair of columns contains all the nine combinations �0�0	, �0�1	, �0�2	, � � �
�2�1	, �2�2	. It is not easy to create a new orthogonal array, but they have
been tabulated for many different sizes (Colbourn and Dinitz, 1996).

The next section describes a different way of adding structure to an LH
sample using a two-level FF design.

2.4.6 Multivariate Stratified Sampling

The principle behind stratified sampling with a single variate was to
partition the sample space into nonoverlapping regions and to guarantee
sampling from each region. With a single parameter, the regions are
contiguous intervals. The purpose for stratified sampling is to ensure that all
parts of the sample space are represented, for improved (i.e. less uncertain)
mean and variance estimates. This goal is just as important in multivariate
sampling, but harder to achieve.

Suppose one pursues the goal by bisecting the domain for every parameter
and then taking at least one sample point from each ‘corner’ of the sample
space. One parameter has two ‘corners’, the regions �0�0
5	 and �0
5�1�.
(The brackets indicate that the point 0
5 is in the second region only.) Two
parameters, Xp and Xq, have four ‘corners’, the quadrants of the XpXq

plane. Three parameters Xp, Xq and Xr have eight ‘corners’, the octants
of the XpXqXr space. In general, k parameters have a sample space that
is a k-dimensional hypercube, with 2k ‘corners’. The first three cases are
illustrated in Figure 2.5.

Figure 2.5 Bisecting the domain of each parameter for one [top], two [left] or three
[right] parameters
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It would be desirable to have at least one point in each corner of the
sample space, but for large numbers of parameters, it is usually infeasible.
Attempting to do so would be equivalent to generating a two-level full facto-
rial design, requiring 1024 simulations for 10 parameters, over a million
for 20 parameters, and 2k simulations for k parameters.

However, the FF design approach partially solves this problem. Earlier we
used the interpretation that a value of ‘−1’ in the design matrix Mk should
correspond to the single parameter value 0 for Xr , and that ‘1’ in the design
matrix should correspond to a parameter value of 1. Suppose instead that
we use the interpretation that a ‘−1’ in an FF design means sampling from
the interval �0�0
5	 and a ‘1’ means to sample from the interval �0
5�1	.
Then the properties of a Resolution IV design will mean that there will
be an equal number of points in each of the octants of the sample space
for any three parameters viewed in isolation. Figure 2.5 would appear
approximately as shown for any selection of parameters. This balance helps
to expose dependencies of Y on interactions among parameters.

Figure 2.6 shows a plot of a function Y = (∑3
i=1 X2

r

)1/2
against Xr for

the two different interpretations. In the left panel, all parameter values are
either 0 or 1, and very little information about the dependence of Y on Xr

is evident. Many of the points overlap since there are only four possible
values for Y , corresponding to zero, one, two or three parameters with a
value of 1. In the right panel parameter values span the domain of each
parameter and greater insight can be gained into the effect of an influential
parameter across its domain.

Unfortunately, there is a cost attached to this greater insight.
Equation (2.33) (using a main effect to estimate the variance explained
by parameter Xr) no longer applies, except as a rough approximation.
That equation was based on the assumption that variation in Y due to

0
0

2

1
Xr

0 1
Xr

Y

0

2

Y

Figure 2.6 Different interpretations of an FF design: [left] ‘−1’ maps to 0, ‘1’ maps
to 1; [right] ‘−1’ maps to the left half of the domain, and ‘1’ maps to the right half.
Both plots contain 16 points
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Figure 2.7 Combined fractional factorial – Latin hypercube design

changes in Xr could only occur as a result of the difference between low
and high extreme values of Xr . If we let Xr vary within the upper or lower
interval, those small changes could also affect the value of Y , and so should
contribute to the variance of Y attributable to Xr .

It is possible to combine two-level FF and LH sampling, to secure the
advantages of both. Figure 2.7 shows what happens in two and three
dimensions when a two-level FF design is combined with stratified sampling
inside each of the main two levels. In the pane on the left side, the two-
level FF design ensures that each of the four quadrants contains the same
number of points (two out of the eight). The LH sample ensures that each
of the four columns contains two points, and similarly for the four rows.
This behaviour would be observed for any pair of two parameters in the
design. In the pane on the right side, the FF design ensures that each octant
(corner) of the cube contains two points. The LH design ensures that each
layer in each of the three directions contains two points. The two points in
the closest vertical layer are visible. Once again, this distribution of points
holds for any selection of three different parameters.

In Figure 2.7, points are randomly located within the subintervals desig-
nated by the design. It would also be possible to place them at specified
locations, such as the centres of the regions.

2.4.7 Quasi-random Sampling with Low-discrepancy
Sequences

As experimental designs become more elaborate, more work must be
devoted to the theory, implementation and selection of designs. How
does one know that a combined FF–LH design with 128 parameters, 256
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simulations and 64 LH strata was implemented correctly? How can it be
expanded to deal with more parameters? What if this design does not
yield adequate results – can one somehow make it part of a larger design
with more simulations? This section addresses the possibility of decreasing
sample complexity by using quasi-random sampling in much the same way
one would use pseudo-random sampling as discussed in Section 2.4.1.

Using a pseudo-random generator for simple Monte Carlo sampling is
much simpler than using a complex design: as many values as necessary can
be generated, and if more parameters or more simulations are desired, it is
a simple matter to generate more.

Unfortunately, as shown earlier, samples generated randomly tend to have
clusters and gaps. Where a cluster occurs, function values in that vicinity are
overemphasized in statistical analysis. Where a gap arises, function values
within that gap are not sampled for statistical analysis. The net effect is that
mean values estimated with random samples have an uncertainty that dimin-
ishes slowly as 1/

√
N (see Equation 2.5). To reduce an estimated uncertainty

by a factor of 10, the analyst must increase N by a factor of 102 = 100.
A mathematical measure called discrepancy characterizes the lumpiness

of a sequence of points in a multidimensional space. Smaller discrepancy
values are better for sensitivity analysis (the distribution is less lumpy).
Figure 2.8 illustrates the concept in two dimensions. Each small square in
the figure occupies 1/4×1/4 = 1/16 of the area of the unit square. Since
there are 20 randomly located points in the figure, each small square should
contain 1 or 2 of them, if the points are evenly distributed. However, one
of the small squares contains 5 points, and the other none. The discrepancy
of a sequence of points is the maximum absolute difference over a specified
set of regions between the area fraction and the point fraction. When the
regions are squares within the unit square, the discrepancy in Figure 2.8 is
at least 5/20−1/16 = 3/16.

Random sequences of k-dimensional points have a relatively high discrep-
ancy, as shown here. But there are infinite sequences of k-dimensional points
that behave much better with respect to this measure. They are called low-
discrepancy sequences. They have the property that as the sequence length
N gets very large, the discrepancy shrinks at the theoretically optimal rate.
As a result, an estimated mean for a function Y�X1�X2�X3� � � � Xk	 evaluated
on points �Xi1�Xi2� � � � Xik�i=1�N from such a sequence will converge much
more quickly than would an estimated mean based on the same number of
random points.9

9 How quickly? ‘For Monte Carlo integration of a smooth function in n dimensions, the
answer is that the fractional error will decrease with N , the number of samples, as �ln N	n/N ,
i.e. almost as fast as 1/N ’ (Press et al., 1997). This comment was made about the Sobol’
sequence, but all low-discrepancy sequences have the same asymptotic performance.
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Figure 2.8 Discrepancy is the maximum absolute difference between the fraction
of the area a square occupies and the fraction of the points it contains. (Each small
square is 1/4 of the width of the unit square.)

Samples made from a finite subset of such sequences are called quasi-
random samples. These samples are not random, in the sense of being
completely unpredictable. In fact, to maintain an even spread of points,
an algorithm that generates low-discrepancy sequences must somehow bias
the selection of new points to keep them away from the points already
present. But they are like random points in the sense that they are uniformly
distributed across the entire sample space.

In ‘small’ quasi-random samples, the effects of low-discrepancy may or
may not be evident, as it is an asymptotic property that primarily comes into
play as the sample size N gets very large. Whether a sample is large enough
to display a low discrepancy depends in part on the number of parameters.
When the number of parameters is large, a quasi-random sample will need
to be large as well in order for the low discrepancy to become evident.

The Halton sequence is a well-known low-discrepancy sequence that is
easy to generate. Table 2.7 shows how to generate values for X1, X2,
X3, � � � X100 for the Halton sequence. On the left side of the table, successive
position indices of the points are listed as ordinary numbers (base 10), and
in bases 2, 3, 5, � � � 541.10 These bases are the 1st, 2nd, 3rd and 100th

10 The letters A, B, C, etc. are used as digits for base 541 because there are not enough digits
in our number system to properly represent base-541 numbers.



Table 2.7 Generating coordinates of points in a Halton sequence using the radical inverse transform

Index in base� � � Parameter value

10 2 3 5 … 541 X1 X2 X3 � � � X100

1 1 1 1 1 0
12 = 0
5 0
13 = 0
333 0
15 = 0
2 0
1541 = 0
002
2 10 2 2 2 0
012 = 0
25 0
23 = 0
667 0
25 = 0
4 0
2541 = 0
004
3 11 10 3 3 0
112 = 0
75 0
013 = 0
111 0
35 = 0
6 0
3541 = 0
006
4 100 11 4 4 0
0012 = 0
125 0
113 = 0
444 0
45 = 0
8 0
4541 = 0
007
5 101 12 10 5 0
1012 = 0
625 0
213 = 0
778 0
015 = 0
04 0
5541 = 0
009
6 110 20 11 6 0
0112 = 0
375 0
023 = 0
222 0
115 = 0
24 0
6541 = 0
011
7 111 21 12 7 0
1112 = 0
875 0
123 = 0
556 0
215 = 0
44 0
7541 = 0
013
8 1000 22 13 8 0
00012 = 0
062 0
223 = 0
889 0
315 = 0
64 0
8541 = 0
015
9 1001 100 14 9 0
10012 = 0
562 0
0013 = 0
037 0
415 = 0
84 0
9541 = 0
017

10 1010 101 20 A 0
01012 = 0
312 0
1013 = 0
370 0
025 = 0
08 0
A541 = 0
018
11 1011 102 21 B 0
11012 = 0
812 0
2013 = 0
704 0
125 = 0
28 0
B541 = 0
020
12 1100 110 22 C 0
00112 = 0
188 0
0113 = 0
148 0
225 = 0
48 0
C541 = 0
022
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largest prime numbers, and in general, Xr is based on the rth largest prime
number.

On the right side of the table, the digit sequences of the indices are
reversed, and placed after a decimal point. This operation is called the
radical inverse transform. The fractions so generated are then converted
back to base 10 decimal fractions for comparison.

Figure 2.9 shows scatterplots of the first three parameters shown in
Table 2.7 plotted against each other in pairs. The points look fairly evenly
distributed, especially in the lower row where 1000 points are shown in
each plot. However, there are also visible patterns in the dots (e.g. diagonal
lines of dots). All low-discrepancy sequences have an even distribution, by
definition, if the sample is large enough. Different sequences will display
different patterns for small numbers of points.

Figure 2.10 shows scatterplots of X1 against X100 with 100 and 1000
points. It is clear from this figure that more points are needed to hide
artefacts of the way the points were generated.

One simple way to test a quasi-random sample with N points before
using it in sensitivity analysis is to average each variable independently.
That is, ∫ 1

0
XjdXj = 0
5 � �1/N	

N∑
i=1

xij 
 (2.36)
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0 1 0 1 0 1

Figure 2.9 Parameters of Table 2.7 plotted against each other in pairs. Left to
right: X2 vs X1, X3 vs X1, X3 vs X2. Top row: 100 points; bottom row: 1000 points
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Figure 2.10 X100 vs X1 from the Halton sequence (left: 100 points, right: 1000
points)

This fit should be very close, because of the quasi-random property. Simi-
larly, it is a good idea to check at least some cross-products:

∫ 1

0
�XjXk	dXjdXk = 0
25 � �1/N	

N∑
i=1

xijxik
 (2.37)

If the quasi-random sample cannot integrate these functions quite closely,
it will probably not perform well in other sensitivity analysis tasks.

Table 2.8 shows how these quantities converge for the variables in
Table 2.7, and for a couple of randomly generated variates, U and V .
For N = 10000, parameters X1, X2 and X3 show tighter convergence than
would be expected from random variables. However, X100 still shows worse
convergence than the random variates. There is no apparent advantage at
this sample size in using X100 in preference to a random variate.

Halton points are not the only quasi-random sequence described in the
literature. One of the exercises at the end of this chapter challenges you to
find other sequences, of which there are several. One that has been used
in sensitivity analysis is the Sobol’ LP� sequence, for which Fortran code
is given in Press et al. (1997). That code supports up to 51 dimensions
(i.e. k = 51), and up to about 1 billion values (i.e. N = 230). Code that can
handle larger problems is also available. Like the Halton sequence, more
points are required for good behaviour in higher dimensions. An expedient
to get the best possible results for a given N is to renumber the parameters
so that those with lower numbers (e.g. X1, X2, X3) are the influential
ones, if known. Another approach that has been explored is to randomize
the entries for each parameter separately, to reduce correlations among
parameters.



Table 2.8 Sample averages of single parameters and two-parameter products for different quasi-random sample sizes (sample
averages should converge to 0.5, and product averages to 0.25)

Sample averages Product averages

N X1 X2 X3 X100 U V X1X2 X1X100 UV

1 0.500 0.333 0.200 0.002 0.738 0.135 0.167 0.001 0.099
3 0.500 0.370 0.400 0.004 0.831 0.644 0.139 0.002 0.562

10 0.444 0.441 0.428 0.010 0.660 0.521 0.172 0.004 0.354
30 0.484 0.472 0.470 0.029 0.563 0.522 0.223 0.014 0.304

100 0.490 0.489 0.492 0.093 0.542 0.518 0.237 0.046 0.291
300 0.496 0.495 0.495 0.278 0.524 0.501 0.245 0.138 0.260

1000 0.499 0.498 0.499 0.465 0.510 0.511 0.248 0.232 0.259
3000 0.4995 0.4994 0.4997 0.477 0.506 0.502 0.2494 0.238 0.252

10000 0.4998 0.4998 0.4999 0.492 0.5003 0.4976 0.2498 0.246 0.2487
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Quasi-random samples can be analysed just as any empirical data set
would be. One can calculate sample means and variances using the usual
formulas. An output variable Y can be plotted against an input parameter
Xi to look for patterns. Two differences arise. First, traditional uncer-
tainty estimates do not apply. For instance, an estimate ŶN as calculated
in Equation (2.4) would be expected to converge more rapidly than one
based on random data as N increases, with the advantage growing for
larger N . However, there is no obvious way of determining the uncertainty.
The second difference is that small samples might not work well at all,
depending on how the points are generated.

2.5 GROUP SAMPLING

What can be done if the required number of simulations is not afford-

able? Is there any way to study only the influential parameters, if

they are not known in advance?

Designs considered so far require comparable numbers of simulations.
For k parameters, an analyst should expect to use N = 2k simulations11 or
more. An OAT design needs that many to estimate the effect of changing
each parameter, and an FF design of that size allows for estimation of main
effects for each parameter. While LH samples can be of any size, strategies
to reduce the correlations of different parameters in an LH design (such as
combining FF with LH) tend to require N or more simulations.

This restriction on the minimum number of simulations could have an
adverse effect on a modelling project. A model will generally become more
complicated (i.e. acquire more parameters) over time as researchers add
more features and elaborate on originally simple submodels. The natural
evolution of a model could be curtailed if sensitivity analysis requirements
make the simulation requirements with more parameters prohibitively
expensive. Researchers need to find a way of reducing simulation require-
ments for complex models.

One way to reduce the number of simulations required is to apply group
sampling. It allows the analyst to generate smaller designs that can still
isolate influential parameters and their effects. It is even possible to obtain
sensitivity analysis information from supersaturated designs, where the
number of simulations, N , is less than the number of parameters, k.

11 It should be noted that k does not affect the number of sample points required simply to
estimate the mean of Y to a given level of uncertainty. The distribution of Y alone determines
how many sample points are needed for an accurate estimate of the mean of Y . The number
of parameters k does affect sensitivity analysis, however, because the analyst estimates not just
one mean value, but also one or more coefficients for every parameter in the analysis.
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How can this be so? Look back at Equation (2.17) in Section 2.4.1.
In matrix form, it specifies that XNkBk = Yk, which is a system of linear
equations with N rows and k+1 columns. From linear algebra, we know
there is no unique solution to these equations when N < k + 1. Further-
more, we will often be looking for functional forms more complex than a
linear relationship, requiring the estimation of more coefficients. It seems
unlikely that there is a mechanism for estimating these functions with
too few simulations. It can be done only if we make some judicious
assumptions.

The primary assumption (the null hypothesis) is that every parameter
Xr has a negligible influence on the output variable Y . We will reject the
null hypothesis for a particular parameter only if the data provide strong
evidence of such an effect. This approach changes the statistical procedure
from one of estimation (e.g. estimating the bj coefficients in Equation 2.17)
to one of statistical testing. We test each parameter for its effect, identify
those for which we can reject the null hypothesis with high confidence, and
then analyse the effects of only those parameters. Here we are aided by
the conclusion in Section 2.4.3 that only about a dozen parameters can be
influential compared to the rest. A supersaturated design can be effective
if we focus on identifying and characterizing a small number of influential
parameters.

Box 2.1 ‘A Counterfeit Coin Puzzle’ shows how clever design can extract
the maximum amount of information from a small amount of data, given
appropriate assumptions. In this puzzle, 12 coins need to be weighed on
a balance scale only three times in order to find the one counterfeit coin
and to tell whether it is lighter or heavier than the rest. A straightforward
solution in which each coin is weighed against a standard reference coin
would require as many as 11 comparisons, so reducing this number to three
is a sound achievement. The solution works only if there is exactly one
counterfeit coin. Moreover, the design is sequential: what is weighed in
the second and third steps depends on the results of the first and second,
respectively.

Box 2.1 A Counterfeit Coin Puzzle (Fixx, 1972)

Suppose you are given 12 apparently identical coins, and you are told
that one of them is counterfeit. It can only be told apart from the
other coins by its weight – it is either lighter or heavier than a real
coin. How many weighings with a balance scale would you need to
find the fake coin, and determine if it is heavier or lighter than the
rest?
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Answer: only three.

1. Number the coins from 1 to 12. First weigh coins 1 to 4 together
against coins 5 to 8.

(i) If the two sides balance, the fake coin is one of 9 to 12.
Assume coins 1 to 8 are all good. Weigh 9 to 11 together
against 1 to 3.

(ii) If the two sides still balance, the fake coin must be 12. Weigh
it against any other coin to see if it is heavy or light.

(iii) If the second weighing does not balance, the fake coin is one
of 9 to 11, and you know whether it is heavy or light by the
way the scale tipped. Suppose it is heavy. Weigh 9 against
10 to see which one is the fake (i.e. the heavy one). If they
balance, 11 is the counterfeit.

2. Suppose coins 1 to 4 were heavier than 5 to 8 in the first weighing.
Then either the fake is heavy, and one of coins 1 to 4, or light,
and one of 5 to 8. Coins 9 to 12 are assumed fair. Weigh coins 1
to 3 and 5 against coins 9 to 11 and 4.

(i) If the two sides balance, the fake coin is light, and one of 6
to 8. Weigh 6 against 7 to see which one is the fake (i.e. the
light one). If they balance, 8 is the counterfeit.

(ii) If coins 1 to 3 and 5 are heavy in the second weighing, the
fake coin is heavy, and must be one of 1 to 3. Weigh 1
against 2 to see which one is the fake (i.e. the heavy one). If
they balance, 3 is the counterfeit.

(iii) If coins 1 to 3 and 5 are light in the second weighing, then
either 5 is the fake and it is light, or 4 is the fake on the
other side, and it is heavy. Weight 5 against 1 to see which
case applies.
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Suppose we analyse a model with 1000 parameters, and utilize a sample
design with only 400 simulations. By statistical testing, we identify a dozen
parameters for which we have strong evidence to reject insignificance. Then
we reuse the 400 simulations to investigate the nature of the influence of
those 12 parameters. The task seems feasible. The number of simulations
actually required to perform sensitivity analysis is determined more by the
number of parameters that are influential (which is always a small number)
than by the total number of parameters.

What design might be suitable for testing the influences of a large number
of parameters? The concept of group sampling provides one answer. In
group sampling, all the parameters are assigned to a small number of groups.
For example, with k = 1000 parameters, we could designate 16 groups as
follows:

G1 = �X1�X2�X3� � � � �X64�

G2 = �X65�X66� � � � �X128�






G16 = �X961�X962� � � � �X1024�

(2.38)

where the extra parameters from X1001 to X1024 would be dummy
parameters.

This kind of grouping will be done several times, and each one will have
a set of simulations. In each set of simulations, every parameter in a group
takes the same sampled parameter values. That is, xi1 = xi2 = � � � = xi�64 for
every simulation i in the set. The group itself acts like a parameter, just as
in the coin-weighing example a group of coins would be weighed together.
It is not possible to separate the effects of individual parameters, given the
results of one set of simulations, just as one weighing tells us little about
the weights of individual coins.

Why have 16 groups, rather than 3 or 300? As in the coin-weighing
example, the size of the group can be optimized to yield the most infor-
mation. If the number of groups is very small, influential parameters will
be grouped together, and it will be more difficult to separate their effects
and to examine their interactions (i.e. nonlinear effects when they are both
varied). Accordingly, it is desirable to have more groups than influential
parameters. However, if the number of groups is too large, then each set
of simulations will be large, and it will not be possible to have more than
a few sets of simulations. On the premise that only a dozen parameters can
be influential, it makes sense to have 20 or 30 groups. A power of 2, such
as 16 or 32, works well because it allows two-level FF designs to be used.

Given 16 groups, an analyst could conduct 32 simulations in an OAT
or Resolution IV FF sample, treating the groups as parameters. From the
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results the analyst could determine which groups were influential. Suppose
two parameters are individually influential. If they are in separate groups,
then their effects would appear independently as group effects. If they are
in the same group, their effects either sum together, or partially cancel each
other. Since the number of influential parameters cannot be large, there will
typically be some groups that have no influential parameters, and most of
the rest will appear in separate groups.

Then the analyst would redo the group analysis using a different alloca-
tion of groups, such as

G12 = �X1�X17�X33� � � � �X993�X1009�

G22 = �X2�X18� � � � �X994�X1010�






G16�2 = �X16�X32� � � � �X1008�X1024�


(2.39)

Parameters that were grouped together in Equation (2.38) are mostly
separated in Equation (2.39). When the analyst carries out another 32-
simulation study, each influential parameter will influence a different group
from before, in combination with a different collection of other parameters.

The rearrangement from Equation (2.38) to (2.39) is obviously system-
atic, designed to suggest how different the groupings are. In practice, an
analyst can randomly assign parameters to groups. If two influential param-
eters appear in the same group in the first grouping, there is only a 1/16
chance they will appear together in the second grouping, and in each subse-
quent grouping. Given enough groupings, the analyst can separate the effects
of different influential parameters.

To make this argument quantitative, we denote with M the number of
different groupings, each with its set of simulations. If the grouping is
done randomly, two influential parameters will be grouped together on
average M/16 times. For example, if M = 8, two influential parameters
will share a group, on average, 8/16 times. We would expect to find them
together perhaps once, and not likely more than two or three times. With
10 influential parameters, each one will have a probability of more than
50% of not having any other influential parameters in its group each time.

A more difficult problem arises in weeding out noninfluential parame-
ters that masquerade as influential parameters because they share a group
several times with influential parameters. For example, suppose that X1 is
influential. The probability that X1 shares a group t times out of M with a
noninfluential parameter Xj is

P1j �t�M	 =
(

M

t

)(
1
16

)t (15
16

)M−t


 (2.40)
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If M = 8 and t = 4, the probability is P1j �4�8	 = 0
0008. While this value is
small, it may not be small enough. If there are 1000 parameters, there is a
significant probability of 1 − �1 −P1j �4�8		999 = 0
56 that one of the other
parameters, probably a noninfluential one, shares a group four times with
X1. And that coincidence could be enough to make that parameter look
influential.

If two or more influential parameters have similar effects, the situation
becomes even worse. Suppose the three parameters X1, X2 and X3 have
significant effects of similar magnitude. Then a noninfluential parameter
that shares a group with any one of them several times can appear influ-
ential. By analogy with Equation (2.40), the probability of parameter Xj

sharing a group with one of these parameters is roughly12

P123j �t�M	 =
(

M

t

)(
3
16

)t (13
16

)M−t

(2.41)

which evaluates to P123j �4�8	 = 0
038 for four repetitions in eight groupings.
With 1000 parameters, many noninfluential parameters would create a halo
around the influential ones, concealing the parameters that are actually
influential.

Three simple steps can help to clarify which parameters are influential.
Examine Table 2.9, in which the first two steps will be demonstrated. The left

Table 2.9 Analysis of results for three parameters, showing effects of steps to
eliminate noninfluential parameters

Before analysis Using signs After X1 correction

Grouping X1 X2 Xj Xj X1 X2 Xj

1 9.5 −5
2 9
5 −9
5 2.0 −5
2 −2
0

2 2.3 2.3 0.2 0.2 −5
2 −5
2 0.2
3 4.7 −4
6 −0
2 0
2 −2
8 −4
6 −0
2
4 9.9 −4
8 2.6 2.6 2.4 −4
8 2.6
5 7.2 −3
9 7.2 −7
2 −0
3 −3
9 −0
3
6 7.7 −0
6 −3
3 −3
3 0.2 −0
6 −3
3
7 9.6 −7
3 9.6 9
6 2.1 −7
3 2.1

8 8.9 −1
3 0.6 −0
6 1.4 −1
3 0.6

Average 7.5 −3
2 3.3 −1
0 0.0 −4
1 0.5

12 This is not an exact formulation because it does not allow for cases where influential
parameters are themselves in the same group.
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side of the table shows the main effects of parameters X1, X2 and Xj . Param-
eters X1 and X2 are both influential parameters, with main effects of similar
magnitude, but opposite sign. Parameter Xj is noninfluential, but by chance it
shares a grouping with X1 three times out of the eight groupings. As a result,
its average effect is larger than that of X2. The rectangles around some of the
numbers represent values that are repeated in the table because two of the
tabulated parameters were in the same group. For instance, X1 and Xj shared
a group in Grouping 7, and so both received the same main effect, 9.6.

The first improvement in group sampling is a simple trick that greatly
reduces the probability that impostors like Xj will appear. Sample a random
sign variable srm for each parameter Xr in each grouping m from 1 to M.
Each sign variable is either 1 or −1, with equal probability. If srm = 1,
then parameter Xr follows the group sampling in grouping m. That is, if
Xr belongs to group G1 in the mth grouping, and if the parameter value
for group G1 is 0.69237 in simulation 5, then x5r = 0
69237. If srm = −1,
on the other hand, parameter Xr takes values complementary to the group
value in the mth grouping. In the case above, the value for x5r would not
be 0.69237, but rather 1−0
69237 = 0
30763.

The sign variables for each grouping must be stored and used when
calculating a sensitivity statistic, such as a main effect. Toggling the sign
variable between 1 and −1 toggles the sign of many sensitivity statistics.
Since X1 causes the large main effects in groups where it occurs, these groups
always have a positive main effect after corrections are made for the sign
variable associated with X1. The same cannot be said for a noninfluential
variable like Xj . It is just as likely to have a negative main effect as a
positive one.

The centre section of Table 2.9 shows what happens to Xj if some of the
signs are flipped because the sign variable of Xj is different from the sign
variable of the controlling parameter in a group. Instead of having three
large main effects that add up to make Xj look like an influential parameter,
there is some cancellation, and the resulting average effect for Xj is quite
small (−1
0). This first step reduces the number of impostors substantially,
but alone it is not enough.

The second step occurs at the analysis stage. When the amount of data
available is limited, it is important that an analyst perform sensitivity anal-
ysis in a stepwise manner. That is, the analyst should identify the most
influential parameter, characterize its effect, and try to remove that effect,
leaving a set of residuals to analyse, instead of the original Y values. The
analyst should then proceed to analyse the residuals in a stepwise manner.

For example, the right side of Table 2.9 shows what happens when the
effect of the most influential parameter, X1, is removed from the analysis.
(To make this effect clear, sign variables have not been used on the right-
hand side of the table.) The main effect of X1 is best estimated as 7
5, its
average value from all groupings. Assume that the presence of X1 adds 7.5
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to the main effect of any group to which X1 belongs. Subtract 7.5 from the
main effect of all those groups to which X1 belonged.

The right side of the table shows what happens after the reduction. The
remaining average effect of X1 after this correction is 0.0. The remaining
average effect of the other influential parameter, X2, has strengthened
from −3
2 to −4
1. It looks more influential because the cancellation
that occurred with X1 in Grouping 2 has been eliminated. In contrast,
the remaining average effect of the noninfluential parameter, Xj , has been
reduced from 3
3 to 0
5. The removal of the effect of X1 eliminates impos-
tors that gained their apparent influence simply by sharing a group with X1

several times.
These two approaches, sign variables and stepwise analysis, can be used

together to increase the capability of the analyst to identify truly influential
parameters. There is one more step that can be taken, if the analyst is
observant while carrying out the experimental design.

Suppose the analyst carries out one grouping, and looks at the results.
They may show one influential group, several influential groups, or the
effects of all the groups may be of a similar magnitude. As in the coin
puzzle, the analyst has the option of controlling the group assignments in
later groupings based on earlier results. Suppose group G5 out of 16 groups
has an effect that is much larger than the effect of any other group. In the
next grouping, the analyst could choose to divide the parameters from G5

into groups G1 to G8, while combining all the other parameters into a pool
from which to construct G9 to G16. This would be an effective technique to
isolate a single dominant parameter, by allocating it to ever smaller groups.

Alternatively, it may happen that 12 out of 16 groups show effects of
similar magnitude. The implication is that there may be a large number
of semi-influential parameters, without any really dominant ones. At that
point the analyst could choose to allocate 32 groups instead of 16 at the
next grouping, to try to separate these semi-influential parameters.

Sequential analysis of this type is very powerful, but not well understood.
It illustrates one of many possible lines of inquiry to be followed by future
research in sensitivity analysis. The choice of appropriate experimental
designs remains an open and fascinating field.

2.6 EXERCISES

1. Suppose a parameter Z is uniformly distributed between 5 and 9 metres.

(a) What are its pdf fZ�z	 and cdf FZ�z	?
(b) What transform would convert Z to a parameter X uniformly

distributed between 0 and 1? What transform would convert values
of X back to Z values?



EXERCISES 97

(c) What if Z had a triangular distribution instead? That is, suppose the
pdf is a straight line between the points �5m�0	 and �9m�0
5	, and 0
elsewhere. Find its pdf, cdf and transforms.

2. Identify a pseudo-random generator in a computer language or
software package that you frequently use. For example, Java has
Math.random() and Excel has rand().

(a) What is the algorithm by which this generator computes numbers?
How long a period does the generator have before it starts to repeat
itself?

(b) How would you regenerate a sequence of numbers so that you could
repeat an earlier set of simulations? [Hint: how do you use a random
seed with your generator?] How would you generate a new sample
that did not overlap with the previous one?

(c) Suppose you want to change both the number of parameters in
your model and the number of simulations carried out. How could
you arrange to regenerate the same values for parameters that
were used before and new values for new parameters and new
simulations?

3. Generate a long sequence of random values for the triangular variate
Z described in Question 1. Estimate the sample mean and variance
using Equation (2.4). How many simulations are needed to estimate
these quantities reliably to one decimal place? [Hint: generate multiple
sequences of the same length and ensure they have the same mean and
variance to one decimal place.]

4. Generate a stratified random sample for the triangular variate Z
described in Question 1. Use N points, with two random points sampled
from each of N/2 equal-length intervals for X. For instance, if N =
8, divide the interval from 0 to 1 into four subintervals: �0�0
25	,
�0
25�0
5	, �0
5�0
75	 and �0
75�1	 and sample two points in each subin-
terval.

(a) How many simulations are needed to estimate the mean value of Z
reliably to one decimal place (see previous question)?

(b) How do the variance estimates Ṽ a
Y and Ṽ w

Y differ, if Y = Z?

5. Suppose v = 3a − 2bc + 4d2, where a, b, c and d are parameters,
each with values in the domain �0�1�. Write out a list of eight linear
equations generated by a randomized return-trip OAT design starting
from �1�1�1�1�.

(a) Determine the two effects of changes to the values of each param-
eter, as in Equation (2.24). Which parameter change causes the
largest single change in v? Which parameter has the largest difference
between its two effects?
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(b) What is the average value of v for a at 0 and a at 1, as in
Equation (2.25)? What are the average values for the other parame-
ters? Which one has the largest difference between averages?

(c) Which method of assessing the impact of the parameters is most
representative in this example?

(d) Calculate the average value for each pair of mirror points in your
sample. Can you determine that the model is nonlinear from these
averages?

6. Construct a two-level full factorial design for five parameters. How many
simulations are there?

(a) Consider just the fraction of the design consisting of simulations
where an odd number of parameters have value −1. How many
simulations are there in this fraction?

(b) How many simulations would be needed for the same five parameters
for a full factorial design on five levels?

(c) In the factorial design on five levels, every parameter has a value
that is 0, 1, 2, 3 or 4. How many simulations would there be in
the fraction of the design consisting of simulations where the sum of
values for all the parameters is a multiple of 5?

7. Use Equation (2.31) to produce a Resolution IV FF design for 12 param-
eters. [Hint: how many parameters would the design have to handle?]
Evaluate Y values for this design, given that Y = X1 + 2X2 + 3X3 +
4X7X12. Assume each Xr takes values 1 or −1 only.

(a) Work out the main effects for all the parameters X1 to X12. How do
they relate to the coefficients of the formula for Y ?

(b) Use your design to work out the contrast (i.e. the pattern of 1’s and
−1’s) for X7X12 and for two other two-factor interactions. Evaluate
interaction effects for these interactions by applying these contrasts
using Equation (2.32).

(c) Can you find a three-factor interaction that has the same contrast as
X1?

8. Generate:

(a) one LH sample with 5 parameters, 12 levels and 12 simulations;
(b) three LH samples with 5 parameters, 4 levels and 4 simulations each;
(c) one LH sample with 5 parameters, 12 levels and 12 simulations by

combining the three samples in part (b), and splitting levels 0 to 3
into three sub-levels each (e.g. 0, 0′ and 0′′ become new levels 0, 1
and 2);

(d) an orthogonal array as shown in Table 2.6 that has 16 simulations on
5 parameters at 4 levels, with the property that all the combinations
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�0�0	, �0�1	, �0�2	, �0�3	, �1�0	, � � � �3�2	, �3�3	 occur for any pair of
parameters. [Difficult]

9. Generate a combined FF and LH design with eight simulations and four
parameters using the following steps:

(a) Generate a 4×4 Hadamard matrix, and then replace every −1 by 0
and every 1 by 4. (In general you use 0 and 2n for a 2n ×2n Hadamard
matrix.)

(b) Generate an LH design with four simulations for four variables on
four levels. Each column will have a permutation of the numbers 0,
1, 2 and 3. Add this design to the one from step (a) in the following
way. If the entry in the modified Hadamard matrix is 4, add the
entry in the same location of the LH design to it. If the entry in the
modified Hadamard matrix is 0, add to it 3−w, where w is the entry
in the same location of the LH design. Entries in the new design will
now range from 0 to 7, but in each column there will only be four
different values.

(c) Double the number of rows to make a Resolution IV design by adding
to the design the complement of every simulation currently there.
The complement is found by subtracting each entry in the original
row from 7 to get the entry in the new row.

10. Several low-discrepancy sequences are described in the literature. Find
papers or books containing algorithms for generating at least three other
low-discrepancy sequences beside the Halton points. In each case cite
the source, name the sequence (usually named after the person who
discovered it), and describe briefly how the numbers are generated.

11. Suppose you have access to a model with the functional form Y =
aXm −bXn for some unknown a, b, m and n. How many groupings and
runs would you need to find the unknowns with high confidence using
FF designs, given that the number of parameters is k = 1000? What if
k = 106?

2.7 EXERCISE SOLUTIONS

1. Suppose a parameter Z is uniformly distributed between 5 and 9
metres � � �

(a)
fZ�z	 =

⎧⎨
⎩

0m−1 z < 5m
1/�9m−5m	 5m ≤ z < 9m
0m−1 9m ≤ z

(2.42)

FZ�z	 =
⎧⎨
⎩

0 z < 5m
�z−5m	/�9m−5m	 5m ≤ z < 9m
1 9m ≤ z

(2.43)
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(b) X = FZ�Z	
Z = 5m+X�9m−5m	

(c)
fZ�z	 =

⎧⎨
⎩

0m−1 z < 5m
2�z−5m	/�9m−5m	2 5m ≤ z < 9m
0m−1 9m ≤ z

(2.44)

FZ�z	 =
⎧⎨
⎩

0 z < 5m
��z−5m	/�9m−5m		2 5m ≤ z < 9m
1 9m ≤ z

(2.45)

X = FZ�Z	
Z = 5m+√

X�9m−5m	.

2. Identify a pseudo-random generator in a computer language or software
package that you frequently use. …Take Excel’s rand().

(a) Prior to 2003, Excel used a poor pseudo-random generator that
started to repeat (approximately) after a cycle of about 1 million
values. Excel 2003 upgraded rand to use a 48-bit pseudo-random
generator published by Wichman and Hill (1982). It has a cycle of
more than 1013 before repetition occurs. The Fortran algorithm is
as follows:13

C IX, IY, IZ SHOULD BE SET TO INTEGER VALUES BETWEEN
C 1 AND 30000 BEFORE FIRST ENTRY
IX = MOD(171 * IX, 30269)
IY = MOD(172 * IY, 30307)
IZ = MOD(170 * IZ, 30323)
RANDOM = AMOD(FLOAT(IX) / 30269.0 + FLOAT(IY) /
30307.0 + FLOAT(IZ) / 30323.0, 1.0)

(b) According to one website,14 it is not possible to set the starting seed in
Excel 2003’s (and Excel 2007’s) version ofrand(). The Visual Basic
methodRANDOMIZE() is supposed toperformthis function,butdoes
not. It is possible, however, to generate a fixed sequence in Excel by
filling a large number of cells with the formula =rand(), and then
copying and pasting the values (not the formulas) of these cells into
another range of cells of the same size. Thereafter these values will
stay fixed. Similarly, it is not possible to guarantee that two different
samples will not overlap. However, because of the long cycle, overlap
is unlikely unless you use many random numbers. For example, if you
use two separate sample of 10 000 numbers, the odds are less than

13 http://support.microsoft.com/kb/828795
14 http://www.daheiser.info/excel/main/section15.pdf
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10000/1013 = 10−9 that the second sequence starts within the range
of the first sequence. Inaprogramming languagewhereyoucanset the
random seed, you would regenerate the first sequence and then take
the following numbers to form a new sequence, thereby guaranteeing
they do not overlap. Some pseudo-random generators (e.g. l’Ecuyer
and Andres, 1997) offer the facility of generating independent and
nonoverlapping subsequences.

(c) If your simulationgeneratespseudo-randomnumbersas it goesalong,
start from the same seed and you will get the same sequence. If the
number of parameters can change between runs, it helps to have a
distinct subsequence for each parameter so that the number of param-
eters will not affect the numbers produced. It is important that if you
have a distinct subsequence for each parameter, the subsequence is
made much longer than you expect to use, so that you can expand
the number of runs later. In Excel, generate a large table of pseudo-
random numbers that is made constant by copying and pasting values
from a table where the formula = rand�	 is used. Assign one param-
eter to each column, and make sure the number of rows is much larger
than what you expect to use. If necessary, you can copy more numbers
into the bottom of the table to support more simulations.

3. Generate a long sequence of random values for the triangular variate
Z described in Question 1. � � � no answer provided.

4. Generate a stratified random sample for the triangular variate Z
described in Question 1. � � � no answer provided.

5. Suppose v = 3a − 2bc + 4d2, where a, b, c and d are parameters,
each with values in the domain �0�1�. Write out a list of eight linear
equations generated by a randomized round-trip OAT design starting
from �1�1�1�1�. The coefficients bj in the following equation are based
on Equation (2.16), and are not related to the variable b.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 0 1
1 0 1 0 1
1 0 1 0 0
1 0 0 0 0
1 0 0 1 0
1 1 0 1 0
1 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

b0

b1

b2

b3

b4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5
7
4
0
0
0
3
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.46)
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(a) a b c d
1st effect 3 0 −2 4
2nd effect 3 −2 0 4
largest

√
largest difference

√ √
avg v at 0 1 2
5 2
75 0
75
avg v at 1 5
5 4
0 3
75 5
75
difference 4
5 1
5 1
0 5
0
largest difference

√
mirror point avg 2
5 3
5 3
5 3
5

(2.47)

(b) See table above.
(c) In this case, the single simulation change best measures the coeffi-

cient of each parameter. It gets the correct coefficient for a, gets the
right coefficient for b and c part of the time, and gets the right coef-
ficient for d, although with two levels it cannot distinguish between
a linear effect and a squared effect.

(d) See the table above for averages of each pair of mirror points. Three
are the same, but one is different, indicating some nonlinearity. If
you plug a = b = c = d = 0
5 into the actual formula, you get v = 2,
which is quite different from these values, indicating a higher degree
of nonlinearity.

6. Construct a two-level full factorial design for five parameters. There
are 32 simulations, as shown in the following table:

Run X1 X2 X3 X4 X5 Run X1 X2 X3 X4 X5

1 1 1 1 1 1 17 −1 1 1 1 1
2 1 1 1 1 −1 18 −1 1 1 1 −1
3 1 1 1 −1 1 19 −1 1 1 −1 1
4 1 1 1 −1 −1 20 −1 1 1 −1 −1
5 1 1 −1 1 1 21 −1 1 −1 1 1
6 1 1 −1 1 −1 22 −1 1 −1 1 −1
7 1 1 −1 −1 1 23 −1 1 −1 −1 1
8 1 1 −1 −1 −1 24 −1 1 −1 −1 −1
9 1 −1 1 1 1 25 −1 −1 1 1 1
10 1 −1 1 1 −1 26 −1 −1 1 1 −1
11 1 −1 1 −1 1 27 −1 −1 1 −1 1
12 1 −1 1 −1 −1 28 −1 −1 1 −1 −1
13 1 −1 −1 1 1 29 −1 −1 −1 1 1
14 1 −1 −1 1 −1 30 −1 −1 −1 1 −1
15 1 −1 −1 −1 1 31 −1 −1 −1 −1 1
16 1 −1 −1 −1 −1 32 −1 −1 −1 −1 −1
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(a) Consider just the fraction of the design consisting of simulations in
which an odd number of parameters have value −1. There is one
simulation in each row of the table above, for 16 in total.

Run X1 X2 X3 X4 X5

17 −1 1 1 1 1
2 1 1 1 1 −1
3 1 1 1 −1 1

20 −1 1 1 −1 −1
5 1 1 −1 1 1

22 −1 1 −1 1 −1
23 −1 1 −1 −1 1
8 1 1 −1 −1 −1
9 1 −1 1 1 1

26 −1 −1 1 1 −1
27 −1 −1 1 −1 1
12 1 −1 1 −1 −1
29 −1 −1 −1 1 1
14 1 −1 −1 1 −1
15 1 −1 −1 −1 1
32 −1 −1 −1 −1 −1

(b) On five levels, 55 = 3125 simulations would be required.
(c) There would be 54 = 625 simulations in the fraction. Whatever the

sum of the first four parameters is, one and only one value for X5

would make the total sum a multiple of 5.

