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Preface.
 

Successful process analysis involves both deterministic 
and statistical techniques. The estimation of coefficients 
in process models, the development of empirical models, 
and the design of efficient experiments should be tools as 
familiar to the scientist and engineer as are the techniques 
of solving equations and using computers. However, 
many students and practicing scientists and engineers, 
even while employing quite sophisticated mathematical 
techniques, treat their process calculations as if the proc­
esses 'were deterministic. Such an approach can be quite 
misleading and, in the design of equipment, results in the 
use of large safety or "fudge" factors to accommodate 
the reality of uncertainty. While the introduction of 
statistical techniques into process calculations may not 
always reduce the uncertainty, it can lead to more precise 
statements about the uncertainty and hence to better 
decision making. 

In their discovery and application of the laws of 
nature, engineers and scientists are concerned with 
activities such. as experimentation, operation of proc­
esses, design of equipment, trouble shooting, control, 
economic evaluation, and decision making. The concepts 
and statistical techniques incorporated in this book have 
been selected from the viewpoint of their pertinence to 
these activities. This text differs from others that describe 
the applications of statistics primarily in the direction of 
its emphasis rather than the specificstatistical techniques 
discussed. The emphasis here is on process model build­
ing and evaluation rather than on statistical theory or the 
applications of theory to pseudorealistic experiments. 
The term process analysis as used in this text does not 
refer to the theory of random walks. Brownian motion, 
Markov processes, queuing theory, or similar random 
phenomena. Instead it refers to the analysis by statistical 
techniques of continuous industrial processes typified by 
the chemical, petroleum, and food industries, or of con­
tinuous natural processes such as river flows and bio­
logical growth and decay. 

This book is divided into three _major parts. Because 
the book is designed for the reader who has had minimal 
initial contact with the theory orapplication of statistics, 
Part I reviews the necessary background material under­
lying the other two parts. Part I is not a broad exposition 
of statistics but simply a description of the terminology 
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and tools of analysis. Part II treats the topics of how to 
build and evaluate empirical models and how to design 
experiments effectively. Part III is concerned with the 
estimation of model parameters and the identification of 
process models that are based on transport phenomena 
principIes. Certain of the later chapters adopt the view 
that a digital, or perhaps hybrid, computer is available 
to relieve the analyst of much of the tedious detailed 
calculations, permitting him to concentrate on the more 
productive role of evaluation and interpretation. 

Since the level of the text is aimed at the collegejunior 
or senior engineer, it is assumed that the reader has a firm 
grasp of calculus and differential equations, as well as an 
elementary acquaintance with simple matrix algebra and 
operational transforms. Nevertheless, the appendices 
summarize the essential aspects of these latter two topics 
inasmuch as many college students seem not to have en­
countered them. Several topics are first introduced with­
out matrix notation and then repeated in matrix notation 
because the redundancy has proved pedagogically more 
effective than either approach alone. 

The objective of the book is to enable the engineer or 
scientist to orient his views in the context of what he 
knows about deterministic design and analysis so as to 
accommodate the concept of randomness in process 
variables. Consequently, many topics encountered in 
other texts, topics with considerable intrinsic merit, have 
been omitted. The choice of topics has been governed 
primarily by one question: Is the information or tech­
nique of any practical use in process analysis? Special 
attention has been paid, insofar as possible, to discussing 
what happens if the assumptions made about the process 
model are not fulfilled in practice and to,illustrating some 
nonideal experimental .data encountered in practice. 

It is n1Y hope that this book will prove of value to 
undergraduates who have the opportunity to take just 
one course in statistics as well as to research workers and 
engineers who would like to apply statistical techniques 
in their work but are unable to labor through numerous 
books and technical articles in order to do so. 

'David M. Himmelblau 
Austin, Texas 
1969 
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PART I
 

Statistical Background for 
Process Analysis 

The purpose of Part I is to describe certain statistical 
techniques that are useful in process analysis. These 
initial chapters are by no means a comprehensive intro­
duction to statistical analysis. Instead, they are intended 
to present primarily those facets of analyzing experi­
mental data that are needed to understand the subsequent 
material on the design of experiments and empirical 
modelling. 





4 INTRODUCTION 

TABLE 1.1-1 CLASSIFICATION OF MODELS BASED ON TRANSPORT PHENOMENA ACCORDING TO 
THE DEGREE OF PHYSICAL DETAIL 

Stratum of Physico­ Extent of Use 
chemical Description by Engineers Topical Designations Typical Parameters for Analysis 

Molecular and 
atomic 

Microscopic 

Multiple gradient 

Maximum gradient 

Macroscopic 

Fundamental 
background 

Applicable only to 
special cases 

Applicable only to 
special cases 

Used for continuous 
flow systems; 
"plug flow" 

Very widely used 

Treats discrete entities; quantum 
mechanics, statistical 
mechanics, kinetic theory 

Laminar transport phenomena;
 
statistical theories of
 
turbulence
 

.Laminar and turbulent transport 
phenomena; transport in 
porous media 

Laminar and turbulent transport 
phenomena, reactor design 

Process engineering; unit 
operations; classical kinetics 
and thermodynamics 

Distribution functions; collision 
integrals 

Phenomenological coefficients; 
coefficients of viscosity, diffusion, 
thermal conduction; Soret 
coefficient 

"Effective" transport coefficients 

Interphase transport coefficients; 
kinetic constants 

Interphase transport coefficients; 
macroscopic kinetic constants; 
friction factors 

detail drawn into the model; the degree of detail about guide, the complexity of"solving the "mathematical model 
a proces~ decreases as we proceed down the table. roughly increases as we go down Table 1.1-2. Steady 
Examples of specific models can be found in the tables state means that the accumulation term (time derivative) 
and examples in Part III. in the model is zero. A lumped parameter representation 

Table 1.1-2 is an alternate classification of transport means that spatial variations are ignored; the various 
phenomena models made from the viewpoint of the properties and the state (dependent variables) of the 
nature of the equations appearing in the model; hence, system can be considered homogeneous throughout the 
it is oriented toward the solution of models. As a rough entire system. A distributed parameter representation, on 

TABLE 1.1-2 CLASSIFICATION OF DETERMINISTIC TRANSPORT PHENOMENA MODELS BASED ON 

MATHEMATICAL STRUCTURE 

Algebraic Equations Integral Equations Differential Equations 
(steady state, (continuous changes) (continuous changes) 

lumped parameter) I 
I 

Partial Differential Equations 

I 
Steady State 

I 
I

Nonsteady State 
(distributed (distributed 
parameter) parameter) 

I 
Ordinary Differential Equations 

I 
I 

Steady State 
(one distributed 

parameter) 

I .. 
Nonsteady State 

(lumped 
parameter) 

Difference Equations 
(finite changes, 

steady state) 

I
 
One-Dimensional 

Difference Equation 
(one-dimensional 

connection of 
lumped-parameter 

subsystems) 
I 

Multidimensional 
Difference Equation 

(more than one­
dimensional connection 

of lumped-parameter 
subsystems) 

Difference-Differential Equations
 
(any type of connection of lumped-


or distributed-parameter steady-

or nonsteady-state subsystems)
 



CHAPTER 1·
 

Introduction
 

Techniques of process analysis which take into account 
the existence of error in the process variables and coeffi­
cients can be implemented separately or in conjunction 
with techniques which ignore the error. To make correct 
decisions in the face of uncertainty, the analyst. must be 
able to choose rationally from among alternatives. Hence, 
when process error exists, scientific decision making 
requires additional skills on the part of the analyst. The 
objective of the analysis may be to test a hypothesis, to 
develop a suitable relationship among variables., or 
perhaps to arbitrate a disputed decision. But no matter 
what the objective of experimentation and subsequent 
analysis, the tools of analysis to a large extent make use 
of the discipline of statistics. 

There is no doubt that modern developments in digital 
computers have made the analysis of data considerably 
less tedious and enhanced the ability of the analyst to 
treat complex problems. Recent developments in data 
processing, display techniques, and pattern recognition 
suggest even more revolutionary things to come. If the 
analyst is to take advantage of these events, he must 
acquire a dual capability. First, and most obvious, he 
must command a sound and versatile background in 
engineering and mathematics. Second, he must be per­
ceptive enough to find where the techniques described in 
this book can be effectivelyemployed. The latter is by no 
means an unimportant attribute. 

In this introductory chapter we shall briefly define 
some of the terminology to be used, examine how sto­
chastic processes differ from deterministic ones, and 
classify the mathematical models used to represent real 
processes. This chapter is designed to demonstrate how 
real processes intermesh with their more formal repre­
sentations, and to indicate under what circumstances 
statistical techniques can be introduced. 

1.1 TERMINOLOGY AND CLASSIFICATION OF 
MODELS 

By process analysis we refer to the application of 
scientific methods to the recognition and definition of 
problems and to the development of procedures for their 
solution. In more detail, this means: (1) mathematical 

specification of the problem for the given physical 
situation, (2) detailed analysis to obtain mathematical 
models, and (3) synthesis and presentation of results to 
ensure full comprehension. The process denotes an actual 
series of operations or treatments of materials as con­
trasted with the model, which is a mathematical de­
scription of the real process. 

Models are used in all fields-biology, physiology, 
engineering, chemistry, biochemistry, physics, and 
economics. It is probably Impossible to include under 
one definition all the varied connotations of the word 
model, but here we are concerned with mathematical 
descriptions of processes that aid in analysis and pre­
diction. 

Deterministic models or elements of models are those 
in which each variable and parameter can be assigned a 
definite fixed number, or a series of fixed numbers, for 
any given set of conditions. In contrast.. in stochastic or 
random models, uncertainty is introduced. The variables 
or parameters used to describe the input-output re­
lationships of the process .and the structure of the 
elements (and the constraints) are not precisely known. 
Stochastic variables and models will be examined in more 
detail in Section 1.2. 

Three very general types of models (and their com­
binations) can be written for a process 

1. Transport phenomena models-use of physico­
chemical principles. 

2. Population balance models-use of population 
balances. 

3. Empirical models-use of empirical data fitting. 

Examples of transport phenomena models are the 
phenomenological equations of change, that is the 
continuum equations describing the conservation of 
mass, momentum, and energy. Residence time distri­
butions and other age distributions are examples of 
population balance models. Finally, examples of typical 
empirical models are polynomials used to fit empirical 
data. 

Table 1.1-1 classifies transport phenomena models 
from the viewpoint of the complexity of the physical 
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5 STOCHASTIC VARIABLES AND MODELS 

the other hand, takes into account detailed variations in 
behavior from point to point throughout the system. All 
real systems are, of course, distributed in that there are 
some variations throughout them. Often, however, the 
variations are relatively small, so they .may be ignored 
and the system may then be "lumped.", ; 

As used in this text, a system is a process or part of a 
process selected by the engineer for analysis; subsystems 
(or elements) are further subdivisions of the system. The 
concept of a system does not necessarily depend upon 
the apparatus in which a process takes place nor upon 
the nature of the process itself. Instead, the concept is an 
arbitrary one used by the engineer to isolate a process, 
or a part of a process, for detailed consideration. For 
example, a packed distillation column is usually treated 
as a system, whereas a plate distillation column is treated 
as a system composed of subsystems of individual stages. 
There is nothing inviolable about this treatment, because 
a packed column can be considered as a staged process 
if desired, and a plate column can be considered as a 
continuous entity. 

If the output y of a subsystem is completely deter­
mined by the input x, the parameters of the subsystem, 
and the initial and boundary conditions, in a general 
sense we can represent the subsystem symbolically by 

y =;ex (1.1-1) 

The operator £ represents any form of conversion of x 
into y. Suppose now two separate inputs are applied 
simultaneously to the subsystem so that 

Operator ~ is then, by definition, a linear operator, the 
properties of which are described in more detail in 
Appendix B. A system is termed linear if its operator :Yr 
is linear, and the model of a linear system, which is 
represented by linear equations and boundary conditions, 
is called a linear model. Otherwise, the model is 'non­
linear. 

Further details on the classification and application of 
process models can be found in the text by Himmelblau 
and Bischoff. t ' 

1.2 STOCHASTIC VARIABLES AND MODELS 

In real life most measurements or experiments result 
in values of the measured variables which vary from one 
repetition of the experiment to another. These outcomes 
are termed random, stochastic, chance, statistical, or 
probabilistic, depending upon the-author and his partic­
ular emphasis; the associated variables are termed 
random or stochastic variables. 

t D. M. Himmelblau and K. B. Bischoff, Process Analysis and 
Simulation, John Wiley, New York, 1967. ' 

Many reasons exist why observations or measurements 
obtained by experiment are random rather than deter­
ministic. In some cases the randomness rests on physical 
phenomena, such as the decay of a radioactive species or 
the emission of electrons from a thermionic cathode, 
processes. which take place on a molecular or atomic 
scale but which are measured with macroscopic devices. 
In other cases there is insufficient information about the 
variable or a lack of techniques to gather the required 
information, so only certain manifestations are observed. 
Often the observer is just negligent or careless. Under 
actual plant conditions, process noise, cycling, signal 
noise, and other phenomena interfere with all measure­
ments. Figure 1.2-1 illustrates the record of a feedwater 
flow transmitter as the time travel of the pen is speeded 
up. The top figure is a typical industrial recorder; in the 
middle figure the signal becomes clearer; in the bottom 
figure the 60-cycle noise inherent in the apparatus 
becomes evident but intrinsic variability still remains. 
Finally, uncertainty exists because the process models do 
not adequately represent the physical process. In general, 
basic indeterminacy in measurements is a phenomenon 
the analyst faces in all of his work, 

The "true" value of a variable is that value which 
would be obtained on measurement if there were no 
stochastic feature associated with the measuring. Hence 
the true value of a process variable is in one sense a 
hypothetical value which is postulated as existing. Tied 
in with the concept of a true value is the concept of 
error, because an "error" represents the difference 
between the actual measurement and the true value. 
Therefore, a random error is an error which represents 
the difference between a random variable and its true 
value. 

Random outcomes obtained by experiment thus 
incorporate error or uncertainty. This type of error 'must 
be distinguished from: (1) a large, one of a kind, isolated 
error which might be called a "blunder," and (2) an 
error introduced continuously and due, say, to faulty 
calibration of an instrument or to a preconceived idea of 
the expected data. This latter type of error causes bias 
or lack of accuracy and is termed ,a systematic error. 
Accuracy refers to how close the average value of the 
experimental data is to the" true" value; precision refers 
to how widely the individual data points are scattered 
about their average value. Systematic errors cannot be 
treated by the methods presented in this book.I 

Thus, experiments can be viewed as having different 
outcomes, ~i; each experiment can be assigned a function 

~ For treatment of such errors refer to: W. J. Youden, Techno­
metrics 4, 111, 1962; and W. J. Youden, Physics Today 14, 32, 
Sept. 1961. An extended discussion of accuracy and precision 
can be found in an article by C. Eisenhart, J. Res. Nat. Bur. 
Standards 67C, 161, 1963. 
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FIGURE 1.2-1 Field data taken from a differential pressure transmitter on three different time 
scales. (From B. D. Stanton, [SA J., p, 77, Nov. 1964.) 

of time, X(t, '), which may be real or complex. The 
family (collection) of all possible functions X(t, ,) is 
commonly termed a stochastic or random process. In 
this text, however, a stochastic process will refer to a 
physical operating process which demonstrates stochastic 
characteristics because it includes a random input, 
output, coefficient, initial or boundary conditions, or any 
combination thereof. The term ensemble will be given to 
the family of functions X(t, ,) which are the collection of 
all possible time records of experiments. Figure 1.2-2 
portrays three sample functions (sample records) from 
the ensemble for the same variable observed over a finite 
time interval. The graphs may represent repeated runs on 
the same apparatus or simultaneous runs on identical 
apparatus. 

The ensemble itself is a random variable as is a single 
time record and as is a group of experiments at one time. 
Some stochastic variables can be expressed as explicit 
functions whereas others can be defined only by graphical 
or tabuiar data. In what follows we shall suppress the 

notation of , in the argument of X and simply use X(t) 
to denote both: 

1. The ensemble (the collection of time functions). 
2. A single function for one experiment in time, In 

general. 

A subscript number will be used to distinguish ODe-· 

variable (either deterministic or stochastic) from another, 
and occasionally to distinguish one time record from 
another such as X 2 (t ) in Figure 1.2-2. The particular 
meaning will be clear from the text. The random variable 
at a given time will be denoted 'by a subscript on t, 
such as X(t1) , ~r by the absence of (t) as the argument of 
X if the variable is independent of t. In many instances 
it will be necessary to distinguish between the random 
variable itself, X, and the value of the variable by using 
lower case letters for the value. Random variables for the 
most part will be designated by capital letters taken from 
the latter half of the alphabet. However, some well­
accepted symbols for the random variables, such as for 
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Xl(t) 

(a) (b) 

FIGURE 1.2-2 Sample random functions from an ensemble showing part of the ensemble X(t): 
(a) three-dimensional representation and (b) two-dimensional representation. 

the estimated variance, will be lower case. Deterministic any values within an interval. A discrete variable can take 
variables will in general be lower case except for special on only distinct values in an interval. 
engineering symbols such as the absolute temperature. Stochastic models can be classified in an arrangement 
The above description, like all other descriptions of a similar to that shown in Table 1.1-2 or Figure 1.2-4. 
random variable, gives very little insight as to its nature The terms in Figure 1.2-4 are discussed in Chapters 2 
or to the kinds of calculations that can be carried out on and 12. While the stochastic model may only be an 
stochastic processes. Such insight and analytic knowledge abstraction of the real process, it presumably represents 
can only come with further experience. the process with reasonable faithfulness for the variable(s) 

A stochastic model is nothing more than a mathematical of interest. As long as the model represents the real 
representation of a stochastic process. Figure 1.2-3 situation sufficiently well so that the conclusions deduced 
illustrates the information flow fortwo simple stochastic from mathematical analysis of the model have the desired 
models. In Figure 1.2-3b, a random error is added to the precision, the model is adequate. The advantages of 
output of the deterministic model of Figure 1.2-3a to give working with the model rather than with the experi­
a random output. In Figure 1.2-3c, a random input is mental results directly are: . 
introduced into the model to yield a random output. It 1. Relationships in the model can be precisely stated 
would be quite possible for the differential equation(s) and manipulated mathematically; in the" actual world 
in the model to be stochastic because of a random the relationships among the process variables hold only 
coefficient. The process dependent and independent approximately. 
variables may be either continuous or discrete. Most, but 2. The model concentrates attention on relevant 
not all, of the variables associated with continuous features of the process while removing from considera­
processes are continuous variables such as temperature, tion many perplexing and unimportant features not 
pressure, and composition-variables that can assume subject to rigorous analysis. 

Deterministic 
modelXW4_: ~y(tJ 

(a) 

Error E 

Deterministic . 
~-~ 

Deterministicx(t) ·Yet) X(tJ--j...... ~Y(tJmodel model 

(b) (e) 

FIGURE 1.2-3 Block diagram representation of stochastic models. 
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FIGURE 1.2-4 Alternate classification of stochastic' models. 

~. The model can be used to infer what will happen in 
the domain in which experimental observations are 
lacking. 

Assuming that only random errors and not systematic 
errors are present in measurements of a process variable, 
the analyst is most interested in determining on the basis 
of a finite number of measurements: (1) the central 
tendency of the observations of a given variable,. (2) the 
dispersion of the observations about a central value, and 
(3) the uncertainty in these estimates. The central value is 
usually characterized by the ensemble mean and esti­
mated by the sample mean or by a time average. The 
dispersion is characterized by the ensemble variance, 

. which	 can be estimated from a sample variance or a 
suitable time average. In the next chapter we shall 
consider these descriptive statistics that enable the 
experimenter to reduce a mass of information into a 
compactform. 

Supplementary References 

Formby, John, An Introduction. to the Mathematical Formulation 
of Self-organizing Systems, D. Van Nostrand, Princeton, 
N.J., 1965. 

Himmelblau, D. M. and Bischoff, K. B., Process Analysis and 
Simulation, John Wiley, New York, 1968. 

Papoulis, A., Probability, Random Variables, and Stochastic 
Processes, McGraw-Hill, New York, 1965. 

Petersen, E. L., Statistical Analysis and Optimization of Systems, 
John Wiley, New York, 1961, Chapters 1-3. 

Problems 

1.1	 Indicate the appropriate classification of models in 
terms of Table 1.1-1 for each of the following cases. 
(a)	 Laminar flow through a circular tube 

1 d	 do; - (~LP) 
; dr r dr = 

where:
 

r = radial direction
 

Vz =	 velocity in axial direction 

~ = pressure drop 

(b) Heat conduction in an infinite cylinder 

er	 a 0 er 
-==--r­
8t	 r 8r or 

where:
 
T == temperature
 

r = radial direction
 

a = constant 

(c)	 Heat transfer in a jacketed kettle
 

q = UA ~T
 

where: 

q =	 heat transfer 

U == constant 

A == area for heat transfer 

dT = temperature difference 

1.2	 What kind of model (lumped or distributed param­
eter) is represented by the following cases. 

(a)	 Heat transfer with flow 

er er 02T 
ot + u OZ = a OZ2 + Q 

(b)	 Mass transfer in tank 

de 
dt + ae == w(t) 

(c)	 Dispersion in packedtube 

d 2z dz 
dx2 + a dx + bz == w(x) 

1.3	 Classify each equation in Problem 1.1 (or 1.2) in one 
of the categories listed in Table 1.1-2. 

1.4	 In carrying out measurements on a process variable, 
how is it possible to ascertain whether-or-not. the 
variable is stochastic or deterministic? 

1.5	 Helgeson and Sage t reported the data in Table Pl ..5 
for the heat of vaporization of propane. Does the 
average deviation have a bearing on the accuracy or 
the precision of the reported data? 

t N. L. Helgeson and B. H. Sage, J. Chern. Eng. Data 12, 47, 
1967. 
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TABLE P1.5 

Average 
Deviation of 

Number of Temperature All Points for 

Data Points Range . Heat of 

Author Used Min Max Vaporization 

A 14 100 135 1.12 
B 16 103 167 1.43 
C 4 100 190 0.98 

1.6	 Explain two ways in which the deterministic process 
input x(t) = a cos cotcould be made into a stochastic 
input. 

1.7	 What is one additional way in which error can be 
introduced into a process model besides the methods 
illustrated in Figure 1.2-3? 

1.8	 Is the error introduced by a numerical integration 
scheme for the solution of a model represented by a 
differential equation a stochastic (random) error? Is 
the truncation error introduced by the partial differ-

PROBLEMS 

ence approximation to the differential equation in the 
process model a stochastic error? 

1.9	 A thermocouple is placed in a tank of water and the 
leads attached to a potentiometer. List some of the 
random errors that will appear in the observed 
voltage. 

1.10	 The following figure represents the relative frequency 
distribution of measurements of a presumed random 
variable. Can you tell from the graph whether or not 
the measurements are biased? Explain. 

1.11 

Average value 

Is a function of a random variable also a random 
variable? Explain. 



CHAPTER 2
 

Probability Distributions and 
Sample Statistics 

Probability, according to the frequency theory of prob­
ability (see Appendix A), corresponds to the longrun 
fraction of a specific outcome from among all possible 
outcomes of an experiment. Other semantic relations 
between the experiment and the mathematical representa­
tion of the experiment are shown below. 

Mathematical 
Experiment Representation 

Random outcome Random variable 
List of experimental Sample space 

outcomes 
All possible outcomes Population 
Asymptotic relative Probability of an event 

frequency of an outcome 
(" in the 1_~J!g run") 

List of asymptotic relative Probability (density) 
frequencies of each function 
outcome 

Cumulative sum of relative Probability distribution 
frequencies 

What the analyst would like to do is replace a large 
mass of experimental data by a few easily grasped 
numbers. Under favorable circumstances, he is able to 
associate the experimental data with a known mathe­
matical function, a probability function, or density, which 
corresponds reasonably well with the relative frequency 
of the data. Then he can use the probability function or 
density to make various predictions about the random 
variable which is the subject of experimentation. Often, 
however, only a modest amount of experimental data is 
available, and it is of such a nature that the experi­
mentalist can at the best make estimates of the ensemble 
mean and perhaps the ensemble variance of the random 
variable. 

We shall describe a few of the most useful probability 
density functions in this chapter. In addition we shall 
describe some of the characteristics of ensemble averages 
such as the mean, variance, covariance, and correlation 

coefficient, all of which have applications in process 
analysis. Then we shall look at the first of the two princi­
pal methods of estimating ensemble averages, namely 
(1) sample averages and (2) time averages. Included in 
the presentation will be selected sampling distributions 
which will be of aid in subsequent discussions of interval 
estimation and hypothesis testing. Time averages will be 
taken up in Chapter 12. 

2.1 PROBABILITY DENSITY FUNCTIONS AN·n 
PROBABILITY DISTRIBUTIONS 

To simplify the notation we shall denote the prob­
ability distribution function of X(t) by 

P{X(t) s x} == P(x; t) (2.1-1) 

where x is a number. Thus, in Equation 2.1-1 the argu­
ment on the left-hand side reads: "all of the values of the 
random variable X(t) less than or equal to a deterministic 
variable x." The reason for using the symbol x rather 
than some constant k is that in many applications the 
limiting quantity will itself be a deterministic variable. 
P(x; t) is sometimes termed a first-order probability 
distribution function because the probability distribution 
involves only one random variable at a time. 

We can give a physical interpretation to P(x; t) from 
a frequency point of view. Suppose we carry out an 
experiment by measuring the temperature of a fluid 
many times. We secure a number of records comprising 
a family of curves of X(t), some of which are shown in 
Figure 2.1-1. From each record at time t=ti, we note 
whether or not X(t l ) s x. Let the total number of time 
records at t1 for which X(ll) S x be ntl and the total 
number of records be N. In the limit as N -+ 00, 

nt
P(x; t) = --! 

N ... co N 

Clearly, P(x; t) ranges between 0 and 1. Figure 2.1-2a 
illustrates the probability distribution function which 
might be observed if the distribution is a function of 

10 
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a 

b 

c 

Time, t 

FIGURE 2.1-1 Repeated measurements of fluid temperature at a fixed point; XI, 

X2, and X3 represent different levels of the random variable X(t). 

time. Figure 2.1-2b illustrates the case in which the variables observed at two different times. From the 
probability distribution is independent of time. frequency viewpoint, P(xb X 2 ; ts, t 2 ) is the limit as 

Imagine now that we had examined the experimental N ---+ 00 of the joint event {X(t1) S Xl} and {X(t2) S X2} 
records both at t = t 1 and at another time, t = t 2 • Then in a two-dimensional space. If X does not vary with time, 
the joint distribution of the random variables X(t1) and then the functional dependency on t can be omitted. 
X(t2 ) can be denoted by Corresponding to each probability distribution is a 

probability density function defined as follows: P(x1, X2; t1, t2 ) == P{X(t1) S Xl; X(t2). S X2} (2.1-2) 

where P(Xb X2 ; ts, t2 ) is known as the second-order oP(x; t) 
p (x; t ) = ox (2.1-3a)

probability distribution of the variable X(t), and X-1 
and X2 are two numbers. The qualification "second 
order" refers to the joint distribution of the same random (2.1-3b) 

Note that the lower case p designates the probability 
density, whereas the capital P designates the probability 
distribution. Figure 2.1-3 illustrates typical process 
records and their corresponding first-order probability 
density functions. The reason for the term "density" 
becomes meaningful if it is observed that in order for 
P(x; t) to be dimensionless, the units of p(x; t) must be 
the reciprocal of the units of x; that is, p(x; t) is the 
probability per unit .value of x. (In some texts the 
notation p(x; t) dx is employed to denote the probability 
that X lies in the interval x to X + dx). 

x Up to this point we have been concerned with the 
(a) probability density function and the probability distribu­

tion function for continuous variables. The probability 
function (not a density) for a discrete variable X(t) is 
P(xk; t) == P{X(t) = Xk}, and the probability distribution 
function is a sum rather than an integral 

P(x; t) = P{X(t) =5: Xk} = 2:
k 

P(Xi; t) 
i=l 

The relation between the probability density and the 
probability distribution for a continuous variable can 
also be expressed as 

P(x;t) = J:oop(x';t)dX'x 
(b) 

P(X2; t) - P(X1; t) = p(x; t) dx 
FIGURE 2.1-2 Probability distributions: (a) probability distribu­ XlJ

X 2 

tion as a function of time, and (b) probability distribution 
independent of time. = P{X1 S XCI) S X2} 
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p(x) 

x(t) 

X(t) = a sin(21rwot + W) 

OH--t---f--l~--t---f--+-+-t-f-+-+--+--+-~I---+-+--+--+---
x 

(a) 

x(t) 
X(t) = a sin (21rwot + 8) + E 

x 
(b)

p(x) 

o 

(b) 

0 

x(t) 
p(x) =_1_e-x 2 / 2<T,i 

<Tx -Y2i 

0 x 
(c) 

p(x) 

x(t) p(x) =_1_e-x 2 / 2<Ti 
<Tx V2i 

OI---~'-+---4--1--+---I-+--~---t------#---

0 x 

(d) 

(d) 

FIGURE 2.1-3 Typical process records (left) and their corresponding (time-independent) prob­
ability densities (right): (a) sine wave (with random initial phase angle W, (b) sine wave plus 
random. noise, (c) narrow-band random noise, and (d) wide-band random noise. (From J. S. 
Bendat and A. G. Piersol, Measurement and Analysis of Random Data, John Wiley, New York, 
1966, pp. 17-18.) 

(where the primes are dummy variables). Consequently, 
P{X == xo} == 0 since the interval for integration is zero. 
In addition, by definition, 

Similar relations can be written for the second-order 
probability distribution. The relation between the first­
and second-order densities is 

(2.1-4) 

P(Xb t1) is called the marginal probability density function 
of X(t1) , Le., the probability density of X(t1) irrespective 
of the values assumed by X(t2 ) . 

Ajoint probability distribution between two different 

random variables, say X(t)/and yet), termed a bivariate 
distribution, can be written as 

P(x, y; t) == P{X(t) ~ x; yet) ~ y} 

= J:",J:",P(x/,y/; t)dy' dx' (2.1-5) 

Figure 2.1-4 illustrates two typical time-independent 
bivariate probability density functions. 

In later chapters we shall make use of the conditional 
probability density. The conditional probability distri­
bution of the random variable Y, assuming-the- random 
variable X is equal to the value x, is defined as 

P(y I X == x) == lim P(y I x < X ~ x + ~x) 
/!"x-+o 

where the vertical line denotes" given." Then, by making 
use of the continuous variable analog of Equation A-8 in 
Appendix A for the upper and lower bounds, 
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p(x,y) 

y /	 .1•I 

J. 
8 

x 
o	 2 3 

!. 
8 

3~ ,-- __ 

(a)	 (b) 

FIGURE 2.1-4 Illustrations of two time-invariant bivariate probability density functions: (a) bi­
variate probability density function for continuous 'variables, and (b) bivariate probability function 

/
/ 

for discrete variables. 

P(y I X = x) = lim P(x + !1x, y) - P(x, y) 
~x-+O P{x + Llx) - P{x) 

oP(x, y)jox 
oP(x)jox 

The corresponding probability density is obtained by 
differentiating P(y I X = x) with respect to y: 

p(y I X = x) = p{x,.y) (2.1-6). ' p{x) 

To simplify the notation, the conditional probability 
density is-usually written as 

p(y Ix) == p{y I X = x) 

Because 

p(y) = f~00 p(x, y) dx 

and the joint density from Equation 2.1-6 is 

p(x, y) = p{y Ix)p{x) 

we can write 

. p(y) = f~00 p(y Ix)p(x) dx 

In other words, to remove the condition X = x, we 
multiply the conditional" density by the density of X and 
integrate over all values of X. ~ . 

By generalization of Equation 2.1-5, an n-dimensional 
probability distribution function can be defined. The 
study of n different random variables Xb X 2 , ••• , X n is 
equivalent to the consideration of a single z-dimensional 
random vector X = (Xb X2 , ••• , Xn) . The one-dimen­

sional variables Xl' X 2 , ••• , X n are said to be stochastic­
ally independents if, for all permissible values of the 
variables and all joint distribution functions, 

P(x) == P(Xb"" xn; t1, ... , tn) = P{X1; t1)·· ,P{Xn; tn) 

(2.1-7a) 

An equivalent relation among the density functions is 

P{X1' · .. , Xn; tb ... , tn) = P(X1; t1) ... p{Xn; tn) (2.1-7b) 

The analogous expression for independent discrete 
variables is. an extension of Equation A-6 in Appendix A: 

P{X1k' · .. , Xnk)	 == P{X1{t) :s; X1k and · . and Xn{t) ~ Xnk} 

= P(XllC)· · . P(Xnk) 

Example 2.1-1 Bivariate Distribution Function 

Let p(x, y;/I, 12 ) ~ 0 be a bivariate probability density 
function for the two random variables X(/) and Y(/). Then 
P(Ol < X :::; 02, b1 < Y ~ b2 ) 

= la2 fb2 
p(X, y; 11 , 12 ) dy dx (a) 

al Jb1 

P( -00 < X:::; x, -00 < Y::;; y) 

= I: 00 I: eo p(x', y'; I}, 12) dy',dx' (b) 

and 

(c) 

t Stochastic independence of two random variables can be inter­
preted as follows. If the value of one variable is fixed, the prob­
ability of obtaining the value of the other variable is not affected. 
Continuous processes are notorious for having variables such that 
previous values do influence later values. 
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y 

bz t----------r7''7''''7''''::'rTT'7"'7''''''7....,....,..., 

FIGURE E2.1-1A 

To provide a simple numerical example, suppose that 
p(x, y; 11, 12 ) is independent of time and is equal to 

p(x, y; II, 12 ) = e-(x+y) for X ~ 0, y ~ 0 

p(x, y; II, 12 ) = 0 elsewhere 

Then 

P(t < X < 2; 0 < Y < 4) = J"4J2 e- X e:» dx dy 
o % 

= (e-% - e-2)(1 - e- 4) = 0.462 

Note also that Equation (c) holds true for 

The lower limit of -00 can be replaced by zero because of 
the definition of p(x, y). 

The probability distribution P(x, y) can be interpreted 
geometrically in terms of the rectangle of Figure E2.1-1a. 
Consider the following sets of events (E) in relation to 
Figure E2.1-1a. 

E 1 = (X :::;; a-; Y::; b2 ) 

E2 = (X :::;; a., Y:::;; b1 ) 

E3 = (X :::;; a-, Y:::;; b1 ) 

E4 = (X :::;; aI, Y:::;; b2 ) 

The event of interest (denoted by the shaded area) can be 
written as 

E = (al < X :::;; a«; b1 < Y:5 b2 ) 

Now, keeping in mind that the probability P(E) corresponds 
to the double integral of the density over the designated 
region, from Figure E2.1-1 a we conclude that 

P(E) = P{al < X:::;; a2, hI < Y:::;; b2 } 

= rp(E1 ) - P(E3 ) ] + rp(E2 ) - P(E4 ) ] . (d) 

An important concept applied to a random variable 
is the idea of stationarity. A stochastic variable is termed 
stationary in the strict sense or strongly stationary if the 
probability density functions of all orders are invariant 
with respect to a shift in the time origin. In particular, 
if a is a constant, either positive,or negative, 

p(x; t) = p(x; t + a) = p(x) (2.1-8) 

from which we can conclude that the first order of 

probability density function of a stationary process is 
independent of time. If we examine the second order of 
probability density, we can write 

p(X}, X2 ; t}, t2 ) = P(X1' X2; t1 + a, t2 + a) 

= P(Xl' X2; r) (2.1-9) 

where T = t 2 - t l • Thus, if the variable X(t) is stationary 
the second order density depends only on the difference 
between the times of observation and not on when the 
time record was initiated, a very important point. 

Stationary random variables are far easier to treat 
than nonstationary ones. Nonstationary data, such' as 
are illustrated in Figure 2.1-5, are obtained during 
unsteady-state operating conditions caused by a change 
in: (1) the input to a process, (2) a process parameter, 
or (3) the environment surrounding the process. Un­
fortunately, no general techniques exist which can be 
substituted for the ones used for stationary processes; 
each process or class of processes must be treated as a 
special case. In Section 3.7-5 we shall discuss tests to 
detect whether or not process variables are stationary. 

2.2 ENSEMBLE AVERAGES: THE MEAN,
 
VARIANCE, AND CORRELATION COEFFICIENT
 

The first type of average we shall consider is the 
:ensemble expectation of a function feX(t1), X(t2 ) , ••• , 

X(tn) ] of a random variable X(t), which is defined as 

where p is the joint density function and tC stands for 
expected value. Note that tff'{j} is not a random variable, 
but may be a function of t b ... , tn. 

Each ensemble average is a function-describing certain 
characteristics about the random variable X(t) such as 
its central tendency or dispersion or it is a function from 
which these characteristics can be derived. As is the 

-common practice, we shall not specifically include the 
word ensemble in the name of the function each time but 
shall imply ensemble by the symbol for the function. 

To carry out operations such as differentiation and 
integration on the ensemble variable X(t) calls for some 
special definitions for continuity and convergence which 
need not be of concern here. However, in order to reduce 
the number of algebraic manipulations in subsequent 
sections, we shall list here a few simple rules for linear 
operators acting on random variables. Mathematical 
proofs of these rules can be found in most texts on 
statistics or random processes. 

If :Yr is a linear time invariant operator (described in 
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X(t) 

(a) 
X(t) 

L-------------=w-~+_1'V_-----~~Time 

(b)X(t) 

X(t) 

'--------------~-¥IlI--------Timeo 
(d) 

FIGURE 2.1-5 Examples of stationary and nonstationary data: (a) Stationary 
data, (b) time-varying mean value, (c) time-varying mean square value, and 
(d) time-varying mean and mean square value. (From J. S. Bendat and A. G. 
Piersol, Measurement and Analysis of Random Data, John Wiley, New York, 
1966, p.. 334.) 

more detail in Appendix B), X(t) is a random variable, and 
and 

d y <n)} _ dc{y<n)}
yet) = £7[X(t)] " C -- - -~-{ dt dt 

the procedure of taking an expected value is commutative 
with the linear operation 

EXPECTED VALUE OF AN INTEGRAL. IfC{yet)} = C{JP[X(t)]} = £[C{X(t)}] (2.2-1a) 

Examples of linear operators are moments when they y = J: X(t).p(t) dt 
represent expected values, derivatives of the first degree, 
definite integrals, and sums. For example: and ~ is a deterministic function 

EXPECTED VALUE OF A DERIVATIVE. 
tff{y} = J: tff{X(t)}.p(t) dt = J: JLx<t>.p(t) dt (2.2-10')' 

C{dY}" = dC{Y} 
dt dt where fLx(t) = C{X(t)} as defined in Section 2.2-1. 
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EXPECTED VALUE OF A SUM. If 

then 
n n 

C{Y} = L>IC{..¥;} = Lalf'xc (2.2-1d) 
i=l i=l 

2.2-1 Mean 

The ensemble mean of a stochastic variable IS the 
expected value of the variable 

~x(t) = tff'{X(t)} = f:oo xp(x; t) dx (2.2-2) 

If p{x; t) is independent of time (X is stationary), then 
/Lx(t) = I-'x is a constant. The ensemble mean is a measure 
of the central tendency of a random variable. In effect, 
it is the deterministic variable used in a process model 
when error is ignored. 

The expected value of the sum of two random variables 
X{t) and yet), namely Wet) = X(t) + yet), is 

C{W{t)} = C{X{t)} + C{Y{t)} 
or 

/kw(t) = ftx(t) + /Ly{t) (2.2-3) 

The expected value of the product of two independent 
random variables, Z{t) = X{t) yet), is 

.~{X(t) Y{t)} = C{X(t)}C{ yet)} (2.2-4) 

because p{x, y; t) = p{x; t)p(y; t) by Equation 2.1-7, 

C{Z} = f~oo f~oo xyp(x, y; t1> t2) dx dy 

[f:oo xp(x; t) dx][f~00 yp(y; t) dY] = f'x(t)f'y(t) 

Example 2.2-1 Enseulble Mean 

A special type of Brownian motion with negligible 
acceleration describes the movement of a particle hit by a 
large number of other particles in a fluid. On a molecular 
scale the motion is quite complicated, but on a macroscopic 
scale we are interested in determining the expected value of 
the motion denoted by the random variable X(t). If for a 
one-dimensional motion the starting location is arbitrarily 
assigned a zero value, X(O) = 0, then the one-dimensional 
probability density of X(t) is 

1 22p(x; t) = ---=== e- x / (a)at 

V Zatat 

where ex is a constant. A typical section of path might be as 
shown in Figure E2.2-1. 

X(t) 

FIGURE E2.2-1 

The expected value of X(t) can be calculated using 
Equation 2.2-2, 

/kx(t) = f 00 x e-x2/2at dx (b) 
- 00 V27Tcx,t 

The integral can be split into two parts, one from - 00 to 0 
and the other from 0 to 00, that cancel because the integrand 
is the product of an odd and an even function. Consequently, 

<f{X(t)} = /kx(t) = 0 (c) 

If, however, we inquire as to the expected value of the 
square of X(t), we find that because the integrand is the 
product of two even functions, 

2 
<f{X2(t)} = f 00 x e-x2/2at dx == at (d) 

- 00 V27Tcx,t 

The expected value of the square of a random variable is 
used to indicate the intensity of the variable; the positive 
square root is commonly called the rms value. 

Example 2.2-2 Ensemble Mean for a Dynamic Model of a 
Stochastic Process 

Assume that a process is represented by a first-order 
linear differential equation in which the input X(t) and the 
output yet) are stochastic variables: 

dY(t)tit + aY(t)= X(t) YeO) = 0 

What is the <f{Y} ? 

Solution: 

Take the expected value of both sides of the differential 
equation and the initial condition, and exchange the opera­
tions of the expected value and differentiation as indicated 
by Equation 2.2-1b : 

dg{~(t)} + ag{ Y(t)} = g{X(t)} <f{YeO)} = 0 

If we let /ky(t) = gv{ yet)} and /kx = gv{X(t)} = a constant, 
then we can solve the deterministic ordinary differential 
equation 

d/ky(t)
 
~ + a/ky(t) = /Lx /Ly(O) = 0 (a)
 

The solution of Equation (a) is 

/ky(t) = /Lx [1 - e - at] (b) 
a 
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Equation (b) is the usual deterministic solution found in 
texts on differential equations and on process analysis of 
deterministic processes. 

2.2-2 Autocorrelation Function 

The ensemble autocorrelation function of a random 
variable X(t), rxx(t 1 , t2) , characterizes the dependence of 
values of X(t) at one time with values at another time: 

rXX(tb t2) = <f{X(t1)X(t2) } 

= f'"" J:"" XlX2P(X1> X2; 11> 12) dXl dX2 (2.2-5) 

Note that rxx(t1 , t 2) is not a random variable, and that 
we use a lower case Roman (rather than Greek) letter to 

ENSEMBLE AVERAGES 

conform to common usage. Figure 2.2-1 illustrates the 
autocorrelation functions for the process records shown 
in Figure 2.1-3. The most important uses in model 
building of the autocorrelation function are in data 
processing and parameter estimation as described in 
Chapter 12. 

The autocorrelation function of a stationary variableis, 
by making use of Equation 2.1-9, solely a function of T, 

the time difference (t2 - t1 ) 

rxx(t 1 , t2) = rxx( 7") = <f{X(t + 7")X(t)} 

= rxxC -7") 

= XlX2P(X1> X2, T)dx, dX2 (2.2-6)J:co f: 00 

T 

T 

T 

T 

(a) 

(b) 

(c) 

(d) 

FIGURE 2.2-1 Autocorrelation function plots (autocorrelograms) corresponding to 
the process records in Figure 2.1-3: (a) sine wave, (b) sine wave plus random noise, 
(c) narrow-band random noise, and (d) wide-band random noise. (From J. S. Bendalt 
and A. G. Piersol, Measurement and Analysis ofRandom Data, John Wiley, New 
York, 1966, p. 20~) 
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The autocorrelation functions rxx(T) and rxx( - T) are 
even functions of T. P(~ 

A variable is termed stationary in the wide sense (or 
weakly stationary) if it meets just two requirements: 

C{X(t)} = /Lx (2.2-7a) 

C{X(t + T)X(t)} = rxx(T) (2.2-7b) 

where /Lx is a constant and rxx depends only on t2 - t 1 = 
T. If a random variable that can be represented by the 
normal probability distribution is stationary in the wide 
sense, it is also stationary in the strict sense because the 
normal distribution, as we shall see, is completely speci­
fled by /Lx and 'xx, but this conclusion is not generally 
applicable for other distributions. From a practical 
viewpoint, if a process is identified as being weakly 
stationary, the higher order ensemble averages are 
usually assumed to be stationary also. 

Example 2.2-3 Autocorrelation Function 

Example 2.2-1 gave the probability density function for a 
particle in one-dimensional Brownian motion. To compute 
directly the autocorrelation function for the same particle 
using Equation 2.2-5, we need the second-order probability 

.density function 

P(XI, X2, t I, t2) 

1 1 
= 27Ta2 V tI(t2 

_ 

[X~ 
t I) exp - 2a2 / 

1 
-

(X2 - X1)2] 
2a2(t

2 - t1) 

() 
a 

Note that because X(tI) and X(t2 ) are not independent, the 
product of the first-order probability densities is not equal 
to Equation (a). 

However, rather than directly integrate to obtain 
rxx(tI, 12 ) as indicated by Equation 2.2-5, it is alternately 
possible to use the property of the Brownian particle that, 
although X(/I) and X(t2 ) are not independent variables, 
changes in position over two nonoverlapping intervals are 
independent. Specifically, X(/I) and [X(/2 ) - X(tI)] are 
independent variables. Thus, by Equation 2.2-4, 

Also, by Equation 2.2-3, 

c9'{[X(tI)]tX(t2 ) - X(tI)]} = cf{X(/I)X(/2 ) } - cf{X2(t
1 ) } 

From Equation (c) in Example 2.2-1, we know that 

c9'{X2(tI)} = ati . 

Consequently (for t2 > tI ) , 

rxx(tI, t2 ) = c9'{X(tI )X (t2 ) } = 8{X2(tI)} = ati (b) 

The same result is obtained by direct integration using 
Equation 2.2-5. 

2.2-3 Variance 

Just as the mean characterizes the central value of a 
random variable, a single parameter can be used to. 

---------%1 

II :L...&....-------X2 

p(xa) I 

III I I I 
P-x 

FIGURE 2.2-2 Dispersion of random variables with identical 
means. 

characterize its dispersion or scatter about the mean. The 
classic example of a hunter who shoots all around a duck 
and misses with each shot illustrates the significance of 
the dispersion of data. By expectation the duck is dead, 
but the practical consequence is of little help to the 
hunter. Figure 2.2-2 illustrates that while two discrete 
random variables may have the same mean, they may 
have quite different degrees of dispersion. 

The variance of the stochastic variable X(t) is defined 
as 

(1~{t) = C{[X(t) - /LX(t)]2} == Var {X(t)} 

C{X2(t)= - 2X(t)/Lx(t) + /Li(t)} 

= <c{X2(t)} - /Li(t) 

As an example, because the expected value of the 
position of the Brownian particle in Example 2.2-1 is 
zero, the variance can be computed directly from 
<C{X2(t)}. 

The variance of a sum of stochastic variables W = 

alX + a2Y + ... can be determined as follows. Subtract 
the expected value of the sum, namely /Lw =. al/Lx + 
a2/Ly + ... , from W = alX + a2Y + ... and square the 
resulting equation to get 

(W - /LW)2 = [aleX - /Lx) + a2(Y - /Ly) + ]2 

= ai(X - /LX)2 + a~(Y - /Ly)2 + . 
+ 2ala2(X - /Lx)(Y - /LY) + . 

Next, take the variance of both sides 

Var{W} = <C{(W - /LW)2} 

= ar<C{(X - /LX)2} + a~<C{(Y - /Ly)2} + ... 
+ 2a1a2<C{(X - ,ui)(Y - /Ly)} + ...' ····{2.2-~· 

For the special case in which the crossproduct terms 
vanish in Equation 2.2-9 because all the successive pairs 
of random variables are independent (see Section 2.2-5), 
Equation 2.2-9 reduces to 

Var{W} = a~Var{X} + a~Var{Y} + ... (2.2-9a) 
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X(t) 

Strong
0 correlation 

rxy(r) 

0 tl 
0 

r= :>I· ./t2 - tl 

r 
Correlogram 

0 

Y(t) 

0 

FIGURE 2.2-3 Crosscorrelation function. 

The standard deviation is the positive square root of the 
variance and will be denoted by ax(t). If the variable 
X(t) is stationary, the function al dependence on t can 
be deleted. The coefficient of variation is a dimensionless 
form of the standard deviation which pro vides informa­
tion on the relative dispersion of X(t): 

ax(t) 
yx(t) = flox(t) 

The autocovariance of the stochastic variable X(t) is the 
covariance of the random variables X(tl) and X(t2): 

aXX(tb t2) = cC{[X (tl ) - floX(tl)J[X(t2) - flox(t2)]} (2.2-10) 

For a stationary ensemble, 

axx(r) = rxx(r) - floi (2.2-lOa) 

2.2-4 .Crosscorrelation Function 

The crosscorrelationfunction for two random variables 
X(t) and yet) is used to characterize the dependence of 
one variable on the other: 

rxy(tb t2 ) = cC{X(tl) Y(t2 ) } = ryxCt2 , tl) 

= f:oo f:00 xyp(x, y ; i; t2 ) dx dy (2.2-11) 

Note that Tx v is not a random variable but may be time 
dependent. Two random variables are uncorrelatedt if 
rxy(tb t2) = floX(tl)flo y(t2) and are termed orthogonal if 
rxy(tl , t2 ) = O. If the ensembles are stationary, by making 
use of Equation 2.1-9 we have . 

(2.2-12) 

t Two ra ndom variables X and Yare uncorrelated if .&'{X Y} = 
C{X }.&'{ Y} and are independent if p(x , y) .= p(x )p(y). If X and 
Yare independent , then they are also uncorrelated (see Section 
2.2-1). If .&'{X Y} = 0, X and Yare orthogonal. Uncorrelatedness 
is a wea ker cond ition than independence, because if X and Yare 
uncorrelated, then in general C{f(X)g( Y)} ¥- .&'{f(X)}C{g( Y)}. 
But if Xand Yare independent, C{f( X )g( Y)} = C{f(X)}C{g( Y) }. 

Figure 2.2-3 illustrates figuratively a correlogram for two 
random variables X(t) and Yet) . rXy(r) does not have a 
maximum at r = 0 as does rxx(r), nor is rxy(r) an even 
function as is rxx(r) . But to calculate rxy(r) and ryx(r) , 
it is only necessary to carry out the computations for 
-r ;::: 0 because of the symmetric properties of these two 
functions. 

Crosscorrelation functions can be used in process 
analysis to: 

1. Help check for statistical independence between two 
random variables. 

2. Estimate system impulse and frequency responses 
without putting a pulse or sinusoidal input into the 
process (see Chapter 12). 

3. Predict delay errors in stationary . processes for 
control studies (the crosscorrelation function for linear 
processes will peak at a time displacement equal to the 
time required for a signal to pass through the process) . 

4. Estimate amplitudes and Fourier components of 
variables corrupted by uncorrelated. noise and/or other 
signals. (The noise contribution to rXY(r) vanishes.) 

5. Determine transmission paths for an input to a 
large linear system. (Separate peaks occur in the cross­
correlogram corresponding to each path.) 

Example 2.2-4 Ensemble Mean and Autocorrelation Func­
tion of a Stochastic Variable in a Linear Ordinary Differential 
Equation 

Many process models, particularly in c~work, are 
expressed as an nth-order ordinary differential equation: 

any<nl(t)+an_ly<n -l )(t)+ .. . +aoY(t)=X(t) t >O (a) 

where 

X(t) = the system input and is a random variable 

Y(t) = the system output and is a random variable 
as a consequence of X(t) 
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y<n)(t) = nth derivative of Y(t) =dnY(t)/dtn 

at = constants-not random variables 

The initial conditions also are random variables: 

y<n-l)(O) = y<n-2)(0) = -.. = Y(O) = 0 (b) 

Suppose that we are interested in determining the ensemble 
mean and autocorrelation of ;Y(t) in terms of known input 
and output data because the probability density of Y is not 
known. If we take the expected value of both sides of 
Equations (a) and (b), by application of Equations 2.2-1 we 
obtain 

anfJ.,y(n> + an-1/Ly(n -1> + + ao/Ly = /Lx (C) 

/Ly<n - 1>(0) = fJ.,y<n - 2)(0) = = /LY(O) = 0 (d) 

fJ.,y<n)(t) = 8{ y<n)(t)} 

fJ.,x(t) = 8{X(t)} 

Thus, the deterministic model for Py, Equation (c) and (d), 
will give the solution we seek for J-ty or 

/Ly(t) = Cl/Ll(t) + C2/L2(t) + ... + Cn/Ln(t) + /Lp(t) (e) 

where /Lp(t) is a particular solution of Equation (c), and the 
remainder of the right-hand side of Equation (e) is the 
complementary function. Consequently, given the expected 
value of X(t) and the values of the coefficients in Equation 
(c), it is possible to find the deterministic solution to the 
models represented by Equations (c) and (d). 

From the definition of the autocorrelation function 

rxx(t1, (2 ) = 

it can be demonstrated that 

rxx, (t1 , t2 ) 

G"{X(t1)X(t2)} 

orXX(tl' t2)= ~ 
ut2 

Hence, 

02rxX(tl,t2) " 
rX'X,(tl, t2) = 0 0 . = 8{X (t1)X (t2)} (f)

t1 t2 

For a stationary process, rxx(t1, t2) = rxx(T) and 

rxx'(T) = drxx(T) 
d'T 

2r(T)
rx'x,(T) = drxx'(T) = d 

dr dT2 

In general, 

d nX (t1 ) dmY(t2 ) } 
rx(n>y(m>(t1, t2) = <f ,--- --.-­{ 

dt~ dt~ 

on+mrXy(tl, t2 ) 

ot~ ot}! 

The autocorrelation ryy(t 1, t2)of Y(t) can now be obtained 
as follows. First, multiply Equations (a) and (b), with t = t2 , 

by X(t1) : 

X(t1)[an y<n)(t2) + . · .+ aoY(t2 ) ] = X(t1)X(t2) (g) 

X(t1) y<n-l)(O) = .. · = X(t1)Y(O) = 0 (h) 

and take the expected value of both sides, term by term, using 
Equation 2.2-1b to obtain 

onrXy(tI, t2) on-lrXy(tI, t2)
 
an ~ n + an- 1 ~ n - 1 + ...
ut2 ut2 

+ aOrXy(tI, t2 ) = rxx(th (2) (i) 

on-lrXy(th 0) ) (J')
----- = · .. = rXy(tl 0 = 0 

0~-1 , 

Equation (i) is actually an ordinary differential equation in 
rXy(t1, t2) with t2 as the independent variable and tl as a 
parameter. Thus, given the autocorrelation function 
rxx(tl, t2), Equations (i) and (j) can be used to compute the 
crosscorrelation function rXy(tI, t2). 

Next, Equations (a) and (b) with t = 11 are postmultiplied 
by Y(t2 ) : 

[an y<n)(t1) + ... + aoY(t1)]Y(t2) = X(t1)Y(t2) (k) 

y<n-l)(O) Y(t2) = ... = Y(O) Y(t2) = 0 (1) 

and again the expected value of both sides is taken term by 
term to yield an ordinary differential equation in ryy(tI, 12 ) : 

Onryy(t1, t2) On -lryy(t1, t2) . 
an ot~' + an-l ot~-1 + ... 

+ aOryy(t1, t2) = rXy(t1, t2) (m) 

on- 1ryy(O, t2)
ot1- 1 = ... =ry:r{O, t2~ =0 (n) 

To obtain ryy(tI, t2), Equations (i) and (j) first must be 
solved for rXy(t1, t2 ) , assuming rxx(t1, 12) is known, and then 
the result introduced into the right-hand side of Equation 
(m) which can then be solved for the desired ryy(tI, t2 ) 

subject to Equation (n). 
As an example of an application of the above equations, 

suppose the input to a well-mixed tank, as illustrated in 
Figure E2.2-4, is represented by the Brownian random 
variable of Example 2.2-1. We have previously derived the 
mean, variance, and autocorrelation functions for the 
concentration. Hence, we can write 

G"{Co(t)} = 0 (0) 

8{[CO(t1) - 0][CO(t2 ) - On = rCoco(th t2 ) = atl 

where a is the parameter in the probabilitydensity for Co- .... 

F F
Input----t

CCo 

v 

FIGURE E2.2-4 Model of well-mixed tank: 

dC 
V dt = FCo - FC; C(O) = 0 

where 
Co = input concentration, a random variable 
C = concentration, a random variable 
F = feed rate 
V = volume of fluid 
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Equations (i) and (j) for the model are 

t* drooO(th t2) + rOoO(tl' t2) = '000 0( /1, 12) ; rOoOo(tl' t2 ) = all 
dt2 

rOoO(tl, 0) = 0 " 

and have the solution 

e- t2It$] rOoO(tl' t2) = a/l[1 - (p) 

where 1* = VIF. 

Equations (m) and (n) are
 

droo(tl, t2) () ()

t* d + roo tl, t2 = rooo t1 , t2

tl 
roo(O, t2) = 0 

and have the solution 

roo(l1o (2) = a[1 - e-t,.,lt·J[e-tlJl' - 1 - ::] (q) 

Thus, the autocorrelation function of the tank output can 
be determined even if its probability density function is not 
known. 

2.2-5 Crosscovariance and Correlation Coefficient 

The analyst is frequently called upon to determine 
qualitatively" and, insofar as possible, quantitatively, 
whether an association exists between two variables. He 
might inquire, for example, for a particular reactor 
whether the increase of pressure increases the yield. If 
the joint probability distribution for the two variables is 
known, it is possible to calculate a measure of the linear 
association between the two variables, termed the 
ensemble correlation coefficient. No distinction is made 
between the variables as to -which is independent and 
which is dependent. 

The crosscouariance function (sometimes abbreviated 
Covar) for two random variables X(t) and Y(t) is 
defined as 

O'Xy(th t2 ) = G{[X(t1) - ftx(t1 ) ] [ Y(t2 ) - /-ty(t2 ) ]} 

= r, f: co (x -JLx)(Y - JLy) 

-pix,y; t h t2 ) dx dy (2.2-13) 

For a stationary ensemble, 

O'Xy(T) = rXy(T) - /-txJLy (2.2-13a) 

Since the magnitude of the covariance depends upon the 
units of X and Y, two standardized (dimensionless) 
variables can be formed: 

(
X - ftx) '(Y - /-ty)

<Tx(O) and 
, O'y(O) 

where the argument(O) indicates T~ = O. The correlation 
coefficient for a stationary ensemble is the crosscovariance 
of these two standardized variables: 

(2.2-14) 

PXy=O 
=1PX Y 

----4----PX y = 0 

PX Y =-1 

FIGURE 2.2-4 Correlation coefficient at its extreme values and 
at zero for ai = a~. 

If X and Yare uncorrelated, their ensemble covariance 
and correlation coefficient are zero. If X and Yare 
independent, their ensemble covariance and correlation 
coefficient are also zero; however, the converse is not 
true. That is, if pXY = 0, X and Y are not necessarily 
independent (although they may be). For example" two 
random variables can each be normally distributed- and 
uncorrelated but dependent on each other; they must be 
distributed by a joint normal distribution to be indepen­
dent. Pairwise independence among sets of many random 
variables is not sufficient to indicate independence of the 
sets. 

The correlation coefficient 'reduces to one number the 
measure of the linear relationship between two variables. 
A positive correlation means that O'XY is positive (the 
standard deviation is never negative), while a negative 
O'XY means that large values of one variable are associated 
with small values of the other. Figure 2.2-4 illustrates 
lines of 0, 1, and -1 for the correlation coefficient. 

Example 2.2-5 Ensemble Correlation Coefficient 

The joint probability density function for two random 
variables X and Y is given as 

p(x,Y) = x + y for 0 .s X ::; 1 
0::; Y::; 1 

p(x, y) = 0 otherwise 

Find the ensemble correlation coefficient. 

Solution: 

(1 "'1 
/-tx = Jo Jo x(x + y)dxdy = -l-f 

fLy = fol f: y(x + y) dx dy = i-z 

fLx' = C[1 x2(x + y) dx dy = --A 
~ 0 Jo 

= /-ty2 

O'~ = O'~ = 15
:[ - (1~)2 = -l-i"4­

_-1_. _ 
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since 

tB'{XY} = f: f: (xy)(x + y) dx dy = t 

Then 

aXY Tl4 1 
PXY = -- = -_.Ll_ = 

aXay 144 11 

The result indicates little correlation between X and Y. 

Table 2.2-1 summarizes the ensemble parameters 
described so far. 

2.2-6 Moments of a Random Variable 

Moments of a random variable have an analogy in 
mechanics. Recall that the first moment of mass is the 
product of mass and the moment arm, and that the 
center of mass is the first moment divided by the mass. 
Both the ensemble mean and the variance are moments 
in which the probability density function is the weighting 
function. One is a raw moment and the other a central 
moment. Refer to Table 2.2-1 for time-invariant moments 
for a single variable through order n, The third central 

TABLE 2.2-1 SUMMARY OF ENSEMBLE PARAMETERS 

Param­

eter Name of Function Expected Value
 

J-tx(t) Mean 
J-t~(t) Mean square 
a~(t) Variance 
ax(t) Standard deviation 

/,x(t) Coefficient of variation' 
rxx(T) Autocorrelation* 
rXY(T) Crosscorrelation* 
axx(T) Autocovariance* 

Crosscovariance* 

Correlation coefficient* 

cf{X(t)}
 
If{X2(t)}
 
If{[X(t) - p,x(t)]2}
 

+ vai(t) 
ax(t )/J-tx(t) 
If{X(t1)X(t2)} 
If{X(i1)Y(t2) } 

If{[X(t1) - JLx(t1) ] 

. [X(t2 ) - JLx(t2 ) ]} 

t9'{[X(t1 ) - JLx(t1) ] 

. [Y(t2 ) - /1.}'(t2) ]} 

aXY(T)/ax(O)uy(O) 

* For stationary variables. 

moment proves to be a measure of the symmetry of the 
distribution of a random variable with respect to the 
mean; the fourth central moment characterizes the sharp­
ness of the peak about the mode. 

Moments for a pair of (time-independent) random 

TABLE 2.2-2 RAW AND CENTRAL MOMENTS FOR A RANDOM TIME-INDEPENDENT VARIABLE 

Continuous Discrete	 Moment 

Raw Moments 
00

2: XPP(Xi) = 1 J-to Zeroth moment 
i=1 

00

f:<Xl xp(x) dx = /Lx 2: XiP(Xi) = J-tx J-tl First moment 
i=1	 (ensemble mean of X) 

00

2: x~P(x.) = J-tx2 J-t2 Second moment 
i=1 

00

f:<Xl x"p(x) dx = /Lx"	 2: XfP(Xi) = J-txn J-tn nth moment 
i=1 

Central Moments 
00

2: (Xi - J-tx)Op(Xt) = 1 ~0 Zeroth moment 
i=1 

00

f:co (x - /Lx)p(x) dx = 0	 2: (Xi - J-tX)P(Xi) = 0 ~1 First moment
 
i=1
 
00

f:co (x - /LX)2p (X) dx = ai	 2: (Xi - J-tX)2P(Xi) = ai .",{t 2 Second moment 
i=1 (ensemble variance of .1') 

00

f:eo (x - /Lx)''p(x) dx	 2: (x, - J-tx)np(xD Jlt n nth moment 
i=1 
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variables can be defined as follows for contin uous 
variables: 

/Lij = I : ", I:",Ax~p(xI' X2) dX2 dXI (2.2-15) 

Central moments correspond to employing the weighting 
function of (Xl - /LI)l(X2 - /L2)i instead of xix~ . F or 
example: 

/LlO = t oo", J~ co xixgp(xb X2) dX2 dX I = /LXi = C{XI} 

/LOl = J:co J~ co x~X~P(Xb X2) dX2 dXI = /LX2 = C{X2} 

/Lll = J:", J~ oo xi X~P(Xb X2) dX2 dXI = C{XIX2}
 

I

.All = I : ", J~ co (Xl - /LXI)1 (X2 - /LxJ P(XI' X2) dX2 dXI 

= C{X I X2} - /LXi/LX2 = /Lll - /LIO/LOl 

= aXY 

Example 2.2-6 Moments 

Show that the second moment about the value X = c is 
greater than the second central moment. 
Solution: 

g {(X - C)2} = g{ (X - /Lx + /Lx - C)2}
 
= g {(X - /LX)2}
 

+ Zg {(X - /Lx)(/Lx - c)} + g {{JLx - C)2} 
= vlt2 + (/Lx - C)2 

Note that 

g{(X - /Lx)(,JLx - c)} = CJLx- c)g(X - /Lx) = CJLx - c)O 

since viti == O. 

2.3 THE NORMAL AND X2 PROBABILI TY 
DI STRIBUTIONS 

We shall next consider briefly two probability distri ­
butions which are employed in subsequent chapters. 
More complete detai ls concerning the characteristics of 
these probability distributions can be found in the 
references listed at the end of this chapter. The objective 
of this section is to delineate the properties of and :basic 
assumptions lying behind the normal and chi-square 
(x2) distributions so that they can be appropriately 
employed in the anal ysis of experimental data. Tables 
2.3- 1 and 2.3-2 list other time-invariant discrete and 
continuous distributions which are not discussed . Figure 
2.3-1 illustrates the probability function and cumulative 
probability distribution for the discrete binomial random 
variable. Figure 2.3-2 illustrates the probability densities 
for several continuous random variables whose charac­
teristics are given in Table 2.3-2. 
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Binomial variable, x 
(b) 

FIGURE 2.3-1 Binomial d istribution : (a) binomial dist ribu tion, 
and (b) binomial probabili ty function. 

2.3-1 The Normal Probability Distribution 

In the eighteenth and early nineteenth centuries, 
mathematicians and experimenters in the physica l 
sciences developed a probability density funct ion that 
represented quite well the errors of observation. Their 
work yielded the normal (Gaussian) probability density 
function for the random variable X, i.e., the familiar 
bell-shaped curve shown in Figure 2.3-3. This is generated 
by the equation 

p(.x.) = ,1/_ exp _ ((X ~ rx)2). -00 < X< 00 
~~ ax 'v2~ ax 

(2.3-1) 
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TABLE 2.3-1 DISCRETE PROBABILITY FUNCTIONS· 

Name 
Probability Function 

P(x) = P{X = x} Applications and Remarks 
Mean 

/Lx = ff{X} 
Variance 

ai = Var{X} 

Binomial P(x) = (:)ox(l - o)n-x 
X = 0, 1, 2, ... , n 

Applications in sampling, inspection plans, 
coin tossing, or any experiment in which: 

1. There are a fixed number of out­

nO n8(1 - 8) 

comes, n, 
2. The outcome of each trial must be a 

dichotomy, i.e., a "success" or a "failure"; 
x = number of successes. 

3. All trials have an identical probability 
of "success," O. 

4. The trials are independent of each 
other. 

Poisson P(x) = (nO)X e: n() 

x! 
x = 0, 1,2, ... 

Applications in auto traffic, telephone circuits, 
computer loading, sampling, and radio­
active decay with short half-lives. Events 
must be independent and rare. It can be 
used as an approximation to the binomial 
function when n is large and P is small, 
since the binomial becomes the Poisson 

nO nO 

function as n ~ co with nO constant. 

Multinomial P n(Xh X2, ••• , Xk) 

n! 
Xl! X2!··· Xk! 

(01)Xl(02)X 2 ••• «(}k)Xk
k 

n = 2Xi 
t=l 

Applications in sampling. A multivariate dis­
crete function can be regarded as a generali­
zation of the binomial function. Up to k 
possible outcomes exist, each of which is 
mutually exclusive. The probability of the 
first event Xl is 01 , of X2 is O2 , etc., and 01 + 
O2 + ... + Ok = 1. Each trial must be inde­
pendent, and the probability of each out­
come must be the same from trial to trial. 

Each variable 
= nOt 

Each variable 
= nOt(l ­ 8t) 

Pn(Xh ••• , Xk) is the probability that on n 
trials a success for variable 1 occurs exactly 
Xl times, for variable 2 exactly X2 times, etc. 

Hypergeometric 

Applications in the analysis of sampling with­
out replacement, i.e., sampling by attri­
butes. For a finite number N of items which 

nD 
n 

nD(N - D)(N ­ n) 
N2(N - 1) 

x = 0, 1,2, ... 
D = total number of defectives 

can be classified either "good" or "bad," 
"success" or "failure," if samples of a size 
n are drawn from N one at a time without 

in the N total items replacing the items withdrawn, then the 
probability of obtaining exactly X "failures" 
in a sample n in P(x). 

* The symbol (;) means the number of combinations of X things taken from a total of n things without regard to order; 

~) == xl (nn~ x)! 

By direct integration it can be shown that the two param­ Solution:
 
eters in Equation 2.3-1 are the mean and variance of X: We want to show that
 

1 foo (X - /Lx )2) 
~ /- exp - 2 2 dx = 1 (a)fO"" p(x) dx = 1 (zeroth moment) ax'v 2'1T - 00 ax 

The calculation can be made relatively brief if we make two 
changes which do not affect the value of the integral. These 

rff{X} = L: xp(x) dx = /Lx (first moment) changes are: 
1. Shift the origin on the x axis for integration from x = 0 

to x = ~X' so that ~x == o.
<S'{(X - /LX)2} = L""oo (x - /LX)2p(X) dx = ai 2. Square both sides of Equation (a); y and z are dummy 

variables. 
(second central moment) Then 

1 (X2 
) ] 2[f 00 ---exp -- dx 

Example 2.3-1 Zeroth Moment of the Normal Probability - 00 axV2'1T 2ai 

Density Function 
= 2;a~ [t"'", exp ( -J:j ) dy] [L"""" exp ( -2:i)dz]

Show that 

. 1 f 00 f 00 (y2 + Z2)L"""" p(x) dx = 1 = -22 exp --22 dy dz 
11'ax - 00 - 00 ax 
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TABLE 2.3-2 PROBABILITY DENSITY FUNCTIONS FOR A SINGLE CONTINUOUS VARIABLE 

Mean Variance 
Name Density Function Applications or Remarks ILx = [f{¥} ai = Var {X} 

Log-normal p(x) = vi 1 exp [ 
271'[3 

(In x - «)2]
2[32 
(0:::; x < 00) 

Applies to situations in which several 
independent factors influence the out­
come of an event not additively but 

ea+(~) e2a+ p2(ep2 -1) 

a = cf{lnXl according to the magnitude of the fac­
[32 = Var {In Xl tor. Applications are to particle sizes, 

condensation, aerosols, petrology, eco­
nomics, and photographic emulsions. A 
variable X has a log-normal distribution 
if log X has a normal distribution. The 
distribution is similar in form to the 
gamma and Weibull distributions. 

Exponential p(x) = C) e­ x t8 

0 
(0 :::; x < 00) Applies to constant, instantaneous, failure 

rate, i.e., a first-order ordinary differen­
0 82 

tial equation. x is the random variable 
and 0 is a time constant. The distri­
bution is an excellent model for the 
failure behavior of many types of com­
plex systems, particularly for those 
parts and systems which are so complex 
that many deterioration mechanisms 
with different failure rates exist. 

Weibull p(x) = a~xa-1 e- Px C1. (0 :::; x < 00) Applies to life testing such as first failure 
among a large number of items (a is (~)-1Iar(~+ 1) (f3)- 2/a[r(~+ 1) 

related to the failure 
resistance, return of 

rate), corrosion 
goods by week -r2(~+1)] 

after shipment, and reliability. 

Gamma 
fJa+l 

p(x) = ---­ e-pxxa 
rea + 1) 

(0:::; X < 00) 
a > -1 

Similar applications to the above. a + 1 
-fJ­

a + 1 
p2 

Finally, introducing polar coordinates yields 

[fOO 

2 
_1/_ exp (_ ZX 2) dx]2 

- 00 ax'v 277" ax 

1 i2n i00 r (r= -z 2" exp - -222 
) dr dO = 7T 0 0 ax ax 

If the square of any real quantity equals 1, the quantity 
itself is 1. . 

By a simple transformation of variables to the stan­
dardized (or "unit"-for U) random variable U, 

U = (X - !-tx) (2.3-2) 
ax 

we obtain the probability density function called the 
standard normal probability density function. Note that 
because P(u) = P(x), where u is the upper limit of 
integration corresponding to x,p(u) du = p(x) dx; hence, 

e- u 2 p(u) = 1 / 2 (2.3-3) 
V27T 

which is shown in the upper part of Figure 2.3-4. The 
moments of the standard normal random variable U are: 

L: p(u)du = 1 (zeroth moment) 

I:<Xl up(u) du = 0 (first moment) 

2p(u) duI:eo u = 1 (second moment) 

Figure 2.3-4 portrays the relationship between p(u) and 
p{x). 

The standard normal probability distribution 

u / 2 P(u) = P{U ~ u} = 1. IU e- / 
2 du' (2.3-4)

V27T - 00 

is shown in Figure 2.3-5 and tabulated in. Appendix C. 
By taking advantage of the symmetry of p(u), we can 
compute, for example, from Table Cl 

P{O ~ U s I} = P{U ~ I} - P{CI ~ O} 

= 0.841 - 0.500 = 0.341 

which is equivalent to the area under the curve p(u) 
from U equal to 0 to 1. As another example, 

P{ -3.2 ~ U ~ -0.3} = 0.999 - 0.618 = 0.381 

Reference tables of the standard normal probability 
distribution function are not all based on the function 
given by Equation 2.3-4. The largest and most com­
prehensive tables t give 

t 2F(u) = 1 IU e- / 2 dt (2.3-5a)
V27T -u 

t Nat. Bur. of Standards, Guide to the Tables of the Normal 
Probability Integral, Applied Mathematics Series 23, U.S. 
Government Printing Office, Washington, D.C., 1952. 
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1.4 --.....--r---r--r---,--,----r-,.---r-,-----, p(x) 

o0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 
x 

Qi=0.50
1.2 

Gamma a =1.00 13 =2.00 
Log-normal ex= -0.20 {32=0.41

1.0 Weibull a =1.44 13 =0.87 

-. 0.8 
~ 
Q. 0.6 

0.4 

0.2 

o0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80' 2.00 
x 

Gamma a=O.OO fJ=1.00 
log-normal a= -0.35 13 2 =0.691.0 
Weibull	 a=I.00 P=1.00 

0.4 

0.2 

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 
X 

FIGURE 2.3-2 The gamma, log-normal, and Weibull prob­
.ability densities. (Parameters are identified in Table 2.3-2.) 

while other reference books give 
2 (U

G(u) = V;' Jo e:" 
n 

dt (2.3-5b) 

One useful relation is 

P(u) = JU .;, «:" dt = -2
1 + fU . } e:" dt (2.3-6) 

- 00 'v 27T Jo v 27T 
as can be intuitively seen from the symmetry of Figure 
2.3-5., 

Example 2.3-2 Mean and Variance of the Standardized
 
Normal Variable
 

Show that the expected value of U is 0 and that the vari­

ance of U is 1.
 

FIGURE 2.3-3 Normal probability density function for various 
dispersions. Peak is at (/Lx, 1/axV27T). Points of inflection are at 
x= /Lx + ax· 

Solution: 

6"{ U} = r", up(u) du 

1 foo 2/2d= ----=:' U e- U (a)u 
V27T - 00 

u2/2Let = t. Then u du = dt; when u = -00, t = 00. 

Consequently, 

6"{U} = Vi1T U: e- t dt + 10'" e:' dt J= 0 (b) 

The same conclusion could be reached by noting that u is 

Probability density of the standardized random variable U 

p(u) 0.4 

-3 -2 -1 0 2 3 
I I I u I \,I I I	 \, \I	 1 I \ \I Probability density 'of the random variable X \1	 I \I p(x) \ \

I 
I
I	 

1 I
I \

\ 
\
\ 

\
\II I I \ \II I I \ \'II I \ \ \

II I I \ \II I I \ \I/	 \ \/I	 \ \1I	 \ \II \ \ 
I f

I \ \ 
I O"x \ 

FIGURE 2.3-4 Relation between the standardized normal random 
variable U and the normal random variable X. The percentages 
refer to the area under the curve within the indicated bounds on 
the basis of a total area of 100 percent. 

1.2 

1.0 

-. 0.8 
~ 
~ 0.6 

0.4 

0.2 

0'1=0,,10 

Gamma ex =7.80 
13=8.80 

Log-normal ex =- 0.05 
,132=0.11 

Weibull ex=3.26 
13=0.70 
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Standard normal variable, U 

FIGURE 2.3-5 Normal (Gaussian) probability distribution 
function. 

an odd function , e - u2
/2 is an even function , and their 

product integrated over a symmetric interval is zero. 

Var { U } = r "" (u - O)2p(U) du (c) 

= ~ roo t1/2 e-t dt (d)V 1T Jo 
Since the gamma function is 

I'(») = f.'" t, -1 e - t dt = (n - I)! 
• 0 

and 

r(~) = ~; 
the integral in Equation (d) is 

and 

2 (V;)Var {U} = --= - = 1
V1T 2 

Before we assume that experimental data are repre­
sented by the normal probability distribution, if sufficient 
data are available it is desirable to: (1) examine their 
relative frequency distribution by tests for goodness of 
fit as described in Section 3.7-7, (2) plot the cumulative · 
frequencies on normal probability paper t which linearizes 
P(x) by .use of a special scale, or (3) carry out other 
appropriate tests described in Chapter 3. Although the 

t The use of special graph paper which linearizes the normal and 
many other distributions is described in the booklet by J. R. 
King, " Graphical Data Analysis with Probability Papers," 
available from Team, 104 BelroseAve., Lowell, Mass., 1965, and 
in the article by E. B. Ferrell, Ind. Qual. Control, p. 12, July 1958. 

NORMAL AND X2 PROBABILITY DISTRIBUTIONS 

normal probability distribution truly represents many 
collections of experimental data, it is also often ascribed 
to data, for convenience, when the variables are con­
tinuous but not normally distributed because : 

1. The variable can be transformed and the trans­
formed variable will be normally distributed. 

2. Sums of random variables, variables not themselves 
normally distributed, are approximately normally distri­
buted as the sample size --+ roo 

3. The error introduced by using statistical tests based 
on a normal probability distribution for experimental 
data of another reasonably symmetric distribution is 
small. 

Example 2.3-3 Graphical Validation of Normality of 
Experimental Data ~ 

The data in Table E2.3-3 are the diameters in micro ns of 
two hundred particles from a sample of material on an 
oilfield pipeline filter screen. The number of particles falling 
within selected cell boundaries gives the frequencies as 
grouped data. Grouping of data into cells removes the 
erratic behavior of small batches of data while retaining the 
predominant characteristics of the data as a whole. Choice 
of cell range and the number of cells should not cause the 
loss of too much information relating to the data. Cell 
bounds are usually chosen so that ten to twenty cells of 
equal width result. As so often occurs, the data in this 
example have been classified into cells of unequal size because 
of the manner in which the particle sizes were collected. 
It was desired to obtain some idea of the distribution of the 
particle sizes. 

The first step in the preparation of the data for plotting 
is to arrange the observed classes of the random variable 
X in ascending order, as shown in the first column of the 
table. The frequency of each class is listed and the cumulative 
frequency computed. The values of x are ranked, with the 
number 1 assigned to the lowest rank. If a value of x has a 
frequency greater than 1, success ive ranks are assigned for 
each value (i.e., three observations require assignment of 
three successive ranks). For each value of x, the average 
rank is calculated by 

L: ranks 
m =-:--=-,--:---­

observed frequency 

Finally, the following relation§ 

p = -.!!!..­
n + 1 

where n = the total sample size, gives the relative dependent 
variable for plotting. 

:j: The data and graphs in this example have been taken from a 
paper by C. Lewis, "Applications of Statistics and Computers," 
Symposium, Mar. 1962, edited by R. E. Streets and R. D. Quillan, 
Southwest Research Institute, San Antonio, Texas, 1962. 
§ Due to E. J. Gumbel, Statistics 0/ Extremes, Columbia Univ. 
Press, New York, 1958. 
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TABLE E2.3-3 PARTICLE SIZE DISTRIBUTION OF TWO HUNDRED PARTICLES OF A SAMPLING 
FROM AN OILFIELD PIPELINE FILTER SCREEN 

Diameter Number of Cumulated Average Rank m 
(microns) Particles Frequency Ranks (m) n + 1 Percent 

Under 0.30 2 2 1-2 It 1t/200 0.75 
0.31-0.40 33 35 3-35 19 19/200 9.50 
0.41-0.50 67 102 36-102 69 69/200 34.50 
0.51-1.00 5 107 103-107 105 105/200 52.50 
1.01-2.00 63 170 108-170 139 139/200 69.50 
2.01-4.00 5 175 171-175 173 173/200 86.50 
4.01-6.00 11 186 176-186 181 181/200 90.50 
6.01-8.00 1 187 187 187 187/200 93.50 
·8.01-10.00 11 198 188-198 193 193/200 96.50 

10.01-20.00 1 199 199 199 199/200 99.50 

Because a probability distribution plot reads "equal to 
or less than," the upper boundary of each cell should be 
plotted. A plot of the data in Table E2.3-3 gave a badly 
skewed distribution, as indicated by the extreme curvature 
in Figure E2.3-3a. This curve, coupled with the physical 
constraint that the diameter measurements must all be 
positive and approach zero (there can be no negatively sized 
particles), suggested that a log-normal plot be made as 
shown in Figure E2.3-3b. 

The line in Figure E2.3-3b is essentially straight down to 
a diameter of about 0.5 micron, where it makes a sudden 
break toward zero diameter. Usually, this indicates the 
presence of some physical condition prohibiting values below 
(or above) a particular level. In the present instance, how­
ever, such .. __ ~n interpretation did not appear reasonable 
because there was no technical reason why particles smaller 
than about 0.3 micron could not exist. 

After further inquiry the answer was found to be the 

99.9
 

99
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c:c: 90 coro 
:5:5 
cnen cnen 
~.!! 
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(ij(ij 
::J::J 
C'"tT 
<U<U 

........... c::c: 10 Q)<U 
~ ~ 
Q)Q) c,0­

0.1 

0.01 

Particle diameter in microns 

FIGURE E2.3-3A Normal probability plot of particle size data of 
Table E2.3-3. 

limit of resolution of the microscope used for measurement. 
Further investigation showed that approximately 5 percent 
of the particles picked up .by the screen were less than 0.1 
micron in diameter, as might be predicted by extending the 
heavy line in Figure E2.3-3b to 0.1 micron. Very few of the 
particles (less than one 'per thousand) could be expected to 
be larger than about 50 microns. 

The multivariate normal probability density, Equation 
2.3-7, is nothing more than a generalization of the 
univariate density. It is written in matrix notation t 
(refer to Appendix B) for compactness: 

p(x) = ke- q
/2 (2.3-7) 

t The balance of Subsection 2.3-1 can be taken up in conjunction 
with the matrix notation of Chapter 5, if preferred. 

99.9 --------------'-----~--, 

• 
99 

90 

50 

10 

1 

0.1 L....­ J....... ~___' 

0.1 1 10 100 
Particle diameter in microns 

FIGURE E2.3-3B Log-normal plot of particle size data of Table 
E2.3-3. 
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where 

. . (det f-1)% I 
k = positive constant = (2'Il)n/2 = (27T)n/2Ifl % 

termed a normalization factor such that 

ff·.Jk exp ( -~) dX1 dX2' . •dx; = 1 

and 

!LT = [/L1' /L2, ... , /LnJ
 

T
x = [Xl' X2, • . . , XnJ 

an n x n·matrix 

IfI = determinant of f 

The /L'S and a's are constants; the /Lt's represent the 
ensemble means of the respective X's; the aj/s represent 
the variance and covariances of (XjXj ) . (Note that 
all == af.) 

Example 2.3-4 Bivariate Normal Density Function 

We shall formulate the bivariate normal probability 
density, the case of n = 2 in Equation 2.3-7. The bivariate 
density has direct applications to turbulent velocity fields, 
mapping, and targets, as well as in empirical model building. 

det f = IfI = 0'110'12 - a~2
 
(since 0'12 = 0'21)
 

= ~a~ - ~2 

with all == O'~ 

0'22 == a~ 

q= 

[(Xl - fL1)2a~ - 2(X1 - /L1)(X2 - 1-'2)0'12 + (X2 - /L2)2ai] 
a~a~ - a~2 

Now let 

p 
a~a~(l - p2) 

. a~ I 
Tii = aW - .p2) 

Then 

[(~r - 2p(X1 ~ /L1)(X 2 ~ /L
2) + (~n 

q= (l - p2) 

where 

Xl - /Ll 
Ul = --­ i = 1,2, . . . aj 

Tables of the bivariate normal distribution are available.'] 
For the important but special case in which Xl an d X 2 

are stochastically independent, p = 0 and 

2+U2)
1 . (UP(Xh X2) = -2-- exp _..2...:..-2 

7Ta1a2 2 

2.3-2 The X2 Distribution 

The x2 distribution has many theoretical and practical 
applications, some of which will be described in Chapter
3.t These include: 

1. Testing the goodness of fit of experimental observa­
tions to hypothesized probability distributions. 

2. Obtaining confidence limits for the variance and tho 
standard deviation. 

3. Testing the independence of variables. 
4. Deriving the sampling distribution for the stan :,. rd 

deviation, the covariance, the coefficient of variation . :W. 

Let Xl> X 2, •• • , Xv be a set of v-independent ran.lom 
variables, each of which is represented by a normal 
distribution with the respective parameters (p.! "'D, 
(fL2' a~), . . . , (fLv, a;). If we calculate the squares of rho 
standard normal variables, U?, 

t Nat . Bur. of Standards , Tables of the Bivariate Normal Distri­

bution Function and Related Functions, Applied Mathemat ics
 
Series 50, U.S. Government Printing Office, Washington, D.C.,
 
i959.
 
t A good general reference for the use of x2 is: A. E. Maxwell,
 
Analyzing Qualitative Data, John Wiley, New York, 1961.
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and sum the U?'s, we define a new random variable x2 

(" chi-square") as follows: 

x2 = Ur + U~ + ·· .+ U; 

= i U? = i (XI ~ /Lf (2.3-9) 
i=l i=l 

In Equation 2.3-9, v is called the" number of degrees 
of freedom" for x2

• The distribution of x2 depends only 
on v because the U's are standardized. If the v observa­
tions are independent, then the number of degrees of 
freedom is equal to v; however, a degree of freedom is 
lost for each constraint placed on the v observations. 

The probability density for x2 can be shown to be 

1 v x2 

p(x2) = (2)V/2r(v/2) (X2)';;-1e-2" (0 < x2 < (0) 

(2.3-10) 
and is illustrated in Figure 2.3-6. Some special cases of 
the x2 density of interest are: (1) the square root of x2 for 
v = 2, called the Rayleigh density function, (2) x2 for 
v = 4, the Maxwell function for molecular speeds, and 
(3) vf2X2 for v > 30, which is distributed approximately 
as a normal variable with ft = v2v - i and a2 = 1. The 
ensemble mean of X2 is equal to the number of degrees of 
freedom: 

C{x2} = C{~ Ul} = ~ C{(Uj - 0)2} = 1 + 1 +... = v 

because the variance of U, = 1, i.e., C{(Ui - 0)2} = 1. 
The variance of x2 can be shown by direct integration to 
be 

The probability distribution for x2 is 

P(X~) == P{X2 S X~} 

= (2)V/2~(v/2) J:~ (x2)~~1 e -~ d(x2) (2.3-11) 

Tables of P(X~) are available as well as tables of P(x~/v) 

and P{x2 > X~}; Table 2.3-3 is a brief extract from 
Tables C2 in Appendix C. An entry is interpreted for v 

degrees of freedom as the upper limit in the integral in 
Equation 2.3-11. For example, for a P{x 2 S x~} = 0.95 
or P{X2 > X~} = 0.05, X~ can be read for v = 1 or v = 10 
degrees of freedom as 3.841 or 18.307, respectively. 

TABLE 2.3-3 DISTRIBUTION OF X2 

0.20 

~ 0.15 
~ 

~ 
Q. 0.10 

0.05 

5 10 15 20 25 30 35 40 
x2 

FIGURE 2.3-6 The x2 probability density. 

2.4 SAMPLE STATISTICS AND THEIR
 
DISTRIBUTIONS
 

Usually the probability, distribution for a process 
variable is unknown, so the equations in Section 2.2 
cannot be directly applied to calculate the ensemble mean, 
the ensemble variance, and other ensemble averages. 
While the analyst would like to obtain an estimate of the 
probability density function for a process variable, this 
is difficult; in most instances he must settle for merely 
estimates of the ensemble mean, variance, etc. Two 
general methods of making an estimate of an ensemble 
average will be described in this book. One concerns the 
use of a finite random sample of 0 bservations or measure­
ments obtained by repeated experiments, as discussed in 
this section. The other method concerns the use of a 
single time record for one experiment, as discussed in 
Section 12.3. 

The term sample statistic or just statistic refers "to a 
numerical value calculated from a sample of obser­
vations or measurements of a random variable. Thus, 
an estimate ofa parameter in a probability density 
'function, probability distribution, or process model or 
an estimate of an ensemble average obtained from 
experimental observations is a statistic. A statistic has a 
dual meaning; it refers to both the rule for calculating 
the statistic (i.e., a function) and the value of the statistic. 
The meaning will be clear from the context. Keep in 
mind that statistics are random variables. 

In this section we shall describe the sample mean and 
sample variance of the random variable X and also their 

v= Probability of a value of X2 less than shown in table 
Degrees 

, Freedom 0.01 0.05, 0.50 
P{X 2 ~ x2} 

0.90 0.95 0.99 0.999 

1 
10 

1.57 x 10- 4 

2.558 
0.00395 
3.940 

0.455 
9.342 

2.706 
15.987 

3.841 
18.307 

6.635 
23.209 

10.827 
29.588 
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probability distributions under specific assumptions 
about the distribution for the random variable X itself. 
Sample averages will be denoted by a bar superimposed 
over the random variable(s) involved, except for the 
sample variance and correlation coefficient which use 
other notation for historical reasons. Unless otherwise 
stated, each finite set of samples is regarded as being 
statistically independent of any other set if the experi­
ments used to collect the sample are independent and the 
randon1 variables are statistically independent. 

2.4-1 The Sample Mean and Variance 

The sample mean is generally the most efficient (see 
Chapter 3) statistic to use in characterizing the central 
value of experimental data; that is, it requires less data 
to achieve the same degree of certainty. Let X be a 
random variable.j A sample of n total observations. 
yields one group of ns observations of X denoted by 
X b another of n2 observations of X denoted by X 2 , etc. 
Then the sample mean is 

X -= -12: Xin, (2.4-1)n t t 

i 

where 2: n, = n. If n, = 1, then the upper limit of the 
summation is n. The sample mean is itself a random 
variable and, being an estimate of ~x, is often designated 

ftx· 
There are two main reasons why an experimenter 

makes replicate measurements. One is that the average 
of the individual results is more representative than any 
single result. the other is that. the dispersion of the 
individual readings can be evaluated. These objectives 
may be thwarted unless considerable care is given to the 
data collection process as described in Chapter 8. 

The sample variance of the random variable X is a 
random variable which is the best single estimate of ai. 
It is calculated as follows: 

2 - "'2. 1 ~ (X X-)2
SX = ax = n _ 1 ~ i - n, (2.4-2) 

i 

Observe that in the denominator of Equation 2.4-2 the 
term (n - 1) and not n appears,because the expectation 
of {l/(n - I)} L (Xi - X)2ni is ai whereas the expectation 
of (lin) L (Xi - X)2ni is {en - l)ln}ai. Thus, the latter 
calculation gives a biased estimate (see Equation 2.4-9 
below). (Heuristically, the argument for using (n - 1) 
instead ofn is that one of the n degrees of freedom among 
the n data values is eliminated when the sample mean is 
computed. One constraint is placed on the data values; 

t The argument of time can be omitted from X since the sampling 
can be conducted at one time or at different times for a stationary 
ensemble. The important point is that the data be collected from 
different experiments and not from one experiment at different 
times. 

I 

hence the denominator, which represents the degrees of 
freedom, should be (n - 1).) The sample variance is 
often more conveniently calculated from Equation 
2.4-3a or 2.4-3b. 

= n~ 1 [Ln;x? - 2XXL n, + (1")2 Lni] 

2 
= n~ 1 [L nlX i - (1")2 Lni] (2.4-3a) 

= n : 1 [(Xn - (X)2] (2.4-3b) 

The sample coefficient of variation is 

Sx 
C =-= (2.4-4)

X 

Always be aware that squaring or multiplying first and 
subtracting afterwards can lead to serious computational 
round-off error. Thus, for the two equal expressions, 

n ( Xi)2 11­iL(xl) - l=~ = L (Xi - x)2 
i=l i=l 

if Xl = 9000, X2 = 9001, and X3 = 9003, the value of the 
left-hand relation, using single-precision arithmetic and 
8 decimal digits, is 0, and, using single-precision arith­
metic and 27 digits in binary arithmetic (which is equiv­
alent to about 8 decimal digits), is 4.0. On the other 
hand, the value of the right-hand side of the expression 
by either treatment is correct to 8 decimal digits at 
4.6666667 

Example 2.4-1 Comparison of Sample Statistics and Their 
Expected Values 

Table 2.3-1 gives the binomial probability density which 
represents a coin-tossing experiment. Suppose that a coin 
is tossed 5 times; let X be the number of heads in 5 tosses. 
If the probability of obtaining a head on each toss is () = j-, ' 
the second row of TableE2.4-1 shows the probability of 
obtaining 0, 1 ,2,3,4, or 5 heads, respectively, in a total of 
5 tosses. For this special type of experiment, the sample mean 
and variance can be compared with the ensemble mean and 
variance. The experimental data in the third row of the table 
represent the sum of the results of several experiments of 5 
tosses each carried out by different individuals using the 
same coin. 

The calculations are: 

J-tx = 2:p(Xi)Xi = O(l-z-) + l(fi) + 2(t¥) + 3(t¥) 

+ 4(/i) + 5(n) = 2.5 

X = ~ 2: niX; = 10[(0)(1) + 1(6) + 2(10) + 3(7) 

+ 4(5) + 5(1)] = 2.4 
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TABLE E2.4-1 

Values of Random Variable X 0 2 3 4 5 Sum 

Theoretical probability density 

n! crcr- x 

p(x) = n!(n -x)! 2 2 
Experimental data 

(30 tries) n, = 

_L 
32 

.s,
32 

6 

10
32 

10 

10 n 

7 

5 
32 

5 

_.1_ 
32 1 . 

30 

ui = L: P(Xi)(Xt - f.Lx)2 = L:Pi(Xt)x't - x2L:Pi 

[02(3.1= 2) + 12(-1T) + 22(t~) + 32(t~) + 42(3~) 

+ 52(3.1
2) - (2.5)2] = 1.25 

2 2: nt(Xi - X)2 
Sx = n -1 

= /9"[(0 - 2.4)2(1) + (1 - 2.4)2(6) + (2 - 2.4)2(10) 

+ (3 - 2.4)2(7) + (4 - 2.4)2(5) + (5 - 2.4)2(1)] 

= 1.42 

It can easily be shown by interchange of the operators 
tf and 2: that 

C{X} = C{~ ~ Xin} = ~ ~ C{Xjni} 

(2.4-5) 

and by using Equation 2.2-9a for independent variables 
with Var {Xi} = vi that 

Var {X} = Var {~ ~. Xin} = ~2 ~ n, Var {Xi} 

(2.4-6) 

The positive square root of Var {X} is termed the stand­
ard error or sample standard deviation. Thus the sample 
means themselves are random variables with an expected 
value the same as that of X and with an ensemble 
standard deviation ofax/vn. Figure 2.4-1 indicates how 
the dispersion is reduced for increasing sample sizes as 
called for by Equation 2.4-6. 

One important theorem in statistics, the central limit 
theorem, states that under fairly general conditions the 
sum of n independent random variables tends to the 
normal distribution as n -+ 00. Thus, the probability 
density for sample means computed from nonnormal 
random variables will be more symmetric than the under­
lying distribution and have less dispersion, as illustrated 
in Figure 2.4-2. 

The sample mean can be transformed to a standard 
normal variable (which was previously defined by Equa­
tion 2.3-2) as follows: 

u = X - f'x (2.4-7)
ax/Viz 

We next show that the expected value ofsi, as defined 
by Equation 2.4-2, is ai. We split (Xi - X) into two 
parts: 

(Xi - X) = (Xi - f'x) - (X - f'x) 

and replace (Xi - X) in Equation 2.4-2: 

(n - l)si = .2 [(Xi - f.Lx) - (X - f.LXWni 

= .2 (Xt - f.Lx)2ni - 2 .2 (Xi - f.Lx)(X - 11,X)ni 

+ .2 (X ­ f.LX)2ni 

= .2 (Xi - f.LX)2ni ~ 2n(X - f.LX)2 + n(Jt· . f.Lx)2 

= .2(Xj - f.LX)2ni - n(X - f.LX)2 (2.4-8) 

p(f) 

J.l.x 

FIGURE 2.4-1 Reduction of dispersion as the sample size in­
creases according to the relation Var {X} = ai/no 

x 
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p(x). Probability p(x) 

Probability 

",,/ 
/ 

J.Lx x,x 
(a) (b) 

FIGURE 2.4-2 Probability densities of sample means showing the reduced dispersion for the X 
distribution: (a) distribution of X is normal, and (b) distribution of X is not normal. 
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Next we take the expected value of both sides of Equation 
2.4-8: 

tB"{(n - l)sk} = tB"{2: (Xi - P-X)2ni - n(X - P-X)2} 

2 - 2 ai­
= nax - nVar(X) = nax - n­

n 

= ai-en - 1) (2.4-9) 

Consequently, the expected value of the sample variance 
is the ensemble variance. 

To establish the distribution of si: for n independent 
observations from a normally distributed population 
with a mean of !Lx and a variance of vi is beyond our 
scope here, although it can be obtained from the x2 

partition theorem described in several references at the 
end of this chapter. All we need here is to note that 

FIGURE 2.4-3 Probability density of si. 

has a X2 distribution with (n - 1) degrees of freedom; 
i.e., it is equal x2 if the degrees of freedom are (n - 1). 
Consequently, we can write 

2 

si = ai~, v=n-l (2.4-10)
v 

and determine the distribution of si (and sx) from the 
X2 distribution. Figure 2.4-3 shows the probability 
density of si. 

The ensemble variance of the sample variance itself is 
defined as 

Var {si} = C{(si - ai-)2} 

and can be determined from 

Var {si} = Var { ai :2} = (ai)2 Var{:) = 2:1 (2.4-11) 

(Recall that the Var {X2 
} is 2v.) 

For k samples drawn from. a normally distributed 
population, each having the same variance ai but not 
(necessarily) the same mean, a pooled estimate, s;, of 
ai is 

k

L ViS~ 
2 i=l

Sp = -k-- (2.4-12) 
L Vi 

i= 1 

where Vi is the number of degrees of freedom associated 
with each sr. Thus, by taking a large number of small 
samples, it is possible to get s;, an estimate of a~, 
based on an effectively larger number of degrees of 
freedom than could be obtained by taking one large 
sample with the same total number of observations, as 
indicated in the following example. 

Example 2.4-2 Variance Reduction by Pairing of Samples 

Suppose a product is formed on two different shifts, A 
and B, or by two different processes, A and B. The product 
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may be the same or different in various characteristics. But 
in one specific characteristic, the percentage of a chemical 
component as determined by titration, the outputs from A 
and B are supposed to be the same-apart from random 
normal deviations. In Chapter 3 we shall describe haw to 
determine if the outputs from A and B are the same. How­
ever, for the moment, we shall assume that they are the 
same. Then we can calculate the sample variance using 
Equation 2.4-2. 

Now, on the other hand, suppose we carry out the titra­
tions on pairs of outputs, one of which is selected from A 
and the other from B. Let XiI be the result from A and X i2 

be the result from B on the ith titration, as shown in Table 
E2.4-2. If for each pair of titrations, Xi = (XiI + Xi2 )/2, 
then the sum of the squares of the deviations is, for the ith 
.titration pair, 

(X · - Xi )2 D i 
2 

(XiI - Xi)2 + (Xi2 - %i)2 = ~l 2 2 2 (a) 

where D, = the difference in measurements. Furthermore, 
the variance for a pair of measurements is 

2 _ 1 (XiI - Xi2 )2 Dr 
Si - 2 _ 1 2 2 (b) 

Then the pooled s~ for k sets of measurements is 
k 

2: VtSr 1 k D2 1 
s; = I = ~ = K "2 Vi -f = 2K '2 Dr 

2: Vi t=l 
i=l 

where K = the total number of degrees of freedom = 2: Vi' 

If the data in the table were to be (incorrectly) treated as 
individual measurements, X = 70.89 and the variance 
calculated from Equation 2.4-2 is 

.. 20 

sl = 11 "2 (Xi - 70.89)2 = 11~~07 = 5.89
9 

i=l 

with 19 degrees of freedom. On the other hand, if the data 
are (correctly) treated as pairs, from Equation (c) 

2 _ 3.03 _ 
Sp - (2)(10) - 0.152 

with 10 degrees of freedom. 

TABLE E2.4-2 

A B D = Difference D 2 

73.2 74.0 0.8 0.64 
68.2 68.8 0.6 0.36 
70.9 71.2 0.3 0.09 
74.3 74.2 -0.1 0.01 
70.7 71.8 1.1 1.21 
66.6 66.4 -0.2 0.04 
69.5 69.8 0.3 0.09 
70.8 71.3 0.5 0.25 
68.8 69.3 0.5 0.25 
73.3 73.6 0.3 0.09 

Total 3.03 

We can interpret the results as follows. If for one pair of 
observations, we note that 

where 15 = 2:f=l Diln, then 

22: (XiI - X1 )(X i 2 - %2) 

n - 1 

or 

(c) 

Note that the variance of the differences depends on the 
correlation (covariance in Equation (c)) between pairs of 
observations. Consequently, it is quite desirable to arrange 
pairs of observations in the expectation of obtaining high 
positive correlations, thus reducing the variance. By choosing 
pairs so that the characteristic of interest in each pair is 
similar even if the characteristic differs widely from one 
pair to another, variation between pairs will not affect the 
variance of the mean difference, because the latter depends 
only upon differences within pairs. 

2.4-2 The t Distribution 

The t distribution (or the Student t distribution, so 
called because of its publication by W. S. Gosset under 
the pen name of " Student") is employed in making tests 
and establishing confidence limits for the mean. These 
tests will be described in Chapter 3. The random variable 
t represents the ratio of two independent random 
variables, U, the standardized normal variable, and 

Vx2
/ v : 

U U .':(X - I-tx) 1 X- /Lx 
t = VX2/ v = sx/ax = ax/vn sx/ax = SJl 

(2.4-13) 

where X is the sample mean and ss is the sample standard 
deviation. The probability density function for t is 

1 r(~) (. t2)-C;1) 
p(t) = V1TV . rG) 1 + -;. (-00 < t < (0) 

(2.4-14) 

where V is the number of degrees of freedom associated 
with s~. Figure 2.4-4 illustrates p(t) for various degrees 
of freedom, v. Equation 2.4-13 indicates that the sample 
standard deviation of X is used in calculating t whereas 
to calculate U, the value of ax has to be known. 

In the limit as V ~ 00, the t probability density becomes 
identical with the standard normal probability density, 
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pet) pet) 

-4 -3 -2 -1 o 
t 

2 3 4 

FIGURE 2.4-4 The Student t probability density. 

as can be ascertained from Equation 2.4-14 as v becomes 
very large. 

Figure 2.4-5 illustrates the t probability distribution. 
Tables of the t probability distribution exist in practically 
all statistical texts and in Appendix C of this text. t The 
t distribution gives the probability of t being less than or 
equal to a selected value of t: 

Some tables record for each degree of freedom, v, the 
probability of obtaining a larger absolute value of t than 
that listed in the table. Other tables use the symmetric 
property of the t density and record only the probability 
of obtaining a larger value of t than that listed in the 

99.5 

99 

95 

90 
~ 

~ 
50 

30 

5 

-4 -2 0 .2 4 6 8 10 
t 

FlGURE 2.4-5 Probability distribution for t. 

t More complete tables can be found in: G. U. Yule and M. G. 
Kendall, Introduction to the Theory of Statistics, Griffin, London, 
1940, Appendix Table 5; M. Merrington, Biometrika 32, 300, 
1941; and R. A. Fisher and F. Yates, Statistical Tables, Oliver 
and Boyd, Edinburgh, Scotland, 1938. 

2.5 percentof area 2.5 percent of area 

-2.571 o 2.571 

FIGURE 2.4-6 Graphical interpretation of the Student t tables for 
v = 5. 

table. As an example of the entries in Table C3 in which 
P(t) == P{t ::; t*}, the listing for v = 5 is 

P(t) 0.75 0.90 0.95 0.975 0.99 

0.727 1.476 2.015 2.571 3.365 

The listed values can be interpreted to state that 95 
percent of the area under the t probability density curve 
lies within the t values of -2.571 to +2.571, and 5 percent 
of the area (with symmetry) lies outside these values. 
Examine Figure 2.4-6. 

Example 2.4-3 t Distribution 

If P{ -2 ~ t ~ t*} = 0.25, what is t* for v = 10? 

Solution: 

From Table C.3 in Appendix C for the t distribution, the 
P{t ~ 2) ~ 0.96; hence P{t > 2} ~ 1 - 0.96 = 0.04. By 
symmetry, P{t s - 2} = 0.04. The total area from -00 up 
to t* is P = 0.04 + 0.25 = 0.29, which corresponds to 
P{t ~ t*) = 0.29. By use of symmetry again, P{t ~ - t:;J ~ 

1 - 0.29 = 0.71, and from Table C.3, t* = -0.56. 

pet) 

p= 0.04 

FIGURE E2.4-3 

2.4-3 Distribution of the Variance Ratio 

A useful distribution developed by R. A. Fisher (the 
basis of the descriptor F) for the analysis of variance and 
in model building, topics to be discussed in subsequent 
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chapters, is the distribution of the variance ratio. If two 
samples are taken, one consisting of ns independent 
measurements of a normal random variable Xl which has 
a mean of ILl and a variance of O'~, and the other sample 
consisting of n2 independent measurements of the normal 
random variable X2 which has a mean of IL2 and a 
variance of O'~, then the random variable F is defined as 

. : S2/O'2 

F(Vh V2) = ~/ ~ (2.4-15)
O'2S2 

with VI = ns - 1 and V2 = n2 - 1 degrees of freedom. 
The degrees of freedom associated with the numerator 
and denominator are those associated with s~ and s~, 

respectively, and may differ from (n - 1) if the sample 
variances are calculated by an equation other than 
Equation 2.4-2. If O'~ = O'~ = 0'2 and Equation 2.4-10 is 
used, F can be related to X2 

: 

(2.4-16) 

In the argument of F the degrees of freedom for the 
numerator of Equation 2.4-16 are given as the first 
number. 

Tables of the probability distribution of F, P(F) =f:· p(F) dF, are in Appendix C; refer to¥Table C.4. 
The probability density of F is given by 

(2.4-17) 

and is illustrated in Figure 2.4-7. 
The ensemble mean and variance of Fare 

C{F} = _V_2_ (2.4-18) 
V2 - 2 

(2.4-19) 

1.0 ----~----or_---__r_---...., 

0.8
 

. 0.6
 
~ 
"'-" 

~ 0.4 

0.2 

1.0 2.0 4.0 
F 

FIGURE 2.4-7 Probability density of Ffor various values of VI, V2. 

A useful relation is 

F(V2' VI) for P{F ::; Fa} = k is equal to 

Example 2.4-4 Variance Ratio 

Let V1 = 10, V2 = 4. Then forP{O -s F .s F.} = 0.95, 
what is F* ? 

Solution: 

If P{O ::; F ::; F*} = 0.95, then P{F > F*} = 0.05. From 
TableC.4 in Appendix C, F*(10, 4) = 5.96. 

It is also true that 1/5.96 = F* for P{F ==:; Fa} = 0.05 with 
VI = 4 and V2 = 10 degrees of freedom. 

2.4-4 "P.ropagation of Error" 

A useful feature ofexperimentation is that experimental 
measurements can be used to estimate the ensemble 
mean and variance of a variable which cannot be directly 
measured. For example, in a material balance, if all 
the random variables except one are measured, the 
ensemble mean and variance of the remaining variable 
can be estimated. We now inquire as to how the engineer 
can predict the ensemble mean and variance of an 
unmeasured variable from the ensemble mean and 
variance of measured variables. 

The ensemble mean of a linear function of random 
variables is equal to the. same linear combination of the 
respective means, as indicated by Equation 2.2-1(1. Thus, 
if Y = aX + b, 

cf{Y} = acf{X} + b (2.4-20) 

The ensemble variance of a linear function of random 
variables is given by Equation 2.2-9 or 2.2-9a. For 
example, for the single random variable X, 

Var {Y} = a2 Var {X} (2.4-21) 

We shall now illustrate the application of Equations 
2.2-1d, 2.2-9a, 2.4-20, and 2.4-21. 

Example 2.4-5 Controller Error 

A process controller as indicated in Figure E2.4-5, senses 
the values of two streams, and produces an output signal. 
Each of the sensed streams has error; in addition, the 
controller introduces error into the output signal. The 
functional relationship between y and the x's is 

y = 100 +aIx1 + a2X2 

The units of Xi and y are millivolts. The "errors" in the 
signals shown below as percentages of the value of the 
ensemble means of the signals represent three standard 
deviations in the units of x. The expected values of the errors 
are zero. For the indicated values, calculate the "error" in 
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z 

FIGURE E2.4-5 

y and z, similarly expressed as three standard deviations. The 
gain of the controller is unity. 

Constants "Error" 
Signal at ~x (3ax ) 

Xl 5 100 5% 
X2 2 150 470 

Controller 270 of mean value 

Solution: 

Let us assume that Xl = Xl + El and X 2 = X2 + E2, 

where Xl and X 2 are stochastically independent variables. 
Then Y = alXl + aIEl + a2X2 + a2E2 + 100. 

The output of the controller is 

g{ Y} = a,g{Xl} + a2g{x2} + 100 

= 5(100) + 2(150) + 100 = 900 mv 

The variance of the variable Y is 

Var {Y} = a~ Var {Xl} + a~ Var {X2 } 

= a~ Var {El} + a~ Var {E2} 

30'1= 0.05(100) or 0'1 = t; a~ = (t)2 

30'2 =0.04(150) or 0'2 = !; a~·= (i)2 

Var {Y} = 25(t)2 + 4(i)2 = 199 (mv)2 

The variance of the controller is 

3Ucontr = 0.02(900) or Ucontr = !.l-; 

Then, assuming that the error introduced by the controller 
is additive to the error of y 

Var {Z} = l.i.2. + 3~~ = 10g!U (mv)2 

Gz = V1.Qg.2.~ = J.l­

so that 3az = 33 mv. The percent "error" in Z is (!o~6)(100) 

= 3.7 percent. 

If the functional relationship between variables is 
nonlinear, the function must first be linearized in order 
to apply Equations 2.4-20 and 2.4-21 or 2.2-1d and 
2.2-9. The mean and variance computed for the linearized 
expressions are only approximate and apply only in the 
vicinity of the state about which- the variables in the 
function have been linearized. 

The basic technique underlying linearization is the 
expansion of the troublesome function in a Taylor series 
about a mean or reference value of the variable in the 
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domain of interest. A Taylor series for a function of one 
variable, !(x), about an interval centered on x = a is 

2 
j(x)=j(a) +df(a) (x-a)+ d j (a) (x-a)2 + .. . (2.4-22)

dx dx" 21 

Linearization is achieved by dropping the second- and 
higher-order terms. 

For example, in the function 

the term e- X is nonlinear; a graph of e- X appears in 
. Figure 2.4-8. Now if we are only interested in small 
values of x, i.e., values of x only slightly removed from 
x = 0, we may expand e - x about x = 0 by using Equation 
2.4-22: 

1 e- X = 1 - x + - x2 + ...
2! 

~l-x 

The general procedure of linearization, then, is to expand 
any nonlinear functions in a Taylor series about some 
mean or other constant value of the variables and to 
retain only the linear terms. 

For a function of several variables, the truncated 
Taylor series can be expressed as 

(2.4-23) 

where the superscript zeros refer to the reference state 
for the expansion. 

~ 
I 
~ 

0 2 3 4 5 6 

0.6 

0.4 

0.2 

0.0 

x 

FIGURE 2.4-8 A graph of the function e - x versus x. 
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For example, for a function of two variables x and y 
expanded about Xo and Yo, 

of(xo, Yo) ( )
f(x, y) ~ f(xo, Yo) + ox x - Xo 

+ af(~; Yo) (y - Yo) 

Keep in mind that the partial derivatives are constants 
that have been evaluated by introducing Xo and Yo into 
the appropriate expression. 

Once the function has been linearized by Equation 
2.4-22 or 2.4-23, the mean and variance are (assuming the 
random variables are independent so that Equation 
2.2-9a applies) 

lff{f(X1 , ••• , X n) } ~ [f(x~, . . . , x~)] 

+ i [af(X~'a;i" X~)] 
t=l 

x [C{(Xt - xP)}] (2.4-24) 

Var {I(X!> . · ., Xn) } ~ i [af(X~'a;i" X~)r Var {Xi} 
i=l 

(2.4-25) 

where x? might be the value of the sample mean Xi' for 
example. 

A special case of Equation 2.4-25 occurs when the 
original function is of the form 

because then 

'QyO)2 (Q yO)2
Var{Y} ~ ( ~~ Var{X1} + ... + :~ Var{Xn} 

,or, as is more commonly encountered, 

(2.4-26) 

Example 2.4-6 Mean and Variance of a Nonlinear Function 
of a Random Variable 

Van der Waals' equation can be solved explicitly for P as 
follows: 

P = nRT n 
2a 

(V - nb) - V 2 

where 

P = pressure (a random variable) 

n = number. of moles 

V ~ volume (a random variable) 

a, b = constants 

Assuming n = 1·g-mole,
 

ern" )2
a = 1.347 x 106 atm (--I g-mo e 

ern" )b = 38.6(--I ' g-mo e 

for air, T = 300oK, and that the ensemble mean and,variance 
for Yare, respectively, 100 ern" and 1 ern", find the mean and 
variance of P in atm. The ideal gas constant 

3)(atm)
R = 82 06 (cm

. (OK)(g-mole) 

Solution: 
Since Van der Waals' equation is nonlinear in V, it 

must first be linearized. Expand the function in a Taylor 
series, dropping terms of higher order than the first. 

2a] 2a]
nRT n [ nRT n 

P ~ [ Vo - nb - V8 + - (Vo - nb)2 + 2 vg (V - Vo) 

3n2anRT _ + VonRT]

[
Vo - nb vg (Vo - nb)2 

nRT n 2a]
+ [ - (V - nb)2 + 2 vg V o 

= ex + {3V
 

Then apply Equations 2.4-20 and 2.4-21 :
 

cf{P} = ex + {3cf{ V}
 

Var {P} = [32 Var {V} 

(82.06)(300) _ (3)(1.347 x 106
) 

[ex = (100 - 38.6) (100)2
 

(100)(82.06)(300)]
 
+ (100 - 38.6)2
 

= 648 atm
 

~ = [ (82.06)(300) (2)(1.347)106
] atm 

fJ (100 - 3816)2 + 106 ern" 

= - 3.84 atm/cm" 

cf{P} = 264 atm 

Var {P} = 14.75 atrn? 

These results hold for small perturbations about Va. 

Example 2.4-7t Estimate of Error in a Heat Transfer 
Coefficient 

Consider a laboratory experiment dealing with the 
unsteady-state heating of water in a steam-jacketed open 
kettle. The apparent overall heat transfer coefficient is 
given by 

WCp (dT)
o, = A D..T a dt 

t Adapted from D. A. Ratkowsky, J. Chern. Eng. Ed. 3, 3, 1965~ 
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where 

W = weight of water, lb 

C" = heat capacity of water, Btu/(lb)("F) 

A = area of kettle in contact with water through 
which heat transfer can take place, ft2 

!:i.Ta = apparent temperature difference between steam 
and water at any instant, T, - Tw , of 

(dT/dt) = slope at any instant of the curve of water tem­
perature versus time 

We assume that all the listed variables are random variables. 
The initial temperature is room temperature. 

Find the expected value of U; and its precision at the 
condition when !:i.Ta = 60°F. 

Solution: 

From Equation 2.4-26, assuming that the variables are 
independent, 

We shall consider the measurements and estimated vari­
ance of each term in sequence . 

aw: 200 lb of water were measured out in 25-1b batches. 
If each batch were weighed within maximum error 
limits of ± 0.30lb, assume that the error represents 
three sample standard deviations. Therefore sw, = 
0.30/3 = 0.10 lb. 

W = WI + W2 + . .. + Ws 

so that by Equation 2.2-9a, if the weighings were 
independent, 

a~ ~ ~ = 8s~, = 0.08 Ib2 

o»; : The heat capacity of water is known with sufficiently 
great precision that we can assume that there is no 
uncertainty in the value of C,,; i.e., a~. = O. 

aA: As heating continued, expansion of the water took 
place, causing the wetted area to increase . However, 
the term" apparent heat transfer coefficient" implies 
that the increase in the area was ignored in favor of 
using the wetted area at room temperature. From 
measurements of the liquid depth, and a knowledge 
of the geometry of the kettle, it was estimated that 
A = 8.74 ft2 with an uncertainty of 3sA = 0.45 ft2. 
Therefore, 

0.45 2 
SA = -3­ = 0.15 ft 

a~ ~ ~ = 0.0225 ft2 

a aTa :	 The temperature of the steam, assumed to be 
saturated steam, was determined from the steam 
pressure which was measured with a mercury 
manometer. Pressure variations were kept within 
the error limits of ± 1 inch Hg, i.e., ± 0.5 psi., 
about a set value of 5 psig. The steam temperature 
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therefore varied between maximum limits of ± 1.5°F. 
Thus, 

1.5 050F 

ST, = T = . 

S¥, = 0.25 ("F)2 

The water temperature was measured by using the 
average value of two thermocouples, each thermo­
couple indicating between error limits of ±0.5°F. 

Tw = (t)(TW 1 + Tw. ) 

s¥w = W(S¥WI + s¥w,) = (i)(0~5r 
= 0.0138 ("F)2 

Therefore, since sr; = T, - Tw 

a~Ta ~ S~T. = 0.25 + 0.01 = 0.26 ("F)2 

aelT /elt:	 The derivative of temperature with respect to time 
at the particular time t where !:i.Ta = 60°F was 
determined from the tangent drawn to a plot of 
water temperature versus time. After several trials, 
taking into account the various possibilities for 
drawing a smooth curve through the points and 
considering the precision of drawing a tangent to a 
curve, a reasonable estimate for the derivative 
d'I'[dt was 3.0°F/min with variance 

a~Tl elt ~ S~Tlel' ~ 0.048 ("F/min)2 

The average value of the apparent overall heat transfer 
coefficient, Us, was calculated as 

- = (200)(1)(3.0)(60) = 68 6 B /(h )(f 2)(OF)V
a (8.74)(60) . tu r t 

and the estimated variance was 

-2 _ 2 _ 2[ 0.08 0.0225 0.26 0.048] 
a u. - S Ua - (68.6) (200)2 + (8.74)2 + (60)2 + (3.W 

= (68.6)2[2 x 10- 6 + 2.95 X 10- 4 

+ 7.22 X 10- 5 + 0.00533] 

= (4706)(0.00570) = 26.82 

The estimated standard deviation of U; was 

The estim ate of a u. is only approximate because the 
sample variances themsel ves were only approximate and the 
ensemble variance for U« was estimated from a linearized 
relation. Another way to estimate a u. would be to calculate 
SUa from repetitive experiments. A reexamination of the error 
analysis shows that the largest contribution to the experi­
mental error lies in the term involving d'F[dt. The error 
in U« could best be reduced by reducing the error in the 
temperature-time curve and the evaluation of its slope. 

Keep in mind that the error analysis as outlined in this 
section encompasses only one phase in the analysis of 
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measurement error. As discussed in the introduction to 
this chapter, a fixed displacement or bias can contribute 
to the overall error and cannot be overcome by repli­
cation. If the engineer wants to estimate, for example, 
pressure with a Bourdon gauge, he cannot simply take 
ten Bourdon gauges and then average the resulting ten 
readings unless the factory or some other source has 
recently calibrated each instrument. Without such cali­
brations the instruments from one lot, for example, might 
all be biased to read high. Proper calibration, either by 
adjustment of the gauge or by application of correction 
constants, would help to ensure that the readings are 
unbiased. Unfortunately, we do not always work with 
instruments that have just been calibrated; consequently, 
we must not forget to consider possible bias. 

2.4-5 Sample Correlation Coefficient 

·,····The sample correlation coefficient, PXY, is an estimate 
of the ensemble correlation coefficient, PXy, which is 
defined in Equation 2.2-14. The sample covariance is a 
random variable defined as 

* - ­SXY = (n _ 1 1) L.t (Xi - X)( Yi - Y)ni (2.4-27) 
i=l 

and may alternately be computed, noting that 
n n 

~ (Xi - X)(Yi - Y)nj = ~ njXjYj - nXY 
i=l i=l 

as 
n n n 

SXY = (n ~1) [~ niXj Yi - ~~ niXj ~ n,Yj] (2.4-27a) 
i=l i=l i=l 

Consequently, the sample correlation coefficient is 

A SXY 
P:XY S (-1 ~ PXY ~ + 1)= -S. x Y 

= _1_ *(Xi - X)(Yi Y)n;-
(n - 1) ~ Sx Sy· (2.4-28) 

1=1 

If an empirical model is proposed and a series of 
designed experiments carried out to determine the re­
lationship between two variables, and the observations 

y 

• 
•• • 

• ••.~ . •• 
x 

(a) 

FIGURE 2.4~9 Probability density of the sample correlation 
coefficient, PXy. 

for one or both variables contain error, then the pro­
cedure of regression analysis can be applied as described 
in Chapter 4 and 5. On the other hand, if one simply 
measures or observes two variables in a random sample, 
it is possible to calculate a measure of the linear associa­
tion between the variables, namely the sample correlation 
coefficient. No distinction is made between the variables 
as to which is the independent and which the dependent 
one. If, for some reason, one of the variables, although 
random in the population, is sampled only in a limited 
range or picked at preselected values, then the sample 
correlation coefficient is a distorted estimate of the 
ensemble correlation coefficient. t 

The distribution of the sample correlation coefficient, 
PXY, is quite complicated. It is symmetrical only for 
PXy = 0 and very skewed if IPXY I is large, unless n is 
very large (refer to Figure 2.4-9). Fisher. described a 
transformation of PXy, 

z* = tanh- 1 PXY = tIn 1 + ~Xy 
1 - PXY 

where z* is approximately normally distributed for any 
PXY and moderate values of"n. 

-r Refer to C. Eisenhart, Ann. Math. Stat. 10, 162, 1939; and M. 
Ezekiel, Methods of Correlation Analysis, John Wiley, New York, 
1941, Chapter 20. 

y 

• 
•• • 

x 

(b) 

FIGURE 2.4-10 Scatter diagrams of hypothetical data with essentially zero correlation. 
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y y 

.\ •...••• 
•.:..... 

x 
(a) (b) 

FIGURE 2.4-11 Scatter diagrams for data with high positive correlation. 

The sample correlation coefficient is an estimate of 
PXy; tests which are made ] are based on an assumed joint 
normal distribution for both X and Y. Nonnormality can 
lead to quite biased estimates and hence erroneous 
conclusions. 

When interpreting sample correlation coefficients, it is 
wise to observe certain precautions. As Figure 2.4-10b 
shows in a qualitative way, the sample correlation coeffi­
cient can be quite close to zero and yet the variables 
X and Y be related rather well by a nonlinear function. 

.If the sample correlation coefficients were to be calculated 
for the data in Figure 2.4-10b, the coefficient would be 
near zero. We can conclude that a nonlinear relation can 
exist between two variables which will not be detected 
by the analyst who uses only the sample correlation 

t For various tests which can be made for PXY together with 
tables and charts, see E. S. Pearson and H. O. Hartley, Biometrica 
Tables for Statisticians, Vol. I (2nd ed.), Cambridge Univ. Press, 
1958; R. A. Fisher and F. Yates, Statistical Tables for Biological, 
Agricultural, and Medical Research (3rd ed.), Oliver and Boyd, 
Edinburgh, 1948; and F. N. David, Tables of the Correlation 
Coefficients, Biometrika Office, University College, London, 1938. 

TABLE E2.4-8 

coefficient as his measure of the relation. Figure 2.4-11 
illustrates the necessity of using homogeneous data to 
avoid a spurious correlation which arises when two non­
homogeneous groups of data are combined in calculating 
the sample correlation coefficient. Finally, it is essential 
to keep in mind that a significant correlation does not 
prove that a causal relationship exists between two 
variables. 

Example 2.4-8 Sample Correlation Coefficient 

Eight lots of polymer were taken randomly from a 
process and two characteristics measured: (1) sedimentation 
rate and (2) crystallinity. What is the sample correlation 
coefficient between these two variables? 

Sedimentation rate 15 11 8 8 6 4 3 
Crystallinity 8 8 7 543 2 

Solution: 

The sample correlation coefficient can be calculated from 
Equation 2.4-28 as shown in Table E2.4-8. 

In general, a value of PXy = 0.937 is "high"; consult the 
aforementioned references for appropriate tests. 