7. Use Equation (2.31) to produce a Resolution IV FF design for 12
parameters (see next page).

(a) Main effects: see the last line of the table on the next page. All
coefficients of terms linear in the variables are estimated correctly.
The effects of the two-way interaction do not affect the main effects.

(b) Two-way interaction: see table above for the column X7X12. Other
two-way interactions are not shown. The interaction effect of 4 is
correct and it is shown in the ME row of the table.

(c) The product X2X3X4 has the same contrast (sign structure) as X1.

8. Generate:

(a) one LH sample with 5 parameters, 12 levels and 12 simulations
(not shown)



Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X7X12 Y

1 1 1 1 1 1 1 1 1 1 1 1 1 1 10
2 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −1 −2
3 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 4
4 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 −8
5 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 2
6 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 1 6
7 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −4
8 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 1 0
9 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 2

10 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 1 6
11 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −4
12 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 1 0
13 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 10
14 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 −1 −2
15 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 4
16 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 −8
17 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 −2
18 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 −6
19 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 1 4
20 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 0
21 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1 −10
22 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 2
23 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 −1 −4
24 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 8
25 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 −1 −10
26 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1 1 2
27 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1 −1 −4
28 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1 1 8
29 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 −2
30 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1 −1 −6
31 −1 −1 1 1 1 1 −1 −1 1 1 −1 −1 1 4
32 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 0
ME 1 2 3 0 0 0 0 0 0 0 0 0 4
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(b) three LH samples with 5 parameters, 4 levels and 4 simulations
each:

Run X1 X2 X3 X4 X5

1 1 3 0 3 2
2 3 0 1 2 1
3 2 1 3 1 0
4 0 2 2 0 3

5 1 2 1 2 3
6 3 1 3 1 0
7 2 3 2 3 2
8 0 0 0 0 1

9 2 3 0 2 2
10 1 1 1 3 1
11 0 2 3 1 0
12 3 0 2 0 3

(c) a derived LH sample with 5 parameters, 12 levels and 12 simula-
tions:

Run X1 X2 X3 X4 X5

1 4 10 0 9 6
2 9 1 3 8 5
3 8 5 11 4 1
4 2 6 7 2 10

5 5 7 4 6 11
6 10 3 9 5 0
7 6 11 8 10 7
8 1 0 2 1 3

9 7 9 1 7 8
10 3 4 5 11 4
11 0 8 10 3 2
12 11 2 6 0 9
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(d) An orthogonal array:

Run X1 X2 X3 X4 X5

1 0 0 0 0 0
2 0 1 1 1 1
3 0 2 2 2 2
4 0 3 3 3 3

5 1 0 1 2 3
6 1 1 0 3 2
7 1 2 3 0 1
8 1 3 2 1 0

9 2 0 2 3 1
10 2 1 3 2 0
11 2 2 0 1 3
12 2 3 1 0 2

13 3 0 3 1 2
14 3 1 2 0 3
15 3 2 1 3 0
16 3 3 0 2 1

9. Generate a combined FF and LH design with 8 simulations and 4
parameters:

Run X1 X2 X3 X4

1 4 7 6 5
2 5 1 5 3
3 7 5 0 0
4 6 3 3 6
5 3 0 1 2
6 2 6 2 4
7 0 2 7 7
8 1 4 4 1

10. No answer provided. Hint: look in the ACM journal Transactions on
Mathematical Software.
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11. Use Resolution IV designs with 8 parameters and 16 runs for each
grouping. There are only two influential parameters, so the probability
is only 1/8 that they will share the same grouping if grouping is done
randomly. Suppose in the first set of 16 simulations two groups appear
to be influential. In the next grouping, divide the parameters in those
groups into four groups, and divide the rest among the other four
groups. Again only two groups (at worst) appear to be influential. At
the next grouping, divide the parameters in those two into four groups,
and all the rest into four groups. And so on. If we start with 1000
parameters, the number of parameters in each influential group will be:
125 → 63 → 32 → 16 → 8 → 4 → 2 → 1. A total of eight groupings
with 128 simulations would be required. In general, the number of
groupings is 1+ log2�k/8	. With k = 1000000, the number of groupings
would be about 18, and the number of simulations would be only 288.
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3
Elementary Effects Method

3.1 INTRODUCTION

Is there a method which can cope with computationally expensive

models and give sensitivity results with a small number of model eval-

uations?

In the previous chapter we noted that the amount of information revealed
via a sensitivity analysis depends heavily on the number of sample points
that are simulated and where they are located.

In this chapter we will describe a sensitivity analysis method which is
effective in identifying the few important factors in a model that contains
many factors, with a relatively small number of sample points properly
distributed.

The method is conceptually simple and easy to implement. It belongs
to the class of OAT designs described in Chapter 2 but partially
overcomes their main limitations. While adhering to the concept of
local variation around a base point, this method makes an effort to
overcome the limitations of the derivative-based approach by intro-
ducing wider ranges of variations for the inputs and averaging a
number of local measures so as to remove the dependence on a single
sample point.

This method is ideal when the number of input factors is too large to allow
the application of computationally expensive variance-based techniques, but
at the same time not large enough to demand the use of group techniques
such as those described at the end of Chapter 2. With respect to group
techniques it has the advantage of examining each factor individually so as

Global Sensitivity Analysis. The Primer A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,
D. Gatelli, M. Saisana and S. Tarantola © 2008 John Wiley & Sons, Ltd
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to avoid the problem of cancellation effects (i.e. two factors, individually
influential, may belong to the same group and have effects that partially
cancel each other out).

3.2 THE ELEMENTARY EFFECTS METHOD

What is an elementary effect? How can I define a sensitivity measure

using the elementary effects? How can I interpret the sensitivity

results? When can I use this method?

The elementary effects (EE) method is a simple but effective way of
screening a few important input factors among the many that can be
contained in a model. The fundamental idea behind the method is owed
to Morris, who introduced the concept of elementary effects in 1991,
proposing the construction of two sensitivity measures with the aim of
determining which input factors could be considered to have effects which
were (a) negligible, (b) linear and additive, or (c) nonlinear or involved
in interactions with other factors. An elementary effect is defined as
follows. Consider a model with k independent inputs Xi� i = 1� � � � � k,
which varies in the k-dimensional unit cube across p selected levels. In
other words, the input space is discretized into a p-level grid �. For
a given value of X, the elementary effect of the ith input factor is
defined as

EEi = �Y �X1�X2� � � � �Xi−1�Xi +�� � � � Xk�−Y �X1�X2� � � � �Xk�	

�
� (3.1)

where p is the number of levels, � is a value in 
1/�p−1�� � � � �1−1/�p−1��,

X = �X1�X2� � � � Xk� is any selected value in � such that the transformed
point �X+ ei�� is still in � for each index i = 1� � � � � k, and ei is a vector of
zeros but with a unit as its ith component.

The distribution of elementary effects associated with the ith input factor
is obtained by randomly sampling different X from �, and is denoted
by Fi, i.e. EEi ∼ Fi. The Fi distribution is finite and, if p is even and �
is chosen to be equal to p/ �2�p−1��, the number of elements of Fi is
pk−1 �p−��p−1�	. Assume, for instance, that k = 2, p = 4 and � = 2/3,
for a total number of eight elements for each Fi. The four-level grid in the
input space is represented in Figure 3.1. The total number of elementary
effects can be counted from the grid by simply keeping in mind that each
elementary effect relative to a factor i is computed by using two points
whose relative distance in the coordinate Xi is �, and zero in any other
coordinate.

The sensitivity measures, � and , proposed by Morris, are respectively
the estimates of the mean and the standard deviation of the distribution Fi.
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0
0

1/3

2/3

1

1/3 2/3 1
X1

X
2

Figure 3.1 Representation of the four-level grid (p = 4) in the two-dimensional
input space (k = 2). The value of � is 2/3. The arrows identify the eight points
needed to estimate the elementary effects relative to factor X1

The mean � assesses the overall influence of the factor on the output.
The standard deviation  estimates the ensemble of the factor’s effects,
whether nonlinear and/or due to interactions with other factors. An intuitive
explanation of the meaning of  is the following. Assume that for factor
Xi we obtain a high value of . The elementary effects relative to this
factor thus differ notably from one another, implying that the value of an
elementary effect is strongly affected by the choice of the sample point at
which it is computed, i.e. by the choice of the other factors’ values. By
contrast, a low value of  indicates very similar values among the elementary
effects, implying that the effect of Xi is almost independent of the values
taken by the other factors. Campolongo et al. (2007) proposed replacing
the use of the mean � with �∗, which is defined as the estimate of the mean
of the distribution of the absolute values of the elementary effects that we
denote with Gi, i.e. �EEi� ∼ Gi.

The use of �∗ is convenient as it solves the problem of type II errors
(failing to identify a factor with considerable influence on the model), to
which the original measure � is vulnerable. Type II errors might occur when
the distribution Fi contains both positive and negative elements, i.e. when
the model is nonmonotonic or has interaction effects. In these cases, some
effects may cancel each other out when computing �, thus producing a
low mean value even for an important factor. To avoid such type II errors,
Morris (1991) recommended considering the values of � and  simulta-
neously, since a factor with elementary effects of different signs (i.e. that
cancel each other out) would have a low value of � but a considerable
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value of . A graphical representation in the ���� plane allows for a better
interpretation of results by taking into account at the same time the two
sensitivity measures. Morris’s approach is in general valuable, but it may
become problematic in the case of large models with multiple outputs (see
Campolongo et al., 2007). On the other hand, �∗ is a practical and concise
measure to use, especially when there are several output variables. More-
over, in contrast to �, �∗ has the advantage that it can be adjusted to
work with a group of factors, i.e. to produce an overall sensitivity measure
relative to a group (see Section 3.5). Campolongo et al. (2007) have also
shown that �∗ is a good proxy of the total sensitivity index ST discussed
in Chapter 4. The total sensitivity index is a measure of the overall effect
of a factor on the output (inclusive of interactions) and corresponds to
the expected variance that is left when all factors but Xi are fixed, i.e.
EX∼i

(
VXi

�Y �X∼i�
)
, and

STi
= EX∼i

(
VXi

�Y �X∼i�
)

V�Y �
�

STi
is to be used when the goal is that of identifying noninfluential factors

in a model (rather than prioritizing the most influential ones). �∗ is an
effective substitute for the total index when the computational cost of ST is
unaffordable.

In general, as the estimate of � comes at no extra computational cost (the
same number of model executions is required), we recommend computing
all three statistics, �,  and �∗, so as to extract the maximum amount
of sensitivity information. For instance, the comparison between � and �∗

provides information on the signs of the effects that the factor has on the
output. If � and �∗ are both high, it implies not only that the factor has
a large effect on the output, but also that the sign of this effect is always
the same. If, by contrast, � is low while �∗ is high, it means that the factor
examined has effects of different signs depending on the point of the space
at which the effect is computed. The sampling strategy to estimate the three
statistics is described in detail in the next section.

3.3 THE SAMPLING STRATEGY AND ITS
OPTIMIZATION

How can I build an efficient sample to estimate the elementary effects?

In order to estimate the sensitivity measures (i.e. the statistics of the
distributions Fi and Gi), the design focuses on the problem of sampling a
number r of elementary effects from each Fi. As the computation of each
elementary effect requires two sample points, the simplest design would
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require 2r sample points for each input, for a total of 2rk, where k is the
number of input factors. Morris (1991) suggested a more efficient design
that builds r trajectories of �k+1� points in the input space, each providing k
elementary effects, one per input factor, for a total of r�k+1� sample points.

The trajectories are generated in the following manner. A base value x∗

for the vector X is randomly selected in the p-level grid �. x∗ is not part
of the trajectory but is used to generate all the trajectory points, which are
obtained from x∗ by increasing one or more of its k components by �. The
first trajectory point, x�1�, is obtained by increasing one or more components
of x∗ by �, in such a way that x�1� is still in �. The second trajectory
point, x�2�, is generated from x∗ with the requirement that it differs from
x�1� in its ith component, which has been either increased or decreased by
�, i.e. x�2� = x�1� + ei� or x�2� = x�1� − ei�. The index i is randomly selected
in the set 
1�2� � � � � k�. The third sampling point, x�3�, is generated from
x∗ with the property that x�3� differs from x�2� for only one component j,
for any j �= i. It can be either x�3� = x�2� + ei� or x�3� = x�2� − ei�. And so on
until x�k+1�, which closes the trajectory. The design produces a trajectory
of �k+ 1� sampling points x�1��x�2�� � � � �x�k+1� with the key properties that
two consecutive points differ in only one component and that any value
of the base vector x∗ has been selected at least once to be increased by �.
An example of a trajectory for k = 3 is illustrated in Figure 3.2.

x(1)

X1

X2

X3

x(2)

x(3)

x(4)

Figure 3.2 An example of a trajectory in the input space when k = 3
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A technical scheme to generate trajectories with the required properties
is as follows. A trajectory can be seen in the form of a matrix, B∗, with
dimension �k + 1� × k, whose rows are the vectors x�1��x�2�� � � � �x�k+1�. To
build B∗, the first step is the selection of a matrix B, whose dimensions are
�k + 1� × k, with elements that are 0’s and 1’s and the key property that
for every column index j� j = 1� � � � � k, there are two rows of B that differ
only in the jth entry. A convenient choice for B is a strictly lower triangular
matrix of 1’s:

B =

⎡
⎢⎢⎢⎢⎣

0 0 0 � � � 0
1 0 0 � � � 0
1 1 0 � � � 0
1 1 1 0 � � �

� � � � � � � � � � � � � � �

⎤
⎥⎥⎥⎥⎦ �

The matrix B′, given by

B′ = Jk+1�kx
∗ +�B�

where Jk+1�k is a �k+1�×k matrix of 1’s and x∗ is a randomly chosen base
value of X, is a potential candidate for the desired design matrix, but it
has the limitation that the kth elementary effect it produces would not be
randomly selected.

A randomized version of the sampling matrix is given by

B∗ = (Jk+1�1x∗ + ��/2�
[(

2B− Jk+1�k

)
D∗ + Jk+1�k

])
P∗� (3.2)

where D∗ is a k-dimensional diagonal matrix in which each element is either
+1 or −1 with equal probability, and P∗ is a k-by-k random permutation
matrix in which each row contains one element equal to 1, all others are
0, and no two columns have 1’s in the same position. Read row by row, P∗

gives the order in which factors are moved; D∗ states whether the factors
will increase or decrease their value along the trajectory. B∗ provides one
elementary effect per input, which is randomly selected.

Example 3.1

Consider a model with two input factors uniformly distributed in �0�1	.
Consider the following set of levels 
0�1/3�2/3�1�. In this case k = 2, p = 4,
and we choose � = 2/3. Suppose the randomly generated x∗, D∗ and P∗ are

x∗ = 
1/3�1/3� D∗ =
[

1 0
0 −1

]
P∗ = I�



THE SAMPLING STRATEGY AND ITS OPTIMIZATION 115

The matrix B is given by

B =
⎡
⎣0 0

1 0
1 1

⎤
⎦

and for these values we get

��/2�
[(

2B− Jk+1�k

)
D∗ + Jk+1�k

]=
⎡
⎣ 0 �

� �
� 0

⎤
⎦=

⎡
⎣ 0 2/3

2/3 2/3
2/3 0

⎤
⎦

and

B∗ =
⎡
⎣1/3 1

1 1
1 1/3

⎤
⎦

so that x�1� = �1/3�1� �x�2� = �1�1� �x�1� = �1�1/3� (see Figure 3.3). This
procedure is repeated a number of times in order to build the distributions
Fi and Gi for each factor.

Campolongo et al. (2007) proposed an improvement of the sampling
strategy just described that facilitates a better scanning of the input domain
without increasing the number of model executions needed. The idea is to
select the r trajectories in such a way as to maximize their spread in the

0 1/3 2/3 1

0

1/3

2/3

1

Ω

x∗

x(1) x(2)

x(3)

X1

X
2

Figure 3.3 The trajectory obtained in Example 3.1
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input space. The design starts by generating a high number of different
trajectories, e.g. M ∼ 500–1000, and then selects the subset of r (e.g. r =
10�20) with the highest spread, where the concept of spread is based on
the following definition of distance, dml, between a pair of trajectories
m and l:

dml =

⎧⎪⎪⎨
⎪⎪⎩
∑k+1

i=1

∑k+1
j=1

√∑k
z=1

[
X

�i�
z �m�−X

�j�
z �l�
]2

m �= l

0 otherwise

(3.3)

where k is the number of input factors and X
�i�
z �m� indicates the zth

coordinate of the ith point of the mth trajectory. In other words,
dml is the sum of the geometric distances between all the pairs of
points of the two trajectories under analysis. The best r trajectories
from M are selected by maximizing the distance dml among them. First
we consider for each possible combination of r trajectories from M
the quantity D2, which is the sum of the squared distances between
all possible pairs of trajectories belonging to the combination. For
instance, for the combination 4�6�7, and 9 (i.e. r = 4) from the possible
M = 
1�2�3�4�5�6�7�8�9�10�, we define D4�6�7�9 as

D4�6�7�9 =
√

d2
4�6 +d2

4�7 +d2
4�9 +d2

6�7 +d2
6�9 +d2

7�9�

Then, we consider the combination with the highest value of D, of the

(
10
4

)

possible choices of r = 4 from M = 10. This sampling strategy optimizes
the scanning of the input space and is simple to implement.

3.4 THE COMPUTATION OF THE SENSITIVITY
MEASURES

How can I define a sensitivity measure using the elementary effects?

How many levels should I choose? How can I deal with non-uniform

distributions? What is the role of �?
The sampling strategy described above results in the construction of r

trajectories in �. Each trajectory corresponds to �k+ 1� model executions
and allows the computation of an elementary effect for each factor i, for
i = 1� ��� k. If x�l� and x�l+1�, with l in the set 
1� � � � � k�, are two sampling
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points of the jth trajectory differing in their ith component, the elementary
effect associated with factor i is

EE
j
i

(
x�l�
)=

[
y
(
x�l+1�

)−y
(
x�l�
)]

�

if the ith component of x�l� is increased by �, and

EE
j
i

(
x�l+1�

)=
[
y
(
x�l�
)−y

(
x�l+1�

)]
�

if the ith component of x�l� is decreased by �. Once r elementary effects per
input are available (EE

j
i � i = 1�2� � � � � k� j = 1�2� � � � � r), the statistics �i,

�∗
i and 2

i relative to the distributions Fi and Gi can be computed for each
factor by using the same estimators that would be used with independent
random samples, as the r elementary effects belong to different trajectories
and are therefore independent:

�i = 1
r

r∑
j=1

EE
j
i (3.4)

�∗
i = 1

r

r∑
j=1

�EE
j
i � (3.5)

2
i = 1

r −1

r∑
j=1

(
EE

j
i −�

)2
(3.6)

where EE
j
i indicates the elementary effects relative to factor i computed

along trajectory j.
A critical choice related to the implementation of the method is the

choice of the parameters p and �. The choice of p is strictly linked to
the choice of r. If one considers a high value of p, thus producing a high
number of possible levels to be explored, one is only seemingly enhancing
the accuracy of the sampling. If this is not coupled with the choice of a
high value of r, the effort will be wasted, since many possible levels will
remain unexplored. In general, when the sampling size r is small, it is likely
that not all possible factor levels will be explored within the experiment.
For instance, in the above example, if r = 1 the two factors never take the
values 0 and 2/3. If possible, it is convenient to choose an even value for p
as this affects the choice of �. In fact, assuming p to be even, a convenient
choice for � is � = p/�2�p − 1�	. This choice has the advantage that the
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design’s sampling strategy guarantees equal-probability sampling from each
Fi (for details see Morris, 1991).

The top part of Figure 3.4 (grey arrows) shows that when p = 4, the
choice of � = p/�2�p − 1�	 = 2/3 (left plot) guarantees that the four levels
have equal probability of being selected. On the other hand, a choice of
� = 1/3 (right plot) would imply that the levels 1/3 and 2/3 are sampled
more often, since there are two arrays pointing there. The two histograms

0 1/3 2/3 1 0 1/3 2/3 1

−0.5 0 0.5 1 1.5
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15
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X

Figure 3.4 Empirical distributions obtained by choosing different values of p and
� and sampling r = 20 trajectories
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below the arrows plot the empirical distributions obtained when generating
r = 20 trajectories for p = 4 levels, in the case of � = 2/3 (left plot) and
� = 1/3 (right plot). The bottom part of the figure illustrates the case in
which an odd number of levels is considered (p = 5). Under this condition,
no matter what value of � is chosen, it is impossible to achieve equal
probability for the elementary effects. In some cases, e.g. for p = 5 and
� = 3/4, there are elementary effects which can never be sampled. Previous
experiments (Campolongo and Saltelli, 1997; Campolongo et al., 1999b;
Saltelli et al., 2000) have demonstrated that the choice of p = 4 and r = 10
has produced valuable results.

If a factor follows a uniform distribution, the levels are obtained simply
by dividing into equal parts the interval in which each factor varies. If a
factor follows nonuniform distributions, then input values are not sampled
directly; rather, the sampling is carried out in the space of the quantiles of
the distributions, which is a k-dimensional hypercube (each quantile varies
in �0�1	). The actual factor values are then derived from its known statistical
distribution (Campolongo et al., 1999b). Figure 3.5 shows the case where a
factor X follows a normal standard distribution and the space of quantiles
is investigated via six quantiles �q1� q2� � � � � q6�. Using the inverse of the
normal cumulative distribution function (grey curve), corresponding levels
for X are obtained �L1�L2� � � � �L6�. If the distribution to be sampled has
an infinite support, the quantiles to be used can be chosen for instance
cutting the tails of the distribution. A good alternative is to divide the entire
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Figure 3.5 Sampling procedure for factors with standard normal distribution
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support into a number of intervals equal to �r + 1� and then to use the
centres of the bins (see also Section 2.3.2).

At this point, it is worth considering briefly the role of �. If � is chosen
to be equal for all input factors, its role in the definition of the elementary
effect for sensitivity purposes becomes irrelevant. �−1 is simply a constant
multiplying each elementary effect, which does not affect the sensitivity
analysis results. A question may arise in the case that an input factor needs
to be rescaled because its original distribution is not uniform between 0 and
1: Should � be rescaled so as to represent the actual sampling step in the
factor range of variation, or should it remain the same so as to represent the
sampling step between �0�1	 equal for each factor? The following example
addresses this question.

Assume the output Y is the simple function Y = X1 +X2, with X1 and
X2 uniformly distributed in �0�1	 and �0�10	 respectively. In our sensi-
tivity results one expects that input factor X2 is much more important
than input factor X1, since a variation in its value affects Y much more
than a variation in X1, i.e. X2 is much more uncertain than X1. Here we
consider p = 4 levels, � = 1/3, and r = 1 trajectory, i.e. we compute just one
elementary effect for each input and consider these as the final sensitivity
measures. Assume that we randomly generate the following trajectory of
quantiles for X1 and X2: �0�1/3� � �0�2/3� � �1/3�2/3�. The reader familiar
with the method can easily verify that this is a typical sample. Applying
the inverse cumulative function we obtain this sample for the two factors:
�0�10/3� � �0�20/3� � �1/3�20/3�. Finally, the elementary effects relative to
each input are estimated as

EE1 �X� = y �1/3�20/3�−y �0�20/3�

�
= 1/3

�

EE2 �X� = y �0�20/3�−y �0�10/3�

�
= 10/3

�
�

If in the computation of EE2 �X� the sampling step � was rescaled and
set to be equal to 10/3, then both elementary effects would prove to
be equal to 1, implying that both factors are to be considered equally
influential in determining the value of Y . If instead � is left equal to
1/3 for both factors, independently of the actual range of variation
of factor X2, we would obtain a sensitivity measure for X2 10 times
higher than that of X1. This second result is the correct one. In this
way we are considering a sensitivity measure capable of taking into
account not only the specifications of the model function, but also the
effect of the statistical distributions assumed for the inputs. In general,
whatever type of distribution is considered, � must always represent
the sampling step in the scale �0�1	, i.e. in the case of non-uniform
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distributions it should represent the variation in the quantiles of the
factors.

3.5 WORKING WITH GROUPS

How can I extend the EE method to deal with groups of factors?

Does the sampling strategy change?

The EE method presented above can also be extended to work with
groups using the �∗ measure alone. When working with groups, the idea is
to move all factors of the same group simultaneously. In the original defi-
nition given by Morris, the elementary effect is obtained by subtracting the
function evaluated at X from that evaluated after incrementing one factor
see Equation (3.1). This definition cannot be extended straightforwardly to
cases in which more than one factor is moved at the same time, as two
factors may have been changed in opposite directions, i.e. one increased
and one decreased by �. By contrast, using �∗ overcomes this problem, as
the focus is not on the elementary effect itself but on its absolute value,
i.e. the elementary effect is always positive, regardless of the displacement
of the factors. For a two-factor group u = (Xi1

�Xi2

)
, the absolute elementary

effect in point X is

�EEu �X�� =
∣∣∣∣∣y�X̃�−y�X�

�

∣∣∣∣∣ (3.7)

where X is any selected value in � such that the transformed point X̃ is
still in �, and each of the components

(
X̃i1

� X̃i2

)
has been either increased

or decreased by � with respect to
(
Xi1

�Xi2

)
.

In order to treat groups of factors, the sampling strategy described in
Section 3.3 needs to be modified slightly. It is first necessary to consider a
matrix G describing how factors are allocated into groups. This matrix is
defined as follows: its element G�i� j� equals 1 if factor i belongs to group
j; otherwise G�i� j� = 0. If g is the number of groups in the experiment, G
has sizes k × g. In this case the matrix of trajectories B∗ has dimensions
�g +1�×k, since all the factors in a group move together. B∗ can be built
considering a lower triangular matrix B whose dimensions are �g + 1�×g
and setting

B∗ = Jg+1�1x∗ + ��/2�
[(

2B �GP∗�T − Jg+1�k

)
D∗ + Jg+1�k

]
�

where, similarly to the single-factor experiment, Ji�j is a matrix of 1’s with
dimensions �i× j�; D∗ is a diagonal matrix �k×k� describing whether the
factors increase or decrease value; and P∗ is a �g ×g� matrix, describing the
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order in which the groups move. The following example illustrates how to
handle groups of factors.

Example 3.2

Consider three factors X1, X2 and X3, uniformly distributed on �0�1	, and
assigned to a number of groups g = 2. The first group �G1� contains only
factor X1; the second �G2� contains the other two factors. The matrix G is
therefore defined as

G =
⎡
⎣1 0

0 1
0 1

⎤
⎦ �

Consider an experiment with p = 4 levels and the choice � = 2/3. Suppose
we obtain the following matrices for x∗, D∗ and P∗:

x∗ = �1/3�1/3�0� D∗ =
⎡
⎣1 0 0

0 −1 0
0 0 1

⎤
⎦ P∗ =

[
1 0
0 1

]
�

In this case we get

��/2�
[(

2B �GP∗�T − Jg+1�k

)
D∗ + Jg+1�k

]

= �/2

⎡
⎣
⎛
⎝2

⎡
⎣0 0

1 0
1 1

⎤
⎦
⎡
⎣1 0

0 1
0 1

⎤
⎦−

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦
⎞
⎠
⎡
⎣1 0 0

0 −1 0
0 0 1

⎤
⎦+

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦
⎤
⎦

=
⎡
⎣ 0 � 0

� � 0
� 0 �

⎤
⎦

which makes clear that X1 (i.e. G1) moves first and increases in value, and
then that the factors in G2 change their values in opposite directions (X2

decreases and X3 increases). The final matrix is then:

B∗ =
⎡
⎣1/3 1 0

1 1 0
1 1/3 2/3

⎤
⎦ �

Note that the two factors in the same group also take values on different
levels.
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3.6 THE EE METHOD STEP BY STEP

In this section we show how to put the EE method illustrated above into
practice. The method is tested on the analytical g-function attributed to
Sobol’ (1990):

Y =
k∏

i=1

gi �Xi� where gi �Xi� = �4Xi −2�+ai

1+ai

and ai are parameters, such that ai ≥ 0. This function is widely used as
a test function in sensitivity analysis because it is a very difficult one: it
is strongly nonlinear and nonmonotonic, and all its interaction terms are
nonzero by definition. Moreover it is possible to compute analytically the
output variance decomposition and therefore the variance-based sensitivity
indices Si and STi

. The values of the ai determine the relative importance of
the Xi as they determine the range of variation of each gi �Xi�:

1− 1
1+ai

≤ gi �Xi� ≤ 1+ 1
1+ai

�

Thus, the higher the ai value, the lower the importance of the Xi variable.
This is also shown by Figure 3.6, which illustrates the behaviour of gi �Xi�
as a function of Xi for the values of ai = 0�9, ai = 9 and ai = 99.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

Xi

g i
 (X

i)

a = 99
a = 9
a = 0.9

Figure 3.6 gi �Xi� as a function of Xi for ai = 0�9, ai = 9 and ai = 99
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The partial variances of the first order are given by

Vi = V�E�Y �Xi�� = 1

3 �1+ai�
2 �

while the higher-order partial variances are simply the product of the lower
ones, i.e. V12 = V1V2 . Finally, the total variance can be written as a function
of the first-order terms only:

V�Y� = −1+
k∏

i=1

�1+Vi� �

This allows us to calculate analytically the first- and total-order sensitivity
indices for the g-function. In our example we assume k = 6 and we set the
ai parameter values as shown in Table 3.1.

We now perform the sensitivity analysis by making use of the EE
method introduced in this chapter. The uncertainty in the input variables
is modelled by assuming that all the Xi are uniformly distributed in the
six-dimensional unit cube (i.e. Xi ∼ U �0�1	 �∀i). The optimized strategy
described in Section 3.3 is used to estimate the sensitivity measures �, �∗

and . p = 4 levels and � = 2/3 are chosen; r = 4 trajectories are employed,
selected out of a group of 100. The sampled input matrix is presented in
Table 3.2, columns 2–7. The last column reports the corresponding values
for the g-function. The graphs in Figure 3.7 present the scatterplots of the

Table 3.1 Values of the parameters of the g-function
for each input

a1 a2 a3 a4 a5 a6

78 12 0.5 2 97 33

Table 3.2 Sampled trajectories and corresponding g-function values

X1 X2 X3 X4 X5 X6 g

0 2/3 1 0 0 1/3 2.193
0 2/3 1 0 0 1 2.280
0 0 1 0 0 1 2.520

t1 2/3 0 1 0 0 1 2.478
2/3 0 1 2/3 0 1 1.652
2/3 0 1/3 2/3 0 1 0.771
2/3 0 1/3 2/3 2/3 1 0.761
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0 1/3 1/3 1 1 2/3 1.024
0 1 1/3 1 1 2/3 1.131
0 1 1 1 1 2/3 2.424

t2 2/3 1 1 1 1 2/3 2.384
2/3 1 1 1 1 0 2.478
2/3 1 1 1 1/3 0 2.445
2/3 1 1 1/3 1/3 0 1.630

1 2/3 0 2/3 1 0 1.520
1 2/3 0 0 1 0 2.280
1/3 2/3 0 0 1 0 2.242

t3 1/3 2/3 0 0 1/3 0 2.212
1/3 0 0 0 1/3 0 2.445
1/3 0 2/3 0 1/3 0 1.141
1/3 0 2/3 0 1/3 2/3 1.097

1 1/3 2/3 1 0 1/3 1.024
1 1/3 2/3 1 0 1 1.064
1 1/3 0 1 0 1 2.280

t4 1 1/3 0 1/3 0 1 1.520
1 1/3 0 1/3 2/3 1 1.500
1 1 0 1/3 2/3 1 1.657
1/3 1 0 1/3 2/3 1 1.630

output as a function of each input. In this example, in which the number
of inputs is not too large, the use of scatterplots already reveals that one
factor (X3) plays a key role in the function. For more complex exam-
ples, in which the number of factors is larger, the use of scatterplots is
cumbersome.

As an example, Table 3.3 shows how to estimate the sensitivity measures
for factor X4. The values of �, �∗ and  are reported in Table 3.4. Results
indicate that X3 and X4 are important factors, while factors X1, X5 and X6

can be regarded as noninfluential (see the �∗ values in the first column).
The high values of  for some factors also demonstrate that interactions
play an important role in the model. Moreover, the low values of � asso-
ciated with high values of �∗ indicate that factors have effects of oscil-
lating signs. Figure 3.8 shows in a barplot the values of �∗ in increasing
order. It is clear that in this example, �∗ alone can be used to assess
the importance of each factor of the model. These results can be used to
fix unimportant factors in the model (the Factor Fixing setting, see also
Chapters 1 and 4). The extremely low values of �∗ for X1 and X5 show
that these factors can be fixed without affecting the variance of g to a
great extent. On the other hand, it is clear that factors X3 and X4 cannot
be fixed. The remaining factors (X2 and X6) stay in-between. The deci-
sion to fix them or not depends on how much importance is assigned to
type II errors.
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Figure 3.7 Scatterplot of the g =∏k
i+1 gi �Xi� as a function of each input

Table 3.3 Estimation of the distribution of the elementary effects (and their
absolute values) for factor X4

g �X1� � � � �X4 +�� � � � �X6� g �X1� � � � �X4� � � � �X6� EE4 �X� �EE4 �X� �
t1 1.652 2.478 −1�239 1.239
t2 2.445 1.630 1.222 1.222
t3 1.520 2.280 −1�140 1.140
t4 2.280 1.520 1.140 1.140
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Table 3.4 Estimated sensitivity measures. The
measures are estimated using r = 4 trajectories

�∗ � �

X1 0.056 −0�006 0.064
X2 0.277 −0�078 0.321
X3 1.760 −0�130 2.049
X4 1.185 −0�004 1.370
X5 0.035 0.012 0.041
X6 0.099 −0�004 0.122

X5 X1 X6 X2 X4 X3
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Figure 3.8 Barplot of �∗ for the g-function

3.7 CONCLUSIONS

The EE method illustrated in this chapter is effective in identifying the
few important factors in a model that contains many factors, with a rela-
tively small number of model evaluations. The method is convenient when
the number of factors is large and/or the model execution time is such
that the computational cost of more sophisticated techniques is excessive,
but not large enough to oblige the modeller to make use of grouping
techniques.
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With respect to a group technique, the EE method has the advantage
of examining each factor individually so as to prevent cancellation effects
and to offer a well-defined strategy to assess the importance of each indi-
vidual factor. The method is conceptually simple. It can be thought of as
an expansion of a derivative-based approach: when a single trajectory is
considered, and the variations of input factors are small, it reduces to a
incremental ratio estimation. Nevertheless, it overcomes the limitations of
a local derivative-based approach in that it attempts to explore the whole
input space. The method is computationally easy and has the flexibility
typical of OAT approaches in handling unstable models. When a model is
unstable it threatens to crash if executed on a set of input values rather
different from the nominal values on which it was calibrated. Similarly to
OAT designs, which allow for the substitution of a sample point when
the model fails, without changing the full design, the EE method, being
based on trajectories independent of one another, allows for the substi-
tution of a trajectory on which the model execution fails with another
one better handled by the model. Last but not least, when necessary, the
method can be applied to groups, thus increasing the efficiency of the
design.

3.8 EXERCISES

1. Given three input factors, X1, X2 and X3, all uniformly distributed in
�0�1	, build some examples of trajectories for p = 4, p = 6, and p = 8.

2. Given three input factors, X1, X2 and X3, all normally distributed with
mean 0 and variance 1, build an example of trajectories for p = 6 levels
(consider cutting the tails at quantiles 0.5 and 99.5%, or using the
centres of the bins as described in Section 2.4.3).

3. Consider two input factors, X1 and X2, uniformly distributed in �0�1	
and a number of levels p = 4.

(a) Following the revised sampling strategy, generate randomly a number
M = 6 of trajectories and then select, according to the approach
described in Section 3.3, the best four out of six.

(b) Show by means of graphical representation that the new strategy
outperforms the old one in terms of input-space scanning

4. As a follow-up to Exercise 3, given the model

y = sin��X1�+ cos��X2/4�+√X1X2�

make use of the full set of M = 6 trajectories and compute the sensitivity
measures �, �∗ and  for the two input factors X1 and X2.
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5. Consider a model with 15 input factors with standard normal distri-
bution, i.e. Xi ∼ N �0�1�. Consider the function (Oakley and O’Hagan,
2004)

y = aT
1 +aT

2 cos�X�+aT
3 sin�X�+XT MX

where aj � �j = 1�2�3� and M are respectively three vectors and a matrix
of parameters, whose values are reported in Tables 3.5 and 3.6. Consider
cutting the tails of the normal distributions at quantiles 5 and 95%. For
this model estimate the sensitivity measures �∗, �.

6. As a follow-up to Exercise 5, group the 15 factors into the two groups
described by the matrix G below and compute the sensitivity measures
for the groups using r = 10 trajectories.

GT =
[

0 0 0 0 0 0 0 0 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 0 0 0 0 0

]

7. Consider the function introduced by Morris (1991):

y = �0 +
20∑
i=1

�i�i +
20∑
i<j

�i�j�i�j +
20∑

i<j<l

�i�j�l�i�j�l +
20∑

i<j<l<s

�i�j�l�s�i�j�l�s

where �i = 2 �Xi −1/2� except for i = 3, 5, and 7, where

�i = 2 �1�1Xi/ �Xi +0�1�−1/2� �

Table 3.5 Vectors of parameters for the Oakley–O’Hagan
function

Factor a1 a2 a3

X1 0.01 0.43 0.10
X2 0.05 0.09 0.21
X3 0.23 0.05 0.08
X4 0.04 0.32 0.27
X5 0.12 0.15 0.13
X6 0.39 1.04 0.75
X7 0.39 0.99 0.86
X8 0.61 0.97 1.03
X9 0.62 0.90 0.84
X10 0.40 0.81 0.80
X11 1.07 1.84 2.21
X12 1.15 2.47 2.04
X13 0.79 2.39 2.40
X14 1.12 2.00 2.05
X15 1.20 2.26 1.98



Table 3.6 Matrix of parameters for the Oakley–O’Hagan function

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

X1 −0�02 −0�19 0�13 0�37 0�17 0�14 −0�44 −0�08 0�71 −0�44 0�5 −0�02 −0�05 0�22 0�06
X2 0�26 0�05 0�26 0�24 −0�59 −0�08 −0�29 0�42 0�5 0�08 −0�11 0�03 −0�14 −0�03 −0�22
X3 −0�06 0�2 0�1 −0�29 −0�14 0�22 0�15 0�29 0�23 −0�32 −0�29 −0�21 0�43 0�02 0�04
X4 0�66 0�43 0�3 −0�16 −0�31 −0�39 0�18 0�06 0�17 0�13 −0�35 0�25 −0�02 0�36 −0�33
X5 −0�12 0�12 0�11 0�05 −0�22 0�19 −0�07 0�02 −0�1 0�19 0�33 0�31 −0�08 −0�25 0�37
X6 −0�28 −0�33 −0�1 −0�22 −0�14 −0�14 −0�12 0�22 −0�03 −0�52 0�02 0�04 0�36 0�31 0�05
X7 −0�08 0�004 0�89 −0�27 −0�08 −0�04 −0�19 −0�36 −0�17 0�09 0�4 −0�06 0�14 0�21 −0�01
X8 −0�09 0�59 0�03 −0�03 −0�24 −0�1 0�03 0�1 −0�34 0�01 −0�61 0�08 0�89 0�14 0�15
X9 −0�13 0�53 0�13 0�05 0�58 0�37 0�11 −0�29 −0�57 0�46 −0�09 0�14 −0�39 −0�45 −0�15
X10 0�06 −0�32 0�09 0�07 −0�57 0�53 0�24 −0�01 0�07 0�08 −0�13 0�23 0�14 −0�45 −0�56
X11 0�66 0�35 0�14 0�52 −0�28 −0�16 −0�07 −0�2 0�07 0�23 −0�04 −0�16 0�22 0 −0�09
X12 0�32 −0�03 0�13 0�13 0�05 −0�17 0�18 0�06 −0�18 −0�31 −0�25 0�03 −0�43 −0�62 −0�03
X13 −0�29 0�03 0�03 −0�12 0�03 −0�34 −0�41 0�05 −0�27 −0�03 0�41 0�27 0�16 −0�19 0�02
X14 −0�24 −0�44 0�01 0�25 0�07 0�25 0�17 0�01 0�25 −0�15 −0�08 0�37 −0�3 0�11 −0�76
X15 0�04 −0�26 0�46 −0�36 −0�95 −0�17 0�003 0�05 0�23 0�38 0�46 −0�19 0�01 0�17 0�16
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Each input factor Xi is uniformly distributed in �0�1	. Coefficients with
relatively large values are: �i = 20� i = 1� ���10; �i�j = −15� i� j =
1� ���6; �i�j�l = −10� i� j� l = 1� ���5; �i�j�l�s = 5, i� j� l� s = 1� ���4. The
remaining first- and second-order coefficients are independently gener-
ated from a normal distribution with zero mean and unit standard
deviation. The remaining third- and fourth-order coefficients are set
to zero. For this test case, estimate the sensitivity analysis measures
�∗, � and  using the optimized sampling strategy with r = 10
trajectories and discuss the results, considering also the structure of
the function y.

8. As a follow-up to Exercise 7, group the 20 factors into g = 4 groups
described by the matrix G below and compute the sensitivity measures
for the groups using r = 10 trajectories. Discuss the results, using the
sensitivity information from Exercise 7.

GT =

⎡
⎢⎢⎣

1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0

⎤
⎥⎥⎦ �

3.9 SOLUTIONS

1. We treat separately the three cases p = 4�6�8.

• Number of levels p = 4
The levels are 
0�1/3�2/3�1�. Consider the optimal value for �,
which is � = 2/3, and suppose that the randomly generated x∗, D∗

and P∗ are

x∗ = �0�1/3�1/3	 D∗ =
⎡
⎣−1 0 0

0 1 0
0 0 1

⎤
⎦ P∗ =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ �

For these values,

��/2�
[(

2B− Jk+1�k

)
D∗ + Jk+1�k

]=

⎡
⎢⎢⎣

� 0 0
0 0 0
0 � 0
0 � �

⎤
⎥⎥⎦
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and then

B∗ =

⎡
⎢⎢⎣

1/3 1/3 2/3
1/3 1/3 0
1 1/3 0
1 1 0

⎤
⎥⎥⎦ �

The trajectory obtained is x�1� = �1/3�1/3�2/3� �x�2� = �1/3�1/3�0� �
x�3� = �1� 1/3�0�; x�4� = �1�1�0�.