Yf 
Xh Sedimentation 

Crystallinity Rate (xt - X) (yt - Y) (Xt - X)2 (yt _ Y)2 (xt - X)(Yf - Y) 

1 1 -4 -6 16 36 24 
2 3 -3 -4 9 16 12 
3 4 -2 -3 4 9 6 
4 6 -1 -1 1 1 1 
5 8 0 1 0 1 0 
7 8 2 1 4 1 2 
8 11 3 4 9 16 12 
8 15 3 8 9 64 24 

- - - - - - -
40 56 0 0 52 144 81 

:%=5 Y=7 

PXY = 
L (Xi - X)(yt - Y) 

VL (Xt - X)2 2 (Yf ­ y)2 

= 
81 

= 0.937 
V(52)(144) 
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Problems 

2.1	 Accumulate 20 pennies. Predict what type of prob­
ability function you would expect to find for each of 
the following experiments, and write its equation 
down or draw a sketch. Then take the pennies and 
perform the ind icated experiments. Compare your 
experimental relative frequencies with the predicted 
probabilities. 
(a)	 The distribution of the sizes of the pennies 

rounded off to the nearest inch. 
(b)	 The distribution of the sizes of the pennies 

rounded off to the nearest 0.5 mm . 
(c)	 The distribution of the sizes of the pennies 

rounded off to the nearest n/o0 of an inch . Use 
a micrometer. 

(d)	 The distribution of heads when each coin is 
tossed once ; the distribution of tails; the distri­
bu tion of standing on edge. Are there are other 
outcomes ? 

(e)	 The distribution of the years of manufacture on 
the coins. 

(f)	 The distribution of the ending (right-hand) 
digits of the year of manufacture ; the distri­
bution of the first (left-hand) digits. 

2.2	 Draw a graph of the probability function and the 
cumulative probability function of a discrete random 
variable which has the cumulative probability distri­
bution given by 

o x < 0 
x + 1

P {X 5 x } = - - x	 = 0, 1,2, . .. , n 
n + I{
1 x > n 

Wh at is P{X = 3}? 

2.3	 Given that the probability distribution function for a 
continuous random vari able is 

x < 0 

PCx) ~ P IX -s x} ~ {~	 O sx sn 

x >n 

plot the probability distribution (versus x) and 
determine and plot the relation for the probability 
density. 

2.4	 The Rayleigh probability density function is 

r> 0 

where 0 2 is a constant. Determine the Rayleigh prob­
ability distribution function , P(r), and plot both 
per) and Per) for several values of 0 2. (P(r) corre­
sponds to the probability that a point on a plane, 
who se coordinates are independent normall y distribu­
ted random variables, lies within a circle of radius r .) 

2.5	 By analogy with thermodynamics, the "entropy" for 
a discrete probability function can be defined as 

n 

H(n) = - )' P(Xk) In P(Xk) 
.........
 
k=l 

where P(Xk) = P{X = Xk}. Under what circumstances 
is H = 0, and what is the interpretation of your 
answer? Under what circumstances does the greatest 
uncertainty exist , and what is P (Xk) then? What is 
H(n) then? Under what circumstances is the entropy 
a minimum. What is H(n) then ?	 •..1, 

2.6	 The Maxwell probability density is i 
! 

.:~ 

V2	 ..2 2 2 2 !p(x) = --_ .r e- x I a U( x) 
a 3 V7T 

Show that p(x) ~ 0 and that f :: co p(x) dx = 1.
 
U(x ) is the unit step function and a is a constant.
 

2.7	 The joint probability of X and Y is given in the table 
below. Show that X and Yare independent. 

x 
1 2 3 4 

.L I0	 i\ -lz 12 i~ 
.L 1 I .LY 1 12 6 6 12 

-.L .L 2	 -h '.1-4 j
1 2 12 

I 
J 
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2.8	 If the probability density of X is 

1 [(x. - I-tX)2]
p(x) =	 ~ j- exp - 2 2 

V 27TClX ClX 

and the probability density of	 Y is 

1 [(y - l-ty)2]
p(y) =	 ---=== exp - 2

V 27TCly 20'y 

what is the probability density of X and Y, p(x fl y) = 
p(x, Y), if X and Yare independent random variables? 
(fl is defined in Appendix A.) 

2.9	 What is the meaning of "joint probability distri­
bution"? Give an example of. both a discrete and a 
continuous joint distribution. Draw a picture and 
label axes. 

2.10	 Is it possible to integrate and differentiate random 
variables? 

2.11	 What is the expected value of each of the following 
quantities? (Y is a random variable; y is a deter­
ministic variable; a is a constant.) 

d 2 y 
(a)	 dt 2 

d2y 
(b)	 dt 2 

(c)	 f(Y) = Ioa (6Y + 5) e :' dt 

n 

(d)	 fey) = 2: iY? 
t=1 

2.12	 What is the expected value of the dependent variable 
in each of the following differential equations? 
(X and Yare random variables; a and b are constants; 
y is deterministic.) 

d 2 y dY 
(a)	 dt 2 + a = X(t)

dt 

BY	 8Y 
(b)	 - + a-= b(Y- y)

8t	 8x 

2.13	 Find the ensemble mean (expected value) of: 

(a)	 The Rayleigh random variable (see Problem 2.4) 
(b)	 The random variable X which is uniformly 

distributed in the interval a ~ X ~ b, and zero 
elsewhere. 

2.14	 For which of the following probability densities is 
the random variable X stationary in the strict sense? 

(a)	 p(x) = ~12~ax exp [_(x"~;x)] 
(normal random variable) 

(Poisson random var iable) 

2.15	 Find the ensemble mean of the dependent variable in 
the following process models (capital letters are the 
random variables). 

(a)	 Heat transfer 

T(XI) = TI O 
T(X2) = T20 

(b)	 Mass transfer 

C(O, x) = 0 
8C	 82C C(t,O) = Co8i =	 a 8x2 

lim	 C(t, x) = 0 
x-+ 00 

2.16	 Find the ensemble mean and variance of the random 
variable X which is represented by the rectangular 
density 

p(x) = -
1 

for (-~ < X < ~) 
a 2 - -	 2 

p(x) = 0 elsewhere 

2.17	 If the variance of a random variable X is 0.75, what 
is the variance of the following random variables? 

(a)	 5X
 

X

(b) 

2 

(c)	 (X + 7) 

(X ~	 3)(d) 

2.18	 Under what circumstances is cS'{X}cS'{ Y} = cS'{XY}? 

2.19	 State in each case whether the random variable X is 
a stationary random variable (in the weak sense) or 
not and explain why. 

(a)	 X(t) = cos (at + I") (I' is a random variable) 
(b)	 X(t) = A cos wt + B sin wt 

(A and B are random variables) 
(c)	 X(t) = a Y + bt (Y is a random variable) 
(d)	 ·X = a Y + b (Y is a random variable) 

2.20	 Given the random variable Y(t) below and a corre­
sponding probability density, calculate its autocorre­
lation function. 
Variables: 

A ei rot (a)	 yet) = (A is a random variable; iis the 

V=1) 
(b)	 yet) = Al cos wt + A 2 sin cot 

(AI, A 2 are independent random variables) 
(c)	 Y = Ax + b (A is a random variable inde­

pendent of time) 

Densities: 

(a)	 pea) = b1 
IAI ~"2 

b 

b 
pea)	 = 0 IAI >"2 

= c e- a 2 b(b)	 pea) / where c is a constant to be 
determined 
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2.21	 Determine the autocovariance for the random vari­
ables of Problem 2.20. 

2.22	 Are X and Y independent variables? The boxes give 
the values for the joint probability density. 

X 
. 1 2	 3 

Y 2 

3 

! t t 
---------

t 1 1 
1-6 16 

r----------
t 1 1 

16 f6 

2.23	 If X is a random variable with a mean of ftx, what are 
the c9'{X}, c9'{2X}, <f{X + I}, c9'{2X + I}, cf{X2}, and 
<f{X - ftx}? Note <f{X2} #- cf{(X)}2. Determine the 
corresponding variances, i.e., Var {X}, Var {2X}, etc. 

2.24	 The joint probability density function for two random 
variables X and Y is given by 

p(x, y) = x + y for 0 ~ X ~ 1 

o ~ Y ~ 1 

p(x, y) = 0 elsewhere 

Find the ensemble correlation coefficient between 
Xand Y. 

2.25	 Given the indicated joint probability density, calculate 
the crosscorrelation function rXy(tI, t2 ) of the random 
variables X and Y. 
(a)	 X and Yare independent random variables 

uniformly distributed in the intervals (0, a) and 
(0, b), respectively. 

(b)	 X and Yare jointly normal random variables 
whose probability density is 

p(x, Y) = A exp - (ax 2 + bxy + cy2 + dx + ey) 

where 

ax2 + bxy + cy2 + dx + ey ~ 0 

2.26	 A Jumped stochastic process can be represented by 
the following model: 

dY(t) + 2 Y(t) = X(t) 
dt 

Y(O) = 0 

where X(t) is a stationary random input to the process 
4 + 2 e- 1f l with c9'{X(t)} = 2 and rxx(r) = where 

r = t2 - t1 • Find: 

(a)	 c9'{ Y(t)} 
(b)	 rxy(/2 , II) 

(c)	 ryy(/2 , t1 ) 

2.~7	 The random variables X and Yare independent with 
the respective probability densities p(x) = e- X and 
p(y) = e:", with X ~ 0 and Y ~ O. Calculate the 
crosscovariance and the correlation coefficient of 
Xand Y. 

2.28	 Define correlation in terms of covariance and vari­
ance, and briefly discuss the statement that "inde­
pendent variables are uncorrelated, but. not all 
uncorrelated variables are independent." 

(a)	 Give an example in which zero correlation 
implies independence. 

(b)	 Give an example in which zero correlation does 
not imply independence. 

Use a bivariate distribution in both (a) and (b). 
2.29	 If the random variable X is uniformly distributed in 

the interval - a to a, p(x) = 1/2a in the interval and 
zero elsewhere. What are the zeroth, first, and second 
raw and central moments of X? 

2.30	 What ar~ the zeroth, first, and second raw moments 
of X if p(x) is the exponential probability density 
p(x) = k e - X? What is k? How can k be evaluated? 

2.31	 Prove that the peak of the standard normal prob­
ability density curve is at ftx and the inflection points 
at ftx ± ax· 

2.32	 What are 
(a)	 P{ U > 0.4} 
(b)	 P{U> -0.4} 
(c) P{I UI < 0.4}
 

for the standard normal random variable?
 

2.33	 Assume that density of a product is represented by 
the normal distribution, and it is known that the ft of 
the density is 6.4 glee and a2 is 1.4 (g/cc)2. What is the 
lowest value of the density that can be in the upper 
15 percent of all the densities? 

2.34	 If the distribution of the diameters of screw threads 
can be represented by the normal distribution, and 
the diameter has an ensemble mean of 0.520 inch 
and an ensemble standard deviation of 0.008 inch, 
determine the percentage of threads with diameters: 
(a) between 0.500 and 0.525 inch, (b) greater than 
0.550 inch, and (c) equal to 0.520 inch. 

2.35	 What is the probability of the standard normal ran­
dom variable having a value between: (a) 0 and 1~ 

(b) -	 2 and 0, (c) - 3 and 3, and (d) 0.5 and 0.52? 

2.36	 Prove that the mean of the standardized normal 
variable is 0 and its variance is 1. What is the prob­
ability that a variable (represented by the standard 
normal distribution) is exactly 1? 

2.37	 If Y is a standard normal random variable, find: 
(a)	 P{ Y > 0.2} 
(b)	 P{0.2 < Y < 0.3} 
(c)	 P{ -0.4 ~ Y ~ 1.0} 
(d)	 P{Y> 2} 

2.38	 By integration of the probability density, show that 
the variance of U, the standard normal variable, is 1. 

2.39	 By use of normal probability paper, determine if the 
following data can be represented by the normal 
distribution. 

Value of 
Number Variable (in) 

5 6.00-6.19 
18 6.20-6.29 
42 6.30-6.39 
27 6.40-6.49 
8 6.50-6.59 
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2.40	 Select 100 digits at random from the phone book by 
selecting the next to the last digit in 100 telephone 
numbers, Can these data be represented by the normal 
distribution? 

2.41	 Compute the following probabilities for r for v = 10. 
(a)	 P{X 2 < 10} 
(b)	 P{X 2 > 10} 
(c)	 P{5 < X2 < 15} 
(d)	 P{X 2 = 3} 

2.42	 .Show that the variance of X2 is 2v where v is the 
number of degrees of freedom. 

2.43	 Make a plot of P{X2 ~ X~} == P(X~) as given by 
Equation 2.3-11 for v = 4. 

2.44	 To illustrate the concepts involved in the distribution 
of the sample mean, carry out the following simple 
experiment. Use the equation 

X~ 9y= 10(1 + ~r(1 - ~) o~ 

to calculate.40 values of the random variable Y from 
40 random values of X. (Look at the middle digit in 
telephone numbers in the telephone book for the X 
values if a table of random values is not available.) 
Make a plot of the relative frequency of Y versus Y 
to illustrate the distribution of Y values. Locate the 
sample mean, and place lines at ± Sy, ± 2sy , and 
± 3sy • Then group your data into 10 groups of 4 each 
and find Y for each group. Plot the relative frequency 
of y~ Use class limits such as 5.0 to 5.5, etc.; place 

lines at ± 1sy /V n, ± 2sy /Vn, and ± 3s y/Vn on the 
second diagram. 

2.45	 A sample- of lightbulbs from Lot 16 fails as follows: 

Lifetime (he) Number 

2000-2999 12 
3000-3999 64 
4000-4999 35 
5000-5999 14 

Find the sample average lifetime for this lot. 

TABLE P2.48 

2.46	 Find the sample mean, variance, and standard devia­
tion of the following experimental data. 
(a)	 Background counts prior to detection of a 

radioactive sample; each count is for two 
minutes: 

12, 15, 10, 18, 14 

(b)	 Counts recorded for the radioactive sample; 
each count is for two minutes: 

95, 92, 103, 89, 88, 95, 90, 93, 89, 102 

2.47	 Eight pairs of analyses were carried out on batches of 
acorns to determine their fiber content. The results 
were as shown below. 

Day of Tree Tree 
Analysis A (%) P(%) Difference (%) 

I 37 37 0 
2 35 38 3 
3 43 36 -7 
4 34 47 13 
5 36 48 12 
6 48 57 9 
7 33 28 -5 
8 33 42 9 

Analyze the data first as if there were 16 unpaired 
analyses, and determine the variance for the sample of 
16, Then take into account the fact that pairs of 
analyses were carried out, and calculate the sample 
variance. Which variance is less? 

2.48	 A new technique has been employed in the manu­
facture of a solid-solution organic fluor having a high 
efficiency and short resolving time suitable for 
application in scintillation counters for particle 
detection. Although the recipe is fairly straight­
forward, experience has shown that success is not so 
much a result of doing the right things as it is a 
consequence of avoiding the wrong ones. Table P2.48 
gives data on the relative sensitivity of various 
specimens. . 

Composition 

Code 
Number 

Relative 
Sensitivity 

Number of 
Samples 

Xl (grams), 
Terphenyl 

X 2 (grams), 
TPBD 

Xa (grams), 
Zinc 

Stearate 

53 
54 
55 
57 
59 
60 
61 
63 

29.4 
26.9 
26.3 
21.2 
26.3 
23.1 
26.8 
25.4 

2 
3 
5 
2 
2 
3 
3 
2 

207 
212 
220 
210 
205 . 
213 
200 
217 

25 
25 
25 
25 
25 
25 
25 
25 

8.3 
7.9 
7.2 
8.0 
7.7 
8.2 
7.8 
7.8 
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(a)	 Determine the following for each random 
variable X: (1) sample mean of Xt, (2) sample 
variance of XI, and (3) sample standard devia­ 2.57 
tion of Xt• 

(b)	 Determine the following for the variable Z = 
Xl + X2 + X 3 : (1) Z itself, (2) estimated mean 
of Z, (3) estimated variance of Z, and (4) esti­
mated standard <leviation of Z. 

2.49	 For P = 0.99, determine the values of t for: 
(a)	 A symmetric interval about t = 0 (two tailed). 
(b)	 A one-sided interval for t = - 00 to t. 

2.50	 What are: 

(a)	 P{t ~ 3} for v = 4 degrees of freedom? 

(b)	 P{lt I < 2} for v = 30 degrees of freedom? 

(c)	 P{t = 5} for v = 4 degrees of freedom? 

(d)	 P{t > 6.2053} for v = 2 degrees of freedom? 

2.51	 For v = 5 and {t ~ t*} = 0.10,. what is t*? 

2.52	 Given that P{F > F*} = 0.05, compute F* for the 
2.58

variance ratio distribution with V1 = V2 = 5 and for 
V1 = 3 and V2 ~ 10. 

2.53	 If F* is 7.00 for V1 = 6 and V2 = 5, what is P{F ~ F*}? 

2.54	 Dalton's law for a binary is 

_ PA
YA - . 

PT 

At three atmospheres, find the mean and variance of 
the random variable, the mole fraction, YA , in terms 
of the mean and variance of the random variable, 
the partial pressure, PA. PT is not a random variable. 

2.55	 The .saturation (humidity) curve can be calculated 
from the relation 

Ps.u, = --P­
PT - s 

where: 

H, = molal humidity at saturation 

P, = vapor pressure of water 

P1' = total pressure, not a random variable 

Find the mean and variance of H, in terms of the 
mean and variance of P; 

2.56	 The method of Cox (for vapor pressure charts) was 
equivalent to representing the vapor pressure of a 2.59 
substance by the following equation: 

b
InP*=a---­

T-	43 

where a and b are constants. Express the mean and 
variance of P * in terms of the mean and variance of 

(not measured) 

In: 650 SCF/min ----------.......e:
 

Out: 585 SCF/min 

T. If tf{T} = 100°C and Var {T} = I°C2 
, what are 

cf{P*} and Var {P*} if a = 9.80 and b = 28000K -I? 

Find the mean (expected value) and variance of the 
dependent variable in terms of the mean and variance 
of the independent variable(s) in the following 
functions: 

(a)	 k = ko(l + aT) 

where: 

k = thermal conductivity, a random variable 

T = temperature, a random variable 

(b)	 k = ao + a1T + a2 T 2 

(c)	 k= ko(4~\+bb) (4~2) 
3/2 

(d)	 q = UA sr 
where A = area and is a constant, and U and 
sr are random variables. 

If the total gas feed to a catalytic cracker of 650 
SCF/min is composed of: 

JL, SCFlInin Stream Variance, 0'2 

100 Fresh feed 250 
350 
170 
30 

Recycle 
Inert .gas 
Instrumental 

500 
150 
10 

analysis stream 

and the ensemble variances are as shown above in 
appropriate units: 

(a)	 Calculate the ensemble standard deviation of the 
flow of each stream (show units). 

(b)	 Calculate the upper and lower limits on the 
stream flow in units of SCFImin for each stream 
based on 95-percent confidence limits for a 
normal variable (for JL .± 1.960'). 

(c)	 Add together all the upper limits; add together 
the lower limits; compare the difference in totals 
with the corresponding JLx ± 1.960' limits on the 
total stream of 650 SCFImin. Which calculation 
is a better estimate of the dispersion of the 
stream flow? 

The same reactor as in Problem 2.58 has a bleed 
stream amounting to 10. percent of the 650 SCFImin. 
If the ensemble standard deviations were 5 percent of 
the flow of the in and out streams, and the bleed 
stream was not measured, what would the 95­
percent confidence limits (JL ± 1.960') be for the bleed 
stream in SCF/min? See the diagram. 

Bleed: 65 SCF/min 
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Orifice 

is
 
tAp=12 in. Hg 

2.60	 Pressure drops have been measured on a laboratory 
experiment as shown in 'the above diagram. The 
drop through the piping is estimated to be 2 psia. 
The standard deviations (calculated by a student) are: 
orifice = 0.2 in Hg, valve = 0.2 in H 20, and piping = 

0.05 psia. Estimate the precision of the overall (pipe 
including orifice and valve) pressure drop. Will your 
answer percentagewise depend on the system of units 
employed? 

2.61	 Suppose that the ensemble standard deviation for the 
mass velocity G, where G is expressed in Ib/(hr)(ft2), 

is 50. What is the corresponding ensemble standard 
deviation for G when G is expressed in g/(cm)2(sec)? 

2.62	 The Fanning equation for friction loss in turbulent 
flow is 

~p = 2/V
2Lp 

e» 
The symbols and their estimated standard deviations 
are (all variables are random variables): 

~p = pressure drop due to friction, Ib/ft 2 (1.0) 
j' = friction factor (not known) 
V = average velocity of fluid, It/sec (0.5) 
L = length of pipe, ft (0.1) 
D = I.D. (inside diameter) of pipe, ft (0.01) 
p = ..density of fluid, lb/ft" (0.1) 

gc = conversion factor (not a random variable) 

For a 100-foot pipe, 2.16 inches I.D., with water 
(p = 62.41 lb/ft") flowing at 10 It/sec, the measured 
b.p is 59.71 psia. Estimate / and the standard devia­
tion off 

2.63	 Calculate the average lb/hr of gas produced by a 
catalytic cracking unit and the related standard 
deviation, based on the following data: 
F = feed rate, 1000 bbl/hr, with aF = 10 bbl/hr 
G = gas output, lb/hr, with aa to be found 
f = feed gravity, 25° API (317 lb/bbl), with at = 

0.40° API (0.82 lb/bbl) 
L = liquid output, 750 bbl/hr, with aL = 10 bbl/hr 
p = liquid product gravity, 33° API (30 lb/bbl), with 

Up = 0.30° API (0.56 lb/bbl) 
C = coke yield) 16,000 lb/hr, with ac = 800 lb/hr 

F (feed) G (gas) 

'----~ L (liquid) 

""-------~ C (coke) 

2.64	 A plate and frame filter press with 1 ft2 of filter area 
is being operated under conditions such that the 
filtration equation is 

dV Ap 
dt ftcx(W/A) 

where: 

V = ft" of filtrate 
t = time, minutes 

p = pressure drop 
fL = viscosity of fluid 
ex = average specific cake resistance (0 ~ a ~ 1) 

W = weight of dry cake solids 
A = filtration area 

If p, V, t, and A are measured and fL is known to be 
2 cp at 70°F (assumed to be an exact value), find the 
approximate expression for the mean and variance of 
cx in terms of the measured variables. 

2.65	 An equation for heat transfer coefficients for steam 
condensing inside tubes is 

where: 

'f) = viscosity 
h = heat transfer coefficient 
G = mass velocity per unit area 

DE = (4)(mean hydraulic radius) 
C; = heat capacity 
k = thermal conductivity 

D1 , D 2 = diameter of tubes 1 and 2, respectively 

Rank the dimensionless ratios according to the 
relative contributions of each dimensionless ratio to 
the total variance of (dDE/k) if the standard deviations 
a and mean values (fL) are: 

(~:) (D~G) (Ct) 
3 100,000 0.77 

a	 0.5/,0 1% 

(a is expressed as a percent of the mean.) Assume that 
a for the constant, 0.032, is zero (not really true). 

To reduce the variance. contributed by the three 
dimensionless ratios, which factor (ratio) would you 
initially try to measure or control more carefully? 
Which quantity in the factor? 

2.66	 The following diagrams illustrate typical observations 
from experiments. For each diagram, estimate 
roughly the sample correlation coefficient by in­
spection of the diagram (no calculations are required). 
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2.67y 

x 
·(a) 

x 
(b) 

(c) 
x 

2.68 

y 

••••• o 0. 
:s-:••• 

y 

(d) 
x 

(.·.1
••••..:,:.

••• 
x 

(e) 

A series of experiments was carried out to determine 
the neutron energy distribution inside a fast reactor. 
All the experiments involved nuclear plates which 
served as detectors because their small size enabled 
them to be placed into the reactor confines without 
disturbing the reactivity or neutron spectrum. 

Two people, E. A, and J. E., counted the number 
of tracks per 0.1 mev in the same plate with the 
results shown in the following table. Calculate the 
sample correlation coefficient between the individual 
observations. 

Number of Tracks 
(per mev) Incident Proton
 

Energy Interval E.A. J.E.
 

0.3-0.4 12 11 
0.4-0.5 32 30 
0.5-0.6 26 59 
0.6-0.7 21 22 
0.7-0.8 3 17 
0.8-0.9 9 8 
0.9-1.0 9 5 
1.0-1.1 6 4 
1.1-1.2 5 1 
1.2-1.3 4 5 

In a fluidized bed oxidation process, seven runs were 
carried out at 375°C. The conversion of different 
naphthalenic feeds to phthalic anhydride (PA) is 
shown below. What are the sample correlation 
coefficients between the percent conversion and: 
(a) the contact time and (b) the air-feed ratio? What 
is the sample correlation coefficient between the 
contact time and the air-feed ratio? What interpre­
tation can you give your results: 

Contact Air-Feed Mole percent 
Time Ratio Conversion to 

Run (sec) (air/g feed) PA 

I 0.69 29 50.5 
2 0.66 91 30.9 
3 0.45 82 37.4 
4 0.49 99 37.8 
5 0.48 148 19.7 
6 0.48 165 15.5 
7 0.41 133 49.0 



CHAPTER 3
 

Statistical Inference and 
Applications 

One main purpose of experimentation is to draw in­
ferences about an ensemble from samples of the ensemble. 
We can identify three different types of inferences which 
find extensive use in process analysis, namely: (1) param­
eter estimation, (2) interval estimation, and (3) hypoth­
esis testing. All of these types will be described in this 
chapter and will be applied here and in subsequent 
chapters. 

3.1 INTRODUCTION 

If an engineer wants to make the best estimate he can 
of one or more parameters of a probability distribu­
tion or a proposed process model, the problem is termed 
one of parameter estimation. By parameters we mean 
those coefficients that identify or describe the probability 
distribution of a random variable, such as the ensemble 
mean and variance in the normal probability distribution, 
or the coefficients in an empirical process model. Esti­
mation of a single value for a parameter is termed point 
estimation. For example, consider a probability density 
function of known mathematical form of one random 
variable X, p(x,8), which contains one parameter 8 
which is unknown. A random sample (xJ, X2' .•. , xn) is 
taken of the random variable. An estimate is made of the 
value of 8, based on the collected experimental data, by 
calculating a statistic, say the sample mean X. We say 
that X = {lx, where the superscript caret (/'-.) means 
estimator of the superscripted variable. 

A second type of estimation, interval estimation, is 
concerned with the estimation of the interval that will 
include the ensemble parameter for a specified prob­
ability. Clearly, the parameter estimate is only one 
useful statistic; the interval estimate is even more 
informative. 

Interval estimation is closely related to hypothesis 
testing. In hypothesis testing, one or more mathematical 
functions are proposed as representing some feature of 
experimental data. The functions may be similar in form 
and differ only in parameter values, or they may differ in 
form as well. Hypotheses are stated, a criterion of some 
sort is constructed, data are gathered, the analysis is 

carried out, and a decision is reached. For example, 
given p(x, 8) and some criterion, after collecting a sample 
(xJ, X2' •.. , x n) containing n observations, we wish to 
accept or reject the hypothesis that: 8 has some value 
81 , or that 8.is greater than 82 , or even that p(x, ()) has 
the assumed mathematical form. In Chapters 4 and 5, 
hypothesis testing in connection with empirical process 
models will be described. 

To obtain" good" estimates, it is necessary that they, 
in so far as possible, be: (1) unbiased, (2) consistent, 
(3) efficient, and (4) sufficient. 

UNBIASED. An estimate bof a parameter 8 is said to be 
unbiased if its expected value, C{b}, is equal to the 
ensemble value 8. For example, the most commonly 
used estimate of the ensemble mean is .x, the sample 
average, which is an unbiased estimate of ~x. On the 
other hand, it was shown in Section 2.4 that if the sample 
variance is defined as 

instead of 

2 1 "" -2sx = (n _ 1) ~ (Xi - X) ni 

s'; is a biased estimate of ai. 

CONSISTENT. An estimator is said to be consistent if 
the estimate tends to approach the ensemble value more 
and more closely as the sample size is increased; that is, 
the C{(fJ - 8)2} approaches zero as the sample size n or 
the record time tf approaches infinity. More precisely, the 
probability that the estimates converge to the true value 
must approach one as the sample size approaches infinity:" 

p{b -:-+ 8} -+ 1 as n -+ 00 

EFFICIENT. In a few unimportant (to us) cases, incon­
sistent estimates exist, but more often several consistent 
estimates of a given parameter exist. The question arises 
as to which estimate should be used. By comparing the 

49 
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"variances of the estimates, you can select the most 
efficient estimate in the sense that it has the smallest 
variance.] For example, the mean and the median of n 
observations of a normally distributed random variable 
have art expected value of f' and variances of a 2In and 
(a2/n)(7T/2) , respectively. Thus, the variance of the mean 
is less than the variance of the median, and the former is 
more efficient. The criteria of unbiasedness and minimum 
variance cannot be considered separately, because a 
slightly biased estimate with a small variance may be 
preferable to an unbiased estimate with a large variance. 

SUFFICIENT. If {J is a sufficient estimate of 8, there is no 
other estimate of 8 that can be made from a sample of a 
population which will furnish additional information 
about 8. Fisher t showed that the amount of measurable 
information contained in an estimate is the reciprocal of 
its variance; hence the definition of sufficient is equiv­
alent to the requirement for minimum variance. A 
sufficient estimate is necessarily most efficient and also, 
consequently, consistent. If we assume that a sufficient 
estimate exists, the method of maximum likelihood, 
described in the next section, will lead to this estimate. 
X and si prove to be sufficient estimates of f'x and ai for 
a normal distribution. 

We now turn to methods of estimating parameters. 

3.2 PARAMETER ESTIMATION TECHNIQUES 

Quite a number of techniques exist by which param­
eters can -.be estimated, not all of which can be applied 
effectively to any given problem. We shall describe here 
only three techniques. 

1. The method of maximum likelihood (used in 
Chapters 4, 5, 8, and 9). 

2. The method of moments (used in Chapter 9). 
3. Bayes' estimates (used in Chapters 8 and 9). 

The method of least squares will be discussed in Chapters 
4, 5, and subsequent chapters. 

3.2-1 Method of Maximum Likelihood 

A well-known and desirable estimation procedure 
(when it can be carried out) is that of maximum likeli­
hood§ introduced by R. A. Fisher which leads asymp­
totically to estimates with the greatest efficiency but not 
necessarily unbiased. A desirable feature of the maxim urn 
likelihood method is that, under certain conditions (which 
are not too rigorous.), the estimated parameters are" nor­
mally distributed for large samples. In this section we 

t M. G. Kendall and A. Stuart, The Advanced Theory ofStatistics,
 
Vol. 2, Charles Griffin, London', 1961.
 
:f:R. A. Fisher, Proceed. Camb. Phil. Soc., 22, 700, 1925.
 
§ R. A. Fisher, Contributions to Mathematical Statistics, John
 
Wiley, New York, 1950.
 

shall apply the method of maximum likelihood to esti­
mate the parameters in probability density functions. In 
Chapters 4 and 5 we shall apply the method to estimate 
coefficients in a linear empirical process model. 

Suppose that p(x; 8b 82 , ••• ) is a probability density 
function of known form for the random variable X, a 
function which contains one or more parameters 01' 82 , 

.... Also, suppose that we do not know what the values 
of 81 , 82 , • •• are. How can the most suitable values of 
8b 82 , ..• be estimated? One way is to collect a random 
sample of values ofthe random variable X, {Xl' X2, ... , x n} , 

and select the values of 8b 82 , ... , now regarded as 
random variables, that maximize the likelihood function 
L{8b 82 , ..• I Xl, X2, ... , Xn) , a function described in 
Appendix A in connection with Bayes' theorem. Such 
estimators, {Jl' {J2' ... , are known as maximum likelihood 
estimators. In effect, the method selects those values of 
81 , 82 , • •• that are at least as likely to generate the 
observed sample as any other set of values of the param­
eters if the probability density of the random variable 
X were to be extensively simulated through use of the 
probability density p(x I 81 , 82 ... ).11 In making a maxi­
mum likelihood estimate, we assume that the form of 
the probability density is connect (only the 8's need be 
determined) and that all possible values of 8i are equally 
likely before experimentation. 

The likelihood function for the parameters given one 
observation is just the probability density in which the 
observation is regarded as a fixed number and the 
parameters as the variables: 

L(81 , 82 , ... I Xl) = P{Xl; 81 , 82 , ••• ) 

where the lower case x's and the number subscripts 
designate the value of the respective observation that is 
inserted into the probability density function. The 
likelihood function for" the parameters based on several 
observations is the product of the individual functions if 
"the observations are independent: 

L{8b 82 , • •. IXb X2, •.• , X n) 

n 

=n L (81 , 82 , ••• IxJ 
i=l 

= P(Xl; 81 , 82 , ... )P(X2; 81 , 82 " •. ) .. ·p{Xn ; 8h 82 , ••. ) 

(3~2-1) 

In choosing as estimates of 8i the values that maximize 
L for the given values (Xl' X2, ... , Xn) , it turns out that it 

II The expression p(x I 01 , O2 , ••. ) was termed a conditional 
probability density function in Section 2.1. The solid vertical 
line is read as "given." If the values of 0 are fixed, then p(x I 0) 
designates the probability density of the random variable X given 
the value of O. On the other hand, p(0 I x) designates that an 
observation of x is on hand and can be regarded as given (fixed), 
and that 0 is a variable which is a function of the observed value 
of x. 
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is more convenient to work with the In L than with L 
itself: 

In L = Inp(x1; 81 , 82 " .• ) + Inp(x2; 8h82 , ... ) + ... 

= 2
n 

1np (Xi; (Jb (J2" •• ) (3.2-2) 
i= 1 

The In L can be maximized with: respect to the vector 6 
by equating to zero the partial derivatives of In L with 
respect to each of the parameters: 

vlnL 
~= 

(3.2-3) 

Solution of Equations 3.2-3 yields the desired estimates 
h1 , D2 , ••.• (Often iterative rather than analytical methods 
must be employed to obtain 6.) By carrying out this 
operation, under fairly unrestrictive conditions, it can be 
shown that as n approaches infinity the maximum 
likelihood estimates have the desirable asymptotic prop­
erties: 

(1) lim C{D~} = 8i 
n~ co 

(2) [vn(Oi - 8i ) ] is normally distributed 

and for the case of two parameters: 

(3) lim [Var {O'i}] = ! [c{(81n p)2}]-1 -:---_1__ 
n-HX) n o8i (1 - PJI02) 

where POI02 is the coefficient of correlation of the two D's. 
Extension of (3) to more than two parameters requires 
the use of matrix notation and will not be shown here. 

Maximum likelihood estimates are not necessarily 
unbiased; for example, the maximum likelihood estimate 
of the variance of a normal random variable is biased as 
demonstrated in Example 3.2-1. Maximum likelihood 
estimates, however, are efficient and, hence, consistent 
estimates. Furthermore, where a sufficient estimate can 
be obtained, the maximum likelihood method will 
obtain it. Finally, if Dis a maximum likelihood estimator 
of 8, then f(O') is a maximum likelihood estimator of 
f(8), a function of 8.. 

Example 3.2-1 Maximum Likelihood Estimation of the 
Parameters in the Normal Probability Density Function 

Find the maximum likelihood estimates of 81 and 82 in the 
normal probability density function 

Solution: 

First, form the likelihood function for the sample 
{Xl, X2, ... , xn} of measurements of the random variable X: 

L(Ol' 82 I Xl, ... , Xn) == L = rrn 

P(Xi; (}1' (}2)
 

i=l
 

1 [1 ~ (Xi - 81J"2] 
= «(}2V 21T)n exp - "26 -0-2- . 

(a) 

and, for convenience, take the logarithm of both sides of 
Equation (a) 

A /x: 1 ~~ (Xi - (}1) 2InL= -nln«(}2v21T)-"2Lt --- (b) 
£=1 82 

Next, obtain the maximum likelihood estimates by equating 
the partial derivatives of In L to zero: 

(c) 

oln L 1 1 n 

-()- = 0 = - n 7} + (}3 2 (Xi - ( 1)2 
o 2 2 2 i=1 

1 1 n 

-~ [n - ~ 6(x, - (Jl)2] (d) 

Consequently, the maximum likelihood estimates of 01 and 
(}2 are 

fJ2 = Hi (Xl - %)2t = [n : 1 s~r 
i=1 

Thus, 0'1 and D2 are asymptotically (as n ~ 00) efficient 
estimates of /Lx and O'x; {J2 is a biased estimator because 

However, (J1 is an unbiased estimator because <f{D1) = 
<f{X} = /LX. Note that s. and {J2 are independent estimates. 

3.2-2 Method of Moments 

One of the oldest methods of estimating parameters, 
that developed by Karl Pearson, is termed the method of 
moments. As applied to a probability density function 
involving n parameters (81 , 02' ... , 8n) , the technique 
calls for calculating the first n moments of the random 
variable X: 

P-i = 2
00 

XiP(Xk ; (Jl' • • ., (In) (discrete) 

or 

P-i = I:", x'ptx; (Jl' • • ., (In) dx (continuous) 
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and equating these to the sample moments obtained 
from experimental data. Then the n values of tJi can be 
calculated (perhaps 'with some difficulty). The method of 
moments does not always yield efficient estimates as does 
the maximum likelihood method, but it always yields 
consistent estimates. 

As an example of the application of the method of 
moments, Table 2.3-1 indicates that the first moment of 
the binomial random variable is nO, and we showed in 
Section 2.3 that the first moment of the normal random 
variable is /Lx while the second central moment is ai. 

On equating the sample moments to the corresponding 
moments of X, we find as estimates of 0, ttx, and ai the 
following: 

(binomial) 

(normal) 

More often the estimates are obtained with considerably 
greater difficulty. 

Example 3.2-2 Method of Moments 

In an experiment, observations come from one of two 
populations, but it is not known either before or after an 
observation has been made which population has been 
sampled. The probability .density function for the two 
populations (A and B) are known to be of the following 
forms: 

(-00 <Y<oo) 

(-00 <Y<oo) 

Let w be the probability that an observation drawn at 
random comes from population A. Then the probability 
density function for Yi (i = 1, ... , n) is 

(-00 <Yi<OO) 

From the sample of n observations, estimates of ex, {3, and 
ware required. 

Solution: 
The method of maximum likelihood would require that 

nn P(Yi; 'ex, {3, w) 
i=l 

be maximized with respect to the three parameters, but the 
resulting equations are transcendental and virtually intract­
able. Fortunately, in this problem the method of moments 

can provide estimates. With the use of the definition of the 
expected value, it can be shown that 

tf{ Y} = coa + (1 - w){3 (a) 

tf{ y2} = w(1 + ex2) + (1 - w)(1 + f32') (b) 

tf{ y3} = w(3ex + ex3) +.(1 - w)(3{3 + fP) (c) 

(Note that with three parameters, three moments are 
required.) 

Let the sample moments be calculated as follows: 

Then equate the sample moments to their expectations to 
yield the equations 

w(ex - {3) = al - fJ (d) 

w(1 - w)(ex - {3)2 = a2 - 1 (e) 

w(1 - w)(1 - 2w)(ex - {3)3 = aa (f) 

Recall that c9'{( Y) - (tf{ y})2} = tf{ y2} - (tf{ y})2. From 
Equation (d) 

al - {3 
(g)w=ex-{3 

By substituting Equation (d) in Equations (e) and (f) and 
letting u = al - {3, v = ex - a-, Equations (e) and (f) are 
reduced to 

uv = a2 - 1 (h) 

uv(v - u) = aa (i) 

The solutions of Equations (h) and (i) lead to the estimates 

(j) 

(k) 

whereupon the estimate of w, W may be obtained from 
Equation (g). Asymptotic variances of the estimates may be 
calculated if required. 

3.2-3 Bayes' Estimates 

The modern Bayesian approach to estimation rests on 
the use of a priori information; that is, known or assumed, 
distributions of the parameters to be estimated are 
employed. While the classical approach to estimation 
and the Bayesian approach differ to some extent, they 
do have several common features. Both postulate or 
involve: 

1. Existence of parameter states (values). 
2. Possibility of experimentation to shed light on the 

parameter states. 
3. Sampling to yield information on the random 

variable(s). 
4. Optimal decision rules (optimal in terms of the 

consequences of decisions which result from the rules). 
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The major difference between the approaches is that 
the classical statistician makes a decision on the basis' of 
a sample that depends on the parameter state and the 
type of experiment. In contrast, the Bayesian advocate 
begins his analysis of the problem by specifying a prior 
probability density function for the parameter state 
based on past experience an d all other available . infor­
mation. The parameter itself is .regarded as a random 
variable. He then uses a risk (or loss) function related 
to the worth of the experimental information, together 
with Bayes' theorem (Equation A-2 in Appendix A) , to 
reach a decision . 

If no risk function is known, the posterior distribution 
itself in Bayes' theorem can be maximized. As sample 
information becomes available, the analyst again uses 
his prior proba bility density funct ion, plus Bayes' 
theorem, to obtai n a posterior proba bility density 
function describing his new state of knowledge about the 
parameter. The posterior probability density function 
serves as a basis for any decisions and also as a prior 
probability density function for further analysis. 

To be specific, we sh?ll assume that : 

I. Several observati~ms are taken of the random 
variable X, designated by a vector X. 

2. Some general functional relationship, X = f(O, e), 
exists between X and the set (vector) of parameters to be 
estimated which is designated by 0, where e is a vector of 
unobservable random errors. 

3. The analytical form of the joint probability density 
function p (0, e) is known. 

A Bayesian estimate 6 of 0 is made as follows. Either 
Bayes' theorem, Equation A-2 in Appendix A, is used to 
ascertain the pos ter ior density p(OI x) 

(0 I x) = p(x IO)p(O) (3.2-4) p p(x) 

where p(x I0) = L(OI x), or occasionally it is more 
convenient to use Equation 2.1-6 : 

p(OI x) = p(O, x) (3.2-5)
p(x) 

In either case , the first step is to write the probability 
density for p(x), which can be done, at least in principle, 
from the information provided by the known density 
function p(O, e) and the known functional rela tion 
between X and 0 and e. If Equation 3.2-4 is used to 
obtain the posterior density, the second step is to 
evaluate p(x I0). This conditional density can also be 
obtained from the known relationsin assumptions (2) 
and (3) above. The third step is to obtain p(O) from 
p(O, €) by integration over all values of e. If Equation 
3.2-5 is used , the probability density p(O, x) must be 
obtained from th e known relations in assumptions (2) 

and (3), but the analytical treatment in general is difficult 
or impossible. 

The final step in both routes, once the posterior density 
p(OI x) co ntaining all the knowledge about 0 from the 
measurements is written, is to optimize p(OI x) in some 
sense . For the special case in which the probability 
P{6 = O} is maximized, one maximizes p(OI x) itself 
with respect to 0 to obtain the value of 6 at the peak: of 
the curve of the density (the mode) . When the prior 
dens ity p(O) is un iform, th is estimate is identical to the 
maximum likelihood estimate. Many other methods of 
optimization can be carried out but they are beyond our 
scope here . Examp les of Bayes estimates appear in 
Chapters 8 and 9. 

3.3 INTERVAL ESTIMATION 

In the previous two sections, we described certa in ways 
to obtain point estimates of parameters and some of the 
criteria for assess ing the merit of the estimators. An even 
more meaningful statement tha n the point estimate can 
be made in terms of a confidence interval estimate. The 
confidence interval is calculated from the observations in 
a sample ; it includes the fixed value of the ensemble 
parameter within (or on one of) the interval limits, 
termed confidence limits, for a specified degree of assur­
ance, called the confidence coefficient. Johnson and Leone 
quote a revealing analogy between the confidence 
interval and horseshoe tossing.t 

A confidence interval and statements concerning it are 
somewhat like the game of horseshoe tossing. The 
stake is the parameter in question. (It never moves, 
regardless of some sportsmen's misconceptions.) Th e 
horseshoe is the confidence interval. If out of 100 
tosses of the horseshoe one rings the stake 90 times 
on the average, he has 90 percent assurance (or 
con fidence) of ringing the stake. The confidence 
interval, just like the horseshoe, is the variable. Th e 
parameter, just like th e stake, is the constant. At any 
one' toss (or one interval estimation) the stake (or 
parameter) is either enclosed or not. We make a 
probability statement about the variable quantities 
represented by the positions of the "arms" of the 
horseshoe. 

To make an interval estimate, the general procedure is: 

I. Write a probability statement in mathematica l 
symbols involving the ensemble parameter of interest. 

2. Rearrange the argument of the statement so that 
the ensemble parameter is bounded by statistics that 
can be calculated from a sample. 

As an example, let us consider interval estimation for 
the unknown ensemble mean, f-Iox , of the normal random 

t N. L. Johnson and F. C. Leone, Statistical and Experimental 
Design, Vol. I , John Wiley, New York , 1964, p . 188. 
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pet)pet) 
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a 
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(a)	 (b) (c) 

FIGURE 3.3-1 Symmetric and asymmetric bounds about t = O. 

variable X through use of the sample mean X and the 
sample variance si. In Section 2.4-2 which described the 
t distribution, it was noted that t = (X - ftx)/sx was a 
random variable with a known probability density as 
given by Equation 2.4-14. It follows that probability 
statements can be made concerning the value of t prior 
to collecting the sample, such as 

P{t :5 ty} =	 p{K ~ /Lx :5 ty} = Y (3.3-1) 

P{t > ty} =	 1 - y 
and 

P{tp < t :5 t y} = p{tp < X ~fJ-X :5 ty} 

= P(ty) - pete) = y - {3 (3.3-2) 

where the subscript y identifies the upper limit and {3 the 
lower on the integral f:" pet) dt. If in Equation 3.3-2 the 
indices y and {3 are syJtmetric about t = 0, the interval 
about t is symmetrie-s-examine Figure 3.3-1. For Figure 
3.3-1c, in order to make the area under the probability 
distribution function .outside the interval equal to 
(a/2 + a/2) = a, we let y = f3 = a/2. Thus 

p{t::. < X -	 ftx ~ t1 - ::.} = 1 - a (3.3-3) 
2 Sx 2 

After the sample has been collected, the values X and 
Sx are regarded as fixed numbers; the probability state­
ments no longer apply inasmuch as (X - ftx)/sx either 
is in the interval (P = 1) or is not (P = 0), although 
which statement is correct is not known. However, the 
interval itself is a random variable. If the sampling were 
repeated many times with X and Sx calculated for each 
sample, one would expect (X - J1-x)/sx to fall within the 
defined interval for about the fraction of samples 
indicated on the right-hand side of the probability state­
ments. It is in this framework that we speak of an interval, 
itself a random variable, which includes J1-x the ensemble 
parameter, for a certain degree of uncertainty. Such a 
statement is a confidence statement, and the associated 
interval is the confidence interval, while the degree of 

trust associated with the confidence statement is the 
confidence coefficient. 

The symmetric confidence interval for the ensemble 
mean can be identified by rearranging the argument of P 
in Equation 3.3-3 as follows, using the equality: 

-(t1 - ::.) = t::. 
2 2 

(t1 - ::' is the positive value of t).
2 

(-t1-~)SX < X - J1-x ~ (t1-~)SX
2	 2 

or 

X- t1- !!.sx ~ ftx < X+ t1-~X (3.3-4)
2	 2 

The confidence coefficient for the interval given by 
Equation 3.3-4 is 1 - a. 

A similar interval can be developed for the ensemble 
mean from the distribution of the random variable 

U = X - ftx 
ax 

given by Equation 2.4-7 if ax is known: 

X - U1 _::'ax ~ ftx < X + U1_::'ax (3.3-5)
2	 2 

To obtain the confidence interval for the ensemble 
variance, aj, of the random variable ~ we make use of 
the x2 probability distribution and write 

P{x~ < x2 ~ x;} = P{x;} -P{x~} (3.3-6) 

Area =P(x~) - P(xp) 

o 

FIGURE 3.3-2 Graphical representation of the probability 
statement (Equation 3.3-6) for the x2 distribution. 
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Figure 3.3-2 is a graphical representation of how the 
probabilities in Equation 3.3-6 can be interpreted as 
areas under the X2 probability density. 

Substitution of X2 from Equation 2.4-10 into the argu­
ment of Equation 3.3-6 gives as the argument 

2 siv 2
XIJ < -2 :::; Xy

ax 

and rearrangement yields the confidence interval for aj.: 

1 ai 1 
->->­
X~ siv - X~ 

siv siv2 
- < ax <­
X~ - X~ 

If 
a

f3=~ and y=I-­
2 2 

siv 2 siv (3.3-7)-2- ~ ax <-2 

Xl-~ x~ 

for a confidence coefficient of (1 - a). 
Other ensemble averages can be treated similarly if 

the distribution of their sample estimates is known. Even 
if the distribution of the sample statistic is unknown, a 
confidence interval can be specified for any random 
variable X with a finite variance ai through use of the 
Chebyshev inequality. This states that the probability is 
at least [1 - (l/h2) ] of obtaining a standardized variable 
of value equal to or less than a number h. 

Let j(X) bea nonnegative function of the random 
variable X. We show first that if l!{j(X)} exists, then for 
every positive constant c, 

P{j(X) ~ c} ~ l!{j(X)} (3.3-8) 
c 

Let g be the set of x such that j X) ~ c and g* be the 
remaining x. Then, 

C{f(X)} = I~co j(x)p(x) dx 

= I/(x)p(x) dx + LJ(x)p(x) dx (3.3-9) 

Because each integral in the sum on the right-hand side 
of Equation 3.3-9 is nonnegative, 

C{f(X)} ~ f/(x)p(x) dx 

By definitionj(X) ~ c for some c; hence 

C{f(X)} ~ c f~p(x) dx = cP{f(X) ~ c} (3.3-10) 

from which Equation 3.3-8 can be obtained. 
Chebyshev's inequality follows if we let 

j(X) = (X - /LX)2 

C = h2aj., h > 1 

because then 

and 

1 
P{IX - Itxl ~ hax} :::; h2 . (3-.3-11) 

As an example of the application of Equation 3.3-11 for 
h = 2, at least [1 - (!)2] = i of the occurrences of the 
random variable X should lie within ± 2ax of itX' no 
matter what the distribution of X. 

We now illustrate the calculation of the confidence 
interval for the ensemble mean and variance. 

Example 3.3-1 Confidence Interval for the Ensemble Mean 
and Variance 

From the following eight volumetric titration analyses, 
find the confidence interval for the ensemble mean and 
variance of the normal random variable X. 

Values of X in cc 

76.48 76.25 
76.43 76.48 
77.20 76.48 
76.45 76.60 

Solution: 

X = t L Xi = 76.546 

2 _ L (Xi ~ %)2 _ 0.5543 _ 0 0790 2 v = n - 1 = 7 
Sx - n _ 1 - -7- -. cc 

J
S~ JO.0790 

- SJ( = n = -8- = 0.099 cc 

Using Table C.3 in Appendix C, for a 95-percent confidence 
coefficient (1 - a = 0.95; al2 = 0.025) and for a symmetric 
interval, we find t o.97 5 = 2.36. 

The symmetric confidence interval by Equation 3.3-4 is 

76.55 - 0.099(2.36) ~ /Lx < 76.55 + 0.099(2.36)
 
or
 

76.31 ~ /Lx < 76.79 

The interpretation of the confidence interval is: the prob­
ability is 0.95 that the interval between 76.31 and 76.79 
contains the ensemble mean. 

The confidence interval for a = 0.05 for a~ from Equation 
3.3-7 is 

siv 
x~ 

2 

(0.0790)(7) 2 (0.0790)(7) 
16.013 ~ ax < 1.690 

0.03452 ~ a~ < 0.3262 

Example 3.3-2 Process Flow Error 

Examine the subsystem illustrated in the block diagram 
of Figure E3.3-2. The "errors" on the inputs and output, 



56 STATISTICAL INFERENCE AND APPLICATIONS 

A ± a IbA/hr 
C ± c Ib C/hr 

B ± b IbB/hr 

FIGURE E3.3-2 

indicated as plus or minus, as commonly encountered are 
interpreted to mean the limits of the confidence interval for 
a confidence coefficient (1 - ex). fLA' fLB' and fLo are the 
ensemble values of the flow rates. Unobservable measure.. 
ment errors in A and B exist, €A and €B, which are normal 
random variables with a mean of zero and variances of 
a~A and a~B' respectively. A random sample of A is taken 
and, independently, a random sample of B, from which the 
following sample statistics are calculated: 

Sample 
Standard 

Sample Mean Deviation Number 
Material (lb/hr) (lb/hr) in Sample 

A 10 0.20 5 
B 5 0.10 5 

The problem is to find the confidence interval for fLc for a 
confidence coefficient of (1 - ex) = 0.95 from the given 
information about A and B. 

Solution: 
By a material balance (on the expected values) 

fLA + fLB = fLo 

so that the C = A + jj = 10 + 5 = 15Ib/hr. Also, because 
the variables are independent, the variance of C is (using 
Equation 2.2-9a) 

Var {C} = Var {A} + Var {B} 

or (using Equation 2.4..10) 

sgvc S~VA S~VB-=-+­
X2	 X2

. X2 

The Var {C} can be estimated by 

s~ = 4(0.20)2 ; 4(0.10)2 = 0.025 va = 8 

The confidence interval for fLo (using Equation 3.3-4) is 
(with tl-~ = 2.306) 

15 - (2.31)(0.025)1/2 :::; fLo < 15+ (2.31)(0.025)1/2 

14.64 :::; fLc < 15.36 

3.4 HYPOTHESIS TESTING 

Testing is related to interval estimation but has a 
different viewpoint. In hypothesis testing, one tests a 
hypothesis Ho against one or more alternate hypotheses 
Hs, H 2 , ••• that are spelled out or implied. For example, 
the hypothesis H o might be that fL = 16; two alternate 
hypotheses might be H 1: fL > 16, and H 2: fL < 16. Or 

the hypothesis to be tested might be that there is no 
improvement in a process output, with the alternate 
hypothesis implied that there is an improvement. 

Suppose that we know the probability density function 
p(D) for an estimate D(which is an unbiased estimate of 8). 
We assume that the representation of the random variable 
D by p(D) is correct and that the ensemble value of 8 is, 
say, ()o, and we ask the following question: If we pre­
sume as true the hypothesis that () = ()o, by how much 
must Ddiffer from ()o before we reject the hypothesis 
because it seems to be wrong? Figure 3.4..1 helps to 
answer the question. If the hypothesis () = 80 is true, 
C{O} = 80 as is shown in the figure. The probability that 
the value of {J would be equal to or less than 8~ is 

oa 
p{D ::; 8!!} = f 2 p(D) dD = c:.. (3.4-1)

2 - 00 2 

and because of symmetry 

ex
P{O >	 81-!!} = roo p(O) dO = -2 (3.4-2) 

2 J01-~ 
2 

To reach a decision concerning the hypothesis, we 
select a value of ex, which is termed the level ofsignificance 
for the test, before collecting the sample; ex is usually 
arbitrarily selected to be small enough so that the user 
regards it quite improbable that {J will exceed the selected 
value of 81 _ !: or be less than ()!:. For example, ex might

2	 2 

be 0.05 or 0.01. Then the sample is collected and {J is 
calculated. If 0 is larger than ()1-!: or smaller than ()!:,

2	 2 

the hypothesis is rejected. Otherwise, it is accepted. The 
range of values of {J for which the hypothesis is rejected 
is called the region of rejection; the range of {J for which 
the hypothesis is accepted is called the region ofacceptance. 

The test described above is a two..sided test. A one­
sided test can be based on either {J being greater than 
some ()1- a, with the hypothesis () = ()o being rejected if 
{J is indeed greater than ()1-a, or on Dbeing less than ()a. 

Rejecting the hypothesis does not mean discarding it 
offhand, but it instead calls for a careful examination of 
the experimental procedure and data to ascertain if any-

Region of Region ofp(8) ~--~O!-------~ --~ 
rejection	 I acceptance
 

I
 
I
 
I 
I 
I 
I 
I 

FIGURE 3.4-1 Regions of rejection and acceptance for a sym­
metric hypothesis test. 
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Dispersion of Xabout 
the true ensemble 

Dispersion of X mean J.lA + 0
 
about the assumed
 
ensemble mean J.lA
 

{J: Probability of failure 
to reject when the 
hypothesis J.l=J.lA is false 

(I - {J): Probability of a : Probability of 
rejection when the rejection of the 
hypothesis J.l = J.lA is false hypothesis J.l = J.lA
 

when true
 

'-"-"-''"---x 

i .': 
­

J.lA (J.lA+ 0) 

FIGURE 3.4-2 Error of the second kind . 

Xo 
"2 

thing went wrong with the experiment. Investigation into 
the causes of defects in the method of procedure can be 
most rewarding. 

The simplest structure for testing is to imagine that a 
dichotomy of states exist for the random variable: 

1. Ho: x is the true state of the random variable (the 
null hypothesis) . 

2. H 1 : x is not the true state of the variable (the 
alternate hypothesis). 

For example, two values of a parameter can represent 
a probability density. We hypothesize under Ho that the 
probability density of a random variable is p(x ; 80) and 
under the alternate hypothesis that the probability 
density is p(x; 81) , Or, as another example, hypothesis 
H o is that the ensemble mean of a process variable has 
not changed after a process modification, while H 1 is 
that the process mean has changed. Tests which involve 
several alternative hypotheses simultaneously are also 
available, but their description is beyond our scope here. 

In hypothesis testing, a decision is made as follows. 
Based on the assumption that the null hypothesis is true, 
if the statistic calculated from the random experimental 
sample falls outside the region of acceptance, the null 
hypothesis is rejected and H 1 is accepted. Otherwise, H o 
is accepted and H 1 rejected. 

Two types of errors can be distinguished in testing a 
hypothesis: 

AN ERROR OF THE FIRST KIND (TYPE 1 ERROR). This 
error is caused by rejecting the hypothesis when it is 
true. 

AN ERROR OF THE SECOND KIND -(TYPE 2 ERROR). This 
error is caused by not rejecting the hypothesis when it is 
false. 

Clearly, the Type 1 error exists because a is selected to 
be some nonzero value. When the hypothesis is true and 

a = 0.05, for example, in 5 percent of the tests the 
hypothesis will be rejected when it is true. 

Figure 3.4-2 illustrates the Type 2 error as applied to 
the ensemble mean. In this illustration we set up the 
hypothesis that fL = fLA' But to demonstrate the Type 2 
error, also assume that the true value of fL is really equal 
to fL = fLA + 8, as shown in Figure 3.4-2. A value of 0: 
is selected, which fixes the region of rejection indicated 
by the heavily shaded areas. In this case the hypothesis 
fL = fLA is false, yet there is a probability, f3, that the 
sample mean will fall within the region of acceptance. 
If the hypothesis fL = fLA is true, as assumed, the two­
sided test indicated in Figure 3.4-2 will lead to the correct 
decision in 100(1 - 0:) percent of the tests and to the 
wrong decision (rejection) of 100(0:) percent of the tests, 
as explained previously. However, if the hypothesis is 
actually false , then the probability of X falling in the 
region of rejection can be calculated if the value of 8 is 
known or assumed. 

The probability f3 is the probability of not detecting a 
difference when it exists. Figure 3.4-3 shows typical plots 
of f3 versus the difference d as a function of the sample 
size; these curves are termed operating characteristic 
curves (OC curves). The probability (l - fJ) is termed 
the power of the test to discriminate, and it represents 
the probability of making a correct decision when the 
hypothesis is actually wrong. As 8 increases, (l - fl) 
increases and f3 decreases. 

From the description of the two kinds of errors, it will 
be observed that an attempt to decrease one kind of error 
will result in an increase in the other type of error. The 
only way to reduce both types of errors simultaneously is 
to increase the sample size which, in practice, may prove 
to be expensive. Perhaps one type of error may have 
less serious consequences than the other, in which case 
some suitable decision can be reached concerning the 
selection of values for a and the number of observations 
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to be taken. The best practice takes into account the in­
struments, process design, and costs so as to make an 
economic decision for a and {3. 

The concepts of the power and operating characteristic 
of a test apply equally well to tests for ensemble variances, 
as described in Section 3.6, and to other parameters as 
they do to tests for the ensemble mean. 

Example 3.4-1 Hypothesis Test for the Mean 

Suppose that a process variable X, which is a random 
variable, is known to have an ensemble mean of /1-x = 6.80. 
A sample is taken of the variable, and it is found for a 
sample size of n = 9 that X = 6.50 and si- = 0.25(sx ,= 0.50). 
We test the hypothesis Ho that the random variable has the 
same ensemble mean as in the past, namely /1-x = 6.80. The 
alternate hypothesis HI is that /1- :j:. 6.80. If a, the significance 
level, is selected as 0.05, the region of acceptance for a 
symmetrical two-sided t-test is as follows: 

Accept Hi, if 1X - ,axI < tl-!:.S:X. Otherwise, reject H oand 
2 

accept HI. 
Here 

- = ~ = 0.50 = 0 167 
Sx Vn 3 . 

and tl-i for n - 1 = 8 degrees of freedom and a = 0.05 

is 2.306. 

0.30 = 16.50 - 6.801 < (2.306)(0.167) = 0.39 

Hence the hypothesis H o is accepted. Figure E3.4-1 illus­
trates the regions of acceptance and rejection. 

p(x) 

Region of
 
acceptance
 v=8 

on of I 
ction<, 
_~_~ --L-­

I Region ofI'" rejection+--_ 

6.41 7.19 s 

FIGURE E3.4-1 

Example 3.4-2 Power of a Test for the Mean 

In this example we assume that the hypothesis flo (that 
/1- = /1-0 = 6.80, as described ·in Example 3.4-1) is correct. 
Then, if in reality ,a > /1-0 (for a one-sided test) or /1- ::j:; /1-0 
(for a two-sided test), we can calculate the power of the 
r-test used in Example 3.4-1 to discriminate. The power of 
the test is 

- fJ = p{l~x;~ol > tl~~;1t = Itl} 

(two-sided symmetric test) 

X - /1-0 }- {3 = P{ ----:;==- > tl-a; /1- = /1-1
Sx/·v n 

(one-sided test) 

HYPOTHESIS TESTING S9 

If we write 

x - /1-0 X - /1-1 /1-1 - /1-0 ax---=---+ -
sx/Vn sx/ v n ax/vn Sx 

= t1 + AVv/X2 

where A = (/1-1 - /1-o)/(ax/Vn), we find that the power 
depends on a combination of the t distribution about P.h 
the X2 distribution, the distance between the means, and v. 
Approximate relations t for the power in terms of the 
standard normal random variable are 

(1 - (3) ~ P {U ~ u} (one-sided test) 

where 
t!:. - A 

2 
U1 = ----;:===:;:::==vI + (t 2f!./2v) 

2 

tf!. + A 
2 

U2=---;-:==== 
v i + (t2~/2v) 

2 

ta + A 
U = ---;:=~::;:::::===

v'I + (tt -a/2v) 

and where U or U, is an approximate standard normal 
random variable. 

If /1-x = 6.80, and we assume that ax = 0.40, a = 0.05, 
and v = n - 1 = 8, the power of the two-sided test against 
a mean of /1-1 = 7.10 is calculated as follows: 

A = 7.10 - 6.80 = 0.30 = 2 25 
0.40/V9 0.133 . 

ta = - 2.306 from Table C.3 in Appendix C. 
2" 

vi1 + (t 2!:./2v) = vi1 + [(- 2.306)2/(8)2] = 1.15 
2 

- 2.306 - 2.25 _ 3.96 
Ul = 1.15 

-2.306 + 2.25 -0.0488 
U2 = 1.15 

(1 - (3) ~ (0) + (1.000 - 0.519) = 0.481 

f1 ~ 0.519 

The same operating characteristic of the test (for n = 9), 
{3, can be read from Figure 3.4-3a for 

d = 1/1-0 - /1-11 = 0.30 = 0.75 
ax 0.40 

but to fewer significant figures. If ax were not known but 
had to be estimated by sx, then too large a value for ax 
would underestimate 1/1-0 - /1-11/ax and overestimate {3, 
while the contrary would be true if ax were underestimated. 

Example 3.4-3 Determination of Sample Size 

Suppose that the experimenter wants to determine how 
big a sample to take in order to raise the power of the test 
used in Example 3.4-1 from 0.481 to, say, (1 - f3) = 0.80. 

t A. Hald, Statistical Theory with Engineering Applications. 
John Wiley, New York, 1952, p. 392. 
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Values of (1 - f3) could be calculated for a series of values 
of the sample size n and given values of ax and a, and the 
n selected which gave (l - f3) close to 0.80. Figure3.4-3 can 
also be used to compute f3, and the value of n can be read 
directly for a calculated d. Based on the data of Example 
3.4-2, 

d = ~:~ = 0.75 a = 0.05 

and for (1 - f3) = 0.80, f3 = 0.20, Figure 3.4-3a gives 
n ~ 16. 

3.4-1 Sequential Testing 

It is quite possible in practice, long before the nth 
observat ion calculated in Example 3.4-3 is reached, to 
ascertain whether or not H o should be accepted or 
rejected by a sequential testing plan. In sequential testing, 
a test is executed after each additional observation is 
collected, starting after the first, until the hypothesis is 
accepted or rejected. After each test , one of the following 
deci sions is made: 

I . Accept the hypothesis H o. 

2. Reject the hypothesis H o. 

3. Make one more observation. 

Thus, instead of having two regions, a region of rejection 
and a region of acceptance, we have a third region as 
well , one of no decision except to require further experi­
mentation. (Examine Figure 3.4-4. ) Upper and lower 
limits are determined for a test statistic whose nature 
depends upon the test being carried out. As soon as the 

200r----.,...----,---,-----, 

150 

n 

L Xi' 
1 = 1 

100 

50 

0'--__-'-__----'-..,--__-'-__-' 
o 1 2 3 4 

Observation number. n 

FIGURE 3.4-4 Sequential test chart to detect a difference in 
ensemble means for gasoline knock rat ing, a = {3 = 0.05, 
1-'1 = 55, 1-'2 = 65, and ui ~ 9.5. 

value of the test statistic falls below the lower limit, H o 
is accepted; or , as soon as it exceeds the upper limit, H o 
is rejected. After one of these events occurs, the sampling 
and testing are terminated. Otherwise, an additional 
observation is taken. 

To illustrate one type of test th at can be employed, we 
shall describe the probability ratio test devised by Waldo 
This test is based upon an assumed sequence of indepen­
dent observations of the random variable X from a 
normally distributed population with known variance 
but unknown mean. The null hyp othesis is that /Lx = /Ll' 

and the alternate hypothesis is that /Lx = /L2' Under 
these assumptions the likelihood function of the obser­
vations defined by Equation 3.2-1 will be one of the 
following: 

or 

L2 = (V21Tux)- nexp [-2~ii(Xt - /L2)2] 
t = 1 

The test involves the calculation of the ratio (L 2/Ll ) 

after each observation Xl"'" Xn • When the ratio 
exceeds an upper limit, I" the hypothesis that /Lx = /Ll 
is accepted. If the ratio falls below a lower limit, lu, the 
hyp othesis that /Lx = /L2 is accepted . If the ratio lies 
within these bands 

L 2
I, < L < t, (3.4-3) 

l 

one more observation is made. The lower and upper 
bands are selected so that the power is a when /Lx = JLl 

and I - f3 when /Lx = /L2' Wald showed that 

. f3 
II ~ -1­-a 

and that the probability is I that the sequential test will 
terminate with a choice of one of the hypotheses. 

Introduction of L1> L2 , and the approximations for the 
upper and lower limits into Equation 3.4-3 yields 

n 

I ~ a < exp [ - 2~~ ~ {(Xt - /L2)2 - (Xt - /Ll)2}J 

< I - f3
 
a
 

or 

< In C: f3) 

1 



61 HYPOTHESIS TESTS FOR MEANS 

which reduces to 

ai In (~) + nil < 2
n 

Xi 
tt2 - ttl - €X i=l 

< ai In ( 1 -	 f3) + nil 
fL2 - ttl €X 

(3.4-4) 

where p. = (fL1 + tt2)/2. Thus, in a test for one of two 
ensemble means, the sum of the observations up through 
the nth observation can be bounded if ai is known and 
values of fL2 and ttl and €X and {j are chosen. Figure 
3.4-4 shows how the bounds on .If= 1 Xi increase as n 

increases, as indicated by the terms nil in Equation 3.4-4. 
The data in the figure are for knockmeter readings of 
gasoline with fL1 = 55 and tt2 = 65 for two different 
octane numbers; €X = f3 = 0.05; and ai estimated. from 
earlier tests by si = 9.5 with 20 degrees of freedom. 
Inequality 3.4-4 is then approximately 

n 

60n - 2.80 < 2 Xi < 60n + 2.80 
i=l 

If the ensemble mean, ttx, is known, and a sequential 
test is to be carried for two alternate hypotheses with 
respect to the standard deviation 

HI: Ux = 0'1 

H 2 : ax = 0'2 

the likelihood functions can be formed as before by 
placing ttl = tt2 = ttx and replacing the standard 
deviations with a1 and a2, respectively. The analogous 
equation to Equation 3.4-4 is 

2 In (-,{j)+ n In (CT~) n 
1 - a al"", 2 

1 1 <	 ~ (Xi - ttx) 
i=1 

2In (~) + n In (~) 
< 1 1 

a~ - ~ 

(3.4-5) 
If ttx is unknown, substitute 

n . n

2 (Xi - /1-x)2 ~ 2(Xl - 1')2 
i=1 i=1 

and replace n by (n - 1) in the upper and lower bounds 
of Equation 3.4-5. 

Many other sequential tests can be carried out, as 
described in the references at the end of this chapter. 

3.5 HYPOTHESIS TESTS FOR MEANS 

Table 3.5-1 summarizes certain tests which enable the 
analyst to tell if the ensemble mean of a new product or 
a variable: (1) is different from, (2) exceeds, or (3) is less 

TABLE 3.5-1 TESTS FOR COMPARING THE MEAN OF A NEW PRODUCT OR A VARIABLE WITH A STANDARD * 

Test to Be Made Is t 
Knowledge of the Standard Deviation (If the inequality is satisfied) 

Hypothesis of a New Product or Variable the hypothesis is accepted) Remarks 

a unknown; 
s from sample used IX - /1-01 > t1-~C~;) Two-sided r-test 

a known IX - /1-01 > U1-~(~:) Two-sided U-test 

a unknown;
 
s from sample used (X - /1-0) One-sided z-test
 > t1-,,(;,)

tt > tto 

a known	 (X - /1-0) > U1-,,(~x;J One-sided U-test 

a unknown;
 
s from sample used - (sx) One-sided t-test
(}Lo - X) > II-a vii 

tt < tto 

a known	 - (ax) One-sided U-test (}Lo - X) > U1 - a vii 

* Adapted from M. G. Natrella, Experimental Statistics, Nat. Bur. of Standards, Handbook 91, U.S. Dept. of Commerce,
 
Washington, D.C., 1963.
 
t In each case look up t or U for the selected significance level a; t is for the n - 1 degrees of freedom. The tests
 
presume an underlying normal population.
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than the ensemble mean of a standard product pr vari­
able. The hypothesis selected presumes we know the 
value of the standard ensemble mean, fLo, from past 
experience or otherwise. (In the tables which follow, the 
subscript zero will refer to the standard mean while the 
absence of a subscript zero will refer to the mean being 
tested.) After each test is made, as indicated in the third 
column of the tables, a decision can be reached as follows: 

1. If the inequality proves to be true, that is if the 
calculated difference exceeds the right-hand side of the 
inequality, the hypothesis is accepted. 

2. If the inequality does not prove to be true, that is 
if the calculated difference does not exceed the right­
hand side of the inequality, then the hypothesis is 
rejected, and there is little likelihood that the hypothesis 
is correct. 

NBS Handbook 91t provides detailed charts to simplify 
the calculation of the operating characteristics of each 
test and also provides tables to establish the sample 
size required to detect a difference for each test. 

The decision rules shown in Table 3.5-1 are now 
illustrated by an example. 

Example 3.5-1 Hypothesis Test for the Mean 

Ten different resistance thermometers are calibrated 
against a standard whose reading is 1000 mv. After receipt 
by a laboratory, the ten thermometers read: 

986 1002 
1005 996 
991 998 
994' 1002 
983 983 

Can these deviations be regarded as being caused by the 
normal variation of the random variable, the reading in 
mv, or has some factor (perhaps during shipment or manu­
facture) affected their performance? 

Solution: 
We shall test the hypothesis that the ensemble mean of 

the readings of the ten thermometers, fL, has changed from 
fLo = 1000 by selecting as Hi, the first hypothesis in Table 
3.5-1, namely fL :j:. fLo. The test to be made, since ax is 
unknown, is 

- I ? (sx )IX - fLo > tl-~ vii 

If we choose a = 0.05, so that a/2 = 0.025, and tl_~ = 
2.26, we can calculate 

x = 2: X t = 994.0 
n 

t M. G. Natrella, Experimental Statistics, Nat. Bur. of Standards 
Handbook 91, U.S. Dept. of Commerce, Washington, D.C., 
1963. 

v=n-1=9 

IX- fLo I = 6.0 

tl-~C:iJ = 2.26(~:t = 2.26(2.55) = 5.76 

We observe that 6 > 5.76, and conclude for a significance 
level of a = 0.05 (but not for a = 0.01) that the hypothesis 
H o should be accepted. 

Table 3.5-2 summarizes tests which can be carried 
out with respect to the ensemble means of two products 
(or variables), both of which are sampled. Of interest is 
to test whether the: 

1. Averages of two products (or variables) differ, 
without caring which is larger. 

2. Average of product (or variable) A exceeds that of 
product (or variable) B. 

Again there exist subclasses of the tests, depending 
upon the extent of the information available about the 
standard deviation of the variable being measured. 
Again, too, if the difference calculated is greater than the 
right-hand side of the inequality, then the hypothesis is 
accepted; otherwise it is rejected. Operating characteristic 
curves and tables to determine the sample size can be 
found in NBS Handbook 91 for each test. 

To illustrate the general procedure of developing a 
hypothesis test to compare two means, we shall outline 
how the first test listed in Table 3.5-2 is established. The 
other tests can be developed in a similar manner. 

Assume that we have samples of normal random 
variables A and B as follows, with the ensemble means 
and variances as indicated. 

A B 

Sample 
values 

Ensemble 
XA1, XA2, ••• , XAnA XB1, XB2, ••• , XBns 

mean 
Ensemble 

variance 

fLA 

2' 
UA 

fLB 

ui 
Sample statistics can be calculated as follows: 

n A 

- 1 '" X A =n ~XAi 
A i=l 

nB 

s~ = _1_ 2: (XBi - %B)2
1nB - i=l 

VA = nA - 1 

VB = nB - 1 
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TABLE 3.5-2 TESTS FOR COMPARING THE MEANS OF TWO PRODUCTS OR VARIABLES* 

Hypothesis 

!LA i= !LB 

Knowledge of the
 
Standard Deviation of
 

A and B
 

UA ~ UB both unknown 

UA i= UB both unknown 

UA and UB both known 

UA ~ UB both unknown 

UA i= UB both unknown 
!LA > !LB 

UA and UB both known 

Test to Be Made Is t
 
(If the inequality is satisfied the
 

hypothesis is accepted.)
 

- - (nA + nB)Y.IXA - XBI > tl-~Sp -- ­
2 . nAnB 

- - 'C~ S~)Y.IXA - XBI == t - + ­
nA nB 

- - C~ a~rIXA - XBI > Ul-~ - + ­
2 n: n» 

- - (nA + nB)Y.(XA - X B) > (I-aSp -- ­
nAnB
 

- - 'r~ s~)(XA - XB) > t - + ­
nA	 nB 

- X-B) = U1 - - -a~r(XA - a C~ + 
nA	 nB 

Remarks 

[(nA - l)s~ + (nB -
Sp =	 1)4] Y. 

nA + nB - 2
 

v = nA + nB - 2
 

t' == value of (1-~ for v degrees of 
freedom 

v = (s~/nA + s~/nB)2 _ 2 
(s~/nA)2 + (s~/nB)2 

n: + 1 nB + 1 

_ [(nA - l)s~ + (nB - 14 Y. 
Sp ­

nA + nB - 2
 

v = nA + nB - 2
 

t' =	 value of (I-a for v degrees of 
freedom 

(s~/nA + s~/nA)2 2
 
v = (s~/nA)2 + (s~/nB)2 ­

nA + 1 nB + 1
 

• Adapted from NBS Handbook 91.
 
t nA and nB observations are made to obtain samples A and B. t is for nA + nB - 2 degrees of freedom. Sp and other pooled values of
 
s are discussed in Section 2.4-1. The tests presume an underlying normal population.
 

The two sample means, XA .and XB , are normally By using Equation 2.4-12, we can compute the 
distributed with parameters (!LA, u~/nA) and (!LB, u~/nB)' following estimate of u2 : 

respectively. Also, the difference between the two means 
D = XA - XB is normally distributed about a = for v = vA + vB = nA + nB - 2 
/LA - /LB with the variance 

Also 

(3.5-1) 

If s~ does not differ significantly from s~, we set up the 
test hypotheses 

has a t-distribution with v = nA + nB - 2 degrees 
freedom. A significant value of t is interpreted to mean and 
that /LA =1= !LB· 

If these hypotheses are true, then, we know that XA ­

XB = D is normally distributed about· a= !LA - !LB = 0 
Example 3.5-2 Comparison of Two Means 

with the variance 
Two different grades of gasolines were used to find the 

number of miles per gallon obtained under highway travel. (3.5-2) 
Each grade (90 octane and 94 octane) was used in five 
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identical automobiles traveling over the same route with the 
following results: 

94 Octane 90 Octane 

Sample mean (miles/gal) 22.7 21.3 
Sample standard deviation 0.45 0.55 

(miles/gal) 

For a significance level of a = 0.05, are the grades differ­
ent? If so, is the 94-octane gasoline significantly better than 
the 90-octane gasoline? 

Solution: 

First, we test the hypothesis that fL94 i:- fL90. We assume 
that 0'94 ~ 0'90; a method of checking this assumption will 
be given in Section 3.6. 

e~ 5)Y. = 0.632
 

= [4(0.45)2 + 4(0.55)2] ~ = (0 252)~ = 0 50
 
Sp 5 + 5 - 2 . . 

tl-~ = 2.306 

v=5+5-2=8 

IX9 4 - %901 = 22.7 - 21.3 = 1.4 

(2.306)(0.50)(0.632) = 0.73 

Since 1.4 > 0.73, the hypothesis is accepted and fL94 i:- fL90, 

Next, we test the hypothesis that fL94 > fL90, assuming still 
that 0'94 ~ 0'90. 

(5+ 5)~
t1-asp (5)(5) = (1.860)(0.50)(0.632) = 0.59 

Again the hypothesis is accepted. 

All the tests outlined so far 'are based on certain 
assumed characteristics of the random variable involved. 
In practice, of course, some or all of these assumptions 
may not hold true. Aberrations are more serious for 
some tests than for others. Those tests that are relatively 
insensitive to changes from the assumed characteristics 
are termed robust. Because several assumptions are 
involved in each test, robustness is interpreted in terms 
of the separate effects of deviations from normality, 
independence, equal variance, and randomness. 

The underlying assumptions for the z-tests are: (1) the 
random variables being measured are normally distrib­
uted, and (2) the samples are random ones. Decisions 
made on the basis of the z-test (and other tests) depend, 

sometimes critically, on the degree of approxi mation of 
the experimental conditions to the, assumed ones. 

The effect of nonnorrnality on the Student r-test has 
been studied and illustrated by many investigators. As 
a rough rule-of-thumb, the classical application of the 
z-test to a comparison of means is relatively unaffected 
by aberration of the underlying random variable from 
normality. 

Walsh] examined the influence of nonrandomness of 
the sample on the Student r-test for large numbers of 
observations. It was found that even a slight deviation 
from the supposed randomness led to substantial 
changes in the significance level and confidence coeffi­
cient. Modified tests which were not sensitive to the 
requirement of a random sample are described in his 
report. Alternates to the z-test will be discussed in Section 
3.7. 

3.6	 HYPOTHESIS TESTS FOR VARIABILITY 

The objective of this section is to summarize certain 
tests that enable the analyst to reach a decision concerning 
the variability of a product or variable. Corresponding to 
the previous section, we can test whether the ensemble 
variance of a new product or variable: (1) is different 
from, (2) exceeds, or (3) is less than a standard ensemble 
variance of a randon1 variable with the aid of the X2 

distribution originally described in Section 2.3-2. For 
two products or variables, designated A and B, we can 
test whether the ensemble variance of A differs from that 
of B or exceeds that of B with the aid of the variance 
ratio (F) distribution originally described in Section 
2.4-3. In Table 3.6-1, the subscript zero will refer to the 
standard variance while the absence of a subscript will 
refer to the variance being tested. The tests are based 
upon the assumption that the observations are taken 
randomly of a normal random variable. The decision is 
based on the test shown in the second column of Table 
3.6-1. Refer to NBS Handbook 91 for operating charac­
teristic curves and tables for sample size determination. 

To illustrate how the tests are formulated, consider the 
F-test in the fourth row of Table 3.6-1. We shall hypothe­
size that ai = o'~, i.e., (O'i/a~) = 1, and use the sample 
variance ratio to test if aila~ is greater than or less than 
unity. If the hypothesis is true, then the region of accept­
ance .for equal tail areas is defined through the prob­
ability statement 

si }P{F'!..(Vb V2) < 2" ~ Fl-~(Vb V2) = 1 - a 
2 S2 2 

Because F~(Vb V2) = 1/(Fl-~(Vb V2)) < 1 always, the left­
2 2 

hand inequality in the probability statement is always 
satisfied, and we need only test to determine if si/s~ 

~	 Fl-~. 

t J. E. Walsh, RAND Corp. Rept. P-129, Aug. 8, 1950. 



HYPOTHESIS TESTS FOR VARIABILITY 6S 

Example 3.6-1 Hypothesis Test for Variability 

Twin pilot plant units have been designed and put into 
operation on a given process, The output for the first ten 
material balances obtained on each of the two units are 
listed below (basis is 100 lb): 

Unit A (lb) 

97.8 
98.9 

101.2 
98.8 

102.0 
99.0 
99.1 

100.8 
100.9 
100.5 

X 99.9 
si 1.69 

Unit B (lb) 

97.2 
100.5 
98.2 
98.3 
97.5 
99.9 
97.9 
96.8 
97.4 
97.2 

98.1 
1.44 

Is the variability (variance) of the material balance signifi­
cantly different between the two units? 

Solution: 

The hypothesis H o is that a~ = a~. The degrees of freedom 
for each unit are 9. We form the variance ratio 

S~ = 1.69 = 1 17 
s~ 1.44 . 

to test the hypothesis as indicated in the fourth row of 
Table 3.6-1. From Table C.4 in Appendix C for ex = 0.05, 

FO•95(9, 9) = 4.03; hence the hypothesis is accepted and 
there is no significant difference in variability between the 
two units. 

Example 3.6-2 Combined Tests for the Variance am Mean 

In a catalytic reactor the distribution of yields from 
catalyst A and catalyst B gave the following data: 

Catalyst A Catalyst B 

XA = 1.219 XB = 1.179 
s~·= 0.028 ~~ = 0.0193 
SA = 0.456 SB = 0.439 
nA = 16 nB = 15 

As a first hypothesis we shall assume: a~ = a~. Based on the 
test in row four of Table 3.6-1, we can calculate the variance 
ratio: 

S~ _ 0.2080 _ 
- - 1.08 

s~ 0.1930 

From Appendix C, Table C.4 for ex = 0.05 and for 
VA = (nA - 1) = 15 and VB = (nH - 1) = 14, the value of 
Fl-~(15, 14) = 2.95. Thus the hypothesis is accepted and 

we decide that a~ does not differ significantly from a~. 

Once this fact has been established, we can pool the 
sample variances: 

2 (nA - l)s~ + (nH - l)s~ 15(0.208) + 14(0.193) 
sp = 

(nA.- 1) + (nH - 1) 15 + 14 

= 0.201 

TABLE 3.6-1 COMPARISON OF TWO PRODUCTS OR VARIABLES WITH REGARD TO THEIR VARIABILITY * 

Hypothesis Test to Be Made Is Decision Remarks 

V = n - 1 If within range, Two-sided X2 test 
hypothesis is accepted 

If test inequality is true, One-sided X2 test 
v=n-l hypothesis is accepted 

V = n - 1 If test inequality is true, 
hypothesis is accepted 

One-sided X2 test 

1 S2 If within range, Two-sided F ratio test. 
a~ = a~t --------­ < ~ 

FI-~[(nH - 1), (nA - 1)] s~ 
hypothesis is accepted Note that I/Fl-~ is 

always less than unity; 
< Fl-~[(nA - 1), in» - 1)] hence only the upper limit 

need be compared 

VI = nA - 1 If inequality is accepted, One-sided F ratio test 
V2 = nB - 1 hypothesis is accepted 

* Adapted from NBS Handbook 91. 
t The alternate hypothesis is O'~ -:f. O'~. 

:f: The alternate hypothesis is O'~ = O'~. 
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1~1 VI C~1 PI - n) 1=1 

(where Pi = number of replicates in a sample) has an 7.00 
S2 distribution with a mean of 0'2 and v degrees of free­
dom, where v = L:f= 1 Vi. Bartlett showed that 

1 ~ (s~) 6.50 

A= -c~Piln s~ (3.6-2) 
~ 

t=l 

where 6.00 

c = 1 + 3(n ~ 1) (~~ - ~1 ) 
t=l L Pi 

i=l 

has an approximate X2 distribution with (n - 1) degrees 
of freedom. For large values of Ph C ~ 1. 

For the special case where all the p/s are equal so that 
L:Pi = np., 

(3.6-3) 

We know that the difference between the sample means is 

D = 1.219 - 1.179 = 0.040 

and, from Equation 3.5-2, that 

Var {D} ~ s~(-! + -!) = 0.201(T-6 + i\-) = 0.026
nA nB 

Also, once we know that O'~ ~ 0':, a test can be made as 
described in Table 3.5-2 based on the hypothesis P,A "# P,B. 

? [ 31 ] ~ 0.040 > (2.045)(0.201) (16)(15) v = 29 

0.040 .; 0.145 

Since 0.040 < 0.145, the hypothesis P-A '# P,B is rejected, and 
we conclude that P,A = P,B. 

The F-test is applied to two variances. A commonly 
used test to detect differences among two or more 
variances is Bartlett's test. M. S. Bartlett devised a test 
to determine the homogeneity of two or more variances 
by comparing the logarithm of the average variance with 
the sum of the logarithms of the separate variances. The 
formulas necessary for the use of this test are based on the 
hypothesis H 0: O'~ = O'~ = ... = O'~ = 0'2 and the pre­
sumption that the variables measured are normally 
distributed. The same critical limits hold as in the F­
test except that there are n samples. If the test hypothesis 
is correct, a pooled S2 

k 

.-2: ViS; 1 n 

S2 = I=~ = n . 2: (PI - l)s~ (3.6-1) 

O'~ = O'~ • •• is rejected. Certain application restrictions 
and supplementations to Bartlett's test are described in 
Hald,t of which the most important and critical is that 
the observations must be normally distributed. 

Example 3.6-3 Test for Nonconstant 0'2 

Ten replicate measurements were made for corrosion loss, 
Y, at four different values of alloy concentration, X. 
Results are shown in Table E3.6-3 and Figure E3.6-3. 

TABLE E3.6-3 RESULTS OF CORROSION EXPERIMENTS 

Pi Yi 4 

1 1.28 10 6.34 6.36 6.41 6.42 6.80 
2 1.30 10 5.95 6.04 6.11 6.31 6.36 
3 1.40 10 5.23 5.27 5.32 5.39 5.40 
4 1.48 10 4.55 4.65 4.68 4.68 4.72 

1 6.85 6.91 6.91 7.02 7.12 6.71 0.091 
2 6.52 6.60 6.62 6.64 6.71 6.39 0.076 
3 5.52 5.52 5.53 5.60 5.78 5.46 0.020 
4 4.73 4.78 4.78 4.84 4.86 4.72 0.009 

A test can be made to ascertain if the variances at the 
different values of X t are the same (homogeneity of variance) 
or not by using Bartlett's test. If A exceeds the value of Jf 
determined from the tables in Appendix C for a given cx, 

7.50,---...,..-----r----------,r---­

••
•••- •

I 
•• .-•

• 
•
• 

X 

FIGURE E3.6-3 Results of corrosion experiments on alloys.where c = {I + [en + 1)/3npi]}. If the value of X2 calcu­
lated by Equation 3.6-2 or 3.6-3 exceeds the value of X~ _« t A. Hald, Statistical Theory with Engineering Applications, John 
for (k - 1) degrees of freedom, the test hypothesis that Wiley, New York, 1952, pp. 290-298. 
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then the hypothesis H o that the variances are the same is inadvertently create new difficulties when attempting to 
rejected. Here n = 4, Pi = 10, LPi = 40. resolve existing problems by transformations. 

1 1) 1 ( 4 1 ) Example 3.6-4 Transformation of a Probability Density c = 1 + 3(n - 1)
(i

1=1 "it1 - ,tPI = 1 + 3(3) 10 - 10 
Rose and English t investigated the distribution of the 

~ 1 
n 

breaking strengths of identical paper sacks containing 
2 _ 1 ,~ ( t ,2 _ 1. ~ (9) 2 identical amounts of material dropped under controlled 

S - In) L p, - )·~i .~ (40 _ 4) L Si conditions. A representative relative frequency distribution ( L Pi - n i=l 
,t= 1 of 200 sacks is illustrated in Figure E3.6-4a versus the drop 

~ 0.049 
30
 

1 n 2 4 2
 

A = -~ 2PI In (~) = + 10 2 1n (0.~49) a 25 
i=l t=l e 

15.3 
"0 

~ 20 
For a = 0.05, with (n - 1) = 3 degrees of freedom, X2 '0 

from the appendix tables is 7.81; thus the hypothesis of (ij 

e 15 
equal variances for the Xi'S is rejected. Figure E3.6-3 2 

.E 
illustrates how the dispersion varies as a function of x. .E 10 

In many experiments the analyst is justified in assum­
ing that the random variables being observed are nor­
mally distributed; he can carry out suitable tests, some of 
which are described in Section 3.7, for normality. But 
suppose that the random variables being observed are not 
normally distributed. What can be said then in regard to 

FIGURE E3.6-4A Distribution of the strengths of identical sacks. 
the application of the F-tests? The F-test and especially (From H. E. Rose and J. E. English, Chern. Eng., Sept. 1966, 
Bartlett's test for comparison of variances are quite p. 165, with permission.) 
sensitive to nonnorrnality; they must be modified or 
different tests employed if the normality assumption is 
violated. 

~15Another method of attack on the problem of non­ c: 
Q) 

normality of the measured random variable is to use a "0 

~10
transformation of variables to' render the data more :.c 

..cnearly normal and to reduce the differences between :t 
«S 

5
individual variances of groups of data. Transformations 
may be viewed as scale changes imposed on the original 

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4variables to adjust them to a more favorable orientation. 
logIO (drop number) 

For example, a logarithmic transformation changes the (b) 
very skewed probability density illustrated in Figure 

FIGURE E3.6-4B Data of Figure E3.6-4a plotted on a logarithmic­
3.6-1a to the considerably more normal appearing density normal basis. (From H. E. Rose and J. E. English, Chern. Eng., 
in Figure 3.6-1b. However, one must be careful not to Sept. 1966, p. 165, with permission.) 

__-.,.....---~-...,.....---r----r----r----.----, 

Material: silica sand 
Mean particle size: 150 J.L 
Sack size: 10 x 6.3 cm 
Batch size: 200 sacks 

00 20 40 60 80 100 120 140 160 
N =drop number 
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FIGURE 3.6-1 A logarithmic transformation. 
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number, i.e., the number of drops from a specified height 
that a sack will withstand before failure. The same data are 
plotted as the logarithm of the drop number in Figure 
E3.6-4b. 

Rose and English were able to associate, by means of 
appropriate statistical tests, the logarithmic-normal distri­
bution with the drop number-relative frequency distribution. 
Then they investigated theoretically why such a probability 
distribution should be expected. Also, once the underlying 
distribution was verified, only two parameters, the mean 
and the standard deviation, were needed to characterize 
nearly 2000 tests with different sack fillings. 

If data are easy and inexpensive to collect, the simplest 
method of normalization is to average groups of data 
and make tests on the group averages. The central limit 
theorem mentioned in Section 2.4-1, which states that 
the distribution of a sum of n random (not necessarily 
normal) variables tends to approach the normal distri­
bution as the sample size becomes large, provides the 
rationale for such treatment. 

Sample variances, if obtained from a population with 
the same a2

, can be pooled to improve the estimate of a2• 

However, if the sample variances are based on a non­
homogeneous population, the' pooled S2 is not a valid 
estimate of a 2 

; confidence intervals and tests of signif­
icance based on the pooled S2 are then distorted. 

One final matter should be mentioned. Since the pres­
entations of information in the form of confidence 
limits and as hypothesis tests make use of the same basic 
parameters, we might ask which presentation is more 
meaningful? One can conclude that if the confidence 
interval does not include the sample mean, the null 
hypothesis is rejected-the same conclusion as is ob­
tained from a hypothesis test. However, the use of 
confidence interval statements can be more meaningful 
because they give the analyst a picture of the degree of 
uncertainty in the parameters rather than simply a yes 
or no answer as is obtained from hypothesis testing. 

3.7 NONPARAMETRIC (DISTRIBUTION-FREE) 
TESTS 

All the tests presented up to this point have ex­
plicitly involved the assumption that the random 
variables of interest were represented by a known 
probability. distribution, usually the normal distribution. 
Such tests are known as parametric tests. Other types of 
tests exist, including rank correlation and sign tests, 
which do not require such assumptions and are known 
as nonparametric tests or .dlstribution-free tests. (The 
distribution-free characteristic really applies only to the 

t H. E. Rose and J. E. English, The Chemical Engineer, Sept. 
1966, p. 165. 

significance level of the test and only for samples of 
continuous variables. In many nonparametric tests, 
probability statements do depend on the probability 
distribution of the random variable.) Nonparametric 
methods can be used in tests of hypotheses, to find 
interval and even point estimates of parameters, and so 
forth. For example, ~ nonparametric estimate of the 
ensemble mean is the median of a random sample (the 
middle value for n odd and the average of the two middle 
values for n even); a nonparametric estimate of the stand­
ard deviation is the range (the absolute value of the 
difference between the highest and lowest values in the 
sample). Neither of these statistics is particularly efficient 
as compared with the sample mean and sample standard 
deviation, respectively, that we described previously. 

We shall consider only a few nonparametric tests,' 
mainly those that can be substituted for the parametric 
tests of means and variances, described in Sections 3.4 
and 3.5, and also those that are useful in establishing the 
stationarity, randomness, and normality of random 
variables. Most texts on statistics include a chapter 
describing various types of nonparametric tests; Savage t 
prepared an excellent bibliography showing applications 
of the tests. 

3.7-1 Sign Test for Median Difference in Paired 
Observations 

The simplest nonparametric test which can be used in 
lieu of the t-test is the sign test for paired observations. 
Suppose that n pairs of measurements are taken of a 
random variable, one of each pair under condition A 
and the other under condition B. If zero differences are 
impossible, the differences Ai - B, can be either positive 
or negative; the positive outcome is distributed as a 
binomial variable with f} = t. (Zero differences obtained 
on calculation have been treated in many ways, none of 
which is completely satisfactory. But if the proportion of 
zero differences is low, say less than 5 percent, the pairs 
of zero observations can either be omitted from con­
sideration or divided equally between the plus and minus 
categories.) Because the sign test is based on the binomial 
distribution, the binomial events must be independent 
(refer to Table 2.3-1); that is, the sign difference for one 
pair of measurements must have no influence on the sign 
difference for any other pair of measurements, and the 
sample must be random. Also the outcomes must be 
continuous. 

For every Ai - B i difference, the P{A i > B i } = 
P{A i < Bi} = t if C{Ai - B i } = O. The sign test simply 
tests the hypothesis that the parameter f} in the binomial 
density has the value t, which in terms of the experiment 
tests the null hypothesis that the population of A - B 

t I. R. Savage, Bibliography 0/ Nonparametric Statistics, Harvard 
Univ. Press, Cambridge, Mass., 1962. 
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differences has a median of zero. Let r be the number of critical r from the table for a/2 = 0.025 is zero. Since 

occurrences of the less frequent sign and n - r be the 2 > 0, the hypothesis is accepted. 

number of occurrences of the more frequent sign after 
3.7-2 Mann-Whitney U*-Testthe zero differences have been divided up. Then the 

cumulative probability of obtaining r or fewer signs if The Mann-Whitney U*-test is the most powerful 
the null hypothesis (flo: there is no difference in the alternate to the t-test among the nonparametric tests. 
effects of A and B) is true is The general procedure, first recommended 'by Wilcoxon 

and others, was refined and formalized in tables,by Mann 
and Whitney] to test whether or not two populations are p = i (~)mn (3.7-1) 

i=O	 identical. Suppose we take a sample 'of n observations 
(designated as x's) and a sample of m observationsFor a two-sided symmetric test,	 one rejects the null 
(designated as y's) of the presumably same continuous hypothesis if 
ensemble. Next the m + n observations are arranged in 

p<~ a list in order of increasing value irrespective of the or P~1-2	 2 sample. Each ordered observation is replaced with an x 
or y, depending upon the sample from which it came. If a one-sided test is used and the alternate hypothesis 
The result is a pattern of n x's and my's intermixed. Ifis that the median difference is less than zero, the null 
the m + n observations were all different, there would behypothesis is rejected if P S; a; the opposite alternative 
(m + n)! distinguishable patterns. However, for eachhypothesis calls for rejection of the null hypothesis if 
truly distinguishable pattern, there are n! permutationsP ~ 1 - a. As applied to a normally distributed differ­
of x's with each other which do not change the pattern ence, the one-sided sign test has an asymptotic efficiency 
and, similarly, m! permutations of y's. Therefore, there relative to the t-test of 2/7T = 0.637. 
are 

em + n)! = (m + n)~ 
Example 3.7-1 Sign Test	 mIn! m 

Table E3.7-1 lists ten pairs of measurements of the distinguishable patterns. 
percentage of sulfur dioxide in the exit gas of a smoke If two samples are drawn from the same ensemble,
stack for two degrees of fuel pulverization, A and B. We 

each of the patterns is equally likely; but if they come 
shall test the assumption that the two degrees of pulveriza­

from different ensembles, one would expect to findtion produce the same amount of the pollutant sulfur 
patterns in which the x's cluster at one end of the list dioxide. 
and the y's at the other. Let the test statistic U* be the Six pluses and two minuses, are found. If the zero 

differences are distributed equally between plus and minus, number of times a y precedes an x. U* is the number of 
we have r = 3 and (n - r) = 7. Then, making use of a y's preceding the smallest x plus the number of y's 
table of probabilities of the binomial variable, we calculate preceding the next larger x, including all the y's counted 

in the first batch, and so on until the number of y'sP{r ~ 3} = P{r= O} + P{r = l} + P{r = 2} + P{r =' 3} 
preceding the last x in the list is counted and included 

= 0.001 + 0.010 + 0.044 + 0.117 = 0.172 in the sum. The probability of U* occurring when the 
If a had been selected as 0.05, a/2 = 0.025, and because null hypothesis is true is just that fraction of the (m ; n)

0.172 > 0.025, the null hypothesis would be accepted. 
Table C.5 t in Appendix C gives the number of pluses for total possible patterns in which the U*'s are as big as or 
rejection for various critical regions. In using the table, the bigger than that obtained in the experiment. (The null 
zero differences are discarded. Thus, n = 8, r = 2, and the 

hypothesis, »; is that each of the (m ; n) patterns is 
t Taken from W. J. Dixon and F. J. Massey, Introduction to
 
Statistical Analysis, McGraw-Hill, New York, 1951. :f: H. B. Mann and D. R. Whitney, Ann. Math. Stat.. 18, 50, 1947.
 

TABLE E3.7-1 PERCENT SULFUR DIOXIDE 

Sample Number 

Pulverization 2 3 4 5 6 7 8 9 10 

A 2.4 2.7 2.0 1.9 2.2 2.3 2.3 2.1 2.4 2.6 
B 2.6 2.6 2.0 1.8 2.0 2.0 2.4 2.1 2.1 2.5 

A-B 0 0+ + + + + + 
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equally likely; hence, in effect, the two samples were 
drawn randomly and independently from the same 
population). The test will be significant at the significance 
level Ct when P{U* ~ U(f.*} = Ct. In the case of ties, one 
recommended procedure is to give each member of the 
tied group the average of the ranks of the tied members 
when tallied consecutively. If the rank sum, Le., sum of 
the values assigned the ranks, is not an integer, it 
should be rounded off to the nearest integer; other pro­
cedures are described in the references at the end of this 
chapter. 

To carry out the test, we need to let Xh a member of the 
smaller sample, be the ith x (in order of increasing value) 
and also be counted as the rth entry in the list when both 
the x's and y's are counted. Let u, be the number of y's 
preceding Xi' T; will be the rank sum of the x ranks 
(T is the Wilcoxon T t critical values for which are 
given in many statistics books). U*, the Mann-Whitney 
statistic, is related to T; as follows: 

t; = L
n 

r. = L
n 

(i + u;) 
i=l i=l 

= n(n; 1) + iUi n(n; 1) + U*= (3.7-2) 
i=l 

where n is the number in the smaller sample. Ty , the 
sum of the y ranks, can also be related to U*. The 
sum of all ranks is simply the number of ranks times 
the average rank or (m + n)[(m + n + 1)/2]. Ty is 
(m + n)[(m + n + 1)/2] - T; or 

T = mn + m(m + 1) - U" (3.7-3)
y 2 

Consequently, the statistic U* does not have to be 
enumerated by calculating 2: u, (which can be quite 
tedious) but can be evaluated from Equation 3.7-2 or 
3.7-3. 

The number of y's which either precede or follow an 
x is m, the sample size. Because there are n x's, the 
number of y's either preceding or following all the x's is 
equal to mn. Consequently, mn - U* is the number of 
times a y follows an x, and is also the number of times 
an x precedes a y. Most tables, such as Table C.6 in 
Appendix C, list only the smaller of U* or U*' = mn ­
U*. In Table C.6, m is the smaller sample and n is the 
larger sample, For large samples outside the table values, 
U* has a mean of C{U*} = mn/2 and a variance of 

Var {U*} = mn(m ;2n + 1) 

t F. Wilcoxon, Some Rapid Approximate Statistical Procedures, 
American Cyanamid Co., New York, 1949. 

and an (approximate) standard normal variable is 

U* _ mn _! 
2 2 

Z=-~=:==::::;:-- (3.7-4)i
vVar {U*} 

The asymptotic efficiency of the Mann-Whitney test is 
3/TT or 0.955 relative to the t-test when both tests are 
applied to a normal population with .homogeneous 
variances. The superiority of the t-test is thus slight; if 
the data depart from normality, the Mann-Whitney test 
may be more powerful. Computational details are now 
illustrated by an example. 

Example 3.7-2 Mann-Whitney Test 

Let a supplier of a catalyst provide two samples to try 
out, A and B. The gain in yield for each sample is tabulated 
in increasing order of gain, and a second list is prepared 
(not shown) of the merger of both samples in increasing 
order of gain. 

A B 

Gain, % Rank Gain, % Rank 

-1.4 1 -0.3 5 
-1.2 2t 0.5 8 
-1.2 2t 0.7 9 
-1.0 4 0.8 10 
-0.2 6 0.9 11 

0.2 7 1.5 12 
- 2.4 13Rank sum 23 -

Rank sum 68 

In the first list the rank of each gain, as determined from the 
second list, is placed in the second column of the table, the 
ranks going from 1 to 13. 

One way to compute U* is to replace the observations in 
the second list by A or B, depending upon which sample the 
observations came from: 

AAAABAABBBBBB W 

The number of times a B precedes an A is 2. A value of U* 
as small as or smaller than this could be obtained from the 
following arrangements: 

AAAAAABBBBBBB U" = 0
 
AAAAABABBBBBB U* = 1
 

(b)AAAAABBABBBBB U* = 2
 
AAA.ABAABBBBBB U* = 2
 

In total there are (6 ~ 7) = 1716 possible patterns. 

Hence the significance level for a one-sided test of the 
hypothesis that A either equals or exceeds B would be at 
17

416. In other words, the probability of U" being equal to 

:f: Subtraction of t corrects for continuity. 
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or less than 2 is 0.0023. Consequently, if one has in mind a 
significance level of 0.05 as being appropriate, the hypoth­
esis that the catalysts have the same effect is rejected. For 
a two-sided test, there are four mirror images of the above 
patterns with U*'s of 40, 40, 41, and 42, respectively. Hence 
the significance level for a two-sided test would be at l,al 6. 

Rather than count the patterns as above, the value of U* 
can be ascertained with much less difficulty from Equations 
3.7-2 and 3.7-3. Then the corresponding significance level 
can be obtained from Table C.6 in Appendix C, or from the 
normal approximate, Equation 3.7-4. 

EQUATION 3.7-2: 

U* = 23 _ 6(6 + 1) = 2T; = 23 
2 

EQUATION 3.7-3: 

r. = 68 u* = 7(7 + 1) + (7)(6) - 68 = 2 
2 

From Table C.6 for m = 7, n = 6, and U* = 2, the 
significance level ex can be read as 0.002. Note that when 
n = 8 and m = 8, the normal approximation is quite good. 

3.7-3 Siegel-Tukey Test for Dispersion 

This test] is a nonparametric test which can be used 
as an alternate to the F-test to test the null hypothesis 
that the dispersions of the underlying populations of 
two independent samples are the same (against the 
alternate hypothesis that they are not). To carry out the 
test, list the value of each measurement in ascending 
order, with the most negative values at the head of the 
list and the most positive values at the bottom. Identify 
each value as belonging to sample A or B. Assign rank 1 to 
the smallest value, rank 2 to the largest value, rank 3 to 
the next largest value, rank 4 to the second smallest 
value, rank 5 to the third smallest value, rank 6 to the 
third largest value, and so forth, assigning ranks after 
the first in sequential pairs in rotation from the head to 
the foot of the list. Ties are resolved as was explained 
in Section 3.7-2. 

Finally the ranks of sample A and of sample Bare 
summed, and the approximate standard normal variable 
Z is calculated (more exact tables can be used in lieu 
of Z): 

In, - nl(nl + n2 + 1) 1- ! 
Z = 2 2 

(n2 > 10) (3.7-5) 
n, > 10 . Jn1(n1 + n2 + l)n2 

. 12 

where nl and n2 are the sample sizes, nl < n2' and R1 = 

rank sum of the sample associated with ru, Equation 

t S. Siegel and J. W. Tukey, J. Amer. Stat. Assn. 551 429, 1960. 

NONPARAMETRIC TESTS 

3.7-5 is sufficiently accurate for engineering purposes, 
even for small samples of size less than ten. 

Example 3.7-3 Nonparametric Test for Dispersion 

We rank the data from Example 3.7-2 as shown below: 

Value Sample Rank 

-1.4 A 1 
-1.2 A 4t 
-1.2 A 4t 
-1.0 A 8 
-0.3 B 9 
-0.2 A 12 

0.2 A 13 
0.5 B 11 
0.7 B 10 
0.8 B 7 
0.9 B 6 
1.5 B 3 
2.4 B 2 

The sum of ranks of A = 33; the sum of ranks of B = 47. 
Sample A is smaller so that 

R1 = 33
 
nl = 6
 
n2 = 7
 

33 - 6(6 + 7 + 1) 1_ 1 
1z = 2 2 = 0.496 

6(6 + 7 + 1)7
) 12 

From Table C.l of the standard normal variable in Appen­
dix C, for ex = 0.05, z = 1.96; consequently we accept the 
null hypothesis (by a two-sided test) that the dispersions of 
A and B are the same. 

3.7-4 Tests for Stationarity 
Two nonparametric tests are described in this sub­

section which can be used to ascertain whether or not 
data from a single time record are stationary. If station­
arity can be demonstrated for a single time record, then 
the ensemble can be assumed stationary for most practi­
cal purposes. Furthermore, weak stationarity, as defined 
in Section 2.2-3, is actually what will be tested. The 
rationale of extending the umbrella of stationarity to 
other parameters than the ensemble mean and auto­
correlation functions is rigorous for a normally distrib­
uted random variable and is observed to be effectively 
true for most other distributions encountered in practice. 
The length of the time record to be tested must be long 
enough, of course, to encompass a trend (nonstationarity) 
if one exists. A record that is too short will reveal nothing 
of a long-term trend, for example. Both run tests and 
trend-inversion tests can be used to test for stationarity. 

A run is just a sequence of observations that are 
preceded and followed by a different observation (or by 
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no observation at all). Thus, if the symbol + is assigned 
to a value of a variable above the sample median and a 
symbol - to a value below the sample median in the 
following sequence 

5 1 642 759 8 7 
--+--+-+++ 

2 1 211 3 

six runs can be detected. Like events may cluster, as 
indicated by an unusually small number of runs, patterns 
in the runs, runs of unexpected length, and other run 
statistics which can be used to test for randomness of 
pattern arrangement against the alternate hypothesis 
of sequential dependency. By judicious definition of the 
two types of events (designated + and - above), a run 
test can be employed not only to test for a trend in a 
sequentially sampled random variable but for many 
other characteristics which need not concern us here. 
Run tests are deficient in two respects-most are weak 
(have low power) and inefficient. 

WALD-WOLFOWITZ TOTAL NUMBER OF RUNS TEST. The 
Wald-Wolfowitz test is not very powerful nor efficient 
but can be used to determine if observations of a random 
variable are independent (if they are, there is no trend). 
A series of observations is taken and their sample 
median determined. Each observation is assigned a + or 
- according to whether its value is above or below the 
median. If the pattern arrangement of + 's and - 's is 
such that the + 's and - 's are random and independent 
(the null hypothesis), there is no clustering. A brief table 
for the test statistic U+, .. the number of runs, is in 
Appendix C (Table C.7). Also, the mean and variance of 
the random variable U+ are 

2nln2 1
f.1'u+ = . +	 (3.7-6)

nl + n2 

Orr+ =	 2nln2[2nl~2 - (nl + n2)] (3.7-7) 
(nl + n2) (nl + n2 - 1) 

where n, is the number of + 's and n2 is the number of 
- 's, and n, + n2 = the total number of observations. 
Consequently, for large samples the approximate stand­
ard normal variable 

-_ /U+ - f.1'u+/ - 1­Z	 (3.7-8) 
°u+ 

can be used. A two-sided test for a given ex is usually 
employed. 

SUM OF SQUARED LENGTH TEST. Inasmuch as the 
Wald-W olfowitz test does not .directly take into account 
the length of the runs, considerable information is 
ignored. Ramachandran and Ranganathan t suggested a 

t G. Ramachandran and J. Ranganathan, J. Madras Univ. Sect. 
B8 23, 76, 1953. 

more powerful test. A run consists of a sequence of like 
signs; for example, in the arrangement given earlier, 
there were three runs of length 1, two runs of length 2, 
and one run of length 3. The test statistic, N, is the sum 
of the squares of the run lengths, or 

N = LPnj (3.7-9) 
j 

where j is the length of the run and n, is the number of 
runs oflengthj. For the pattern just given, N = 3(12) + 
2(2 2) + 1(32

) = 20. 
Table C.8 in Appendix C lists P{N ~ N a} ~ ex for 

values ofn equal to half the number of values in the time 
record, n ~ 15. For the example, n = 5 and ex = 0.05, 
so that N; = 38; hence the hypothesis that the sample 
does not have a trend is accepted. 

INVERSIONS AS A TEST FOR LINEAR TREND. If a series of 
n measurements is arranged in the order taken, and a 
designated number is followed by a smaller number, an 
inversion is said to exist. Thus, in the sequence 

3 5 142 6 

there are six inversions: 3 is followed by two smaller 
numbers, 1 and 2; 5 is followed by three smaller numbers, 
1, 4, and 2; and 4 is followed by one smaller number, 2. 
If the order of the numbers in the sequence is random, 
then each of the n! permutations of the n numbers is 
equally probable; the a priori probability of obtaining a 
random sequence with exactly 1* inversions is simply the 
number of permutations containing exactly 1* inversions 
divided by n!, the total number of possible permutations. 
The number of times a number is followed by a larger 
number in the sequence is the compliment of 1* and is 
designated as T*. A third measure which can be used is 
S* = T* - 1*. Mann I tabulated exact T* probabilities 
for 3 ~ n ~ 10, and Kendal1§ listed probabilities for S*. 
1* has a mean and variance of 

n(n - 1) 
(3.7-10)f.1'1* = 4 

2n3 + 3n2 - 5n
0;*=------ (3.7-11) . 
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and as n becomes large the approximate standard normal 
variate can be used 

z = 1* - f.1'1* (3.7-12) 
v'0;* 

(To correct for continuity, positive numerators should be 
decreased by 1- and negative numerators increased by t.) 
If ties exist and are assigned the midrank, use the S * 
tables instead of the T* or 1* tables. 

t H. B. Mann, Econometrica 13, 245, 1945.
 
§ M. G. Kendall, Rank Correlation Methods (2nd ed.), Hafner,
 
New York, 1955.
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The assumptions behind the S* or 1* test are that the 
observations have been taken independently and at 
random on a continuously distributed variable. When 
used as a test of randomness and compared with tests 
for a regression coefficient (discussed in Chapters 4 and 
5), the 1* has an asymptotic relative efficiency of (3/,rr) ~ = 
0.98; hence it is equal to or superior to most other non­
parametric tests for trend. The null hypothesis is that the 
observations are independent observations of a variable 
X when no trend exists; a two-sided test is used. 

To ascertain whether or not a single time record 
represents stationary data, the time record is divided up 
so that n representative increments of equal time are 
obtained. High-frequency data can be in contiguous 
intervals, but low-frequency data require some interval 
between the selected portions of the record. The simplest 
procedure is to compute the mean and mean square for 
each of the n intervals and to arrange the results in 
sequence: 

<lX), <2X), , <nX) 

<lX2), <2X2), , <nX2) 

where the presuperscript denotes the portion of the time 
record and < ) denotes time average. Each of the two 
series of values can be tested for trend as described 
earlier. 

One assumes that if the mean square (or variance) of 
the random variable X is stationary, then the auto­
correlation function of X is also stationary. (The ensemble 
mean square of X(t) is nothing more than the ensemble 
autocorrelation function at T = 0, rxx(O).) The basis for 
this assumption is that it would be most unusual for a 
nonstationary variable to have a time-varying auto­
correlation function for T > 0 and not have rxx(O) vary­
ing also. Use of the mean square saves a tremendous 
amount of computation. But if the assumption is not 
valid, then Bendat and Piersol t suggested the following 
procedure which detects trends in the power spectrum 
and, hence, in the autocorrelation function: 

1.. Filter the sample record into e contiguous narrow 
bandwidth frequency intervals. 

2. Divide each interval into n equal time intervals as 
before. 

3. Compute a mean square value for each time interval 
within each frequency interval, giving a total of en time 
averages: 

<11 X 2) , <12 X 2), , <InX2) 

<21 X2), <22 X 2), , <2,nX2) 

t J. S. Bendat and A. G. Piersol, Measurement and Analysis of 
Random Data, John Wiley, New Yorle, 1966, p. 222. 

4. Test the time sequence in each frequency interval 
for trends; e tests will be required (plus one for the mean, 
as before). Rejection by 'any one test constitutes re­
jection of the null hypothesis of stationarity for a signif­
icance level (Type I error) of a' = 1 - (1 - a)I/C, if a 

is the significance level which would be accepted for a 
single nonparametric test. 

Example 3.7-4 Tests for Stationarity 

A time record of yield has been chopped up into ten 
segments, and the time average yield (in percent) of each 
segment is arranged sequentially below: 

Period Time Average 

1 36.5 
2 43.0 
3 44.5 
4 38.9 
5 38.1 
6 32.6 
7 38.7 
8 41.7 
9 41.1 

10 36.8 

Test at a significance level of a = 0.05 for stationarity both 
by the Wald-Wolfowitz test and the inversion test. 

Solution: 
WALD-WOLFOWITZ TEST. By inspection of the sequence, 

the median value of the ten values is (38.7 + 38.9)/2 = 38.8. 
A plus is assigned to a value above 38.8 and a minus to a 
value below, yielding the following sequence: 

I I I I 

-:+ + +:- - -:+ +:­
! ! ! ! 

There are five runs in total, and n, = n2 = 5. For a = 0.05, 
from Table C.7 in Appendix C, U1+-i = 2 and Ui = 9; 

hence the hypothesis that the data do not have a trend is 
accepted. 

INVERSION TEST. We calculate the 1* statistic, the number 
of times a number is followed by a smaller number, 

Value Number of Inversions 

36.5 1 
43.0 7 
44.5 7 
38.9 4 
38.1 2 
32.6 o 
38.7 1 
41.7 2 
41.1 1 
36.8 o 

Total 25 
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From Table C.9 in Appendix C for ex = 0.05 and n = 10, 
I: - i = 11 and I~ = 33; hence the null hypothesis is 

2 

accepted again. 
To determine stationarity, the sequence of mean square 

values would also have to be formed and tested. For the 
given time record the null hypothesis was accepted by both 
tests; hence the mean square values are not tabulated. 

3.7-5 Tests for Randomness 

The nonparametric tests described above in connection 
with stationarity also in effect test for randomness, 
except for possible periodic components. If the segments 
of the time record pass the stationarity test, then periodic 
components which are not detected by visual inspection 
of the time record or by the test for stationarity are best 
detected by visual inspection of the time average power 
spectral density or autocorrelation function (defined in 
Section 12.3-3). Because a sine wave will have an auto­
correlation function which will persist over all values of 
T, as opposed to random data for which r(TXX) ---+0 as 
T ---+ 00 (for ftx = 0), the time average autocorrelation 
function can be plotted and examined. In this connection, 
refer back to the autocorrelograms in Figure 2.2-1. A 
periodic component in the data will show up as a peak 
in the power spectral density function, especially when 
the amplitude of the periodic component becomes 
larger than the associated noise. 

3.7-6 Tests for Goodness of Fit and Independence 

Tests to ascertain whether or not experimental data are 
represented ·by a normal (or other distribution) are of 
some importance, and the x2 test is one of the best known. 
The test is only approximate and sometimes misleading 
because of the many discongruities between the theoreti­
cal requirements and the actual practice in execution. The 
test applies to enumerated data, i.e., counted outcomes; 
consequently, continuous records must be converted to 
digital form before applying the test. We shall now 
illustrate the application of the x2 test to two important 
problems: (1) testing for goodness of fit, and (2) testing 
for independence between random variables. 

TESTING GOODNESS OF FIT. To represent a random 
variable by a chosen probability distribution, the analyst 
must ask: Is the postulated probability density represen­
tative of the observed relative frequency distribution? 

In Table 2.3-1 the mean and variance of the multi­
nomial distribution for mutually exclusive events are 
listed as 

<ff{Xi} = nfJi 
(0 ~ i ~ k)

Var {Xi} = nOi(l - 0i) 

where 0i is the parameter in the multinomial corre­
sponding to the multinomial variable, Xi; 0i is the 

probability that event i will occur Xi times in n trials 
where the 2: Xi = n. An approximate standard normal 
variable can be formed for each random variable as 
follows: 

(3.7-13) 

which will be approximately normally distributed for 
large values of nO(l - 0) with a mean of zero and a 
variance of 1. Furthermore the variable 

k k 2 

"" Z~ = ~ (Xi - nOi)
L l ~ nOi(l - fJi) 
i=1 i=1 

also can be formed and will be approximately distributed 
by the x2 distribution with k degrees freedom if the X/s 
are independent of each other. It turns out for certain 
reasons, too detailed to go into here, that the random 
variable 

k X · - nfJ.)2 
-2 _ l tL(

v=k-1 (3.7-14)X - nt). 
i=1 t 

is more properly used and is better represented by the 
X2 distribution with v degrees of freedom. 

If the parameters of the probability density of the 
random variable are not known so that estimates 0i 
must be made of 0h then 

k ~ 2
X· - nf}·)-2 t lL(

X = ~ v = k - 1 - g (3.7-15) 
i =1 n{}i 

where the number of degrees of freedom is reduced by g 
linear constraints, one for each estimate. One restriction 
on Equation 3.7-15 is that nfJ must be greater than 5; if 
not, groups must be combined. 

Equation 3.7-15 can be reformulated in slightly differ­
ent notation to give 

L
k ( n. - n.)* 2

-2 t t (3.7-16)X = * 
i=l nt 

where n, = observed number of occurrences of ~, and 
nr = theoretical number of occurrences of Xi calculated 
on the basis of the postulated probability density. 

The goodness of fit is determined by calculating x2 in 
Equation 3.7-16 and comparing this value with the one 
selected from the tables of X2 for a selected significance 
level, say ex = 0.05. A one-sided test can be used. If the 
calculated value of x2 exceeds the preselected value of 
xi- a, one rejects the null hypothesis that the two distri­
butions are the same, i.e., that the experimental relative 
frequency distribution is represented by the postulated 
probability density. (Also, if the value of x2 is less than 
X~, the empirical relative frequency distribution and 
probability density do not agree.) The x2 test for goodness 
of fit should be used with some caution and supple­
mented by other tests because it is essentially an approxi­



mate test. However, it certainly is a convenient test. A 
more exact analysis can be made by direct use of the 
multinomial distribution probabilities, if needed. For a 
very large number of occurrences, refer to Hodges and 
Lehmann.'] 

Example 3.7-5 X2 Test 

Rubber from a reclaiming plant is classified as grade A, 
B, C, or D. Previous experience has shown that the distri­
bution of product has been: A, 53.4 percent; B, 26.6 percent; 
C, 13.3 percent; and D, 6.7 percent. Last week's run was: 

Grade Batches 

A 340 
B 130 
C 100 
D 30 

Has there been a change in the distribution of products? 

Solution: 
The procedure is to tabulate the observed frequencies n, 

and compute the theoretical frequencies nt based on a 
total equal to the sum of the observed frequencies. 

Observed Theoretical (n, - nr)2 
Grade ni n~ n:t:

1 t 

A 340 320 400 
320 

B 130 160 900 
160 
400C 100 80	 -8-0­

100D 30 40	 -4-0­
--

Sum 600 600 14.4 

The number of degrees of freedom is v = k - 1 - g = 

4 - 1 = 3 (g = 0 since the nt's are computed from a 
known probability density). From Table C.2 in Appendix C, 
X2 for v = 3 and, for example, a probability equal to 0.95 
is 7.81. Certainly 14.4 exceeds 7.81; in fact, for P = 0.99, 
X~ - a = 11.34. A change in the process is suspected. 

Example 3.7-6 Generation of Random Digits 

A proposed method of generation of random digits is 
used 250 times to yield the following data. Does the tech­
nique actually produce random digits? 

Number of 
Digit Occurrences 

0 27 
1 18 
2 23 
3 31 
4 21 
5 23 
6 28 
7 25 
8 22 
9 32 

t J. L. Hodges and E. L. Lehmann, J. Stat. Soc. B16, 261, 1954. 
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Solution: 

Presumably, if the observed digits are random, each will 
occur with a probability of 0.1, or the number of theoretical 
occurrences (out of 250) would be 25. We compute 

~"' (nt - n~)2 _ (27 - 25)2 (18 - 25)2 . . . (32 - 25)2 
~ n~ - 25 + 25 + + 25 
t=l 

= 7.2 

and the number of degrees of freedom v is (k - 1) = (10 - 1) 
= 9. For v = 9, from Table C.2 in Appendix C, we find for 

ex = 0.10 that X~ -a = 14.68, a value clearly greater than 7.2; 
hence we can accept the hypothesis that the digits are 
random. 

Example 3.7-7 Testing Proposed Distributions 

Failure of certain components of a missile were tabulated 
by Connor.t as shown in columns- 1 and 2 of Table E3.7-7. 
Two proposed probability densities were compared to the 
observed relative frequency distribution in order to: 
(1) summarize the data by a simple function with one or two 
coefficients which contained all the known information, and 
(2) gain insight into the underlying causes of failure. The 
estimated mean of the experimental data was introduced as 
the single parameter into the Poisson density (refer to 
Table 2.3-1), the probability of each event (number of 
failures) was calculated, and each probability was then 
multiplied by the total number of failures, 473, to obtain 
the predicted distribution listed in column 3 of Table 
E3.7-7. 

TABLE E3.7-7 

Number of Negative 
Failures Observed Poisson Binomial 

0 331 317 333 
1 104 127 100 
2 27 25 29 
3 8 3 8 
4 1 1 2 
5 2 0 1 

Total

i (n, - nt)2 
n:te 

i=l t 

473 

Calculated: 
X~.99 from 

473 

17.2 
9.21 

473 

0.31 
6.63 

Table C.2: 

We compare 17.2 with the value of X~-a = 9.21 from 
Table C.2 in Appendix C (for ex = 0.01 and v = k - 1 ­
g =;= 4 - 1 - 1 = 2 degrees of freedom) and do not find a 
good fit. Note that the classes of size less than 5 must be 
combined so that k = 4. However, the same test for the 
negative binomial density 

p(x) = - 1) {IT(1 - {I)i i = 1,2, ...r+ ~ 

r = positive integer 
o < 8 < 1 

:I: W. S. Connor, Ind. Eng. Chern. 52 (2), 74A, 1960; 52 (4), 71A, 
1960. 
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indicates a suitable fit. The negative binomial density has 
two coefficients which must be estimated, rand (J, so that 
v = 4 - 1 - 2 = 1. Both the Poisson and negative binomial 
distributions have the same mean, n(J, but the variance of 
the Poisson distribution is nO and that of the negative 
binomial distribution (nO/(J) = n; that is, the latter is 
dispersed more extensively, as required here. The rationale 
and implications of the agreement with the negative binomial 
density are discussed in the original article by Connor. 