• Number of levels p = 6
The levels are 
0�1/5�2/5�3/5�4/5�1�. Suppose that � = 3/5, and
suppose that the randomly generated x∗, D∗ and P∗ are x∗ =
�0�1/5�2/5	;

D∗ =
⎡
⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎦ P∗ =

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ �

For these values,

��/2�
[(

2B− Jk+1�k

)
D∗ + Jk+1�k

]=

⎡
⎢⎢⎣

� � �
0 � �
0 0 �
0 0 0

⎤
⎥⎥⎦

and then

B∗ =

⎡
⎢⎢⎣

1 3/5 4/5
1 0 4/5
1 0 1/5

2/5 0 1/5

⎤
⎥⎥⎦ �

The trajectory obtained is x�1� = �1�3/5�4/5� �x�2� = �1�0�4/5� �
x�3� = �1�0�1/5�; x�4� = �2/5�0�1/5�.

• Number of levels p = 8
The levels are 
0�1/7�2/7�3/7�4/7�5/7�6/7�1�. Suppose that
� = 3/7, and suppose that the randomly generated x∗, D∗ and P∗ are
x∗ = �1/7�3/7�2/7	;

D∗ =
⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦ P∗ =

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ �

For these values,

��/2�
[(

2B− Jk+1�k

)
D∗ + Jk+1�k

]=

⎡
⎢⎢⎣

0 0 �
� 0 �
� � �
� � 0

⎤
⎥⎥⎦
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and then

B∗ =

⎡
⎢⎢⎣

1/7 5/7 3/7
4/7 5/7 3/7
4/7 5/7 6/7
4/7 2/7 6/7

⎤
⎥⎥⎦ �

The trajectory obtained is x�1� = �1/7�5/7�3/7� �x�2� =
�4/7�5/7�3/7� �x�3� = �4/7�5/7�6/7�; x�4� = �4/7�2/7�6/7�.

2. • Cut off the tails
Since the factors are not uniformly distributed, the quantiles are first
sampled and the corresponding values for the factors are obtained
subsequently. In this exercise we cut 0.5% of the distribution in each
tail. We first sample the quantiles:


0�0�0�2�0�4�0�6�0�8�1�0��

Suppose that � = 0�6 and that the randomly generated x∗, D∗ and
P∗ are

x∗ = �0�2�0�4�0�4	 D∗ =
⎡
⎣1 0 0

0 −1 0
0 0 −1

⎤
⎦ P∗ =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ �

For these values,

B∗ =

⎡
⎢⎢⎣

1�0 1�0 0�2
1�0 1�0 0�8
0�4 1�0 0�8
0�4 0�4 0�8

⎤
⎥⎥⎦ �

To cut the tails, we rescale these values in the range �0�005�0�995	,
thus obtaining

B∗ =

⎡
⎢⎢⎣

0�995 0�995 0�203
0�995 0�995 0�797
0�401 0�995 0�797
0�401 0�401 0�797

⎤
⎥⎥⎦ �

Finally, by applying the inverse normal cumulative function �−1, the
final values for the factors are obtained:

�−1B∗ =

⎡
⎢⎢⎣

2�576 2�576 −0�831
2�576 2�576 0�831

−0�251 2�576 0�831
−0�251 −0�251 0�831

⎤
⎥⎥⎦ �
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• Centres of bins
In this case we divide the interval �0�1	 into six subintervals and we
consider the centres of the bins as levels:


0�083�0�250�0�417�0�583�0�750�0�917��

Suppose that � = 0�5, x∗ = �0�083�0�417�0�250	, and that the
randomly generated D∗ and P∗ are as above. Then we obtain

B∗ =

⎡
⎢⎢⎣

0�917 0�750 0�083
0�917 0�750 0�583
0�417 0�750 0�583
0�417 0�250 0�583

⎤
⎥⎥⎦ �

By applying the inverse normal cumulative function �−1, the corre-
sponding values for the factors are obtained:

�−1B∗ =

⎡
⎢⎢⎣

1�383 0�675 −1�383
1�383 0�675 0�210

−0�210 0�675 0�210
−0�210 −0�675 0�210

⎤
⎥⎥⎦ �

3. (a) Consider generating the following six trajectories:

B∗
1 =

⎡
⎣ 0 1/3

0 1
2/3 1

⎤
⎦ B∗

2 =
⎡
⎣ 0 1/3

2/3 1/3
2/3 1

⎤
⎦ B∗

3 =
⎡
⎣2/3 0

2/3 2/3
0 2/3

⎤
⎦

B∗
4 =

⎡
⎣1/3 1

1 1
1 1/3

⎤
⎦ B∗

5 =
⎡
⎣1/3 1

1/3 1/3
1 1/3

⎤
⎦ B∗

6 =
⎡
⎣1/3 2/3

1/3 0
1 0

⎤
⎦ �

Following the notation introduced in Section 3.3, we denote with
X

�i�
z �m� the z-component (z = 1�2) of the ith point (i = 1�2�3) of

the mth trajectory (m = 1�2� � � � �6). We show, for instance, how to
calculate the distance between trajectories B∗

1 and B∗
3:

EE13 =
√[

X
�1�
1 �1�−X

�1�
1 �3�

]2 +
[
X

�1�
2 �1�−X

�1�
2 �3�

]2

+
√[

X
�1�
1 �1�−X

�2�
1 �3�

]2 +
[
X

�1�
2 �1�−X

�2�
2 �3�

]2

+
√[

X
�1�
1 �1�−X

�3�
1 �3�

]2 +
[
X

�1�
2 �1�−X

�3�
2 �3�

]2
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+
√[

X
�2�
1 �1�−X

�1�
1 �3�

]2 +
[
X

�2�
2 �1�−X

�1�
2 �3�

]2

+
√[

X
�2�
1 �1�−X

�2�
1 �3�

]2 +
[
X

�2�
2 �1�−X

�2�
2 �3�

]2

+
√[

X
�2�
1 �1�−X

�3�
1 �3�

]2 +
[
X

�2�
2 �1�−X

�3�
2 �3�

]2

+
√[

X
�3�
1 �1�−X

�1�
1 �3�

]2 +
[
X

�3�
2 �1�−X

�1�
2 �3�

]2

+
√[

X
�3�
1 �1�−X

�2�
1 �3�

]2 +
[
X

�3�
2 �1�−X

�2�
2 �3�

]2

+
√[

X
�3�
1 �1�−X

�3�
1 �3�

]2 +
[
X

�3�
2 �1�−X

�3�
2 �3�

]2

=
√

�2/3�2 + �1/3�2 +
√

�2/3�2 + �1/3�2 +
√

�1/3�2

+
√

�2/3�2 +
√

�2/3�2 + �1�2 +
√

�2/3�2 + �1/3�2

+
√

�1/3�2 +
√

�1�2 +
√

�1/3�2 +
√

�2/3�2 + �1/3�2

= 6�18�

The complete matrix of distances obtained by applying the defini-
tion of distance between each pair of the sampled trajectories (see
Equation (3.3)) is

dml =

⎡
⎢⎢⎢⎢⎢⎢⎣

0�00
5�50 0�00
6�18 5�31 0�00
6�89 6�18 6�57 0�00
6�18 5�31 5�41 5�50 0�00
7�52 5�99 5�52 7�31 5�77 0�00

⎤
⎥⎥⎥⎥⎥⎥⎦

�

To select the optimal set of trajectories it is necessary to
consider all the possible combinations of four trajectories out
of six and to evaluate the squared root of the sum of their
squared distances, D. Table 3.7 shows the possible combina-
tions for the present exercises. The optimal set of trajectories
is B∗

1, B∗
3, B∗

4, B∗
6.

(b) Figure 3.9 shows the histograms of the values sampled for X1 and
X2 when using the optimal trajectories scheme (bottom plot) and
the original trajectories scheme (top plot), assuming that the original
scheme would have taken the first four generated (i.e. B∗

1, B∗
2,
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Table 3.7 Possible combinations of four trajectories out of six and corresponding
values of the measure used to identify the optimal set

Trajectories 
i� j� l�m� D Trajectories 
i� j� l�m� D

1-2-3-4 15.022 1-3-5-6 15.685
1-2-3-5 13.871 1-4-5-6 16.098
1-2-3-6 14.815 2-3-4-5 14.049
1-2-4-5 14.582 2-3-4-6 15.146
1-2-4-6 16.178 2-3-5-6 14.333
1-2-5-6 14.912 2-4-5-6 14.807
1-3-4-5 15.055 3-4-5-6 14.825
1-3-4-6 16.410

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

X1

−0.5 0 0.5 1 1.5
X2

−0.5 0 0.5 1 1.5
X1

−0.5 0 0.5 1 1.5
X2

0.5

0

1

1.5

2

2.5

3

0.5

0

1

1.5

2

2.5

3

Figure 3.9 Original (top plots) versus optimized (bottom plots) sampled distribu-
tions obtained in Exercise 3

B∗
3 and B∗

4). Figure 3.10 plots the paths of the original (top plot)
and optimized (bottom plot) trajectories. The optimized strategy has
produced a better sample, in terms of both the level explored (the
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Figure 3.10 Original (top plot) versus optimized (bottom plot) paths of sampled
trajectories for Exercise 3
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sampled distributions match the theoretical ones) and the spread of
the trajectories.

4. Given the values of the sampled inputs, the corresponding values for
the output are reported in Table 3.8. The plots in Figure 3.11 show the
output as a function of X1 (top plot) and X2 (bottom plot).

To compute the sensitivity measures �, �∗ and  we estimate the
elementary effects of X1 and X2 and their absolute values on each trajec-
tory, which are shown in Table 3.9. The measures � and  are the mean
and the standard deviation of these elementary effects:

��X1� = 2�52+2�01+2�30−0�66−0�93−1�30
6

= 0�66

�X1� =
√

�2�52−0�66�2 +1�352 +1�642 + �−1�32�2 + �−1�59�2 + �−1�96�2

5
= 1�79

��X2� = −0�39+0�13+0�80+0�25−0�02+0�51
6

= 0�21

�X2� =
√

�−0�6�2 + �−0�08�2 +0�592 +0�032 + �−0�23�2 +0�302

5
= 0�41

Table 3.8 Sample and output values for Exercise 4
in the case of r = 6 trajectories

X1 X2 Y

0 1/3 0.97
t1 0 1 0.71

2/3 1 2.39
0 1/3 0.97

t2 2/3 1/3 2.30
2/3 1 2.39
2/3 0 1.87

t3 2/3 2/3 2.40
0 2/3 0.87
1/3 1 2.15

t4 1 1 1.71
1 1/3 1.54
1/3 1 2.15

t5 1/3 1/3 2.17
1 1/3 1.54
1/3 2/3 2.20

t6 1/3 0 1.87
1 0 1.00
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Figure 3.11 Scatterplots of y = sin��X1� + cos��X2/4� +√X1X2 as a function of
X1 (top plot) and X2 (bottom plot)
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Table 3.9 Computation of the elementary effects and
their absolute values for Exercise 4

y�Xi +��Xj� y�Xi�Xj� EEi �X� �EEi �X� �
X1 t1 2.39 0.71 2�52 2�52

t2 2.30 0.97 2�01 2�01
t3 2.40 0.87 2�30 2�30
t4 1.71 2.15 −0�66 0�66
t5 1.54 2.17 −0�93 0�93
t6 1.00 1.87 −1�30 1�3

X2 t1 0.71 0.97 −0�39 0�39
t2 2.39 2.30 0�13 0�13
t3 2.40 1.87 0�80 0�80
t4 1.71 1.54 0�25 0�25
t5 2.15 2.17 −0�02 0�02
t6 2.20 1.87 0�51 0�51

�∗ is instead the mean of the absolute values of these elementary effects:

�∗�X1� = 2�52+2�01+2�30+0�66+0�93+1�30
6

= 1�62

�∗�X2� = 0�39+0�13+0�80+0�25+0�02+0�51
6

= 0�35�

Both values of �∗ and  show that factor X1 is unequivocally more
important than factor X2.

5. Since the factors are normally distributed, we need to sample the quan-
tiles and subsequently transform the values using the inverse of the
normal cumulative distribution function, as explained in Section 3.4. In
this exercise, quantiles are obtained by cutting the tails of the normal
distribution at quantiles 5 and 95% and dividing this interval into three
intervals. We leave to the reader the option of repeating the same exer-
cise without cutting the tails, and instead apportioning the entire space
of quantiles into four intervals and using the bin centres, as exemplified
in Exercise 2.

Table 3.10 reports a sample composed of r = 4 trajectories. The last
column shows the corresponding values of the output. The trajectories
are labelled as ti� i = 1�2�3�4.

Consider, for instance, factor X1. Its elementary effects are esti-
mated as shown in Table 3.11. Note that to estimate EEi �X� and
its absolute value, the rescaling factor is � = 2/3 (i.e. the vari-
ation of the factor in the space of the quantiles �0�1	 is used).
Table 3.12 reports the elementary effects for each trajectory and for
all the factors.



Table 3.10 Sampled trajectories (labeled t1, t2, t3, and t4) and corresponding values for the Oakley–O’Hagan function

t1

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 Y

1.64 −1�64 −1�64 0.39 −0�39 0.39 −1�64 −1�64 −0�39 −0�39 1.64 1.64 −0�39 0.39 1.64 24.90
1.64 −1�64 −1�64 0.39 −0�39 −1�64 −1�64 −1�64 −0�39 −0�39 1.64 1.64 −0�39 0.39 1.64 22.72
1.64 −1�64 −1�64 0.39 −0�39 −1�64 −1�64 −1�64 1.64 −0�39 1.64 1.64 −0�39 0.39 1.64 21.04
1.64 −1�64 −1�64 0.39 −0�39 −1�64 −1�64 0.39 1.64 −0�39 1.64 1.64 −0�39 0.39 1.64 16.01
1.64 −1�64 −1�64 −1�64 −0�39 −1�64 −1�64 0.39 1.64 −0�39 1.64 1.64 −0�39 0.39 1.64 10.40
1.64 −1�64 −1�64 −1�64 −0�39 −1�64 −1�64 0.39 1.64 −0�39 1.64 −0�39 −0�39 0.39 1.64 10.04
1.64 −1�64 −1�64 −1�64 −0�39 −1�64 −1�64 0.39 1.64 −0�39 1.64 −0�39 −0�39 −1�64 1.64 8.60
1.64 0.39 −1�64 −1�64 −0�39 −1�64 −1�64 0.39 1.64 −0�39 1.64 −0�39 −0�39 −1�64 1.64 13.39
1.64 0.39 −1�64 −1�64 −0�39 −1�64 −1�64 0.39 1.64 −0�39 1.64 −0�39 −0�39 −1�64 −0�39 4.69
1.64 0.39 −1�64 −1�64 −0�39 −1�64 −1�64 0.39 1.64 1.64 1.64 −0�39 −0�39 −1�64 −0�39 8.02
1.64 0.39 −1�64 −1�64 1.64 −1�64 −1�64 0.39 1.64 1.64 1.64 −0�39 −0�39 −1�64 −0�39 9.98
1.64 0.39 −1�64 −1�64 1.64 −1�64 −1�64 0.39 1.64 1.64 −0�39 −0�39 −0�39 −1�64 −0�39 3.75
1.64 0.39 −1�64 −1�64 1.64 −1�64 0.39 0.39 1.64 1.64 −0�39 −0�39 −0�39 −1�64 −0�39 1.33
1.64 0.39 0.39 −1�64 1.64 −1�64 0.39 0.39 1.64 1.64 −0�39 −0�39 −0�39 −1�64 −0�39 2.59

−0�39 0.39 0.39 −1�64 1.64 −1�64 0.39 0.39 1.64 1.64 −0�39 −0�39 −0�39 −1�64 −0�39 6.37
−0�39 0.39 0.39 −1�64 1.64 −1�64 0.39 0.39 1.64 1.64 −0�39 −0�39 1.64 −1�64 −0�39 9.99



Table 3.10 (Continued)

t2

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 Y

−0�39 −0�39 0.39 0.39 −0�39 −0�39 −0�39 −1�64 0.39 −1�64 0.39 −0�39 −0�39 1.64 1.64 14.04
−0�39 −0�39 0.39 0.39 −0�39 −0�39 −0�39 −1�64 0.39 −1�64 0.39 −0�39 1.64 1.64 1.64 12.86
−0�39 −0�39 0.39 0.39 −0�39 −0�39 1.64 −1�64 0.39 −1�64 0.39 −0�39 1.64 1.64 1.64 15.42
−0�39 −0�39 0.39 0.39 −0�39 −0�39 1.64 −1�64 −1�64 −1�64 0.39 −0�39 1.64 1.64 1.64 14.56
−0�39 1.64 0.39 0.39 −0�39 −0�39 1.64 −1�64 −1�64 −1�64 0.39 −0�39 1.64 1.64 1.64 6.17
−0�39 1.64 0.39 0.39 1.64 −0�39 1.64 −1�64 −1�64 −1�64 0.39 −0�39 1.64 1.64 1.64 0.96
−0�39 1.64 0.39 0.39 1.64 −0�39 1.64 −1�64 −1�64 −1�64 0.39 1.64 1.64 1.64 1.64 2.91
−0�39 1.64 −1�64 0.39 1.64 −0�39 1.64 −1�64 −1�64 −1�64 0.39 1.64 1.64 1.64 1.64 −3�65
−0�39 1.64 −1�64 0.39 1.64 1.64 1.64 −1�64 −1�64 −1�64 0.39 1.64 1.64 1.64 1.64 −6�31
−0�39 1.64 −1�64 0.39 1.64 1.64 1.64 −1�64 −1�64 −1�64 0.39 1.64 1.64 1.64 −0�39 −0�70
−0�39 1.64 −1�64 0.39 1.64 1.64 1.64 −1�64 −1�64 −1�64 −1�64 1.64 1.64 1.64 −0�39 −11�79
−0�39 1.64 −1�64 0.39 1.64 1.64 1.64 −1�64 −1�64 −1�64 −1�64 1.64 1.64 −0�39 −0�39 −16�95
−0�39 1.64 −1�64 0.39 1.64 1.64 1.64 −1�64 −1�64 0.39 −1�64 1.64 1.64 −0�39 −0�39 −15�54
−0�39 1.64 −1�64 0.39 1.64 1.64 1.64 0.39 −1�64 0.39 −1�64 1.64 1.64 −0�39 −0�39 −3�01
−0�39 1.64 −1�64 −1�64 1.64 1.64 1.64 0.39 −1�64 0.39 −1�64 1.64 1.64 −0�39 −0�39 −2�12

1.64 1.64 −1�64 −1�64 1.64 1.64 1.64 0.39 −1�64 0.39 −1�64 1.64 1.64 −0�39 −0�39 −14�36



t3

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 Y

0.39 0.39 −0�39 −0�39 0.39 0.39 −1�64 0.39 −0�39 1.64 −0�39 0.39 −1�64 1.64 −1�64 3.96
0.39 0.39 −0�39 −0�39 0.39 0.39 −1�64 0.39 −0�39 1.64 1.64 0.39 −1�64 1.64 −1�64 2.92
0.39 0.39 −0�39 1.64 0.39 0.39 −1�64 0.39 −0�39 1.64 1.64 0.39 −1�64 1.64 −1�64 9.78
0.39 0.39 −0�39 1.64 0.39 0.39 −1�64 0.39 −0�39 1.64 1.64 −1�64 −1�64 1.64 −1�64 1.96

−1�64 0.39 −0�39 1.64 0.39 0.39 −1�64 0.39 −0�39 1.64 1.64 −1�64 −1�64 1.64 −1�64 −5�53
−1�64 0.39 −0�39 1.64 0.39 0.39 0.39 0.39 −0�39 1.64 1.64 −1�64 −1�64 1.64 −1�64 1.87
−1�64 0.39 1.64 1.64 0.39 0.39 0.39 0.39 −0�39 1.64 1.64 −1�64 −1�64 1.64 −1�64 −0�45
−1�64 −1�64 1.64 1.64 0.39 0.39 0.39 0.39 −0�39 1.64 1.64 −1�64 −1�64 1.64 −1�64 −3�81
−1�64 −1�64 1.64 1.64 0.39 0.39 0.39 −1�64 −0�39 1.64 1.64 −1�64 −1�64 1.64 −1�64 0.78
−1�64 −1�64 1.64 1.64 −1�64 0.39 0.39 −1�64 −0�39 1.64 1.64 −1�64 −1�64 1.64 −1�64 −0�27
−1�64 −1�64 1.64 1.64 −1�64 0.39 0.39 −1�64 1.64 1.64 1.64 −1�64 −1�64 1.64 −1�64 0.17
−1�64 −1�64 1.64 1.64 −1�64 −1�64 0.39 −1�64 1.64 1.64 1.64 −1�64 −1�64 1.64 −1�64 −5�89
−1�64 −1�64 1.64 1.64 −1�64 −1�64 0.39 −1�64 1.64 1.64 1.64 −1�64 0.39 1.64 −1�64 −0�63
−1�64 −1�64 1.64 1.64 −1�64 −1�64 0.39 −1�64 1.64 1.64 1.64 −1�64 0.39 1.64 0.39 8.37
−1�64 −1�64 1.64 1.64 −1�64 −1�64 0.39 −1�64 1.64 1.64 1.64 −1�64 0.39 −0�39 0.39 5.65
−1�64 −1�64 1.64 1.64 −1�64 −1�64 0.39 −1�64 1.64 −0�39 1.64 −1�64 0.39 −0�39 0.39 −1�91



Table 3.10 (Continued)

t4

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 Y

1.64 −0�39 1.64 −0�39 0.39 0.39 −1�64 1.64 −1�64 −1�64 0.39 0.39 −1�64 0.39 0.39 5.05
1.64 −0�39 1.64 −0�39 −1�64 0.39 −1�64 1.64 −1�64 −1�64 0.39 0.39 −1�64 0.39 0.39 3.91
1.64 −0�39 1.64 1.64 −1�64 0.39 −1�64 1.64 −1�64 −1�64 0.39 0.39 −1�64 0.39 0.39 6.81
1.64 −0�39 1.64 1.64 −1�64 0.39 −1�64 1.64 −1�64 0.39 0.39 0.39 −1�64 0.39 0.39 5.58
1.64 1.64 1.64 1.64 −1�64 0.39 −1�64 1.64 −1�64 0.39 0.39 0.39 −1�64 0.39 0.39 11.79
1.64 1.64 1.64 1.64 −1�64 0.39 −1�64 1.64 −1�64 0.39 0.39 0.39 −1�64 0.39 −1�64 5.00
1.64 1.64 1.64 1.64 −1�64 0.39 −1�64 1.64 −1�64 0.39 −1�64 0.39 −1�64 0.39 −1�64 0.77

−0�39 1.64 1.64 1.64 −1�64 0.39 −1�64 1.64 −1�64 0.39 −1�64 0.39 −1�64 0.39 −1�64 1.38
−0�39 1.64 1.64 1.64 −1�64 0.39 −1�64 1.64 −1�64 0.39 −1�64 0.39 −1�64 −1�64 −1�64 −10�16
−0�39 1.64 1.64 1.64 −1�64 0.39 −1�64 1.64 −1�64 0.39 −1�64 0.39 0.39 −1�64 −1�64 3.51
−0�39 1.64 1.64 1.64 −1�64 0.39 −1�64 1.64 0.39 0.39 −1�64 0.39 0.39 −1�64 −1�64 10.29
−0�39 1.64 1.64 1.64 −1�64 0.39 −1�64 −0�39 0.39 0.39 −1�64 0.39 0.39 −1�64 −1�64 −0�14
−0�39 1.64 1.64 1.64 −1�64 0.39 −1�64 −0�39 0.39 0.39 −1�64 −1�64 0.39 −1�64 −1�64 −9�34
−0�39 1.64 −0�39 1.64 −1�64 0.39 −1�64 −0�39 0.39 0.39 −1�64 −1�64 0.39 −1�64 −1�64 −7�57
−0�39 1.64 −0�39 1.64 −1�64 0.39 0.39 −0�39 0.39 0.39 −1�64 −1�64 0.39 −1�64 −1�64 −7�90
−0�39 1.64 −0�39 1.64 −1�64 −1�64 0.39 −0�39 0.39 0.39 −1�64 −1�64 0.39 −1�64 −1�64 −7�06
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Table 3.11 Estimation of the elementary effects for factor X1 of
Exercise 5

y �X1 +��X∼1� y �X1�X∼1� EE1 �X� �EE1 �X� �
t1 2�59 6�37 −5�67 5�67
t2 −14�36 −2�12 −18�36 18�36
t3 1�96 −5�53 11�24 11�24
t4 0�77 1�38 −0�92 0�92

Table 3.12 Elementary effects for all the factors of Exercise
5 using the r = 4 trajectories shown in Table 3.10

t1 t2 t3 t4

X1 −5�67 −18�36 11�24 −0�92
X2 7�18 −12�58 5�04 9�31
X3 1�89 9�84 −3�47 −2�66
X4 8�42 −1�33 10�29 4�34
X5 2�93 −7�82 1�57 1�71
X6 3�28 −3�99 9�10 −1�25
X7 −3�62 3�85 11�1 −0�5
X8 −7�55 18�8 −6�89 15�65
X9 −2�51 1�30 0�66 10�18
X10 5�00 2�11 11�33 −1�83
X11 9�34 16�64 −1�56 6�35
X12 0�54 2�93 11�72 13�81
X13 5�43 −1�78 7�90 20�5
X14 2�15 7�74 4�08 17�31
X15 13�05 −8�41 13�49 10�19

For instance, the three sensitivity measures for factor X1 are obtained
as follows:

��X1� = −5�67 −18�36+11�24−0�92
4

= −3�42

�∗�X1� = 5�67 +18�36+11�24+0�92
4

= 9�05

�X1� =
√

�−2�24�2 + �−14�93�2 + �14�67�2 + �2�51�2

3
= 12�24�

Columns 2–4 of Table 3.13 show the sensitivity analysis results for the
Oakley–O’Hagan function for r = 4. Results for r = 10 are also reported
in the table. The last two columns show, for comparative purposes, the
analytical values of the total- and first-order sensitivity indices for the
factors.
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Table 3.13 Sensitivity analysis results for the Oakley–O’Hagan function of
Exercise 5 using r = 4 and r = 10 trajectories. The last two columns report the
analytical values of the total- and first-order sensitivity indices

r = 4 r = 10 Analytics Analytics

�∗ � � �∗ � � ST S

X1 9.05 −3�42 12.24 6.21 0.98 6.77 0�059 0�002
X2 8.53 2�24 10.03 3.35 1.28 4.46 0�063 0�000
X3 4.46 1�40 6.10 6.54 0.77 7.59 0�036 0�001
X4 6.09 5�43 5.14 4.54 0.63 5.49 0�055 0�003
X5 3.51 −0�4 4.98 3.13 -0.67 4.51 0�024 0�003
X6 4.40 1�78 5.72 5.93 3.58 7.76 0�041 0�023
X7 4.77 2�71 6.38 7.18 4.72 8.36 0�058 0�024
X8 12.22 5�00 14.17 5.26 2.38 6.30 0�082 0�027
X9 3.66 2�41 5.44 8.25 7.10 7.87 0�097 0�046
X10 5.07 4�15 5.54 2.79 1.04 3.91 0�036 0�015
X11 8.47 7�69 7.53 8.82 8.82 5.82 0�151 0�102
X12 7.25 7�25 6.50 8.33 8.33 4.12 0�148 0�136
X13 8.91 8�02 9.28 10.65 7.95 9.64 0�142 0�102
X14 7.82 7�82 6.74 7.10 5.32 6.71 0�141 0�105
X15 11.29 7�08 10.43 7.83 7.83 4.01 0�155 0�123

In our experiments, the use of r = 4 trajectories has not helped to
discern the relative importance of the factors; for instance, the most
important factor according to �∗ is X8, while according to the analytic
values of ST it is only the seventh most important factor. These prob-
lems with the Oakley–O’Hagan function are mainly due to the fact that
interactions between all pairs of factors play a relevant role in the model.
Increasing the number of trajectories to r = 10 allows us to better under-
stand the sensitivity of the model. Figure 3.12 shows in a barplot the
value of �∗ for the inputs of the Oakley–O’Hagan function. This plot
highlights that in this model it is not possible to identify a subset of
factors to be fixed without affecting the output. The high values of 
confirm that this is related to the presence of non-negligible interactions
even for factors with low main effects �X1� ���X10�.

6. According to the matrix G and considering the results of the previous
exercise, factors are grouped so that all inputs with a high main
effect are in the first group. Table 3.14 reports the trajectories
obtained for the 15 factors grouped according to the matrix G. As
in Exercise 5, since factors are normally distributed quantiles are
sampled first and then levels are obtained using the inverse cumulative
distribution function.

Table 3.15 shows the absolute values of the elementary effects esti-
mated for each group using the 10 trajectories. The value of �∗ for the
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Figure 3.12 Barplot of �∗ for the Oakley–O’Hagan function of Exercise 5, using
r = 10 trajectories

group (last column) is the average over the 10 estimates. It is clearly
verified that the first group is more important than the second. However,
it is also confirmed that the factors in G2 are actually playing a role on
the output (see also the values of their ST in Table 3.13) and thus cannot
be discarded.

7. Since the number of factors is quite high, we do not report the
complete sample used for the sensitivity analysis. However, Figure 3.13
shows the histogram of y for a design with p = 4 levels and r =
10 trajectories (i.e. N = 210 model evaluations). Table 3.16 reports
the sensitivity analysis results. Figure 3.14 helps in reading these
results by presenting the scatterplot 
�∗��. This is the representation
suggested by Morris (1991).

Figure 3.15 presents a horizontal barplot of the values of �∗ for the
inputs of the function y. Factors X11� � � � �X20 are seen at a glance to
be negligible. In fact, looking at the structure of y, their coefficients are
never large. Factors X8, X9, X10 have a strong linear effect (for factors
1–10, �i = 20). The linear plus nonlinear influence of X7, due to the
transformation �i = 2 �1�1Xi/ �Xi +0�1�−1/2�, is also captured by the
high value of the standard deviation. Finally, factors X1� � � � �X6 are all
identified as influential and to have linear, nonlinear and nonadditive
effects.



Table 3.14 Trajectories obtained for Exercise 6 (Oakley-O’Hagan function, r = 10) in case the two groups described by matrix G
are considered

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 Y

0.39 −0�39 −1�64 0.39 −0�39 −0�39 0.39 0.39 −1�64 −0�39 0.39 −1�64 1.64 1.64 1.64 13.85
−1�64 1.64 0.39 −1�64 1.64 1.64 −1�64 −1�64 −1�64 1.64 0.39 −1�64 1.64 1.64 1.64 −10�11
−1�64 1.64 0.39 −1�64 1.64 1.64 −1�64 −1�64 0.39 1.64 −1�64 0.39 −0�39 −0�39 −0�39 1.12
−0�39 −0�39 0.39 −1�64 0.39 −1�64 1.64 1.64 0.39 −1�64 0.39 −0�39 0.39 0.39 0.39 13.37
−0�39 −0�39 0.39 −1�64 0.39 −1�64 1.64 1.64 −1�64 −1�64 −1�64 1.64 −1�64 −1�64 −1�64 −13�33

1.64 1.64 −1�64 0.39 −1�64 0.39 −0�39 −0�39 −1�64 0.39 −1�64 1.64 −1�64 −1�64 −1�64 −12�68
1.64 −1�64 1.64 1.64 1.64 −0�39 −1�64 −1�64 −0�39 −0�39 1.64 1.64 −1�64 1.64 0.39 15.65
1.64 −1�64 1.64 1.64 1.64 −0�39 −1�64 −1�64 1.64 −0�39 −0�39 −0�39 0.39 −0�39 −1�64 1.59

−0�39 0.39 −0�39 −0�39 −0�39 1.64 0.39 0.39 1.64 1.64 −0�39 −0�39 0.39 −0�39 −1�64 10.99
−0�39 −1�64 −1�64 0.39 0.39 −0�39 0.39 −0�39 −0�39 1.64 1.64 1.64 1.64 −1�64 1.64 22.92

1.64 0.39 0.39 −1�64 −1�64 1.64 −1�64 1.64 −0�39 −0�39 1.64 1.64 1.64 −1�64 1.64 22.62
1.64 0.39 0.39 −1�64 −1�64 1.64 −1�64 1.64 1.64 −0�39 −0�39 −0�39 −0�39 0.39 −0�39 6.42
1.64 1.64 −1�64 1.64 1.64 −0�39 −0�39 1.64 0.39 1.64 0.39 −0�39 0.39 −0�39 1.64 18.01
1.64 1.64 −1�64 1.64 1.64 −0�39 −0�39 1.64 −1�64 1.64 −1�64 1.64 −1�64 1.64 −0�39 3.82

−0�39 −0�39 0.39 −0�39 −0�39 1.64 1.64 −0�39 −1�64 −0�39 −1�64 1.64 −1�64 1.64 −0�39 9.27
0.39 −1�64 −1�64 −0�39 −1�64 −1�64 −0�39 −1�64 −0�39 −0�39 −0�39 −1�64 0.39 −1�64 0.39 −0�71
0.39 −1�64 −1�64 −0�39 −1�64 −1�64 −0�39 −1�64 1.64 −0�39 1.64 0.39 −1�64 0.39 −1�64 0.62

−1�64 0.39 0.39 1.64 0.39 0.39 1.64 0.39 1.64 1.64 1.64 0.39 −1�64 0.39 −1�64 10.63
−1�64 −1�64 0.39 −1�64 1.64 1.64 1.64 1.64 1.64 −1�64 −0�39 0.39 −1�64 1.64 0.39 16.47
−1�64 −1�64 0.39 −1�64 1.64 1.64 1.64 1.64 −0�39 −1�64 1.64 −1�64 0.39 −0�39 −1�64 2.33

0.39 0.39 −1�64 0.39 −0�39 −0�39 −0�39 −0�39 −0�39 0.39 1.64 −1�64 0.39 −0�39 −1�64 7.41



−1�64 1.64 1.64 0.39 −0�39 1.64 −1�64 1.64 1.64 1.64 1.64 −0�39 −0�39 −0�39 −0�39 9.8
−1�64 1.64 1.64 0.39 −0�39 1.64 −1�64 1.64 −0�39 1.64 −0�39 1.64 1.64 1.64 1.64 20.97

0.39 −0�39 −0�39 −1�64 1.64 −0�39 0.39 −0�39 −0�39 −0�39 −0�39 1.64 1.64 1.64 1.64 12.8
−1�64 −0�39 −0�39 1.64 −0�39 0.39 1.64 0.39 −1�64 1.64 0.39 1.64 −1�64 −1�64 1.64 −0�45

0.39 1.64 1.64 −0�39 1.64 −1�64 −0�39 −1�64 −1�64 −0�39 0.39 1.64 −1�64 −1�64 1.64 −5�59
0.39 1.64 1.64 −0�39 1.64 −1�64 −0�39 −1�64 0.39 −0�39 −1�64 −0�39 0.39 0.39 −0�39 −2�07

−1�64 0.39 0.39 0.39 0.39 −0�39 −1�64 0.39 −0�39 0.39 −0�39 −1�64 1.64 −0�39 −1�64 2.29
0.39 −1�64 −1�64 −1�64 −1�64 1.64 0.39 −1�64 −0�39 −1�64 −0�39 −1�64 1.64 −0�39 −1�64 −6�87
0.39 −1�64 −1�64 −1�64 −1�64 1.64 0.39 −1�64 1.64 −1�64 1.64 0.39 −0�39 1.64 0.39 17.23

Table 3.15 Absolute values of the elementary effects obtained for the two groups in Exercise 6. �∗ is the average over the 10 estimates

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 �∗

G1 16�86 40�06 21�09 24�3 21�29 1�99 21�2 16�75 5�28 36�16 20�5
G2 35�95 0�97 14�1 0�45 8�18 15�01 7�62 12�26 7�70 13�75 11�6
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Figure 3.13 Empirical density of the Morris function obtained for Exercise 7 with
r = 10 trajectories

Table 3.16 Sensitivity analysis for the Morris function
of Exercise 7 using r = 10 trajectories

�∗ � �

X1 71�644 55�256 54�648
X2 64�290 64�29 37�737
X3 88�207 55�572 94�737
X4 73�038 9�310 91�918
X5 44�777 32�874 55�793
X6 45�280 35�187 44�940
X7 27�039 27�039 23�594
X8 40�716 40�716 5�789
X9 40�385 40�385 6�101
X10 39�706 39�706 6�400
X11 5�252 1�232 6�608
X12 4�324 1�494 4�990
X13 6�268 0�922 7�892
X14 5�183 0�192 6�845
X15 8�842 3�797 9�773
X16 6�201 2�183 7�511
X17 3�389 −1�335 4�291
X18 4�903 −1�540 5�338
X19 4�989 −0�766 5�686
X20 3�854 −2�407 5�087
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Figure 3.14 Sensitivity analysis results for the Morris function of Exercise 7 using
r = 10 trajectories
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Figure 3.15 Horizontal barplot of the value of �∗ for the the Morris function of
Exercise 7, obtained using r = 10 trajectories



Table 3.17 Sample of r = 10 trajectories for the analysis by group of Exercise 8

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 Y

0 0 1 1 1/3 1 1 1/3 0 0 1 0 0 1/3 2/3 1/3 1/3 1 0 0 58.28
0 0 1 1 1/3 1 1 1/3 0 0 1 0 0 1 0 1 1 1 0 0 68.24

t1 0 0 1 1 1/3 1/3 1/3 1 2/3 0 1 0 2/3 1 0 1 1 1/3 0 0 87.75
0 0 1 1/3 1 1/3 1/3 1 2/3 0 1 0 2/3 1 0 1 1 1/3 2/3 2/3 23.04
2/3 2/3 1/3 1/3 1 1/3 1/3 1 2/3 2/3 1/3 2/3 2/3 1 0 1 1 1/3 2/3 2/3 63.61

1 1/3 2/3 0 1/3 1/3 2/3 1 1/3 1/3 2/3 1/3 1/3 0 1/3 0 2/3 0 1 1/3 81.50
1/3 1 0 0 1/3 1/3 2/3 1 1/3 1 0 1 1/3 0 1/3 0 2/3 0 1 1/3 38.17

t2 1/3 1 0 0 1/3 1/3 2/3 1 1/3 1 0 1 1/3 2/3 1 2/3 0 0 1 1/3 47.28
1/3 1 0 0 1/3 1 0 1/3 1 1 0 1 1 2/3 1 2/3 0 2/3 1 1/3 43.58
1/3 1 0 2/3 1 1 0 1/3 1 1 0 1 1 2/3 1 2/3 0 2/3 1/3 1 72.56

1 1 1/3 0 2/3 0 2/3 2/3 2/3 1 0 0 2/3 1 1/3 0 1 0 1/3 1/3 115.15
1 1 1/3 2/3 0 0 2/3 2/3 2/3 1 0 0 2/3 1 1/3 0 1 0 1 1 116.45

t3 1 1 1/3 2/3 0 2/3 0 0 0 1 0 0 0 1 1/3 0 1 2/3 1 1 9.06
1/3 1/3 1 2/3 0 2/3 0 0 0 1/3 2/3 2/3 0 1 1/3 0 1 2/3 1 1 −50�12
1/3 1/3 1 2/3 0 2/3 0 0 0 1/3 2/3 2/3 0 1/3 1 2/3 1/3 2/3 1 1 −48�06

0 1/3 0 2/3 1/3 2/3 1 0 1 0 0 1 1/3 0 2/3 2/3 2/3 2/3 1 1/3 −33�16
0 1/3 0 0 1 2/3 1 0 1 0 0 1 1/3 0 2/3 2/3 2/3 2/3 1/3 1 −67�02

t4 0 1/3 0 0 1 2/3 1 0 1 0 0 1 1/3 2/3 0 0 0 2/3 1/3 1 −60�14
0 1/3 0 0 1 0 1/3 2/3 1/3 0 0 1 1 2/3 0 0 0 0 1/3 1 −132�66
2/3 1 2/3 0 1 0 1/3 2/3 1/3 2/3 2/3 1/3 1 2/3 0 0 0 0 1/3 1 81.88

1/3 0 2/3 0 0 1/3 2/3 1/3 1/3 0 1/3 2/3 1/3 0 2/3 1 1 1/3 1/3 2/3 −118�82
1/3 0 2/3 0 0 1 0 1 1 0 1/3 2/3 1 0 2/3 1 1 1 1/3 2/3 −32�49

t5 1 2/3 0 0 0 1 0 1 1 2/3 1 0 1 0 2/3 1 1 1 1/3 2/3 30.46
1 2/3 0 2/3 2/3 1 0 1 1 2/3 1 0 1 0 2/3 1 1 1 1 0 62.69
1 2/3 0 2/3 2/3 1 0 1 1 2/3 1 0 1 2/3 0 1/3 1/3 1 1 0 57.40



1/3 2/3 0 1/3 1/3 0 1 0 1/3 1/3 2/3 1/3 1 2/3 1/3 2/3 1 0 2/3 2/3 −49�84
1/3 2/3 0 1 1 0 1 0 1/3 1/3 2/3 1/3 1 2/3 1/3 2/3 1 0 0 0 36.19

t6 1 0 2/3 1 1 0 1 0 1/3 1 0 1 1 2/3 1/3 2/3 1 0 0 0 86.51
1 0 2/3 1 1 2/3 1/3 2/3 1 1 0 1 1/3 2/3 1/3 2/3 1 2/3 0 0 104.25
1 0 2/3 1 1 2/3 1/3 2/3 1 1 0 1 1/3 0 1 0 1/3 2/3 0 0 97.56

0 1 2/3 1 1 1 1/3 0 0 1/3 2/3 1/3 0 1/3 2/3 1 2/3 1 2/3 1 −13�28
0 1 2/3 1 1 1 1/3 0 0 1/3 2/3 1/3 0 1 0 1/3 0 1 2/3 1 −17�35

t7 0 1 2/3 1/3 1/3 1 1/3 0 0 1/3 2/3 1/3 0 1 0 1/3 0 1 0 1/3 25.31
2/3 1/3 0 1/3 1/3 1 1/3 0 0 1 0 1 0 1 0 1/3 0 1 0 1/3 1.93
2/3 1/3 0 1/3 1/3 1/3 1 2/3 2/3 1 0 1 2/3 1 0 1/3 0 1/3 0 1/3 38.27

1/3 1/3 0 0 0 1/3 1/3 2/3 2/3 2/3 1/3 2/3 2/3 0 2/3 1/3 1 0 1/3 1/3 −103�13
1 1 2/3 0 0 1/3 1/3 2/3 2/3 0 1 0 2/3 0 2/3 1/3 1 0 1/3 1/3 69.38

t8 1 1 2/3 0 0 1 1 0 0 0 1 0 0 0 2/3 1/3 1 2/3 1/3 1/3 34.50
1 1 2/3 0 0 1 1 0 0 0 1 0 0 2/3 0 1 1/3 2/3 1/3 1/3 32.28
1 1 2/3 2/3 2/3 1 1 0 0 0 1 0 0 2/3 0 1 1/3 2/3 1 1 −153�14

1/3 1 1/3 1/3 2/3 2/3 2/3 1/3 1 1 0 1 2/3 1/3 2/3 2/3 2/3 2/3 0 1 86.29
1/3 1 1/3 1/3 2/3 0 0 1 1/3 1 0 1 0 1/3 2/3 2/3 2/3 0 0 1 68.73

t9 1/3 1 1/3 1/3 2/3 0 0 1 1/3 1 0 1 0 1 0 0 0 0 0 1 60.16
1 1/3 1 1/3 2/3 0 0 1 1/3 1/3 2/3 1/3 0 1 0 0 0 0 0 1 21.83
1 1/3 1 1 0 0 0 1 1/3 1/3 2/3 1/3 0 1 0 0 0 0 2/3 1/3 43.05

1/3 1/3 1/3 1/3 1/3 1/3 1 1 2/3 0 0 0 0 0 2/3 1 2/3 1 1/3 2/3 38.96
1/3 1/3 1/3 1 1 1/3 1 1 2/3 0 0 0 0 0 2/3 1 2/3 1 1 0 67.35

t10 1/3 1/3 1/3 1 1 1 1/3 1/3 0 0 0 0 2/3 0 2/3 1 2/3 1/3 1 0 −7�34
1 1 1 1 1 1 1/3 1/3 0 2/3 2/3 2/3 2/3 0 2/3 1 2/3 1/3 1 0 −205�31
1 1 1 1 1 1 1/3 1/3 0 2/3 2/3 2/3 2/3 2/3 0 1/3 0 1/3 1 0 −212�21
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Table 3.18 Absolute values of the elementary effects
for each trajectory and each group of Exercise 8. The
measure �∗ (last row) is the average over the 10 runs

G1 G2 G3 G4

t1 60�87 97�07 14�94 29�27
t2 64�99 43�47 13�67 5�55
t3 88�76 1�95 3�09 161�09
t4 321�81 50�79 10�31 108�78
t5 94�42 48�35 7�94 129�50
t6 75�48 129�04 10�04 26�60
t7 35�07 63�99 6�11 54�51
t8 258�76 278�13 3�33 52�32
t9 57�49 31�83 12�86 26�34
t10 296�95 42�58 10�36 112�04
�∗ 135�46 78�72 9�26 70�60

8. Table 3.17 shows the sample for the groups and the corresponding values
for the output. Note that slightly different results might be obtained
since the parameters �i��i�j��i�j�k��i�j�k�l are all randomly generated.
Table 3.18 reports the absolute values of the elementary effects, �EEi �X� �,
for each group along each of the 10 trajectories. Results confirm that
there are three relevant groups (G1, G2 and G4) and one group with low
influence on the output (G3). This is indeed correct since the factors in
G3 (X14, X15, X16 and X17) have low main effects and low interactions
(see also Table 3.16 above). Even the relative importance of G1, G2 and
G3 reflects the structure of the function y and the sensitivity analysis
results of the previous exercise.