A second technique for goodness of fit, which will just 
be mentioned here, is the Kolmogorov-Simirnov test. 
This test inquires as to whether the cumulative relative 
frequency distribution of a variable (obtained by samp­
ling) is represented by a probability distribution. If a 
random variable is presumed to have a probability 
distribution Po(x) , and Sex) is the observed empirical 
cumulative relative frequency distribution, the distri ­
bution of D = max IPo(x) - S(x)I is known t and can 
be employed in tests of goodness of fit. 

TESTING lNDEPENDENCE OF VARIABLES. Suppose n pairs 
of experimental measurements are taken for two 
supposedly independent (in a statistical sense) variables. 
If the n data pairs are classified according to either 
quantitative or qualitative ranges of the two variables, 
the x2 test can be used to test the hypothesized inde­
pendence of the two variables. The null hypothesis is 
that the variables are independent. 

TABLE 3.7-1 TWO-WAY CLASSIFICATION * 

Classifications of
 
Variable Y
 

Classifi­
cations 
of Vari­
able X 

Y1 Y2 

Xl 
X2 

111 
121 

h2 
122 

Xm Im1 1m2 

Column 
Sums: 

m 

L 
i= 1 

f1 f2 

... YP 

lIP 
12P 

Imp 

fp 

Row 
Sums: 

p 

L 
j= 1 

h. 
12. 

r; 

n 

* The dot indicates summation over the variable replaced by the 
dot. 

t Refer to F. J. Massey, "The Kolmogorov-Simirnov Test for 
Goodness of Fit," J. Amer. Stat. Assn. 46, 68, 1951; L. H. Miller, 
"Table of Percentage Points for the Kolmogorov Statistics," 
J. Amer. Stat. Assn. 51, 111, 1956; and J. Rosenblatt, Ann. Math. 
Stat. 33,513, 1962. 

Consider the classification made in the Table 3.7-1 in 
which the number of outcomes is tabulated in each cell; 
i.e., Iii = number of occurrences for the pair Xi and Yj~ 
a range or class of X and Y. Let the probability of 
obtaining the count flj be denoted by (Jij; its estimate is 
then bij. We can form 

v = mp - 1 (3.7-17) 

The left-hand side of Equation 3.7-17 is approximately 
distributed as x2

• 

If P(Xi)P(Yi) = P(XhYi), so that the random variables X 
and Yare independent and, consequently, O/Jj = (Jib 

then we can estimate (Ji and (Jj by 

b. rvA 
l = n 

~ . rv IjlJJ = n 

so that 

(3.7-18) 

If Equation 3.7-18 is introduced into Equation 3.7-17, we 
obtain 

_ ~ ~ (Iii _fttjY (~~ Ja )
x2=~L =nL.~--1f j li.lj i-_l J·_-l h.i=l j=l • 

n 
(3.7-19) 

which is approximately represented by the x2 distribution 
with v degrees. of freedom. In this development there are 
(m + p - 1) constraints introduced in finding h. and 
l.jsO that 

v = mp - (m + p - 1) = mp - m - p + 1 

Another way to look at the degrees of freedom for 
Equation 3.7-19 is to observe from the table that each 
marginal total must sum to n = mp, so that the degrees 
of freedom are reduced by one in each case to 

(m - 1)(p - 1) = mp - m - p + 1 

A third way to find v is to note that m parameters have 
been estimated for the (Jb but since 2:r=l {Ji = 1, only 
(m - 1) of these estimates are independent. Similarly, in 
estimating (Jj, only (p - 1) degrees of freedom remain. 
Hence 

(mp - 1) - (m - 1) - (p - 1) = (m - 1){p - 1) 

degrees of freedom remain, as above. 
If X2 calculated by Equation 3.7-19 proves to be greater 

than that found from the table of X2 for a preselected 
significant level, then the variables are not independent. 
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At least five predicted counts are needed per cell; other­
wise the cells must be combined. 

Example 3.7-8 Test of Independence 

Eighty-seven rockets yield data on range and deflection 
as shown in the following table. For a confidence coefficient 
of 0.95, we test the hypothesis that the two measurements 
of range and deflection are independent. 

Deflection (mils) 

Range (yd) -250to -50 -50 to +50 50 to 200 Total 

0-1200 
1200-1800 
1800-2700 

Total 
-
20 

5 
7 
8 

9 
5 

21 
-
35 

7 
9 

16 
-
32 

21 
21 
45 
-
87 

Solution: 
The minimum predicted frequency is greater than 5. The 

degrees of freedom are 4. 

= 87(0.232) = 20.2 

We find that X~.95 = 9.488 from Table C.2 in Appendix C 
for a = 0.05. The variables are not independent. 

3.8 DETECTION AND ELIMINATION OF 
OUTLIERS 

Even carefully planned and executed experiments can 
yield inhomogeneous data. Changed conditions during an 
experiment may remain undetected so that anomalous 
measurements, often termed "blunders," "wild" values, 
or outliers, are made. Or, aberrant measurements may 
be due to errors in the operation of recording devices, 
which if known would cause the recorded values to be 
rejected. Or, key-punch errors, inverted digits, or 
misplaced decimal points may contaminate otherwise 
valid data. On the other hand, the outlier may be simply 
one of the extreme values in a probability distribution for 
a random variable which occur quite naturally but 
infrequently and should not be rejected. 

When the analyst knows that an abnormal error or 
blunder has been made, he does' not hesitate to discard 
such an observation. When he does not have enough 
practical 'grounds to either accept or reject an extreme 
observation, he must resort to some kind of statistical 
judgment. He would like to answer the question: 
"What is the probability that the observed differences 
are due solely to random sampling errors?" in such a 
way that there is little doubt that certain observations 
will be rejected. 

The approach to the problem of analyzing outlying 
observations depends upon the objective at hand. If the 
analyst is solely interested in determining whether an 
observation is an outlier in order, perhaps, to investigate 
the condition or conditions that may have led to this 
extreme observation, then the test for such an outlying 
observation is.an end in itself. If, on the other hand, he 
is interested in deleting the outliers in order to obtain a 
more accurate estimate of some population parameter, 
say the population mean, then he is interested not only 
in a test for an outlying observation but also in the 
estimation of the parameter subsequent to the outlier 
test. Thus, he would also consider the possible bias of the 
estimate and its variance, taking proper account of the 
use of the outlier test. If the sample data, subsequent to 
an outlier test, are to be used to test hypotheses about a 
population parameter, then he is interested not only in 
a criterion for an outlier but also in the power of sub­
sequent tests of hypotheses. 

Tests for outliers generally have one of the following 
objectives: 

1. To prune the observations prior to analysis (re­
jection of outliers). 

2. To ascertain that outliers are present, indicating a 
need for reexamination of the data generation. 

3. To pinpoint observations that may be of special 
interest just because they are extremes. 

We shall be concerned with the first type of test. 
The classical method of handling the problem of 

detecting a point outlier is to assume that the sample 
observations are of a normally distributed random 
variable, to devise an appropriate outlier test statistic 
sensitive to the kind of wildness envisioned, to derive the 
distribution of this test statistic under the null hypothesis 
that all observations come from the same normal popu­
lation, and then to reject the hypothesis if the calculated 
test statistic for it is unlikely to have occurred in random 
sampling. The usual test statistic is based on the idea that 
the analyst can look at the sample results of an experi­
ment and note that he has a discordant observation. The 
test statistic, referred to as the extreme deviate statistic, 
involves the difference between the extreme value and 
the sample mean value and either the ensemble standard 
deviation or an estimate of it obtained from the sample 
at hand and/or from an independent sample. The theory 
and practice of the rejection of outliers are not firmly 
resolved and, to quote Gumbel: t 

The rejection of outliers on a purely statistical basis is 
and remains a dangerous procedure. Its very existence 
may be proof that the underlying population is, in 
reality, not what is was assumed to be. 

t E. J. Gumbel, Technometrics 2, 165, 1960. 
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We shall follow Anscombe ] in the use of test rules. 
Given a sample of observations Xb X 2 , ••• , X n (n ~ 3), 
which is assumed to be a random sample of a normal 
random variable X with the parameters P-x and ai, we 
compute 

i = 1,2, ... , n 

where X = L~ = 1 Xi/no If a single Xi is omitted, the sample 
average of the remaining observations is 

n
 

~ X j = X _ Y i
 
v = n - 1 (3.8-1)

~ V V 
1=1 
j*i 

If several observations are omitted, Xl' X2 , ••• , Xn the 
sample average is 

X _ (Y1 + Y2 + ... + Yr ) (3.8-2)
n-r 

If the subscript M is used to designate the observation 
which has the greatest residual, YM = X M - X, Ans­
combe suggests the following rule (for the case in which 
ai is unknown). For a given c, reject X M if IYMI > css, 
Otherwise, do not reject XM • For large samples, if XM is 
rejected, the reduced sample is treated as a new sample 
that can be subjected to further analysis. Each time, P-x 
is estimated from the observations retained after deleting 
X M • The c can change with sample size, and Anscombe 
gives c implicitly in terms of t: 

(3.8-3) 

and explicitly by the following approximate relation in 
terms of the F distribution: 

c 1"..1 (v)%( 3Fl-q )% (3.8-4) 
1"..1 n 1 + [(3F1- q - I)/(v + Yo)] 

where v = n - 1· and vo is any other additional degrees 
of freedom which accompany the estimate of ai other 
than from the sample of size n. (The positive square 
root is taken for c.) 

The test is carried out, using Equation 3.8-4, as 
follows. Multiply the allowable fractional increase in 
ai if no rejection is to take place (the "premium") by 
v[n, Denote this product by q, and find the corresponding 
upper percentage point of the variance ratio, F1 _ a» for 
3 and v + Vo - 1 degrees of freedom. Calculate c from 
Equation 3.8-4 and carry out the test for XM • The 
"premium" depends on how much one fears spurious 
observations, but some small fractional increase in ai 
should be acceptable, say 0.02. As an example, if n = 4, 
v = 3, and (vln) = 0.75, for a "premium" of 0.02, 

t F. J. Anscornbe, Technometrics 2, 123, 1960. 

q = (0.02)(0.75) = 0.05. We look up FI-0005 for 3 and 3 
degrees of freedom, respectively. F1 - = 9.28. Then q 

_ %( 3Fo 09 5 )% _ 
c - (0.75) 1 + [(3F _ 1)/(3)] - 0.831 

o 09 5 

XM would be rejected if IYMI > 0.831sx . 
Outliers in regression analysis will be treated In 

Chapters 4 and 5. 

Example 3.8-1 Test of an Outlier 

In the series 

~ ~ ~ ~ ~ 

23.2 23.4 23.5 24.1 25.5 

ascertain whether or not Xs is an outlier to be deleted from 
the sample. 

Solution: 
Compute X = 23.9 and then Yi = Xi - X = 25.5 ­

23.9 '= 1.6; Sx = 0.77. For ex = 0.05, v = 4, and n = 5, 
from Equation 3.8-3 we compute by trial and error that 

5C2(3) ] % 3 

[ 
4;2) =3(3 _ 2.776 

and c = 1.49. The test is 

11.61 > (1.49)(0.77) = 1.05 

and observation Xs is retained. 

3.9 PROCESS CONTROL CHARTS 

Hypothesis testing can be applied in a quite simple and 
yet practical way to assist in process quality control. 
Control charts are a graphical means of analysis which 
have proved easy to maintain and use under plant 
operating conditions. Figure 3.9-1 illustrates a typical 
process control chart based on the sample mean. The 
general procedure in preparing a control chart is ; (1) to 
collect a sample, (2) to compute an appropriate statistic 
such as the sample mean, the range, or the cumulative 
sum, and (3) to plot the statistic on a chart as a function 
of sample sequence or time. 

Superimposed on the chart in some manner are the 

______ ~pe~ntr~mit _ 

• •xr------"'---=---~z...----~--------

Lower control limit

Time (or sample number) 

FIGURE 309-1 A typical process quality control chart. 
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rules for making a decision as to whether the process 
variable is "in control" or not. Figure 3.9-1 illustrates an 
upper control limit and a lower control limit. As long as 
the statistic being plotted falls within these two bounds, 
the process is deemed to be in control. The decision 
rules used to fix the lines can be based on an assumed 
distribution for the observed random variable, usually 
the normal distribution, or they can be based on a 
nonparametric analysis as discussed in Section 3.7. 

If the statistic being plotted exceeds a control limit, 
the decision is reached that the process is "not in 
(statistical) control"; the breaking out indicates abnormal 
performance. Even the accumulation of an undue num­
ber of points on one side of the central line can be inter­
preted as a shift of some type in the process. Control 
charts can be used to provide. 

1. Both a signal that a change has occurred in the 
process and an estimate of the amount of change re­
quired for corrective action. 

2. Solely a signal that a change has occurred in the 
process so that the operator can be made aware that the 
process needs his attention. 

3. Estimates of the times in the past during which 
changes in the process have occurred and thus assist in 
assigning causes for the changes. 

4. Measures of the quality of output for classification 
by period. 

Because of the way control limits are placed in practice 
and because of the lack of information about the prob­
ability distribution of the random variable being 
measured, exact probability statements of the type used 
in Sections 3.3 and 3.4 are usually avoided. Control 
charts are especially valuable when used as simple 
graphical aids to let the process operator, who is un­
trained in statistical techniques, get a mental picture of 
the process history and interpret whether or not the 
quality of the product is at a satisfactory level. 

The use of process control charts in the process 

industries has not been as fruitful as, for example, in 
the automotive parts industry because the goal in the 
former is often not to control an output variable, such 
as the yield, to within a given range but to maximize the 
variable. Improvement is synonymous with optimization. 
In traditional applications the goal is to produce a 
product with increased uniformity. A second difficulty in 
applying process control charts in the process industries 
is that the assignment of the causes of an "out of control" 
process is never obvious except for aberrant values which 
may be caused by improper feed of raw materials, 
improper setting of control variables, equipment failure, 
failure to follow the proper operating instructions, etc. 
In any case, such causes are usually corrected before 
their effects are detected on control charts. But a shift 
in level and/or cyclical fluctuations in a process are 
difficult to ascribe to assignable causes, some of which 
may be unobservable variables or in the surrounding 
environmental conditions. 

Several kinds of control charts will be briefly described 
in this section, each of them based on the plotting of a 
different statistic: 

1. Shewhart control charts (X, R, and s charts). 
2. Geometric moving average (exponentially weighted 

moving average) charts. 
3. Cumulative sum charts. 
4. Multivariate control charts. 

Many other types of charts are equally useful, and these 
are described in the references at the end of this chapter. 
Table 3.9-1 characterizes the relative effectiveness of four 
types of control charts in detecting various changes in 
the process. 

Designing a process control chart, that is establishing 
the central line and control limits, requires some thought 
and investigation into the process itself. We shall assume 
that the process and sampling points are clearly defined, 
lag and dead times have been taken into account, and a 
suitable sampling method and sampling interval have 

TABLE 3.9-1 RELATIVE EFFECTIVENESS OF CONTROL CHARTS IN DETECTING A 

CHANGE IN A PROCESS * 

Control Chart 

Standard Cumulative 
Mean Range Deviation Sum 

Cause of Change (X) (R) (s) (CS) 

Gross error (blunder) 1 2 3 
Shift in average, 2 3 1 
Shift in variability 
Slow fluctuation (trend) 2 
Rapid fluctuation (cycle) 2 

* 1 = most useful, 2 = next best, 3 = least useful, and - = not appropriate. 
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been selected. Then the sampling procedure itself must 
be investigated so that the precision of the data to be 
used is known (and is at an acceptably low level). Large 
samples make for more sensitive tests, but the time 
element may be such that the sample can consist only of 
a single reading, say from a gas chromatograph. The 
economics of sampling, cost of off-specification material, 
cost of taking a corrective action, etc., are vital con­
siderations in designing a control chart but facto rs 
beyond our scope here. 

3.9-1 Shewhart Control Charts 
The Shewhart control chart for X was one of the initial 

too ls of statistical quality control.t A samp le of a 
pres umed normal random variable (Burr ] indicates that 
the effect of no nnormality is slight and provides ta bles 
of compensating coefficients, if required) with a mean of 
P-x and a varia nce of u~ is taken, X is computed, and 
then X is plotted as illustrated in Figure 3.9-1. Fo r a 
selected value of 0: , often set at 0.0027 so that I - 0: = 
0.9973, upper and lower control limits are calculated , 
using Ux or its estimated value, and placed on the chart 
about the known or estimated value of t-x- When a 
sample average falls outside the control limits, one 
concludes that the process is .. out of control." One 
important decision which must be made is what value of . 
0: to choose ; the narrower the band of control limits, the 
more frequent the" out of control" signals will be when 
unwarranted. Another important decision is what sample 

t W. A. Shewhart, Economic Control of Qualit y of Manufactured
 
Product, D . Van Nostrand, Princeton, N.J. , 1931.
 
t I. W. Burr, Ind . Qual. Control 23, 563, 1967.
 

size, n, to use. A common value of n is 5. A second 
statistic which usually accompanies the X plot is R, the 
range of X in the sample . The arithmetic mean of the 
ranges, fl., can be used as an estimate of the sample 
dispersion, and the arithmetic mean of the X's, X, can 
be used to estimate P-x. 

The range is a somewhat more convenient measure of 
dispersion to calculate than the standard deviation. The 
advantage of plotting the range as well as X on control 
charts is that abnormal variations are more easily 
detected . The range is a rough measure of the" rate of 
change" of the variable being observed. A point out of 
control on the ra nge chart, when the mean is still within 
the control limits, sounds the alarm well in advance of a 
change in the mean. 

If there is no damage or cost when one of the two 
contro l limits is exceeded, but if the oppos ite is true if 
the other control limit is exceeded, the mean of the 
process can be shifted so that the important limit is 
farther from the mean and the other limit is ignored . If 
one of the limits turns out to be greater than the physical 
limit of the process , for example, a value in percent less 
than 0 or greater than 100, the control limit is usually 
made to coincide with the physical limit. 

Figure 3.9-2 illustrates a process control chart in 
which X and R are plotted together. The 7: 30 a.m. 
range is out of control, indicating that the decrease in 
yield is at a too rapid rate and leading to an out of 
control condition on X by 8:30 a.m . If the reason for 
the change is known , such as a previous control valve or 
temperature adjustment, then no action is required . But 
if the cause is unknown, deciding from the chart what 
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variable to adjust and how much action is required is 
not always easy. 

If the average range R is employed to estimate the 
variance of the statistic being plotted, which in turn is 
used to establish the control limits, special tables have 
been prepared, such as Table 3.9-2 (for rt = 0.0027), 
that tabulate the proper constant A2 by which to multiply 
R in order to calculate the upper and lower (symmetric) 
control limits. A 2 is an appropriate constant based on the 
distribution of (X - X)/R. When the subgroup size n is 
5, A2 = 0.577; the control limits are then. set at X ± A2 R. 
The null hypothesis for the test being applied on the 
control chart is that the expected value of X is a specified 
value, fLo. 

Unfortunately, X and A2 R are not very accurate 
estimates of fJ'x and 3ug unless the number of successive 
samples used to obtain these estimates is quite large, at 
least 25. Thus, when only a small number of subgroups 
has been collected, X ± A2 R may differ greatly from 
fJ'x ± 3ug. One consequence of this difference is that 
more than 0.27 percent of the future values of X may 
fall outside of' X ± A 2 R, even when the process is in 
control. Table 3.9-3 indicates the probability, assuming 
the process is in contro.!.: that a randomly selected X win 
fall outside the limits X ± 0.577R based on m samples, 
each of size n = 5. 

Table 3.9-4 gives values of A2 for a sample of n = 5 
for various significance levels, «, for an increasing 

TABLE 3.9-2 FACTORS FOR COMPUTING CONTROL CHART LINES * (rt = 0.0027) 

Chart for Averages Chart for Standard Deviations Chart for Ranges 

Sample 
Size 

Factors for Control 
Limits 

Factors for 
Central Line 

Factors for Control 
Limits 

Factors for 
Central Line 

Factors for Control 
Limits 

n A A o 

2 2.121 3.760 3.760 1.880 0.5642 1.7725 o 1.843 0 3.267 1.128 0.8862 o 3.686 o 3.267 
3 1.732 3.070 2.394 1.023 0.7236 1.3820 o 1.858 0 2.568 1.693 0.5908 o 4.358 o 2.575 
4 1.500 2.914 1.880 0.729 0.7979 1.2533 o 1.808 0 2.266 2.059 0.4857 o 4.698 o 2.282 
5 1.342 2.884 1.596 0.577 0.8407 1.1894 o 1.756 0 2.089 2.326 0.4299 o 4.918 o 2.115 

6 1.225 2.899 1.410 0.483 0.8686 1.1512 0.026 1.711 0.030 1.970 2.534 0.3946 o 5.078 o 2.004 
7 1.134 2.935 1.277 0.419 0.8882 1.1259 0.105 1.672 0.118 1.882 2.704 0.3698 0.205 5.203 0.076 1.924 
8 1.061 2.980 1.175 0.373 0.9027 1.1078 0.167 1.638 0.185 1.815 2.847 0.3512 0.387 5.307 0.136 1.864 
9 1.000 3.030 1.094 0.337 0.9139 1.0942 0.219 1.609· 0.239 1.761 2.970 0.3367 0.546 5.394 0.184 1.816 

10 0.949 3.085 1.028 0.308 0.9227 1.0837 0.262 1.584 0.284 1.716 3.078 0.3249 0.687 5.469 0.223 1.777 

11 0.905 3.136 0.973 0.285 0.9300 1.0753 0.299 1.561 0.321 1.679 3.173 0.3152 0.812 5.534 0.256 1.744 
12 0.866 3.189 0.925 0.266 0.9359 1.0684 0.331 1.541 0.354 1.646 3.258 0.3069 0.924 5.592 0.284 1.716 
13 0.832 3.242 0.884 0.249 0.9410 1.0627 0.359 1.523 0.382 1.618 3.336 0.2998 1.026 5.646 0.308 1.692 
14 0.802 3.295 0.848 0.235 0.9453 1.0579 0.384 1.507 0.406 1.594 3.407 0.2935 1.121 5.693 0.329 1.671 
15 0.775 3.347 0.816 0.223 0.9490 J .0537 0.406 1.492 0.428 1.572 3.472 0.2880 1.207 5.737 0.348 1.652 

16 0.750 3.398 0.788 0.212 0.9523 1.0501 0.427 1.478 0.448 1.552 3.532 0.2831 1.285 5.779 0.364 1.636 
17 .0.723 3.448 0.762 0.203 0.9551 1.0470 0.445 1.465 0.466 1.534 3.588 0.2787 1.359 5.817 0.379 1.621 
18 0.707 3.497 0.738 0.194 0.9576 1.0442 0.461 1.454 0.482 1.518 3.640 0.2747 1.426 5.854 0.392 1.608 
19 0.688 3.545 0.717 0.187 0.9599 1.0418 0.477 1.443 0.497 1.503 3.689 0.2711 1.490 5.888 0.404 1.596 
20 0.671 3.592 0.697 0.180 0.9619 1.0396 0.491 1.433 0.510 1.490 3.735 0.2677 1.548 5.922 0.414 1.586 

21 0.655 3.639 0.679 0.173 0.9638 1.0376 0.504 1.424 1.523 1.477 3.778 0.2647 1.606 '5.950 0.425 1.575 
22 0.640 3.684 0.662 0.167 0.9655 1.0358 0.516 1.415 0.534 1.466 3.819 0.2618 1.659 5.979 0.434 1.566 
23 0.626 3.729 0.647 0.162 0.9670 1.0342 0.527 1.407 0.545 1.455 3.858 0.2592 1.710 6.006 0.443 1.557 
24 0.612 3.773 0.632 0.157 0.9684 1.0327 0.538 1.399 0.555 1.445 3.895 0.2567 1.759 6.031 0.452 1.548 
25 0.600 3.816 0.619 0.153 0.9696 1.0313 0.548 1.392 0.565 1.435 3.931 0.2544 1.804 6.058 0.459 1.541 

>25 
3 

Vn 
3 

Vn 1.0000 1.0000 t t . 

* Use explained in Table 3.9-5. The relation A o = 3vii d2 holds. Adapted with permission of the American Society for Testing 
Materials from ASTM Manual on Quality Control of Materials, Philadelphia, Jan. 1951, p. 115. 

tl-_3_ 

V2n 

~1+_3_ 
V2n 



TABLE 3.9-5 CALCULATION OF UPPER AND LOWER CONTROL LIMITS 

Sample Statistic Lower Control* Upper Control 
Controlled Central Line Limit (LCL) Limit (UCL) Sample size 

Mean X ftx 
Range R d20'x 

Standard UXC2Jn ~ 1
deviation Sx 

Mean X X 

Mean X X 

Mean X X 

SumS S 

Range R R 

Standard Sx 

deviation Sx 

Standard Sx 

deviation Sx 

ftx and O'x Specified 

ftx and O'x Unknown 

= In=tX - SXAl -n­

x _' 3sx 

Vfl 
S - AoR 

_ 3sx 
Sx -- ­

v2ii 

= In=tX+ SXAl -n­

.=: 3sx 
X + Vfl
 

S + AoR
 

_ 3sx 
sx + j­A 

.y 2ii 

n 
Small, preferably 

10 or fewer 

n 

Small, preferably 
10 or fewer 

25 or fewer, 
constant size 

Sample sizes ~ 25, 
may vary slightly 

Small, preferably 
J 10 or fewer 

Small, preferably 
10 or fewer 

25 or fewer, 
constant size 

Sample sizes ~ 25, 
may vary slightly 

• ii is the average sample size for variable sample sizes. 



have tighter control limits, and certainly more up-to­
date ones, by computing new control limits after addi­
tional samples are obtained. But it is undesirable, both 
from the standpoint of the effort involved and the 
psychological impact on the workers affected by the 
control charts, to revise the control limits too frequently. 
When control limits are revised, an X may at one time 
lie inside the control limits and .later on outside them, 
Because the control limits are established for a process 
in control, any values of X and its related R should be 
deleted from the calculations if they prove subsequently 
to be outside the revised control limits; one should use 
the number of subgroups "in control," not the total 
number of subgroups, for the value of m when finding 
the value of A 2 from Table 3.9-4. 

Other types of control charts besides the X and R 
charts can be prepared. Table 3.9-5 summarizes some of 
these and their related control limits. The various con­
stants are tabulated in Table 3.9-2 (for ex = 0.0027). In 
Table 3.9-5 the sum of the kth sample is Sk = 2f~ I X i k , 

and the notation Sx stands for the arithmetic mean of the 
standard deviations of the samples: 

- nISI + n2s2 + ... + nksk 
Sx = --------­

nl + n2 + ... + nk 

Control charts also can be based on runs of specific 
length above or below the central line or on the number 
of runs in a given series of samples. Nonparametric tests, 
such as were described in Section 3.7, are the bases of 
the decisions to be made. 

Example 3.9-1 Establishing X andR Chart Control Limits 

Table £3.9-1 lists the sample means for the percentage 
yields from a continuous reactor. Determine the central line 
and upper and lower control limits for an X and an R chart 

TABLE £3.9-2 DATA FOR THE X CHART 

PROCESS CONTROL CHARTS 83 

TABLE E3.9-1 

Sample Range Sample Range 
Sample Mean X R Sample Mean X R 

1 64.97 9.8 14 66.60 0.6 
2 64.60 9.8 15 66.12 6.3 
3 64.12 8.4 16 63.22 7.5 
4 68.52 3.9 17 62.85 6.7 
5 68.35 7.6 18 62.37 4.9 
6 67.87 8.7 19 61.97 6.7 
7 64.97 0.1 20 61.60 9.9 
8 64.60 9.7 21 61.12 6.9 
9 64.12 7.7 22 65.72 0.1 

10 63.22 7.5 23 65.35 8.3 
11 62.85 1.2 24 64.87 5.2 
12 62.37 9.8 25 61.97 3.2 
13 66.97 6.4 

from Table 3.9-2. Each value of X and R in the table has 
been prepared from three analyses. 

Solution: 
)~ X = 1611.29 ~ Rt = 156.9 
~ ~ 

17=64.452 R = 6.28 

The control limits for the mean are: upper, 64.452 + 
1.023(6.28); and lower, 64.452 - 1.023(6.28). The value of 
A 2 = 1.023 was taken from Table 3.9-2 for n = 3. The 
control limits for the range are: 

D 3 R = (0)(6.28) = 0 
D 4R = 2.575(6.28) = 16.17 

Example 3.9-2 Initiation of Control Charts 

This example illustrates the initiation of X and R control 
charts for the data of Example 3.9-1, except that we assume 
for the purposes of illustration that the sample size is 5 in 

Sample LCL, UCL, 
Number X R X R m A 2 * X- A2 R X+ A2 R 

1 68.2 7 
2 66.2 3 
3 72.4 6 
4 67.8 2 
5 67.0 8 68.32 5.20 5 0.720 64.6 72.1 

Revised 67.30 5.00 4 0.760 63.5 71.1 
6 66.8 4 63.5 71.1 
7 67.0 4 63.5 71.1 
8 65.8 7 63.5 71.1 
9 62.6 8 63.5 71.1 

10 69.0 4 63.5 71.1 
11 67.6 8 63.5 71.1 
12 66.0 9 67.14 5.60 10 0.647 63.8 70.8 

* Values taken from Table 3.9·4; the value from Table 3.9-2 would be 0.577. 
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order to make use of Table 3.9-4. To quickly obtain informa­
tion for the X chart, it might be decided to initiate use of the 
chart as soon as possible by setting control limits based on 
the first five initial samples. It was decided to use the usual 
value of a = 0.0027. Table E3.9-2 lists the values of A2 and 
the control limits after five samples. 

Notice that the value of X for the third sample exceeded 
the upper control limit after the limit had been established 
based on the first five samples; consequently the sample 
was excluded from all subsequent calculations of Xand of 
the control limits. This exclusion resulted i.n a revised X 
and control limits based on four samples. Similarly, when 
X for the ninth sample fell below the lower control limit, 
the sample was excluded from subsequent calculations. 
Investigation of the process conditions for the third and 
ninth subgroup revealed that the process was susceptible to 
temporary shifts in the true process average. Corrective 
action removed the causes of these shifts. At the end 'of ten 
valid samples, the control limits were recalculated as 
indicated on the last line of Table E3.9-2. 

Example 3.9-3 Corrective Action Based on Control Charts 

This example is taken from Breunig t and illustrates the 
usefulness of control charts in pointing out undesirable 
process conditions with subsequent detection of the proper 
corrective action. For some time management had suspected 
that an unsatisfactory situation existed in the production of 
Vitamin A in certain multiple vitamin products. But until 
the dramatic evidence of control charts was available, little 
corrective action had been taken. Because the determination 
of Vitamin A in the control laboratory was one of the few 
instances where duplicate determinations were routinely 
made, an estimate of laboratory variability was available. 
Although there may be some question as to the propriety 
of judging lot-to-lot variation against .laboratory precision 
alone, this was the best available estimate of within-lot 
variation. When X charts based upon laboratory variability 
were prepared, the sample means were found to fluctuate 
so widely that very few were in control as evidenced by 
Figure E3.9-3a for Product H and Figure E3.9-3e for 
Product M. An investigation was made into the raw material­
handling procedures as a first step -. 

Vitamin A, supplied in the form of acetate or palmitate 
salts, is quite susceptible to atmospheric oxidation so that 
an excess amount is normally included in the formulation. 
Geometric configuration of the side chain of the Vitamin 
A molecule engenders cis and trans isomers. Originally the 
trans isomer predominates, but in time it is partially 
converted by oxidation to the cis isomer until an equilibrium 
mixture is reached consisting of approximately 66 percent 
trans and 33 percent cis. Although there appears to be some 
recent evidence to the contrary, the assumption has long 
been made that there is relatively little physiological 
difference in response to the two isomers. The analytical 
determination of Vitamin A was~based upon an ultra-violet 
extinction procedure which assumed that only the trans 
isomer was present. 

t H. L. Breunig, Ind. Qual. Control 21, (2), 79, 1964. 

The investigation revealed that Vitamin A palmitate, for 
instance, was purchased in bulk form in 50-kilogram con­
tainers as a semisolid; an assay was made upon arrival. It 
was purchased from several sources, including brokers who 
may have pooled batches from still other sources. The 
potency specification was that it contain" 70 percent activity" 
by the V.V. assay. Based upon the original determined 
activity, Vitamin A was introduced into the manufacturing 

. process at the appropriate potency level. 
The 50-kilogram containers were stored in a cold room. 

Requisitions were filled by removing the drum from the 
chill room, warming, dipping out the proper amount to fill 
the order, and returning the container to the cold room. 
Obviously, as this procedure was repeated several times, 
oxidation was taking place. Furthermore, those drums which 
contained an insufficient amount of material for filling 
requisitions were stored until several had accumulated and 
the contents were then mixed together. Thus, constantly 
shifting isomer ratios were experienced which showed up in 
the high variability of the finished product assay values on 
the control charts. There also appeared to be evidence of 
additional potency loss that was not explained by the 
cis-trans isomerization. 

The first attack upon the problem included consultation 
by the purchasing department with certain reliable suppliers 
who agreed to provide Vitamin A as "prepackaged" 
material at no extra cost. A scheme was worked out whereby 
all manufacturing requisitions could be filled by com­
binations of three standard package sizes-which were sealed 
under nitrogen in the plant of the supplier and not opened 
until needed, although one package of each shipment was 
checked for identity. This procedure led to a strong de­
pendence, upon "vendor certification" of potency. At first 
the revised packaging appeared to give satisfactory results, 
but, as is noted in Figures E3.9-3b and c for Product H, 
variation of the sources of material was not the sole diffi­
culty. Purchase of the material was being made on a 
" 100 percent trans" level, but obviously some shifting to 
cis was still taking place. 

The next step in the attempt to attain quality control was 
directed to the problem of the cis-trans isomer ratio. The 
suppliers agreed to provide an equilibrium mixture of 66 
percent trans- 33 percent cis in their prepackaged material. 
The arrow in Figure E3.9-3c for Product H indicates when 
the first lots containing" preisornerized " Vitamin A were 
received for analysis. At this time a significant upward shift 
in Vitamin A content occurred, so new control had to be 
established as shown in Figure E3.9-3d and f for Product H 
and Product M, respectively. The process control charts, 
after the corrective action described above was taken, 
indicated far more uniform control of the Vitamin A 
content of two typical vitamin products. Not only were ' 
nearly all the lot means in control' but so also were the 
within-lot and between-lot ranges. 

3.9-2 Acceptance Control Charts 

A discussion of sampling plans is beyond our scope 
here. In acceptance sampIing some characteristic of the 
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FIGURE 3.9-3 Operating characteristic curve for a sampling plan. 

product is measured, a random sample of size n is 
selected according to some sampling plan, the sample 
mean and standard deviation are computed, and a 
significance test is carried out for a null hypothesis. 
Associated with the null hypothesis are alternate hy­
potheses and errors of the first and second kind. The 
consumer who buys the product sets a limit below which 
the product is unsatisfactory for his use, and he is the 
one who determines the alternate hypothesis. Figure 
3.9-3 illustrates the operating characteristic curve of a 
typical sampling plan. For the producer, the null hy­
pothesis flo is that the product is acceptable, and even -if 
he makes an acceptable product, 100a percent of it will 
be deemed unacceptable because the process sample 
statistic is stochastic in nature. In this sense, a is termed 
the producer's risk, and the related level of the process 
fraction defective is termed the acceptable quality level 
(AQL). If the producer makes some 100,8 percent de­
fective product, which is not detected as being defective 
because of the stochastic nature of the sample statistic, 
the probability ,8 is called the consumer's risk, and the 
alternate hypothesis, HI, establishes a rejectable quality 
level (RQL). 

In designing an acceptance control chart, the accept­
able process level (APL) is based on a and the rejectable 
process level (RPL) is based on,8. As long as the product 
statistic being monitored lies between the APL and the 
RPL, the process is deemed to be in control. Note that 
the control limits depend on a, {3, and n. Freund t gave 
some exampIes of acceptance control charts. 

3.9-3 Geometric Moving Average Control Chart 

.The geometric moving average control chart.j also 
known as the exponentially weighted moving average 
control chart, and the cumulative sum chart (to be 
described in Section 3.9-4), proves to be of most use 
where the specifications must be tight so that a sensitive 
control scheme is needed. These techniques combine 
information from past samples with that from the current 

t R. A. Freund, Ind. Qual. Control 14, 13, Oct. 1957. 
t S. W. Roberts, Technometrics 1, 239, 1959. 

one and, in effect, make use of more information than 
do the Shewhart charts with the result that they have the 
ability to detect a smaller shift in the process level. Of 
course, the disadvantage is that the old information 
submerges possible small shifts in the process level 
signalled only by the new information. The geometric 
(exponentially) weighted moving average chart gives 
more weight to recent measurements than to old ones by 
computing a weighted linear combination of a sample 
statistic such as X. The most recent value is assigned a 
weight of w, with 0 :::; W :::; 1, and the older weighted 
statistic is assigned a weight of 1 - w. Thus, if: 

Z: = weighted average of the sample statistic after 
sample k 

Zk = value of the kth sample statistic 
k = current measurement; (k - 1) = next most 

recent measurement, etc.; 0 s i s k
 
Z = central line on the control chart
 

then 

zt =Z
 
zt = WZI + (1 - w)zt
 
Z: = wZ2 + (1 - w)zt 

If w = 1, all the weight is placed on the current data, and 
a Shewhart type chart is obtained. If w = 0, no weight is 
given to the current data, so in effect no current sample 
need be taken! 

It can be shown that the expected value of Z:, if 
Z, = Xj, is 

and the variance of Z: is 

. w 
Var {Z:} = aj[l - (1 - W)2k] 2-­

-w 

As k becomes large, 

Var{Z:} = wa}-2
-w 

Control limits can be drawn on a typical chart at appro­
priate distances from 2. The exponentially weighted 
moving average chart is compared with other control 
charts in Figure 3.9-7. 

3.9-4 Cumulative Sum Control Charts 

Cumulative sum control charts, as the name indicates 
make use of cumulative sums of a random variable or a 
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function of a random variable starting from a given 
reference time. For example, the statistic summed may 
be: 

1. The variable itself. 
2. The difference between the measured value of the 

variable and its expected value. 
3. The difference between the measured value of the 

variable and a target value. 
4. Successive differences between values of a variable 

or absolute differences. 
5. The sample mean. 
6. The range. 

Table 3.9-6 lists relations for calculating the statistic 
for typical cumulative sum charts; each sum is based on 
a sample of size n. 

TABLE 3.9-6 COMPUTATIONAL RELATIONS FOR CUMULATIVE 

SUM CHARTS 

Type of Chart Cumulative Sum 

nDeviation from reference 
(target) value, h L (Xi - h) 

i=l 

Absolute value of a deviation n

from its expected absolute >[IXi- XI-lf{IXi- XI}]
.:....-.J . 

value i =1 

Successive differences 

Absolute value of successive n

differences from the >[IDil - 8{IDil}] 
.:....-.J

expected 'absolute value i=l 

Range of two successive n

pairs of observations ? [R i - 8{RJ] 
.:....-.J

from the expected value i=l 

The major advantage of the cumulative sum charts, 
as contrasted with the Shewhart charts, is that they are 
more sensitive to moderate deviations in the process 
statistic of interest from its expected value; they 
"damp .out" random noise while "amplifying" true 
process changes. True, the Shewhart charts can be made 
more sensitive by using, in addition to the control limits 
given in Table 3.9-5 (for one statistic), one or more of the 
following criteria:'] 

1. ".Warning" lines within the control limits and 
"action" lines at the usual control .limits. 

2. Runs of the statistic, such as three consecutive 

t G. P. Moore, Biometrica 45, 89, 1958; E. S. Page, Biometrica 
42, 243, 1955; and H. Weiler, J. Amer. Stat. Assn. 48, 816, 1953 
and 49, 298, 1954. 
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points outside control lines placed at ± a or seven con­
secutive points on one side of the central line. 

These alternate decision rules make use of some of the 
extra information retained in a control chart beyond that 
provided by the current sample. Cumulative sum charts 
also take into account more than the current sample; 
consequently, substantially more information can be 
tied into the decision rules. 

Not only is there a difference in the type of visual 
record which appears on a cumulative sum chart, but 
the criteria for taking action are different. Contro I 
limits for a cumulative sum chart evolve from the 
distribution of the statistic being plotted; however, the 
control limits are not drawn on the chart but are provided 
through use of a special template or overlay mask. What 
is of interest in the cumulative sum chart is not the 
absolute value of the sum but the slope of the curve 
comprised of successive (recent) points. Each type ofchart 
requires a different template to indicate the degree of 
slope. 

Figure 3.9-4 illustrates a typical template together with 
the rules for its construction and use based on the distri­
bution of the statistics being plotted, assuming the 
random variable was normal. After each point is plotted, 
the reference point P on the mask is placed over this 
most recent point. The observer then looks to see 
whether a previously plotted point appears (or disappears 
if the mask is not transparent) beneath the mask when 
the mask is correctly positioned for a given decision 
rule. (Note the analogy with the Wald sequential test of 
Section 3.4-1.) When such an event occurs, the process 
is said to be "out of control." For V-shaped· masks, it is 
suggested that the visual impact of a change is optimal 
when one horizontal step is about equal to a 2a vertical 
step.] 

Since a V-shaped mask can be designed by establishing 
just two parameters, (J, the half-angle of the V, and -d, 
the lead length of the V, as indicated in Figure 3.9-4, 
the question naturally arises as to what interpretation can 
be given to suitable combinations of (J and d in terms of 
the power of the decision rules. To answer this question, 
we must first discuss the topic of average run length. 
The average run length (ARL) refers to the number of 
samples collected before an action signal occurs. ARL is 
a measure of how frequently one must interfere with a 
process if one follows the appropriate decision rules 
based on a selected «. Because the average run length is 
a random variable whose distribution depends on the 
criteria selected for" in control," in a rough way it is a 
measure of the relative efficiency of a control scheme. 

To examine in a fair fashion the relative performance 
of a Shewhart chart and a cumulative sum chart, suppose 
we choose the decision rules for each such that they have 

:I: E. S. Page, Technometrics 3, 1, 1961. 
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Ratio of ordinate scale to abscissa scale = k 

II 

0.05 

0.Q3 I-+-+--+--+--+--+--=""p.....: 

0.04 I-+-+-,'-+-"o-+-' 

0.02 f-+-+-+-+--+--+--+---i 

0.01 f-+-+--t-+-+-+--l---1 

- 0.011-+-+-", 

mask. 
~ 

~ 

1:0< 

S~ ~ 

Application Rules 

I . Place point P on the most recently plotted point on control 
chart. 

1,>< 

2. A change has occurred if an y plotted po int is covered by the 

Sample Range Template Design 

Sample Mean Template Design (deviation from target h) ~ Rf 
Plot (for n < 10) , = '(=' )2 versus mvi 

ux c 
~ (X, - h) 

Plot Z = ,=, versus m 8 = arc tan [ 21n (u 1/uO)2] ux I - (uo/u,) 

8 = arc tan ( 2~) d= 
In a 

d _ -21n a u5 = standard variance
 
- 1)2
 

u~ = hypothesized variance to be tested 

a = significance level (for a two-sided test the fraction n = sample size
 

falling outside the region of acceptance will be 2a)
 Values of c and v, 
I) = D Sample

ax size n c v, 
D = minimum shift in the process mean which is to be 

3 1.378 1.93detected 
4 1.302 2.95 
5 1.268 2.83 

Note : ux can be approximated by a pooled sa mple var iance 6 1.237 4.69 
7 1.207 5.50 

m Sf)% 
sp = ( 8 1.184 6.26 2: Ii 

' =1 9 I.l64 6.99 
where m is the number of the last sample 10 1.146 7.69 

FIGURE 3.9-4 Template for cumulative sum control chart. (Rules taken from N. L. Johnson 
and F. C. Leon e, Ind. Qual. Control 18 (12), 15; 19 (1) , 29 ; 19 (2), 22, 1962.) 

exactly the same average run lengths, ARLr, when the calculated from the following relations:'] 
proces s is in control. A certain step change is next made 1

ARLr =­in the process level, anywhere from say 0 to 3 standard a 
deviations from the original level, and the average run 
lengths, ARLn, are subsequently calculated between the 

ARLn = 1 _ 
1 

$
initiation of the change in process level and the detection 
of the change. t P. L. Goldsmith and H. Whitfield, Technometrics 3, I, 1961; 

For the Shewhart chart, the average run length can be and W. D . Ewan , Technometrics 5, I, 1963. 
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for a process change of ko from the target, where f3 = 
probability of a point falling inside the control limits 
when the process level is off the target (~ # ~o). U nfor­
tunately, there is no analytical way to calculate ARL1 
and ARLII for cumulative sum charts so that the com­

parisons here have been taken from the results of Gold­

smith and Whitfield who evaluated the two ARL~s by
 
Monte Carlo simulation on a digital cornputer.j Figure
 
3.9-5 compares the ARLII's for four different ARL1's as
 
a function of k. One observes that the Shewhart charts
 
in general are less efficient than the cumulative sum
 
charts, especially for large values of the parameter ARL1,
 
i.e., small values of a.
 

t P .L. Goldsmith and H. Whitfield, Technometrics 3, 1, 1961.
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To return now to the question of the design of V­
shaped masks, one can specify how long an ARL1 to 
have while in control and how short an ARLxI to have 
to detect a given size process change. One would like to 
specify ARL1 to be as long as feasible and ARLII to be 
as short as feasible. (The method of design described 
by Johnson and Leone and outlined in Figure 3.9-4 is 
based solely on .the distribution of the statistic Z, the 
cumulative deviation from a target value, and assumes 
that the measured variable is a normally distributed 
random variable.) The charts in Figure 3.9-6 show the 
average run length ARLII after a process change was 
introduced of k units of standard deviation. Using the 
charts to obtain d and e (defined in Figure 3.9-4), it is 

ARL u 
200 ....--oro--ro--ro-......-....,---r-.....,...........,-__,____........--__
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 \ 
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k k 

FIGURE 3.9-5 Average run lengths (ARLrr) after a process change was introduced of k units of 
the standard deviation until the process change was detected for four different significance levels 
(ARL1 = lice), based on a normal independent variable with a variance of (12. 
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F IGURE 3.9-6 Design of V masks using average run length s. 

assumed that the plotting interval on the horizontal axis 
for the process statistic is equal to 2a on the vertical axis, 
resulting in a 45° angle for the mean path of the process 
statistic if the process mean shifts 2a. If the plotting 
interval on the horizontal axis is some other multiple , 
qa, on the vertical axis, then the values of tan 8 given for 
the chart must be multiplied by 2jq. 

One can either pick a d and 8, assume a k, and evaluate 
ARLn from Figure 3.9-6 and ARL1 from the following 
empirical relation for ARL1 in terms of d and 8 

log., (JOgIO ARLj ) = -0.5244 + 0.0398d + 1.1687 tan 8 

+ 1.2641 (tan 8)(JOglO d) 

or proceed in the reverse order. Suppose, for example we 

want ARL j to be 200 and ARLn to be 8 for a shift of 
one standard deviation in the process mean (k = I). 
From the equation we obtain 

0.886 = 0.0398d + 1.1687 tan 8 + 1.2641 tan (8)(JOgIO d) 
=.p 

From Figure 3.9-6 we find for ARLn = 8 and k = 1 

d tan 8 .p 
-
1 0.61 0.751 
2 0.47 0.807 
5 0.30 0.813 
8 0.24 0.872 



Curve d Tan 0 

X 5 0.30 
XI 5 0.35 

XII 5 0.40 
XIII 5 0.45 
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FIGURE 3.9-6 (continued) 
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so that d ~ 8 and tan f) ~ 0.24 is approximately the plotting the charts and the tests employed. Figures 
desired design. 3.9-7a-d show that the number of subsequent samples 

Roberts t compared several types of control charts, until corrective action was called for was 19 for most of 
using one or more tests in connection with each chart. the tests. 
The simulated observations were taken from a table of Below Figure 3.9-7a are tabulated the data for a run 
normal random variates having an expected value of sum test based on where X falls. A run is a sequence of 
zero and a variance of 1. After 100 numbers had been values of X falling within specified limits or being above 
selected, a constant of 1 was added to all the numbers or below a limit. A run terminates when a value of X 
commencing with the 101 st so as to represent a 1a falls on the opposite side of the central line. The run 
shift in the process mean between the 100th and 101st sum is the sum of the scores assigned the plotted values 
observation. Table 3.9-7 lists the equations used in of X. A two-sided runs test is illustrated underneath 

Figure 3.9-7a in which the following values are assigned 
t s. W. Roberts, Technometrics 8, 411, 1966. to each point above fLo 
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Band 

Po < Xi ~ Po + aX 

Po + aX ~ Xi < Po + 2ax 

Po + 2ax ~ Xi < Po + 3ax 

Po + 3ax ~ Xi < 00 

Value Assigned 

o 
1 

2 

3 

and a similar series of values are assigned for values of 
X below Po. The process is deemed out of control when 
the cumulated score reaches a selected value. 

To compare the relative effectiveness of each of the 
methods listed in Table 3.9-7, Table 3.9-8 lists the ex­
pected value of the number of samples required after a 

IJO + 30"g l---~---+---+-I----+-----r..----+----t---+__---t---r------r-----r-~ 

#lO - 30"g 
Cumulative scores for run sum test 
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FIGURE E3.9-7 (a) Standard X control chart, (b) moving average chart, (c) geometric moving 
average chart, and (d) cumulative sum chart. (From S. W. Roberts, Technometrics 8, 412, 1966.) 
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TABLE 3.9-7 

Type of Chart Calculation of Plotted Point Test Used for Corrective Action 

_ 1 n 

Shewhart X XI =n2 Xjj 
j=1 

Shewhart X plus XL plus run count above or below ~ > /Lo ± 3ax plus two-sided runs 
runs test central line -test* 

X(i) = ~-k+1 + .. · + Xt - 1 + Xl - . AkaxMoving average 
k X(l) > t-« ± Vk for k = 9 

k = min {i, 9} - Akax 
X (i) > p-o + vi for k < 9 

A; = 3.0 

Geometric moving zr > 1-'0 ± AraX(2 : w) y,
 
average
 

for i large
2 2 
z~ = p-o w = k + 1 = 10 

A r = 3.0 

Cumulative sum Si = (Xl - /Lo) + St-1 Point falls outside arms of 
So = 9, i = 0, ... , n V-shaped mask 

* Process deemed out of control if one or more of the following occurs: (1) Xi > 1-'0 ± 3ax; (2) Xi and either 
Xi- 1 or Xi- 2 fall between 2ax and related 3ax control levels ; (3) Xi-7, Xi- 6, •.. , Xi all fall on the same side of 1-'0. 

change in the process variable value has occurred from But such a decision rule is improper if the variables have 
/La to P-o- + kax (where k is a constant) until the shift in a joint distribution. Suppose that two variables have a 
/L would be detected. The entries in the table are based on joint normal distribution and that ex is selected as 0.05. 
essentially the same sensitivity for each test in calling If charts plotting the variable itself are separately main­
for corrective action in the absence of a shift in the tained, the probability that both of the variables will 
process mean. 'Except for small values of k the tests fall within the control limits at the same time would be 
roughly prove to be equally effective. 

TABLE 3."9':8 

Test or Chart	 0 0.5 

Shewhart X supplemented by 
the two-sided runs test 740 79 

Runs sum test 740 50 
Moving average for k = 8 740 40 
Shewhart X supplemented by 

moving average for k = 8 740 50 
Geometric moving average 

with w = 0.25 740 40 
Shewhart X supplemented by 

geometric moving average 
with w = 0.25 740 50 

Cumulative sum of 5 740 34 

k 

1.0 

19 
12 
10 

11 

10 

12 
10 

(0.95)(0.95) = 0.9025; hence the true Type I error is more 
nearly 0.10 instead of 0.05. The true control region is an 
ellipse, with all points on the perimeter having equal 
probability of occurring, rather than being a square or 
a rectangle. If the variables are correlated, the region is 

2.0	 3.0 an ellipse rotated so that the major axes are no longer 
aligned with the coordinates Xl - X2. Figure 4.3-3 
illustrates such a region. 

4.4 1.9 To obtain one common statistic calculated from values 
3.8 2.4 

of many variables that can be plotted on a control chart, 
4.6 3.3 

Jackson t suggested that the statistic T 2 be used, where 
T 2 is Hotelling's T2.~ T 2 is simply the locus of the ellipse 3.7 1.9 
of the confidence region and, for two jointly distributed 

3.5	 2.2 normal random variables X and Y, is given in terms of 
the sample size n, the sample means, and the sample 
variances as follows: 

3.3 1.7 
T.2 =nsis? [(Xi - X)2 + (Yi - Y)24.3 2.9 

t sis? - siy s~ s? 

3.9-5 Control Charts for Several Variables 

If two or more variables are observed and a sample 
t J. E. Jackson, Technometrics 1, 359, 1959. statistic for each variable is plotted on individual control t H. Hotelling, "Multivariate Quality Control" in Techniques of 

charts, the process may be termed as being out of control Statistical Analysis, ed. by C. Eisenhart, M. W. Hastay, and 
as soon as one chart shows an out of control condition. W. A. Wallis, McGraw-Hili, New York, 1947, pp. 11-84. 
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All values of T? greater than that given by Equation 
3.9-2 represent an out of control condition. T 2 can be 
related to the F distribution 

T2 = 2(n - I)Fa (3.9-3) 
a n - 2 

where Fa has 2 and n - 2 degrees of freedom. 
For p variables, T2 is best expressed in matrix notation 

(refer to Appendix B) 
T 2 = XS-IXT (3.9-4) 

where 
x = [Xl - Xl' X 2 - X2 , ••• , X p Xp ] 

and the sample covariance matrix is 

si1 SXIX2 

SXIX2 si2 s= 

sip 
T~ is distributed aspvFa/(v - p + 1) where Fa has p 
and (v - p + 1) degrees of freedom with v being the 
number of degrees of freedom in estimating the sample 
variances and usually equal to n - 1. 
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Problems 
3.1	 The logarithmic series probability function for a 

random variable X is 

x = 1,2, ... ,00 

O~e~l 

Given that a sample of experimental observations of 
size n has been collected, find the maximum likelihood 
estimate of e. 

3.2	 Consider the joint normal probability density for the 
random variables X and Y with the common param­
eter /1-: 

p(x, y) = --1 exp [1--{(X--- /1-)2 + (Y--- /1-)2}] 
2'1TClXCly 2 Clx Cly 

Find the maximum likelihood estimates of !-L, Cli 
and CI~ for n independent observations of which nx 
are made on the X variable (only) and ny are made 
on the Yvariable (only). 

3.3	 Find the maximum likelihood estimate of the param­
eter ,\ in the Poisson probability function 

e: ",\x 
P(x,A) = -, ­x. 

3.4	 Compute the first and second moments of the ex­
ponential distribution (listed in Table 2.3-2) and 
equate them to the first and second sample moments 
obtained from an experiment to estimate e. Do both 
moments give the same estimate of e? Which would 
be the besf estimate to use? 

3.5	 Can a confidence interval for a random variable 
which is not a normal random variable be estimated? 
Explain. 

3.6	 Based on the following grades: 

Student 
Number Grade 

1 95 
2 92 
3 90 
4 86 
5 86 
6 80 
7 75 
8 72 
9 64 

10 60 

find the values of X and S2. If we assume that the 
grades have been taken from a normally distributed 
population, determine the cut-off points for the 
grades of A, B, C, D, and F based on the following 
rules: 
(a)	 The A's should equal the D's plus the F's. 
(b)	 The B's should equal the C's. 

PROBLEMS 

3.7	 Measurement of the density of 20 samples of fertilizer 
gave a mean CaD content of 8.24 percent and a 
standard deviation of 0.42 percent (percent of 100 
percent). What are the two-sided symmetric con­
fidence limits for a confidence coefficient of (I - ex) 
equal to (a) 0.95 and (b) 0.99 for (1) the ensemble 
mean and (2) the ensemble variance? From (2) 
calculate the confidence limits on the ensemble 
standard deviation. 

3.8	 Given that the sample standard deviation for the 
total pressure in a vapor-liquid equilibria experi­
ment is 2.50 atm, find (a) the 95-percent and (b) the 
99-percent confidence limits for (1) the ensemble 
standard deviation and (2) the ensemble variance. 
Eight individual values of the pressure were measured. 

3.9	 The velocity of a space missile after its fuel is gone is 

where: 

Vg = exhaust velocity of the gases, a random variable 
m; = rocket weight after burning, a random variable 
mp = propellant weight, a random variable 

Find the sample variance of v in terms of the sample 
variances of Vg , mp , and ms. 

3.10	 Assume that a considerable number of fluid velocity 
measurements made in the laboratory give a sample 
mean of 4.60 ft/sec and a sample variance of 0.6 
ft2/sec2 . Suppose the next velocity measurement 
made has a value of: 
(a)	 7.60 It/sec. 
(b) 5.60 ft/sec.
 
What conclusions would you draw in each case?
 

3.11	 The Deil Co., a cleaning-agent manufacturer, has a 
slogan "Dial for Deil." It claims that Deil is at least 
90 percent effective in cleaning boiler scale or "your 
money back." The government has taken the com­
pany to court citing false advertising. As proof, the 
company cites a sample of 10 random applications in 
which an average of 81 percent of the boiler scale was 
removed. The government says 81 percent does not 
equal 90 percent. The company says that the test is 
only a statistical sample, and the true effectiveness 
may easily be 90 percent. Who is correct and why? 
The data were as follows. 

Number Removed 

1 93 
2 60 
3 77 
4 92 
5 100 
6 90 
7 91 
8 82 
9 75 

10 50 
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3.12	 Data for the cooling of superheated steam without 
condensation have been correlated by 

h~ =	 0.021 ( ~G) 0.8 

TABLE P3.12 

Value of One Sample 
Sample Standard 

Symbol Physical Quantity Mean Deviation* 

h Heat transfer coefficient, 
Btu/(hr)(ft2)(OP) 

1D Tube diameter, ft 0.20 "2 

k Thermal conductivity 
Btu/(hr)(ft)(OF) 0.0441 2 

G Mass velocity, 
Ib/(hr)(ft2

) 20,000 5 

J-t Viscosity, Ib/(hr)(ft) 0.109 1 

* Expressed as a percent of sample mean. 

Find the sample mean of the heat transfer coefficient 
based on the calculated values given in Table P3.12. 
Find the sample standard deviation for h, and 

'express it as a percent of the sample mean for h. 
Assume that the variables are random normal vari­
ables and that 10 measurements were made in 
obtaining each standard deviation. Estimate the 
confidence interval for the ensemble mean heat trans­
fer.coefficient and for the ensemble standard devia­
tion of the heat transfer coefficient. 

3.13	 Five thermocouples are calibrated against a standard 
whose reading is 250°C..It was found that 

x = 248.5°C 

si = 70(OC)2 

Assume that the hypothesis is J-tx = J-to = 250.0°C 
and estimate the power of the t-test to discriminate 
for a = 0.05 if J-tx = 248.5°C. 

3.14	 Pressure gauges are being manufactured to sell for 
.$1.25 wholesale. A sample of 20 gauges out of 200 is 
characterized as follows when connected to a standard 
gauge at 30 psia: 

x = 29.1 

Sx = 1.2 

Using a symmetric two-tailed test with a = 0.05, 
answer the following questions: 

(a)	 What is the region- of rejection? 
(b)	 What is the region of. acceptance ? 
(c)	 What is the power of the test toward an en­

semble mean 90 percent of the standard of 30 
psia (Le., toward an ensemble mean of 27 psia)? 

(d)	 Would you pass or reject this sample? 

3.15	 Prepare an operating characteristic (DC) curve and a 
power curve based on the following information 
about the random variable X: 

J-tx = 30.0 
Ux = 2.4 

n = 64.0 

Plot f3 and (1 - f3) versus selected values of possible 
J-t's above and below 30.0 for a = 0.01. 

3.16	 Can the power of a test ever be bigger than the 
fraction a, the significance level? 

3.17	 Classify the following results of hypothesis testing as 
to: (1) error of the "first kind," (2) error of the 
"second kind," (3) neither, and (4) both. The hypoth­
esis being tested is designated as Hi; 

(a)	 H o is true, and the test indicates H o should be 
accepted. 

(b)	 H« is true, and the test indicates Ho should be 
rejected. 

(c)	 H o is false, and the test indicates H o should be 
accepted. 

(d)	 H o is false, and the test indicates Hs should be 
rejected. 

3.18	 A manufacturer claimed his mixer could mix more 
viscous materials than any rival's mixer. In a test of 
stalling speed on nine viscous materials, the sample 
mean viscosity for stall was 1600 poise with a sample 
standard deviation of 400 poise. Determine whether 
or not to reject the following hypotheses HI based on 
a = 0.05. 

(a)	 The true ensemble stalling speed of the mixer is 
at 1700 poise (H1 A : J-t = 1700 poise versus the 
alternate hypothesis H 1B : J-t '# 1700 poise). 

(b)	 The true stalling speed is 1900 poise (H2 A : 

J-t = 1900 poise versus the alternate hypothesis 
H 2 B : J-t '# 1900). 

(c)	 The true stalling speed is greater than 1400 poise 
(H1 A : P; > 1400 poise versus the alternate 
hypothesis H 2 A : J-t ~ 1400 poise). 

3.19	 A new design has been devised to improve the length 
of time a circular-type aspirin pill die can be used 
before it has to be replaced. The old die in 10 trials 
gave an average life of 4.4 months with a standard 
deviation of 0.05 month. The proposed die in 6 
trials had an average life of 5.5 months with a standard 
deviation of 0.9 months. Has the die been improved? 
(Use a = 0.05 as the significance level.) 

3.20	 Two chemical solutions are measured for their index 
of refraction with the following results: 

A B 

Index of refraction 1.104 1.154 
Standard deviation 0.011 0.017 
Number in sample 5 4 

Do they have the same index of refraction? (Use 
a = 0.05.) 

3.21	 In a test of six samples of oil, the sample mean for the 
specific viscosity was 0.7750 cp, with a sample stand­
ard deviation of 1.45 x 10-2 cp, The specifications 
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call for a mean (ensemble mean) of 0.8000 cp. Is the 
oil on specification or not? What confidence coeffi­
cient should be selected? If the oil was supposed to 
be at least 0.8000 cp., would this change your 
answer? 

3.22	 A liquid-liquid batch extractor removes component A 
from a solution of A and B by use of a solvent. For 
a long time the mass fraction A in the extract 'has 
been WA = 0.30 with a standard deviation of 0.02. By 
rearrangement of the baffles in the extractor, it is. 
believed that the value of WA can be increased. Formu­
late a test which tells after nine samples have been 
run whether or not the baffling is effective at the 0.05 
level of significance. (Hint: Determine the hypothesis 
first.) 

Suppose that indeed the rearrangement of baffles 
does improve the value of WA to 0.45. Under the 
decision rule formulated, what is the probability of 
deciding that no change has taken place even though 
the new set-up differs from the old one? (Assume for 
simplicity that the standard deviation remains the 
same.) If w = 0.35, would your answer change? 

3.23	 One hundred crude oil samples are taken from a 
pipeline and found to have a mean sulfur content of 
1.60 wt. percent with standard deviation of 0.12 wt. 
percent. If ft is the ensemble mean sulfur content of 
the crude oil (based on past experience), test the 
hypothesis that ft = 1.70 wt. percent against the 
hypothesis that ft =f:. 1.70 wt. percent for two signif­
icance levels: (a) a = 0.05 and (b) a = 0.01. 

Also test the hypothesis that ft = L 70 wt. percent 
against the alternate hypothesis that ft < 1.70 wt. 
percent, using the same significance levels. 

3.24	 A sample of 16 centrifugal pumps purchased from 
manufacturer A lasted an average of 150 days before 
breaking down; the standard deviation for break­
down was 25 days. Another batch of 10 centrifugal 
pumps purchased from manufacturer B lasted an 
average of 120 days before breaking down; their 
standard deviation was 12 days. For a = 0.05: 
(a)	 Find the confidence interval for the ensemble 

mean lifetime of the pumps from manufacturer 
A. What assumption have you n1ade about the 
distribution of the random variable, the lifetime? 

(b)	 State whether or not the pumps from manu­
facturer A are better than, the same as, or 
poorer than those from manufacturer B. Show 
the calculations for your choice. 

3.25	 Gas from two different sources is analyzed and yields 
the following methane content (mole percent): 

Source 1 Source 2 

64.0 69.0 
65.0 69.0 
75.0 61.5 
67.0 67.5 
64.5 64.0 
74.0 
75.0 

Is there a significant difference in the methane 
content from the two sources? 

3.26	 From the following data, determine if there is a 
significant difference in pressure gauge performance 
(readings are in mm as a deviation from 760). 

Trial Gauge 1 Gauge 2 

1 4.4 3.2 
2 -1.4 7.1 
3 3.2 6.4 
4 0.2 2.7 
5 -5.0 3.1 
6 0.3 0.6 
7 1.2 2.6 
8 2.2 2.2 
9 1.3 2.2 

What is the 95-percent confidence interval for the 
ensemble standard deviation for gauge I and gauge 
2, respectively? 

3.27	 A gas chromatographic apparatus has analyzed the 
concentration of methane gas with a variance of 0.24 
during the last two months. Another person uses it 
for 25 samples and the variance is 0.326. IsO.326signif­
icantly larger than 0.24, i.e., is the new operator 
doing something wrong? Use a = 0.05. Use an F­
test. Also compute the confidence limits for u2• 

3.28	 Four temperature controllers are monitoring the 
temperature in a stream. Each of them is from a 
different manufacturer. Past experience ever the last 
four years has shown the following number of main­
tenance jobs on each instrument: 

Manufacturer identification 123 4 
Number of repairs 46 33 38 49 

Your company is now about to purchase six more 
temperature controllers. Your assistant says that 
obviously the ones from manufacturer No. 2 are the 
ones to get. Do you believe that the instrument from 
manufacturer No. 2 is clearly the best? 

3.29	 Apply Bartlett's test to the data of Dorsey and Rosa 
below .who measured the ratio of the electromagnetic 
to the electrostatic unit of electricity. During the 
observations they assembled, disassembled, and 
cleaned their apparatus many times. 

Group of Number of 
Data Observations Variances x 108 

1 11 1.5636 
2 8 1.1250 
3 6 3.7666 
4 24 4.1721 
5 15 4.2666 

Are the variances homogeneous? 

3.30	 Seven samples of two different solid-state circuits 
have been tested for maximum current output and the 
following data observed (in amps): 
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Circuit A Circuit B 

0.18 0.21 
0.24 0.29 
0.18 0.14 
0.17 0.19 
1.03 0.46 
0.14 0.08 
0.09 0.14 

Based on the sign test, do circuits A and B differ in 
average performance? Is the current output of circuit 
A higher than that of B? 

3.31	 Apply the sign test to the data of Problem 2.47. 

3.32	 Two shifts have submitted plant data for the yields 
of wax: 

I	 II
 

40 47
 
27 42
 
39 41
 
46 34
 
32 45
 
46 52
 
40 49
 
44 35
 
48 43
 

44
 

Do the shifts differ in performance as determined by 
the Mann-Whitney test? 

3.33	 Apply the Mann-Whitney test to the data of Problem 
3.25. 

3.34	 The following data represent precipitation for various 
months and runoff at a gauging station. 

Precipitation Runoff 
Month (mm) (mm) 

I 350 0.0
 
2 370 29.6
 
3 461 15.2
 
4 306 66.5
 
5 313 2.3
 
6 455 0.5
 
7 477 102
 
8 250 12
 
9 546 6.1
 

10 274 6.2
 

(a)	 Determine whether or not these records repre­
sent stationary random variables. 

(b)	 Would you reject the runoff value in the seventh 
month as being an extreme value? 

(c)	 Is there a linear trend in either time record (with 
runoff 102 deleted)? 

3.35	 Vibration tests were carried out in the laboratory, 
and the output of the accelerometer was recorded on 
a portable tape recorder. The tape output was 

processed in an analog computer to yield: (1) the mean 
square values of the accelerometer signal, and (2) the 
power spectral density of the signal. There was some 
question as to whether or not the data were station­
ary. Consequently, the continuous mean square sig­
nal was sampled at one-half second intervals, and 
the amplitude of the signal (from the bottom of the 
chart) at each sampling time was measured on the 
chart paper. The following table lists the results of 
one such sampling sequence. 

Amplitude 
Time (chart 
(sec) divisions) 

6.5 7
 
7.0 6
 
7.5 10
 
8.0 3
 
8.5 15
 
9.0 8
 
9.5 5
 

10.0 7
 
10.5 13
 
11.0 3
 
11.5 26
 
12.0 9
 
12.5 5
 
13.0 12
 
13.5 10
 
14.0 4
 
14.5 12
 
15.0 2
 
15.5 4
 
16.0 5
 
16.5 11
 
17.0 7
 
17.5 7
 
18.0 8
 
18.5 12
 
19.0 4
 
19.5 6
 
20.0 3
 
20.5 11
 
21.0 10
 

The sampling time was chosen so as to provide at 
least five smoothing time values (t f values used in 
calculating the mean sequence) in the interval between 
samples. Hence the listed data are believed to be 
statistically independent. 

Is the random variable being measured stationary? 
Does it contain a periodic component and, if so, 
how will this affect your answer? 

3.36	 A digital record of the output of an instrument 
monitoring hydrocarbons downtown in a large city 
shows an unusually high series of values from 4: 30 to 
5: 30 p.m, Are these possibly extreme values in the 
data record caused by some defect in the instrument 
so that they should be rejected? Explain. 
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Hydrocarbon 
Time (p.m.) (ppm) 

1:30 123 
2:00 179 
2:30 146 
3:00 190 
3:30 141 
4:00 206 
4:30 407 
5:00 564 
5:30 530 
6:00 273 
6:30 199 
7:00 142 
7:30 171 

3.37	 Biological oxygen demand, BOD (in mg/liter), in a 
river has been measured at a junction of two small 
rivers. Various domestic and industrial discharges 
upstream on each river affect the measured values of 
BOD, but sampling errors have also been noted in the 
past. Should Sample No. 63-4 be discarded? How 
about Sample No. 63-9? Explain. The samples were 
taken in sequence at two-hour intervals. 

Sample Number BOD 

63.2 6.5 
63.3 5.8 
63-4 16.7 
63-5 6.4 
63-6 7.0 
63-7 6.3 
63-8 7.0 
63-9 9.2 
63-10 6.7 
63-11 6.7 

3.38	 Nitrogen removal by a biological process from a 
waste water stream is calculated at periodic intervals 
at station 16-A. At the end of each reporting period, 
a report must be made of the average nitrogen 
removed. The concentrations of NH3 , nitrates, and 
nitrites, in total expressed as moles of N2/liter, 

recorded for the last period were: 

0.0127 0.0176 
0.0163 0.0170 
0.0159 0.0147 
0.0243 0.0168 

Should the value of 0.243 be discarded as an extreme 
value? Explain. 

3.39	 Can the following data be represented by the normal 
distribution?' 

Number of 
accidents 3 19 16 10 11 

Time of day 7-8 8-9 9-10 10-11 11-12 

3.40	 Do the following repeated pressure measurements 
under the same conditions indicate that measurements 
from the apparatus can be represented by the normal 
distribution? 

Range of Measurement 
Frequency (deviation, psia) 

2 -0.4 to -0.5 
4 -0.3 to -0.4 
9 -0.2 to -0.3 

22 -0.1 to -0.2 
27 0.0 to -0.1 
11 0.0 to 0.1 
7 0.1 to 0.2 
3 0.2 to 0.3 
1 0.3 to 0.4 

3.41	 The following data were determined from screening 
galena. The mesh categories given are for successively 
smaller wire spacings. Apply the X2 test to establish 
whether or not the data are normally distributed. 

Nurnber of Particles 
Mesh Retained on Screen 

3-4 10 
4-6 40 
6-8 81 
8-10 115 

10-14 160 
14-20 148 
20-28 132 
28-35 81 
35-48 62 
48-65 41 
65-100 36 

100-150 22 
150-200 19 
200 53 

3.42	 From the observed data for 120 tosses of a die, 
decide whether or not it is a fair die. 

Face which fell up 12345 6 
Observed frequency 25 17 15 23 24 16 

3.43	 A cylindrical mixing vessel was packed in three 
segregated layers with red, white, and blue balls, 
about 20 mesh in size, to ascertain the completeness 
of mixing. The initial quantities of balls were: blue, 
50 percent; red, 30 percent; and white, 20 percent. 
After 23 revolutions of the mixer, the following 
distribution prevailed at the 12 sampling points in the 
mixer (12 samples were taken to provide uniform 
sampling). Was the set of balls well mixed at that 
time? 

Each sample had only 2 degrees of freedom because 
each sample was fixed at 30 balls and the white balls 
were determined by difference. The total degrees of 
freedom were 24. 
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N umber of Particles by 
Color Distribution 

Sample Position Red White Blue 

1 3 9 18 
2 11 1 18 
3 10 5 15 
4 10 5 15 
5 11 5 14 
6 6 4 20 
7 17 2 11 
8 16 4 10 
9 13 6 11 

10 8 10 12 
11 7 7 16 
12 8 2 20 

For the same run, the following information is of 
interest: 

Revolutions of mixer 2 5 11 23 35 55 

X2 330 300 90 46 21 30 

3.44	 A recent article used various equations from litera­
ture to predict theoretical vapor compositions for 
carbon tetrachloride vapor-liquid equilibria. The 
theoretical predicted mole fractions, Yt, were com­
pared with the experimental mole fractions, Ye, by 
means of the X2 test as follows: 

2 2: (Ye - Yt)2 
X = Yt 

In one series of runs at 760 mm, X2 at the l-percent 
probability level, i.e., P{X 2 ~ X~-a} = 0.01, was: 

Equation Number X2 

1 1.04 
2 0.57 
3 39.21 
4 57.03 

What can you conclude from these experiments? 

3.45	 The following data on the strength of test bars of a 
new polymer have been collected and placed into 
intervals for convenience in calculation. 

Molecular Weight 

1 X 104 5 X 104 

to to 
Yield (lb) 0-104 5 X 104 X 106 

0-100 3 5 6 
100-150 8 7 9 
150-200 6 6 5 

>200 8 7 10 

At the 5-percent level of significance, determine if 
the two variables, yield and molecular weight, are 
independent. 

3.46	 In a series of leaching tests on uranium ores (U.S.A.E. 
Document MITG-A63, Mar. 1949), a balance of 
radioactivity was calculated from data on flow rates 
and activities and is given in Table P3.46. Measure-

TABLE P3.46 BALANCE OF RADIOACTIVITY IN CYCLIC 
LEACHING, PLANT SOLUTIONS, NOVEMBER 22 

Beta-Activity Pro~uct, Counts 

Sample From In Out pH 

Agitator 1 12,780 1,100 3.8 
Thickener A 1,100 1,440 4.0 
Agitator 2 130 23,780 1.3 
Agitator 21 23,780 22,980 1.4 
Thickener B 27,520 15,510 1.9 
Thickener C 3,610 5,200 2.5 
Thickener D 750 930 2.8 
Thickener E 60 130 3.4 

ments of flow rates were subject to large errors 
because of fluctuations and the short periods covered, 
but a reasonably good overall balance was reached. 
Are the "in" and" out" measurements independent 
of where the sample was taken? 

3.47	 In another series of tests, the counts for a uranium 
solution have been tabulated by shift and date. Are 
the shift and date data independent as was anticipated 
in advance? Data are counts in 10 minutes. . 

Shift Shift Shift 
Date A B C 

21 64 37 90 
22 191 320 330 
23 154 240 250 
24 105 220 180 
25 94 72 66 
26 57 85 140 

3.48	 Data .have been collected every hour for calcium 
gluconate to substantiate a label claim of 1.000 gram. 
Prepare an X chart and an R chart for the process. 
Indicate the upper and lower control limits on both 
charts. Initially, use samples of five and adjust the 
control limits as additional samples are taken into 
account. 

Sample Number Assay (X) 

1 0.968 
2 0.952 
3 0.945 
4 0.958 
5 0.965 
6 0.955 
7 0.956 
8 0.958 
9 0.965 

10 0.954 
11 0.968 
12 0.979 
13 0.971 
14 0.947 
15	 0.968 

Sum 14.409 
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3.49	 A series of 30 individual sequential measurements of H2
the random variable X was taken as tabulated in 

N2Table P3.49. Prepare a Shewhart chart for X, based 
on confidence limits at X ±" 3a, and a cumulative CO 
sum chart for X. CO2 

Establish when the first of the 30 points, if any,
 
goes out of control. Indicate which of the remaining
 
points are out of control. Estimate the standard
 
deviation from only those points in controlj the first
 
12 points may be used initially. Estimate X for the
 
Shewhart chart from the same points. Delete any
 
points out of control and recompute the parameters.
 

TABLE P3.49 SET OF CONSECUTIVE MEASUREMENTS 

(2) (3) (4) (5) 

Gas 
CO2purification 

H2
 
N 2
 
Inerts
 

inerts 

FIGURE P3.50 

(1) Individual Target Deviation Cumulative process control chart can be successfully employed 
Point Result, or Mean, from Deviation to control the N 2 concentration and, if so, to recom-

Number X h Target, D ~D mend an appropriate type of Chart(s). Saturday's, 
Sunday's, and Monday's production data are shown 

1 16 10 6 6 in Table 3.50b. Is the N 2 stream in or out of control 
2 7 10 -3 3 on Monday morning? 
3 6 10 -4 -1 

TABLE P3.50a
4 14 10 4 3
 
5 1 10 -9 -6
 Sample Percent Sample Percent 
6 18 10 8 2 Number N 2 Number N2 
7 10 10 0 2 
8 10 10 0 2 1 24.5 31 28.3 
9 6 10 -4 -2 2 24.2 32 27.3 

10 15 10 5 3 3 28.3 33 25.8 
11 13 10 3 6 4 29.8 34 26.0 
12 8 10 -2 4 5 26.4 35 27.5 
13 20 10 10 14 6 29.0 36	 25.2 
14 12 10 2 16 7 27.0 37	 25.8 
15 '9 10 -1 15 8 27.0 38	 25.5 
16 12 10 2 17 9 22.4 39	 22.8 
17 6 10 -4 13 10 25.3 40	 21.7 
18 18 10 8 21 

11 30.9 41 24.719 14 10 4 25 
12 28.6 42 25.620 15 10 5 30 
13 28.0 43 26.521 16 10 6 36 
14 28.2 44 24.622 9 10 -1 35 
15 26.4 45 22.023 6 10 -4- 31 

24 12 10 2 33 16 23.4 46 22.7 
25 10 10 0 33 17 25.1 47 22.0 
26 17 10 7 40 18 25.0 48 21.0 
27 13 10 3 43 19 23.3 49 20.7 
28 9 10 -1 42 20 23.0 50 19.6 
29 19 10 9 51 

21 23.2 51	 20.630 12 10 2 53 
22 24.9 52 20.0 
23 25.2 53 21.2 

3.50	 A portion of an ammonia plant consists of a gas 24 24.4 54 21.4 
purification unit, an NH3 synthesis unit, and an air 25 24.1 55 29.6 
oxidation unit as shown in Figure P3.50. On Friday 

26 24.0 56	 29.4 
you are assigned the job of setting up statistical 

27 26.6 57	 29.0
controls on the N2 stream concentration from the gas 

28 22.1 58	 29.0
purifier. The last 60 analyses are listed in Table 

29 23.2 59	 28.5
P3.50a. One analysis is made each four hours (twice 

30 23.1 60 Saturday 8 a.rn, 28.7 
a shift). On Monday morning you are to report if a 
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TABLE P3.50b N 2 STREAM ANALYSIS 

Day Shift Time Percent N 2 

Saturday 1 12 noon 27.6 
Saturday 7 4 p.m , 25.6 
Saturday 2 8 p.m , 29.6 
Sunday 3 12 midnight 30.7 
Sunday 3 4a.m. 30.0 
Sunday 1 8 a.m. 30.6 
Sunday 1 12 noon 31.7 
Sunday 2 4 p.m, 29.6 
Sunday 2 8 p.m. 30.6 
Monday 3 12 midnight 28.1 
Monday 3 4 a.m . 26.5 
Monday 1 8 a.m. 27.5 



PART n
 

Development and Analysis 
of Empirical Models 

Three general categories of models were listed in Chapter 
1: (1) models based on transport phenomena principles, 
(2) models based on balances on entities, and (3) empirical 
models . Because many processes cannot be satisfactorily 
represented by the first two types of models due to a lack 
of understanding about the process or because of the 
complexity of the process, empirical models act as 
appropriate substitutes. A typical example is the fitting 
of a polynomial or similar function to experimental data 
in order to predict the process response as a function of 
one or more independent variables. Of course, empirical 
models used to represent a process have limited value 
when the engineer wants to verify a theory or to make 
pred ictions beyond the range of the variables for which 
empirical data were colIected during the model evolution. 

How empirical models can be developed and inter­
preted is the subject of Part II of this text. Statistical 
techniques provide a guide to data colIection and model 
building, the two interrelated activities underlying the 
description, explanation, and prediction of process 
phenomena. 





CHAPTER 4
 

Linear Models With One 
Independent Variable 

If the important variables for a process are known or 
sought but the process model is unknown, an empirical 
approach to model building is required. The development 
of empirical models to represent a continuous process 
involves postulation of a model, experimentation to 
collect empirical data, "fitting" of the model, i.e., 
estimation of the model coefficients, and evaluation of 
results. The strategy of empirical model building is 
described in detail in Chapter 8. In this chapter we shall 
be concerned with just one phase of model building, 
namely the estimation of the coefficients in a linear 
model, and certain related matters such as the estimation 
of confidence regions and the application of hypothesis 
tests. By starting the discussion of coefficient estimation 
with a linear model which incorporates two coefficients 
and just one independent variable, 7J = ex + Bx, it is 
possible to defer the use of matrix notation until Chapter 
5 and to provide illustrations in two dimensions of 
certain significant points which cannot easily be illus­
trated graphically for a more complex model. It also is 
feasible for the reader to follow through the examples 
with hand calculations; for models with many variables, 
computations on a digital computer are almost essential. 

In discussing linear models, the word linear has mean­
ing as applied to the independent variables of the model 
and also as applied to the parameters (coefficients) in the 
model. We shall be concerned with the latter connota­
tion; that is, a linear model in this chapter is one having 
a linear combination of the parameters. By independent 
variables we mean those variables which are under the 
control of the experimenter. It is not necessary for the 
independent variables to be functionally independent in a 
mathematical sense nor that they be orthogonal (as 
described in Chapter 8). For example, a typical linear 
model is 

'YJ = 130 + f31Xl + f32X2 + ... + f3p xp 

where 7J is the dependent variable (the response), and x/s 
are the independent variables, and the f3's are the model 
parameters (coefficients). The independent .variables 
themselves may be nonlinear as in the following model, 

'YJ = 130 + f31Xl + f32x i + ... + f3pxf. 

which is an equation linear in the parameters. 

105 

Additional examples are: 

1. Linear in 13, nonlinear in x: 

'YJ = 130 + f31X1 + f32 X2 + f33XIX2 + 134 In Xl 

2. Linear in x, nonlinear in 13: 

'YJ = 130 + f31f32 X1 + f31 X2 + f32 X3 

3. Nonlinear in x and 13: 

e13 x + e13 x'YJ = 1 l 2 2 

'YJ = V130 + f31Xl + f32 X2 

A general form .for a linear model in the sense used 
here is 

'YJ = f3ofo{x1, X2' ... ) + f31f1 (x b X2, .•. ) + ... 
in which the functions f are of known form. Clearly, the 
response is linear with respect to the parameters if the 
first partial derivatives of the response with respect to 
each of the parameters are not functions of the param­
eters. 

Because one of the most difficult aspects of model 
building is to select an appropriate initial form for the 
model, we shall first consider ways to select a suitable 
model of one independent variable. Then we shall 
describe how to estimate the parameters in the (linear) 
model 7J = ex + Bx. . 

4.1 HOW TO SELECT A FUNCTIONAL 
RELATIONSHIP 

Given a set of data involving one independent and 
one dependent variable, how can a functional relation­
ship between them be identified? Certainly no universal 
guides exist. If the experimental data, when plotted on 
arithmetic coordinate paper, do not approximate a 
straight line, Y = a + bx where y is the measured 
dependent variable, but do seem to approximate a 
smooth curve, the shape of the curve and/or an under­
standing of the nature of the experiment may suggest the 
equation of a curve that will fit the points most closely. 
A helpful way of verifying the appropriateness of a 
particular equation for a set of data. is to transform the 
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TABLE 4.1-1 TRANSFORMATIONS TO LINEAR FORM FOR A FUNCTION OF ONE VARIABLE 

Coordinates for Straight Line 

Equation x-axis y-axis Straight-Line Equation Remarks 

Use of reciprocals of logarithms: 

-a;1	 1 1
(1)	 - = a + {1x x -=a+fJx Asymptotes: x = p' y = 0 

yY	 Y 

{1	 fJ 
(2)	 y=a+­y y=a+­Asymptotes: x = 0, Y = ex 

X x	 x 

x x x	 -a 1 
(3)	 - = a + {1x x -=a+fJx Asymptotes: x = p' y = p

y	 y Y 

(or y = _ x ) 
ex + {1x 

1 a	 1 1 ex
or - = - + {1	 -=f1+­

Y x x y Y x 
x 

Asymptotes: x = -al{1, Y =(3a)	 y=--+y x 
a + {1x	 y - YI (1/{1) + y 

where (Xl, YI) is any point on 
Same curve as (3) shifted upthe experimental curve 

or down by a distance of 'Y 
(4)	 Y = ax 13 log x log Y logy = Iog « + {110gx If {1 is +, curve has parabo lie 

shape and passes through 
origin and (1, a). If fJ is -, 
curve has hyperbolic shape, 
passes through (1, a), and is 
asymptotic to x- and y-axes 

(4a)	 y=ax13+y log x log (y - y) log(y - y) = Iog « First approximate y by the 
+ {110gx equation y = (YlY2 - y~)1 

(Yl + Y2 - 2Ya),where Ya = 

axg + y, Xa = VXIX2, and 
(Xl, Yl) and (X2' Y2) are ex­
peri mental points 

= y10a x IJ (4b) y log x log (log y - log y) log (log y - log y) After taking logarithms of the 
= log a + {110gx original equation, follow 

method (4a) 
(5)	 Y = a{1x x logy logy = log a + X 10g{1 Passes through the point (0, ex) 

(equivalent forms 
y = ayIJ2X 
Y == 10a 

1 + {1IX, 

Y = a(10)13 1 
X 

) 

data to a linear form so that a straight-line plot, y' = 
a' + b'x', is obtained. Table 4.1-1 summarizes a few 
suggested methods of' straight-line transformation. A 
collection of graphs (Figure 4.1-1) illustrates the effect of 
changing the coefficients for many of the equations pre­
sented in the table. For numerical examples and a more 
detailed explanation of the methods of transformation, 
refer to the references at the end of this chapter. (Special 
graph paper is available to facilitate logarithmic, re­
ciprocal, square root, etc., transformations from the 
Codex Book Co., Norwood, Mass.) 

If a straight line is achieved through some such type 

of transformation, the parameters of the nonlinear model 
can be estimated from the modified linear model. How­
ever, a problein arises if the unobservable error, E", is 
added to the dependent variable as 

because after the transformation, some complex function 
of the error results rather than € being added to the trans­
formed variable. For example, if the model is Equation 
(4) in Table 4.1-1, the observed dependent variable is 

Y=exx13 + € (4.1-1) 



Clearly Equation 4.1-1 is not the same as 

log Y = log ex + f3 log x + € (4.1-2) 

because the logarithm of the right-hand side of Equation 
4.1-1 is not equal to the right-hand side of Equation 
4.1-2. In some instances, Equation 4.1-1 may represent 
the actual situation, in which case nonlinear estimation of 
ex and f3 is· required. In other instances, Equation 4.1-2 
is more correct, depending upon the details of experi­
mentation. This matter is discussed again in Section 6.5 
after we treat nonlinear models. For the purposes of this 
chapter, we shall assume that function of interest is 
linear in the parameters. 

Example 4.1-1 Determination of Functional Form 

The data in the first two columns below represent a 
series of dependent variable measurements (Y) for corre­
sponding (coded) values of the independent variable (x). 
Find a suitable functional form to represent the dependence 
of Yon x. 

Solution: 
Several differences and ratios can be computed, some of 

which are shown in Table £4.1-1. 

TABLE £4.1-1 

x Y log Y ~2y x/Y ~(x/Y) 

1 62.1 1.79246 0.01610 
2 87.2 1.93962 25.1 0.02293 0.00683 
3 109.5 2.03941 22.3 -2.8 0.02739 0.00446 
4 127.3 2~10483 17.8 -4.5 0.03142 0.00403 
5 134.7 2.12937 7.4 -10.4 0.03712 0.00570 
6 136.2 2.13386 1.5 -5.9 0.04405 0.00693 
7 134.9 2.13001 -1.3 -2.8 0.05189 0.00784 

Next we test several possible models; T) is the expected 
value of Yat the given x. 

MODEL T) = ex + f3x: Not satisfactory because ~ YjIsx is 
not constant. 

MODEL T) = ex[3x: Transform to log T) = log ex + (log (3)x. 
Not satisfactory because ~ log Y/~x is not constant. 

MODEL T) = «x": Transform to log T) = log ex + f3 log x. 
Not satisfactory because ~ log Y/~ log x is not constant. 

2:MODEL T) = ex + f3x + yx Not satisfactory because 
~2 Y/~X2 is not constant. 

MODEL T) = xlt« + f3x): The model is the same as (x/T)) = 

ex + Bx. Since l1(x/ Y) is roughly constant, this model would 
fit the data better than any of the previous models but it is 
not necessarily the best possible model. 

4.2 LEAST SQUARES PARAMETER ESTIMATION 

Once the functional form for an empirical model has 
been chosen, process data can be collected by a suitably 
designed experiment (discussed in Chapter 8) and the 
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parameters in the model can be estimated. The procedure 
of estimation to be used in this chapter is called linear 
estimation or regression analysis.t The analyst wants 
to obtain the " best" estimates in some sense of the 
parameters in the model, and often the criterion of 
"best" depends upon the character of the model. We 
shall first mention estimation of the parameters of a 

,linear (in the parameters) model when the probability 
density function and its parameters are known, and then 
we shall describe estimation when the probability density 
function is unknown. 

Optimal estimation is difficult to carry out except in 
certain special cases. If we want to calculate the param­
eters in a model in a given relation Y = f(X) where 
both X and' Yare random variables and the joint prob­
ability density p(x, y) is known, the most acceptable 
criterion of best is the mean square estimate: 

Minimize 

L: f'oo [y6"{[Y - f(X)]2} = - f(x)]2p(x,y) dx dy 

(4.2-1) 

The function ./(X) that minimizes the expectation in 
Equation 4.2-1 is the conditional expected value of Y, 
given X, i.e., I(X) = l!{ Y I X}, as can be shown by 
introducing the relation p(x, y) = p(y I x)p(x) into the 
right-hand side of Equation 4.2-1 so that 

Min l!{[ Y - I(X)]2} 

= Min [j:oo [y - f(x)]2p(y Ix)] L: p(x)dx 

The first integral is the second moment of the conditional 
density p(y Ix) which will be a minimum for every x if 
I(x) = f~ yp(y I x) dy = l!{ Y I x}. The functionf(x) =<X) 

l!{ Y Ix} is the regression curve. 
For the special case in which f(X) = f30 + PIX, we 

can calculate the two constants f30 and f3I' which mini .. 
mize the function in Equation 4.2-1, if we know p(x,Y): 

Min l!{[ Y - (f3o + f3I X)]2} 

= MinJ~ooJ~oo (y - f30 - f31 X)2p (X,y ) dx dy (4.2-2) 

By differentiation of l!{[ Y - (f3o + f3IX)]2} with respect 
to f30 and equation of the result to zero, we get 

or 

l!{ Y} = f30 +f3Il!{X} 
j-ty = f30 + f3Ij-tX' (4.2-3) 

t The latter is used because the first published investigations 
dealt with the regression of inherited factors. 
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FIGURE 4.1-1 Graphs of Equations (1) through (5), Table 4.1-1. 
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FIGURE 4.1-1 (cont.) 

Introduction of f30 from Equation 4.2-3 into Equation only the dependent variable in the model or whether 
4.2-2, differentiation with respect to f3b and equation of both the independent and dependent variables are random 
the result to zero yield variables makes a vast difference in the computational 

details and degree of difficulty of obtaining the parameter 
8lff[( Y - tty) - f31(X - ttX)]2} = 0 

estimates. Section 4.5 discusses estimation when both the
8f31 

independent and dependent variables are random vari­
lff{( Y - tty)(X - ttx)} = f31lff{(X - ttX)2} ables, as illustrated in Figure 4.2-1b. 

We shall start with the easiest case, namely that only 
or 

the dependent variable is a random variable, as shown in 

(4.2-4) Figure 4.2-1a. Specifically the model is of the form 

(4.2-5)
Once f31 is determined, f30 can be determined from Equa­

tion 4.2-3. where ~ is the sample average of the measured replicate
 

Now suppose that the probability density p(x, y) is values of the dependent variable Yobtained at a given 
not known. Instead we. plan to collect some experimental value of x, Xi; and €i is the unobservable random error 
data and, on the basis of the data, obtain the best esti­ representing the difference (Yi - lff{ Yi I x}) = €t which 
mates for the parameters in a linear model. Whether has a known distribution (usually the normal distribution) 
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of Yi , namely, 71i =Po + Pl(Xi - x) 

x ,,/
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FIGURE 4.2-1a Representation of a linear model for the case in 
which the dependent variable alone is a random variable. 

Locus of model n: =(30+ fll (Xi - X) 

FIGURE 4.2-1b Representation of a linear model when both 
variables are random variables. 

with an expected value of zero and a variance of a:t • The 
unobservable errors in the observations used to compute 
Yi are presumed to have an expected value of zero and 
to be independent of x, e, or previous errors. We shall 
assume initially that a~i is a constant, independent of x 
(in Section 4.3), and subsequently that a;f varies with x 
(in Section 4.4). Another way to describe the same model 
is to say that 

(4.2-6) 

which states that the expected value of Yh at a specified 
Xh is equal to ~o + f31 (Xi - x). 

Thus, the four basic assumptions underlying the esti­
mation procedure are: 

1. The expected value of Yb given Xi' is a linear (in 
the parameters) function. 

2. The values of x selected for experimentation are not' 
random variables. 

3. The variance of e., a:
i
, " equals the variance of Yb 

a1r and may be a constant or vary with x.i , 

4. The observations of Yare mutually independent, 
which is the same as saying that the errors €i are statistic­
ally independent. 

Based on these assumptions only, the method of least 
squares yields unbiased estimators, bo and hbt of fio and 
fiI which have, according to Markov's theorem, the 
smallest variances among the group of all possible 
unbiased linear estimators. Least squares is the descriptive 
term for the procedure which obtains the estimates ho 
and hI by minimizing the sum of the squares of the 
deviations between the observed values, ~, and the 
expected values of ~, 'Y]i: 

Minimize L
n 

('Vi - 7Jt)2 
i=1 

From one viewpoint, least squares is nothing more 
than a method of solving an overdetermined set of 
equations in the parameter space of fJo and fJI' if each, 
data pair is regarded as being an equation. For example, 

16.08 - ~o + 1.80~1 = 0 

16.32 - ~o +2.10~1 = 0 

16.77 - ~o + 2.40~1 = 0 

The difference between the sum of the squares of the 
left-hand sides of the equations and zero is minimized to 
get the best estimates of the ~'s.t 

Figure 4.2-2 illustrates the estimated regression line 
Y = ho + hI(x - i), the true model 'Y] = f30 + f3I(X - i), 
and the notation employed so far. Yi j designates one 
(the jth) observation or measurement, I :::;; j s Pb of the 
dependent variable Y at Xb and Yi is the sample mean of 
the observations at Xh 1 :::;; i :::;; n. 

To estimate a confidence region for the variables ~o 

and f3I and to apply statistical tests, a fifth assumption is 
required, namely: 

5. The conditional distribution of ~, given Xb is 
normal about 'Y]i = C{Yi I Xi}' 

In practice, experimental data may not fulfill the five 
requirements. Some of the common departures fromthe 
assumptions are: 

1. The range of variation of the independent variable 
x is so small that the variation in the dependent variable 
is of the order of magnitude of the error in measurement 
of the dependent variable. As an extreme example, 
repetition of the same value of x 100 times will provide 
only one value of Yi for estimation, not 100 values. 
Because the number of data points must be at the very 
least equal to the number of model parameters to be 
estimated, variation of the independent variable within 
a narrow range represents ineffective experimentation. 

t Although the estimates of ~o and ~b Po = bo and ~1 = hI, are
 
themselves random variables, we shall use lower case Roman
 
letters to designate the estimates because of custom.
 
=:: W. E. Smith, Technometrics 8, 675, 1966.
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FIGURE 4.2-2 Relationships among the experimental observations, mean of obser­
vations, and estimated and theoretical linear models. 

For a model containing several independent variables, 
the investigator will find that if he holds certain of the 
important process independent variables essentially 
constant, regression analysis will lead to the conclusion 
that they are not significant variables. Furthermore, 
independent variables that are not controlled but are 
simply observed are likely to behave as random variables. 
The essence of experimentation is, insofar as possible, 
to make definite changes in the experimental conditions 
(the independent variables) and to let the dependent 
variable be the random variable. 

2. The errors in the observations of the dependent 
variable are not independent. Process measurements 
taken in time can incorporate serial correlation of errors, 
a correlation which perhaps changes with time. Because 
every production process is affected by independent 
variables not subject to control by the experimenter, 
such as aging of the plant, scaling in a heat exchanger, 
uncontrollable change in raw materials, meteorological 
changes, and personnel changes, assumption four above 
may prove unrealistic. Sometimes these noncontrollable 
variables are termed latent variables. 

Consequently, a passive collection of unplanned data 
from a process must be analyzed with considerable 
judgment. The best experimental technique is to make 
deliberate changes in all the controllable variables, as 
described in Chapter 8. The investigator, before carrying 
out the least squares estimation, should make sure 
insofar as possible that he has information on the 
interval of variation of x relative to the possible overall 
range of variation, the magnitude of the errors in the 
independent and dependent variable(s), and the details 
of possible extraneous factors. Techniques to assist in 
overcoming deficiencies in the underlying assumptions 
in the estimation procedure are discussed in Sections 
4.5, 4.6, and 5.4. Proper methods of experimental design 
to avoid the defects in the first place are described in 
Chapter 8. 

{one observation 

-1(Yij , Xi) 
.~ Sample mean of observations at.x._"''f. Yi, Xi)' . ~ 

Predicted Yi at Xi 

Expected value of Yi at Xi 

4.3 ESTIMATION WITH CONSTANT ERROR
 
VARIANCE
 

We shall write the empirical model whose coefficients 
are to be estimated as 

'YJ = f30 + {31 (x - x) (4.3-1) 

instead of as 

'YJ = f3~ + {31 X (4.3-2) 

because, first, the estimates bo and b1 of {30 and f31 can 
be obtained without solving coupled simultaneous sets 
of equations, as is the case if the linear model is expressed 
in the form of Equation 4.3-2, and, second, the estimates 
of f30 and {31 are stochastically independent whereas 
the estimates of f3~ and f31 are not. Models with several 
independent variables yield better conditioned matrices 
if the form of Equation 4.3-1 is used (refer to Chapter 
5). We seek estimates for f30 and f31 which are unbiased 
and have minimum variance. We assume that a~i = 
a;t = constant. 

4.3-1 Least Squares Estimates 

Legendre's method of least squares was to minimize 
the sum of the squares of the deviations in the y direction 
in Figure 4.2-2. Gauss's and Laplace's development, on 
the other hand, minimized the sum of the squares of the 
weighted deviations (described in Section 4.4). In this 
section we shall minimize 

</> = I
n 

(~ - 'YJi)2Pi 
i=1 

n 

= IPi[Yi - ~o - ~l(X - x)]2 (4.3-3) 
i=1 

where Pi is the number of replicate measurement of the 
dependent variable for a given Xh by equating the partial 
derivatives of 1> with respect to f30 and with respect to 
f31 equal to zero. (It is not difficult to show that this 
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procedure yields a minimum rather than a maximum for 
cP by examining the second partial derivatives of cP.) 

o,p = 0 = O{JI Plef. - f30 - f3I(XI - X)]2} 

o~o 8~o 

n

-22>Jf. - f30 -if3I(XI - x)] 
i=1 (4.3-4) 

o,p = 0 = O{~I PI[l~ - f30 - f31(XI - X)]2} 

8~1 8~1 

n 

= -22>tCYI - f30 - f3I(XI - x)](XI - x) 
t=1 

Collecting terms, we obtain the normal equations in 
which the model parameters ~o and ~1 have been replaced 
by their estimates: 

n n n 

2p;¥; = bo 2 p; + bl 2 p;{x1 - x) 
i=1 i=1 i=1 

(4.3-5a) 

n n n 

2p;(Y'I)(Xi - x) = bo 2 p;(xl - x) + bl 2PI(xi - X)2 
i=1 i=1 i=1 

(4.3-5b) 

Note that 
n

2 p ;(xl - x) == 0 
t=1 

Hence, as mentioned earlier, Equation 4.3-5a can be 
solved for bo separately from Equation 4.3-5b, and 
Equation 4.3-5b can be solved separately for b1 : 

(4.3-6) 

(4.3-7) 

4.3-2 Maximum Likelihood Estimates 

Exactly the same estimates of ~o and ~1 can be obtained 
by the method of maximum likelihood, if assumption 
five of Section 4.2 is added to the other assumptions at 
the beginning, We form the likelihood function de­
scribed in Section 3.2-1 based on the probability density 
function 

(4.3-8) 

In Equation 4.3-8 the parameters are the variables, and 
the values of Y and x are given. Then 

... /- n 2In L = - n In v 277 - - In ap2 t 

To obtain the maximum likelihood estimates, we place 

8 In L _ 8 In L _ 8 In L _ 0 
8po - 8~1 - 8(at ) ­

t

and obtain three equations: 

Ln [{ ¥; - [Po + PI(X; - x)]}{pJ] = 0 (4.3-9a) 
t=1
 

n
 

2 [{Y'; - [Po + PI(XI - X)]}{PI(XI - x)}] = 0 (4.3-9b) 
i=1 

n 

2p;{¥; - [Po + PI(XI - X)]}2 - nul-. = 0 (4.2-9c) 
i=1 

of which the first two are the same as Equations 4.3-5a 
and 4.3-5b, respectively, and yield Equations 4.3-6 and 
4.3-7 for bo and bl . Equation 4.3-9c yields a biased 
estimate of a~t 

n 

ul-. = ~ 2PI{Y'1 - [bo + bl(xl - X)]}2 
i=1 

as we shall see. 

4.3-3 Expected Values and Variances of Estimators and 
Analysis of Variance 

The probability distribution functions for bo and .b1 

can be obtained either from the addition theorem for the 
normal distribution or from the partition theorem for the 
X2 distribution. However, we shall omit the details, 
which can be found in books on statistics. Because bo 
and bI are linear combinations of ~, we can conclude 
that they will each have approximately. normal distri­
butions. We are interested first in finding the expected 
value and variance of bo and bb because these will be 
needed to carry out appropriate analyses used in model 
building. 
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The expected values of ho and h1 are, respectively 
(each sum is from i = 1 to nand LPlxi - x) == 0), 

C{h } = c{L PiVi} = L PiC{ ~}
o
LPi LPi
 

_ L PiC{{3o + {31(Xi - x) + Ei} 
- LPi 

_ LPif30 _ Q
 

- LPi - fJO
 

C{h } = c{L: PI Y;(XI - X)} = L Pt(Xt - x)C{ ~} 
1 L Pi(Xi - X)2 L Pi(Xi - X)2 

L Pi(Xi - x)[{3o + f31(Xi - x)] 
= L Pi(Xi - X)2 = f31 

Consequently, the estimates ho and b, are unbiased. A 
similar analysis gives the variances of ho and bb re­
spectively (a~t is a constant here), as 

Var {ho} == C{(ho - f30)2} 

Var {L PtYt} = (L Pi) Var {YJ 
L Pi (L Pi)2 

_ (L Pi)a~t _ a~i (4.3-10)- (LPi)2 - LPi 

Var {h1} == C{(h1 - (31)2} = Var {L: PiY;(XI -_~)}
LPi(Xi - x) 

(4.3-11) 
_~ Pi(Xi - X)2 

A model which is a line through the. origin, TJ = Bx, 
can be treated as a special case of the general develop­
ment outlined above. The estimate of the slope can be 
shown to be 

(4.3-7a) 

. and the variance of the estimated slope can be shown to be 

(4.3-11a) 

All that remains is to find an un biased estimate of 
a~t' which can be obtained with the aid of the following 
theorem (the X2 partition theorem): 

If the sum of squares of n variables, W1 , W2 , ••• , 

Wn , is partitioned into k sums of .squares, 8 1 , S2' 
••• , Sk' with Vb V2, ••• , Vk degrees of freedom, re­
spectively, then 

n 

X2 =	 ~ Wl
2 = S, + S2 + . · .+ Sk 

i=1 

Also, the necessary and sufficient conditions that 
SI' 8 2 , ••• , Sk are stochastically independent and 
each distributed as X2 with VI, V2, ••• , Vk degrees of 
freedom, respectively, are that 

The proof of the theorem can be found in several 
references at the end of this chapter. 

The partitioning of interest is carried out as follows. 
If both sides of the identity 

(Yij - TJi) = (Yij - VJ + ()7i - Yi) + (Yi - TJJ 
= (Yij - ~) + (~ - :Vi) 

+ (bo - f3o) + (b1 - f31)(Xi - x) 

are squared and summed over i and j, the crossproduct 
terms are easily shown to be zero, either because of the 
constraints imposed by the least square minimization, 
Equations 4.3-4, or because the sum on j vanishes. For 
example, the crossproduct term 

n	 Pi 

~~ (Yi j - Y;)(Yi - 2;) = 0 
i=1 j=1 

because of the initial summation on i. 
Pi 

~ (Yl j - Y;) = 0 
1"=1 

Crossproduct terms such as 

n	 . 

~ (Y; - YI)(b1 - f31)(XI - X)PI = 0 
i=1 

because of the second of Equations 4.3-4. After dropping 
the crossproduct terms, the following is obtained for the 
sum of squares: 

n	 Pi 

~~ (Y/j - 'YJ1)2 
i=lj=l 
Total sum of squares 
between the experimental 
data points and the 
expected value of Y 
given x 

n Pi n 

=	 ~~ (YiJ - Y;)2 + ~Pi(YI - 2;)2 
i=I1"=1 i=1 

Sum of squares of devia- Sum of squares of deviations 
tions within data sets; about empirical regression 
"error sum of squares" line; "residual sum of squares" 

n	 n 

+ (bo - f30)2 ~PI + (b1 - f31)2 ~PI(XI - X)2 
i=1 t=1 

Sum of squares for de- Sum of squares for 
viation between bo deviation between 
and f30 in. and f3I 

(4.3-12) 
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The interpretation of each of the sums of squares in 
Equation 4.3-12 can be carried out best by examining 
Figure 4.2-2. The first term on the right-hand side of the 
equality sign is a measure of the experimental error 
obtained in each of the separate experiments conducted 
at the various values of x; the second term is a measure 
of the success of the linear model in fitting the experi­
mental data. The left-hand side of Equation 4.3-12 is a 
sum of squares analogous to Equation 2.3-9 with 
Lt= 1 Pi degrees of freedom and is distributed as attx2

• 

Each term on the right-hand side of Equation 4.3-12 
can be shown to be distributed as a~tx2 with eLf= 1 Pi - n), 
(n - 2), 1, and 1 degree of freedom, respectively. 

The error sum of squares has n constraints imposed, 
one for each Yi that is calculated. The residual sum of 
squares has two constraints imposed on the n data 
points, one for each of Equations 4.3-3, leaving two 
degrees of freedom to be divided among the remaining 
two sums of squares, or one each since each has a single 
variable bo and bI , respectively. It can also be con­
cluded that bo is a random variable distributed normally 
about {3o, b i is a random variable distributed normally 
about {31, and bo is stochastically independent of bl . 

If we estimate' a~t from the second term on the right­
hand side of Equation 4.3-12, which represents the sum 
of the squares of the residuals 

n 

s~ = n ~ 2 ~>;(Yi - y;)2 (4.3-13) 
i=I 

it is easy- to show that C{s~} is an unbiased estimate of 
a~t' if the model is correct, when we recall from Section 
2.3-2 that C{x2 (for d.f. = n)} = n: 

C{n ~ 2 ~Pi(Yi - Yi)2} 

1 
= --2 C{a~tx2 (for d.f. = n - 2)}

n­

2 

= n O"~i 2 C{X2 (for d.f. = n - 2)} = a~l 

(Note that the maximum likelihood estimate of a~. 

proved to be a biased estimate of a~i.) If the linear model 
is not correct, then the expected value of s; is not a~i' 

i.e., s; is a biased estimate of a~t. 

The expected value of 

(4.3-14) 

is also an unbiased estimate of a~i; hence s; can also be 
used to estimate a~i; s; is a measure of the dispersion 

caused by experimental error, in contrast with the lack 
of fit represented by Equation 4.3-13. Consequently, 
before reaching any decisions about the model, the 
analyst should test the hypothesis that the linear model 
'YJ = f30 + PI(x - x) represents the experimental data 
satisfactorily by forming the variance ratio (s~/s:). 

(Refer to Section 3.6.) If 

where FI - a is taken from the appropriate table for a 
selected value of cx, the hypothesis that the linear model 
is adequate is rejected. Another model should be selected. 

If the calculated variance ratio is less than FI - a, the 
hypothesis that the linear model is an adequate fit is 
accepted (is a plausible model but not necessarily the 
correct one). In this case the variances s; and s;, since 
they both estimate a}t' can be pooled as follows to get a 
better estimate of a~i with CLi= 1 Pi - 2) degrees of 
freedom. In the pooling, each variance is weighted by its 
respective number of degrees of freedom, as indicated 
earlier by Equation 2.4-12: 

(4.3-15)n 
L Pi - 2 
i=I 

Of course, if replicate values of Yi j at values of Xi are 
not available, then a~i must be estimated solely from s;, 
with the result that S~i is inflated if the model is an im­
proper one. Without replicate data the F test for the 
hypothesis of linearity cannot be carried out, but the 
data can be plotted and examined visually. A test for 
the hypothesis that f3I = 0 can be carried out, as will be 
described shortly. . 

Table 4.3-1 summarizes the various sums of squares 
and their respective degrees of freedom which are used 
in what is termed the analysis of variance, an analysis 
based on the partition theorem for x2 and the variance 
ratio (F) test. The sums of squares divided by their 
respective degrees of freedom are termed the mean 
squares. Each variance in Table 4.3-1 can be used as 
an estimator of a~., but because Var {bo} and Var {bl} are 
usually not known, the pooled S~i is used as the estimator 
of a~i' Estimated variances of bo and bi can, in turn, be 
obtained from S~i if the latter is substituted for a~t in 
Equations 4.3-10 and 4.3-11. 

When carrying out calculations by hand, the following 
identities may be useful: 
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TABLE 4.3-1 PARTITION OF VARIATION ABOUT THE MODEL 7] = f30 + f31(X - X) 

Degrees of 
Source of Variation Sum of Squares Freedom Mean Squares 

1. Deviation of ho from f30 
n 

(ho - f3o)2 LPL s~ = 
n 

Var {ho} LPi 
t=1 t=1 

2. Deviation of hI from f31 (hI 

n 

- f31)2 L Pt(Xt - X)2 s~ = 

n 

Var {hI} L Pt(Xt - X)2 
t= 1 t=1 

n 

3. About the regression line ;: Pt( 'Vt - Yt)2 n - 2 
~ 

i=1 

4. Within sets 
(error of experiment) 

n PiLL (}ij 
i=1 j=1 

- Yt)2 

n 

LPt 
t=1 

- n 

Total about the expected 
values of Yi 

n»:
~ 

i=1 

n n

2: Pi( 'Vi - YF = hi 2: Pi(Xi - X)2 
i= 1 i =1 

[2 Pi(Xi - x)( ~ - Y)]2 
2Pi(Xi - X)2
 

n n


2: Pi(Xi - x)( Yi - Y) = 2: Pi(Xi - x) 'Vi
 
i= 1 i= 1 

Another analysis of variance can be carried out, some­
what different from the previous one, by expanding 

TABLE 4.3-2 PARTITION OF VARIATION ABOUT THE MEAN Y 

(Yi j - Y) instead of (Yii - 7]i), where Y = 2: YiJi'L Pi· 
The term (Yij - Y) can be split up as follows: 

(Yij - Y) = (Yi j - ~) + (Yi - Yi ) + (Yi - Y) 
As before, both sides of this expression can be summed 
over i and j, and the partitioning and distribution of the 
sums of the squares are analogous to that described 
earlier. Table 4.3-2 summarizes the results. The sum of 
squares in the second and third rows of the table are 
exactly the same as listed in Table 4.3-1. The sum of 
squares in the fourth row has associated with it the total 
degrees of freedom (2: Pi) less 1, the 1 being for the 
constraint imposed in calculating Y. As a consequence, 
the sum of sqnares in the first row can have only one 
degree of freedom associated with it. 

Degrees of 
Source of Variation Sum of Squares Freedom Mean Squares 

n n 

1. Deviation between values on the regression L Pi(Yi - Y)2 s~ = LPlYt - y)2 
line and the mean (due to regression) i= 1 i=1 

2. Deviation about the regression line L
n

Pie 'Vi - Yi)2 n - 2 
(deviation from regression) i= 1 

n L
n 

L
Pi 

(J'ij - ~)2 
s~ = i=1 i=~3. Deviation within sets (residual error) LPi ­ n 

i=1 L Pt - n 
t=1 

4. Total 
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We can first test the hypothesis concerning linearity can itself be partitioned as follows if the estimate re­
of the model by form ing the variance ratio sNs; and gression equation is introduced for f ,: 
employing the F-test , as explained before. If the variance 

n n n 
ratio is not significant, the hypothesis concerning the linear 
form of the model is accepted. Next, we can test the 
hypothesis that f31 = 0 by forming the variance ratio 
sUs~•. If the value of s~/s~. is greater than the value of 
F1 _ a from the tables for a selected a, the hypothesis 
that f31 = 0 is rejected. Figure 4.3-1 illustrates the 
situation (a) in which the experimental data are fitted by 
the est imated regression line significantly better than by 
a line of zero slope, as opposed to the situation (b) 
where a line of zero slope fits as well. The hypothesis 
that f31 = 0 or f31 is any other value could also be tested 
through use of a t-test based on Equation 4.3-20 below. 

Another form for the analysis of variance that is quite 
useful is to split (Yjj - 0) as follows : 

Again, each side of the equation is summed oveti and j. 
The following partition for the sums of squares results: 

n Pi n P j 

L 2 (Yjj - 0)2 = L L (YI; - Y,)2 
1= 1; = 1 1= 1;= 1 

n n 

+ LP,(Y, - f ,)2 + LPI(}\ - 0)2 
1= 1 1=1 

The first two terms on the right-hand side of the equality 
sign are the same as those in rows 3 and 2 of Table 4.3-2 , 
respectively. The last term, which represents the devia­
tions of the predicted values of Y about the axis at zero, 

:Y .... Estimated 
regression line 

(a) 

:Y 

-. • == • 

'----------------x 
(b) 

FIGUR E 4.3-1 Experimental data for the test of the hypothesis 
fJl = 0: (a) hypothesis rejected, and (b ) hypothesis accepted. 

LP,(f, - 0)2 = bg LPI + b~ LP,(X, - x)2 
1= 1 1=1 1=1 

n n 

= L (Y - 0)2PI + L crt - Y)2P1 
1= 1 1=1 

Each of the two terms on the right-hand side of the 
last equality can be interpreted as sums of squares related 
to whether only f30 or both f30 and f31 are included in the 
model. Suppose that only f30 were included in the model 
and f31 were deleted so that the model was Y1 = f30 + €I ' 

Then the least squares estimate of f30 would be bo = Y, 
and 

n n n 

2LP,f, = LPtbg = Y2 LP' 
1=1 1=1 1=1 

Note the correspondence of thi s sum of squares with the 
first term in the partitioned sum of squares, L (Y - 0)2pt. 
Consequently, we conclude that the second term 

n n 

b~ LPI(XI - X)2 = b1 LPI~(XI - x) 
t=1 1= 1 

= L
n 

(ft - Y)2Pt 
1=1 

represents the contribution to the sum of squares effected 
by adding b1 to a model Y t = f30 + €" one that already 
contains an intercept. Table 4.3-3 summarizes this third 
partitioning of the sum of squares. Variance ratio tests 
can be carried out to determine if f31 and f30 can be de­
leted from the model by forming the variance ratios 
sUs~. and SUS~I' If a ratio exceeds the value of F1 - a , 

the corresponding parameter makes a significant contri­
bution to the model. 

Example 4.3-1 Estimation and Analysis of Simulated Data 
for a Linear Model 

As an example in which the model is known, we assume 
that TJ = f3~ + f31X with f3~ = 10 and f31 = 0.2... Observed" 
values or Y are simulated by adding to TJ errors from a table 
of normal random deviates with a mean of zero and a 
variance of l ,t as shown in Table E4.3-la. 

We want: (1) to compute the estimates b~ and b1 of f3~ 

and f31 , respectively, from the .. observed " values of Y; 
(2) to determine the confidence intervals for f3o, f31 ' and TJ 
(the latter as a function of x) , respectively; (3) to plot the 
estimated regression line, the confidence limits about the 

t Taken from M. G, Natrella, Experimental Statistics, NBS 
Handbook 91, Supt. Documents, Washington, D.C., 1963. 
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TABLE 4.3-3 PARTITION OF VARIATION ABOUT ZERO 

Degrees of 
Source of Variation Sum of Squares Freedom Mean Squares 

n	 n 

1.	 Due to regression: bo Y22:pt sg = Y2 LPt
 
t=1 t=1
 
n	 n 

hI, after allowance for bo b, 2: Pt ~(Xt - i) S~ = b1 L Pt ~(Xt - i) 
t=1 t=1 

n 2: 
n 

Pt(~ - Yt)2s; = t_=_I _2. Deviation from 2: Pt( yt - Yt)2 n - 2 
n - 2regression	 t =1 

n 2:
n 

2
Pi 

(Yij - yt)2 
2 t=11=13. Deviation within sets LPt - n Se = n
 

(residual error)
 t=1	 2: Pt - n
t=1 

n Pt 

4. Total	 2: 2: (Ytj - 0)2 
t=1 j=1 

TABLE E4.3-1a 

Error "Observed " 
Data Set x E TJ Y 

1 10.00 0.05 12.00 12.05 
2 10.00 -0.52 12.00 11.48 
3 20.00 -1.41 14.00 12.59 
4 20.00 1.82 14.00 15.82 
5 30.00 1.35 16.00 17.35 
6 30.00 0.42 16.00 16.42 
7 40.00 -1.76 18.00 16.24 
8 40.00 -0.96 18.00 17.04 
9 50.00 0.56 20.00 20.56 

10 50.00 -0.72 20.00 19.28 

line, and the sample means, Yt, at each Xi; and (4) to 
prepare an analysis of variance. 

Solution: 
Let the significance level be ex = 0.05. The calculations 

will be carried out in detail so that the separate steps can be 
followed. (See Table E4.3-16.) 

TABLE E4.3-16 

Pt 

ytj 
Xi Pt t---- (Xt- i ) YlXt-i) 

2Y: _1=1	 (x, - i)2 Yt2 

Pi 

10 2 11.765 -20 -235.3 400 138.41 
20 2 14.215 -10 -144.2 100 201.78 
30 2 16.885 0 0 0 285.10 
40 2 16.640 10 166.4 100 276.89 
50 2 19.920 20 398.4 400 396.80 

- ­ -- ­ - ­ -- ­
Total 10 79.425 187.3 1000 1298.98 

b	 = Y = 2: YtPt = (79.425)(2) = 15.89 o 
LPt 10 

b	 = 2: Pt yt(Xi - i) = 2(187.3) = 0 1873 
1 L plXi - i)2 2(1000)	 . 

Y = 15.89 + O.l873(x - 30) = 10.26 + O.l873x 

n (~ Pi Yi)2]
(n	 ~ J 2: PI I? - .,1=l

{[i=1 L 
n 

r.
t=1 

_ [J\PI(XI - xX Y'l)f} 
2:	 Pi(Xi - i)2 

i= 1 

=	 J..{[2(1298 98) _ [2(79.425)]2 ~ [2(187.3)]2]}
 
3 • 10. 2(1000)
 

=	 t(5.02) = 1.67 
n	 Pi. 

L 2: (ytj - Yt)2
 
s~ = t=1 1~1 = t(6.95) = 1.39
 

2:	 Pt - n 
i= 1 

Note that excessive roundoff error can seriously distort 
the numerical results unless all significant figures are re­
tained in the calculations. For example, if the values of ]7t 
are rounded to the fourth significant figure instead of to the 
fifth, the sum of the squares of the deviations is affected in 
the third .significant figure. 

The variance ratio s~ /s~ = 1.20 can be formed and the 
F-test utilized to see if the two mean squares are significantly 
different. Since for ex = 0.05, from Table C.4 in Appendix C, 
F(3, 5) = 5.41, we conclude that the mean squares are not 
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significantly different and that the linear model TJ = {3o ... {3I X 
adequately represents the simulated data. Next, the mean 
squares are pooled by using Equation 4.3-15: 

s~ = 5.02 + 6.95 = 1.50 
Y't 8 

From Equation 4.3-10 with the pooled S~t used as the 
estimate of a~t' the estimateq variance of bo is 

. s~ 
A Yt 1.50

Var {bo} = -5- = 10 = 0.15 
2: Pi 

i=1 

From Equation 4.3-11 

A S~t 1.50 -4
Var{b1 } = 5 = -- = 7.5 x 10 

2: Pi(Xj - X)2 2000 
i= 1 

Also, if Y = b~ + b-x, from Equation 4.3-18 we calculate 

A I [ 1 (30)2]
Var {bo} = 1.50 10 + 2000 = 0.825 

4.3-4 Confidence Interval and Confidence Region 

Because the estimated regression line Y = bo + 
b1 (x - x) is linear in the estimated coefficients, and 
because b., and b1 are independent random variables so 
that the covariance terms vanish, 

Var {Yi} = Var {ba} + (Xi - X)2 Var {b1} 

= a~i[ ~l Pi + ~ (;:<: ~~)2] (4.3-16) 

i= 1 i=1 

Note that the minimum variance is at x. 
A single new observation of Y, YiJ, at Xi will be distrib­

uted about TJr with a variance of aft independently of 
Yi , so that if the deviation of Yi~ from the predicted 
regression line Yi is (YS - ~), the variance of the 
deviation' is 

a~ = Var {Yi1 - Yi } = Var {Yi~} + Var.{Yi} 

(4.3-17) 

If the model had been originally formulated simply as 
TJ = !3~ + {3IX, then the estimated regression line would 
have been Y == b~ + bIx = (bo - bIx) + b,», so that 
b~ = b., - b1 x. The variance of b~ is equal to Var {bo} + 
",~2 Var {b1 } or 

and the Var {bl} remains the same as given by Equation 
4.3-11. 

To obtain the' confidence interval for Po, since bo is 
distributed normally about !3o, we can form the di­
mensionless Student t: 

which has a t-distribution with (I Pi - 2) degrees of 
freedom. The pooled estimate, sfi , from Equation 
4.3-15 would be presumably used since the pooled 
estimate is a better estimate of a~i than is either s~ or s; 
alone. If replicate values of Yare not available to calcu­
late s;, then s, replaces S~t in the relations below and the 
degrees of freedom are those associated with s;, namely 
(n - 2). Sf t is called the standard error of estimate. The , 
confidence interval for !3o is 

(4.3-20) 

Similarly for f31: 

(4.3-21) 

(4.3-22) 

The 100(1 - ex) percent confidence interval for the 
expected value of Yi given Xb TJb is determined similarly: 

f-TJ 
t=-_· II = 2

n 

Pi - 2 (4.3-23)
Sf ' 

i=1 

where s~ is obtained by using Equation 4.3-16 with s1r 
i 

replacing a~i' Finally, if one additional value of Xi were 
selected, say x't, the confidence interval for the expected 
value of the additional observation ~1 would be (using 
Equation 4.3-17) 

(4.3-25) 

To obtain the confidence interval for f m, the mean of m 
observations at an additional x, replace the first number, 
1, in the square brackets in Equation 4.3-17 with Jim 
because the variance of Ym is a~Jm. 

The interpretation of all these confidence intervals is 
the same as that given in Section 3.3, namely that with 
100(1 - ex} percent confidence, the interval calculated 
includes {3o, {31' or TJ, as the case may be, if the assumptions 
of Section 4.2 are met. The confidence limits for TJ 
given by Equation 4.3-24 can be plotted on a chart 
together with the experimental data, as shown in Figure 
4.3-2. Note that while the estimated regression line is 



y 

FIGURE 4.3-2 Estimated regression line Y = bo + b1(x - x) 
with confidence interval for TJ. 

straight, the loci of the confidence limits are curved with 
a minimum separation occurring at x. 

Many additional confidence questions can be asked 
that we do not have the space to discuss, such as what is 
the confidence interval expected if another experimenter 
were to repeat the experiment at the same values of Xi 

or, if the experiment were to be repeated at another set 
of values of Xf, how would the results differ. Further 
details can be found in the references at the end of the 
chapter. 