4
Variance-based Methods

How is variance decomposition related to sensitivity analysis? When

is it worth using variance-based techniques instead of something else?

Which measures can we obtain with variance-based methods? How are

these measures calculated?

In this chapter we describe in more detail the variance-based methods
that were introduced in Chapter 1. We first illustrate the settings that can
be useful when dealing with modelling under conditions of uncertainty. We
discuss the importance of a proper sensitivity test for a given setting. We
sketch the historical background of variance-based methods, and discuss
the properties of variance decompositions, from model independence to
the capacity to evaluate the importance of groups of factors. Total effect
indices are also introduced as a means of dealing synthetically with model
complexity. We then illustrate two basic methods of computing the sensi-
tivity indices, the Monte Carlo based design developed by Saltelli (2002)
as well as the Random Balance Designs based on the Fourier Amplitude
Sensitivity Test (FAST-RBD (Tarantola et al., 2006)). Finally, we offer some
examples.

4.1 DIFFERENT TESTS FOR DIFFERENT SETTINGS

It is common to find cases in the literature in which different sensitivity tests
are applied to the same problem in a nonstructured fashion. This practice
can yield a variety of results – e.g. in terms of ranking the factors in order of

Global Sensitivity Analysis. The Primer A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,
D. Gatelli, M. Saisana and S. Tarantola © 2008 John Wiley & Sons, Ltd
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importance – with no guidance as to which we should believe or privilege.
As discussed in Chapter 1, we suggest instead a careful consideration of (a)
the output of interest and (b) the concept of ‘importance’, as it applies to the
problem at hand. This would in general allow for the identification of the
most appropriate setting for a given problem and, in turn, the sensitivity test
to be applied. A list of possible settings (Saltelli et al., 2004) is given here:

• The Factor Prioritization setting (FP) is used to identify a factor (or group
of factors) which, when fixed to its true value, leads to the greatest reduc-
tion in the variance of the output. In other words, the identified factor
(or group of factors) is that which accounts for most of the output vari-
ance. Therefore, this setting allows us (a) to detect and rank those factors
which need to be better measured in order to reduce the output variance,
as well as (b) to detect the factors that have a better chance of being
estimated in a subsequent numerical or experimental estimation process.
This latter point is particularly interesting as the analyst can identify
the factors to be estimated before any estimation is made or measure-
ments carried out. See Tarantola et al. (2000) for an example in the field
of physics.

• The Factor Fixing setting (FF) is used to identify factors in the model
which, left free to vary over their range of uncertainty, make no signifi-
cant contribution to the variance of the output. The identified factors can
then be fixed at any given value within their range of variation without
affecting the output variance. This analysis can be performed on groups
of factors, especially for large models, to identify noninfluential subsets
of factors. Sometimes, factors are set up to represent alternative struc-
tures for model components (e.g. simple versus complex) and significant
model simplifications can be often achieved when these factors are found
to be noninfluential.

• The Variance Cutting setting (VC) is used for the reduction of the output
variance to below a given tolerance. This may be desirable in risk or
reliability analysis, where the analyst is interested in making sure, for
example, that the uncertainty of the reliability of a given system compo-
nent is below a given tolerance. In this setting the analyst wants to
guarantee that the uncertainty is brought under a given value by acting
on the smallest possible number of factors (see Saltelli and Tarantola,
2002).

• The Factor Mapping setting (FM) is used to study which values of the
input factors lead to model realizations in a given range of the output
space. For example, one may want to highlight model realizations falling
above the 95th percentile because these correspond to risky conditions in
an industrial plant or to a considerable financial loss (Campolongo et al.,
2007). In this setting one investigates which combination of factors leads
to the realizations under analysis (Monte Carlo filtering, see Chapter 5).
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The utility of variance-based sensitivity measures derives from their wide
range of application. Of the four settings just recounted, the first three are
susceptible of variance-based analysis.

4.2 WHY VARIANCE?

Most models live through their operational life as ‘deterministic’. Each time
they are ‘interrogated’ they are fed with a deterministic set of values for
the input variables and the output – be it a scalar, a time series or a 2D
map – is investigated for possible inferences. Sensitivity analysis for these
models will generally entail changing one input at a time to test its effect
on the output. In this book we profess a different philosophy of modelling,
in which modellers are willing – and usually eager – to explore their model
over different combinations of values for the uncertain inputs. Variance-
based measures have proven useful in this framework. They study how the
variance of the output depends on the uncertain input factors and can be
decomposed accordingly.

But why study the variance? Could a sensitivity measure be built on the
mean? To give an example, in risk analysis the model output may happen
to be itself a mean,1 and we might be interested in how the mean of the
model output depends on its constituents. A legitimate question would then
be how much each component of a system contributes to the risk that
the system might fail. The answer could be that the risk depends 25% on
component A, 15% on component B, and so on. Decomposing the absolute
level of the risk into system components can be useful to help understanding
which component is worth improving in order to reduce the level of risk in
the system.2

Another measure encountered in risk analysis is the ‘risk reduction worth’,
which measures the amount by which the risk associated with a system
could be reduced if a model element were perfect, i.e. without risk of failure
(see Borgonovo and Apostolakis, 2001).

The two examples just illustrated are based on a deterministic output –
risk – and how the risk level can be modified by eliminating the uncertainty
in the input. We are in principle against such an elimination of uncertainty;
we prefer rather to retain the uncertain factors as an ingredient of sensitivity
analysis. Even when we study how the mean of the output changes when

1 For example, a risk may happen to be estimated as the product of the probability of a given
outcome and the consequence of that outcome, averaged over a set of possible outcomes.
2 Risk analysts use, for example, the Fussell–Vesely measure of importance in probabilistic
safety assessments. This measure is defined as the fraction of risk that is contributed by the
failure of a model element (Borgonovo and Apostolakis, 2001).



158 VARIANCE-BASED METHODS

a factor is fixed – we denoted this in Chapter 1 as E�Y �Xi = x∗
i � – we

would then take the variance of this measure over all possible values x∗
i ,

i.e. V�E�Y �Xi��. Taking the mean of E�Y �Xi = x∗
i � would have been of scant

use – it would have led us back to the overall (unconditioned) mean. In
other words, in a Monte Carlo framework variance emerges naturally if
one wants to preserve the factors’ uncertainty.

Returning to our example of risk analysis, note that ‘risk’ has been
expressed as a crisp figure (e.g. a rate of failure, or the expected incidence
of health effects), which may distract from the fact that risk is in itself an
average. A practitioner might be interested in how the average is arrived at,
in the form of the risk distribution tails and in details such as the topology
of the low probability high-consequence regions and in the key assumptions
shaping these regions. These issues are addressed by the methods presented
in this book.

A key issue in sensitivity analysis is how to quantify the uncertainty of a
model prediction – variance clearly being just one of the possible options.
Depending on the problem at hand, we might be interested in the model
prediction falling in the upper or lower 5th percentile of the distribution or
in any particular interval of interest in the distribution, as in Monte Carlo
filtering.

Methods have been developed which look at the entire distribution of
the output and at how this is modified, on average, if a factor is fixed
(Borgonovo, 2006).

We recommend using variance as a summary measure of uncertainty
whenever the application allows it. This is in order to exploit the statistical
properties of variance described in this chapter to investigate how factors
contribute to the variance.

Interesting features of variance-based methods are:

• model independence: the sensitivity measure is model-free;
• capacity to capture the influence of the full range of variation of each

input factor;
• appreciation of interaction effects among input factors;
• capacity to tackle groups of input factors: uncertain factors might pertain

to different logical types, and it might be desirable to decompose the
uncertainty according to these types.

The drawback of variance-based measures is their computational cost, as
we shall discuss later in the chapter, and this is the reason why much recent
research aims to find efficient numerical algorithms for their computation.
Techniques for computation are offered both in this chapter and the next.

Sensitivity measures based on the decomposition of the variance of the
model output are relatively recent in the literature. A brief summary of their
development follows.
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4.3 VARIANCE-BASED METHODS. A BRIEF HISTORY

Variance-based methods for sensitivity analysis were first employed by
chemists in the early 1970s (Cukier et al., 1973). Cukier and colleagues
not only proposed conditional variances for a sensitivity analysis based on
first-order effects, but were already aware of the need to treat higher-order
terms and of the underlying variance decomposition theorems (Cukier et al.,
1978). Their method, known as FAST (Fourier Amplitude Sensitivity Test),
although quite effective, enjoyed limited success among practitioners, not
least because of the difficulty in encoding it. The method did not allow the
computation of higher-order indices, although this was much later made
possible by extensions developed by other investigators (see Saltelli et al.,
1999).

Also much later, Hora and Iman (1986) introduced the ‘uncertainty
importance’ of a factor Xi,

3 defined as the expected reduction in the vari-
ance of the model output Y achieved by fixing Xi at a given value within
its range of uncertainty:

Ii =√
Var�Y�−E�Var�Y �Xi��� (4.1)

Later, the same authors (Iman and Hora, 1990) proposed a new statistic
based on estimating the following quantity:

VarXi
�E�log Y �Xi��

Var�log Y�
� (4.2)

From Chapter 1 it is clear that this is the first-order variance term relative
to log Y . This measure has the advantage of robustness,4 although it is not
easy to convert results of sensitivity analysis pertaining to log Y back to Y .
Transformations of Y for sensitivity analysis are presented in Chapter 5.

A visual inspection of sensitivity results has been suggested by Sacks et al.
(1989). They proposed a decomposition of the response

Y = f �X1�X2� � � � Xk� (4.3)

into a set of functions of increasing dimensionality, whose plots are them-
selves used as measures of sensitivity (as will be discussed in detail in

3 We refer to Xi as the ith element of X, though the formulas presented in this chapter are
appropriate also if Xi corresponds to a subset of model inputs.
4 The range of variation of log Y can be much smaller than that of Y and hence its estimate
can be obtained – ceteris paribus – at a lower sample size. For the same reason formulas
similar to (4.2) were proposed on the rank of Y , e.g. replacing the values of Y with the integer
corresponding to 1 for the highest Y value and with N (the size of the sample) for the lowest
(Saltelli et al., 1993).
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Chapter 5). Although these authors do not use the variance, the functions
they consider are the same as in Sobol’s functional development.

The Russian mathematician I. M. Sobol’ was inspired by the work of
Cukier, and generalized it to provide a straightforward Monte Carlo-based
implementation of the concept, capable of computing sensitivity measures
for arbitrary groups of factors.

Given a square integrable function f over 	k, the k-dimensional unit
hypercube,

	k = �X�0 ≤ xi ≤ 1
 i = 1� � � � � k�� (4.4)

Sobol’ considers an expansion of f into terms of increasing dimensions:

f = f0 +∑
i

fi +
∑

i

∑
j>i

fij + � � � + f12 � � � k (4.5)

in which each individual term is also square integrable over the domain of
existence and is a function only of the factors in its index, i.e. fi = fi�Xi�� fij =
fij �Xi�Xj� and so on. This decomposition is not a series decomposition, as
it has a finite number of terms. Of the 2k terms, one is constant (f0), k are
first-order functions (fi), (

k
2

)

are second-order functions (fij), and so on. This expansion, called high-
dimensional model representation (HDMR), is not unique, meaning that,
for a given model f , there could be infinite choices for its terms. Sobol’
proved that, if each term in the expansion above has zero mean, i.e.∫

f�xi�dxi = 0, then all the terms of the decomposition are orthogonal in
pairs, i.e.

∫
f�xi�f�xj �dxidxj = 0. As a consequence, these terms can be univo-

cally calculated using the conditional expectations of the model output Y .
In particular,

f0 = E�Y� (4.6)

fi = E�Y �Xi�−E�Y� (4.7)

fij = E�Y �Xi�Xj�− fi − fj −E�Y� (4.8)

An analytic example of this decomposition is offered in Exercise 5.
As mentioned in Chapter 1 (see Conditional Variances – second path), the

conditional expectation E�Y �Xi� can be calculated empirically by cutting the
Xi domain into slices and averaging the values of �Y �Xi� within the same slice
Xi. In this way, if the scatterplot has a pattern, the conditional expectation
E�Y �Xi� has a large variation across Xi values and the factor Xi is revealed
to be important. Hence, the variance of the conditional expectation can be
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considered as a summary measure of sensitivity. In fact, the variances of
the terms in the decomposition above are the measures of importance being
sought. In particular, V�fi�Xi�� is V�E�Y �Xi��; when we divide this by the
unconditional variance V�Y�, we obtain the first-order sensitivity index. In
short:

Si = V�E�Y �Xi��

V�Y�
� (4.9)

The first-order index represents the main effect contribution of each input
factor to the variance of the output. The same quantity has been described
by different investigators as an ‘importance measure’ (see Hora and Iman,
1986; Ishigami and Homma, 1996; Iman and Hora, 1990; Saltelli et al.,
1993; Homma and Saltelli, 1996), and as a ‘correlation ratio’ (see Krzykacz-
Hausmann, 1990; McKay, 1996).

Sobol’ also proposed a comparable definition of Si (Sobol’, 1996) which
is based on the correlation between the model Y and the conditional expec-
tation E�Y �Xi�:

Si = Corr�Y�E�Y �Xi��� (4.10)

4.4 INTERACTION EFFECTS

How can Sobol’s variance decomposition help in investigating the existence
of interaction effects? Two factors are said to interact when their effect on Y
cannot be expressed as a sum of their single effects. Interactions may imply,
for instance, that extreme values of the output Y are uniquely associated
with particular combinations of model inputs, in a way that is not described
by the first-order effects Si just mentioned. Interactions represent important
features of models, and are more difficult to detect than first-order effects.
For example, by using regression analysis tools it is fairly easy to estimate
first-order indices, but not interactions (remember the relationship Si = �2

Xi

discussed in Chapter 1 for linear models and orthogonal inputs, where �Xi

is the standardized regression coefficient for factor Xi).
A useful feature of decomposition (4.7 and 4.8) is that

Vi = V�fi�Xi�� = V�E�Y �Xi��

and

Vij = V�fij �Xi�Xj�� = V�E�Y �Xi�Xj��−V�E�Y �Xi��−V�E�Y �Xj���

In this equation, V�E�Y �Xi�Xj�� measures the joint effect of the pair �Xi�Xj�
on Y, and, from now on we will denote the joint effect by V c

ij . The term
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V�fij � is the joint effect of Xi and Xj minus the first-order effects for the
same factors. V�fij � is known as a second-order, or two-way, effect (Box
et al., 1978). Analogous formulas can be written for higher-order terms,
enabling the analyst to quantify the higher-order interactions.

By condensing the notation of the variances, i.e. V�fi� = Vi, V�fij � = Vij ,
and so on, and by square integrating each term of the decomposition (4.5)
over 	k, we can write the so-called ANOVA-HDMR decomposition:5

V�Y� =∑
i

Vi +
∑

i

∑
j>i

Vij + � � � +V12 � � � k� (4.11)

Dividing both sides of the equation by V�Y�, we obtain

∑
i

Si +
∑

i

∑
j>i

Sij +
∑

i

∑
j>i

∑
l>j

Sijl + � � � +S123 � � � k = 1 (4.12)

which we already know from Chapter 1.
We recall that the number of these terms increases exponentially with the

number of input factors.
Exercise 5, part 2, provides an example of the computation of partial

variances and sensitivity indices for the same analytic case used for the
functional decomposition in Section 4.3.

4.5 TOTAL EFFECTS

Total effects are a direct consequence of Sobol’s variance decomposition
approach and estimation procedure, although they were explicitly intro-
duced and made computationally affordable by other investigators (see
Homma and Saltelli, 1996; Saltelli, 2002).

The total effect index accounts for the total contribution to the output
variation due to factor Xi, i.e its first-order effect plus all higher-order
effects due to interactions.

For a three-factor model, for example, the total effect of X1 is the sum
of all the terms in Equation (4.12) where the factor X1 is considered:

ST 1 = S1 +S12 +S13 +S123� (4.13)

5 This is because of the orthogonality properties between any pair of terms in the expansion
(see Exercise 5, part 3). Note that this variance decomposition holds only when the input
factors Xi are independent (i.e. orthogonal). When the input factors are not independent of
one another, the quantities Vi, V c

ij , V c
ijl retain their meaning but are no longer related to one

another via (4.11).
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In this example, the total index is composed of four terms. Total indices are
useful in sensitivity analysis, as they give information on the nonadditive
features of the model. As mentioned, for a purely additive model

∑k
i=1 Si =

1, while for a given factor Xj a significant difference between STj and Sj

signals important interaction involving that factor. The total indices could
be calculated in principle by computing all the terms in the decomposition
(4.12), but there are as many as 2k −1 of these. There are techniques that
enable us to estimate total indices at the same cost of first-order indices (such
as the Sobol’ technique, see Homma and Saltelli (1996)), thus circumventing
the so-called ‘curse of dimensionality’. We customarily compute the set of
all Si plus the set of all STi to obtain a fairly good description of the model
sensitivities at a reasonable cost. We will see how to compute these indices
in the next section.

The total effect measure provides the educated answer to the question:
‘Which factor can be fixed anywhere over its range of variability without
affecting the output?’ The condition STi = 0 is necessary and sufficient
for Xi to be a noninfluential factor. If STi � 0, then Xi can be fixed at
any value within its range of uncertainty without appreciably affecting
the value of the output variance V�Y�. The approximation error that is
made when this model simplification is carried out depends on the value
of STi (see Sobol’ et al., 2007). Total indices are suitable for the factor
fixing setting.

We recall from Chapter 1 that the unconditional variance can be decom-
posed into main effect and residual:

V�Y� = V�E�Y �Xi��+E�V�Y �Xi��� (4.14)

Another way to find the total index is to decompose the output variance
V�Y� again, in terms of main effect and residual, conditioning this time with
respect to all the factors but one, i.e. X∼i:

V�Y� = V�E�Y �X∼i��+E�V�Y �X∼i��� (4.15)

The measure V�Y�−V�E�Y �X∼i�� = E�V�Y �X∼i�� is the remaining variance of
Y that would be left, on average, if we could determine the true values of
X∼i. The average is calculated over all possible combinations of X∼i, since
X∼i are uncertain factors and their ‘true values’ are unknown. Dividing by
V�Y� we obtain the total effect index for Xi:

STi
= E�V�Y �X∼i��

V�Y�
= 1− V�E�Y �X∼i��

V�Y�
� (4.16)
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4.6 HOW TO COMPUTE THE SENSITIVITY INDICES

In this section we describe the Monte-Carlo based numerical procedure for
computing the full set of first-order and total-effect indices for a model of
k factors.

This procedure is the best available today for computing indices based
purely on model evaluations. Additional procedures are described in the
next chapter, based on emulators, i.e. on the ability to generate estimates
of model output at untried points without rerunning the simulation model.
The method offered here is attributable to Saltelli (2002) and represents an
extension of the original approach provided by Sobol’ (1990) and Homma
and Saltelli (1996).

At first sight, it might seem that the computational strategy for the
estimation of conditional variances such as V�E�Y �Xi�� and V�E�Y �Xi�Xj��
would be the cumbersome, brute-force computation of the multidimen-
sional integrals in the space of the input factors. To obtain, for example,
V�E�Y �Xi��, one would first use a set of Monte Carlo points to estimate
the inner expectation for a fixed value of Xi, and then repeat the proce-
dure many times for different Xi values to estimate the outer variance. To
give an indication, if 1000 points were used to get a good estimate of the
conditional mean E�Y �Xi�, and the procedure were repeated 1000 times to
estimate the variance, then we would need 106 points just for one sensitivity
index.

This is in fact not necessary, as the computation can be accelerated via
existing short cuts. In the following, we describe the instrument proposed
by Saltelli:

• Generate a (N, 2k) matrix of random numbers (k is the number of inputs)
and define two matrices of data (A and B), each containing half of the
sample (see 4.17 and 4.18). N is called a base sample; to give an order
of magnitude, N can vary from a few hundreds to a few thousands.
Sobol’ recommends using sequences of quasi-random numbers (Sobol’,
1967, 1976). The software to generate these sequences is freely available
(SIMLAB, 2007).

A =

⎡
⎢⎢⎢⎢⎢⎣

x
�1�
1 x

�1�
2 � � � x

�1�
i � � � x

�1�

k

x
�2�
1 x

�2�
2 � � � x

�2�
i � � � x

�2�

k

� � � � � � � � � � � �

x
�N−1�
1 x

�N−1�
2 � � � x

�N−1�
i � � � x

�N−1�

k

x
�N�
1 x

�N�
2 � � � x

�N�
i � � � x

�N�

k

⎤
⎥⎥⎥⎥⎥⎦ (4.17)
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x
�1�

k+1 x
�1�

k+2 � � � x
�1�

k+i � � � x
�1�

2k

x
�2�

k+1 x
�2�

k+2 � � � x
�2�

k+i � � � x
�2�

2k

� � � � � � � � � � � � � � � � � �

x
�N−1�

k+1 x
�N−1�

k+2 � � � x
�N−1�

k+i � � � x
�N−1�

2k

x
�N�

k+1 x
�N�

k+2 � � � x
�N�

k+i � � � x
�N�

2k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

� (4.18)

• Define a matrix Ci formed by all columns of B except the ith column,
which is taken from A:

Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x
�1�

k+1 x
�1�

k+2 � � � x
�1�
i � � � x

�1�

2k

x
�2�

k+1 x
�2�

k+2 � � � x
�2�
i � � � x

�2�

2k

� � � � � � � � � � � � � � � � � �

x
�N−1�

k+1 x
�N−1�

k+2 � � � x
�N−1�
i � � � x

�N−1�

2k

x
�N�

k+1 x
�N�

k+2 � � � x
�N�
i � � � x

�N�

2k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

� (4.19)

• Compute the model output for all the input values in the sample matrices
A, B, and Ci, obtaining three vectors of model outputs of dimension
N ×1:

yA = f�A� yB = f�B� yCi
= f�Ci�� (4.20)

We anticipate that these vectors are all we need to compute the first- and
total-effect indices Si and STi, for a given factor Xi. Because there are k
factors, the cost of this approach is N +N runs of the model for matrices
A, B, plus k times N to estimate k times the output vector corresponding
to matrix Ci. The total cost is hence N�k+2�, much lower than the N 2 runs
of the brute-force method.

Our recommended method estimates first-order sensitivity indices as
follows:

Si = V �E�Y �Xi��

V�Y�
= yA ·yCi

− f 2
0

yA ·yA − f 2
0

= �1/N�
∑N

j=1 y
�j�
A y

�j�
Ci

− f 2
0

�1/N�
∑N

j=1�y
�j�
A �2 − f 2

0

(4.21)

where

f 2
0 =

(
1
N

N∑
j=1

y
�j�
A

)2

(4.22)

is the mean, and the symbol (·) denotes the scalar product of two vectors.
Similarly, the method estimates total-effect indices as follows:

STi
= 1− V �E�Y �X∼i��

V�Y�
= 1− yB ·yCi

− f 2
0

yA ·yA − f 2
0

= 1− �1/N�
∑N

j=1 y
�j�
B y

�j�
Ci

− f 2
0

�1/N�
∑N

j=1�y
�j�
A �2 − f 2

0

�

(4.23)
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Why do these formulas work? We offer here a ‘hand waving’ explanation
of (4.21). In the scalar product yA ·yCi

values of Y computed from A are
multiplied by values of Y for which all factors but Xi are resampled while
the values of Xi remain fixed. If Xi is noninfluential, then high and low
values of yA and yCi

are randomly associated. If Xi is influential, then high
(or low) values of yA will be preferentially multiplied by high (or low) values
of yCi

increasing the value of the resulting scalar product. We leave to the
reader the task of understanding (4.23). (Hint: the scalar product yB · yCi

gives the first-order effect of non-Xi.)
Note that the accuracy of both f0 and V�Y� can be improved by using

both yA and yB points rather than just yA in Equations (4.21) and (4.23) (see
Saltelli, 2002). This will improve the accuracy of the estimates for Si and
STi, although the factors’ ranking will remain unchanged. Error estimates
for Equations (4.21) and (4.23) can be obtained by bootstrapping data
points from vectors yA, yB and yCi

. Alternatively, the error in the numerical
estimates can be evaluated using the probable error associated with the
crude Monte Carlo estimate.

The probable error is the error which will not be exceeded by 50 percent
of the cases, and corresponds to 0.6745 6 times the standard error.

For example, the probable error in VXi
�E�Y �Xi�� (that will not be exceeded

by the error in the estimate with 50% probability) is:

P�E� = 0�6745√
N

√√√√ N∑
j=1

�y
�j�
A y

�j�
Ci

�2 −
(

N∑
j=1

y
�j�
A y

�j�
Ci

)2

�

Before using the sensitivity measures in our case studies, let us recall
some of the properties of sensitivity indices that will prove useful in the
interpretation of the results:

• Whatever the strength of the interactions in the model, Si indicates by
how much one could reduce, on average, the output variance if Xi could
be fixed; hence, it is a measure of main effect.

• Whatever the interactions in the model, Sc
i1�i2� � � � �is

indicates by how
much the variance could be reduced, on average, if one could fix
Xi1

�Xi2
� � � � �Xis

. We recall that ‘c’ denotes the joint effect.
• By definition, STi is greater than Si, or equal to Si in the case that Xi is

not involved in any interaction with other input factors. The difference

6 The probability P� that a random sample from a normally distributed universe will have a
mean m within a distance ��� of the mean  of the universe is P� = 2������ where ��z� is the
standard normal distribution function and � is the observed value of z = X−

�√
N

.

The value �∗ of � such that P� = 1
2 , is given by �∗ = √

2 ·erf −1
( 1

2

)= 0�6745.
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STi −Si is a measure of how much Xi is involved in interactions with any
other input factor.

• STi = 0 implies that Xi is noninfluential and can be fixed anywhere in its
distribution without affecting the variance of the output.

• The sum of all Si is equal to 1 for additive models and less than 1
for nonadditive models. The difference 1 −∑i Si is an indicator of the
presence of interactions in the model.

• The sum of all STi
s is always greater than 1. It is equal to 1 if the model

is perfectly additive.

4.7 FAST AND RANDOM BALANCE DESIGNS

The classic Fourier Amplitude Sensitivity Test (FAST) method (Cukier et al.,
1978) is based on selecting N design points over a particular space-filling
curve in the kth dimensional input space, built so as to explore each factor
with a different (integer) frequency (�1��2� � � � ��k). A quite complex algo-
rithm is used to set the frequencies such that they are free of interferences
up to a given order M (M = 6 is usually considered sufficient). The compu-
tational model is run at each design point and the Fourier spectrum is
calculated on the model output at specific frequencies (�i�2�i� � � � M�i)
to estimate the sensitivity index of factor Xi. It is important that none of
the higher harmonics of �1��2� � � � ��k interfere until order M, so that the
Fourier spectrum at a given frequency corresponds uniquely to factor Xi.
The design points are selected as follows:

Xi�sj � = Gi�sin�isj �� ∀i = 1�2� ��k� ∀j = 1�2� ���N (4.24)

where Xi is the ith input factor, the functions Gi are chosen according to
the desired pdf of Xi, sj is the parametric variable varying in (−���) which
is sampled over its range using N points, and �i are the frequencies.

In Random Balance Designs (RBD) (Tarantola et al., 2006) N points are
selected over a curve in the input space using a frequency equal to 1 for each
factor. The curve covers only a subset of the input space. Then independent
random permutations are applied to the coordinates of the N points in
order to generate the design points. The computational model is evaluated
at each design point. Subsequently, the model outputs are reordered such
that the design points are in increasing order with respect to factor Xi.
The Fourier spectrum is calculated on the model output at the frequency
1 and at its higher harmonics (2, 3, 4, 5, 6) and yields the estimate of
the sensitivity index of factor Xi. The same model outputs are reordered
with respect to each other factor (and the Fourier spectra are calculated
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accordingly) to obtain all the other sensitivity indices. The design points are
chosen as follows:

Xi�sij � = Gi�sin�sij �� ∀i = 1�2� ��k� ∀j = 1�2� ���N (4.25)

where (si1� si2� � � � � siN ) denotes the ith random permutation of the N points.
Equation (4.25) provides a different random permutation for each factor
Xi.

For RBD the model is evaluated N times over the sample of size N :

Y�sj � = f�X1�s1j ��X2�s2j �� � � � �Xk�skj �� ∀j = 1�2� ���N� (4.26)

The values of model output Y�sj �, j = 1,..N are then reordered (Y R�sj �) such
that the corresponding values of Xi�sij � are ranked in increasing order. The
sensitivity of Y to Xi is quantified by the Fourier spectrum of the reordered
model output:

F ��� =
∣∣∣∣ 1
�

N∑
j=1

Y R�sj � exp�−i�sj�

∣∣∣∣
2

(4.27)

evaluated at � = 1 and its higher harmonics (2, 3, 4, 5, 6). In the discrete
case:

V̂i = V�E�Y �Xi�� =
M∑

l=1

F �����=l =
M∑

l=1

F�l�� (4.28)

This is an estimate of the main effect Vi. The procedure is repeated for
all factors, whereby the same set of model outputs is simply reordered
according to Xi�sij � and (4.27) and (4.28) are used to estimate Vi, i=
2� � � � � k.

Here we provide the basic Matlab® code to compute a generic sensitivity
index according to the RBD method:

s0=[-pi:2*pi/N:pi]’;
s=s0(randperm(N))’; Performs a random permutation of the integers
from 1 to N
x=.5+asin(sin(1*s))/pi; (see (4.25))
[dummy,index]=sort(s); orders the elements of s in ascending order
Y=model(x)
yr=y(index);
spectrum=(abs(fft(yr))).∧2/N; fft is the fast Fourier transform
V1=2*sum(spectrum(2:M+1)); (see 4.28)
V=sum(spectrum(2:N));
S1=V1/V;

Random Balance Designs have a number of advantages with respect to
FAST:
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• the absence of a lower limit for the size N of the design points (FAST
has the problem of aliasing, so a minimum sample size is required and
this minimum size increases with the dimensionality k);

• the nonnecessity to have an algorithm to search for frequencies free of
interferences;

• better accuracy in the estimates, which are not influenced by interfer-
ences;

• the possibility to select larger values of the order M without affecting
the sample size N .

• contrary to the method of Saltelli, each model run contributes to the
estimation of all the first-order indices.

The disadvantage of the RBD method is that it allows the computation of
first-order terms only; we can use the sum of these to check if the model
is additive. If the sum is noticeably smaller than 1 we must use another
algorithm to compute interactions or total-effect terms. The main advantage
of RBD is that it is relatively easy to implement, and the sample size N ,
being independent of the number of factors k, can lead to a considerable
saving in computer time for expensive models.

4.8 PUTTING THE METHOD TO WORK: THE
INFECTION DYNAMICS MODEL

Let us consider an infective process at its early stage, where I is the number
of infected individuals at time t and S is the number of individuals suscep-
tible to infection at time t.

We assume that the infection is propagated through some kind of contact
between individuals who, especially at the early stage, do not take any
precaution to avoid contagion.

It is reasonable to assume that the number of contacts per unit time is
proportional to the number of individuals in each group (i.e. to I ×S) via a
contact coefficient k < 1. Also, the number of infections is proportional to
the number of contacts through an ‘infection coefficient’ (� < 1), which is
the likelihood that the infection is passed on during a given contact.

Depending on the dangerousness of the infection, the infected individuals
will end up in either of two ways: by recovering or by dying. It is presumed
that recovery and death rates (r and �) are proportional to the number of
infected individuals.

The number of susceptible individuals decreases with the number of infec-
tions, but can increase with new births b, proportional to S, or migration
which happens at a constant rate m.
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Two equations describe the dynamics of I and S, representing the model
of the infection process:

dI

dt
= �kIS − rI −�I (4.29)

dS

dt
= −�kIS +bS +m� (4.30)

Let us investigate the evolution of the infection at its early stage t ∼ 0,
when we presuppose that the number of the susceptible individuals is much
larger than that of the infected �S�t� >> I�t��, and that S is changing slowly
�S�t� ∼ S0 = const�.

Equation (4.29) becomes linear and homogeneous:

dI

dt
= ��kS0 − r −��I� (4.31)

The solution is I = I0 ·exp�Y�, where Y = �kS0 − r −�. If Y > 0 the infection
spreads, while if Y < 0 the infection dies out.

Suppose that S0 = 1000 (a small village), and that factors are distributed
as follows:

• Infection coefficient � ∼ U�0�1�. The infection is at an early stage, and
no information is available about how it is acting.

• Contact coefficient k ∼ beta�2�7�. This distribution describes the proba-
bility of a person to come into contact with other individuals. In other
words, the probability of meeting all the inhabitants of the village (and
of meeting nobody) is low, while the probability of meeting an average
number of persons is higher.

• Recovery rate r ∼ U�0�1�. We assume this to be uniform, as we do not
know how it behaves at the beginning of the propagation.

• Death rate � ∼ U�0�1�, for the same reason as r.

Let us calculate the sensitivity indices for the four factors using the method
described in Section 4.6. The total number of model runs is N�k+2�=7680
(N = 1280 and k = 4).

Let us analyse the sensitivity indices shown in Table 4.1. Negative signs
are due to numerical errors in the estimates. Such negative values can often
be encountered for the Saltelli method when the analytical sensitivity indices
are close to zero (i.e. for unimportant factors). Increasing the sample size
of the analysis reduces the probability of having negative estimates. FAST
and RBD estimates are always positive, by construction.

The most influential factors are � and k, while factors r and � are
noninfluential as their total indices are negligible. The infection is likely to
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Table 4.1 First-order and total-effect sensitivity indices obtained
with the method of Saltelli with k ∼ beta�2�7�

Factor First-order indices Total-order indices

Infection (�) 0�49 0�69
Contact (k) 0�41 0�61
Recovery (r) −0�00 −0�00
Death (�) −0�00 −0�00

spread proportionally to the number of contacts between people; unlike �,
which depends on the virus strength, k is a controllable factor. This means
that if the number of contacts could be reduced, the variability in the output
would also be reduced.

The sum of first-order effects is approximately 0.89, while the sum of
the total indices is 1.29; as these two sums are both different from 1, there
must be interactions among factors in the model. Moreover, given that both
factors � and k have total indices greater than their first orders, we conclude
that they are taking part in interactions.

With the model outputs calculated at the 1280 points sampled above,
we perform uncertainty analysis (see Figure 4.1, case 1). The picture shows
that the infection propagates in almost all cases (in 99.7% of the cases the
sign of the model predictions is positive).

–3

–2

–1

0

1

2

3

4

5

1 1280

Model simulations

Infection
spreads

Infection
recedes

Infection
is stable

730256
Case 1

Case 2

Case 3

Figure 4.1 Uncertainty analysis for the three cases of the infection dynamics exer-
cise. On the Y axis we plot the output variable of interest (if Y is positive the
infection propagates, if it is negative the infection recedes and if it is zero – the
X axis – the number of infected individuals is stable), and on the X axis the total
number of model runs. Model outputs for each case are sorted in increasing order,
so that each plot is a monotonic curve. As almost all model runs for the first case
correspond to positive Y ’s, many of which can be of the order of a hundred, the Y
axis is cut at +5 to visualize the plot around zero



172 VARIANCE-BASED METHODS

Assume that, in consequence of this epidemic spread, some measures are
taken in order to reduce the propagation of the disease. Following these
new measures, which warn the inhabitants to avoid contacts, we assume
that k is now distributed as k ∼ beta�0�5�10� (see Figure 4.2) and we repeat
the sensitivity analysis to see how the relative importance of the factors has
been modified. The results are reported in Table 4.2.

We observe that, in this new configuration, factor k becomes more
important in controlling the spread of the infection.

This causes us to wonder whether the restriction is adequate to reduce
the propagation of the infection. By looking at the output of the model,
we see that the infection recedes in 20% of cases, while in 80% of cases it
propagates (see Figure 4.1, case 2): that is a significant improvement with
respect to the initial situation, but stronger measures could still be taken.
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Figure 4.2 Beta distribution with different parameters

Table 4.2 First-order and total effect sensitivity indices obtained
with the method of Saltelli with k ∼ beta�0�5�10�

Factor First-order indices Total-order indices

Infection (�) 0�14 0�36
Contact (k) 0�76 0�98
Recovery (r) −0�00 −0�00
Death (�) −0�00 −0�00
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Assume that we implement additional restrictions on contact between
persons, which means further squeezing the distribution of k to the left-hand
side of its uncertainty range (k ∼ beta�0�2�15�, see Figure 4.2).

We observe in Table 4.3 that factor k becomes even more important,
while factor � has less influence in controlling the spread of the infection.
The uncertainty analysis shows that in 57% of cases the infection recedes
(see Figure 4.1, case 3).

The present example is quite academic, yet it shows how information
obtained from sensitivity analysis (e.g. that the amount of contact between
people is the most important factor in determining the spread of the disease)
can help to inform decisions (e.g. designing measures to reduce people’s
contact in order to control the infection’s propagation).

We test the RBD method described in Section 4.7 on the same case study
selecting N = 1280, i.e. the same sample size that was employed for the
method of Saltelli. In the RBD method each model run contributes to the
estimation of all the sensitivity indices, while in the method of Saltelli it
contributes to the estimation of one single first-order index (and its related
total effect). In summary, RBD has better convergency properties than the
method of Saltelli, in the sense that, for a given sample size, RBD estimates
are more accurate (Tarantola et al., 2006). We report the results for the
three configurations of k in Table 4.4.

RBD produces indices for important factors (i.e. infection and contact)
which are similar to those obtained with the method of Saltelli. Although
the nonrelevant factors (recovery and death) are somewhat overestimated

Table 4.3 First-order and total-effect sensitivity indices obtained
with the method of Saltelli with k ∼ beta�0�2�15�

Factor First-order indices Total-order indices

Infection (�) 0�05 0�32
Contact (k) 0�77 1�05
Recovery (r) −0�00 −0�00
Death (�) 0�00 0�00

Table 4.4 RBD method first-order sensitivity indices

Factor k ∼ beta�2�7� k ∼ beta�0�5�10� k ∼ beta�0�2�15�

Infection (�) 0.43 0.13 0.05
Contact (k) 0.41 0.58 0.65
Recovery (r) 0.01 0.01 0.01
Death (�) 0.01 0.01 0.01
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by RBD, this is a minor problem, since they can anyhow be identified as
noninfluential.

4.9 CAVEATS

Variance-based methods are powerful in quantifying the relative importance
of input factors or groups. The main drawback of variance-based methods
is the cost of the analysis, which, in the case of computationally intensive
models, can become prohibitive even when using the approach described
above.

With Saltelli’s method, N�k+ 2� runs for a full set of Si and STi require
that for a model with 15 factors we need to execute the model at least
17 000 times, taking N = 1000. Using random balance designs with just
N model executions we can compute the full set of Si, but the STi would
remain unknown.

In terms of computational time, thousands or tens of thousands of model
executions can be either trivial or unfeasible, depending on the model at
hand. A viable alternative for computationally expensive models is the
screening method discussed in Chapter 3. The elementary effect test is a
good proxy for the total sensitivity indices.

If the model is both expensive to run and rich in factors we recommend
using the elementary effect method to reduce the number of factors and
then running a variance-based analysis on a reduced set of factors.

4.10 EXERCISES

Exercise 1

Let us consider the model Y = ∑k
j=1 Xj where k=3, Xj ∼ U�xj − �j�xj +

�j�� xj = 3j−1 and �j = 0�5xj .
Calculate the first-order sensitivity indices for the k factors.
First we calculate the expected value and the variance for the model.

Y =X1 +X2 +X3

X1 =1

X2 =3

X3 =9

�1 =0�5

�2 =1�5
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�3 =4�5

X1 ∼U�0�5�1�5�

X2 ∼U�1�5�4�5�

X3 ∼U�4�5�13�5�

E�Y� =E�X1�+E�X2�+E�X3� = 1+3+9 = 13�

Next we compute the variance as

V�Xi� = E�Xi�
2 −E2�Xi� = p�Xi�

∫ b

a
X2

i dxi −E2�Xi�� (4.32)

So in our case we will have

V�X1� =
∫ 1�5

0�5
X2

1dx1 −1 = 1
12

V�X2� =1
3

∫ 4�5

1�5
X2

2dx2 −9 = 3
4

V�X3� =1
9

∫ 13�5

4�5
X2

3dx3 −81 = 27
4

V�Y� =V�X1�+V�X2�+V�X3� = 1
12

+ 3
4

+ 27
4

= 91
12

�

We compute the variance of the conditional expectation VXj
�E�Y �Xj�� and

the expected residual variance EXj
�V�Y �Xj��.

VX1
�E�Y �X1�� =V�X1� = 1

12

VX2
�E�Y �X2�� =V�X2� = 9

12

VX3
�E�Y �X3�� =V�X3� = 81

12

EX1
�V�Y �X1�� =V�Y�−VX1

�E�Y �X1�� = 91
12

− 1
12

= 90
12

EX2
�V�Y �X2�� =V�Y�−VX2

�E�Y �X2�� = 91
12

− 9
12

= 82
12

EX3
�V�Y �X3�� =V�Y�−VX3

�E�Y �X3�� = 91
12

− 81
12

= 10
12

�

Now we have all what we need to find the first-order indices:

S1 = VX1
�E�Y �X1��

V�Y�
= 1/12

91/12
= 1

91
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S2 = VX2
�E�Y �X2��

V�Y�
= 9/12

91/12
= 9

91

S3 = VX3
�E�Y �X3��

V�Y�
= 81/12

91/12
= 81

91
�

The model is additive, which means that there are no interactions among
factors.

Exercise 2

Consider now the model Y = X1 + X2 where X1�X2 are normally
distributed. We also know that x1 = 1�x2 = 2 and �1 = 2��2 = 3.

Compute the expected value and the variance for model Y.

E�Y� = E�X1�+E�X2� = 1+2 = 3�

In this case, as factors are normally distributed, we can calculate the
variance in an easier way:

V�Y� = V�X1�+V�X2� = �2
1 +�2

2 = 4+9 = 13� (4.33)

Calculate the first-order sensitivity indices for the two factors:

S1 = VX1
�E�Y �X1��

V�Y�
= 4

13

S2 = VX2
�E�Y �X2��

V�Y�
= 9

13
�

Also in this case the model is additive, without interactions among
factors.

Exercise 3

Two input factors are normally distributed in the model

Y = X1 ×X2�

with parameters 1 = 1, 2 = 2, �1 = 3 and �2 = 2.
Calculate the first- and second-order indices for the inputs and comment

on the level of additivity of the model.

V�Y� =2
X1

�2
X2

+2
X2

�2
X1

+�2
X1

�2
X2

= 76�

SX1
=2

X2
�2

X1

V�Y�
= 9

19
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SX2
=2

X1
�2

X2

V�Y�
= 1

19

SX1�X2
=�2

X1
�2

X2

V�Y�
= 9

19
�

Factor X1 is the most influential in determining the output variance (its
first-order index is high). FactorX2 has a low first-order index and is thus
apparently less important.

Yet the interaction effect SX1�X2
is as high as the first-order effect of factor

X1. This means that the output variance is significantly driven by the two
factors’ interaction, even if factor X2 appears to be noninfluential. This
shows that ignoring interactions could lead to serious type II errors.7

Exercise 4

A model has eight input factors, but for computational cost’s reasons we
need to reduce the number of factors to five.

The model is

Y =
8∑

i=1

Xi

where Xi are normally distributed as follows:

X1 ∼ N�0�1�
X2 ∼ N�2�2�
X3 ∼ N�1�3�
X4 ∼ N�1�5�
X5 ∼ N�3�1�
X6 ∼ N�4�1�
X7 ∼ N�1�2�
X8 ∼ N�5�5�

1. Calculate the first-order sensitivity indices and identify the three least
important factors, in order to exclude them from the model.

2. Recalculate the first orders for the remaining five factors and find out
which are the most influential: if we decide to fix them at a given value in
their range of variation, by what amount will the variance of the output
be reduced?

7 That is, ignoring the influence of an influential factor. This is typically the most serious,
nonconservative error. On the other hand type I error means considering a noninfluential
factor as influential.
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1. We first calculate the output variance of the model:

V�Y� =
8∑

i=1

V�Xi� = 1+4+9+25+1+1+4+25 = 70�

Now it is easy to derive the first-order sensitivity indices for all input
factors:

S1 = VX1
�E�Y �X1��

V�Y�
= 1

70
= 0�01

S2 = VX2
�E�Y �X2��

V�Y�
= 4

70
= 0�06

S3 = VX3
�E�Y �X3��

V�Y�
= 9

70
= 0�13

S4 = VX4
�E�Y �X4��

V�Y�
= 25

70
= 0�36

S5 = VX5
�E�Y �X5��

V�Y�
= 1

70
= 0�01

S6 = VX6
�E�Y �X6��

V�Y�
= 1

70
= 0�01

S7 = VX7
�E�Y �X7��

V�Y�
= 4

70
= 0�06

S8 = VX8
�E�Y �X8��

V�Y�
= 25

70
= 0�36�

The three least influential factors are X1�X5 and X6, each one
accounting for 1% of the output variance.

2. We discard the nonimportant factors from the model and we repeat
the calculations with only the five remaining factors. We now have a
new output variance:

V�Y� =
5∑

i=1

V�Xi� = 4+9+25+4+25 = 67�

and new elementary effects for the inputs:

S1 = VX1
�E�Y �X1��

V�Y�
= 4

67
= 0�06

S2 = VX2
�E�Y �X2��

V�Y�
= 9

67
= 0�14
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S3 = VX3
�E�Y �X3��

V�Y�
= 25

67
= 0�37

S4 = VX4
�E�Y �X4��

V�Y�
= 4

67
= 0�06

S5 = VX5
�E�Y �X5��

V�Y�
= 25

67
= 0�37�

We see that the two most influential factors are X3 and X5, each one
determining 37% of the output variance.

If we decide to fix those two factors at a given value in their range of
variation, we will have only three factors varying, i.e. factors X1�X2 and
X4. In such a situation, the model will have a lower variance:

V�Y� =
3∑

i=1

V�Xi� = 4+9+4 = 17�

We conclude that, in this example, by fixing the two most important factors
the output variance decreases from 76 to 17, with a reduction of 75%.

Exercise 5

1. Calculate the expansion of f into terms of increasing dimensionality (4.5)
for the function (Ishigami and Homma, 1996):

f�X1�X2�X3� = sinX1 +a sin2 X2 +bX4
3 sinX1� (4.34)

The input probability density functions are assumed as follows:8

pi�Xi� = 1
2�

�

when −� ≤ Xi ≤ � and

pi�Xi� = 0�

when Xi < −��Xi > � for i = 1�2�3.

8 Note that this does not contradict the assumption that all factors are uniformly distributed
within the unit hypercube 	. It is always possible to map the hypercube to the desired
distribution, and the sensitivity measure relative to the hypercube factors is identical to the
measure for the transformed factors.
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We calculate the decomposition of the function as (4.5) for k = 3:

f�X1�X2�X3� =f0 + f1�X1�+ f2�X2�+ f3�X3�+ f12�X1�X2�

+ f13�X1�X3�+ f23�X2�X3�+ f123�X1�X2�X3��

Thus

f0 = E�Y� =
∫ ∫ ∫

f�X1�X2�X3�p�X1�p�X2�p�X3�dx1dx2dx3

= 1
�2��3

∫ ∫ ∫
�sinX1 +a sin2 X2 +bX4

3 sinX1�dx1dx2dx3

= 1
�2��3

[∫
sinX1dx1 +

∫
a sin2 X2dx2 +

∫ ∫
bX4

3 sinX1dx1dx3

]

= � � � � = a

2
�

So f0 = a/2.

The fi�Xi� terms are easily obtained:

f1�X1� =
∫ ∫

f�X1�X2�X3�p�X2�p�X3�dx2dx3 − f0

= 1
�2��2

[
�2��2 sinX1 +a

∫ ∫
sin2 X2dx2dx3

+b sinX1

∫ ∫
X4

3dx2dx3

]
− a

2

= � � � = 1
�2��2

[
�2��2 sinX1 +2a�2 + 4

5
b sinX1�

6

]
− a

2

= sinX1 + 1
5

b�4 sinX1 =
(

1+ 1
5

b�4

)
sinX1�

f2�X2� =
∫ ∫

f�X1�X2�X3�p�X1�p�X3�dx1dx3 − f0

= 1
�2��2

[∫ ∫
sinX1dx1dx3 + �2��2a sin2 X2

+b
∫ ∫

X4
3 sinX1dx1dx3

]
− a

2

= � � � = a sin2 X2 − a

2
�

f3�X3� =
∫ ∫

f�X1�X2�X3�p�X1�p�X2�dx1dx2 − f0

= 1
�2��2

[∫ ∫
sinX1dx1dx2 +a

∫ ∫
sinX2

2dx1dx2
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+bX4
3

∫ ∫
sinX1dx1dx2

]
− a

2
= � � � = 0�

The fij �Xi�Xj� terms are computed as

f12�X1�X2� =
∫

f�X1�X2�X3�p�X3�dx3 − f1�X1�− f2�X2�− f0

= sinX1 +a sinX2
2 +b sinX1

1
2�

∫
X4

3dx3 − f1�X1�− f2�X2�

− f0 = 0�

f13�X1�X3� =
∫

f�X1�X2�X3�p�X2�dx2 − f1�X1�− f3�X3�− f0

= sinX1 +a
1

2�

∫
sinX2

2dx2 +bX4
3 sinX1 − f1�X1�− f3�X3�− f0

=� � � � =
(

bX4
3 − 1

5
b�4

)
sinX1�

f23�X2�X3� =
∫

f�X1�X2�X3�p�X1�dx1 − f2�X2�− f3�X3�− f0

= 1
2�

∫
sinX1dx1 +a sinX2

2 +bX4
3 sinX1dx1

− f2�X2�− f3�X3�− f0

=0

f123 is obtained by difference and is equal to zero.
2. Calculate the variances of the terms for the function, according to

Equation (4.11).
First we calculate the unconditional variance of the function:

V�f�X�� =
∫

�f�X1�X2�X3�−E�f�X���2p�X1�p�X2�p�X3�dx1dx2dx3

= 1
�2��3

∫ ∫ ∫ (
sin2 X1 +a2 sin4 X2 +b2X8

3 sin2 X1

+2a sinX1 sin2 X2 +2bX4
3 sin2 X1

+2abX4
3 sinX1 sin2 X2 + a

4
dx1dx2dx3

+a sinX1 −a2 sin2 X2 −abX4
3 sinX1

)
= 1

�2��3

(
1
2

+ 3
8

a2 + b2

18
�8 + a2

4
+ b

5
�4 − a2

2

)
�2��3

=1
2

+ a2

8
+ b�4

5
+ b2�8

18
�
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We now calculate the variances of Equation (4.11), showing the
passages for factor X1:

V1 =
∫

f 2
1 �X1�dx1 =

∫ (
sinX1 + 1

5
b�4 sinX1

)2

dx1

=
∫ [

sinX2
1 + 2

5
b�4 sinX2

1 + 1
25

b2�8 sinX1

]
dx1 =

= � � � � = 1
2

+ b�4

5
+ b2�8

50
�

The sensitivity index for factor X1 can be calculated as

S1 = V1

V
= 1/2+b�4/5+b2�8/50

1/2+a2/8+b�4/5+b2�8/18

For the other factors we have

V2 = a2

8
V3 = 0

V12 = 0

V13 = b2�4

18
− b2�8

50
V23 = 0

V123 = 0

Again the fact that V13 
= 0 even if V3 = 0 is of particular interest, as
it shows how an apparently noninfluential factor (i.e. with no main
effect) may reveal itself to be influential through interacting with other
parameters.

3. Show that the terms in the expansion of the function (4.34) are orthog-
onal.

Let us show, for example, that f1�X1� is orthogonal to f2�X2�:∫ ∫
f1�X1�f2�X2�dx1dx2 =

(
1+ 1

5
b�4

)∫ ∫
sinx1

(
a sin2 x2 − a

2

)

=
(

1+ 1
5

b�4

)∫
sinx1

∫ (
a sin2 x2 − a

2

)
dx2�

which is equal to zero given that
∫

sinx1 = 0. The reader can verify, as
a useful exercise, that the same holds for all other pairs of terms.



5
Factor Mapping
and Metamodelling

With Peter Young

5.1 INTRODUCTION

Where we discuss another class of questions relevant to modellers:

how are the model output values produced? Who is most responsible to

drive model output into specific ranges? Can we replace the original

complex model with a cheaper one, which is operationally equivalent?

In previous chapters we have dealt with sensitivity settings like Factor
Prioritization (FP) and Factor Fixing (FF) and their associated methodolo-
gies. We saw in Chapter 4, for example, that variance-based techniques are
able to provide unambiguous and rigorous answers to the questions posed
in such settings; in particular, variance-based main effects suit factor prior-
itization, while total effects address the factor fixing setting. In the latter
case, we also saw in Chapter 3 that elementary effect tests can provide
excellent and cheap proxies for total effects, and can be used to screen
models with a medium-to-large number of input factors. In Chapter 2, we
discussed how to deal with models with very large numbers of input factors,
exploiting sophisticated experimental designs.

We now turn to a different type of setting, which arises on foot of various
questions often encountered in mathematical and computational modelling.

Modellers often need to address prototypical questions such as: ‘Which
factor or group of factors are most responsible for producing model outputs

Global Sensitivity Analysis. The Primer A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,
D. Gatelli, M. Saisana and S. Tarantola © 2008 John Wiley & Sons, Ltd
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within or outside specified bounds? Which parameters determine uniqueness
or instability or runaway conditions in a dynamic model?’ For example, if
Y were a dose of contaminant, we might be interested in how much (how
often) a threshold level for this contaminant is being exceeded; or Y might
have to fulfil a set of constraints, based on the information available on
observed systems. The latter situation is typical in calibration.

Another typical question is whether it is possible to represent in a
direct way (graphically, analytically, etc.) the relationship between input
factors and output Y = f�X1� � � � �Xk�. Computing Y usually requires solving
systems of nonlinear differential equations and the relationship f�·� can only
be evaluated numerically, its form remaining unknown. Sensitivity analysis
techniques discussed in previous chapters allow for ranking the importance
of the various input factors in terms of influence on the variation of Y .
In addition, some sort of direct representation of Y = f�X1� � � � �Xk� would
make the model’s properties even more transparent.

In this chapter we will discuss techniques that can help to provide answers
to such questions. We assign all these methods to the Factor Mapping
setting, in which specific points/portions of the model output realizations,
or even the entire domain, are mapped backwards onto the space of the
input factors.

5.2 MONTE CARLO FILTERING (MCF)

Which factor or group of factors are most responsible for producing

model outputs within or outside specified bounds? Which parame-

ters determine uniqueness or instability or runaway conditions in a

dynamic model?

Let us first consider the case where the analyst is interested in targeted
portions (extreme values, ceilings, thresholds, etc.) of the space of Y -
realizations. In this situation, it is natural to partition the model realizations
into ‘good’ and ‘bad’. This leads very naturally to Monte Carlo filtering
(MCF), in which one runs a Monte Carlo experiment producing realizations
of the output(s) of interest corresponding to different sampled points in
the input factors’ space. Having done this, one ‘filters’ the realizations, i.e.
the elements of the Monte Carlo sample that fall within the ‘good’ realiza-
tions are flagged as ‘behavioural’, while the remaining ones are flagged as
‘nonbehavioural’. Regionalized Sensitivity Analysis (RSA, see Young et al.,
1978; Hornberger and Spear, 1981; Spear et al., 1994; Young et al. 1996;
Young 1999a and references cited therein) is an MCF procedure that aims
to identify which factors are most important in leading to realizations of Y
that are either in the ‘behavioural’ or ‘nonbehavioural’ regions. In typical
cases, RSA can answer this question by examining, for each factor, the
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subsets corresponding to ‘behavioural’ and ‘nonbehavioural’ realizations. It
is intuitive that, if the two subsets are dissimilar to one another (as well as,
one would expect, to the initial marginal distribution of the factor), then
that factor is influential.

5.2.1 Implementation of Monte Carlo Filtering

In Monte Carlo filtering a multiparameter Monte Carlo simulation is
performed, sampling model parameters �X1� � � � �Xk� from prior ranges
and propagating parameter values through the model. Then, based on a
set of constraints targeting the desired characteristics, a categorization is
defined for each MC model realization, as either within or outside the target
region. The terms behavioural (B) or nonbehavioural (B̄) are current in the
literature.

The �B − B̄� categorization is mapped back onto the input’s structural
parameters, each of which is thus also partitioned into a B and B̄ subsample.
Given a full set of N Monte Carlo runs, one obtains two subsets: �Xi�B� of
size n and �Xi�B̄� of size n̄, where n+ n̄ = N . In general, the two subsamples
will come from different unknown probability density functions, fn�Xi�B�
and fn̄�Xi�B̄�.

In order to identify the parameters that are most responsible for driving
the model into the target behaviour, the distributions fn and fn̄ are compared
for each parameter. If for a given parameter Xi the two distributions
are significantly different, then Xi is a key factor in driving the model’s
behaviour and there will be clearly identifiable subsets of values in its prede-
fined range that are more likely to fall under B than under B̄. If the two
distributions are not significantly different, then Xi is unimportant and any
value in its predefined range is likely to fall into either B or B̄.

This comparison can be made by applying standard statistical tests, such
as the Smirnov two-sample test (two-sided version). In the Smirnov test the
dn�n̄ statistic is defined for the cumulative distribution functions of Xi by

dn�n̄�Xi� = sup�Fn�Xi�B�− Fn̄�Xi�B̄��

and the question answered by the test is: ‘At what significance level � does
the computed value of dn�n̄ determine the rejection of the null hypothesis
fn�Xi�B� = fn̄�Xi�B̄�?’

The smaller � (or equivalently the larger dn�n̄), the more important the
parameter is in driving the behaviour of the model. The procedure is
exemplified in Figure 5.1 for a parameter Xi, uniformly distributed in the
range �0�1� and displaying a significant difference between the B and B̄
subsets. In order to identify the portion of Xi values more likely to fall
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Figure 5.1 Graphical representation of the Smirnov test for an important parameter
Xi. The vertical bar is the dn�n̄ statistic. Model realizations under the B category are
more likely when Xi falls on the right of its predefined range

under B, the shape of the cumulative distribution Fn�Xi�B� has to be exam-
ined. The latter is steeper on the right-hand side of the graph (or, equiv-
alently, it has shifted downwards), indicating that Xi values on the right
of its predefined range are more likely to produce a behavioural model
realization.

The B and B̄ subsets can be further probed through bidimensional projec-
tions, in order to detect significant patterns. The standard procedure consists
of computing the correlation coefficients 	ij between all parameters under
the B or B̄ subsets, and plotting the bidimensional projections of the sample
for the couples having �	ij � larger than a significance threshold. This usually
makes it possible to ‘visualize’ relationships between parameters.

For example, let us consider a simple model given by the equation Y =
X1 + X2, with Xi ∈ �0�1�. Let us define the model’s target behaviour as
Y > 1. Then, an MCF procedure can identify a significant negative correla-
tion between X1 and X2 in the B subset, and the corresponding triangular
pattern can be visualized through the projection of the B sample shown in
Figure 5.2. From this pattern, one can deduce a constraint X1 +X2 > 1 to
fulfil the target behaviour.

The same procedure can evidently be applied in more typical cases where
the constraint on the factors is not evident from the form of the mathemat-
ical model, i.e. when the model is a computer code.
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Figure 5.2 Bidimensional projection of the B subsample for the simple model Y =
X1 +X2 (target behaviour Y > 1). The triangular pattern clearly indicates the rela-
tionship X1 +X2 > 1 for the target behaviour. The correlation coefficient between
X1 and X2 in the MC sample is 	12 = −0
45

5.2.2 Pros and Cons

Similarly to variance-based methods, RSA has many global properties: (a)
the whole range of values of the input factors is considered, and (b) all
factors are varied at the same time. Smirnov analysis considers univariate
marginal distributions and it relates not only to main effects of variance-
based methods, but can also highlight certain types of interaction effects
(see the Exercises below). Higher-order analysis can only be performed for
two-way interactions that are detectable through correlation analysis, but
no procedure is provided for more complex interaction structure. Spear
et al. (1994), reviewing their experience with RSA, highlighted two key
drawbacks:

1. A low success rate: practice has shown that the fraction of B is barely
larger than 5% over the total simulations for large models (with number
of factors k > 20), implying a lack of statistical power;

2. Difficulty in uncovering correlation and interaction structures of the B
subset (see also Beck’s review, 1987):

• the Smirnov test is sufficient to ascertain whether a factor under anal-
ysis is important. However, it does not provide a necessary condition
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for importance, i.e. its nonsignificance does not ensure that a factor
is noninfluential;

• many types of interaction structures induced by the classification are
not detected by the univariate dn�n̄ statistic: e.g. factors combined
as products or quotients may compensate (see Exercise 6 below, for
c = 0);

• the interaction structure is often far too complex for correla-
tion analysis to be effective, i.e. bivariate correlation analysis is
not revealing in many cases (see Saltelli et al., 2004, Example 2,
pp. 159–161).

Such characteristics of RSA imply that no complete assessment can be
performed with RSA, since for those factors proving unimportant in the
Smirnov test, further inspection is needed (e.g. by applying other global SA
tools) to verify that they are not involved in interactions. Only after this
subsequent inspection can the relevance of an input factor be fully assessed.
In order to address these limitations of RSA and to better understand the
impact of uncertainty and interaction in the high-dimensional parameter
spaces of models, Spear et al. (1994) developed the computer-intensive
Tree-Structured Density Estimation technique (TSDE), which allows for the
characterization of complex interactions in that portion of the parameter
space which gives rise to successful simulations. In TSDE, the B subsample
is analysed by clustering regions of input factors characterized by high point
density. This is based on a sequence of recursive binary splits of the B
sample into two subdomains (similarly to peaks and tails of histograms) of
complementary characteristics:

• small regions of relatively high density;
• larger sparsely populated regions.

The TSDE procedure relies on the assumption that any nonrandom density
pattern indicates an influence of input factors on the model output. Inter-
esting applications of TSDE in environmental sciences can be found in Spear
(1997), Grieb et al. (1999) and Pappenberger et al. (2006). In the latter
reference it is shown how factor mapping can be used to identify areas
of desirable and undesirable model behaviour, which aids the modelling
process. Helton et al. (2006) also provide mapping techniques on scatter-
plots, based on the same assumptions as TSDE.

Our experience suggests that such extended RSA techniques for mapping
B subsets can be revealing when they work, but, in spite of their higher
coding and computational complexity, they may still be characterized by
lack of statistical power in discriminating the significance of such density
patterns in a robust manner. Hence, we limit our discussion here to
the Smirnov test and correlation analysis, due to the simplicity of their
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implementation and their ease of interpretation. Later on we will present
more powerful mapping techniques when discussing metamodelling.

5.2.3 Exercises

1. Interpret the plots below, which represent the Smirnov test for a set
of input factors. The behavioural set is indicated by dotted lines, the
nonbehavioural by solid lines. Think of some functional forms that could
produce such results. The D-stat above each plot indicates the value of
the Smirnov statistic.
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X_1. D−stat 0.3
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2. Interpret the plots below, showing the bidimensional projections of
behavioural subsets. Think of an analytic form of the types of interaction
that produce the behavioural sets.
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3. Consider the model Y = Z1 +Z2, with

Z1 ∼ N�0�1�

Z2 ∼ N�0�3�


Discuss the mapping problem Y > 0 analytically and using the MCF
techniques.
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4. For the same model as in Exercise 3, map the highest 5% quantile for Y
onto the input space.

5. For the same model as in Exercise 3, map the highest 5% quantile for Y
when

Z1 ∼ N�0�1�

Z2 ∼ N�0�1�


6. Consider the model Y = X1 ·X2, with Xi ∼ N�0�2� and discuss the cases
Y > −1, Y > 0, Y > 1.

7. Consider the model Y = X1 ·X2 ·X3, with Xi ∼ U�0�2� and discuss the
case Y < 1.

5.2.4 Solutions

1. Three input factors out of four have a significant effect on the
behavioural properties of the model. Only X3 has a negligible effect.

The dotted cumulative distribution curve for X1 is steepest on the
right-hand side (it has shifted downwards), so high values of X1 are more
likely to produce behavioural model realizations. This kind of result
suggests a monotonic mapping between X1 and Y , e.g. a simple linear
relationship.

Input factor X2, on the other hand, has two different behavioural
regions: the dotted line has two separate sections of steepness, one for
the smallest values and one for the largest. This implies that the extreme
values of X2 (either smallest or largest) are more likely to produce
behavioural realizations of Y . This kind of result suggests a nonmono-
tonic mapping between X2 and Y , e.g. a quadratic form. Also, interaction
effects can lead to the same type of Smirnov test (see Exercise 6 below).

For X4 we have the opposite situation with respect to X2: the dotted
line is steeper in the central part of the support, implying that the
extreme values of X4 have to be avoided in order to produce behavioural
model realizations. This kind of result suggests a nonmonotonic mapping
between X4 and Y , e.g. a quadratic form with opposite concavity with
respect to X2.1

2. The first shape is characterized by a negative correlation between X1

and X2 in producing behavioural model realizations. Negative corre-
lations suggest that the two input factors act through sum or product

1 The true model used for this example was Y = 4X1 + �4X2
2 − 1� − X3

3 − �2X4
4 − 1� with

Xi ∼ U�−1�1�
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relationships. In this case, a plausible description for the behavioural set
is given by X1 +X2 > 0, i.e. an additive relationship.

The second shape is also characterized by a negative correlation,
suggesting action through sum/product. In this case, the shape resembles
a hyperbola, suggesting a plausible functional form as X1 ·X2 < const.

The third shape is characterized by a positive correlation, implying
that the action is now through difference/quotient. Possible relationships
are a ·X1 −b ·X2

2 < 0 or X1/X2
2 < const.

The fourth shape is again with positive correlation, but flipped with
respect to the previous one, so plausible relationships are a ·X1 −b ·X2

2 >
0 or X1/X2

2 > const.
3. The behavioural criterion Y > 0 is fulfilled by parameter combinations in

the upper-right half plane delimited by the line Z1 = −Z2 (i.e. Z1 > −Z2).
If we also consider the input factor distributions (Gaussian), we know
that normal samples will fall into the range ±1
96 ·� with 95% proba-
bility, where � is the standard deviation of the Gaussian distribution. So,
the behavioural samples will be mainly concentrated (with 95% proba-
bility) in the upper part of an ellipse with vertical major axis of height
5.88 and horizontal minor axis of width 1.96, cut by the line Z1 = −Z2.
Moreover, since Z2 has a wider variance than Z1, it will also be clear
that Z2 drives the sign of Y more powerfully, i.e. extreme values of
Z2 will be able to drive the sign of Y regardless of the actual values
of Z1.

We now perform the analysis applying the MCF approach (we give
MATLAB commands as an example).

(a) Generate a sample of 1000 elements from two normal distributions
of standard deviation 1 and 3:

x1 = randn(1000,1);

x2 = randn(1000,1).*3;

(b) generate the output:

y = x1+x2;

(c) look for behavioural elements of the sample:

ib = find(y>0);

and for the nonbehavioural:

in = find(y<=0);
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(d) compute the Smirnov statistics (e.g. the outputs d1 and d2 of the
MATLAB Statistical Toolbox function kstest2):

[h1, p1, d1] = kstest2(x1(ib),x1(in));

[h2, p2, d2] = kstest2(x2(ib),x2(in));

(e) plot the empirical cumulative density plots (e.g. using MATLAB
Statistical Toolbox function cdfplot):

figure,

subplot(2,2,1)

h=cdfplot(x1(ib));

set(h,’linestyle’,’:’),

hold on, cdfplot(x1(in))

gca, title([’d-stat ’,num2str(d1)]), xlabel(’Z1’),
ylabel(’’)

subplot(2,2,2)

h=cdfplot(x2(ib));

set(h,’linestyle’,’:’),

hold on, cdfplot(x2(in))

gca, title([’d-stat ’,num2str(d2)]), xlabel(’Z2’),
ylabel(’’)
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From the Smirnov analysis we can see that, while both input factors
have a significant effect on the behavioural realizations of Y , Z2

has the greater impact on the sign of Y (it has a far larger Smirnov
statistic). As already mentioned, this is due to the larger variance
of Z2 with respect to Z1, which allows sufficiently large values of
Z2 to force a positive sign in Y , regardless of the values of Z1.
The behavioural/nonbehavioural subsets for Z2 are therefore almost
disjoint (they overlap only in the range [−1
5, 1.5] within a full
support of [−9, 9]), while for Z1 the two subsets have a much larger
degree of overlap.

(f) compute the correlation coefficient under the behavioural subset:

cc = corrcoef(x1(ib),x2(ib))

and plot the bidimensional projection of the behavioural sample,
which fills the half plane Z1 +Z2 > 0, as expected.

plot(x1(ib),x2(ib),’.’)

xlabel(’z1’), ylabel(’z2’),
title([’cc=’,num2str(cc(2,1))])
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4. The output Y is the sum of two normally distributed variables, so Y ∼
N�0�

√
10�. The 5% upper tail of a Gaussian distribution is located at a

distance from the mean of 1
65 ·�. Hence the upper 5% tail of the output
probability is given by the set Y > Y 95, where Y 95 = 1
65 ·√10 = 5
22.
So the behavioural set of the input factors is given by the upper half
plane delimited by the line Z1 +Z2 = Y 95.
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Performing the same analysis applying MCF techniques requires the
use of the same sample used in Exercise 3 and recomputing the new
behavioural set.

(a) Sort the output values:

[ys, is]=sort(y);

(b) define the behavioural (upper 5%) and nonbehavioural sets (the rest
of the sample)

ib = is(951:1000);

in = is(1:950);

(c) compute the Smirnov statistics and plot the cumulative distributions
as in the previous exercise:
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Again we can see that the behavioural and nonbehavioural subsets
of Z2 are almost disjoint and sufficiently large values of Z2 are
capable of driving Y into the upper 5% quantile, whatever the value
of Z1.

(d) compute the correlation coefficient of the behavioural set and plot
the bidimensional projection of the input factor behavioural sample,
which fills the half plane Z1 +Z2 > Y 95, as expected. This plot also
confirms the Smirnov analysis by showing that Z2 values have to
remain significantly positive to drive Y to its upper values, while Z1

values can range almost symmetrically around zero (see scatterplot
on top of next page).
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5. In this case, the two input factors have the same variance, so we can
expect an equal impact on the extreme values of Y . In analytic terms, Y
now has a Gaussian distribution N�0�

√
2�. Hence the upper 5% quantile

is given by Y > Y 95 = 1
65 ·√2 = 2
33.
Performing the MCF analysis, we first obtain the Smirnov statistics

and plot the cumulative distributions, which clearly display the similarity
of the effects of the two input factors on Y .
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We can subsequently perform the correlation analysis and plot the
bidimensional projection of the behavioural sample, which also confirms
the equivalent effect of Z1 and Z2 on Y (see scatterplot on top of next
page).

6. Analytically, the problems can be formalized as Y > c, with c = −1�0�1.
This implies that X1 ·X2 > c.

For c = −1, the behavioural condition is fulfilled for the portion of the
�X1�X2� plane between the two branches of the hyperbola X1 = −1/X2.
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This also implies that the central part of the support of each input factor
will be more likely to produce behavioural Y -realizations.

For c = 0, the behavioural condition is fulfilled if X1 and X2 have the
same sign, i.e. all positive values of both X1 and X2 or all negative values
of both X1 and X2. This also implies that any value in the support of
one input factor has an equal probability of producing a behavioural or
nonbehavioural run, conditional on the value of the other one. Therefore,
the Smirnov test would not highlight any significant effect of X1 and X2.

For c = 1, the behavioural condition is fulfilled for the two portions of
the �X1�X2� plane outside the two branches of the hyperbola X1 = 1/X2.
This also implies that the lower/upper part of the support of each input
factor will be more likely to produce behavioural Y -realizations.

The MCF analysis can be implemented in a completely identical
manner to the examples before.
• c = −1. We first compute the Smirnov statistics and plot the cumula-

tive distributions.
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Analysing the steepness of the cumulative distributions under B and B̄
shows that the behavioural distribution is concentrated (steeper) in the
central part of the initial support, while the nonbehavioural is concen-
trated (steeper) in two disjoint subsets in the lower and upper part of
the initial support.

We then compute the correlation coefficient and plot the bidimensional
projection of the behavioural subset.
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This shows neatly the portion of space between the two branches of
hyperbola X1 = −1/X2 that produces behavioural Y -realizations.

• c = 0. We first compute the Smirnov statistics and plot the cumulative
distributions.

This shows that the two subsets have the same distribution, i.e. any value
in the original support for each input factor is equally likely to produce
behavioural or nonbehavioural realizations.
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We then compute the correlation coefficient and plot the bidimensional
projection of the behavioural subset.
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This allows us to understand the interaction mechanism between X1 and
X2 that produces behavioural realizations.

• c = 1. We first compute the Smirnov statistics and plot the cumulative
distributions.
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This shows that values of the input factors concentrated in the
lower/upper part of each support are more likely to produce behavioural
runs, while the central values of the original support are excluded from
the behavioural set (the dotted cumulative lines are flat around the zero
values of Zi, implying a zero density of points of the behavioural subset
in the central part of each support).
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We then compute the correlation coefficient and plot the bidimensional
projection of the behavioural subset.
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This shows the two disjoint portions of the �X1�X2� plane outside the
two branches of the hyperbola X1 = 1/X2 that produce the behavioural
Y -realizations.

7. We first compute the Smirnov statistics and plot the cumulative distri-
butions.
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This shows that, to maintain the output realization smaller than 1, all
factors must be sufficiently small. The behavioural distribution is there-
fore steepest towards the smallest values of the original supports of Xi.

We then compute the correlation coefficient and plot the bidimensional
projection of the behavioural subset.
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The negative correlation coefficients indicate that the effect of input
factors on Y is through sums/products. Moreover, these plots show
nicely that the upper-right regions, combining large values of all the
input factors, have to be avoided to ensure that Y < 1.

5.2.5 Examples

We now show a few examples of the use of MCF to characterize the stability
behaviour of dynamic models. We will give an example for a chemical
reactor (continuous time model) and for a macroeconomic model (discrete
time model). Finally, we will also consider, in the light of MCF techniques,
the infection dynamics model previously analysed in Chapter 4.

5.2.5.1 Stability analysis of a controlled chemical reactor

Let us consider a continuous stirred tank reactor (CSTR) where a first-order
exothermic irreversible reaction A → B takes place in liquid phase.

The behaviour of the CSTR can be expressed in terms of mass and heat
(enthalpy) balance equations. Mass balance reads as

V
dCA

dt̄
= Q�CA0 −CA�−k�T�CA ·V (5.1)

where t̄ is time [s], V is the reactor volume [m3]; CA is the concentration
of A in the reactor and at its outlet [kmol/m3]; CA0 is the concentration of
A at the inlet; Q is the volumetric flow rate [m3/s] at the input and output
of the reactor, k�T� is the kinetic ‘constant’ [1/s] of the first-order chemical
reaction A → B, which is expressed as a function of temperature T [K]:

k�T� = k0 exp
(

− E

RT

)
�
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where k0 is the Arrhenius factor [1/s], E is the activation energy [kJ/kmol]
and R is the gas constant [kJ/(kmol K)].

The mass balance equation (5.1) tells us that the rate of change of the
amount of reactant A, given by the left-hand side term V�dCA/dt̄�, equals the
flow of A at the inlet, Q ·CA0, minus the flow of A at the outlet, Q ·CA, and
minus the amount of A that is transformed into B per time unit, k�T � ·CA V .

The heat balance reads as

V	cp

dT

dt̄
= Q	cp�T0 −T �−�Hrk�T �CAV −UA�T −Tc� (5.2)

where 	 is the density of the reacting mixture [kg/m3], cp is the specific
heat of the mixture [kJ/(kg K)], T0 is the temperature of liquid entering
the reactor [K], T is the temperature of the liquid in the reactor and at its
outlet, Tc is the temperature of the reactor’s coolant, �−�Hr� is the reaction
enthalpy [kJ/kmol], U is the overall heat transfer coefficient between the
inside of the reactor and the coolant [kJ/(s m2 K)] and A is the heat transfer
area [m2].

The heat balance equation (5.2) tells us that the rate of change of enthalpy
in the reactor, V	cp�dT/dt̄�, equals the flow of enthalpy at the inlet, Q	cpT0,
minus the flow of enthalpy at the outlet, Q	cpT , plus the heat generated
by the exothermic reaction, �−�Hr� k�T �CAV , minus the heat removed by
the coolant, UA�T −Tc�.

The CSTR is controlled, in order to keep the temperature, and the asso-
ciated quantity of product B, at the desired set-point Ts. The controlled
variable is the temperature T and the manipulated variable is the coolant
temperature Tc. The controller follows a standard proportional-integral (PI)
design, implying the following control rule for the coolant temperature:

�Tc −Tcs� = −kP �T −Ts�−kI

∫ t

0
�T −Ts�dt̄ (5.3)

where Tcs is the coolant temperature at the set-point, kP is the proportional
control gain and kI is the integral control gain [1/s]. The control rule (5.3)
tells us that the coolant ‘error’ �Tc − Tcs� is proportionally adjusted, with
opposite sign, with respect to the temperature error �T −Ts� and with respect
to the integral of the temperature error. In other words, the coolant temper-
ature will go down as the temperature error �T −Ts� and its integral go up.
The control gains kP and kI tell us by how much the coolant temperature is
adjusted by the controller for a given temperature error and integral of the
error: the higher the gains, the greater the change in the coolant. Finally,
the integral action ensures that the desired set-point is the unique steady
state of the reactor.

Economists or econometricians will be familiar with Taylor rules: in
monetary policy, for example, the controlled variable is inflation and
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the manipulated variable is the nominal interest rate. When the economy
is ‘overheated’ (i.e. with high inflation), the Central Bank increases the
nominal interest rate to ‘cool’ the economy. In the case of the CSTR, the PI
regulator decreases coolant temperature to cool an overheated reactor.

The controlled CSTR is therefore described by the following system of
differential equations, in dimensionless form:

d

dt
= − +Da����1−� (5.4)

d�

dt
= �0 +N��cs −kP �� −�s�−kI���− �1+N�� +Da����1−� (5.5)

d�

dt
= � −�s (5.6)

where (notation of Pellegrini and Biardi, 1990)

 = CA0−CA

CA0
(conversion of A)

� = V
Q

(residence time [s])

t = t̄
�

(dimensionless time)

N = UA
Q	cp

(dimensionless heat transfer coefficient)

� = T −Ts

�Ta
(dimensionless temperature)

�Ta = −�Hr CA0
	cp

(adiabatic temperature rise [K])

Da��� = k0� exp �− E
R�Ts+�Ta��

� (Damkoehler number)

� = ∫ t

0 �� −�s�dt (dimensionless integral of the error)

The adiabatic temperature rise indicates the temperature increase that
would be caused in the reactor if the entire amount of input A were
converted into B under adiabatic conditions (i.e. without any heat
exchange). The Damkoehler number indicates the average number of ‘reac-
tion events’ that occur during the residence time.

The behaviour of this dynamical system, which can present complex
dynamic features, from instability of the steady state to chaotic behaviour,
has been intensively studied (see Pellegrini and Biardi, 1990; Giona and
Paladino, 1994; Paladino et al., 1995; Paladino and Ratto, 2000).

Our aim in the present example is to study the stability conditions of the
controlled CSTR. The local stability analysis of the reactor in the neigh-
bourhood of the unique steady state �s��s��s� is performed by analysing
the Jacobian:

J =
⎛
⎝−�1+a21� a12 0

−a21 −�kPN +N +1�+a12 −kI�
0 1 0

⎞
⎠ (5.7)
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where

a12 = s

E�Ta

R�Ts +�Ta�s�
2

> 0 (5.8)

a21 = Da��s� > 0 (5.9)

and s = Da��s�/�1+Da��s��.
The steady state is stable if all three eigenvalues of J have negative

real parts. This ensures that, as the operating conditions are moved away
from the set-point (i.e. the steady state), the reactor will return to steady
state. Many authors have demonstrated that this system presents a Hopf
bifurcation locus. At the Hopf locus the steady state becomes unstable
and the dynamic behaviour of the reactor is characterized by persistent
oscillations (limit cycle). This is, of course, unacceptable and must be
avoided.

Although the Hopf bifurcation locus can be computed analytically (Giona
and Paladino, 1994), here we analyse the stability conditions by applying
the MCF techniques described in this chapter. This will allow us to confront
the results of the MCF analysis with the analytic results. The problem can
be formalized in the MCF framework as follows:

• the input factors are the control gains and the uncertain physicochemical
parameters of the CSTR model;

• the outputs are the eigenvalues of the Jacobian;
• the filtering criterion is:

– behaviour B if all eigenvalues have negative real parts;
– nonbehaviour B̄ otherwise.

The nominal conditions of the CSTR are defined as follows:

k0 = 133600s−1 E/R = 8000K � = 3600s �Ta = 200K

T0 = 298
42K Ts = 430K Tcs = 373
16

�s = 0 s = 0
8 N = 0
5

(5.10)

Such nominal conditions, depending on the values of the various
physicochemical parameters, are subject to a degree of uncertainty.

Let us first analyse the stability of this system under the nominal condi-
tions, by varying only the control gains kP and kI�. As anticipated, this
analysis can be performed analytically. We analyse here the Hopf bifur-
cation locus in the �kP � kI�� plane using the MCF approach. The analysis
requires the following steps:
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• Sample the control gains uniformly in the range [0, 10];
• Compute the eigenvalues of the Jacobian;
• Check the stability condition;

– the set of control gains providing stable eigenvalues (negative real
parts) is the behavioural set;

– the set of control gains providing unstable eigenvalues (nonnegative
real parts) is the nonbehavioural set;

• Perform the Smirnov analysis;

0 5 10
0

0.5

1
kP. D−stat 0.84

0 5 10
0

0.5

1
kIτ. D−stat 0.19

Looking at the plot for kP , we can see that the nonbehavioural cumulative
distribution (solid line) has a limit threshold at about k∗

p = 5, above
which only stable solutions are present; this implies that sufficiently large
values of the proportional control gain (kP > k∗

P ) are able to stabilize
the reactor, whatever the value of the integral control gain. The latter
gain, on the other hand, is more likely to produce a stable reactor for
small values. However, the two cumulative distributions for kI� have the
same support, i.e. both ranges of the stable and unstable sets span the
entire support [0, 10], implying that no clear threshold of stability can
be identified.

• Plot the behavioural sample on the �kP � kI�� plane.
This shows the boundary of stability that exactly corresponds to the
analytic solution (solid line). Note also that the patterns in the scatterplot
are due to the Sobol’ quasi-random sequences used for the example.

We now check the stability analysis for robustness, by allowing physico-
chemical parameters to be uncertain. These uncertainties are given by
normal distributions, with the following characteristics:

• �k0�E/R�: assuming an estimate of kinetic coefficients, they are likely to
be strongly correlated (Bard, 1974) and with much greater uncertainty
for k0 than for E/R. So we take a standard deviation of 35% for k0,



MONTE CARLO FILTERING (MCF) 205

0 2 4 6 8 10
0

2

4

6

8

10

kP

k I
τ

Stable sample

Analytic Hopf locus

2% for E/R and a correlation coefficient of 0.96 (Paladino and Ratto,
2000).

• �N�: the heat transfer coefficient has a standard deviation of 5%, i.e.
∼ N�0
5�0
025�.

• ��Ta�: the adiabatic temperature difference has a standard deviation of
5 K, i.e. ∼ N�200�5�.

We then proceed with the MCF analysis, as described below.

• First we perform the Smirnov test.
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The sensitivity behaviour is still dominated by the control gains. In partic-
ular, sufficiently large values of kP are still able to stabilize the reactor,
whatever the values of kI� and all the uncertainties in the physicochem-
ical parameters. This is very important, since it allows us to design a
stable control, i.e. robust against uncertainties. Looking very carefully at
the physicochemical parameters, we can also see that, as expected, the
reactor has a very slight tendency towards instability if:

– the heat transfer coefficient decreases;
– the adiabatic temperature difference increases;
– the kinetic parameters increase.