So far in discussing the confidence interval for {3o, f31' 
or 'Y}, we have been concerned with a single parameter, 
Thus, the confidence interval for flo is concerned with the 
interval that includes the intercept for models with the 
same slope; the confidence interval for fl1 is concerned 
with the interval that includes the slope for models with 
the same intercept. However, if we inquire as to what 
Model (line) could have been the source of the experi­
mental data, taking into account the slope and intercept 
simultaneously, '-it is necessary to make an estimate of a 
joint confidence region for flo and fl1. The rectangular 
region outlined by the two estimated individual con­
fidence intervals and the ellipse defining the jointly 
estimated confidence region may contain quite different 
values of the f3's. Refer to Figure 4.3-3. 

We can estimate a joint confidence region for f30 and 
f3l in the linear model 'YJ = flo + fl1(X - x) as follows. 
We have already said that (bo - (30)2 2f= 1 Pi is distrib­
uted as G1ri X

2 with 1 degree of freedom and that 
(h l - (31)2 2:f= 1 Pi(Xi - X)2 is also distributed as a~tx2 

with 1 degree of freedom. Because these terms are 
independent, their sum is likewise distributed as a1rtx2 
but with 2 degrees of freedom: 

(b o - (30)2 2
n 

Pi + u, - f3l)2 L:
n 

PI(Xi - X)2 = olx2 
i=l i=l 

v=2 (4.3-26) 

Equation 4.3-26 could have included the crossproduct 
term 2(bo - flo)(h l - (31) 2:f= 1 (Xi - x) but inasmuch as 
Zf=l (Xi - x) = 0 for Model 4.3-1, this term has been 
omitted in Equations 4.3-26 through 4.3-28. 

The expected value of the left-hand side of Equation 
4.3-26 is a1r/g'{x2(d.f. = 2)} = 2u~i' so the expected value 
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of one-half of the left-hand side is equal to G~t. As before, 
we can form a variance ratio which has an F-distribution 

![(bo - (30)2 Jl PI + (bl - (31)2 JlPI(XI - X)2] _ F 

st ­
(4.3-27) 

in which the numerator has 2 and the denominator has 
(Lf=1 Pi - 2) degrees of freedom, respectively, if a 
pooled estimate of a~t is used. Because P{F S F1- a} = 

I - ex designates a critical level, we can rewrite Equation 
4.3-27 as 

n n .: 

(bo - (30)2 L: Pi + (b, - f3l)2 L: Pl(Xl - X)2 = 2st,Fl - a 

i=l i=l 

(4.3-28) 

which represents an ellipse in parameter space, i.e., in 
the coordinates ({3o, (31), for a given 100(1 - ex) percent 
joint confidence region. Equation 4.3-28 delineates the 
locus of the boundary of an area (that is itself a random 
variable) that includes the parameters flo and PI with 
100(1 - ex) percent confidence. Note that the contour has 
been given for Model 4.3-1. If Model 4.3-2 were the one 
of interest instead, we know that f3~ = flo - PIX, and 
the critical confidence contour in ({3~, (31) space could be 
computed from the critical contour in (f3o, fl1) space as 
given by Equation 4.3-,28. 

Figure 4.3-3 illustrates a confidence region for the 
model 1] = f3~ + fllX in which both points A and Bare 
within the individual confidence limits but B lies outside 
of the joint confidence region for ex = 0.05. The principal' 
axes of the ellipse are at an angle to the coordinate axes 
f3~ and fl1 because the estimates h~ and b, are correlated. 
Figure E4.3-1b in Example 4.3-1 illustrates an elliptical 
contour in (f3o, (31) space that is not rotated. 

Figure 4.3-3 illustrates only one contour, that for 
ex = 0.05. We can break 4>, the sum of squares, into two 

Confidence ~
 
~ intervaI for {31 I
 

---.B-1-T 
•A r Confidence 

bo J-----+--~---. I interval for flo 
I
 
I
 

--f-- ­ I 1Contour for joint 
I confidence region 

'---..-J------ll....---...I..----Ih 

FIGURE 4.3-3 Individual confidence intervals versus joint 
confidence region for the model TJ = fJ~ + PIX. 
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cP for a = 0.50 
cP for a =0.25 
cP for a =0.10 
cP for a =0.05 

FIGURE 4.3-4 Sums of squares contours for various significance 
levels for the model TJ = fJ~ + PIX. 

parts that provide information about the character of 
the sum ofsquares surface (all sums are from i = 1 to n): 

<P = 2: ('Vi - 7Ji)2Pi = L ('VI - Yi)2Pi + 2: (YI - 7J;)2PI 

= <Pmln + (bo - Po)2 2: Pi + (bl - PI)2 2: P;(Xi - X)2 

= ePmin + 2s~.FI - 0: = ePmin + 2 ePmin F I - 0: 
t n- 2 

(4.3-28a) 

In the above we have assumed that the model is correct 
so that S~i can be replaced by s;. Figure 4.3-4 illustrates 
several contours for various values of ex; ePmin is at the 
center and the values of eP increase as ex becomes smaller. 
The contours are just projections onto the f30 - f3I plane 
of the quadratic surface designated eP. 

4.3-5 The Estimated Regression Equation in Reverse 

Before illustrating with examples the calculations 
described up to this point, we shall turn to one final 
topic. Once an estimated regression equation has been 
determined, how can a value of x, a nonstochastic 
variable, be predicted from an observed value of Y? 
This is the so-called inverse estimation problem. If we 
introduce into the estimated regression equation f = 
bo + bl(x - x) a new observed value y* (or the mean 
of several observations at the same Xi) and solve for X, 

we obtain 

X( Y*) = Y* - bo + X (4.3-29)
bl 

where X is a random variable because Y*, b.; and b, are 
random variables. Taking the expected value of both 
sides of Equation 4.3-29, we.get 

JL~(Y*) = 7J -h + x (4.3-30)
f3I 

or 

Finally, if we form 

Z = y* - bo - bl{j.t~ - x) 

the expected value of Z is 

cC{Z} = 7J - f30 - f3I(JL~ - x) 

and the variance of Z is 

Var{Z} = Var{Y*} + Var{bo} + (JL~ - x)2Var{b1} 

Hald t or Brownlee t shows that a t-variate can be 
formed: 

Z - 0 y* - bo - bl(JL~ - x) 

f = ---;;- = [ 1 1 ( * - X)2 %1S _ + __ + _;;....JL_x_-.;..._ 
m n n

L Pi L Pi(Xi - X)2 
i=1 i=1 

V = 2:Pi - 2 (4.3-31) 

where S is an estimate of Va~t' Consequently, the 
confidence interval for J.L ~ proves to be 

_ y* - bo S [(1 1) ba 
X + b - tl-~ b m+ 2. Pi b

3 a i 

[X(Y*) - X]2] % _ y* - bo s 
+ 2. ( )2 ~ J.L~ ~ X + b - tl-~ b-

Pi Xi - X 2 2 

(4.3-32) 

where 

t~ _~S2 

b, = b, - b 2: (2 )2 j = 2," 3 
I Pi Xi - X 

Krutchkoff § called attention to Eisenhart's suggestion II 
to write the inverse of model 4.3-2 as: 

X = !1.. _ f3~ 
f31 f31 

or, with 7J = Y + E, 

x = y + 8Y + E' (4.3-33) 

where 

, E 
E = -f31 

t A. Hald, Statistical Theory with Engineering "Applications,
 
John Wiley, New York, 1952, p. 550.
 
t K. A. Brownlee, Statistical Theory and Methodology in Science
 
and Engineering, John Wiley, New York, 1960, Chapter II.
 
§ R. G. Krutchkoff, Technometrics 9, 425, 1967.
 
II C. Eisenhart, Ann. Math. Stat. 10, 162, 1939. 
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21 r----,r------,-----,.----,.-----..--_The least squares estimates of y and S are 

Assumed model /!20 
T/=Po+{'hx hr. 

19 Estima;.ed regression line / /1
Y=bo'+bl% • 

c = y = eX - dY 
18 

and thus Locus for upper 
confidence limits on 11 

x = c + dY* (4.3-34) 17 

where x is the estimate ofx given a measurement of Y, 
16

y* . Krutchkoff concluded that Eisenhart's inverse 
approach is a more satisfactory method of estimating x

y 
Locus of lower 

15 confidence limits 
on 11

given a Y*. 

14 
Example 4.3-1 (continued) 

The confidence interval for {3~ is calculated from Equation 
13 

• Values of Yj 
(t = 2.306 for the pooled variance with 3 + 5 = 8 degrees 
of freedom) is 12 

4.3-18 and the equation for b~ analogous to Inequality 4.3-20 

10.26 - (2.306)(0.825)% ::::; {3~ < 10.26 + (2.306)(0.825)% 
11 

8.16 ::::; {3~ < 12.36 

Similarly, from Inequality 4.3-20 the confidence interval for 
/30 is 60 

14.99 ::::; {3o < 16.77 

The confidence interval for (3I from Inequality 4.3-22 is 

0.1874 - 2.306(7.5 x 10- 4)% ::::; fil < 0.1874 

+ 2.306(7.5 x 10- 4)% We can calculate selected values of the confidence limits to 
be used in plotting. At:0.124	 ::::; fil < 0.251 

x = 10: 12.13 - 1.55 ::::; 'Y] < 12.13 + 1.55Note that the true values of fi~ and fil (which we know here) 
x = 20: 14.01 - 1.09 ::::; 'Y] < 14.01 + 1.09fall within the confidence interval. Finally, the confidence 
x = 30: 15.88 - 0.89 ~ 'Y] < 15.88 + 0.89interval for TJ is, from Inequality 4.3-24 
x = 40: 17.76 - 1.09 ~ 'Y] < 17.76 + 1.09 

Y - 2.306s y ::::; 'Y] < Y + 2.306s y x = 50: 19.63 - 1.55 ~ 'Y] < 19.63 + 1.55 

fJl 

FIGURE E4.3-1A The model, the estimated regression line, and 
the val ues of Yi • 

0.40 

0.30 

.A 
---­-------­---------­-- ­

-----------­
.................... ---- ------­0.20 

0.10 
ModeJ 

- ­ ll· = (jo + {31 (x - x) 

- - 11 ={3o + {31 x 

---

IJo 

FIGURE E4.3-1B Contours for 95-percent joint confidence region. 
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Figure E4.3-1a shows the values of ~ and compares the 
assumed model and the regression line which estimates the 
model. 

Figure E4.3-1 b shows a joint confidence region for f30 and 
f31 given by Equation 4.3-28. Note that the ellipse is aligned 
with the major axes and that the estimated bo and bi fall 
within the ellipse. Contrast the joint confidence region for 
f30 and f31 with that" for f3~ and fJh the latter ellipse being 
rotated, and also with the individual confidence regions 
computed separately for {Jo, {Jl' and f3~. 

The analysis of variance corresponding to Table 4.3-3 is 
shown in Table E4.3-1c. 

TABLE E4.3-1c 

Sum of Mean 
Source of Variation Squares JI = d.f. Squares 

Due to regression: 
bs: Y2 L Pi 252.81 252.81 
bs, after allowing for 

b-: L Pi( Yt - Y)2 70.28 70.28 
Deviation of residuals: 

L Pi( Yi - yi)2 

Deviation within sets 
5.02 3 1.67} I d poo e 

(error): 2 L (Yij ­ ~)2 6.95 
--­

5 
-

1.39 1.50 

Total 335.06 10 

The hypothesis f31 = 0 can be tested by forming the 
variance ratio s5/s~t 

s~ = 70.28 = 36 8 
S~f 1.50 . 

which is significantly greater than Fo.05(l, 5) = 6.61 from 
Table C.4 in Appendix C; hence the hypothesis that f31 = 0 
is rejected. Clearly, the ratio Sg/S~i = 252.81/1.50 indicates 
that f30 is a significant parameter in the model. A two-sided 
r-test with H o being that f3 = 0 for 8 degrees of freedom 
(from Table C.3 in Appendix C, for ex = 0.05, t = 2.306): 

t = b1 - 0 = 0.1874 = 6.85 
Sbl V7.5 x 10- 4 

also indicates that the hypothesis that f3 = 0 should be 
rejected because 6.85 > 2.306. 

As a matter of interest, the F-test for the hypothesis that 
f31 = 0 is exactly the same as the r-test for f31 = 0 if s; = sf 
because 

and, from the estimated regression equation Yi = bo + 
b1( X i - i) with bo = Y, 

LPlYi - = hi L(XiY)2 - X)2 

so that 

b1 [2 (XI _- ,X)2]Y2] 2 
[ 

SYt 

By introducing the estimate of the variance of bs based on 
Equation 4.3-11, 

Because the variable F[I, (n - 2)] is the square of t[n - 2] 
exactly the same test is executed by using either the F- or 
the t-test. 

By way of illustration, we might also test the hypothesis 
that fJl = 0.150 through use of at-test: 

t = 0.1874 - 0.150 = 0.0374 = 1.37 
V7.5 x 10- 4 2.74 X 10- 2 

This hypothesis would have to be accepted because 1.37 < 
2.306. Other hypotheses could be formed and tested for 
both f3~ and f31 or for the two jointly. 

Example 4.3-2 Simple Linear Regression 

This example illustrates the analysis of actual experimental 
data (listed in Table. 4.3-2a) collected to determine the 
relationship between a rotameter reading (x) and the flow 
rate (Y). The rotameter reading could be measured with 
great precision and was stable at a fixed level, so x could 
essentially be considered a deterministic variable. 

TABLE E4.3-2a 

Data Set Y(cc/min) x(in) 

1 112 1.14 
2 115 1.37 
3 152 1.89 
4 199 2.09 
5 161 2.45 
6 209 2.04 
7 237 2.73 
8 231 3.04 
9 233 3.19 

10 259 3.09 
11 287 3.05 
12 240 3.10 
13 281 3.34 
14 311 3.75 
15 392 4.19 
16 357 4.59 

We want: (1) to estimate the values of f3~ and PI in the 
proposed model 1] = f3~ + f31X; (2) to determine the con- . 
fidence intervals (for a confidence level of 1 - ex = 0.95) for 
f3~, f3b and 1]; (3) to make a plot illustrating the estimated 
regression equation, the confidence limits for 1], and the 
data points; and (4) to test to see if the slope of the regression 
line differs from zero. 

Solution: 
This example differs from the previous one in that real 

experimental data are involved and no replicate measure­
ments have been obtained. Consequently, it is not possible 
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n 

to test to determine if a straight line is a suitably fitting SbO = 6.41 
model for the data by means of an F-test. However, a 

Sb'o = 21.1 
graph can be prepared of the data and inspected for the 
appropriateness of the linear model, as illustrated by Figure S~l = s~, = 687 = 50.4 

L (Xi - X)2 13.61E4.3-2. 
The preliminary calculations (not all are needed for any The estimated regression line proves to be 

given calculational scheme; all sums are fromz = 1 to 16 
Y = 236 + 79.02(x - 2.816)since n = 16 and Pi' = 1) are: 

= 13.51 + 79.02x 
oX = LXi = 45.05 = 2.8156 

LPi 16 while the confidence intervals for {3~, {30, {3b and '1], based on 
t1-~ = to.97 5 = 2.145 for 14 degrees of freedom, are: Lx~ = 140.454 

[13.51 - 2.145(21.1)] ::; f3~ < [13.51 + 2.145(21.1)] 

Y =	 L Yi = 3776 = 236 - 31.63 ::; f3~ < 58.65 
L Pi 16 

[236 - 2.145(~~~)] s Po < [236 + 2.l45(~~2j]
(L Xi)2 = 126.844 

222 ~ {30 < 250 

[79.02 - 2.145( 26.2 )] ::; f31 < [79.02 + 2.145(. }6.2 )]
vi13.61 . v 13.61 

63.78 ::; f31 < 94.26 
= 13.610 

[Y - 2.145(sy)] ::; '1] < [Y + 2.145(sy)]L y i2 = 985,740 where 

1	 (x - X)2]%L YlXi - x) = L YiXi - x L Y i 
Sf = SYi [16 + 13.61 

= 11,707 - 2.8156(3776) = 1075 
Figure E4.3-2 shows the estimated regression equation, 

the locus of the confidence limits for a significance level of (L y i)2 = 891,136 
n a = 0.05, and the experimental data. Although many of the 

individual experimental data points fall outside the 95­
L (Y1 - Y)2 = L Y? - (L: :1)2 = 94,604 percent confidence limits, remember that the confidence 

limits are for the mean of a sample of Yat a given value of 
x, and in this example we do not have any replicate measure­

Next the estimated parameters can be calculated: ments. From Equation 4.3-25, we can calculate the con-

L Yibo = -- = y = 236 e " TABLE E4.3-2b n 

b~ = 13.506 Data Point Yl ISYt (¥i - Yt) 

b = L Yj(Xi - x) = 1075 = 7902 
1 L (Xi - X)2 13.61 . 1 103.59 +/- 29.14 8.40 

2 121.76 +/- 26.12 -6.76 
3 162.85 +/- 19.90 -10.85S~i = ~2 ~ (Yi - yi )2 

"--Jn - 4 178.66 +/- 17.88 20.33 
5 207.10 +/- 15.11 -46.10 

= _1_ {~(~ _ Y)2 _ [L ~(Xi - _X)]2} 6 174.70 +/- 18.36 34.29 
n - 2 ~ L (Xi - X)2 7 229.23 +/- 14.11 7.76 

8 253.73 +/- 14.46 -22.73 
= .r, {94 604 _ (1075)2} 
14' 13.61	 9 265.58 +/- 15.16 -32..58 

10 257.68 +/- 14.66 1..31 
= 687 11 254.52 +/- 14.49 32.47 

12 258.47 +/- 14.70 -18.47 
SYt = 26.2 

13 277.43 +/- 16.16 . 3.56 
2 _ S~i _ 687 - 42 8 14 309.83 +/- 20.00 1.16 

Sbo - n -16 - · 
15 344.60 +/- 25.21 47.39 
16 376.21 +/- 30.46 -19.21 

S~'o = 443.0 
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FIGURE E4.3-2 Estimated regression line, confidence limits, and 
data. 

fidence limits about Yi for one additional measurement of Y 
at, say, Xi = 3.00: 

= 26 2[1 .!. (3.00 - 2.8156)2] ~ = 27 03 
., SD • + 16 + 13.61 . 

Yi ± to.9 7 5S D = 250.6 ± (2.145)(27.03) 

= 250.6 ± 58.0 

As shown in the figure, this interval encompasses a much 
larger span than do the dashed lines. 

Although no replicate values are available so that s~ ·can 
be calculated and. used in a test of the appropriateness of 
the model, the linear form actually used appears to be 
suitable from visual examination of the figure. A test of 
the hypothesis that f31 = 0 can be made based on the 
analysis of variance in Table E4.3-2c. The variance ratio is 

TABLE E4.3-2c 

Sum of Degree of Mean 
Source of Variation Squares Freedom Square 

Due to regression: 
bo: )72 2 Pi 891,136 891,136 
bs, after allowing for 

b.: 2Pi(Yi - Yi)2 8~,988 84,988 
Deviation about the 

empirical regression 
line: 2: (Yi - yi)2 9,616 . 14 687 

-- ­ -
Total 985,740 16 

84,988/687 = 123; clearly the hypothesis that fJI = 0 is 
rejected, 

Example 4.3-3 Correlation of Engineering Data lIy' Di­
mensional Analysis 

Rowe t presented an interesting example of the dangers of 
the blind usage of the results of least squares estimation in 
the correlation of engineering data. Fluidized beds, in 
general, cannot be represented by transport phenomena 
models; consequently, empirical models are a natural 
approach to obtain functional relationships between the 
dimensionless groups of variables (and coefficients) which 
are involved in heat transfer, mass transfer, and momentum 
transfer in the bed. Rowe simulated 45 sets of experimental 
data by selecting from a table of random variables values of 
d, the particle diameter; v, the air velocity; ~T, the tem­
perature difference between the wall and the bed; and h, 
the interphase heat-transfer coefficient for a hypothetical 
bed 12 inches in diameter. These variables, together with 
certain physical properties: fL (air viscosity), p (air density), 
k (thermal conductivity of air), Cp (air heat capacity), o 
(air bubble surface tension), f3 (coefficient of expansion), and 
g (acceleration of gravity), were combined in suitable 
dimensionless groups. 

The following are typical comments on the treatment of 
the simulated data feigning the report of an engineer 
working with real experimental data. 

NUSSELT NUMBER-REYNOLDS NUMBER CORRELATION: The 
first attempt at a correlation was to plot the Nusselt number, 
Nu = hdlk, against the Reynolds number, Re = vdp/ft, as 
shown in Figure E4.3-3a where the line log (Nu) = log (0.13) 
+ 0.79 log (Re) has been drawn through the data. The 
correlation is not very good, although the index found for 
Re is near to the value 0.8 which often occurs in empirical 
heat transfer/fluid-flow correlations. The dashed lines 
represent the locus of the confidence limits for a = 0.05. 
There seem to be some" rogue" .points suggesting that the 
apparatus was not always working properly. 

STANTON NUMBER-REYNOLDS NUMBER CORRELATION: It has 
been argued that in a fluidized bed there is considerable dis­
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t P. M. Rowe, Trans. Inst, Chern. Eng. (London) 41, CE 70, 
Mar. 1963. 
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sipation of momentum, and it has been suggested that there 
may be a relationship between energy loss and heat transfer. 
Consequently, by analogy with the relationship between 
friction and heat transfer in pipes (the well-known j ­

factors), the Stanton number, St = hlc.up, was calculated 
and is plotted against the Reynolds number in Figure 
E4.3-3b. This correlation is an improvement on the previous 
one; the rough rule, St = 2.0 Re -1.12 is a guide in design 
but subject to a rather large error. 

WEBER NUMBER-STANTON NUMBER CORRELATION: The 
Reynolds number may not be the best parameter to describe 
a fluidized bed from a heat transfer point of view, and 
alternative groups were considered. Bubbles are highly 
characteristic of gas-fluidized beds and are known to affect 
heat transfer. The bubbles have surface energy associated 
with them; consequently, it was reasoned that a Weber 
number, We == v2 ·dp/a, might characterize the bed. Fluidized 
beds do not have a surface tension in the usual sense, but an 
arbitrary value was used simply to examine the concept. 
Figure E4.3-3c is a plot of the Stanton number against the 
Weber number. The correlation is still not good but appears 
promising, especially as the law .may be written St = 0.2 
We- %, which is simple and suggests a theoretical basis for 
the law. 

NUSSELT NUMBER~RASHOF NUMBER CORRELATION: Most 
fluidized particles exhibit an "up the middle and down the 
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sides" pattern of movement strongly suggestive of con­
vective circulation; on this basis a Grashof number was 
calculated as Gr = d 3 p2g fJ l1.T/p.2. Figure E4.3-3d is a plot 
of the Nusselt number against the Grashof number. This 
plot was modified slightly by multiplying the Nusselt number 
by the ratio of particle to bed diameter, Nu (d/ D), as in 
Figure E4.3-3e, which seems to yield a moderately good 
correlation. The relationship Nu (d/ D) = 0.26 GrO.82 is 
proposed as a basis for design. It is seen to hold approxi­
mately over five orders of magnitude of each parameter, 
and precise relations of such wide application are hard to 
obtain. 

Of course, all the ascribed relationships are fictitious. There 
are two principal reasons for the apparent reasonableness 
of the linear relations (on log-log paper) developed. The first 
is the use of log-log paper for plotting data; the second is the 
inclusion of the same variable on each axis. A logarithmic 
plot distorts the data because the more or less uniform 
distribution of random points found on an arithmetic basis 
appears as a concentration of data in the upper right-hand 
corner, as illustrated in Fig. E4.3-3a. 

10-5 10-4 

Grashof number, Gr 

FIGURE E4.3-3E 
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When the axes are labeled as dimensionless groups, it may 
not be immediately apparent that the same variable occurs 
in both groups being plotted.. For example." Figure E4.3-3a 
is a plot not of Nu against Re but. of ltd against od because 
in Nu = hdlk, k is a constant (only one value was used, 
that for air), and in Re = diJplj-t, p and f'; are constants. 
When d is by chance large, Nu and Re also are large so that 
an artificial association is produced. Similarly, Figure 
E4.3-3b is really a plot of hl» against od. Figure E4.3-3c is 

u2d.a plot of hlu against Figure E4.3-3d is a plot of hd 
against d". The convincing Figure E4.3-3e is a plot of hd? 
against d". In addition to forming a false association, 
raising the same quantity to some power has the effect of 
apparently increasing the range of the observations. The 
original data span only two orders of magnitude, but 
Figure E4.3-3e appears to cover five orders. 

To avoid spurious relations such as illustrated above, the 
experiments should be designed as described in Chapter 8. 
Apparent "rogue" points should never be ignored until it 
can be shown that there are reasonable experimental 
grounds for excluding them. If, in retrospect, it can be seen 
that the apparatus may have been faulty during a certain 
period, all the observations made during that period should 
be discarded. It is particularly unsound to use dimension­
less groups when, in fact, only one component of the group 
was varied unless there are special reasons for believing 
that the group is more meaningful than the single variable 
that it includes. It should always be made clear when only 
one component of the group has been varied. When di­
mensionless groups are combined, it is essential to examine 
the resulting combination and to avoid including the same 
variable in two groups that are to be related in a model. 

In most experimental work a variable is calculated from 
the primary experimental observations. For example, a 
heat-transfer coefficient is calculated from a measured heat 
flux, surface area, and temperature drop. A Reynolds 
number may be calculated from a measured length and 
velocity together with properties of the fluid read from 
tables. It is essential to calculate the error of the derived 
quantity from the known error of the measured com­
ponents and to make sure that the assumptions underlying 

.the least squares estimation are fulfilled. Most dimensionless 
groups include physical properties whose values are read 
from standard handbooks. The errors in the quoted values 
should be taken into account when assessing the error of 
the resulting dimensionless group because they are some­
times considerable. There is no easy way of judging the 
error of published data of this kind when it is not specifically 
quoted, but some idea can be formed by comparing values 
from different sources and by considering the method of 
measurement used. 

In conclusion, it has been shown that the estimation of 
linear relations using dimensionless groups as variables is 
fraught with danger. 

4.4 ESTIMATION WITH ERROR \'ARIANCE A 
FUNCTION OF THE INDEPENDENT VARIABLE 

In this section we briefly consider for Model 4.3-1 the 
case in which the variance of Y is a function of x. 

Typical data from the dissolution of surface active 
agents, absorption of gases, diffusion in solids, and 
chemical reactors yield dependent variables that. are: a 
declining function of distance or time. If the error in 
measurement is at a fixed level, the relative error in the 
dependent variable increases with the increase of the 
independent variable. Figure 4.4-1 illustrates the in­
creasing relative error for the counting of radioactive 
tracer as a function of time. t The counting rate R was 
the ratio of the counting rate at any time to the counting 
rate at infinity. The model used to represent the data was 

dR 
- dt = k(R - 1) R(O) = 0 

and could be integrated to yield 

In (1 - R) = Po + PI t 

Figure 4.4-1 shows the estimated regression equations 
and the locus of the confidence limits obtained if, in the 
least squares method, each data point was weighted 
inversely proportional to the variance of the data. point 
with the variance estimated from replicate measurements. 

To take into account varying error as a function of the 
independent variable, exactly the. same .analysis as was 
carried out in Section 4.3 is employed except that we 
assume 

. Var {Yi I Xi} = (T~i[f(X)J2 

where the functional relation to x, I(x), is known and 
aJri is unknown. Because the general procedure was 
spelled out in detail in Section 4.3, we omit much of the 
intermediate detail in the following discussion. The 
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FIGURE 4.4-1 Radioactive tracer counting illustrates the 
increasing error with time of measurement. 

t J. C. Wang and D. M. Himmelblau, AIChE J. 4, 574, 1964. 
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observed Yi/s are still assumed to be normally distrib­
uted about 'YJi = f30 + f31(x, - x) but with variance 
a~t [/(X)]2, ·so that 

YiJ - '1Ji = ----.;;~~Uii aYt/(xi) 

is normally distributed with parameters (0, 1). Recall that 

If we call Wi = (1/f(xi))2 the weight, and multiply X2 by 
a~i' we 0 btain 

n Pi 

a¥r,x2 =	 LL WI( Ytj - 1]1)2 (4.4-1) 
t=1 j=1 

The sum of squares on the right-hand side of Equation 
4.4-1 can be partitioned as in Section 4.3 by an identical 
procedure except that Wi must be included in each sum. 
The least squares procedure gives: 

1. Estimated regression equation Y = b., + bl(x - x). 

L 
n 

w.p.x,
X = _i=_~ _2. 

L w.p,
i=1 

n _ 

L WiPi Ii 
b = Y =i_=_~ _3.	 o
 

L WiPi
 
t=1 

n

L WtPi(Xi - x) Yi
hI = l_o=_: _4. 

L WiPi(Xi - X)2
i=1 

a~.t5. Var {bo} = -n--­

L wi». 
i=1 

6.	 Var {bl} = -n----­

L WiPi(Xi - X)2
 

t= 1 

An analysis of variance can be carried out which corre­
sponds to Tables 4.3-1 and 4.3-2. The variance ratio 
s;/s~ can be formed exactly as in Section 4.3 and an F­
test carried out. If the ratio s;/s; is not significant, the 
pooled variance is 

n Pi	 n ..
L L Wi( Yij - Yi)2 +	 L WiPi( r, - Yi)2 

S~t = i=1 j=1	 i=1 (4.4-2) 

(~ PI - n) + (n - 2) 

which corresponds to Equation 4.3-15. 

The estimated response Y is normally distributed 
about 'YJ = f30 + f31(x - x) and, as before, 

Let us now consider two interesting and practical 
special cases which contrast the use of weights with the 
assumption of unity (no) weights. Let the linear model be 
a line through the origin with slope of f3: 

l!{ ~ , x} = f3x 

We examine the estimate of f3, b, for three cases: 

-, 2 a weight of!(I) Var I F, x} = aYtX; 
x 

- I 22(II) Var {Yi x} = aytX ; a weight of -; 
x 

a weight of 1 

Then the corresponding estimates of f3 and the variances 
of b become (all sums are from i = 1 to n): 

In each case a different slope will be obtained. Use of 
weights should be based on physical grounds, i.e., infor­
mation about the variability of a~t obtained from the 
experiment or elsewhere. 

For example, if replicate values of Yare taken at each ° 

Xi as in Example 3.6-3, then estimates of a~t can be ob­
tained at each Xi by using Equation 2.4-2. Least squares 
can be applied to estimate the required functional de­
pendence ofVar {Y} on x. Or, estimation of the functional 
dependence can be made from analysis of known instru­
mental errors in the measuring instruments. 

Example 4.4-1 Weighted Linear Regression 

Example 4.3-1 is repeated in part with the revised premise 
that three types of weighting are to be compared: 

1. Weight = 1 for each	 ~. 

2. Weight = l/xt for each ~. 

3. Weight = l/x~ for each Yt• 
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FIGURE E4.4-1 

4.5 ESTIMATION WITH BOTH INDEPENDENT 
AND DEPENDENT VARIABLES STOCHASTIC 

If both the independent and dependent variables are 
random and normally distributed, the estimation of 
coefficients in a linear (in the coefficients) model and the 
designation of suitable tests and confidence intervals 
become quite difficult. In spite of the attention that this 
important problem has attracted, completely satisfactory 
techniques are yet to be devised. Several different methods 
of attack, beyond the scope of this text , have been pro­
posed , the references for which can be found at the end 
of the chapter. ' ,­

To provide a contrast with the empirical model in 
which the dependent variable only is stochastic and also 
to illustrate some of the difficulties involved in estimation, 
one of the many methods of estimati on, that of maximum 
likelihood, is described here . The technique is not pre­
sented because it is more widely applicable or better 
than other techniques-the best treatment when both 
variables are stocha stic is far from being resolved. 

We can only treat the case of a simple linear model 
with one dependent variable, Y, and one independent 
variable, X, with X and Y jointly distributed by a normal 

Solution: 

TABLE E4.4-1 

n

2: WIP I 
t = 1 

n 

X = 
L: WIP IX t 

,.-==~1__ 

~ W,Pt 
t =1 

1 1 
Quantity x x2 

V = 

b« = 

X I 

10 
20 
30 
40 
50 

~ WIPt V, 
:-1=.-;;1:..-__ 

I WIPt 
1=1 

n _ 

V = 
L: WIP1Yt 

,-I=...;:1:..-__ 

i WIPt 
1=1 

n

2: WtPt(Xi - x) Vt 

1= 1 

n

2: WIPi(Xt - X)2 
1=1 

n 

L: W,PI( X I - x ) VI 
b:	 = 1_=__1---- ­

I WIP t(Xt - X)2 
1= 1 
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Figure E4.4-1 illustrates the locus of the three estimated 
regression equations and the respective confidenceintervals 
for 'YJ. 
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distribution according to the density given in Example 
2.3-4. Nevertheless, this simple model will indicate one 
approach to estimation without the introduction of 
obscuring mathematical details. We assume that the 
model is 

(4.5-1) 
where 

'YJt = C{Yt} 

P-t = C{Xt} 

il = some appropriate average of the P-t's 
{Jo, {31 = intercept and slope, respectively, of the model 

graph 

Both 'YJi and fLi are nonrandom variables, and we define 
the errors Vi and Vi and their variances as 

(Yi - 'YJi) = Vi Var {Vt} = O'~ 

(Xi - fLi) = Vi Var {Vi} = O'~ 

Covar {ViVj } = PuvO'uO'v 

We want to estimate Po and f3I (and carry out hypothesis 
tests) through use of the method of maximum likelihood. 

The likelihood function is formed for n sets of obser­
vations, each containing Pi replicates exactly as described 
in Section 4.3. As usual, errors from one pair of obser­
vations to the next are assumed independent. 

We write 

L -

-
[ 

1 
27TO'uav vI 

]( ~ Pi)i-I - p~v 

X exp [ - ..2(1 
1 ~n ~Pi {(Yt . _ 'Yl.)22 _J__·o 
- Puv) a v

i=1 j=1 

-2Puv(1I;a~7)I)(Xlja~lLi) + (~ja~lLr}] 

(4.5-2) 

To save space we do not show the logarithm of the likeli­
hood function but only list the results after summation 
over the index j of the minimization of In L with Equa­
tion 4.5-1 substituted for 'YJi in Equation 4.5-2: 

Partial differentiation with respect to f30 yields 

n 

~Pi[(Y; - 7)i) - p;av(Xi - lLi)] = 0 (4.5-3) 
i=1 u 

Partial differentiation with respect to f31 yields 

Partial differentiation with respect to P-iyields 

The combination of Equations 4.5-3 and 4.5-4 yields, 
after some manipulation, 

(4.5-6) 

n n Pi 

L Pt'YJi L: L: Yij
b -!.::..!-.. - i=1 t=1 y (4.5-7)0- n - n' 

L: Pi 2: Pi 
i=1 t=1 

However, the equation for P1 proves to be of quadratic 
form, indicating a more difficult computation than re­
quired for simple estimation with error in only one 
variable: 

n 

~PI[(Y; - Y) - Pl(X; - X)(Y; - Y)] 
t=1 

To solve Equation 4.5-8 for Pb we need to have the 
values for or estimates of O'v, O'u, and Puv. As long as the 
experiment can be designed to collect replicate data with 
identified (¥i, Xi) pairs, estimates of av , au, and Puv can 
be made as follows for each pair: 

Pi - 1 

Pi

:2 (Xij - Xi)(Yij - ~) 
(P'uvSuSV)i = J';....·=_1 _ 

Pi - 1 

Homogeneity of variance can be tested as described in 
Chapter 3, and pooled estimates can be formed by sum­
ming over the index i, if warranted. If estimates of au, 

U V , and Puv cannot be made from the experimental data, 
certain assumptions can be presumed concerning these 
values or their ratios, and {31 can again be estimated. 

Discussion 'of the confidence intervals for' f30 and f31 is 
beyond our scope here; the interested reader is referred 
to the references at the end of the chapter. .Extension of 
the method of maximum likelihood to multivariate 
problems is possible in principle but results in sets of 
nonlinear equations, which are often difficult to solve 
for the desired parameter estimates. Satisfactory, gener­
ally applicable techniques of estimation for Model 4.3-1 
when both variables are stochastic have yet to 'be devised. 
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4.6 ESTIMATION WHEN MEASUREMENT
 
ERRORS ARE NOT INDEPENDENT
 

As mentioned in Section 4.2, in many instances the 
errors Ei in the model 

~ = f30 + f31(Xi - x) + Et 

are not independent as was assumed in Sections 4.3, 4.4, 
and 4.5. Over a period of 'time, earlier process yields, 
temperatures, or flow rates may affect later observations; 
hence the Yi and, in effect, the Ei are not statistically 
independent. A typical example is the sampling at 
intervals of the concentration of a reaction product from 
a well-mixed tank. We examine two common examples 
of the lack of independence in this section. 

4.6-1 Cumulative Data 

One characteristic feature of certain special experi­
ments is the use of the same batch of materials for the 
entire series of measurements, for example, a series of 
measurements of the volumetric displacement of the 
same fluid made as a function of pressure or a com­
ponent repeatedly sampled in time in a reaction vessel. 
If the unobservable error in the first observation is 
designated as Eb the error in the second observation E~ 

includes E"1 plus a random component introduced aside 
from E1' or E~ = E1 + E2' The error in the third observa­
tion is E~ = E1 + E2 + E3' and so forth. Mandel, whose 
analysis we follow,'] distinguished between the usually 
assumed type of independent measuring error in the 
dependent variable and a "cumulative" or interval error 
in which each new observation includes the errors of the 
previous observations. Cumulative errors, arising because 
of fluctuations as a function of time in the process itself 
due to small changes in operating conditions (tempera­
ture, pressure, humidity, etc.), are not independent­
only the differences in measurement from one period to 
the next are independent. Thus, if we consider the simplest 
case, a model without an intercept, two models are: 

1. Model A-independent error: 

i = 1,2, ... , n (4.6-1) 

2. Model B-cumulative data: 

Yj - Yj - 1 = f3(x j - Xj-1) + Ej 
j = 1, 2, ... , n; Xo = 0 

or 
iii 

Y; = 2: (Yj - Yj - 1) = (J 2: (Xj - Xj-l) + 2: €j 

j=l j=l j=l 

= Bx, + 2:
i 

€j (4.6-2) 
j=l 

t J. Mandel, J. Amer. Stat. Assn. 52, 552, 1957. Also refer to 
J. L. Jaech, J. Amer. Stat. Assn. 59, 863, 1964. 

in which Ei are independent random variables wi.th 
C{Ei} = 0 and Var {Ei} = u~, a constant. The Ej are also ran­
dom independent variables because they represent differ­
ences such as E~ - E"~ = (£1 + E"2 + E"3) - (E1 + E2) = £3­

We assume that If{Ej} = 0 and Var{Ej} = o~(Xj - Xi-I); 

i.e., the variance of Ej can be a function of the test interval. 
Figure 4.6-1 illustrates the simulation of Equations 4.6-1 
and 4.6-2 for fi = 3, with Ei and EI being normal random 
deviates and U;t = O;j = 1.. Note how the experimental 
points tend to stay on one side of the regression line of 
best fit for Model B. Although the proposed Model B 
may be applied only in certain types of experiments, it 
has been found to resolve the observed trends about the 
regression line in these cases quite well. 

The line of best fit for Model A from Equation 4.3-7a 
as applied to Model A is 

(4.6-3) 

and the variance of bA is given by Equation 4.3-1Ia as 

U~
Var {bA} = -n- (4.6-4) 

2: x; 
i=l 

The best unbiased linear estimate of the slope of Model B 
is obtained by minimizing the weighted sum of squares: 

as described in Section 4.4, which gives 
n

2: (Yj - Yj - 1)
bB= PB = 1_·=n_1 _ (4.6-5) 

2: (x, - Xj-1) 
j=l 

If the test interval is uninterrupted by a gap, Equation 
4.6-5 in terms of the cumulative data is nothing more 
than 

(4.6-6) 

The interpretation of Equation 4.6-6 is that the best 
estimate of the slope of Model B is made by taking the 
last value of the dependent variable and dividing it by" 
the last value of the independent variable! Although the 
intermediate results might seem useless, they are not 
because: (1) they help decide if the model is really linear, 
and (2) they are needed to reduce the variance of"the 
estimator of the slope which is 

Var {bB} = ""-.n----­ (4.6-·7) 
2: (x, - Xi-I) 
j=l 

If u~ is not known, the Var {bB} can be estimated by 
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FIGURE 4.6-1 Fitting experimental data when errors are not independent: 
(a) comparison of independent and cumulative data; n = 50; and (b) comparison 
of independent and cumulative data; 7J = 10. (From J. Mandel, J. Amer. Stat. 
Assn. 52, 552, 1957.) 

If the experiment is best represented by Model B but, 
through ignorance or otherwise, is treated as beingVar{bB

} = (n ~l)(t (Xi ~ Xi-I») ~ (Xi _lXi_I) 
represented by Model A, Mandel showed that for the 
case in which Xl = 1, X2 = 2, ... , x, = n, i.e., no interval X [(Yj - Yj-1)bB(Xj - Xi_I)2] (4.6-8) 
gap and unit changes in X,

For the special case in which each increment.Ix, - Xi-I)
 

1, Equation 4.6-6 becomes
 

b = Yn (4.6-9)
B n 

and Equation 4.6-7 becomes 

01 - (6) 2n
2 + zn + 1 2 (4.6-10). Var {bB } =- Var {b} = "5 n(n + 1)(2n + 1) GIn 
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where the overlay tilde ("') indicates an estimate in­
correctly calculated. 

Consider the ratio of the variance of the incorrect 
estimate to the variance of the correct estimate: 

Var {b} (6) 2n2 + 2n + I 
Var {bB} = "5 (n + 1)(2n + I) 

As n -+ 00, the ratio -+ 1.2; hence the estimate b is only 
slightly less efficient than the correct estimate bB' How­
ever, if the variance of b also is calculated as if the data 
were represented by Model A when in fact Model B 
applies, it can be shown that the expected value of the 
incorrectly calculated variance is 

r-J_ 3(n + 2)ar 
tff{Var {b}} = 5n(n + 1)(2n + 1) 

Then we can form the ratio 

tff{Va0b}} 3(n + 2) 
(4 .6-11) 

Var {bB} 5(n + 1)(2n + I) 

As n becomes large the ratio becomes quite small, 
indicating that the standard error of the slope is drastic­
ally underestimated. For example, for n = 10, the square 
root of the right-hand side of Equation 4.6-11 is only 
O. I75. Hence, application of the equations in section 4.3 
to Model B data will result in considerable overesti­
mation of the precision of the estimate of the slope, 
although the estimate of the slope itself will be quite 
good , because 

(4.6-12) 

Note that the .ratio of the expected values of band bB, 
respectively, is unity (for AXf == I) : 

Mandel also examined the behavior of the residuals in 
Models A and B. He demonstrated, as indicated in 
Figure 4.6-1, that for large n the data represented by 
Model A tend to be scattered at random above and 
below the regression line, whereas data represented by 
Model B tend to remain on one side of the line for long 
sequences. This trait will assist in discriminating between 
the models (if a large number of observations can be 
made at different x's). 

Example 4.6-1 Estimationfor Cumulative Data 
This example illustrates the analysis of cumulative data 

for a chemical reaction. Samples were periodically removed 
and analyzed during an experiment, yielding the following 
data:t 

Time (min) Log (fraction of sucrose remaining x 10) 

o 1.000 
10 0.954 
20 0.895 
30 0.843 
40 0.791 
50 0.735 
60 0.685 
70 0.628 
80 0.581 

Analysis of the data by the conventional relations given 
in Section 4.3 gave, for the model TJ = f3~ + f31X, 

Estimate Standard Error 

b~ 1.0024 0.00170 
hI -0.005303 0.0000357 

Square root of 
sum of squares 
of residuals 0.00276 

Consequently, the estimated confidence interval for f31 was 
- 0.005387 -s f31 < - 0.005219 for a significance level of 

IX = 0.05 and t = 2.365. However, the correct analysis 
using a cumulative error model should have been: 

Estimate Standard Error 

b~ 1.00 o 
b1 -0.005238 0.000166 

Square root of 
sum of squares 
of residuals 0.00469 

The intercept has zero error since it is simply the first 
measured value. The correctly estimated confidence interval 
is - 0.00563 :$ f31 < - 0.00485, illustrating how the pre­
cision determined by the wrong method of analysis appears 
to be much greater than it should be. 

4.6-2 Correlated Residuals 

It is well known that data collected at a sequential 
series of values of time are liable to have correlated error 
residuals. It is then natural to ask how good the least 
squares estimation procedure of Section 4.3 or 4.4 is. 
This problem was investigated by Grenander t and 
Rosenblatt§ for time series; they concluded that if 
significant correlations actually exist, the .estimates of ... . 
the variances of the parameters in the least square 
solution will be biased and inefficient. 

t J. Mandel, Technometrics 6,225, 1964.
 
t U. Grenander, Ann. Math . Stat. 25, 253, 1954.
 
§ M. Rosenblatt, Probability and Statistics, John Wiley, New
 
York, 1960, p. 246.
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We have the space here only to outline the suggestions 
of Wold t concerning one appropriate estimation pro­
cedure for the coefficients and their variances in simple 
linear models with correlated residual errors. We shall 
defer to Section 5.4 the consideration of models with 
several independent variables. For methods of identifi­
cation and estimation of the parameters in time series, 
that is, empirical models that are explicitly functions of 
time, consult other references.] 

To ascertain whether or not a sequential series of 
values are indeed correlated, a test for serial correlation 
should be carried out. The Durbin-Watson test§ for 
serial correlation of €'s was designed to apply to inde­
pendent variables which are exogenous, that is the c's are 
statistically independent of the x's. Hence the test is not 
strictly applicable if, as in a time series, some of the 
x's are lagged. The test is quite straightforward-all that 
need be done is to compute the statistic D for a series of 
n observations. 

(4.6-13) 

where E, denotes the residual (Yt - Yt ) at t, and (E, - E, -1) 
is the successive first difference. 

Figure 4.6-2 illustrates the distribution of D and the 
regions of acceptance and rejection for serial correlation. 
Table C.IO in Appendix C lists the values of the upper, 
D u , and lower, D h bounds for the test. If D calculated 
in Equation 4.6-13 is. less than D 1 or exceeds (4 - D 1) , 

then serial correlation is presumed to exist. If D falls 
within D; and (4 - D u) , the opposite is true. In the 
regions marked by a questionmark the test is inconclusive. 

p(D) 

Region of Region of Region of 
rejection acceptance .? rejection

? 

Positive
 
serial
 

c.orrelation
 Negative 
serial 

correlation0-------------1-------'------1----------_
2 (4-Du) (4-Dl) 4 D 

FIGURE 4.6-2 Distribution of D used in testing for serial corre­
lation (the null hypothesis is that there is no serial correlation). 

t H. Wold, Bull. Inst. Int. Stat. 32 (2), 1960; H. Wold, in Proceed.
 
4th Berkeley Symp. Math. Stat. Probe 1, 719, 1961.
 
t G. E. P. Box, G. M. Jenkins, and D.,W. Bacon, "Models for
 
Forecasting Seasonal and Nonseasonal Time Series" in Spectral
 
Analysis of Time Series, ed. by D. P. Harris, John Wiley, New
 
York, 1967; G. E. P. Box and G. M. Jenkins, Time Series Analysis,
 
Forecasting, and Control, Holden-Day, San Francisco, 1969.
 
§ J. Durbin and G. S. Watson, Biometrika 38, 159, 1951.
 

Example 4.6-2 Durbin- Watson Test for Serial Correlation 

The following data represent the flow rates through a 
water-driven turbine as a function of the gate opening in 
inches: 

Gate Opening Flow Rate 
(in) (ft3/sec) 

1.1 8.92 
2.3 15.51 
2.9 20.08 
2.5 16.38 
3.5 19.53 
4.0 22.12 
4.7 24.60 
5.0 25.35 
5.1 25.01 
4.5 23.03 
5.5 29.47 
6.0 32.97 
6.3 35.05 
6.5 36.58 
6.7 38.30 
6.9 40.06 

1. Assume that a linear model with uncorrelated re­
siduals, 'YJ = {3~ + {JI X , represents the data. Find b~ and b-, 
find the estimates of {3~ and {3t, and calculate the 16 residuals. 
Examine the residuals. 

2. Apply the Durbin-Watson test for serial correlation. 
Are the residuals correlated? 

Solution: 
The estimated regression equation from least squares is 

Y = 2.792 + 5.0101x 

An F-test of the significance of {3I indicates that it is a 
significant component of the model. 

The residuals are: 

0.616 
1.193 
2.756 
1.061 

-0.799 
-0.714 
-1.742 
-2.495 
-3.336 
-2.310 
-0.880 

0.113 
0.690 
1.218 
1.936 
2.694 

Clearly the residuals are not randomly distributed about 
zero as they should be. (The analysis of residuals is discussed 
in Section 7.1.) 
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From Equation 4.6-13, the statistic Dis 

1 6 2 

1~2 (Et - Et - 1 ) 17.221 
D = ~ E? = 51.149 = 0.336 

1=1 

From Table C.1O in Appendix C, for a two-sided test with 
a = 0.05, a/2 = 0.025, and K = I, we find D 1 = 0.97. 
Consequently, the hypothesis that the unobservable errors 
are uncorrelated is rejected. The residuals are positively 
correlated. 

The first model to be examined is 

(4.6-14) 

where t represents the index for time. We let Xl> X2, • . • , X n 

be n consecutive values of the independent variable and 
Y 1 , Y2 , • • • , Yn be the observed values of the dependent 
variable. Although the residuals may be correlated with 
each other, the residuals each have an expected value of 
zero and are assumed to be not correlated with Xt : 

6"{Et} = 0 

6"{xtEt} = 0 

The least square estimator b of the coefficient f3 is 
obtained as described in Section 4.3: 

(4.6-15) 

The deviation of b from f3 can be written by introducing 
Equation 4.6-14 for Yt in Equation 4.6-15: 

If we take terms with the same lag in time, the square 
of the deviation can be written as 

We are interested in obtaining the expected value of 
(b - (3)2, but since the values of El> E2 ' • • • are unknown, 
we must repl ace terms such as 6"{l:r,;l XtXt +1€tEt +l } with 
an estimate 22,;l Xtxt +lEtEt +l where 

E, = Yt - bx, 

and thus obtain an estimate for the variance of b. Also , 
beca use the correlation X tXt + kEtEt + k drops off as the lag 
in time between two terms increases, in the approxima­
tion for the variance of b we shall delete all terms after 
t + k as being negligible. Consequently, 

A 
Var {b} 

(4.6-16) 

A similar but more complicated treatment of the 
model 

Yt = f3~ + f31 Xt + Et (4.6-17) 

can be carried out with the results listed below: 

2:
n

(x, - x)Yt
b, = t:..c=-=-n1 _ (4.6-18) 

2: (x, - X) 2 
t= 1 

b~ = Y - bx (4.6-19) 

_ 1* x = tiLXt 
t =1 

- 1* Y= tiL Yt 

t =1 

(4.6-20) 

A 

Var {b1} ~ -=------=---= (4.6-21) 

where 

n 11.-1 n- k 

Co = 2Ef + 22 E tEt +1 + .. .+ 22 EtEt+k 

t= 1 t =1 t =1 

n k n - f 

C1 = 2 (x, -' x)Ef + 22 (x, - x )E tE t +i 
t=1 f =1 t=1 

k n-f 

+ 22 (Xt+ f - x ) E tE t +f 

i= 1 t=1
 

n k n - f
 

C2 = 2 (x, - x)2Ef + 2 .L .L (x, - X)(Xt+i - x)EtEt+ f 

t =1 f= 1 t=1 

Also 

In addition to Equations 4.6-14 and 4.6-17, many 
other models have been proposed in which ' the error 
residuals are not independent, but we do not have the 
space to describe them here. Methods of detecting and 
treating various other types of models with correlated 
residuals and for estimating the degree of bias introduced 
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by ignoring the correlation when it exists can be found 
in the references at the end of the chapter. 

4.7 DETECTION AND REMOVAL OF OUTLIERS 

In Section 3.8 we examined the problem of outliers or 
extreme points and described some tests for detecting 
outliers in a sample. Even carefully prepared experiments 
may yield inhomogeneous data because uncontrolled 
experimental conditions may change, the experimenter 
may make a mistake when taking or recording an obser­
vation, and so forth. If the experimenter does not detect 
those "wildshots," " blunders," outliers, or other 
anomalous observations, they will be incorporated with 
the valid observations used to estimate the regression 
line; they may cause substantial displacements in the 
estimated parameters and especially in the estimates of 
the variances of the estimated parameters which are 
strongly influenced by extreme values. In such circum­
stances the experimentalist would like to delete the 
outliers. On the other hand, he does not want to suppress 
any observations that deviate considerably from a 
preconceived (linear here) trend because the deviations 
may contain valid information, such as that the linear 
model is wrong. 

One difficulty in rejecting outliers in connection with 
linear regression analysis (in contrast with the methods 
of Section 3.8) is that a pattern has been imposed on the 
data; that is, a functional relationship has been assumed. 
Consequently, we are forced to examine over again what 
an outlier means. In Section 3.8 the outlier conceptually 
was an observation isolated from the others which could 
be tested for through its numerical value. However, in 
regression analysis, the numerical value, the location of 
the value, and the character of the model have to be 
taken into consideration. Although the pattern of 
observations is characterized by a linear model, this is a 
man-made restriction and the process variable is under 
no obligation to meet such a constraint. If an observa­
tion were out of line and the adjacent-observations showed 
a similar tendency, though perhaps to a lesser degree, we 
would be much more likely to regard the observation as 
representing real departure from the assumed model 
than as an outlier. On the other hand, an observation 
standing out from its nearest neighbors would much 
more likely be regarded as an outlier. To qualify as an 
outlier, then, an observation should significantly disrupt 
the correctly assumed trend in the (linear) model. 

Although statistical techniques might appear to offer 
objective guides for rejection of outliers, personal 
opinions and prejudices do enter into the choice of 
methods used in data analysis. Probably no criterion is 
better than the judgment exercised by an experienced 
experimenter who is thoroughly familiar with his 
measurement techniques. 

One way to reach a decision on a supposed outlier 
through use of statistical tools is to examine the residuals. 
If residuals (Yt - Yt) are calculated including the outlier, 
then every residual is .affected. Also, the residuals may be 
correlated even without outliers. Hence, the use of 
residuals as a basis for rejection of outliers has some 
disadvantages. Nevertheless, suppose we wish to test 
whether a single observation deviates far enough from 
the value predicted by the estimated regression line to 
cause us to classify the observation as an outlier. We 
assume that the model has been shown to be an appro­
priate one. The residuals are supposed to be normally 
distributed with zero ensemble mean and an ensemble 
variance of a~t. If we calculate ~ 

lEt - Etl v (4.7-1) 
Sri 

where Et is the residual for the suspected outlier, Et is 
the mean of all the other residuals, and sYt is based on 
Equation 4.3-15 with the suspected observation deleted, 
the values tabulated in Table 4.7-1 based on the distri­
bution of V can be used as critical values to accept or 
reject the observation. If V exceeds the value listed in the 
table, the hypothesis Ho: E' does not correspond to an 
outlier, is rejected. 

TABLE 4.7-1 CRITICAL VALUES OF V 
USED TO DETERMINE WHETHER OR NOT 

TO REJECT AN OUTLIER 

Sample Significance Level ex 

Size for One-Sided Test 

n 0.05 0.01 

3 123 31.4 
4 7.17 16.27 
5 5.05 9.00 

6 4.34 6.85 
7 3.98 5.88 
8 3.77 5.33 
9 3.63 4.98 

10 3.54 4.75 

15 3.34 4.22 
20 3.28 4.02 
25 3.26 3.94 

This table is abridged, with permission, from F. S. Acton, 
Analysis 0/ Straight Line Data, John Wiley, New York, 1959, 
p. 261. 

Unfortunately, if there is more than one anomalous 
observation, the V criterion will notin generaldetect the 
anomalous values, especially when there are less than 30 
residuals to be analyzed. If more than one extreme value 
is suspect, one of the Dixon criteria can be employed. § 
These statistics characterize the deviation of one or 

;W. R. Thompson, Ann. Math. Stat. 6, 214, 1962. 
§ W. J. Dixon, Biometrics 9, 74, 1953. 
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TABLE 4.7-2­

Compute r., 

Number of Residuals If En is Suspect If E1 is Suspect 

3 ~ n ~ 7 '10: (En - E n- 1)/(En - E 1) (E2 - E 1)/(En - E 1) 
8 ~ n ~ 10 '11: (En - En -l)/(En - E 2) (E2 - E 1)/(En- 1 - E 1) 

11 ~. n ~ 13 '21: (En - En - 2)/(En - E2) (E3 - E 1)/(En-1 - E 1) 
14 ~ Il ~ 25 '22: (En - En- 2)/(E n - E 3 ) (E3 - E 1)/(En- 2 - E 1) 

several elements from neighboring terms in the series. 
We assume that all the residuals except the outliers are 
from a normal population with unknown mean and 
variance; we arrange them in order from highest to 
lowest so that E 1 ~ E2 ~ ••. s En. The null hypothesis 
is that En (or E 1) is not an outlier. Choose (x, the signif­
icance level, and compute the statistic indicated as 
shown in Table 4.7-2. 

For a two-sided test (the outlier can be too large as 
well as too little), look up r1- ~ from Table C.II in 
Appendix C; if rij is greater than r1-~' reject the suspect 
observation; otherwise retain it. A one-sided test can be 
made by ascertaining whether r., > '1-«. 

The Dixon criteria are optimal for small displacements 
and are independent of the number of errors, whereas 
the other criterion, that given by Equation 4.7-1, is 
optimal when there is only one anomalous value and is 
independent of the size of the residual. Additional 
references for analogous tests can be found at the end of 
Chapter 3. 
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Problems 

4.1	 State for each of the equations below whether it is 
linear or nonlinear in the parameters (x is the inde­
pendent variable): 

(a)	 Y = flo + fl1X1 + {32X2
 

1

(b)	 Y= 

{30 + {31 X1 

(c)	 Y = e-IJOx+lJl 

(d)	 In y = 130 + {31 X 

1	 131(e)	 - = 130 + ­
Y x 

(f)	 Y = flOX~lX~2 

4.2	 Transform each of the nonlinear models in Problem 
4.1 to one linear in the parameters. 

4.3	 In which' of the following models, can the parameters 
be estimated by linear estimation techniques? 

(a)	 Y = flo + {31X + f32 x2 

(b)	 Y = f31 X1 + {32X2 

(c)	 xy = {31 X + {32 
(d)	 Y = ({31) In x + /32
 

elJi X
 (e)	 Y = 

4.4	 Under what circumstances can equations, nonlinear 
in the parameters, by fit by Iinea.r regression? 

4.5	 Determine the best functional relation to fit the 
following data: 

(a) x Y 
-

1 5 
2 7 
3 9 
4 11 

(b) x y 

2	 94.8,. 
5	 87.9 
8 81.3 

11 74.9 
14 68.7 
17 64.0 

(c) x y 

2 0.0245 
4 0.0370 
8 0.0570 

16 0.0855 
32 0.1295 
64 0.2000 

128 0.3035 

(d) x y 

0 8290 
20 8253 
40 8215 
60 8176 
80 8136 

100 8093 

4.6	 Can the parameter a in the modely=(x1 +x2)/(a + X3) 

be estimated by a linear regression computer routine. 
Explain. Will fitting the transformed model: 

1
(a)	 y = kix, + X2 - X3Y), where k = ­

a 

or 

(b) ~ = a{Xl ~ xJ + Xl ~ X2
 
accomplish your objective? Explain.
 

4.7	 From the values of x and Y given, determine the 
functional form of a suitable linear relation between 
Yand x. Do not evaluate the coefficients; just ascer­
tain the form of the function Y = [(x). 

x Y 

o 0 
0.1 1.333 
0.2 1.143 
0.3 0.923 
0.4 0.762 

0.5 0.645 
0.6 0.558 
0.7 0.491 
0.8 0.438 
0.9 0.396 
1.0 0.360 

4.8	 A rate model for a batch reactor is 

where ok, KA , and K; are coefficients, x is the inde­
pendent variable, and p is another independent 
variable. It is proposed to write the model as 

1 - xp 
r=--­

131 + f32 X 
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where 
1 P 

{:31 = kK + k 
A 

1	 Kw - K A 

{:32 = kK + kK p
A A 

and to estimate {:31 for data when x = 0 and to esti­
mate f32 from data using fixed values of x but a 
function of p. Comment on this proposal. 

4.9	 A model is proposed: 

{:31{:32X 
y = (1 + {:32X)2 

Can it be made linear in the parameters as follows: 

X)~ 1 {32,
(Y = ({:31{12) ~, + ({11(:32)~ x 

and the parameters estimated by linear least squares? 

4.10	 Below are listed several experiments. For each, tell in 
one or two sentences whether the method of least 
squares is appropriate for: (1) estimating the param­
eters in a linear empirical model, and (2) estimating 
the confidence interval fOf the parameters. 
(a)	 A graduate student, in order to calibrate a 

refractometer, analyzes several samples of 
solutions containing known concentrations of 
benzene. He collects data in terms of grams 
of benzene/gram of solutions versus the refrac­
tive index. 

(b)	 A biologist rneasures the length of the forearm 
of sons and fathers to see if there is any re­
lationship. 

(c)	 A chemist weights the displacement of water by 
solid spheres of known radii with weights that 
are not accurate. 

(d)	 Two proportional counters (for beta radiation) 
measures the same radioactive source for a 
series of sources. (Both have a number of types 
of error involved in their output.) 

(e)	 A chemist attempts to pour x grams of sodium 
carbonate on a scale. The sodium carbonate is 
added to an exactly known volume of water. The 
pH of the solution is then measured. 

(f)	 In a more careful trial, he tries to weigh x 
grams but fails. He reads the scale and records 
x plus an error. Then the refractive index is 
measured. 

(g)	 A technician measures the. hardness of epoxy 
paint on steel sheets at an oceanshore laboratory. 
Then he goes to a laboratory in the desert and 
makes similar measurements on other samples. 
He would like to relate hardness to location. 

4..11	 The following rocks were measured for threshold 
contact pressure and shear strength. in psia. 

Jn reply to the question as to whether or not linear 
regression analysis can be applied to the data, the 
following answers were received. For each answer, tell 
whether or not the reasoning and answer are correct 
and, if not, wherein the fallacy lies. 

Threshold Contact Shear Strength 
Pressure (10- 3 ) (10- 3 ) 

Basalt 634 4.5 
Sandstone, A 570 6.5 
Granite 494 8.5 
Polomite 364 9.0 
Marble 102 4.6 
Sandstone, B 86 3.0 
Limestone 50 3.0 
Shale 3 1.2 

(a)	 The data when plotted are not represented by a 
straight line but do seem to fall along a smooth 
curve. If the data can be transformed to a linear 
form so that a straight line is obtained, then 
linear regression analysis can be applied. 