• We then plot the bidimensional projection of the unstable sample B̄ onto
the �kP � kI�� plane.
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This shows that unstable behaviour can be present beyond the Hopf
locus computed at the nominal values of the physicochemical parameters,
implying that safe values for control gains have to be chosen according to
uncertainty considerations. Constraining gains as kP > 6 and 0 < kI� < 4
may be a good starting point.

5.2.5.2 Stability analysis of a small macroeconomic model

Let us consider a simple macroeconomic model: a Phillips curve. As usual
in economics, this is a discrete-time dynamic model (typically with a quar-
terly sampling interval). Let ct and �t denote output gap and inflation,
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respectively. In macroeconomic theory, the output gap denotes the cyclical
component of GDP (gross domestic product) with respect to the long-term
trend. In general terms, it is a quantity linked to the business cycle. We can
write the hybrid Phillips curve as

�t = �b�t−1 +�f Et�t+1 +�ct +a�t (5.11)

ct = 2A cos�2�/��ct−1 −A2ct−2 +ac�t (5.12)

where Et denotes the expectation taken at period t, 0 < ��b��f � < 1, A and
� are the amplitude and period of ct and a��t� ac�t are white noises.

The Phillips curve links the inflation dynamics to the output gap, in such
a way that periods of economic expansion (i.e. with a positive output gap)
are typically associated with an increase in inflation and vice versa. More-
over, the hybrid Phillips curve also says that inflation in the current period
is linked with some persistence �b to the rate of inflation in the previous
period and to the expected level of inflation in the following period, with a
weight �f . This leads on to the theory of rational expectation behaviour of
economic agents. In contrast to standard (physical) dynamic systems, the
occurrence of a unique, stable solution in macroeconomic rational expec-
tations models requires that there be an equal number of explosive eigen-
values and forward-looking variables. In discrete-time dynamic models,
stable roots have absolute values less than 1, while explosive ones are
larger than 1. In this case, the Phillips curve has one lag �t−1 and one
lead Et�t+1, so we need exactly one stable and one explosive eigenvalue.
To help explain the stability conditions of economic rational expectations
models to non-economists, we can say that the fact that the current level of
inflation depends on both past and future levels, makes the system like a
two-point boundary system (similar to certain types of differential equations
in space describing advection–dispersion mechanisms). Hence, this implies
the presence of initial and terminal conditions, corresponding to backward-
looking and forward-looking components, respectively. Likewise in physical
systems, backward-looking behaviour propagates the initial conditions into
the future. This propagation is stable if it is associated to stable eigenvalues,
thus assuring that the dynamic system will asymptotically converge to the
steady state. The forward-looking components, on the other hand, prop-
agate the terminal conditions into the past, i.e. in a symmetrical manner,
reversing the orientation of the time axis. It intuitively makes sense that,
if the orientation of time is reversed, explosive roots looking ‘towards the
future’ become stable roots looking ‘towards the past’; therefore, in order
to ensure stability of the propagation into the past of forward-looking
components, such components need to be associated to explosive roots.
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The eigenvalues of this simple model can be computed analytically:

rb =
1/�f −

√
1/�2

f −4�b/�f

2

= 1−√1−4�b�f

2�f

rf = 1+√1−4�b�f

2�f




(5.13)

The restriction 1−4�b�f ≥ 0 ensures that the roots are real. The stability
condition is verified if

�f < �1−�b� (5.14)

or

�f = �1−�b� and �b > 0
5


We apply the Monte Carlo filtering technique to identify the stable
behaviour. The support for the model coefficients is defined as

A ∼ U�0�1�� �b ∼ U�0�1�� �f ∼ U�0�1�� � ∼ U�0�100�


We first perform the Smirnov test for the separation of the B and B̄
subsets.
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The occurrence of stable or unstable behaviour is clearly attributable
to the coefficients �b and �f . Moreover, the shape of the dotted curves
(corresponding to B) indicates that stable behaviour will more probably
occur for smaller �b and �f values.

We subsequently perform a correlation analysis of the stable sample and
plot the significant correlation selected: the bidimensional projection of the
B subset onto the ��b��f � plane.
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The dots in this plot clearly indicate the first stability condition �f <
�1−�b� in (5.14). The second condition in (5.14) is just one limit case, and
tells us simply that only the half part �b > 0
5 of the stability boundary line
�f = �1−�b� provides stable behaviour. This is, of course, hardly visible in
the plot.

5.2.5.3 Mapping propagation of the infection in the simple infection
dynamics model

Let us consider the model presented in Chapter 4. We want to map the
conditions under which infection propagates. Recalling the solution to the
model shown in Chapter 4, we have

I = I0 exp�Yt�

with

Y = �kS0 − r −d

which states that the infection dies out if Y < 0 and propagates if Y > 0. So,
our MCF problem is to map Y < 0, i.e. the stable eigenvalue of the infection
propagation dynamics.

We sample input factors from the same distributions used in Chapter 4
for the three different scenarios of parameter k.

• k ∼ beta�2�7�. In this case, the probability that the infection will die
out is very small (only 1% of the MC sample). Performing the Smirnov
analysis we obtain the picture on the top of next page.

This shows that all input factors have a nonnegligible effect in driving
the propagation of the infection. However, � is predominant, based on
which it is clear that the infection can die out only for a very narrow
range of � values, in the lowest part of its range. Moreover, we can also
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see that smaller values of k and larger values of r and d tend to limit
propagation of the infection.

The correlation analysis reveals a negative correlation between � and
k under the behavioural subset, which reflects the product interaction
between these two factors. Note also that �-values in this behavioural
scatterplot are constrained in the range �0�0
05� out of a full sample in
the range �0�1�.
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• k ∼ beta�0
5�10�. Changing the prior distribution of k raises the prob-
ability that the infection will die out to about 20%. Performing the
Smirnov analysis produces the following modified picture for the model
parameters:
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Now the importance of k has increased, and we can see that the
behavioural runs are linked merely to k, falling in the lowest part of its
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range. Moreover, small � values and large r and d values also tend to
produce a declining infection dynamics.

The correlation analysis confirms the negative correlation between �
and k, while the hyperbola shape linked to the product interaction of
these two parameters in the model is now more sharply visible.
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• k ∼ beta�0
2�15�. In this case, the probability of a declining infection
dynamics rises to 57%. The Smirnov analysis indicates that k is now
the dominant factor in driving the behaviour of the infection dynamics
model, leaving a minor role to the remaining parameters:
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The correlation analysis still produces a negative correlation between �
and k with the hyperbola boundary between the B and B̄ subsets.
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5.3 METAMODELLING AND THE
HIGH-DIMENSIONAL
MODEL REPRESENTATION

Is it possible to represent in a direct way the relationship between

input factors and the model output? Can such a direct and computa-

tionally cheaper approximation be used in place of the original model?

How can we estimate such an approximation?

Let us now consider the problem of representing in a clear and immediate
way the relationship Y = f�X1� � � � �Xk�, whose form is usually unknown
to the analyst. This is essentially a problem of model approximation or
metamodelling, whereby the analyst aims to identify a simple relationship
between Xi’s and Y that fits the original model well and is less computa-
tionally demanding.

There is a vast literature on this subject. Local approximation methods
take the value of f and its derivatives at a base point X0 and construct
a function that matches the properties of f at X0 and in the nearby
region (Taylor series). Interpolation methods look at ‘nice’ functions that
go through a set of data points spanning the entire domain of the Y =
f�·� mapping. The approximation is then identified by fixing p parameters
(e.g. the coefficients of the polynomials) using p data points (Lagrange,
Chebyshev interpolation). Tensor products of orthogonal polynomials or
complete polynomials are usually applied to span the space of func-
tions in Rk and to interpolate Y = f�X1� � � � �Xk�. Regression/smoothing
methods differ from interpolation in that a set of N > p data points is
used to identify the approximating function. For univariate functions f ,
the interpolation, regression and smoothing approaches can be extended by
applying piecewise polynomials, constructing functions that are only piece-
wise smooth. Splines (cubic splines are the most popular) are a powerful
and widely used approach to piecewise polynomial interpolation and regres-
sion/smoothing (in the latter case they are called smoothing splines). Splines
are smooth where the polynomial pieces connect. In the multivariate case,
radial basis function (RBF) networks can be seen as the equivalent of
univariate piecewise interpolation, regression and smoothing approaches
(RBFs are also classified under the heading of kernel regression smoothing
methods).

Before proceeding with the description of the methodologies, we would
like to draw attention to some additional properties of the approximating
functions, which also uncover fundamental links between metamodelling
and the theory of variance-based sensitivity analysis discussed in previous
chapters.
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Let g�·� be the generic function approximating the true model Y =
f�X1� � � � �Xk� and let us assume a quadratic loss function E��Y −g�·��2� as a
measure of ‘fit’ for g.

If we were to approximate f with a function of one single parameter Xi,
what function g∗

i �Xi� would produce minimum loss?
It is well known, from any standard text on statistics, that the univariate

function

g∗
i = E�Y �Xi�� (5.15)

i.e. the conditional expectation of Y given Xi, is the minimum loss approx-
imation to f . The expression (5.15) tells us that at any p-location Xi =
xi�p, the value of g∗ is obtained by integrating (averaging) Y over all the
remaining �X1� � � � �Xi−1�Xi+1� � � � �Xk� input factors.

Equation (5.15) can be generalized to any subset of the input factors XI ,
indexed by I = �i1� � � � � il�, as

g∗
I = E�Y �XI �
 (5.16)

Equations (5.15) and (5.16) obviously link to the ANOVA-HDMR
decomposition of f discussed in Chapter 4:

f�X1�X2� � � � �Xk� = f0 +∑
i

fi +
∑

i

∑
j>i

fij + � � � + f12 � � � k� (5.17)

where the connection between the fi terms of the HDMR and the minimum
loss approximating functions g∗�·� is made explicit by

f0 = E�Y�

fi�Xi� = E�Y �Xi�− f0 = g∗
i − f0

fij �Xi�Xj� = E�Y �Xi�Xj�− fi�Xi�− fj �Xj�− f0 = g∗
i�j − fi�Xi�− fj �Xj�− f0


(5.18)

Each term of the ANOVA-HDMR decomposition tells the analyst how
much, on average, Y can be moved with respect to its mean level f0 by
acting on single input factors or groups of them. Moreover, the quantity
V�g∗

I �XI ��/V�Y � = corr�g∗
I �XI ��Y � is well known in statistics as the ‘correla-

tion ratio’ or ‘nonparametric R-squared’, and provides the fraction of the
variability of Y that is explained with the best predictor based on XI . The
equivalence between nonparametric R-squared and variance-based sensi-
tivity indices is obvious and this closes the parallel between the problem of
estimating and measuring the explanatory power of covariates in regression
and variance-based sensitivity analysis.

Coming back to the metamodelling problem, kernel regression methods
can be shown to provide, under certain regularity conditions, consistent
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estimators of g∗�·�, which are asymptotically normal at the
√

N rate (see
Doksum and Samarov, 1995, and references cited therein) , i.e. as N → 
,

E
∫

�ĝ�XI�−g∗�XI��
2dXI = o�N−1/2�


The metamodelling approach that we follow in this book can be classified
under kernel regression smoothing methods. However, due to its recursive
implementation, our approach differs with respect to other en-bloc methods.
This has some advantages, such as the estimation of ‘smoothing parameters’
(‘hyper-parameters’) with maximum likelihood and greater flexibility in
managing nonlinearities in f�·�.

5.3.1 Estimating HDMRs and Metamodels

In the literature on sensitivity analysis there has been a growing
interest in metamodelling and smoothing techniques. Storlie and Helton
(2008) have reviewed smoothing methods for sensitivity analysis, from
smoothing splines to various types of univariate and multivariate kernel
regression approaches. Li et al. (2002, 2006) developed the so-called
Random Sampling HDMR, which involves approximating the truncated
HDMR expansion up to order three, based on orthogonal polynomials.
Pappenberger and Stauch (2007) use spline smoothing to estimate sensi-
tivity indices. Using the State-Dependent Regression (SDR) approach of
Young (2001), Ratto et al. (2004, 2007) have developed a nonparametric
approach which is very similar to smoothing splines and kernel regression
approaches, but which is based on recursive filtering and smoothing estima-
tion (the Kalman Filter, KF, combined with Fixed Interval Smoothing, FIS).
Such a recursive least-squares implementation has some fundamental advan-
tages: (a) it is couched with optimal maximum likelihood estimation, thus
allowing for an objective estimation of the smoothing hyper-parameters,
and (b) it allows for greater flexibility in adapting to local discontinuities,
heavy nonlinearity and heteroscedastic error terms (see below). All such
methods can be assigned to the regression/smoothing class of approximation
approaches.

An example of interpolating metamodels, on the other hand, is given by
Gaussian emulators (see Oakley and O’Hagan, 2004, and the references
cited therein, for a detailed description) and kriging metamodels (Kleijnen,
2007a,b). Kriging metamodels are similar to Gaussian, except that they do
not rely on Bayesian interpretation. While theoretically appealing, Gaus-
sian emulators can be prone to the curse of dimensionality and to the
smoothness assumptions of the function under analysis. This is because,
instead of trying to identify the best predictors of Y based on a subset
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of input factors or on low-order ANOVA-HDMR terms, Gaussian emula-
tors try to interpolate and predict the f�·� mapping by applying a Gaus-
sian kernel of the same k-dimensionality as the input parameter space.
Therefore, as k increases, the number of ‘hyperparameters’ to be esti-
mated (linked to the covariance structure of the k-dimensional Gaussian
kernel), increases strongly, often implying problems with identification and
overparameterization.

Such problems are well known in standard interpolation and smoothing
techniques based on k-dimensional kernel regressors. They imply that Gaus-
sian emulators are only effective, in practice, for model structures having
a small number of significant main effects and very mild interactions, for
which such problems are made irrelevant by the very few highly identifiable
elements of the f�·� mapping.

In other words, in regression/smoothing techniques, metamodels are
based on subsets of input factors and/or truncated HDMR expansions of
order smaller than k, and their identification and estimation incorporate
sensitivity analysis criteria, in that nonsignificant contributions to Y are
identified and eliminated within the process of construction of the approx-
imation to Y . In contrast to this, Gaussian emulators aim first to estimate
a full k-order mapping on the basis that a sensitivity analysis applied after-
wards to the emulator will automatically reveal the significant contributions
to Y .

Once identified, estimated and parameterized, metamodels provide
a direct, albeit approximated, analytic expression of the Y =
f�X1� � � � �Xk� mapping, which accounts for nonlinearities and interac-
tion terms of increasing order. As such, they can be used for various
purposes:

• sensitivity analysis, by helping to highlight the most important input
factors of the mapping;

• model simplification, by finding a surrogate model containing a subset
of the input factors that account for most of the variability of Y ;

• model calibration, in which the metamodel is used to find directly
the optimal parameterization for the fulfilment of the given calibration
criteria.

A detailed description of all the available metamodelling techniques is
beyond the scope of this book: readers can refer to the cited works for
further information. We will concentrate here on nonparametric methods
and, in particular, we will demonstrate simple implementations of univariate
nonparametric smoothing methods that give the ‘flavour’ of the more
sophisticated multivariate, recursive procedure of Young (2001), as used
for metamodelling in Ratto et al. (2004, 2007). In nonparametric methods,
the function E�Y �Xi� is not approximated by a basis of functions that span
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the entire domain of Xi; rather many ‘local’ approximations are identi-
fied which move along the Xi-axis. Such ‘local’ functions are subsequently
joined using ad hoc criteria, such as imposing some smoothness properties
like continuity (piecewise linear interpolation is an example of this). This
in practice gives a ‘look-up’ table of the function fi = g∗�Xi� which can
subsequently be parameterized using functional bases, such as polynomials,
Fourier expansions, linear wavelets or Radial Basis functions (RBFs).

5.3.1.1 Smoothing scatterplots using the Haar wavelet

Wavelets, and in particular the Haar wavelet, provide a very simple
approach to smoothing signals.

The 2×2 Haar matrix is given by

H2 = 1√
2

[
1 1
1 −1

]



Given an MC sample of f�·� whose length N is a power of 2
�y1� y2� 
 
 
 � y2n−1� y2n �, i.e. N = 2n, and where the sample is sorted with
respect to the input factor Xi under analysis, we may group its elements as
��y1� y2�� 
 
 
 � �y2n−1� y2n �� and we may right-multiply each term by the matrix
H2,

H2

(
y2j−1

y2j

)
=
(

sj

dj

)
for j = 1� 
 
 
 �2n−1

obtaining two new sequences �s1� 
 
 
 � s2n−1 � and �d1� 
 
 
 �d2n−1 �. The sequence
s gives the sum between two consecutive points while the sequence d gives
the difference. Since the original signal has a length equal to 2n, one can
recursively apply the same procedure to s-sequences up to n times. For each
� = 1� 
 
 
 �n we call the associated sequence s� the �th Haar approximation
coefficients and d� the �th Haar detail coefficients.

For each � = 1� 
 
 
 �n we may use s� to create an approximation f̂ � of
the original signal f . This is obtained first by rescaling each value of s� by√

2� and then by replicating each of them 2� times.

Example Consider a sample of length 24 = 16 from a function Y = f�X� =
�X−0
5�2 +�, where X ∼ U�0�1� and � is a white noise normally distributed
N�0�0
03�:

f = �0
21�0
19�0
14�0
1�0
05�0
01�0
03�−0
01�0
01�

−0
03�0
01�0
06�0
04�0
1�0
13�0
19�




METAMODELLING AND THE HDMR 217

• First stage (� = 1). From the first pair of y-points we compute the first
element of s1: �0
21+0
19�/

√
2 = 0
2828. Repeating this with all pairs

of y we get

s1 = �0
2828�0
1697�0
0424�0
0141�−0
0141�0
0495�

0
0990�0
2263� 


Scaling the first term of s1 by
√

2 we get 0
2, which is replicated 21 times
to construct the first two elements of f̂ 1. This is repeated to get

f̂ 1 = �0
2�0
2�0
12�0
12�0
03�0
03�0
01�0
01�

−0
01�−0
01�0
035�0
035�0
07�0
07�0
16�0
16�


• Second stage (� = 2): Replicating the steps of the first stage to the s1

sequence, we get

s2 = �0
32�0
04�0
025�0
23�

and

f̂ 2 = �0
16�0
16�0
16�0
16�0
02�0
02�0
02�0
02�

0
013�0
013�0
013�0
013�0
12�0
12�0
12�0
12�

• � � � and so on.

If we compare the graph of the original signal f and its first- and second-
level approximations f̂ 1, f̂ 2 we obtain the following picture:
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Smoothing with the Haar wavelet
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The picture above shows that f̂ � may be used to infer the smoothed
behaviour of the signal f , where � plays the role of a smoothing parameter:
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the higher �, the smoother the signal extraction. At the highest level of
smoothing � = n, the Haar wavelet will simply provide the unconditional
mean E�Y�. Note also that this smoothing approach can be implemented
recursively, and does not require any matrix inversion.

Exercise Write a code for the Haar wavelet and reproduce the results
shown in the previous example.

5.3.1.2 Spline smoothing

Smoothing splines are a nonparametric method which is very useful for
understanding the more sophisticated methodology to be discussed later in
this chapter. Given a Monte Carlo sample of size N , a cubic smoothing
spline is a function ĝ that minimizes the penalized residuals’ sum of squares:

N∑
j=1

�yj − ĝ�xj ��
2 +�

∫ b

a

[
d2ĝ�x�

dx2

]2

dx (5.19)

where a ≤ min�xj �, b ≥ max�xj �� j = 1� � � � �N and � is the Lagrange multi-
plier, which plays the role of a smoothing parameter (i.e. the bigger �,
the smoother ĝ). In (5.19), the first term is the sum of squared resid-
uals, measuring fit to the data, while the second term penalizes too high
a curvature in ĝ. This approach is also known in numerical analysis as
regularization (or deterministic regularization, DR).

The unique, explicit solution to (5.19) is given by a natural cubic spline
with knots at each observed value xj (see Hastie and Tibshirani, 1990).
A cubic polynomial spline is a function that is a cubic polynomial on any
interval defined by adjacent knots, has two continuous derivatives and a
third which is a step function that jumps at the knots.

Spline smoothing can easily be implemented by taking the discrete formu-
lation of (5.19), where the long-term signal t̂ is given by the solution of the
minimization problem:

min

(
N∑

s=1

�ys − t̂s�
2 +�

N−1∑
s=2

��t̂s+1 − t̂s�− �t̂s − t̂s−1��
2

)
� (5.20)

where the index s scans the data in a sorted order with respect to the
input factor under analysis. In econometrics this is called the Hodrick–
Prescott (HP) filter (Hodrick and Prescott, 1980), and it is used for trend
extraction in economic time-series analysis (in such cases s scans the data
in temporal order). As Young and co-workers have shown (Jakeman and
Young, 1984; Young and Pedregal, 1999), this same problem (5.20) can
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be solved by a very simple recursive filtering and smoothing algorithm that
yields identical results to that of HP but is more sophisticated in statistical
terms2. This recursive solution also has the advantage that it involves no
matrix inversion, while the HP en-bloc solution, as we see below, involves
the inversion of a matrix with dimension equal to that of the data length.

For the present, tutorial purposes, let us consider only the HP en-bloc
solution, which can be formulated by taking derivatives with respect to t̂s:
i.e.,

y1 = �1+��t̂1 −2�t̂2 +�t̂3

y2 = −2�t̂1 + �1+5��t̂2 −4�t̂3 +�t̂4

� � �

ys = �t̂s−2 −4�t̂s−1 + �1+6��t̂s −4�t̂s+1 +�t̂s+2

s = 3� � � � �N −2

� � �

yN−1 = �t̂N−3 −4�t̂N−2 + �1+5��t̂N−1 −2�t̂N

yN = �t̂N−2 −2�t̂N−1 + �1+��t̂N 


This can easily be put into matrix form,

y = �I +�UT U� · t̂�� (5.21)

where I is the N ×N identity matrix, y is the 1×N vector of model output
data and U is the following N ×N matrix:

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 � � � 0 0 0
0 0 0 0 � � � 0 0 0
1 −2 1 0 � � � 0 0 0
0 1 −2 1 � � � 0 0 0



















 
 















0 0 0 0 � � � 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦




The explicit solution is easily found to be

t̂� = �I +�UT U�−1 ·y = W−1 ·y
 (5.22)

2 This IRWSM algorithm is available in the CAPTAIN Toolbox for Matlab, which can be
downloaded from http://www.es.lancs.ac.uk/cres/captain/
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The ‘trend’ t̂� is a nonparametric estimate of the univariate ‘metamodel’
fi�Xi� = E�Y �Xi�, which approximates the function f�·�. The dependence of
such an estimate on the smoothing parameter is made explicit in (5.21)
and (5.22) by the � exponent in t̂�. The appropriate value for � is not
immediately apparent: cross-validation, graphical methods and measures of
degrees of freedom are used for this purpose (see Hastie and Tibshirani,
1990 and Storlie and Helton, 2008, for more details). Note that, as pointed
out above, since the solution (5.21) involves the inversion of a N × N
matrix, it can be computationally intensive and require a large memory
size for large MC samples. Note also that, in the en-bloc approach, it is
also possible to obtain the standard errors of the estimated t�. Readers can
refer to Hastie and Tibshirani (1990) for a detailed discussion of en-bloc
methods and estimation of standard error bands and to Young and Pedregal
(1999) for a combined discussion of these topics in the case of recursive
and en-bloc approaches.

Example Consider the same example used above for the Haar wavelet.
Using the same data, we obtain the following estimates for t̂�, at various
smoothing levels:

• � = 1:

t̂1 = �0
22�0
18�0
14�0
096�0
055�0
026�0
011�

−0
0012�−0
0064�−0
0069�0
01�0
036�0
059�0
095�0
14�0
18�


• � = 10:

t̂10 = �0
21�0
17�0
13�0
095�0
061�0
033�0
013�

0
00069�−0
0035�0
00068�0
014�0
036�0
063�0
096�0
13�0
17�


• � = 100:

t̂100 = �0
17�0
14�0
12�0
093�0
071�0
053�0
039�

0
03�0
027�0
029�0
036�0
048�0
064�0
082�0
1�0
12�


Such smoothed estimates are shown in the plot at the top of next page.
This plot shows the smoothing effect of increasing �. If � tends to infinity,

the HP-filter simply provides the unconditional mean E�Y�. Judging by eye,
the best smoothing seems be obtained using � values between 1 and 10.

Exercise Write a code for the spline smoothing (HP-filter) and reproduce
the results shown in the previous example.
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5.3.1.3 State-dependent regressions

Ratto et al. (2004, 2007) have recently presented a flexible and efficient
approach to the estimation of g∗

I �XI � = E�Y �XI � and of truncated ANOVA-
HDMR decompositions. This estimation procedure is based on considering
the HDMR as a State-Dependent Parameter (SDP) relationship (Young,
2000; Young et al., 2001) and, in particular, an example of the State-
Dependent Regression (SDR) model estimation, as discussed in Young
(2001). In this form, it is a non-parametric approach, based on recursive
filtering and smoothing estimation procedures similar to those mentioned
in the previous sub-section and available in the CAPTAIN Toolbox for
Matlab (see earlier footnote).

In brief, the fundamental concept underlying the SDR approach is that
any term like E�Y �XI � can be viewed as an SDR model of the form

Ys = pI�s�I �+es (5.23)

where the state-dependent parameter (SDP) pI�s�I �, I = i1� � � � � il, depends
on a state variable I that moves, according to a generalized sorting strategy,
along the coordinates of the single factors or groups of factors indexed by
I; and es is the residual, i.e. the portion of variability of Y that cannot be
explained by the group of factors indexed by I.

Extending this definition, the truncated ANOVA-HDMR expansion can
also be expressed as an SDR model of the following form:

Ys − f0 =∑
i

pi�s�i�+
∑
j>i

pij�s�ij �+
∑

l>j>i

pijl�s�ijl�+es

=∑
i

fi�s�Xi�+
∑
j>i

fij�s�Xi�Xj�+
∑

l>j>i

fijl�s�Xi�Xj�Xl�+es (5.24)

where es now represents the higher-order terms of the ANOVA-HDMR.
Note also that, in the formulation (5.23), the SDP accounts for all cumula-
tive effects within group I, be they first-order or interaction terms. As such,
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it can be applied to any type of dependency structure amongst the input
factors. On the other hand, in the HDMR formulation (5.24), each SDP
accounts only for its associated first-order or interaction term of the HDMR.

According to the generalized sorting strategy adopted in (5.23) and (5.24),
the group of input factors of interest I is characterized by a low-frequency
spectrum (e.g. by some quasi-periodic pattern) while the remaining ones
present a white spectrum. In this way, the estimation of the various HDMR
terms is reduced to the extraction of the low-frequency component (i.e.
of a ‘trend’) from the sorted output Y . To do so, the SDPs are modelled
by one member of the Generalized Random Walk (GRW) class of nonsta-
tionary processes. For instance, the Integrated Random Walk (IRW) process
turns out to produce good results, since it ensures that the estimated SDR
relationship has the smooth properties of a cubic spline3.

Fixing ideas to the IRW characterization of each SDP, the model (5.24)
can be put into the state-space form as

Observation equation (HDMR): Ys = zT
s ps +es

State equations for each SDP: pI�s = pI�s−1 +dI�s−1

dI�s = dI�s−1 +�I�s

(5.25)

where zT
s is the transposed regression vector, composed entirely of unity

elements; ps is the SDP vector; while es (observation noise) and �I�s (system
disturbances) are zero-mean white-noise inputs with variance �2 and �2

��I�

respectively. Given this formulation, the SDPs are estimated using the recur-
sive Kalman filter and associated recursive Fixed Interval Smoothing (FIS)
algorithm (Kalman, 1960; Bryson and Ho, 1969; Young, 1999b). The
recursive state estimation requires that each SDP be estimated in turn,
each with a different ordering of the data, within a backfitting procedure
(Young, 2000, 2001). At each backfitting iteration, the hyperparameters
associated to (5.25), namely the white noise variances �2 and �2

��I�, are opti-
mized by maximum likelihood (ML), using prediction error decomposition
(Schweppe, 1965). In fact, by a simple reformulation of the KF and FIS
algorithms, each SDP and its stochastic IRW process model can be entirely
characterized by one Noise Variance Ratio (NVR) hyperparameter, where
NVRI = �2

��I�/�2. Hence, only NVRs need to be optimized.
One very useful implication of the KF/FIS algorithms underlying SDR

estimation is that the standard error �f�s of the SDPs is recursively produced
in a natural manner by reference to the covariance matrix of the state vector.
This allows us to distinguish the significance of the estimated functions
E�Y �XI �.

3 Random Walk (RW) or Smoothed Random Walk (SRW) might be identified as being
preferable in certain circumstances because they yield less smooth estimates.
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The recursive formulation of the SDR model also implies a great flex-
ibility in the estimations, whenever this is required, for instance in the
case of heteroscedastic behaviour in the observation noise or in the case of
discontinuities in the model output.4 In practice, the basic SDR implemen-
tation used here can be easily extended to adapt to such situations, typical
in non-linear systems, where one single, constant smoothing parameter �
does not allow us to follow appropriately the observed patterns of the f�·�
mapping.

In its basic IRW formulation, the links between the SDR approach and
the HP-filter smoothing are clear: both of them have the properties of a
smoothing cubic spline. Moreover, it is also easy to verify the equivalence
between the NVR and �, linked by the simple relationship: � = 1/NVR:
see Young and Pedregal (1999). The NVR therefore plays the role of
the inverse of a smoothing parameter. SDR advantages, however, are in
terms of the ML estimation of the NVR, which makes the choice of the
smoothing parameter completely objective, and in its great flexibility, as
mentioned above. These properties provide optimal convergence properties
of the SDR estimates to the best least-squares predictor of Y , given by
g∗�XI �.

The SDR smoothing techniques based on GRW processes can also be
seen as low-pass filters. In the case of IRW, the 50% cutoff frequency �∗

is linked to the NVR by the relationship NVR= 4�1− cos�2��∗��2 (see e.g.
Young and Pedregal, 1999). The period T ∗ = 2�/�∗, which is obtained via
the maximum likelihood estimation, can be compared to N to obtain an
idea of ‘typical’ T ∗/N ratios and to identify some rule-of-thumb criterion
for the smoothing parameter � of the HP-filter. Our experience suggests
that a reasonable rule of thumb can be to set T ∗ = N/3 −→ N/2 and to
derive � accordingly. In the last step of the SDR analysis, the smoothed
nonparametric ‘curves’ obtained from the SDR model estimation are param-
eterized by, for example, a linear wavelet functional approximation or a
summation of RBFs, allowing us to build a full metamodel to replace the
original one.

Example Consider again the simple example used before. Using the same
data, we obtain NVR = 0
59 from ML estimation. This implies that the
equivalent optimal � for the HP-filter would be about 1.7, matching
the values that ‘looked’ acceptable in the HP-filter analysis. The plots of
the SDR estimate and the equivalent HP-filter estimate using � = 1/NVR
are shown next:

4 See Young and Ng (1989); Young and Pedregal (1996); Young (2002) and the discussion in
Ratto et al. (2007).
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This clearly shows the identity between the HP-filter and IRW smoothing
(the curves are the same), as well as the importance of the SDR estimation
procedure linked to maximum likelihood, providing for optimal identifica-
tion of the smoothing parameter rather than the ad-hoc tuning used in the
HP-filter.

5.3.1.4 Estimating sensitivity indices

Once the smoothed estimates ĝI of E�Y �XI � have been obtained, the esti-
mation of sensitivity indices SI = V �E�Y �XI ��/V�Y � is straightforward. As
discussed in Doksum and Samarov (1995), three estimators can be applied
for this purpose. The one we use is

ŜI = N−1∑N
s=1�ĝI �xI�s�− ḡ�2

�2
Y

(5.26)

where ḡ = N−1∑ ĝI �xI�s� and �2
Y = N−1∑�ys − Ȳ �2. Doksum and Samarov

(1995) also provide the error estimate for (5.26), by showing that N 1/2�ŜI −
SI � is asymptotically normal with mean zero and variance �1− SI �

2V�y∗2 −
u2�, where y∗ and u are the standardized output and residual respectively, i.e.
y∗

s = �ys −Y �/�Y and us = �ys − ĝI �xI�s��/��Y �1−SI �
1/2�. Hence, the standard

error of the estimate of SI is given by

SE�ŜI � = �1− ŜI �std�y∗
s

2 −u2
s �/N 1/2 (5.27)

5.3.2 A Simple Example

We give here an example of the smoothing estimation procedures. Let us
consider the simple model

Y = X1 +X2
2 +X1 ·X2 (5.28)
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with input distributions Xi ∼ N�0�1�. This model has the simple ANOVA-
HDMR representation:

f0 = 1

f1�X1� = X1

f2�X2� = X2
2 −1

f1�2�X1�X2� = X1 ·X2

We apply the smoothing procedures described above, by using an LP�

sample of N = 256 model evaluations.

5.3.2.1 Haar wavelet smoothing

Let us first perform the smoothing with the Haar wavelet. As a rule-of-
thumb criterion for the smoothing parameter of the Haar wavelet, we
dictate that the extracted signal be made of 8 = 23 values, i.e. we construct
the smoothing by taking eight local averages from the sample of Y divided
into eight bins. Given the sample of N = 256 = 28 = 2n, this implies that
� = 8 − 3 = 5. The sample of the output Y has to be sorted according to
each input factor and the Haar smoothing procedure described above has
to be applied for each sorted sample.

The results of this procedure are shown in Figure 5.3. This shows that
the rule of thumb of eight local means is able to provide an illustrative idea
of the fi patterns.
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Figure 5.3 Haar estimation of the first-order HDMR of the simple model (5.28).
(a, b) Scatterplots of Y versus X1 and X2 (grey dots), with the smoothed estimates
of the fi + f0 functions (solid lines)
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Figure 5.4 HP-filter estimation of the first-order HDMR of the simple model (5.28).
(a, b) Scatterplots of Y versus X1 and X2 (grey dots), with the smoothed estimates
of the fi + f0 functions (solid lines)

5.3.2.2 Spline smoothing (HP-filter)

In this case we have to choose the value for the smoothing parameter of the
HP-filter. Using � = 50000, which is in the range of rule-of-thumb values
for the cut-off frequency �∗ described above, we get the results shown in
Figure 5.4. We can observe the much nicer pattern provided by the cubic
spline properties of the HP-filter with respect to the Haar wavelet. The
problem, however, still lies in the approximate choice of �.

5.3.2.3 SDR estimation

Here, the maximum likelihood optimization of the NVRs gives the following
results for the two input factors: NVR1 = 4
46e-6, NVR2 = 4
675e-5.

In Figure 5.5 (a, b) we show the scatterplots of the modified output
Y ∗

i = Y − f0 −∑j �=i fj �Xj�, used in the backfitting procedure, versus the two
model parameters together with the result of the SDR recursive filtering
and smoothing estimation of the fi terms. In Figure 5.5 (c, d) we show
the detail of the SDR estimates, compared to the analytical values (5.29).
Apart from expectable border phenomena, the SDR estimates are excellent.
In Figure 5.5 (c, d) the dashed lines show the 95% error bands (= ±2 ·�f�s)
of the estimated patterns. This permits us to assess the significance of
the estimated patterns by simply checking whether the zero-line is always
included in the error band (implying insignificance) or not.

Naturally, given the equivalence of SDR and the HP-filter, using
1/NVRi as smoothing parameters for the HP-filter analysis produces
the same results as for the SDR analysis, provided that the backfitting
procedure is also applied – otherwise the results will be slightly different.
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Figure 5.5 SDR estimation of the first-order HDMR of the simple model (5.28).
(a, b) Scatterplots of the modified output Y ∗

i = Y −∑j �=i fj �Xj � used in the backfitting
procedure versus X1 and X2 (grey dots), with the smoothed estimates of the fi + f0
functions (solid lines) and their 95% error bands (dashed lines). (c, d) Detail of the
estimated fi functions (solid lines) with estimated 95% error bands (dashed lines)
and analytic fi functions (dotted lines)

5.3.3 Another Simple Example

Let us consider the function

Y = X1 ·X2 +X3 (5.29)

with

Xi ∼ U�−1�1�


We perform an analysis using a Sobol’ LP� sample of dimension 256. This
model has only one non-zero main effect for X3 and one second-order
interaction term for �X1�X2�. In Figure 5.6 we show the SDR estimation
of the first-order HDMR terms f1, f2 and f3. We also report the standard
error band, showing that only f3 has a significant main effect.
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Figure 5.6 SDR estimation of the first-order HDMR of the simple model (5.29).
(a, b, c) Scatterplots of Y versus Xi (grey dots), with the smoothed estimates of the
fi + f0 functions (solid lines) and their 95% error bands (dashed lines). (d, e, f) Detail
of the estimated fi functions (solid lines) with estimated 95% error bands (dashed
lines) and analytic fi functions (dotted lines)

In order to give the flavour of the generalized sorting strategy used in
the SDR methodology for interaction terms, let us perform the analysis of
second-order interaction term �X1�X2�. Since we want to compute the f12

interaction effect, the 2D sorting requires exploration of the �X1�X2� plane
along a closed trajectory, like the one shown in Figure 5.7, with the sorting
of the sample points carried out as they fall within the band delimited by
two adjacent lines. This allows for the identification of an ordering in which
�X1�X2� has low-frequency characteristics while X3 maintains the white
spectrum (Figure 5.8). The corresponding sorted output signal Y can then
be analysed to identify the second-order interaction term. This is shown in
Figure 5.9, where we compare the analytic values and the SDP estimates of
the sorted f1�2 interaction term.
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Figure 5.7 Sorting trajectory in the �X1�X2� plane
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Figure 5.8 Sorted sample used to compute the �X1�X2� interaction

5.3.4 Exercises

1. Compute the analytic HDMR expansion of the function Y = X1 +X2 +
X3, with Xi ∼ N��i��i�. Assign values to ��i��i� and perform the regres-
sion/smoothing analysis with the Haar wavelet and spline smoothing.

2. Compute the analytic HDMR expansion of the Ishigami function
(Ishigami and Homma, 1990):

Y = sinX1 +A sin2 X2 +BX4
3 sinX1

where Xi ∼ U�−����. Perform the regression/smoothing analysis with
the Haar wavelet and spline smoothing, when A = 7 and B = 0
1.
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Figure 5.9 Upper panel: Sorted output signal (grey line) and smoothed low-
frequency component (bold line) attributable to the �X1�X2� interaction. Lower
panel: Smoothed low-frequency component (solid line) with standard error (dashed
lines: shown around zero rather than estimate in order to simplify the plot) and
sorted analytic �X1�X2� interaction (dotted line)

3. Compute the analytic HDMR expansion of the Sobol’ g-function.
Perform the regression/smoothing analysis with the Haar wavelet and
spline smoothing, when:

• a = �0�1�4
5�9�99�99�99�99�;
• a = �0�0�1�1�4
5�4
5�9�9�99�99�99�99�99�99�99�;
• a = �0�0
01�0�0
2�0
3�0�0
5�1�1
5�1
8�3�4
5�8�9�99��.

4. Compute the HDMR expansion of the model Y = ∏k
i=1 Xi, with Xi ∼

U�0�MAXi�. Is there a clever way to map this function synthetically?
Perform the regression/smoothing analysis with the Haar wavelet and

spline smoothing for the output Y and for the ‘clever’ transformation of
Y , for k = 3�4, assigning values to MAXi.

5. Compute the HDMR expansion of the model Y = ∏k
i=1 Xi, with Xi ∼

N�0��i�. Is there a clever mapping in this case as well?
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Perform the regression/smoothing analysis with the Haar wavelet and
spline smoothing for the output Y and for the ‘clever’ transformation of
Y , for k = 3�4, assigning values to �i.

5.3.5 Solutions to Exercises

1. First we compute the unconditional mean

f0 = E�Y� = �1 +�2 +�3


Then the first-order terms fi = E�Y �Xi�− f0:

f1 = X1 +�2 +�3 − f0 = X1 −�1

f2 = X2 +�1 +�3 − f0 = X2 −�2

f3 = X3 +�1 +�2 − f0 = X3 −�3


It is easy to verify that any other term of order higher than one is null.
2. Looking at the analytic form of the Ishigami function one can say that

the decomposition will have the following terms:

Y = f0 + f1�X1�+ f2�X2�+ f3�X3�+ f13�X1�X3�


Given the uniform probability density of Xi, we have that p�Xi� = 1/2�
if −� < Xi < � and p�Xi� = 0 elsewhere. The unconditional mean is
therefore

f0 = E�Y� =
∫∫∫ �

−�
YdX1dX2dX3/8�3

=
∫ �

−�
sinX1dX1/2� +

∫ �

−�
A sin2 X2dX2/2� +

∫∫ �

−�
BX4

3 sinX1dX1dX3/4�2

= 0+A/2+0


The first-order terms are

f1 = E�Y �X1�− f0 =
∫∫ �

−�
YdX2dX3/4�2 −A/2

= sinX1 +
∫ �

−�
A sin2 X2dX2/2� + sinX1

∫ �

−�
B ·X4

3dx3/2� −A/2

= sinX1�1+B ·2�5/5/�2���+A/2−A/2

= sinX1�1+B�4/5�


f2 = E�Y �X2�− f0 =
∫∫ �

−�
YdX1dX3/4�2 −A/2
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=
∫ �

−�
sinX1dX1/2� +A sin2 X2 +

∫∫ �

−�
BX4

3 sinX1dX1dX3/4�2 −A/2

= 0+A sin2 X2 +0−A/2

= A�sin2 X2 −1/2�


f3 = E�Y �X3�− f0 =
∫∫ �

−�
YdX1dX2/4�2 −A/2

= �1+BX4
3 � ·
∫ �

−�
sinX1dX1/2� +

∫ �

−�
A sin2 X2dX2/2� −A/2

= 0+A/2−A/2 = 0


It is easy to verify that all second-order terms are null except:

f13 = E�Y �X1�X3�− f1 − f3 − f0

= sinX1 +BX4
3 sinX1 +

∫ �

−�
A sin2 X2dX2/2�

− sinX1�1+B�4/5�−0−A/2

= sinX1 − sinX1 +BX4
3 sinX1 −B�4/5sinX1 +A/2−A/2

= B�X4
3 −�4/5� sinX1


3. In order to compute the HDMR expansion of the Sobol’ g-function,

f =
k∏

i=1

gi�Xi� =
k∏

i=1

�4Xi −2�+ai

1+ai

with Xi ∼ U�0�1�, it is useful to recall the result from Chapter 4:

∫ 1

0
gi�Xi�dXi =

∫ 1

0

�4Xi −2�+ai

1+ai

dXi = 1

valid for any Xi and any ai.
So the unconditional mean is

f0 =∏
i

∫ 1

0
gi�Xi�dXi = 1


The first-order terms are

fi = E�Y �Xi�− f0

= gi�Xi�
∏
j �=i

∫ 1

0
gj�Xj�dXj − f0

= gi�Xi�−1
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The second-order terms are

fij = E�Y �Xi�Xj�− fi − fj − f0

= gi�Xi�gj �Xj�
∏

l �=�i�j�

∫ 1

0
gl�Xl�dXl − fi − fj − f0

= gi�Xi�gj �Xj�− �gi�Xi�−1�− �gj �Xj�−1�−1

= gi�Xi�gj �Xj�−gi�Xi�−gj�Xj�+1


All higher-order HDMR terms are obtained recursively, considering that,
for any group of input factors indexed by I = �i1� � � � � il�:

E�Y �XI� =∏
i∈I

gi�Xi�


The Sobol’ g-function has nonzero interaction effects of any order.
4. The unconditional mean is

f0 = E�Y� =
k∏

i=1

∫ MAXi

0
XidXi/MAXi

=
k∏

i=1

MAXi/2


The first-order terms are

fi = E�Y �Xi�− f0

= Xi

∏
j �=i

∫ MAXj

0
XjdXj/MAXj − f0

= Xi

∏
j �=i

MAXj/2− f0

= �Xi −MAXi/2�
∏
j �=i

MAXj/2


The second-order terms are

fij = E�Y �Xi�Xj�− fi − fj − f0

= Xi ·Xj

∏
l �=�i�j�

∫ MAXl

0
XldXl/MAXl − fi − fj − f0

= Xi ·Xj

∏
l �=�i�j�

MAXl/2− fi − fj − f0

= �XiXj −XiMAXj/2−XjMAXi/2−MAXi ·MAXj/4�
∏

l �=�i�j�

MAXl/2
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All higher-order terms are obtained recursively, remembering that

E�Y �XI� =∏
i∈I

Xi

∏
jI

MAXj/2


As with the g-function, this example also has nonnull interaction effects
of any order.

A clever way to map the function Y is to consider its log-transformed
version. This is allowed, since Xi > 0 for all Xi. This gives

log�Y � =
k∑

i=1

log�Xi�

which has an easy HDMR expansion of only first-order terms that
describes 100% of Y !

In general, trying to analyse the log-transformed version of a func-
tion can produce interesting results. In particular, if the the log-
transformation of Y is described up to a large extent (e.g. > 90% of the
variance of log�Y�) by first-order HDMR terms, this suggests that the
mapping between Xi and Y can be factorized.

5. All the HDMR terms of this model are null except for the highest, kth
order term:

f1� � � � �k =
k∏

i=1

Xi = f


This is a very unattractive model. Even if the input factors had different
�i values (i.e. different uncertainties), neither variance-based sensitivity
indices nor HDMR analysis would be able to produce a ranking of the
importance of input factors.

One possible way of analysing sensitivity for this kind of model is to
apply MCF techniques and, similarly to Exercise 6 of Section 5.2.3, to
try to map quantiles of Y , e.g. Y > 1 or Y < −1 (we leave this as an
additional exercise for the reader) .

In metamodelling terms, however, one can still identify a clever trans-
formation of Y , extracting useful hints about the effect of each input
factor on the outcome Y .

The conditional expectation E�Y �XI� is null whatever the single input
factor or group of input factors. So, Y is a pure ‘noise’ process, without
any shift in the mean, and the effect of each input factor is simply to
modulate the noise amplitude, similarly to heteroscedastic processes.

One could therefore conceive of trying to build a metamodel for the
variance of Y . In order to do this, one could consider the transformation
log�Y 2�. By doing so, the function to be analysed becomes
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log�Y 2� =
k∑

i=1

log�X2
i �

which is a simple, additive mapping between the (log of the) squared
input factors and the (log of the) squared output. Remembering that
any expectation of Y (unconditional or not) is null, taking the square
of Y is equivalent to taking its variance. Then, the main effect fi =
E
(
log�Y 2�� log�X2

i �
)

describes effect of Xi in modulating the variance of
Y , and the further Xi is from zero, the greater the variance of Y . So,
the greatest impact in modulating the variance of Y will come from the
input factor with the highest variance �2

i . This allows for a nice ranking
of the importance of input factors, which will be proportional to the
magnitude of the �i’s.

This ‘extreme’ example shows that, in nasty cases where ‘standard’
global sensitivity analysis tools seem to fail in providing clear answers,
functional transformations of Y can facilitate a better explanation of the
model properties.

5.4 CONCLUSIONS

Chapter 4 demonstrated best available practices for computing sensitivity
indices based on points thrown into a k-dimensional space. In this chapter
we have discussed methods capable of greatly accelerating the computa-
tion of the indices (in terms of reduced number of model executions), based
on metamodelling. All smoothing and metamodelling techniques are based
on fitting a model approximation based on a single Monte Carlo (or, better,
quasi-Monte Carlo) sample. This is a major advantage with respect to
‘classical’ variance-based techniques, which require some ad hoc sampling.
Moreover, metamodelling techniques usually converge much more quickly,
i.e. they are more efficient. This is possible since such techniques rely on
assumptions of regularity and smoothness in Y that allow us to infer the
value of Y at untried points, based on the information available from MC
samples at nearby points. This also implies that, in contrast to ‘classic’
variance-based estimators which rely only on square-integrability of Y ,
smoothing methods are not robust in the face of heavily discontinuous
mappings, e.g. piecewise continuous functions, in which the values of Y
jump continuously in an apparently random fashion (i.e. presenting patterns
similar to the one shown in Chapter 2, Figure 2.1(f)). In this regard, the
recursive approach of Ratto et al. (2007) provides elements of meaningful
flexibility to adjust the estimated model approximation to local jumps and
spikes, provided that these are not as numerous as in Figure 2.1(f).

When to use what? The decision is evidently based on a trade-off between
model execution cost and the analyst’s time.
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• The method of Saltelli (2002) is straightforward to encode and comes
at the cost of N�k + 2� model executions, with N = 1000 or higher, to
compute both the Si’s and the STi’s.• The method of Tarantola et al. (2006) described in Chapter 4 is also
easy to encode and requires only a single set of N runs to compute the
whole of set of Si’s. However, any information about interaction terms
or total effects is missed.

• The approach of Ratto et al. (2004, 2007) discussed in this chapter
is, according to our experience, an excellent metamodelling practice in
terms of model executions, robustness of estimation and flexibility of
implementation. It can give a fairly precise estimate of all indices of the
first order at the overall cost of 200–500 simulations, although to obtain
reliable estimates of second- and third-order interaction terms, somewhat
longer samples are needed: e.g. 1000–2000. In its full formulation, it is
less simple to encode with respect to the previous ones. Other methods
mentioned here based on parametric regressions using polynomial bases
to estimate HDMR terms could be helpful at a preliminary stage of
identification of the most relevant terms for explaining the variability
of Y .

• The total effect estimation is a weak element of metamodelling. Such an
estimate requires adding all the first-order and interaction terms asso-
ciated with each input factor. However, the precision of the mapping
of the function f�·� is inversely proportional to the order of interactions,
while the maximum order of interactions that can be reliably estimated
with metamodelling techniques can hardly exceed the order of three, if
one wants to reduce to the minimum the number of model evaluations.
This implies that some relevant high-order interaction might always be
missed in the metamodelling exercise. In this case, jointly performing an
EE analysis, as discussed in Chapter 3, would allow for a cheap and
quite comprehensive assessment in terms of low-order ANOVA-HDMR
terms and EE, which replaces variance-based total effects.

Ideally a model-building environment should have software for both
approaches at its disposal, unless the model is truly inexpensive to run.

Software developed for SDR modelling is available at http://sensitivity-
analysis.jrc.cec.eu.int/.



6
Sensitivity Analysis: From
Theory to Practice

Scope of the chapter. Examples. A composite indicator. Financial

options modelling. A chemical reactor. A simple analysis. When to use

what.

In this chapter a few examples are offered of how the different sensitivity
analysis methods can be put to use. The aim is to offer suggestions rather
than prescriptions, as we did in our discussion of possible ‘settings’ in
Chapters 1 and 4. The setting up of a sensitivity analysis will in general
depend upon:

• number of uncertain factors and computational cost of the model;
• characteristic of the output of interest (e.g. variance of the output, tails

of its distribution, � � � );
• scope of the analysis;
• nature and dispositions of the recipients of the analysis (owners of the

problem, stakeholders, � � � ).

The last bullet is a reminder that the audience to which the analysis is
addressed may also influence its set-up, for example in the degree of sophis-
tication allowed in the presentation of the results.

Global Sensitivity Analysis. The Primer A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,
D. Gatelli, M. Saisana and S. Tarantola © 2008 John Wiley & Sons, Ltd
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6.1 EXAMPLE 1: A COMPOSITE INDICATOR

6.1.1 Setting the Problem

Imagine that an international organization or academic institution tries to
capture in a single number, usually termed a composite indicator or index,
the relative performance of several countries or regions in a multidimensional
field. The Consumer Price Index, for example, considers the costs of various
items purchased by a typical household each month. When a basket of about
60 goods and services is combined in the Consumer Price Index, it offers
a more complete picture of the relative cost of living in different countries
than would the price of bread or fuel alone. 1 A Handbook on Composite
Indicators (Nardo et al., 2005) offers a review and guidelines for composite
indicator development which we aim to adhere to in the present example.

However appealing the idea of summarizing complex phenomena into
single numbers may be, the development of a composite indicator is not
straightforward. It involves both theoretical and methodological assump-
tions which need to be assessed carefully to avoid producing results of
dubious analytic rigour (Saisana et al., 2005). Furthermore, a composite
indicator is likely to be received by a polarized audience, a fact which calls
for stringent standards of rigour and robustness (Saltelli, 2006).

Composite indicators tend to sit between advocacy (when they are used
to draw attention to an issue) and analysis (when they are used to capture
complex multidimensional phenomena), and for this reason both their
production and their use in the policy discourse are on the increase. This is
also due to the media hunger for the apparently simple ‘facts’ purveyed by
these measures.

To maximize their utility and minimize their misuse, therefore, developers
must base these indices on the best available evidence, document clearly their
structures, and validate them using appropriate uncertainty and sensitivity
analyses. In the example that follows, we address two main questions that
a developer of a composite indicator may be asked to respond to regarding
the reliability of the results: Given the uncertainties during the development
of an index, which of them are the most influential in determining the
variance of:

• the difference between the composite scores of two countries with similar
performance? This question could be used to address stakeholders’
concern about a suspected bias in the score of a given country.

1 An extensive list of such indices from various fields, such as the economy, environment,
society and globalization, is presented on an information server on composite indicators
http://composite-indicators.jrc.ec.europa.eu/
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• the countries’ ranking? This question pertains to the overall ‘plausibility’
or robustness of the index.

This example will show the potential of using the Elementary Effects (EE)
method and variance-based methods in tandem for conducting sensitivity
analysis of nonlinear models that have numerous uncertain factors. In brief,
if the model is both expensive to run and/or has numerous input factors, one
can use the EE method to reduce the number of factors first, and can then
run a variance-based analysis on a reduced set of factors. A Monte Carlo
filtering application complements the case study. For didactic purposes, we
have chosen to work with an example that can be easily reproduced and
with negligible model execution time.

6.1.2 A Composite Indicator Measuring Countries’
Performance in Environmental Sustainability

In general, an index is a function of underlying indicators. Weights are
assigned to each indicator to express the relevance of the indicators in the
context of the phenomenon to be measured. Assume that there are m coun-
tries, whose composite score is to be constructed based on q indicators.
Let Xij and wi respectively denote the value for a country j with respect to
indicator i and the weight assigned to indicator i. All indicators have been
converted into benefit-type ones, so that higher values indicate better perfor-
mance. The problem is to aggregate Xij�i = 1�2� � � � � q, j = 1�2� � � � �m�
into a composite index CIj�j = 1�2� � � � �m� for each country j. The most
commonly used aggregation method is the weighted arithmetic mean:

CIj =
q∑

i=1

wiXij � (6.1)

The popularity of this type of aggregation is due to its transparency and
ease of interpretation. An alternative aggregation method is the weighted
geometric mean:

CIj =
q∏

i=1

X
wi

i � (6.2)

One argument in favour of a geometric approach instead of arithmetic
could be the feature of compensability among indicators. A sometimes
undesirable feature of additive aggregation (e.g. weighted arithmetic mean)
is the full compensability they imply, whereby poor performance in some
indicators can be compensated by sufficiently high values of other indica-
tors. To give an example, assume that a composite indicator is formed by
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four indicators: inequality, environmental degradation, GDP per capita and
unemployment. Two countries, one with values [21, 1, 1, 1] and the other
with [6, 6, 6, 6], would have equal arithmetic mean (= 6), but different
geometric mean (2.14 and 6, respectively). In this case, the geometric
approach properly reflects the different social conditions in the two coun-
tries, which are, however, masked by the arithmetic aggregation.2

We will base our example on the Pilot 2006 Environmental Performance
Index developed by the Yale and Columbia universities and described in Esty
et al. (2006). The index focuses on a core set of environmental outcomes
linked to 16 policy-related indicators for which governments in more than
130 nations should be held accountable. However, for didactic purposes
and with a view to provide an easy to reproduce case study, we will restrict
ourselves to a set of five indicators and six countries. The full, real-life
example of sensitivity analysis for the Environmental Performance Index
can be found in Esty et al. (2006). Table 6.1 lists the indicators that are
included in our simplified composite indicator. There are two basic indica-
tors related to air quality (regional ozone concentrations and urban partic-
ulate matter concentrations), two indicators related to sustainable energy
(energy efficiency and CO2 emissions per GDP) and finally the percentage
of the population with access to drinking water.

The values for all five indicators and six countries are assumed to be
uncertain in this exercise. For example, it could be that the set of countries
we are studying was lacking these indicator values, which were therefore
estimated by means of multiple imputation (Little and Rubin, 2002), or
the data were provided by a statistical agency with an estimate of their
sampling error. Data imputation could help to minimize bias and the need
for ‘expensive-to-collect’ data that would otherwise be avoided only by
omitting the relevant countries from the analysis. However, imputation may
also influence the index. The uncertainty in the imputed data is reflected

Table 6.1 List of indicators in the simplified
Environmental Performance Index

Abbreviation Description

OZONE Regional ozone
PM10 Urban particulate matter
ENEFF Energy efficiency
CO2GDP CO2 emissions per GDP
WATSUP Drinking water

2 For a proper discussion of compensability and other theoretical aspect of composite indica-
tors building see Nardo et al. (2005).
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Table 6.2 Distributions (normal: �,�) for the inputs of the simplified index and
the trigger to decide the aggregation method (discrete distribution)

Country OZONE PM10 ENEFF CO2GDP WATSUP

A (25.3, 10.1) (53.3, 6.4) (78.5, 3.9) (56.3, 7.7) (76.5, 10.5)
B (29.0, 10.0) (37.4, 6.6) (58.9, 4.3) (58.8, 7.6) (56.7, 9.9)
C (35.0, 9.9) (26.8, 6.7) (69.2, 4.1) (43.8, 7.9) (20.6, 8.9)
D (78.7, 9.2) (33.2, 6.6) (77.9, 3.9) (73.3, 7.4) (27.8, 9.1)
E (24.1, 10.1) (32.2, 6.6) (61.3, 4.3) (66.9, 7.5) (62.1, 10.1)
F (30.5, 10.0) (54.6, 6.4) (67.3, 4.1) (37.2, 8.1) (22.4, 8.9)
Weight (0.21, 0.05) (0.25, 0.05) (0.15, 0.05) (0.23, 0.05) (0.16, 0.05)
Aggregation: Discrete. 0: linear, 1: geometric, selected with equal probability

by variance estimates. This allows us to take into account the impact of
imputation in the course of the analysis. The weights that are attached to
these indicators are also considered uncertain for the sake of the example.
Weights could derive either from statistical approaches (e.g. factor analysis,
data envelopment analysis) or by consulting experts. In any case, different
approaches will result in different values for the weights. In our example,
all indicators values and weights follow a normal distribution. Mean and
standard deviation values are reported in Table 6.2. Additionally, a trigger
decides on the aggregation method for the basic indicators. The trigger
is sampled from a discrete distribution, where 0: linear aggregation, 1:
geometric aggregation.

6.1.3 Selecting the Sensitivity Analysis Method

In a general case, the validity and robustness of a composite indicator could
depend on a number of factors, including:

• the model chosen for estimating the measurement error in the data;
• the mechanism for including or excluding indicators in the index;
• the indicators’ preliminary treatment (e.g. cutting the tails of a skewed

distribution, or removing outliers);
• the type of normalization scheme applied to the indicators to remove

scale effects;
• the amount of missing data and the imputation algorithm;
• the choice of weights attached to the indicators;
• the choice of the aggregation method.

All these assumptions can heavily influence countries’ scores and ranks in
a composite indicator, and should be taken into account before attempting
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an interpretation of the results. In this example, we will examine three of
the sources of uncertainty listed above: the indicators’ values, the weights,
and the aggregation method (weighted arithmetic mean versus weighted
geometric mean). The questions we will address are:

• which are the most influential input factors in the difference between the
composite scores of two countries with similar performance?

• which are the most influential input factors in the countries’ ranking?

The latter question can be more closely focused on our problem by asking:
if we could invite experts to reach consensus on some of the weights, which
ones should they focus on with a view to reducing the output variance
the most? Which indicators’ values need to be re-examined given that they
affect the output variance the most?

6.1.4 The Sensitivity Analysis Experiment and Results

The baseline scenario for the composite indicator model is the weighted
arithmetic mean, where all indicators’ values and weights are at their
nominal value. In this scenario (see Table 6.3), country D would rank on
top with a score of 57�8 �= 78�7×0�21+33�2×0�25+77�9×0�15+73�3×
0�23+27�8×0�16�, while country C has the lowest performance of the six
countries (score of 37.8).

When the three sources of uncertainty are acknowledged, then each
country score is no longer a single number, but a random variable. In total,
there are 36 input factors in our sensitivity analysis (56 indicators values,
5 weights, 1 trigger to decide the aggregation method).

To get an idea of how the distributions of the countries’ scores look
when uncertainties are acknowledged, we present in Figure 6.1 the relevant
histograms produced by 10 000 random combinations of the input factors.
The countries’ scores look roughly Gaussian, and the standard deviations
among them are very similar, ranging from 4.4 for country B to 5.5 for
country A.

We can easily observe that the histograms for several countries display
significant overlap, e.g. countries A and D, B and E, and C and F. In

Table 6.3 Composite indicator scores for six countries, baseline scenario
(weighted arithmetic mean). Numbers in parentheses represent ranks

A B C D E F

55.6 (2) 46.9 (4) 37.8 (6) 57.8 (1) 47.6 (3) 42.3 (5)
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Figure 6.1 Uncertainty analysis: Composite indicator scores for six countries when
accounting for uncertainties in the indicators’ values, weights, aggregation method

all those cases, the message about the countries’ relative performance, or
the reasons for a good or bad performance, are not explicit. At the same
time, the country rankings produced by the Monte Carlo simulations are
different from the baseline ranking. This casts doubt on the belief that the
composite indicator gives a fair representation of all scenarios regarding the
countries’ environmental performance. Yet, we could already conclude that
the performance of the countries is of the order of: �A�D� > �B�E� > �C� F �.
We will next study both issues, i.e. the reasons behind the overlap of two
countries’ scores, and the cumulative shift from the baseline ranking.

Figure 6.2 presents the histogram of the differences between the composite
scores of countries B and E, which correspond to 10 000 Monte Carlo runs.
Country B performs better than country E in 51% of the cases. It would
be interesting to find out which uncertainties are driving this result. Since
we are looking for important factors and we do not know a priori if the
model is additive or not, we will use a variance-based method because of its
model independence (appropriate for nonlinear and nonadditive models).
However, from the exercises in Chapter 1, the reader will suspect that
geometric aggregation will result in a nonadditive model.

The 16 input factors (2 countries ×5 indicator values, plus 5 weight
values, and 1 trigger to decide the type of aggregation) are sampled using a
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Figure 6.2 Uncertainty analysis: difference in the composite indicator scores
between countries B and E. Input factors: 10 indicator values, 5 weight values, 1
trigger (weighted arithmetic mean versus weighted geometric mean)

quasi-random scheme (Sobol’, 1967) of size N = 1024 and the composite
scores per country are calculated performing 18 432 simulations (recall
that based on the computational recipes in Chapter 4, for a model of k
factors, only N�k + 2� model runs are needed). The sensitivity indices Si

and STi
are calculated for the score of countries B and E, and for their

difference, and reported in Table 6.4. The first-order sensitivity indices, Si,
show that the interactions between input factors do not have an impact
on the score for either country B or E, since the output variance explained
by the single factors is 92.5% for country B and 90.6% for country E.
The composite score for country B is mainly influenced by the uncertainty
in the values of OZONE, PM10 and CO2GDP. Similarly, the variance of
the composite score for country E is mostly attributed to OZONE and
PM10 and the choice of the aggregation method. None of the weights has a
significant impact on the composite scores of the two countries.3 Regarding
the difference between the two countries’ composite scores, this is mostly
attributed to the values for OZONE for both countries. It is interesting to

3 In a real-life application the noninfluence of weights could be of crucial importance in the
discussion among stakeholders and could facilitate acceptance of the index.
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Table 6.4 Sensitivity indices for the composite scores of two countries (B
and E) and their scores’ difference

Input factors Si�Bscore Si�Escore Si��B−E�score STi��B−E�score

OZONE(B) 0.369 - 0.192 0.210
PM10(B) 0.155 — 0.079 0.079
ENEFF(B) 0.013 - 0.007 0.009
CO2GDP(B) 0.112 - 0.059 0.061
WATSUP(B) 0.090 - 0.047 0.053
OZONE(E) - 0.343 0.274 0.332
PM10(E) - 0.117 0.087 0.091
ENEFF(E) - 0.009 0.007 0.008
CO2GDP(E) - 0.062 0.046 0.051
WATSUP(E) - 0.049 0.036 0.042
w(OZONE) 0.043 0.051 0.000 0.017
w(PM10) 0.011 0.017 0.004 0.005
w(ENEFF) 0.017 0.019 0.000 0.001
w(CO2GDP) 0.019 0.026 0.002 0.005
w(WATSUP) 0.010 0.019 0.001 0.006
Aggregation 0.086 0.194 0.023 0.096
Sum 0.925 0.906 0.864 1.064

note that PM10, despite its influence on both countries’ scores, does not
have an impact on their difference. The 16 input factors taken individually
account for 86.4% of the variance of the difference of the two countries
scores, while the remaining 13.6% is due to interactions.

The next issue we come to is: which factors have the strongest impact
on differences in the country ranking with respect to the baseline ranking?
To express this mathematically, we calculate the cumulative shift from the
baseline ranking, so as to capture in a single number the relative shift in
the position of the entire system of countries. This shift can be quantified
as the sum over m countries of the absolute differences in countries’ ranks
with respect to the baseline ranking:

RS =
m∑

j=1

∣∣Rankbaseline�CIj �−Rank�CIj�
∣∣ (6.3)

Figure 6.3 provides the histogram of 10 000 random Monte Carlo calcu-
lations of the cumulative shift from the baseline ranking. In most cases
the shift with respect to the baseline ranking is of 2, 4 or 6 positions
in total.

Our aim is to identify which of the 36 input factors (5 × 6 indicators’
values, 5 weights, 1 trigger) are highly influential in our output, namely the
cumulative shift in countries’ ranks. Although, the computational cost of
running the model is not high for this simple model we will assume that
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Figure 6.3 Uncertainty analysis. Output: cumulative shift from the baseline ranking
for six countries. Uncertain input factors: 30 indicator values, 5 weight values, 1
trigger to decide the aggregation method (arithmetic vs geometric mean)

it is to illustrate an application of factor screening. We therefore resort
to a screening method to help us reduce the number of input factors. We
use the EE method described in Chapter 3 employing the recommended
configuration of four levels for each input factor and ten trajectories. The
total number of model executions performed to estimate the EET is 370
(=number of trajectories × (number of factors +1)).

Figure 6.4 shows the EET value for the 36 input factors. The most influen-
tial factors are the aggregation scheme, the weights for OZONE, WATSUP
and PM10, and the indicators’ values of OZONE(E), CO2GDP(B) and
WATSUP(F). At the lower end, 13 factors are screened as nonimportant
(EET < 0�5). By fixing these noninfluential input factors to their nominal
values, we can study the impact of the remaining 23 factors more thor-
oughly using a variance-based approach. Recall that our aim is to identify
the indicator values and weights that need to be re-estimated, so that the
country ranking is not strongly affected by the remaining uncertainties. The
total number of model executions to estimate the first-order and total effect
sensitivity indices

{
Si� STi

� i = 1� � � � �23
}

is 25 600 (1024 × �23 + 2� where
1024 is the base sample), using the recipe in Chapter 4. Results are reported
in Table 6.5. The impact on the cumulative shift in countries’ ranks on the
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Figure 6.4 Results of the Elementary Effect screening exercise for 36 input factors

input factors is highly nonlinear. Only 56% of the output variance can be
explained by the single factors, a great part of which is attributable to the
aggregation method and the value of OZONE for country E. The aggre-
gation method is the most influential both in single terms (highest Si ) and
through interactions (highest STi

). The greatest STi
’s among the indicator

values are found for OZONE in most countries, followed by PM10 for
country E and WATSUP for country D. It is interesting to note that the
estimated value for PM10 for country E has a relatively low standard devia-
tion compared to other indicators’ values (for example those of CO2GDP),
yet the analysis showed that this factor is very influential due to interac-
tions. Regarding the weights, although they have low values, they become
very influential due to interactions – in particular w(OZONE), w(PM10)
and w(WATSUP). Overall, the interactions and the nonlinearity account
for 44% �= 100−56%� of the variance in the cumulative shift in countries’
ranks. This result could guide the developers of the composite indicator to
optimal resource allocation in terms of time and money spent to improve
the reliability of just the few indicators’ values that are most crucial to the
policy message conveyed by the composite score or rank.

As a final consideration in our example, we will assume that a developer
of a composite indicator is interested in a particular form of mapping. The
objective of the analysis is to measure what fraction of the model realizations
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Table 6.5 Sensitivity indices for the cumulative shift from the baseline
ranking

Input factor First order (Si) Total effect (STi
) STi

- Si

Aggregation 0.182 0.357 0.175
OZONE(E) 0.072 0.224 0.152
W(WATSUP) 0.022 0.178 0.157
W(OZONE) 0.001 0.158 0.158
OZONE(A) 0.023 0.149 0.126
OZONE(B) 0.020 0.147 0.127
W(PM10) 0.004 0.134 0.130
WATSUP(D) 0.038 0.128 0.091
OZONE(F) 0.019 0.122 0.104
PM10(B) 0.007 0.109 0.103
PM10(E) 0.035 0.106 0.072
WATSUP(F) 0.017 0.105 0.088
CO2GDP(F) 0.011 0.105 0.094
PM10(D) 0.033 0.100 0.067
W(CO2GDP) 0.008 0.090 0.081
WATSUP(B) 0.000 0.082 0.082
CO2GDP(B) 0.014 0.082 0.068
OZONE(D) 0.011 0.072 0.061
CO2GDP(E) 0.027 0.070 0.043
PM10(A) 0.001 0.066 0.065
CO2GDP(D) 0.008 0.060 0.053
WATSUP(A) 0.003 0.053 0.050
Sum 0.558 2.745 2.187

fall within established bounds or regions. This objective can be pursued
using Monte Carlo filtering (MCF) that we discussed in detail in Chapter 5.
Recall that in MCF one samples the space of the input factors as in ordinary
MC, and then categorizes the corresponding model output as either within
or without the target region (the terms behaviour, B, or nonbehaviour, B̄, are
used). This categorization is then mapped back onto the input factors, each
of which is thus also partitioned into a behavioural and nonbehavioural
subset. When the two subsets B, B̄ for a given factor are proven to be statis-
tically different (by employing a Smirnov test for example), then the factor
is an influential one. In our example we set the model’s target behaviour
as Rs ≤ 2 (see Equation 6.3), that is we accept as behavioural an overall
shift in rank of a maximum of two positions. Then, an MCF procedure
can identify a significant correlation (> 0�2) between three pairs of input
factors, OZONE(B)–WATSUP(B), OZONE(E)–CO2GDP(E), OZONE(F)–
CO2GDP(F). The corresponding patterns are shown in Figure 6.5. The
correlation coefficients are negative and slightly over 0.2. This implies that
in order to have practically no shift in the countries’ ranks with respect to
the baseline scenario, then high values of OZONE have to be combined with
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Figure 6.5 Bidimensional projection of the B subset for the three pairs of input
factors that have significant correlation coefficients (> 0�2 in the MC sample). Target
behaviour Rs ≤ 2 (see Equation (6.3))

low values of WATSUP for country B, and vice versa. The same high–low
combination of values should be observed for country E and country F, but
in these cases the variables that play a role are OZONE and CO2GDP.

In order to gain further insight into the combinations of input factors
that lead to high values of the cumulative shift in ranking (e.g. Rs > 8
in the B̄ subset), we apply a similar approach. The MCF identifies the
pair OZONE(E)–WATSUP(D) as the one having the highest correlation
coefficient (−0�24) in the B̄ subset. Figure 6.6 presents the bidimensional
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Figure 6.6 Bidimensional projection of the B (small points) and B̄ (larger dots)
subsets for OZONE(E) and WATSUP(D). This pair of input factors had the highest
correlation (−0�24) in the B̄ subset. Target behaviour Rs ≤ 8
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Figure 6.7 Smirnov two-sample test values (two-sided version) for all 23 input
factors in the model. Target behaviour Rs ≤ 8

projection of the B (small points) and B̄ (larger dots) subsets for the
OZONE(E) and WATSUP(D). It is apparent that the B̄ subset is character-
ized by a lack of points in the top right part. For example, WATSUP(D)
values at about 45 or higher will result in a cumulative shift of more
than eight positions in ranking if the OZONE (E) value is less than
15, while greater OZONE(E) values will result in much smaller shifts in
ranking.

Figure 6.7 shows the values of the Smirnov statistics for all 23 input
factors in our model, and considering the target behaviour Rs ≤ 8. Four
input factors are highly influential in the target values in the B or B̄ subset.
These are, in order of importance, the trigger on the aggregation method,
OZONE(E), WATSUP(D) and PM10(D). It is notable that not all of these
factors have a high impact on the total variance of Rs. In fact, WATSUP(D)
and PM10(D) have a total effect sensitivity index of less than 0.13, as
opposed to 0.224 for OZONE(E) and 0.357 for the trigger on aggregation.
This result indicates that the sensitivity analysis conclusions depend on
the question we want to answer and not on the model output per se.
This is why the settings and the objectives of sensitivity analysis must
be clearly stated at the outset. Figure 6.8 is a graphical representation
of the Smirnov test for the most important parameters that decide model
realizations Rs > 8 (dotted curves). Only parameters with Smirnov statistics
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Figure 6.9 Histograms of the B̄ subset (Rs > 8 , left graph) and B (Rs ≤ 8, right
graph) for the trigger

greater than 0.15 are shown. Model realizations in the Rs > 8 subset are
more likely when OZONE(A), OZONE(E), PM10(D) and WATSUP(D)
fall on the left part of their predefined range, or when OZONE(B) falls
on the right part of its predefined range. It is also interesting to note that
the cumulative distribution for aggregation in the Rs > 8 subset is almost
entirely concentrated in 1, i.e. for geometric aggregation.

The impact of the aggregation trigger is better depicted in Figure 6.9. The
figure evidences the high impact of the aggregation trigger on the partitioning
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of the model realizations. Very high shifts in the ranking (> 8) are almost
entirely due to the use of geometric aggregation, while lower shifts are
produced by either aggregation method. This outcome was expected since the
geometric aggregation tends to penalize countries that compensate for very
bad performance in few indicators with very good performance in others.

6.1.5 Conclusions

We have illustrated, using a simple composite indicator on environmental
sustainability, how uncertainty analysis and sensitivity analysis can be
applied to gain useful insights during the process of composite indicator
building and to assess the reliability of country ranking. During the sensi-
tivity analysis process, we first used the more qualitative approach based
on the EE method to screen important from nonimportant factors in a
numerous set (i.e. 36 factors). After fixing the non-important factors to
their nominal value, we then followed a more quantitative approach using
a variance-based method to identify those few factors that have the greatest
impact on the variance of the cumulative shift from the baseline ranking.
Finally, we applied Monte Carlo filtering to identify which input factors
result in very high values of the cumulative shift from the baseline ranking.

We summarize in Figure 6.10 the conclusions from the in-tandem applica-
tion of the EE method and the variance-based method. Country A presents
the most extreme picture, having four indicators’ values classified as nonim-
portant or of low importance, while the value for OZONE for country A
is considered to be highly influential in the variance of the entire ranking
(all six countries). All indicators’ values for country C are nonimportant.
The pattern for the remaining countries varies. The Monte Carlo filtering
approach identified a few more input factors, PM10(D) and WATSUP(D),
whose uncertainty can result in high values for the cumulative shift in coun-
tries’ ranks. These results could guide a subsequent revision of the composite
indicator in the following way:

• If the experts who assigned weights to the indicators can be engaged in
a Delphi process to reach consensus on a few of the weights, then this
should be done for the weights assigned to OZONE and WATSUP.

• If the amount of resources (in time/money) is sufficient for improving the
quality of just a few indicators’ values, then those should be the values
of OZONE for countries A, B and E and of the PM10 and WATSUP for
country D.

Of course even more stable results would be obtained if the experts could
reach consensus on the aggregation method to be used, rather than using a
combination of linear and geometric as in the present example.
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Country

A B C D E F Weight

OZONE

PM10

ENEFF

CO2GDP

WATSUP

+ Aggregation

Nonimportant (Elementary Effect method, EET < 0.5) Note: max EET = 3.64

Rather important (Sobol’ method, STi ≤ 0.10)

Quite important (Sobol’ method, 0.10 < STi ≤ 0.15)

Very important (Sobol’ method, STi > 0.15)

Figure 6.10 Classification of the 36 input factors regarding their impact on the
cumulative shift from the baseline ranking. Methods used: first EE method, then
variance-based

We have applied almost all methods described in this book to the
composite indicator example. Clearly this is not to imply that all methods
should always be used in combination on any given model. To compare
abstraction with real life, the reader can study the sensitivity analysis
performed on the actual Environmental Performance Index in Esty et al.
(2006).

6.2 EXAMPLE 2: IMPORTANCE OF JUMPS IN
PRICING OPTIONS

6.2.1 Setting the Problem

Imagine that an investor enters into a European call option contract that
gives the holder the right (not the obligation) to buy an asset at a certain
date T (e.g. two months) for a certain price. The price in the contract is
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known as the exercise price or strike price K; the date in the contract is
known as the expiration date or maturity. To enter into an option contract
there is a cost corresponding to the right purchased. This cost, referred
to as premium C�K�T�, is the price of the option at present day and it is
established according to the theory of arbitrage-free pricing (Hull, 1997).

Classic deterministic arbitrage involves buying an asset at a low price in
one market and immediately selling it at a higher price in another market
to make a risk-free profit. Instead, in the present exercise we will assume
a market where arbitrage is not allowed, i.e. an arbitrage-free market or
risk-neutral world. The theory of arbitrage-free prices stipulates that the
prices of different instruments be related to one another in such a way that
they offer no arbitrage opportunities. In practice, to price the option we
make use of a model describing the evolution in time of the underlying asset
price and then impose no arbitrage arguments.

Let us give an illustration of how the profit an investor makes depends
on the underlying asset price P = �Pt� t ≥ 0�. Figure 6.11 shows how much
profit can be gained from buying this option. The plot refers to the date of
maturity of the option. The premium paid at time t = 0 is assumed to be 5
euros, and the strike price is 100 euros. The profit depends on the price of
the underlying asset at time t = T , which is uncertain at the time the option
is bought by the investor.

The risk associated with an option contract derives from the unknown
evolution of the price of the underlying asset on the market. This risk can
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Figure 6.11 Profit (euro) gained from buying an European call option with strike
price of 100 euros and premium of 5 euros
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neither be controlled, nor avoided, and is an intrinsic feature of the contract
itself (it is represented by the stochastic parts of the model). Besides this
type of risk, another element of risk is due to the fact that the current option
price is a quantity estimated via a mathematical model of a number of
input variables whose values are affected by uncertainty. This uncertainty
propagates through the model and produces uncertainty in the current
option price. The questions we come to answer in this example are:

• How much is the uncertainty associated with a current option price?
• Which are the main sources of this uncertainty?
• Is it important to consider the effects of jumps in modelling the under-

lying dynamics?

The model chosen for describing the evolution of P = �Pt� t ≥ 0� over
time is the Heston stochastic volatility model (Heston, 1993) with jumps
(Bakshi et al., 1997). Volatility behaves stochastically over time and jumps
are included in the dynamics of the asset. In the analysis, we will study how
uncertainties in the input factors propagate through to the output using
different scenarios that correspond to combinations of different strike prices
and times to maturity.

6.2.2 The Heston Stochastic Volatility Model with Jumps

Heston (1993) proposes a stock price model which introduces stochastic
volatility in the famous Black–Scholes model (Black and Scholes, 1973). In
the Heston model the price paths of a stock (and the volatility) are contin-
uous. Later, extensions of the Heston model were formulated that allowed
for jumps in the stock price paths (Bakshi et al., 1997). We investigate these
extensions and ask ourselves whether the introduced jumps play a significant
role in explaining the variance of the prices of derivatives under this model.

In the following we will assume that the underlying asset is a stock with
price process denoted by P = �Pt� t ≥ 0� and assume that the stock pays out
a continuous compound dividend yield of q ≥ 0. Moreover, we assume that
in our market we have a risk-free bank account at our disposal, paying out a
continuous risk-free interest rate r. In the Heston stochastic volatility model
with jumps the stock price process is modelled by a stochastic differential
equation given by

dPt

Pt

= �r −q −	
J �dt +�tdWt + JtdNt� P0 ≥ 0 (6.4)

where P0 is price at time zero and N = �Nt� t ≥ 0� is a Poisson process with
intensity parameter 	 > 0, i.e. E�Nt = 	t. Jt is the percentage jump size
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(conditional on a jump occurring) that is assumed to be log-normally, iden-
tically and independently distributed over time, with unconditional mean

J . The standard deviation of log�1+ Jt� is �J :

log�1+ Jt� ∼ N

(
log�1+
j�−

�2
J

2
��2

J

)
(6.5)

The (squared) volatility follows the classical Cox–Ingersoll–Ross (CIR)
process:

d�2
t = k��−�2

t �dt +��tdW̃t��0 ≥ 0 (6.6)

where W = �Wt� t ≥ 0� and W̃ = �W̃t� t ≥ 0� are two correlated standard
Brownian motions such that Cov�dWt�dW̃t = �dt. Finally, Jt and N are
independent, as well as Wt and W̃t. The parameter � is interpreted as the
long-run squared volatility; � is the rate of mean reversion to the level �
and � governs the volatility of volatility. The characteristic function ��u� t�
of the logarithm of the stock price process for this model is given by

��u� t� = E�exp�iu log�Pt�� �P0�� 2
0�

= exp�iu�log P0 + �r −q�t��

× exp����−2���−��ui−d�t −2 log��1−ge−dt�/�1−g����

× exp��2
0 �−2���−��ui−d��1−e−dt�/�1−ge−dt���

× exp�−	
J tui+	t��1+
J �
ui exp��2

J �ui/2��ui−1��−1�� (6.7)

where

d = ����ui−��2 −�2�−ui−u2��1/2�

g = ��−��ui−d�/��−��ui+d��

Pricing of European call options under this model can be done by the Carr
and Madan (1998) pricing method which is applicable when the charac-
teristic function of the logarithm of the risk-neutral stock price process is
known. Let � be a positive constant such that the �th moment of the stock
price exists. Carr and Madan (1998) showed that the price C�K�T� at time
t = 0 of a European call option with strike K and time to maturity T is
given by

C�K�T� = exp�−� log�K��

�

+�∫
0

exp�−i� log�K������d�
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where

���� = exp�−rT�E�exp�i�� − ��+1�i� log�PT ��

�2 +�−�2 + i�2�+1��

= exp�−rT���� − ��+1�i�T�

�2 +�−�2 + i�2�+1��
� (6.8)

Using fast Fourier transforms, one can compute rapidly the complete option
surface with an ordinary computer.

The input factors selected for sensitivity analysis purposes are listed in
Table 6.6. They can be differentiated into two groups: those whose value
can be estimated with a certain degree of confidence using market data,
and therefore represent a source of uncertainty that can be defined as
‘controllable’; and those that cannot be checked with market data and are
therefore regarded as completely ’uncontrollable’. The first group consists
of the initial condition for the dynamics of the volatility �0, the dividend
yield q, and the interest rate r. The remaining inputs, among which are the
jump parameters, belong to the second group.

Table 6.6 List of input factors of the Heston model with jumps. The last two
columns report the lower and upper bounds of the uniform distributions for each
input

Input Description Minimum Maximum

Controllable �0 Initial condition for the
dynamics
of the volatility 0.04 0.09

q Dividend yield 0.00 0.05
r Interest rate 0.00 0.05

Uncontrollable � Rate of mean revision 0.00 1.00
� Long-run squared volatility 0.04 0.09
� Parameter governing the

volatility of volatility
0.20 0.50

� Correlation between
Brownian motions
in Equations ((6.4)) and
((6.6))

−1�00 0.00

	 Jumps parameter (intensity
parameter
of the Poisson process that
models the stock price)

0.00 2.00


j Jump parameter in
Equation ((6.5))

−0�10 0.10

�j Jump parameter in
Equation ((6.5))

0.00 0.20
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6.2.3 Selecting a Suitable Sensitivity Analysis Method

In total there are 10 input factors in our model that could affect the pricing
of European call options. The model takes a few seconds to run and the
specific answers we try to get by the application of sensitivity analysis are:

• What is the relative importance of the 10 input factors affecting the
uncertainty in the current option pricing in difference scenarios, i.e.
combinations of the option strike price K and of the time to maturity T ?

• Does the impact of the uncertainties change from scenario to scenario?
• Is it the controllable or the uncontrollable input factors that drive most

of the output variance?

Given the low number of input factors, the low computational cost of the
model and the fact that we want to assess both first-order and total-effect
sensitivity indices �Si, STi

�, the most appropriate sensitivity analysis method
to use is a variance-based method (see Chapter 4), as these methods do not
rely on assumptions about the model being additive, or monotonic in the
input–output relationship.

6.2.4 The Sensitivity Analysis Experiment and Results

The first-order Si and total-effect STi
sensitivity indices are computed for

each input factor in different scenarios. These scenarios represent different
combinations of the option strike price K and the time to maturity T . The
initial condition for the stock is fixed at P0 = 100, while seven values of the
strike price are considered �K = 70�80� � � � �130) to represent situations in
which the option is in the money �K ≤ P0�, at the money �K = P0� or out of
the money �K ≥ P0�. Six different time horizons are examined from T = 0�5
years up to T = 3 years. Therefore, we study 42 scenarios in total. The total
number of model executions to estimate the entire set of the variance-based
indices �Si� STi

� i = 1�2� � � � 10� is N = 24�576�= 2048�10+2��.
Figure 6.12 shows the importance of the input factors in each of the 42

scenarios according to the STi
scaled in [0, 1] for presentational purposes.

Results reveal that, across all scenarios, the most influential parameters are:
the dividend yield q, the interest rate r, and the jump parameters 	 and �J .
In particular, q and r are very important for low strike prices at all times
to maturity, while 	 and �J become more relevant at higher strike prices.
As expected, �0 is important only for low times to maturity, especially
when the option is not in the money. Note that among these four most
important factors, q and r belong to the group of ‘controllable’ factors.
More interesting are the roles of the jump parameters 	 and �J , which are
the most relevant among the ‘uncontrollable’ factors. In general, if we limit
our attention to the ‘uncontrollable’ factors, the analysis proves that the
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Figure 6.12 Importance of the factors in each of the 42 (6×7) scenarios according
to STi

scaled in [0, 1]. Each graph refers to a selected input factor. Within a graph,
each dot illustrates the input importance in a specific scenario. Ten different dots’
sizes are considered, corresponding to 10 different classes of importance, ranging
from values of STi

in [0, 0.1] to values of STi
in [0.9, 1]



260 SENSITIVITY ANALYSIS: FROM THEORY TO PRACTICE

jumps group, i.e. 	, �J and 
J , drives the greater amount of the total output
variance in all scenarios.

If we compare the relative importance of the various factors in different
scenarios, it emerges that factors’ importance is less sensitive to shifts in the
time horizon, than it is to the strike price value.

Finally, the influence of the input factors �, � and � is almost negligible
in all scenarios and hence they could be fixed at any point in their domains
without risk of losing any information about the output of interest. Similar
conclusions are drawn by Campolongo et al. (2007), who analyse this
problem by using, for comparative purposes, both the EE method and the
variance-based method presented herewith.

In Figure 6.13 we show three scenarios that correspond to a fixed time to
maturity (T = 1�5 years) and to three different strike prices: an option in the

Interactions: 1.7%

σ0: 3%

r  : 26%

λ: 1.4%

σj 
: 2.6%

q : 64%

ρ: 15.5%

Others: <1.5%

Strike Price = 70, Time to
Maturity = 1.5y 

Strike Price = 100, Time to
Maturity = 1.5y 

Strike Price = 130, Time to
Maturity = 1.5y 

q : 28%

λ: 11.7%

r : 17.5%

Interactions: 7.2%

Others: <6%

q : 8%

λ: 17.8%

r : 5.3%

Interactions: 12.9%

Others: <4%

σ0: 12.1%

σ0: 9.2%

σj : 16.6%

σj : 25.1%

μj : 1.3%

μj : 2.4%

μj < 0.05%

Figure 6.13 Decomposition of the total variance of the option price in three
scenarios. Interactions of all orders are grouped in a single term
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money (K = 70), at the money (K = 100) and out of the money (K = 130).
The variance of the option price is apportioned to the contributions due to
the first-order effects of each input (i.e. the Sobol’ Si) and to the interactions
of all orders. Since we are not interested in quantifying interactions of
different orders due to certain input factors, all interactions are summed up
in a single term. The figure reveals that the importance of jumps (factors 	
and �J ) increases considerably with the strike price. The sum of their main
effects goes from approximately 4%, when the option is in the money, to
nearly 30% when the option is at the money, up to 45.3% when the option
reaches 130 (out of the money). When the option is in the money, more than
90% of the total variance is due to the controllable factors q and r, thus
leaving little opportunity to reduce the uncertainty in the option price by
increasing the modelling effort. As the strike price increases, the importance
of jumps increases considerably, which stresses that their role in modelling
the option price cannot be overlooked: jumps need to be included in the
model and their representation should be as accurate as possible. We could
summarize in two main points the impact of these findings on the investor’s
actions:

• Among the important factors, q and r are controllable. Therefore, the
investor might reduce the uncertainty in C�K�T� by prioritizing his efforts
to get good estimates of q and r from market data.

• Among the uncontrollable factors, it is the jumps that drive most of the
variance. However, this type of uncertainty remains in the model and
there is no possibility for the investor to reduce it. But, from a modelling
point of view, the analysis presented above has shown that the inclusion
of jumps is of paramount importance in the estimation of the underlying
asset price.

6.2.5 Conclusions

In this example we have analysed the uncertainty in the price of a European
option estimated by the Heston model in its version with jumps. The uncer-
tainty in the option price has been apportioned to its different sources via
sensitivity analysis. In particular we have assessed the relative importance
of jumps with respect to other model input factors.

The sensitivity analysis using variance-based sensitivity indices Si� STi
has

shown that, among the ‘uncontrollable’ factors (i.e. those that cannot be
estimated from market data), jumps play a major role in determining the
option price, thereby emphasizing the need to include them in the model
formulation. At low strike prices, most of the uncertainty in the option price
is due to ‘controllable’ factors such as the dividend yield q and the interest
rate r. As the option strike price increases, the importance of jumps increases
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considerably: for instance, for options with strike prices of 120 or 130 (the
starting price being 100), the importance of jumps is superior to that of q
and r for all times to maturity. This underlines that an accurate assessment
of the jump process becomes more urgent for out-of-the-money options. It
also emerges that three of the inputs, namely the rate of mean reversion �,
the long-run squared volatility � and the parameter governing the volatility
of volatility �, do not affect the output in any of the studied scenarios. This
result is useful, as it may allow a simplification of the model. Finally, as
expected, at low time to maturity the initial condition for volatility needs
to be accurately determined, while it becomes less important as the time to
maturity increases.

6.3 EXAMPLE 3: A CHEMICAL REACTOR

6.3.1 Setting the Problem

Imagine that a chemist, in a routine procedure, attempts to create a model
of reaction systems to understand reaction mechanisms, kinetic properties,
process yields under various operating conditions, or the impact of chemi-
cals on humans and the environment. These models are attempts to mimic
the system by hypothesizing, extracting and encoding system features (e.g.
a potentially relevant reaction pathway versus another plausible one). A
model will hopefully help to corroborate or falsify a given description of
reality, e.g. by validating a reaction scheme for a photochemical process in
the atmosphere, and may also help to influence it, e.g. by facilitating the
identification of optimal operating conditions for an industrial process or
by suggesting mitigating strategies for an undesired environmental impact.

These models are customarily built in the presence of uncertainties of
various levels, in the pathway, in the order of the kinetics associated with
the pathway, in the numerical value of the kinetic and thermodynamic
constants for that pathway and so on. The job of the uncertainty analysis is
to propagate all these uncertainties, via the model, onto the model output
of interest, e.g. the yield of a process. The work of sensitivity analysis is to
determine the strength of the relation between a given uncertain input and
the output.

The issues a chemist may want to deal with during this modelling process
could include:

• understanding the reaction path, mechanism, or rate-determining steps
in a detailed kinetic model with a large number of elementary reactions
(Turanyi, 1990; Saltelli and Hjorth, 1995);
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• extracting important elementary reactions from a complex kinetic model
to obtain a reduced model (e.g. a minimal reaction scheme) with equiv-
alent predictive power;

• selecting important reactions for further analysis (Pandis and Seinfeld,
1989; Vuilleumier et al., 1997);

• estimating the output of a computer program in the neighbourhood
of a given set of boundary conditions without rerunning the program
(Grievank, 2000; Kioutsioukis et al., 2005);

• reconciling model parameters with observations (Rabitz, 1989; Le Dimet
et al., 2002; Mallet and Sportisse, 2004).

6.3.2 Thermal Runaway Analysis of a Batch Reactor

The thermal runaway analysis of a batch reactor, where an exothermic
reaction A → B takes place, is performed considering the following mass
and heat balance equations:

d�A

dt
= −k�T� · �An (6.9)

�cv

dT

dt
= �−�H� ·k�T� · �An − sv ·u · �T −Ta� (6.10)

where n is the order of the reaction, � the density of the fluid mixture
[kg/m3], cv the mean specific heat capacity of the reaction mixture
[J/(Kmol)], �H the reaction enthalpy [J/mol], sv the surface area per unit
volume [m2/m3], u the overall heat transfer coefficient [J/(m2s K)] and Ta

the ambient temperature [K]. The initial conditions are �A = �A0, T = T0,
t = 0. This is customarily rewritten in dimensionless form:

dx

d�
= exp

(
�

1+�/�

)
· �1−x�n = F1�x� ��

d�

d�
= B · exp

(
�

1+�/�

)
· �1−x�n − B

�
· �� −�a� = F2�x� ��

with initial conditions x = 0, � = 0 at � = 0, and the dimensionless variables:

x = �A0 − �A

�A0
� = T0 −T

T0
·� � = t ·k�T0� · ��A0�

n−1
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and dimensionless parameters:

B = �−�H� · �A0

� · cv ·T0
� (heat of reaction)

� = E

RgT0
(activation energy)

� = �−�H� ·k�T0� · ��A0�
n

sv ·u ·T0
·� (Semenov number expressed as

(heat release potential)/(heat removal potential)

This system was widely analysed in the last century to characterize thermal
runaway under varying operating conditions (Varma et al., 1999). At a given
constant rate and ambient temperature, the system is completely determined
by the parameters B and �, and critical conditions are usually illustrated in
the B–� plane.

A reactor under explosive conditions is sensitive to small variations in,
for example, the initial temperature, while under nonexplosive conditions,
the system remains insensitive to such variations. The boundaries between
runaway (explosive) and nonrunaway (nonexplosive) conditions can thus be
identified based on the system’s sensitivity to small changes in the operating
parameters. The system can also be characterized by the derivative of the
maximum temperature reached in the reactor versus the initial temperature,
i.e. S��∗� �0� = d�∗/d�0 (Morbidelli and Varma, 1988).

The runaway boundary is defined as the critical value of each parameter
for which the sensitivity to the initial condition is at a maximum, e.g. for
the Semenov number � we have the results in Figure 6.14.

For � values smaller than �c the system is in nonrunaway conditions,
i.e. the maximum temperature reached in the reactor is not very high and
this maximum is insensitive to small variations in the inlet temperature.
Increasing � , both the maximum temperature and its sensitivity to T0

increase smoothly until, in proximity to �c, there is a sharp rise for both of
them that rapidly brings the reactor to a strong temperature increase. For
� values higher than �c, the sensitivity decreases again, leaving unchanged
the extreme temperature rise reached at �c. By fixing the reaction kinetics
�n��� and the ambient temperature ��a�, the curve in the B–� plane can be
obtained (Figure 6.15).

Consider the case of a system with nominal parameter design B = 20, � =
20, n = 1 and � = 0�5. Under these conditions the system should be in the
nonrunaway region. The system, however, is characterized by uncertainties.
Let us therefore assume the following uncertainty distributions for the model
parameters:



EXAMPLE 3: A CHEMICAL REACTOR 265

0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

14

16

18

ψ

S
(θ

∗ ,
 θ

0)
B = 20
γ = 20
n = 1
θa = 0

ψc
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B ∼ N�20�4�
� ∼ N�20�2�
�a ∼ N�0�0�2�
�0 ∼ N�0�0�2�
� ∼ U�0�4�0�6�

(6.11)

Under the chosen operating conditions �� = 20�, a standard deviation of
0.02 for the ambient and initial dimensionless temperatures correspond to
a standard deviation of about 3 K in the absolute temperature scale.

6.3.3 Selecting the Sensitivity Analysis Method

Since this example involves few input factors and the computational cost of
the analysis is small, we employ several of the sensitivity analysis methods
we discussed in the previous chapters, such as the standardized regres-
sion coefficients (SRC), the Sobol’ variance-based method and the SDP
smoothing metamodelling technique. As discussed in Chapter 5, metamod-
elling techniques produce extremely efficient sensitivity estimates and will
be considered as the ‘reference’ values in the following example.

6.3.4 The Sensitivity Analysis Experiment and Results

We perform a Monte Carlo simulation and estimate the first-order and total-
effect Sobol’ indices following Saltelli (2002) as well as the standardized
regression coefficients. We also perform the SDP metamodelling. The total
cost for the Sobol’ estimates is of 6144 model evaluations (i.e. N = 512,
k = 5 and N�2k+2� = 6144),4 while for the SRC and SDP estimates it is of
512 model evaluations (simply using the base sample matrix of the Sobol’
design). Our aim is to analyse the behaviour of the maximum temperature
rise occurring in the batch reactor. From Figure 6.16 we can see that, even if
the nominal conditions of the reactor are stable, there are threshold values
of B, �a and � for which the maximum temperature in the reactor can
undergo a sharp rise (the absolute temperature can double with a rise of
about 300 K).

The relationship between the maximum temperature and the parame-
ters is clearly nonlinear with interactions. To show this, let us consider
the different sensitivity measures for the maximum temperature shown in

4 This is not the recipe given in Chapter 4, which would require N�k + 2� = 3584 model
evaluations, but corresponds to the original design of Sobol’. This larger sample design has
been used because, as discussed in Saltelli (2002), it allows us also to obtain estimates of
second-order sensitivity indices, which are discussed later in this example.
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Figure 6.16 Relative temperature rise at the maximum ��Tmax −T0� /T0 versus the
uncertain model parameters. The extreme values of about 1.2 for ��Tmax −T0� /T0
correspond to a temperature rise of about 300 K

Table 6.7 Sensitivity measures for model ((6.9))–((6.11))

�2
i Si (Sobol’) Si (SDP) STi

� 0�17 0�1781 0�205 0�6738
�a 0�14 0�1641 0�148 0�556
B 0�087 0�08 0�092 0�4692
� 0�0012 0�0019 0�001 0�0322
�0 0�0006 0�0015 0�0004 0�0128
Sum 0�40 0�43 0�45

Table 6.7. Consider the �2
i � Si columns first. The sensitivity based on the

�2
i ’s can only capture 40% of the variation of the maximum temperature.

Taking the SDP estimate of the main effects into account, we get 45%
(43% using the Sobol’ method). This leaves 55% to interactions between
the model parameters. Results in Table 6.7 also show that Sobol’ estimates
are reasonably close to the ‘reference’ SDP estimates.
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We could terminate the analysis at this point or we could pursue our
investigation to achieve a full mapping of the input–output relationship.
Stopping here would mean that we are happy with having learned that
the parameter which offers a better chance of reducing the variance in the
maximum temperature is �. Yet this factor only accounts for about 20%
of the variance, and the many unknown interactions suggest that a much
larger reduction in variance might be achieved if one could identify the
interacting factors and try to learn more about them.

One avenue would be to compute individual interaction terms. We can
do this applying both the SDP smoothing and the Sobol’ method (Saltelli,
2002). The analysis of second-order interaction effects tells us that the most
significant terms involve the group of factors (B, �a, �). Estimated values
are shown in Table 6.8, where these three interaction terms are shown to
explain another 38.7% of the model output variance, i.e. the SDP meta-
modelling of first- and second-order explains 83.7% of the model output.
We can also see that interaction term SB�a

is significantly overestimated
using the Sobol’ method.

This example points to the importance of identifying interactions in sensi-
tivity analysis. The descriptive power of the total sensitivity indices STi

is
evident by looking at the last column of Table 6.7. Even without computing
second- and third-order interaction effects, it is evident from the difference
between the Si and STi

values for each factor that B, �a and � are involved
in significant interactions. From the total indices we can also see that all
the interaction terms of factor � with (B, �a, �) cover about 3% of the total
variance, while �0 has a negligible total effect, implying its irrelevance.

In Figure 6.17 we show the SDP estimates of first-order ANOVA-HDMR
terms of the maximum relative temperature rise �T max −T0�/T0 for the three
most important parameters. These show that the first-order relationships
are monotonic, which explains why the �2

i give an acceptable estimate of
the sensitivities in Table 6.7, with an overall error of about 0.05.

In Figure 6.18 we also show the SDP estimates of the second-order
ANOVA-HDMR terms for the group of factors (B, �a, �). It can be clearly
seen that extreme values of the temperature rise are associated with high–
high combinations of each couple of factors. In particular, the highest peaks
are obtained combining high values for B and �.

Table 6.8 Second-order sensitivity
indices for model ((6.9))–((6.11))

Sij (Sobol’) Sij (SDP)

SB� 0.17 0.169
S�a� 0.17 0.144
SB�a

0.166 0.074



EXAMPLE 3: A CHEMICAL REACTOR 269

−0.2 −0.1 0 0.1 0.2

−0.05

0

0.05

0.1

0.15

0.2
θa

M
ax

 r
el

at
iv

e 
T

 r
is

e

15 20 25
−0.05

0

0.05

0.1

0.15

B

M
ax

 r
el

at
iv

e 
T

 r
is

e

0.4 0.45 0.5 0.55 0.6

−0.05

0

0.05

0.1

0.15

0.2

ψ

M
ax

 r
el

at
iv

e 
T

 r
is

e

Figure 6.17 First-order ANOVA-HDMR terms (solid lines) of the subset of factors
(B, �a, �) for the maximum relative temperature rise, estimated using the SDP
procedure described in Chapter 5 (note: the mean value of the maximum temperature
rise �Tmax −T0� /T0 is 0.1). Dotted lines show the 95% standard error band

6.3.5 Conclusions

In the analysis of thermal runaway of a batch reactor, the sensitivity analysis
results can be summarized as follows:

• The parameter which offers better chances of reducing the variance in the
maximum temperature is � (about 20% of the variance). The sensitivity
based on the �′

is can capture only 40% of the variation of the maximum
temperature. Considering the SDP estimate of the main effects, we can
arrive at 45%. This implies that 55% is caused by interactions between
the five model parameters.

• The most significant second-order interaction terms are: SB� = 0�169,
S�a� = 0�14, SB�a

= 0�074. The SDP estimates also suggest that high–high
combinations of such input factors are most responsible for extreme
temperature rises. Joining these results with first-order terms, covers
about 84% of the total output variance. The remaining part can be
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Figure 6.18 Second-order ANOVA-HDMR terms of the maximum relative temper-
ature rise, estimated with the SDP procedure described in Chapter 5

attributed to higher interactions involving the most relevant group of
factors (B, �a, �) as well as � which has a nonnegligible total effect.

• The first-order ANOVA-HDMR terms of the ‘maximum relative temper-
ature rise’ for the three most important parameters show that the first-
order relationships are monotonic, which explains why �2

i give an accept-
able estimate of the sensitivities.

6.4 EXAMPLE 4: A MIXED UNCERTAINTY–
SENSITIVITY PLOT

6.4.1 In Brief

As a last example, we treat a mixed uncertainty–sensitivity plot that might
be meaningful to particular audiences and which could be used to convey
information on the impact of changes in an influential factor on an output of
interest. This resembles the one-at-a-time (OAT) type of sensitivity analysis
discussed in Chapter 3.
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The example is taken from a study on clearing and settlement (Schulze
and Baur, 2006, p. 18), published on the European Commission Directorate
General Internal Market website. Without entering into the details of the
model, we focus on the impact of a single input factor (i.e. the trading costs)
on an output of interest (i.e. GDP in the European Union). To demonstrate
that trading costs are highly influential on GDP, the authors calculated
the changes in GDP due to changes in trading costs, considering different
mean values for the trading costs in the range 0–30% (in steps of 2.5%). A
coefficient of variation of 30% is assumed for each mean value. Their plot,
presented in Figure 6.19, showed that GDP increases strongly with higher
reductions in trading costs, but so do the confidence bounds. For example,
the average change in the level of GDP in the case of a 7% reduction in
trading costs is 23 billion (with a 95% confidence interval: [8 billion, 47
billion]). Higher reductions in trading costs, e.g. of about 18%, could lead
to a change in the level of GDP of 63 billion (95% confidence interval: [20
billion, 124 billion]).

This type of graph can serve a dual purpose. On one hand, it can be
used to present the results of an uncertainty analysis, in which confidence
bounds are estimated for an output of interest, such as GDP. On the other
hand, it can show the results of a sensitivity analysis, revealing how a
crucial uncertain factor (the percentage reduction in trading cost) can clearly
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Figure 6.19 A mixed uncertainty–sensitivity analysis plot
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influence the output of interest (GDP), taking account of the uncertainty in
the other factors. Though very simple, this analysis helped the stakeholders
to hold a well-structured negotiation on the estimated benefit of a possible
reduction in trading cost.

6.5 WHEN TO USE WHAT?

The choice of the proper sensitivity analysis technique depends on such
considerations as:

• the computational cost of running the model;
• the number of input factors;
• features of the model (e.g. linearity);
• the consideration of interactions among the input parameters in the

model;
• the setting for the analysis and its audience.

Table 6.9 summarizes the explanations using these characteristics as
discriminating criteria. These indications are not to be taken as a prescrip-
tion. More than one method might be applicable to the same context. In
choosing among the various methods based upon the cost of a single simu-
lation (row: ‘CPU time (per run)’) we have assumed a single computing unit
(no parallel computing) and a maximum computing time between two and
three days (having in mind a typical weekend-long simulation).

For models that require a modest amount of CPU time (i.e. up to the
order of one minute per run), and with a number of input factors which
does not exceed, for example, 20, the class of variance-based techniques
(Sobol’ method) yields, convergence aside, the most complete and general
pattern of sensitivity. The implementation of Saltelli (2002) (very easy to
code and with numerical recipes given in Chapter 4) provides all the pairs
of first-order and total indices at a cost of �k+2�N model runs, where k is
the number of factors and N is the number of rows of the matrices A and B.
Typically N ≈ 500÷1000. To give an idea of the order of magnitude of the
computational requirement: for a model with 10 factors and half a minute
of CPU per run, a good characterization of the system via Si and STi

can be
obtained at a cost of about 50 h of CPU. Moreover, any single interaction
term can be easily computed at the additional cost of N model evaluations
per sensitivity index, if desired. The Sobol’ method does not rely on any
assumption about smoothness of the input–output mapping; it only relies
on square-integrability of Y . This is both a strength and a weakness, since it
implies a quite slow convergence rate of the estimator. The main drawback
of this method is therefore in the computational cost, which depends on



Table 6.9 When to use what. Note that these indications are not to be taken as a prescription. More than one method might be
applicable to the same context. In choosing among the various methods based upon the cost of a single simulation (row: CPU per run)
we have assumed a single computing unit (no parallel computing) and a maximum computing time between two and three days (having
in mind a typical weekend-long simulation)

Chapter 1 Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 5

Characteristic �2
i Scatterplots Fractional Elementary Variance Metamodelling Monte

factorial effects based Carlo filtering
Coping with Noa Yes Yes Yes Yes Yes Yes
nonlinearity
Coping with No Yes Yes Yes Yes Yes Yes
interactions
Samples taken Distributions Distributions Levels Levels Distributions Distributions Distributions
from
Number of < 100 < 10 > 100�b� 20–100b < 20�b� 20–100 < 20
input factors
CPU time 1 min–1 h < 1 h < 10 h < 1 h < 1 min < 1 h < 1 h
per run
Cost of analysis 500–1000 1000 k÷2k (FF) r�k+1� N�k + 2� (Saltelli,

2002)
100–1000 500–2000

(number of runs) N < k (supersat. FF) N (RBD)
Setting for SA FP FM FF FF FP, FF, VC FP, FM FM

k: number of factors.
N : typically N ≈ 500÷1000.
r is generally set to r ≈ �4÷10� and corresponds to the number of the trajectories.
FP: Factor prioritization; FF: Factor fixing; VC: Variance cutting; FM: Factor mapping.
Notes:
a Recommended when R2 � 0�7. In its ranked transformed version it can be quite effective for monotonic models,
irrespective of their degree of nonlinearity.
b Treating groups of factors would allow to treat problems of higher dimensionality.
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the dimension k of the problem and in the relatively large N required for a
reasonable accuracy of the sensitivity estimates.

When using Saltelli’s recipe, we make use of quasi-random numbers to
generate the sample matrices A and B (see Chapter 4) for the analysis. These
are sequences of multidimensional points characterized by the property of
‘optimal’ space filling (see Chapter 2). When the input factors are correlated
an ad hoc computational scheme must be adopted (see the brief discussion
in Chapter 1).

The method based on random balance design (RBD) provides only first-
order indices. However, the method has the advantage of running a full
analysis at a cost of N model runs, i.e. independent on the number of input
factors k. At a given computational cost, RBD yields first-order estimates
at higher accuracy than Saltelli (2002) (see comparison tests in Tarantola
et al., 2006). In addition, RBD is very easy to code (see the few-line Matlab
script in Chapter 4).

A cheaper alternative to the variance-based methods are the standardized
regression coefficients, �i. With a single batch of N sampled points (e.g.
N ≈ 500 ÷ 1000 points or fewer depending on the cost of the model) the
�i and their rank transformed version can be estimated for all the input
factors. The �i are only effective for linear or quasi-linear models, i.e. for
R2 � 0�7. Regression methods, also implemented in SIMLAB, are always
useful to look at when investigating the degree of linearity of the model.

As discussed in Chapter 5, metamodelling techniques, like the SDP
approach, can be applied successfully to produce both truncated ANOVA-
HDMR decompositions up to third order as well as the relative sensitivity
indices at the same cost of �i. This strongly reduces the cost of the sensitivity
analysis with respect to Saltelli (2002), with extremely reliable estimates
of the full set of main effects at very small sample sizes (N = 250 ÷ 500).
The strongly improved convergence rate of metamodelling techniques with
respect to the classic Sobol’ method is due to their reliance of smoothness
assumptions about Y . However, accurate estimates of the total effect are
problematic in the metamodelling approach, unless the model has a small
number of interaction terms of very small order, i.e when the truncated
ANOVA-HDMR covers 100% of the model output Y .

When the CPU time increases (up to, for example, 10 minutes per run),
or the number of factors increases (e.g. up to 100), the EE method offers
the best result. The number of sampled points required is r�k+1� where r
is generally set to r ≈ �4÷10� and k the number of input factors. To give
an example, with 80 factors and 5 minutes CPU time per run, all the model
outputs can be ready in 27 hours if r = 4 is taken. The EE method produces
good proxies to variance-based total effects, thus allowing us to efficiently
complement a metamodelling exercise.

When the number of input factors and/or the CPU time is even so large
as to preclude the use of a screening method, then supersaturated fractional
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factorial designs, where factors are iteratively perturbed in batches, can be
used (see the discussion in Chapter 2). However, these methods preclude
an effective exploration of the space of the inputs, as they mostly operate
at very few factor levels and require strong assumptions of the model’s
behaviour.

Sensitivity analysis is also driven by the setting. When the purpose of the
analysis is to prioritize factors, the first-order sensitivity indices Si (or the
standardized regression coefficients) have a good argument. If the objective
is to fix noninfluential factors, then the total sensitivity indices STi

, or
equivalently the EE method, come into use. If a particular region in the
space of the output (e.g. above or below a given threshold) is of interest,
then Monte Carlo filtering and associated methods can be tried alternatively
or complementarily to the measures just mentioned. If the purpose of the
analysis is a detailed mapping of the input–output relationship, then various
types of metamodelling techniques can be successfully applied.

The reader of the present textbook may expect new developments in the
computation of the important measure and screening texts described here.
Ongoing research both on sampling strategies (thereby using true model
points to map the space of the input) as well as metamodel/emulators
(producing estimates of model output at untried points) is being intensively
carried out by practitioners.
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Afterword

The authors of the book hope that readers will find the tools of global
sensitivity analysis presented here useful. As discussed in the introduction,
these methods have been conceived to help avoid type II errors resulting
from a poor (or wholly omitted) exploration of the space of the input factors
or from neglecting the interaction between different system factors and/or
compartments.

We have also stressed the need to consider more than just the uncertain
factors or the measurement errors in the input data included in the model.
Although the tools discussed in the book are capable of handling what we
could call ‘technical’ uncertainty, they can also be used to tackle additional
layers of epistemic uncertainty.

A model, being a human representation of a given problem, necessarily
reflects the perceptions, values and interests of those concerned with struc-
turing the issue being modelled. Whenever relevant, a sensitivity anal-
ysis should incorporate these social and cultural dimensions. Post-Normal
Science (PNS), as discussed in the introduction, offers some guidance as to
when ‘extended peer community’ methods are advisable.

Clearly, modelling is subject to an unprecedented level of critique at
present, not only from postmodern philosophers but also from intellectuals
and scientists of diverse political tendencies. In his novel State of Fear,
Michael Crichton writes:

If you read some author who says ‘We find that anthropogenic greenhouse gases
and sulphates have had a detectable influence on sea-level pressure’ it sounds
like they went into the world and measured something. Actually, they just run a
simulation. They talk as if simulations were real-world data. They’re not. That’s a
problem that has to be fixed. I favor a stamp: WARNING: COMPUTER SIMU-

LATION – MAY BE ERRONEOUS and UNVERIFIABLE. Like on cigarettes
[· · · ]. (Crichton, 2004, p. 556)

Global Sensitivity Analysis. The Primer A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,
D. Gatelli, M. Saisana and S. Tarantola © 2008 John Wiley & Sons, Ltd



278 AFTERWORD

It is indeed a sign of the times that statements about the veracity of
computational models can now be found on books belonging more on our
bedside tables than on our desks.

A common fallacy in the use of computation models is – in the opinion
of the authors – the idea that increasing the level of detail of a model must
in general improve its pedigree.

An example discussed in Pilkey and Pilkey-Jarvis (2007) concerns
the Yucca Mountain repository for radioactive waste disposal, where a
very large model called TSPA (Total System Performance Assessment) is
employed to guarantee the safe containment of waste. Composed of 286
submodels, TSPA (as with any other model) is based on assumptions – a
crucial one being the low permeability of the geological foundation and
hence the extensive period of time needed for the water to percolate from
the desert surface to the level of the underground disposal. However, the
confidence of stakeholders in TSPA was not strengthened by the recent
production of evidence to suggest that an upward revision of the value of
this parameter by four orders of magnitude might be necessary.

Many people will take exception to the works just cited. Yet it cannot
be denied that a paradigm shift has taken place. As discussed in Chapter 1,
stakeholders and media alike will increasingly tend to suspect, or even
expect, the instrumental use of computational models and the amplification
or suppression of uncertainty for the sake of expedience (Michaels, 2005).

A global sensitivity analysis might serve variously the friends and the foes
of a given model as applied to a particular issue, that is, both the modellers
and the critics of the model. Yet there is no magic formula – a sensitivity
analysis may reveal to which assumptions a model is more sensitive but
say nothing about the defensibility of these assumptions. Modellers could
consider that ‘the uncertainties which are more carefully scrutinized are
usually those which are the least relevant’, (Van der Sluijs et al., 2005).
Nassim Nicholas Taleb, in an interesting book also critical of the modelling
community, calls this ‘The delusion of uncertainty’ (Taleb, 2007). In other
words, sensitivity analysis may not guard against type III errors, that is, a
wrong framing of the analysis.

Have models fallen from grace, and is modelling – when applied to major
environmental issues of the PNS type – just ‘useless arithmetic’, as claimed
by Pilkey and Pilkey-Jarvis (2007)?

The crux of the matter is that, 15 years after Konikof and Bredehoeft
proclaimed that ‘groundwater models cannot be validated’ (Konikov and
Bredehoeft, 1992) and Naomi Oreskes wrote her sober reminder of the
limits to validation of computational models in environmental systems
(Oreskes et al., 1994), the modelling community still lacks a set of accepted
quality criteria for assessing model’s adequacy, notwithstanding valuable
attempts at establishing one (Van der Sluijs et al., 2005).
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Index

Analytical g-function 123–7
ANOVA-HDMR decomposition 162,

213, 221, 274
Approximating functions

212–13
Asymptotic curves 57

Batch reactor 262–70
see also Thermal runaway analysis

Bayesian model averaging 8–9
Bootstrapp 7–8

Chemical reactor 262–70
see also Thermal runaway analysis

Clusters 58, 83
Composite index, see Composite

indicator
Composite indicator 240–53

aggregation methods 239, 241,
250–2

arithmetic v. geometric approach
239–40

baseline ranking 245–6
composite scores 244–5
and country rankings 242–3
cumulative shift 245, 246–7, 248
and elementary effects (EE) 239,

246–7, 252
input factors

impact 243–5
number reduction 246

and interactions 247
mapping 247–50
Monte Carlo Filtering (MCF)

248–50, 252

behavioural/nonbehavioural
subsets 248, 249–50

robustness 241
Smirnov statistics 250–1
uncertainty analysis 242–3, 244
validity 241
variance-based methods 239,

246–7, 252
weights 247

Conditional expectation 160–1
Conditional variances 20–2
Continuous stirred tank reactor (CSTR)

as dynamical system 202
heat balance 201
mass balance 200, 201
stability conditions analysed

202–6
Hopf bifurcation locus 203–5
robustness check 204–6
Smirnov analysis 204, 205–6
uncertainties 206

Correlation ratio 213
Cost of analysis 17
‘Counterfeit Coin Puzzle’ 90–1
Cubic polynomial spline 218

Data mining 54
Decomposition 160, 161–2

ANOVA-HDMR 162, 213, 221,
274

and risk 157
variance-based methods 19–20,

160, 161–2
Derivatives

advantages/disadvantages 11–12
as basis of sensitivity analysis 11

Global Sensitivity Analysis. The Primer A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,
D. Gatelli, M. Saisana and S. Tarantola © 2008 John Wiley & Sons, Ltd
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Derivatives (Continued)
compared with scatterplots 14–15
normalization 15–16

Deterministic models 157
Deterministic regularization (DR) 218
Discontinuous functional forms 57–8
Discrepancy 83, 84
Distribution of points 59–60

Elementary effects (EE) 109–54
advantages 127–8, 274, 275
analytical g-function 123–7
composite indicator application

239, 246–7
defined 110–11, 121
and groups 121–2, 128
role of delta (�) 120–1
sampling strategy 112–16

optimization 115–16
sensitivity measure computation

110–11, 116–22
factor fixing 125
practical example 123–7

standard deviation 110, 111, 117
test defined 38–9

Endpoints 60, 62, 63–4
Errors 15, 166

standard error and uncertainty 59
see also type I errors, type

II errors, type III errors
Experimental design 35, 53–107

group sampling 89–96
and multiple parameters 64–89
and single parameter 55–64

Factor fixing (FF) 33–4, 125, 156
Factor mapping (FM) 39, 40, 156–7,

183–236
Factor Prioritization (FP) 24–5, 156
Factorial design, see Fractional factorial

(FF) sampling
Factors 5–6, 7

distribution 10, 25
in experimental design 54
groups or sets 36–7
identification 35
independence 17
influence 21, 24, 26, 27, 258–60

and choice of technique 272,
274–5

and jumps in pricing options 257,
258–60, 261, 262

and Monte Carlo filtering 209–10
nonindependent 41
selection 9–10

First-order effect 21
First-order sensitivity index, see

Sensitivity index, first-order
‘Fitness for purpose’ 4–5, 10, 43
Fourier Amplitude Sensitivity Test

(FAST) 159, 167
Fractional factorial (FF) sampling

71–6, 89, 274–5
Hadamard matrix 73–4
and LH sampling combined

82, 106
main effect (ME) of parameters 75
and simulations 72

Framingham Heart Study 53
Fussell–Vesely measure 157

g-function 123–7
Gaps 58, 83
Gaussian emulators 214–15
Generalized Random Walk (GRW)

222
Group sampling 89–96

number 92
parameters

allocation 92, 93
influential 93, 94–6
noninfluential 93–4

sign variables 95, 96
and simulations required 89
stepwise analysis 95–6
supersaturated designs 89–90

Groups 36–7, 89–96
and elementary effects method

109–10
and scatterplots 15
see also Group sampling

Haar wavelet 216–18
Hadamard matrix 73–4
Halton sequence 84–6

radical inverse transform 86
Health studies 53–4
High-dimensional model representation

(HDMR) 160, 227, 228, 236
estimating 214–24
smoothing techniques (Haar wavelet)

216–18
spline smoothing 218–21
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state-dependent regressions 221–4,
227, 228

see also ANOVA-HDMR
decomposition

Hodrick–Prescott (HP) filter 218–21,
223, 226

Hopf bifurcation locus 203–5

Index/indices, see Sensitivity index
Infection dynamics

model 169–74
input factors 209–10

and Monte Carlo filtering 209–11
and Random Balance Design (RBD)

174
and sensitivity index 170–1
and uncertainty analysis 171
and variance-based methods

169–74
Input factors, see Factors; Parameters
Integrated Random Walk (IRW) 222,

223
Interactions 30, 31, 268, 269, 272

definition 161
and metamodelling 274
in variance-based method 161–2

Kennedy, Peter 42
Kernel regression methods 213–14
Kriging metamodels 214

Latin hypercube (LH) sampling
76–80, 89, 103–5

Leamer, Edward E. 9–10
Least-square computation 17–18, 66
Linear models 22–3

and experimental design 65–6
least-squares solution 17–18, 66
random samples 66
regression analysis 66

one-at-a-time (OAT) sampling 69
Linear polynomials 57
Linear regression 17–19
Log-transformation 234
Low-discrepancy sequence 83–9

defined 83
Halton sequence 84–6
see also Quasi-random sampling

Macroeconomic model 206–9
backward-looking/forward-looking

components 207

Phillips curve 206–7
stability conditions 207, 208,

209
stable/unstable behaviour 207–9

Main effect 75
Mapping

Environmental Performance Index
247–50

factor mapping (FM) 39, 40,
156–7, 183–236

log-transformed functions 234
Mean, as model output 157–8
Mean estimates, stratified sampling

61–4
Metamodelling 43, 183–236, 274,

275
approximating functions 212–13
interpolating 214–15

Gaussian emulators 214–15
kriging metamodels 214

kernel regression methods
213–14

methods summarized 212
and Monte Carlo Filtering (MCF)

184–211, 235
purposes 215
smoothing techniques 214–20

Mirror points 69
Model approximation

212–35
Model coefficient of determination

19
‘Model-free’ approach 20
Models 1–10

additive 23, 25
characteristics 277–8
deterministic 157
functions 4
inputs, see Factors; Parameters
linear, see Linear models
nonadditive 23, 25–9
nonlinear 19, 23
parameter estimation 6–10
parsimonious 43
relevance 34
Rosen’s 2
simplification 33–4, 35
and simulation requirements 89
types 5
unstable 128

Modulus incremental ratios 45
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Monte Carlo Filtering (MCF) 39–40,
41, 184–211, 275

behavioural/nonbehavioural subsets
39, 40, 184–6, 248, 249–50

bidimensional projections 186–7
and composite indicator 239,

248–50, 252
continuous stirred tank reactor

(CSTR) 200–6
definition 184, 248
implementation 185–7
infection dynamics model 209–11
macroeconomic model 206–9
and metamodelling 184–211, 235
parameter importance 185–6
Regionalized Sensitivity Analysis

(RSA) 184–5, 187–8
Smirnov test/analysis 185–6,

187–8, 204, 205–6
stability analysis 200–11
Tree-Structured Density Estimation

(TSDE) technique 188
Monte Carlo method 6–7, 13, 16–20

and first-order sensitivity measures
25–6

and sensitivity index computation
164–7

error estimates 166
Multiple parameters 64–89
Multivariate stratified sampling 80–2

fractional factorial (FF) approach
81

LH and FF approaches combined
82

sample point generation 80–1

Noise Variance Ratio (NVR)
hyperparameter 222, 223

Nonparametric R-squared 213
Normalization 15–16, 56
Null hypothesis 90

Oakley–O’Hagan function 129, 130,
145–6

One-at-a-time (OAT) sampling 66–9,
89, 109

balancing 67–9
parameter changes 69, 75

Orthogonal arrays 79–80, 106

Piecewise linear fit 62, 63
Post-Normal Science (PNS) 4, 277

Pricing options 253–62
arbitrage-free prices 254
Carr and Madan pricing method

256–7
controllable/uncontrollable factors

257, 258–60, 261
Cox–Ingersoll–Ross process 256
Heston model 255–7
input factors 257, 258–60
jump parameters 258–60, 261,

262
method selection 258
risk 254–5
strike price 254, 258, 260, 261
uncertainty 255, 261
volatility 262

Pseudo-random generator 83, 100–1

Quadratic polynomials 57
Quantiles 119, 140
Quasi-random numbers 274
Quasi-random sampling 83–9

and sample size 89
Sobol’ LP� sequence 87
testing 86–7
uncertainty estimates 89
see also Low-discrepancy sequence

Radical inverse transform 86
Random Balance Design (RBD)

167–9, 274
advantages/disadvantages 168–9,

236
and infection dynamics 169–74
procedure 167–8

Random samples 58–9, 66
pseudo-random generator 83,

100–1
Regionalized Sensitivity Analysis (RSA)

184–5, 187–8
limitations 188

Regression coefficients 18
Regression methods 17–18, 37, 66,

213–14, 274
Regularization 218
Residuals 66
Resolution III 74
Resolution IV 74, 103, 107
Risk decomposition 157
Risk reduction worth 157
Rosen, R. 2
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Saltelli’s method 164–7, 236, 272,
274

Sample matrices 274
Sampling strategy

and elementary effects 112–16
Scatterplots 13–14, 15

and derivatives 14–15
point interpolation 37
shape or pattern 21
slicing 21–2, 23
smoothing 216–18

Sensitivity analysis
cost of 17
definition 1
global v. local 11–12, 35–6
graphical presentation

271–2
methods 10–40
practical applications 237–75
problems 41–2
purposes 11, 34–6
set-up considerations 237

Sensitivity measure 21
applied to linear model 22–3
computation 164–9

acceleration 38
FAST method 167
from smoothed estimates 224–9
Haar wavelet smoothing 225–6
method choice 235–6
Monte Carlo procedure 164–7
RBD 167–9
Saltelli’s method 164–7, 236
spline smoothing (HP filter) 226

computational cost (CPU time) 272
defined 21
for the elementary effects method

110–11, 116–27
first-order 21, 24, 25–6, 28, 30, 37

methods compared 173
Monte Carlo computation 164,

165
suitability 275
and variance 161

higher order 29–31
and infection dynamics 170–1
and Monte Carlo method 25–6
properties 166–7
second order 30
variance-based 258, 261

Sensitivity measures
Sensitivity pattern 33

Sensitivity tests
settings 155–7

Factor Fixing (FF) 156
Factor Mapping (FM) 156–7
Factor Prioritization (FP) 24, 156
Variance Cutting (VC) 156

Sets, see Groups
Settings 10–40

definition 24
Simulations 89

and fractional factorial (FF) sampling
72

group sampling 89
and models 89
number determined by parameters

92, 102–3
Slicing 21–2, 23
Smirnov test/analysis 185–6, 187–8,

204, 205–6, 250–1
Smoothing techniques 214–20, 235

examples 224–9
SDR techniques 221–4, 226–7
spline smoothing 218–21, 223
using Haar wavelet 216–18,

225–6
Sobol’, I. M. 160
Sobol’ procedure 87, 266–7, 268, 272
Spline smoothing 218–21, 223

Hodrick–Prescott (HP) filter
218–21, 226

‘trend’ 220
Stability analysis

continuous stirred tank reactor
(CSTR) 200–6

infection dynamics model 209–11
macroeconomic model 206–9

Standard error 59
Standardized regression coefficients

(SRCs) 18, 26, 274, 275
State-dependent parameter (SDP)

and HDMR 221–2
State-dependent regression (SDR)

approach 214, 221–4, 226–7,
235, 236

advantages/disadvantages 223, 236
and HDMR 227, 228

Stratified sampling 59–61
mean estimates 61–4
multivariate 80–2
point distribution 59–60
variance estimates 61–4

Supersaturated designs 89–90
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Taylor rules 201–2
Thermal runaway analysis 263–70

ANOVA-HDMR terms 268, 269,
270

interactions 268, 269
metamodelling 266
method choice 266
procedure 266–9
runaway/nonrunaway conditions

264, 265
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