(b)	 There is a definite relation between the pressure 
and the shear strength. Regression analysis can 
be used to determine the relationship between 
these two variables. 

(c)	 Linear regression analysis cannot be used on the 
data. A plot of the experimental data points 
does not yield a straight line, and there are no 
constant intervals in either of the measurements 
by which differences could be taken in order 
to establish a suitable polynomial expression. 

(d)	 Linear regression analysis cannot be applied to 
the above data because the data are so scattered 
and inconsistent that it is not possible to find 
differences that are' constant for constant 
changes. 

(e)	 One cannot apply regression analysis to the above 
data because they consist of eight different sets 
of data, each of which is unrelated to the others. 

(f)	 Linear regression analysis cannot be applied to 
the experimental data because the value of the 
correlation coefficient indicates that there is 
practically no correlation between the two 
measured quantities. The basic assumption of 
linear regression analysis is that one quantity is 
a linear function of the other. 

4.12	 You are given data for Y versus x and asked to fit an 
empirical model of the form: 

7] =	 ex + {1x 

where {j is a known value. Given an equation to 
calculate the best estimate of ex. 

4.13	 Show that Equation 4.3-7a, page 113, is correct for a 
line through the origin by application of the maximum 
likelihood method. 

4.14	 In fitting a linear empirical model to someexperi­
mental data, discuss briefly the following points: 
(a)	 Can an equation of the form 7] = ex + {:3x be 

used or must you use 7] = ex + (:3(x - i)? 
(b)	 Is it necessary to replicate points? 
(c)	 How can you tell if a line through the origin fits 

better than a line of the form 7] = ex + Bx't 
(d)	 In the analysis of variance, of what use is the 



PROBLEMS 139 

sum of the squares of the deviations between the 4.19 The following data have been collected: 
grand mean Yand the predicted values of Y, Y? x Y 

4.15 You are asked to fit a line TJ = 6,.2 + {3x to some ex­ 10 1.0 
perimental data. Derive the equations which will 20 1.26 
enable you to estimate: 30 1.86 
(a) (3, the slope. 40 3.31 
(b) a?f' the variance. 50 7.08 
(c) The confidence interval for TJ. 

Which of the following three models best represents 
4.16 Given a model the relationship between Yand x? 

'YJ = {31 cos WX + {32 sin wx + {33 TJ = e(!+13x 

with a period 
TJ 

TJ 

= 
= 

e(!+ 131x+132x 

ax13 

T = 27T 
W (Do not find the values of the estimated parameters.) 

given the fact that the graph of the model extends 
over an integral number of periods, and given pairs of 
(Y, x) data points: 
(a) Derive the normal equations. 
(b) Set up the simplest expressions possible to 

estimate {31, {32, and (33. 

4.20 Take the following series of values and fit a model of 
the form TJ = f3x; repeat with 1') = a + f3x. Determine 
the confidence intervals on 1')and f3 for the first model, 
and for 1'), a, and {3 for the second. Prepare an analysis 
of variance. Which estimated regression equation gives 
the best fit? 

(c) Find the sum of the squares of the residuals x: 9 8 7 7 6 4 3 3 1 2 

L (Yi - ~)2 
Y: 7 9 7 8 7 3 6 1 2 2 

Make a graph of each estimated regression equation, 
(d) State the number of degrees of freedom for (c). plot the given points, and put on each side of Y 
(e) Find the variances of {31 and {32. lines showing the locus of the confidence limits for 

In the case of a periodic function such as the above, TJ at a 5-percent significance leveL Plot the joint 
the amplitude of the wave is ({3! + f3~)%; the "in­ confidence region for P = 0.95 in parameter space of 
tensity" is ({3r + fJ~). Explain how you might test a versus f3. 
whether ({3r + fi~) is significantly different from zero. 4.21 Given the following equilibrium data for the distri­
In other words, is the wave a reality? List all the bution of 803 in hexane, determine a suitable linear 
assumptions required. (in the parameters) empirical model to represent the 

4.17 The following data represent bursting strengths of 
aluminum foil: 

data. 
x, Y, 

Pressure (psia) Weight Fractien Hexane 

Disk Thickness (in) Bursting Pressure (psia) 200 0.846 

0.001 
0.002 
0.003 
0.0045 
0.005 
0.008 
0.010 

1 
5 

15 
21 
22 
47 
57 

400 
600 
800 

1000 
1200 
1400 
1600 

0.573 
0.401 
0.288 
0.209 
0.153 
0.111 
0.078 

4.22 To date there have been no really successful generalized 
(a) Estimate fio and (31 in the linear model TJ = correlations of pressure drop for finned tubes with 

(b) 
f30 + filX • 

Estima te the variance of Po ; f31; Y. 
gas flows. The standard errors of estimate for most 
friction factor correlations are of the order of ±40 

(c) Find if the parameters f30 and f31 are significantly percent of the predicted value, a quantity excessive 
different from zero. 

Note: Use the a = 0.05 significance level if 
for engineering use. Therefore, the pressure drop data 
below are presented for individual tubes without .: 

needed in any of the above. attempting to correlate all the data into a single 
4.18 Derive an equation to estimate, f3 in terms of the generalized equation. Estimate ao and al in the model 

observed data pairs (Y, x) for a model of the form 
TJ = a + fJx, where a is a known constant. Does it 
make any difference if the x values are calculated 

I1p 
a -

n 
= aov(!l 

about the mean of the independent variable, or about where a ~pln is regarded as the random variable, 
some arbitrary origin or about x = O? v (ft/rnin) is regarded as a deterministic variable, 
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D.p = pressure drop, a = relative density (to that of 
air), and n = the number of tubes, a censtant. What 
precautions are needed to ensure that a D.p/n is 
indeed a random variable and tv is: a deterministicl 

one? 

400 0.0125 
470 0.0165 
590 0.0215 
610 0.0225 
620 0.0235 
840 0.0420 
950 0.0530 

1200 O~0750 

1400 0.0970 
1550 0.120 

(a)	 Prepare an analysis of variance and determine if 
the model represents the data better than a 
horizontal line. 

(b)	 Calculate the confidence limits on Cto and al' 

(c)	 Calculate the confidence limits on the expected 
value of a D.p/n for the first, fourth, seventh, and 
tenth points of the data. Prepare two lines on 
each side of the predicted response to indicate 
the locus of the confidence limits for a signif­
icance level of 0.05. Also, make a plot of the 
confidence region in parameter space. 

4.23	 A number of experiments have been carried out in 
order to build an empirical mode] of a chemical 
reactor. The following data represent product yields, 
Yh in lb moles/lb feed. 

Reaction Time (hr) 

1 2 3 7 28 

2.11 2.34 2.47 2.51 2.62 
2.12 2.38 2.44 2~48 2.62 
2.07 2.39 2.38 2.53 2.60 

2.38 2.52 2~55 

2.41 2.55 2.57 

Fit a linear model, Y = f30 + Pl(x - x) + € , by the 
data. Use Bartlett's test to ascertain whether or not 
the variances are the same at each time period; if 
not, use weighted least squares in which the variance 
is a function of time. 

4.24	 If an independent variable in a model is found to have 
a significant effect on the dependent variable by a 
statistical test, does this also mean the independent 
variable should be considered as one cause of the 
value of. the dependent variable in a physical sense? 

4.25	 Suppose that several values of x are selected and Y is 
measured for a model 1'] = a + fJx. It is possible to 
use the same data to fit a model x = «' + fJ' Y? 

4.26	 For the liquid flow rate of 4000 Ib/(hr)(ft2) , Hudson t 
measured the' foam height as a function of the gas 
rate in a distillation column tray. 

t University of Texas Ph.D. Dissertation, 1968. 

Foam Height (in) Gas Rate (lb/(hr)(ft2) ) 

7.56	 200 
6.53	 250 
5.09	 300 
4.56	 350 
3.51	 450 
2.56	 600 
2.28	 800 

Find a linear relation for the data between foam 
height and gas rate. 

4.27	 The following data have been obtained for two-phase 
flow.j 

Amix/Ao Re 

1.75 800 
1.68 900 
1.44 1200 
1.30 1600 
1.31 2100 
1.29 2750 
1.15 3750 
1.00 6000 

where: 
Re = Reynolds number calculated on the reduced 

velocity of the liquid phase 
Ao = coefficient of hydraulic resistance for single­

phase flow 
AmiX = coefficient of hydraulic resistance for a 

vapor-liquid mixture 
Find a linear relation between Amix/Ao and Re. 

4.28	 By dimensional analysis for a problem in heat.transfer, 
it was shown that 

Nu =	 a ReO 

where Nu = Nusselt number, Re = Reynolds num­
ber, and a and f3 are constants. Assuming that the 
Nu only is a random variable, obtain the best 
estimates of a and f3 based on the following data: 

Re: 100 100 200 200 ·300 300 400 400 500 500 
Nu: 31 36 39 40 40 42 43 45 46 49 

4.29	 The barometric pressure is related to the height by 
the following equation: 

!!.... = e- kz l T 

Po 

where p is the barometric pressure, Po is the pressure 
at z = 0, z is the height, k is a constant, and T is the 
temperature. At approximately constant T, six 
measurements of pressure were made by a group 
climbing a mountain: 

Level (ft) Pressure (in Hg) 

3290 27.2 
3610 23.4 
3940 19.8 
4600 14.3 
4930 12.2 
5260 10.5 

~ Int. Chern. Eng. 6, 43, 1966. 
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What are the best estimates of k and Po? Does your k-values. This proposal is questionable for two 
Po agree with 29.9 in Hg at sea level (z = O)? What reasons. First, for many reaction series of m­
is the joint confidence region for k and Po? and p-substituted benzene derivatives, it is· 

4.30 The precision of measurement of the data for obvious that there is a linear functional re­
a dp/n given in Problem 4.22 is roughly proportional lationship between log k as the dependent vari­

to the value of v. Estimate ao and al in the model able and a as the independent variable. Second, 
of Problem 4.22 by using an appropriate weighted even though there are uncertainties in a-values, 
least squares technique. What difference does the they are generally less than the uncertainties in 
revised procedure have on the confidence interval for experimental k-values. For these reasons, the 

a dp/n at v = 1200? equation for the regression of log k on a is 

4.31 An experimenter attempts to fit a model of the form 
Y = Bx + E: in which the ensemble standard devia­

equally applicable to the estimation of new 
k-values from known a-values and of new a­

tion of Y is proportional to Y itself. Obtain a weighted 
least squares estimate of f1 by minimizing Equation 4.34 

values from experimental k-values. 

A first-order homogeneous reaction of N20S in a 
4.3-3 in the chapter. lumped tank is to be modelled by 

4.32 The following data are to be treated in three different 
ways: In L = 

Po 
k(t - to) 

(a) Yis the random variable and x is a deterministic 
variable. Obtain the estimated regression equa­
tion for the model Y = Po + {31X + E:, and 
estimate the confidence interval for "1. at x = 62. 

where P = partial pressure of the N205 , Po = partial 
pressure at t = to, to is the reference time, and k is a 
constant whose value is to be estimated. Use the data 

(b) 

(c) 

Y is the random variable and x is a deterministic 
variable. Predict X for a measured Y of 150 
for the model listed in (a). Can you estimate a 
confidence interval for X? 
Both X and Yare random variables. Estimate 
the model parameters in Y = Po + {31X, Can PN 2 0 S (mm Hg)Time (min) 

of Daniels and Johnson t to estimate k, taking into 
account that the p values were obtained continuously 
from the s.ame tank (k was reported to be in the 
range of 0.0096 to 0.0078 min -1). 

Estimate the variance of k. 

you estimate the confidence interval for Y at a 
given value of X; for X at a given value of Y? 

o 
20 

308.2 
254.4 

Xor x Y 30 235.5 

60 
60 
60 
62 
62 
62 

110 
135 
120 
120 
140 
130 

40 
50 
60 

100 
140 
200 

218.2 
202.2 
186.8 
137.2 
101.4 
63.6 

62 135 4.35 The following data have been obtained from a batch 
64 150 reaction used to make ethylene glycol (E.G.). from 
64 145 ethylene oxide (E.O.) with a 9-percent ethylene oxide 
70 170 feed: 
70 185 Effluent Composition 
70 160 Holding Time E.O. E.G. 

4.33 The following extract is from the J. Chern. Educ. 42, 31.2 1.27 9.53 
609, 1965. Comment on the extract. Is the author 25.0 1.52 9.23 
correct or not? 18.7 1.93 8.85 

12.5 2.62 8.03 
Currently, a common linear regression analysis 6.25 4.07 6.38 

in physical organic chemistry is that of the re­ 3.12 5.62 4.50 
gression of log k on (J to obtain a Hammett 
equation, log k = log k" + pa, where log k" is 
the regression intercept and p is the regression 
slope. This equation is useful in several ways; 
one of these is the estimation of new k-values 

Explain how you would determine the best linear 
relationship between the E.O. and E.G. compositions, 
the independent and dependent variables, respectively. 
State all assumptions. 

from the corresponding a-values, if available. It 
has been stated in the literature that not the 

4.36 Apply the Dubin-Watson test for serial correlation 
to the data of Examples 4.3-1 and 4.3-2. Would you 

above equation but, instead, the equation for 
the regression of a on log k should be used for 

change the estimation procedure in these examples? 
If so, in what way? 

the estimation of new a-values from experimental t J. Amer. Chem. Soc. 43, 53. 1921. 
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4.37	 In the following data it is suspected that the un­
observable errors in the model Y = fJ~ + fhx + E are 
correlated. Estimate f3~ and f3h first assuming the 
errors are not correlated and then assuming the 
errors are correlated. 

Time (hr) 

51 
52 
53 
54 
55 
56 
57 
58 
59 

Response (mv) . 

70 
64 
60 
49 
47 
31 
44 
38 
34 

Apply the Durbin-Watson test for serial correlation. 
What conclusion can you reach? . 

4.38	 In calibrating a flow-measuring device for which the 
deterministic relation between velocity v and pressure 
drop ~p is 

v = cv~p c = constant 

the following data were obtained. Would you reject 
any of the observations as outliers? 

v (ft/sec) ~p (in. Hg) 

0.927 
0.907 
0.877 
0.719 
0.761 
0.644 
0.508 

50 

... 
(1) 
c 

40e 
(1) 
a. 

.~ 

0
c 30 

'':; 

'u
co

a (1) 

a. 
co 20 
Q) 

.2 
cl: 

10 

0 

0.942 
0.903 
0.823 
0.780 
0.757 
0.684 
0.603 

4.39	 The information given below is intended to confirm 
that the investment advisory service has merit. Does: 
the TPO performance line actually demonstrate 
this?' 

1. Using the November 20 issue, 77 stocks on the 
New York Stock Exchange had "long" TPO's. This 
means that these 77 stocks had short-term technical 
strength as well as high long-term profit potential. 

2. The price appreciation of the 77 stocks during the 
next 10 weeks was calculated and plotted on the 
diagram. Each dot represents the price appreciation 
of one of the 77 stocks. For example, a $10 stock 
with a market value of $12 at the end of the 10-week 
holding period would be plotted as a 20-percent price 
appreciation. 

Conclusions: 
1,. The higher the 12-month profit potential of a 

TPO stock, the better the chance of a short-term 
profit. This is illustrated by the TPO average per­
formance line. 

2. The average appreciation of all stocks was 
20.5-6.5 percent better than the 14-percent rise in the 
Dow Jones Industrial Average during the same time 
period. 

3. Although individual stocks mayor may not 
live up to their rating, on the average the computer 
ratings are accurate. Equal dollar investment in 10 
stocks is required to give a 9 out of 10 chance that the 
average price appreciation will be within 5 percent of 
the average performance line. 

4. Since the market went up 14 percent during the -­
same period, the stocks (points) under the dashed 
line would have shown a loss in a sideways market. 

• 

• • • 
••

• • 

• 

• 

• 
•• 

•• 
•• • .'

• 

••• ••	 DJIA price 
------~ ~------------------I ••••• • appreciation... :. 

••	 ~ Ill. • • 

0 50 100 150 200 
12-month profit potential 

FIGURE P4.39 Ten-week price appreciation of New York Stock Exchange stocks 
published in the November 20, 1962, issue of an investment service. 



CHAPTER 5
 

Linear Models With Several 
Independent Variables 

In this chapter we are interested in exactly the same 
estimation problem as in Chapter 4, but the problem is 
complicated by the use of a model with several inde­
pendent variables. Given that n sets of experimental data 
ha ve been collected, hopefully based on a plan such as 
described in Chapter 8, how can the best estimates of 
the parameters in a proposed process model be obtained? 
How can the confidence intervals of the parameters be 
formed, and how can hypothesis tests similar to those 
described in Chapter 4 be executed? One additional factor 
of interest, arising because of the large number of 
computations involved, is how to carry out the com­
putations on a digital computer. The generic term often 
applied to the estimation procedure described here is 
mulliple regression. 

5.1 ESTIMATION OF PARAMETERS 

We are interested in estimating the parameters in the 
model 

C{Y I x} = 7] = {3o + (31(Xl - Xl) + (32(X2 - X2) 

+ ... + fiq(xq - xq) (5.1-1) 
or its equivalent 

Y = {3o + (3I(XI - Xl) + (32(X2 - X2) + ... + (3q(Xq - xq) + €
 
(5.1-1a)
 

where € is the unobservable error which causes Y to
 
differ from 7]. An alternate form of the same model is 

7] = {3~ + {3IXI + f32X2 + . · .+ (3qXq (5.1-2) 

All the assumptions listed in Section 4.2 still are in effect. 
The estimated regression equation corresponding to 
Equation 5.1-1 will be written as an extension of the
 
corresponding equation of Section 4.3:
 

Y = b., + bl(XI - Xl) + b2(X2 - X2) + ... + bq(xq - xq)
 

The x's now may be different variables such as flow rate,
 
pressure (p) and concentration (c), or they may be
 
products of variables such as p2~ pc, and pc".
 

5.1-1 Least Squares Estimation 

Exactly the same least squares procedures as described 
in Sections 4.3 and 4.4 can be carried out to obtain 

estimates of the parameters in Equation 5.1-1. We 
minimize the weighted sum of the squares (in" ordinary" 
least squares the weights are all unity) of the deviations 
between the observations of Y, ~,and the corresponding 
expected values of Yi , ?]i: 

n n 

Minimize e = 2.: Wi(Y'i ~ 1]i)2 = 2.: WiEr (5.1-3) 
i=l i=l 

(af

with respect to the coefficients {3o, {3b {32' ... ; (3q. In 
Equation 5.1-3. the weights may be proportional to 

i
) , which ensures that the points with the largest. 

variances will have the least influence in determining the 
best fitting line through the data, or some other scheme 
of weighting may be employed. The subscripts to be 
employed are: 

Index of data sets (matrix rows) 1 :::;; i ~ n 

Index of coefficients (matrix columns) O~k5:q 

To minimize 4>, we take the partial derivatives of 4> 
with respect to each {3i and equate the resulting expressions 
to zero (the extremum can be shown to be a minimum): 

(5.1-4) 
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+ ... + bq(O) = .L
n 

Wi ~ 
t=l 

bo(O) + bl[~ WI(Xil - Xl)(Xil - Xl)] + b2[~ WI(XI2 - X2)(Xil - Xl)] + ... 

+ bq[~ wl(xlq- xq)(xu - Xl)] = ~ WI ~(Xil - i\ 

bo(O) + bl[~ WI(Xil -Xl)(XI2 - X2)] + b2[~ WI(XI2 - X2)(XI2 - X2)] + ... 

+ bq[~ Wi(Xiq - Xq)(Xi2 - X2)] = ~ WI ~(Xi2 - X2) 

bo(O) + bl[~ W.(Xil - Xl)(Xlq - Xq)] + b2[~ Wi(XI2 - X2)(Xiq - Xq)] + ... 

+ bq[~ Wi(Xiq - Xq)(Xiq - Xq)] = ~ WI~(Xiq - xq) 

(5.1-5) 

Note that inasmuch as	 some sphere of radius E about the head of'Y.'"The vector 
Y has components b, and b2 in the directions Xl and x2 ,n
respectively. Because a normal projection is used toL WI(Xik - Xk) == 0 
project Y onto Y through least squares, the vector £

t=l 

projects as the smallest possible circle on the Xl - X2 
the first equation in 5.1-5 yields plane. Further projection on the Xl and X2 axes results 

in confidence intervals for P1 and f32' respectively. When 
y the correlation between Xl and X2 is large, that is the (5.1-6) 

cosine of the angle between Xl and X2 approaches I, the 
projection of the circle on the X axes is longer than if 

The term normal equations has a geometric interpre­ Xl and X2 are orthogonal, i.e., perpendicular, when the 
tation as follows. If the observations ~ are interpreted projections have shortest length. Orthogonality of two 
as the components of a vector of observations Y with a variables, Xk and x., means that 
base at the origin in observation space, as illustrated in 
Figure 5.l-Ia, we want to select the values of bk (which 

n

exist in parameter space) that yield values of Yi that .L X,jXlk = 0 if k =F j 

minimizes ~. The components of Yt can similarly be 
i=l 

interpreted as forming a vector in observation space, Y, We now outline the estimation procedure in matrix 
and the various choices of b's form a plane of estimates notation t· inasmuch as the display of Equations 5.1-5 
of 7). We want the estimate of T), Y, which yields the clearly calls for some compact way of presenting the 
shortest distance between the head of the vector Y and same results. Let the n experimental data sets and the 
the surface of estimates of "1. The normal equations are q + 1 parameters be represented as follows: 
those that determine the b's such that the vector (Y - Y)
 
passes through the head of Y and is perpendicular
 
(normal) to the surface comprised of all the possible
 
values of the estimates of TJ. This perpendicular vector is Y=
 
the one that ensures that ~ is a minimum.
 

Figure 5.1-1dillustrates geometrically the unobservable 
error vector E which is the difference between the vector 

)T1 

Y2 

)Tn 

Y1 
Y2an n x y= an n x 

matrix matrix 

Yn 

Yj and the vector of observations Y. There is a given t Readers -unfamiliar with matrix notation should first refer to 
probability that the head of the vector Yj will be found in Appendix B. 



--

~o
 

~l
 
a q x 1 matrix ~= 

~q 

(Xll - Xl) (Xl2 - X2) (Xlq - Xq) 

(X2l - Xl) (X22 - X2)' (X2Q - Xq) 

X= 

(Xnl - Xl) (Xn2 - X2) (Xnq - Xq) 

an n x (q + 1) matrix 

In the first column the 1's are dummy variables which are 
needed only if Model 5.1-1 is to have an intercept and yet 
be represented in matrix form as l) = x(3 with the corre­
sponding estimated regression equation Y = xb. Each 
Xi vector is 

Xi = [1 (xu - Xl) ... (Xiq - xq)] 

It would be equally possible to represent the model as 
l) = (30 + x(3 with the corresponding regression equation 

(Third observation 

~~ Vector interpretation 
_ _ of observations Y 

Yg 

Yg 
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Y = Y+ ib where xis identical to X except that the first 
column of dummy 1's is deleted. 

The weights have the same interpretation as in Section 
4.4 and are 

Wl 0 0
 

0 W2 0
 
W= an n »: n matrix 

0 0 Wn 

while the residuals are represented by E, = (~ - ¥t) or 

[1:1 an n xE = 1 matrix 

The sum of the squares of the unobservable errors is 

<f> = L
n 

Wl€~ = eTwe (5.1-7) 
t=l 

(Estimate of 132 

b2
 ----------,
 

I 
I 
I 
I 

Estimate of PI,\' 

fh bl 

(b) 

(d) 

FIGURE 5.1-1 Interpretation of the vector of residuals as a normal to the surface of 
estimates of TJ: (a) observation space (three observations), (b) parameter space (two 
parameters), (c) normal vector E in observation space (Y is the best estimate of "1; Yis.a 
poorer estimate of "1), and (d) experimental observation space (two independent vari­
ables). 

(c) 
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Because E = Y - 11 = Y - x~, 

e/> = (Y - X~)TW(Y - x~) (5.1-7a) 

which can be minimized with respect to all the Pk'S by 
taking 8ep/8~ and equating the resulting matrix to a zero 
matrix:'] 

oe/> 
opo 

_ 2[8(Y - X~)T]W(Y - x~) 

oe/> - o~ 

Opq 
-2xTw(Y - x~) = 0 (5.1-8) 

(Recall that Y and x act as constants in the differentiation.)
 
Equation 5.1-8 with the estimate b replacing ~ becomes
 

xTwY = xTwxb (5.1-9)
 

which is exactly the same as Equations 5.1-5. This can be
 
demonstrated by expansion of Equation 5.1-9 into 
elements and subsequent multiplication. The solution of 
matrix Equation 5.1-9 for b is 

b = (XTWX)-I(XTWY) = cG, (xTWX) =F 0 (5.1-10) 

where, to simplify the. notation, we shall let 

(XTWX)-1 == a-I == c and (xTwY) == G. 

The matrix xTwx is symmetric, as can be seen from the 
terms in Equation 5.1-5; hence the matrix c is also 
symmetric so that c" = c. 

5.1-2 Maximum Likelihood Estimation 

Minimizing the sum of the squares of eP gives rise to 
the same estimate of ~ as does minimizing the variance 
of an arbitrary linear function of the elements of ~. 

It should be noted that the procedure above is inde­
pendent of any severe restrictions on the distribution of 
the unobservable errors E, but it can be demonstrated 
that if the errors are assumed to be normally distributed, 
the maximum likelihood estimate also yields Equation 
5.1-9. If the multivariate normal probability 'density 
function, Equation 2.3-6, represents the distribution of the 
set of unobservable errorsin Model 5.1-1a, 

Ie)peE) = k exp (-1-eTf - (5.1-11) 

where Ei = (Yi - 'YJi) is the error matrix t 

E = [:J
 
t We make use of the following property in differentiating a 
matrix. If 

then 
db = 2(dqT)(a q) 

which can be verified by decomposition into matrix elements and
 
appropriate manipulation of the elements.
 
t Note that E is not the same as the matrix E = (Y - Y),
 
identified previously.
 

and k is a normalization factor defined in Section 2.3, 
then a likelihood function can be written after the 
observations are made similar to Equation 4.3-8 in which 
the Y and x matrices are regarded as given and the p 
matrix (and perhaps f) is the variable. The natural 
logarithm of the likelihood function is 

lnL(~, fl y, x) == lnL = n In k - t[(Y - x~)Tf-l(Y - xP)] 

(5.1-Ila) 
where 

f = Covar {e} == tf{eeT} = 

Assuming that tf{Et} = 0, that Var {Ei} = C{(Ei -O)(Ei-O)} = 
tC{E~} = af, and also that Var {EiEf} = 0, we can reduce 
the covariance matrix f to 

a2 
1 0 0 

0 a~ 0 
f= 

0 0 an 
2 

We can then identify 

1
f- I = 2 I = W 

a i 

Finally, if all the elements on the main diagonal of fare 
equal and equal to a~i' a constant, f reduces to 

f = a~tI (5.1-12) 

To save space we shall use w in .many of the following 
equations instead of (1Ia~)I. For later use, note that 
eTwe = e£TwT. If the elements in the matrix f are not 
simplified as shown but retained, the type of estimate 
obtained is known as aMarkov estimate. 

Maximization of In L in Equation 5.1-11a with 
f = a;jI can be accomplished by differentiation of 10 L 
with respect to ~ and a~i' yielding the normal Equations 
5.1-9 and a biased estimate for a~i' just as in Section 4.3. 
Minimization of (Y - x~)T(a~t)-I(Y - x~) maximizes 
In L; compare with Equation 5.1-7a. As a matter of 
interest, if all the elements in the matrix f are retained, 
minimization of (Y - x(3)Tf-l(Y - xP) leads to the 
Markov estimate 

b = (xTf--lX) - I (XTjr- -1Y) 

with -
Var {b} = (xTf- IX) - I 

but the elements of f must be evaluated by replicate 
experimentation or some other method to carry out the 
calculations. A. discussion of estimation schemes in 
which the elements of f are estimated along with the 



parameters is beyond our scope here. Unless specifically 
stated otherwise, we shall assume that Equation 5.1-12 
holds in all cases. 

5.1-3 Correlation and Bias in the Estimates 

Because the unobservable errors Ei are literally that, 
unobservable, they can only be estimated by using 

£ = Y - x~ so that 

E = y - x(xTwx)-lxTwY = MY 

where 
M = I - x(XTWX)-lXTW 

The matrix M can be interpreted as the matrix that 
transforms the" true" errors £ linearly into the estimates 
of the errors E for, (with Mx = 0) 

E = MY = M(x~ + £) = M£ 

Thus we find that the estimated errors are functions 
not only of E but also of M and hence of the values of 
the independent variables in x. Consequently, even if the 
assumptions about C{£} = 0 and C{££T} = 0 hold, the 
estimated errors are in general neither uncorrelated nor 
do they have constant variance: 

If we use Equation 5.1-10, we can show that the 
expected value of b is ~: 

C{b} = C{(~.:Twx) -l(XTwY)} = C{(xTx) -l[(XT(x(3 + £)]} 

= ~ (5.1-13) 

and the covariance of b is t 
Covar{b} = tS'{(b - ~)(b - ~)T} 

= tS'{[(xTwx) -l(XTwY) - (3] 

X [(XTWX)-l(XTwY) _ ~]T} 

If we substitute Y = x(3 + £, 

Covar {b} = <ff{[CXTW(X~ + £) - '~][CXTW(X~ + £) - (3]T} 

== <ff{(cxTW£)(CXTW£)T} = C{CXTW££TWTXC} 

(5.1-14) 

Since a~i is not usually known, It IS necessary to 

obtain an unbiased estimate of a~i' S~i' presumably a 
pooled estimate, of or s; if replicate measurements are 
not available but the model is an adequate one. Because 
the assumptions of Section 4.2 apply here as they did 
in Sections 4.3 and 4.4, s; is simply the sum of the 
squares of the residuals divided by' the number of 
degrees of freedom (the number of data sets, n, less the 

t Zeros make up the elements in (b - ~) for conformability with 
(b - ~)T. 
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number of constraints imposed while minimizing 4>, 
namely the number of parameters being estimated): 

(ETWE)
S2 = 4>min (S, ;···15) 

r n - (q + 1) n-q-l 

Thus, in the absence of an error estimate s~, 

Cova;{b} = n ~T;~ 1 c (5.1-16) 

whereas if s; is available, S~t can be calculated by 
Equation 4.3-15. 

Keep in mind that b is an unbiased estimate of (3 in 
Model 5.1-1 only if the model is correct. Suppose that 
the model is not 

1)1 = x(3 

but instead actually contains additional terms as follows 

1)u = x(3 + x*~* 

Then, the expected value of b according to Model I is 

C{b} = (3 

from Equation 5.1-13. But the expected value of b, 
assuming Model II applies, is 

C{b} = (XTWX)-lXTWC{Y} 

= (XTWX)-lXTW(X~ + x*~*) = ~ + xt~* (5,1· 17) 

where x t is termed an alias matrix, i.e., the estimate of 
~ is biased. However, Equation 5.1-14 for the variance 
of b can be shown to be true if Model II inste..« of 
Model I is correct, but, of course, the estimate of (J'~fi 

will be incorrect. 

5.1-4 Sensitivity of the Estimates 

The sensitivity of the residual sum of the sq.: 
ePmin, and the 'sensitivity of the elements of the rna: TIl 

can be calculated for a change in ~ (the observatio.us) 
of the ith data set). By sensitivity is meant the frac.i.vial 
change in 4>min (or bk ) produced by a fractional 
in )Ti' Calculation of the sensitivity can assist in the r C 

pretation of predictions based on the regression eq;;:; r) n 
and in the design of the experiments. Because 

n 

"'min = .2: Wj( Yj - Y;)2 
i=l 

the sensitivity of ePmin with respect to ~ is 

0ePmin/4>min = () In ePmin = (}4>~n ( )Ti ) 
eYi/ Yj 0 In Yi eYi 4>min 

(5.1~18) 
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In matrix notation using Equation 5.1-10, 

s; YI 

bl ~ 
= [(XTWX)-IXTW] 

bq 

and the sensitivity of bk for Yt is 

i8b.!!. (Yt) = [(xTwx)-IXTW]kt( Y) (5.1-19)
8~ ~ ~ 

where [(XTWX)-IXTW]ki is the element in the kth row and 
ith column of (XTWX)-IXTW. 

To illustrate a sensitivity calculation, we use the data 
of Example 4.3-2 for the tenth set of data and hI: 

04>min (YIO) = 2(259)(0.03) = 6 1 X10- 3 
8 flO epmin (14)(687) . 

ohl (rIO) (XIO - x) (259)
(} YIOb; = 2: (Xi - X)2 79.02 

= (3.09 - 2.816) ( 259 ) 
(13.61) 79.02 

= 6.58 x 10- 2 

In other words, a 10-percent change in ~ will produce 
6.1 x 10- 2-percenta change in epmin and a 0.658­

percent change in hI' Both of these sensitivities are quite 
low, which is all to the good in model building. 

5.1-5 Computational Problems 

We shall now briefly mention some of the practical 
problems which arise in 'the machine computation of 
parameter estimates and allied calculations discussed 
above. The most elusive difficulties are the following: 

1. Loss of significant digits in subtracting approxi­
mately equal numbers. As has been observed in the 
numerical examples in Chapter 4, many of the terms 
which are subtracted from each other are nearly equal. 

-1 

(a) 

Two numbers with five significant digits, each of which 
agrees in the first two digits, retain only three significant 
digits on subtraction. One partial aid in overcoming loss 
of significant digits is use of double-precision arithmetic. 

2. Roundoff error. Freund t and Smiley'[ demon­
strated the magnitude of rounding error in computations 
by floating-point arithmetic. The use of double-precision 
arithmetic and more careful attention to the significance 
of individual variables at the intermediate calculation 
stages are prescribed as antidotes for rounding error.§ 

3. Matrix a becomes ill conditioned. The least squares 
solution may be very sensitive to small perturbations in 
the elements of a. For example, as an extreme case, 
consider Equation 5.1-9, ab = G. Suppose that 

anda = G ~] 
then the det a = 0, a is singular and a plot of the two 
equations represented by ab = G, Figure 5.1-2a, shows 
that they are two parallel lines with a slope of -1. Now 
suppose because of numerical or experimental error the 
matrix a is 

where € is a small perturbation. a is .no longer singular, 
although close to it, and is termed an ill-conditioned 
matrix. The two corresponding equations, illustrated in 
Figure 5.1-2h, now intersect at a point whose value 
becomes more uncertain the smaller the value of E. 

As € ~O,the lines again become parallel. 
Matrix a can become ill conditioned by improper 

selection of experimental values of the independent 

t R. J. Freund, Amer. Stat., 17 Dec. 1963, p. 13.
 
t K. W. Smiley, Amer. Stat., 18 Oct. 1964, p. 26.
 
§ Also see rM. J. Gaber, Comm. ACM 7, 721, 1964; and R. H.
 
Wampler,J.',Res Nat. Bur. Standards 738 (in press), who evaluated
 
twenty different computer programs.
 

-1 

(b) 

FIGURE 5.1-2 Graph of the equations yielding ill-conditioned matrices. 



ESTIMATION OF PARAMETERS 149 

variable. For example, suppose that the model is 'YJ = TABLE E5.1-1 
{3~ + {3lX, and three observations are taken at x = 19.9, 
20.0, and 20.1 units. Then Calculation of Error 

. [1 19.9] 
x = 1 20.0 a = [x/'x] = [ 3 60.0 ] 

60.0 1200.02 
1 20.1 

and the det a = (3)(1200.02) ., (60)(60) = 3600.06 ­
3600.00 = 0.06. Suppose that the numbers to the right 
of the decimal points in the matrix x are the last signif­
icant figures. Then it is clear that rounding of the 
elements to be subtracted at four digits will give det a = 0, 
that rounding at five digits will also give det a = 0, and 
that six digits are needed to obtain 0.06. However, if the 
model is written as 'YJ = f30 + f3l(X - x): 

-0.1] 
0.0 

0.1 

the det a still is equal to 0.06 but the calculation (3)(0.02) 
- (0)(0) = 0.06 indicates a is well conditioned. Also, the 
contours of the sum of the squares surface are much more 
circular. Use of orthogonal experimental designs, as 
described in Chapter 8, and use of Model 5.1-1 rather 
than Model 5.1-2 are recommended methods of avoiding 
having to work with an ill-conditioned a matrix. 

Example 5.1-1 Estimation with Orthogonal Variables 

Data obtained. from experiments based on the experi­
mental set-up shown in Figure 8.1~1 (known as a two-level 
factorial experiment) are: 

Temperature, T (OF) Pressure, p (atm) Yield, Y(%) 

160 1 4 
160 1 5 
160 7 10 
160 7 11 
200 1 24 
200 1 26 
200 7 35 
200 7 38 

(The yield is the dependent variable.) Estimate the coefficients 
in a linear model of the form 

TJ = {3o + {3IXI + {32X2 

Solution: 
The values of the independent variables can be coded so 

that the calculations are easier to follow. Let · 

.,.. p - 4Xl = t = T - 180 
X2 =p = -3­

20 

The coded data are as shown in Table E5.1-l. 

Notice that Xl = 0, X2 = 0, and that the independent 
variables are orthogonal because L: XOXI = ~ XOX2 = 

within Sets 

Xo Xl X2 Ytj=yield ~ Ll=(¥ij- ~) Ll2 

1 -1 -1 4 4.5 -0.5 0.25 
1 -1 -1 5 +0.5 0.25 
1 -1 1 10 10.5 -0.5 0.25 
.1 -1 1 11 +0.5 0.25 
1 1 -1 24 25 -1.0 1.00 
1 1 -1 26 1.0 1.00 
1 1 1 35 36.5 -1.5 2.25 
1 1 1 38 1.5 2.25 

Sum = 7.50 

~ XIX2 = O. The column under Xo contains the dummy 
variable 1 in order for the model to include an intercept. All 
the weights will be unity. 

Based on the coded variables, the matrices used in the 
estimation were (the number of digits retained has been 
truncated at four from the eight actually used): 

8.000 0.000 0.000] 
a = (xl'x) = 0.000 8.000 0.000 

[
0.000 0.000 8.000 

0.125 0.000 0.000] 
c = (XTX)-l = 

[ 
0.000 

0.000 

0.125 

0.000 

0.000 

0.125 

153.0 ] 
G = (xTY) = 92.99 

[ 
35.00 

The estimated regression coefficients were computed to be 

Consequently, the estimated regression equations were: 

Coded: Y = 19.125 + 11.625xI + 4.375x2 

Uncoded: Y = -91.333 + O.58125T + 1.4588p 

Orthogonal designs for the independent variables simplify 
the detailed calculations and are more efficient than non­
orthogonal designs because they obtain more information 
for a given amount of experimentation. This matter will be 
discussed in more detail in Chapter 8. 

Figure E5.1-1 illustrates the contours of the estimated 
regression equation in observation space. In this example 
s~ = (7.50/4) = 1.875 and s~ = (15.12/1) = 15.12. The var­
iance ratio (15.12/1.875) = 8.06 is greater than Fo.9 5(1,4) = 

7.71; hence the model can be improved by one of the 
methods discussed in Chapters 7 and 8. 
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Example 5.1-2 Harmonic Analysis 

The solution of certain types of differential equations and 
the approximation of most periodic responses can be ex­
pressed by an empirical model which is linear in the coeffi­
cients but not in the independent variables: 

1] = ao + <Xl cos X + 131 sin x + a2 cos 2x 

+ fi2 sin 2x '+ · .. + am cos 'mx + 13m sin mx (a) 

The scale of x should be chosen so that the fundamental 
period is 27T on the x-scale, in which case the parameters 
aj and f3j for j = 1, 2, ... , m depend on the choice of origin 
on the x-scale. However, the amplitude, (a; + f3r)Y2, of the 
jth harmonic is invariant under translation of axis. If the 
terms corresponding to the jth harmonic are written as 

<Xj cosjx + f3j sinjx = pj sin (jx + 8j ) (b) 
where 

a·
OJ = tan- 1 -!..

f3j 

It IS evident that the amplitude, Ph is not altered by an 
arbitrary choice of origin. However, the phase angle, 8j, does 
depend on the location of the origin. In harmonic analysis 
it is customary to estimate and/or test hypotheses on the 
amplitudes of the various harmonics rather than on the 
parameters aj and fij. With this exception, the development 
of harmonic analysis follows the usual linear regression 
analysis. 

Suppose we consider a special type of harmonic analysis 
in which the n observations are taken at values of x which 
are equally spaced over one cycle of the periodic function. 
It will be seen that the calculations in this important case 
are particularly simple because of the orthogonality of the 
data for all parameters. 

The values of the independent variable may, without loss 
of generality, be taken as Xt = tr, with the data sets at 
I = 0, 1, 2, ... , n - 1, and r = 27T/n. (The letter t is used 
here because of the predominance of applications in which 
time is the independent variable. The value of n might be 
24, for example, if the period was one day.) Thus for each 
observation: 

m 

Yt = ao + L (aj cosjtr + fij sinjtr) + E" 
j=1 

I = 0, 1, 2, ... , n - (c) 

(Note that the number of observations must be n ~ 2m + 1 
for deterrninacy.) 

In the normal equations the following typical sums 
vanish because of orthogonality: 

n-l 

Leos jtr sin jtr = °
 
t=o
 

n-1 n-1
 

Leos jtr c~s ktr = L sin jtr sin ktr = 0, 
t=O t=o 

j,k= 1,2, ... ,m;ji=k 

but the squared functions do not: 
n-1 n-1

L cos'' jtr = L sin" jtr = i 
t=o t=o 

Consequently, the normal equations are 

n-1 

n<xo = L Yt 

t='o 

n-l

i aJ = L Yt cosjtr (d) 
t=o 

n-1 

~ 13J = L Yt sin jtr l > 1,2, ... ,m 
t=o 

and the least squares estimates of the model parameters are 

1 ~ ­
ao = ao = -;, Lt Yt = Y 

(e) 

Yt .sinjtr 

The usual assumptions on the Et'S give the variances of 
2 

2 aYi 
aciD = -;­



where a;t is the variance of Et. An unbiased estimate of O';t 
is given by S;t which can be calculated by using Equation 
5.1-15 or 

n-1 n m 

L Y? - nag - - 2: (ar + b;)
t=O 21=1 

(g)
(n - 2m - 1) 

The variances of the estimated parameters can themselves 
be estimated by s~o, S~j' and S~j when s;; is substituted for 
O';i in the right-hand sides of Equations (f). 

Under the assumption that the E'S are normal, Table 
E5.1-2a gives an analysis of variance for testing that the 
amplitudes of the harmonics differ from zero. Under the 
normality assumptions on the Et'S, the jth harmonic ampli­
tude may be tested by an F-test, using the variance ratio 
tn(ar + b;)/S;i. For example, if the variance ratio for the 
first harmonic alone is significant, then the empirical data 
represent a sine wave. The hypothesis that each of the 
amplitudes of the harmonics is zero can be tested in turn. 
Also, once the estimated coefficients have been evaluated, 
Pi and Di can be calculated. 

TABLE E5.1-2a ANALYSIS OF VARIANCE FOR HARMONIC 
ANALYSIS 

Source of v=Degree Sum of Mean 
Variation of Freedom Squares Square 

First harmonic 2 -tn(ar+bi) in(ai +bi) 

Second harmonic 2 -tn(a~ + b~) -!n(a~ + b~) 

mth harmonic 2 -tn(a~ + b~) -!n(a~ + b~) 

Residual n-21n-l (Difference) S~i 

Total n-1 2: Y?-na5 

As an example of estimation of the parameters in har­
monic analysis, the following data, taken from the periodic 
output for a steady-state process, were fitted by Equation (c) 
with m=4: 

x (time) Y (volts) 

0 0.972 
7T/6 -0.653 
7T/3 -0.353 
7T/2 2.063 

27T/3 3.803 
57T/6 2.798 

7T -0.977 
77T/6 -4.391 
47T/3 -4.709 
37T/2 -2.16S 
57T/3 2.324 

117T/6 1.048 
27T 0.814 

Here n = 12 (27T initiates a new cycle). 
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From Equations (e) the nine estimated parameters were: 

ao = -0.0153 b1 = 2.0768 
a1 = 0.9334 b2 = -2.8978 
a2 = 0.0391 b« = 0.0027 
a3 = 0.0625 b4 = -0.0377 
a4 = 0.0030 

and the estimated variance from Equation 5.1-15 was 
s; = 3.249 X 10- 3 • Replicate data from earlier runs indi­
cated that s; = 1.12 X 10- 3 with 4 degrees of freedom; 
F1 - a(3, 4) = 6.59 from Table C.4 in Appendix C; hence the 
model was deemed adequate. The pooled variance was 
S~t = 2.03 X 10-3 • 

The mean squares corresponding to Table E5.1-2a are 
shown in Table E5.1-2b. Additional harmonics could be 
added to the model, and possibly some of them would prove 
to be significant. . 

TABLE E5.1-2b 

Variance Ratio 

~ (a; + br)/s;iMean Square 

First harmonic 15.552 Significant* 
Second harmonic 25.197 Significant* 
Third harmonic 11.73 Significant* 
Fourth harmonic 4.29 x 10- 3 Not significant 

* FO•95(2, 7) = 4.74 

5.1-6 Estimation Using Orthogonal Polynomials 

In using polynomials as empirical models, the a 
matrix can become quite ill conditioned. For example, 
when the number of coefficients reaches nine, a computer 
program using about eight significant figures will not 
give meaningful results. Consequently, in lieu of fitting 
fairly high-order polynomials to data, it is lTIOre effective 
to fit orthogonal polynomials (or to use a computer 
program involving orthogonal transformations), - The 
resulting orthogonal polynomial can, if desired, be 
transformed into an ordinary polynomial after the curve­
fitting process is completed. 

If the experimental data are equally spaced with 
respect to the independent variable x t and arranged as 
a series of pairs which can be arbitrarily numbered 
(0, Yo), (1, Y1) , (2, Y2 ) , • • • , (n, Yn), a model can be 
formed from a combination of orthogonal functions: 

Yq(X) = fioPo,n(x) + f31P1 ,n(X) + ... + fiqPq,n{x) + E 

(5.1-20) 

t W. E. Milne, Numerical Calculus, Princeton Univ. Press, 1954. 
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and the sum of the squares of the unobservable errors in 
Equation 5.1-3 minimized to obtain the estimated pa­
rameters bk • The orthogonal functions are themselves 
polynomials Pm,n(x), such as 

Po,n(x) = 1 

PI (x) = 1 - 2-
X 

,n n 

x x(x - 1)
 
P 2 ,n(x) = 1 - 6 n+ 6 n(n - 1)
 

P (x) = 1 - 12 ~ + 30 x(x - 1) _ 20 x(x - 1)(x - 2)
3,n n n(n - 1) n(n - 1)(n - 2) 

and in general 

~ (m + k)! X(k) 
Pm.n(x) = L (-I)k (m _ k)! (k!)2 n(k) (5.1-21) 

1c=0 

where the notation X(k) (or n(k» means x(x - 1)(x - 2)· .. 
(x - k + 1), m is the degree of the polynomial, and x 
takes on integer values from °to n. These polynomials 
have the very useful orthogonal property that 

n

2: Pm,n(x)Pq,n(x) = 0, if q =1= m 
x=O 

~ p 2 (x) = (n + m + 1)(m + nym) ifq = m 
~ m,n (2m + l)n(m) 
x=O 

Because of the orthogonality property, all the off­
diagonal terms in the equation equivalent to Equation 
5.1-5 vanish, and each coefficient can be determined 
independently from the others by 

n
2: Y(x)Pm,n(x) 

b.; =x- =-o-n---- m=0,1,2, ... ,q (5.1-22) 
2: P~,n(x) 

x=O 

In addition to the advantage of not having to solve a 
system of equations for the parameters, the use of orthog­
onal polynomials has another advantage. If one has 
already obtained the mth degree polynomial, a fit to an 
im + 1)st degree polynomial requires only one new 
coefficient, b.;+ 1, be determined; all other coefficients 
remain the same, 

If the experimental data are not equally spaced with 
respect to the independent variable, the simple polyno­
mials Pm.n(x) are no longer applicable. Suitable polyno­
mials do exist, but in addition to depending on m and n, 
they also depend on the particular spacing of the un­
equally spaced points. Thus, every individual, unequally 
spaced, curve-fitting problem will lead to a regression 
equation that is a linear combination of its own special 

orthogonal polynomials. Let us fit a polynomial by the 
weighted least squares method to the data represented 
by the nonequally spaced points (Xb Y1) , (x2, Y2),' ... , 
(xn, Yn) using nonzero (positive) weights W(Xk), k = 
1, 2, ... , n. The approximating function is to be 

Yq(x) = boPo(x) + b1P1(X) + ... + bqPq(x) (5.1-23) 

The general orthogonality condition will be 

n

2: W(Xk)PtCXk)PI(Xk) = ° if i #- j for i.j = 0, 1,2, .. ..q 
k=l 

These polynomials may be found recursively as follows. 
Let: 

P -leX) = 0 

Po(X) = 1 

P1(x) = (x -CXl)PO(X) 

P2(x) = (x - CX2)P1(X) - f3lPO(x) 

Ps(x) = (x - CXs)P2(x) - f32Pl(X) 

The cx's and (3'sare constants to be determined so that the 
general orthogonality relationships are satisfied. It can 
be shown t that if CXl' + 1 and f3j are calculated as follows: 

2:
n

W(Xk)Xk[Pj(Xk)]2
CXl'+ 1 == k_=_; ­

2: W(Xk)[Pj(Xk)]2
k=l 

n

2: W(Xk)[PJ(Xk)]2k=lf3j = ~------n
2: W(Xk)[Pl'_1(Xk)]2 

k=l 

Pl'+l(x) will be orthogonal in the sense desired to both 
Pl'(x) and Pj-l(X), 

Example 5.1-3 Orthogonal Polynomials 

A waste-treatment pond was not reducing organic com­
pounds adequately to meet the existing standards. A new 
bacterial culture has been introduced into the pond. The 
data in Table E5.1-3a have been taken as a function of x, 
the time in hours; Y is the voltage reading in the pond 
effluent stream monitoring device. It is desired to fit the 41 
data points to an orthogonal polynomial and to terminate 
the fitting when the sum of the squares for the last term 
becomes insignificant at the 5-percent significance level. 

t G. E. Forsythe, J. Soc. Ind. Appld. Math. 5, 74, 1957. 
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TABLE E5.1-3a	 5.1-20. The results for the first few polynomials and for 
several coefficients are: 

X y X Y 

Polynomials Coefficients
0 14.534 210 15.386 

10 15.144 220 14.716 Po = 1 bo = 13.337 
20 15.831 230 14.029 b, = -0.3912x 

P l = 1 - ­30 16.435 240 13.293	 b2 = -0.01941 
40 17.034 250 12.590 b3 = 0.892 X 10- 3 

50 17.567 260 11.871 b4 =6x 6x (X - 1) 0.801 X 10- 5 

P2 = 1 - 41 + 41 Li() -0.999 X .10- 5 

70 18.440 280 10.393 etc. b6 = 0.365 X 10- 6 

80 18.764 290 9.640 i b7 = 0.343 X 10- 7 

60 18.050 270 11.1-'68	 b« = 

Yx(l) 

90 19.028 300 8.998	 b = x=o y be = - 0.122 X 10- 7 
o 

100 19.193 310 8.311 ~ (1)2 bg = -0.519 X 10- 9 

110 19.248 320 7.625 
x=o
 

120 19.226 330 6.949 n ( 2X)

b = x ~ 0 Yx 1 - 4I
130 19.100 340 6.301
 

140 18.880 350 5.619 
1 

n ( 2X)2
:2 1 - ­
150 18.578 360 5.021 x=o 41
 
160 18.187 370 4.389
 etc. 
170 17.748 380 3.823 
180 17.243 390 3.109 Table E5.1-3b lists the sum of the squares removed from 
190 16.644 400 2.603 :2t~ 1 (Yi - 0)2 as each additional term is added to the 
200 16.072 model. The interpretation of each sum of squares in terms 

of the F-test is the same as that described in Section 4.3, 
Solution' and it is discussed again in Section 5.3. 

Because the intervals for X are equally spaced, we can use As can be seen in Table E5.1-3b, significance is established 
Equation 5.1-22 to estimate the coefficients in Equation for each of the zeroth through seventh degree terms added. 

TABLE E5.1-3b 

Term Degree of Sum of Mean Variance 
Added Freedom, v Squares Square Ratio* 

Total 
:2 (yt - 0)2 41 8449.79 

0 Removed 1 7293.49 7293.49 
Residual 40 1156.30 28.907 

Removed 1 880.6600 880.6600 124.60 
Residual 39 275.6453 7.678 

2 Removed 1 236.2725 236.2725 228.04 
Residual 38 39.3728 1.0361 

3 Removed 1 38.1157 38.1157 1121.71 
Residual 37 1.2571 0.03398 

4 Removed 1 0.1545 0.01595 5.23 
Residual 36 1.0976 0.03049 

5 Removed 1 1.0356 1.0356 60.21 
Residual 35 0.0620 0.01720 

6 Removed 1 0.0394 0.0394 59.27 
Residual 34 0.0226 0.0006647 

7 Removed 1 0.0077 0.0071 17.05 
Residual 33 0.0149 0.0004515 

8 Removed i 0.0013 0.0013 3.06 
Residual 32 0.0136 0.000425 

9 Removed 1 0.00001 0.00001 0.20 
Residual 31 0.0136 0.000438 

* Fo.9 5(1, v) ranges from 4.09 to 4.16. 
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Thus we start the estimated regression equation with an 
intercept and terminate with Pa(x) to get Equation 5.1-23. 

To express Y as a polynomial in x, we need to introduce 
each Pm(x) into the estimated regression equation. After 
some considerable algebraic manipulations, we find: 

y= 14.521+0.06587x-0.3311 x 10- 4X 2 -0.6112 X 10- 6X 3 

-0.2283 x 10- 7X 4+ 0.1758 x 10- 9X 5 -0.5225 X 10- 12 X 6 

+0.7245 X 10- 15X 7 -0.3920 X 10- 18X 8 

5.2 CONFIDENCE INTERVALS AND
 
HYPOTHESIS TESTS
 

We now turn to consideration of: (1) estimating con­
fidence intervals for the model parameters, (2) estimating 
a joint confidence region for the parameters, and (3) 
executing hypothesis tests correspond to those in Section 
4.3. 

5.2-1 Confidence Intervals and Region 

A confidence interval can be estimated for each individ­
ual parameter 13k in the vector (3 through use of the t 
distribution. The standard error of the estimate for bk 

comes from the estimates of elements on the main 
diagonal of Equation 5.1-14: 

The confidence interval for 13k for a significance level a 

is formed exactly as in Section 4.3: 

(bk - t1-~SYt~) ~ 13k < (bk + tl-~SYt~); 

V = n - q - 1 (5.2-1) 

Because bo = Y, 

.. /-2- J S~t
Sb = V Sf Coo = - ­

o t 2: Wi 

(recall that Coo is just the inverse of the number of data 
sets if the weights are unity) and the confidence interval 
for the intercept is 

(bo + tl-~Sbo) ~ flo < (bo + tl-~Sbo) (5.2-2) 

For Model 5.1-2 where 

f3~ = f30 - 2
q 

f3k Xk 
k=l 

the variance of b~ is 

Var {b~} = Var {bot + 2
q 

x~ Var {bk } 

k=l 

The confidence limits for f3~ for a selected significance 
level a are given by Equation 5.2-2 with s~o substituted 
for Sbo and b~ substituted for boo 

We saw in Section 4.3 that the variance of ~ in the 
regression equation Yi = bo + bl(Xi - x) was 

Var{Yi } = Var{bo} + (Xi - x)2Var{b]} 

Similarly, the variance of the matrix Vfor Model 5.1-1 
is, using Equation 5.1-14, 

Var {V} = Var {xb} = x Var {b}xT 

(5.2-3) 

F or a single data set 

Var {Vi} = [1 (Xi! - Xl) ... (Xiq - xq) ]
 

1
 

(Xi! - Xl)co.:q] : 

Cqq 
(X1Q - Xq) 

(The elements in the first row and column of c are all 
zero except for coo.) 

The confidence interval for TJi for a given significance 
level a employs the estimated standard error sYt = 
Sytvxicxf. 

(Pi --- t1-~Stt) ~ TJi < (Yi + tl-P-it ) 

v = (n - q - 1) (5.2-4) 

If we want to use the empirical model to predict, two 
types of predictions can be made: point predictions and 
interval predictions. The acid test of the predictive 
ability of a model, of course, is to compare the pre­
diction with the corresponding experimental data. In 
predicting, we presume that the assumptions underlying 
the random variable being predicted do not change (or, 
if they change in some fashion, take the change into 
account). The (point) predicted value,· y:+ 1, for one 
additional observation or one additional time period is 
based on the relation 

so that tf{Y;+I} = TJn+1 as long as C{€n+l} = O. If we 
use the best estimate of TJn + b Yn+ 1, the variance of 
Y;+ 1 is (with a;i = a;n+ 1 == a~i) 

(If m replicate observations are taken for Xn+ l , Var {€n+1} 
= a~Jm.) The confidence interval for TJn + I can be formed 
by using Equation 5.2-4 but replacing sYt with SY~ + 1 = 
sYt vix, + ICX~ +1+ 1 as in Section 4.3. 

A joint confidence region for the f3's for a given signif­
icance level a can be formed exactly as described in 
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4 X 106 

FIGURE 5.2-1 Approximat e 95-percent confidence region in 
parameter space for a linear model. 

Section 4.3 ; in matrix notation the equivalent of Equa­
tion 4.3-28 is 

bYx Twx([3([3 - - b) = s ~,(q + I)F1 - a (5.2-5) 

where F1 - is the upper F value for (q + 1) and n ­a 

(q + 1) degrees of freedom, respectively. Figure 5.2-1 
illustrates the confidence region for a linear (in the 
parameters) model of the effect of a magnetic field on the 
vaporization of water. A confidence region that is long 
and attenuated, such as th at of Figure 5.2-1, implies that 
the parameter values have been poorly estimated; a 
small, spherical-shaped region is more desirable. The 
long, narrow shape of the region results primarily from 
a high degree of correlation among the various parameter 
estimates. One practical implication of this high correla­
tion is that if a wrong value of one parameter is in­
advertently estimated, this value will be balanced in the 
fitting procedure by a compensating wrong value of 
another parameter to give an overall fit for the model 
which will be nearly as good as that obtained using the 

IiI 

FIGURE 5.2-2 Erroneous confidence region based on individual 
confidence limits. 
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best estimates of the parameters. This matter is discu ssed 
in Chapter 8 as related to the design of experiments. 
Figure 5.2-2 portrays the volume in parameter sp,\(',(: 
blocked out by the individual confidence interval­
Compare Figure 5.2-2 with the correct joint confiden.. 
region of Figure 5.2-1. The sum of the squares surfa« 
analogous to Equation 4.3-28a is 

"'1-a = "'min [I + --!!!:- F1 - a] n-m 

5.2-2 Hypothesis Tests 

The hypothesis tests summarized here are the analogs 
of those developed in Section 4.3 . 

1. To test the hypothesis that all the PI = f32 = . . . , 

pq = 0, form the variance ratio 

s~ bTGJq
2=-2­
Sy, Sy, (5.2' \1) 

If the variance ratio is greater than F1 - (q, n - q - I) fora

a significance level « , then the hypothesis is rejected. 
2. Another hypothesis that can be tested is that certain 

of the P's are zero. Split the P's into two groups, label ed 
I and II, and test the hypothesis that all the {fs in gro up 
II are zero (without assuming an ything about those in 
group I). A variance ratio is formed in which the numcr«­
tor represents the mean square for group II: 

(bTG)<I+II) - (bTG)I 

(5.2·1) 
4,
 

If the variance ratio is greater than
 

F1- a[("<I+Il) - "I)' (n - q - 1)], 

the hypothesis is rejected. This test heIps to ascertai n I 
certain variables should be included or excluded frou . ,I 

model. Note, however, that if the hypothesis is accepte-r 
that [3II = 0 and the coefficients are deleted from H,,' 
model, bias will exist in the estimate of the nonzci . 
coefficients as explained in connection with Equatio.: 
5.1-17. 

3. To test the hypothesis that Pk has a specified valu« 
PZ, compute 

hk - PZ 
t = (5.2· i~ i 

Sy,VCkk 

If t is greater than tl -g for (n - q - 1) degree s (If 

freedom, the hypothesis that Pk = P: is rejected. 
4. To test the hypothesis that [3 = [3*, where [3* i ~ . 

matrix of specified values of [3, form the variance rauo 

(b - [3*)TXTx (b - [3*)J(q + 1) 
(5.2-9) 

s~, 

If the variance ratio is greater than F1 - aCq + I,n - q - l) 
for a confidence level of lX, the hypothesis is rejected. 
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We can test that the underlying structure and assump­
ti ons of the model are the same in the prediction period 
as in the sample period using H o, the null hypothesis 
(no difference). If the hypothesis is accepted, the esti­
mated equation satisfactorily applies both to the original 
data collected and to the new data. If H o is rejected, 
either the characteristics of the random variable Y 
changed or the model was riot adequate to encompass the 
new data. Either (or both) explanations are plausible. To 
carry out the test, the proper statistic to use is the t 
statistic computed for Y:+ 1. 

In multiple regression the F-test for the hypothesis 
that ~ = 0 is not exactly the same as the t-test (i.e., t 2 ) 

for ~ = 0, as pointed out in Example 4.3-1. Conse­
quently, different conclusions can sometimes be reached, 
depending upon which test is used. Consider a model 
similar to Model 5.1-1a: 

q 
i = 1, ... , n 

Y; - y = 2 f3l xiJ - Xf) + £; 

j=l 
f3j > 0 

(5.2-10) 

The independent variables Xij can each be scaled so that 

n

2 (xu - Xf )2 = n j = 1, .. . ,q 
i=l 

From Equation 2.4-32, the sample correlation coefficient 
among the x's is 

n 

A 1 i~l (Xii - Xj)(Xik - xk ) 

Pjk = n - 1 

so that 
n

2 (Xi! - Xf)(Xik - xk) = npfk (5.2-11) 
i=l 

Equation 5.2-6 gives the variance ratio to be used in 
the F-test with q replacing q + 1 degrees of freedom, 
because in Equation 5.2-10 Y is not counted as a 
parameter: 

We shall assume next that w == I; hence G, defined in 
connection with Equation 5.1-10, is G == xTy. Then 

bT(xTxb) 

qS~i 

The elements in Equation 5.2-11 can be written as ajk = 
npjk so that 

(5.2-12) 

Introduction" of Equation 5.2-8 for the b's in Equation 
5.2-12 yields a relation between (s~/s~) and I j : 

(5.2-13) 

If the independent variables are all uncorrelated, Pik = 0, 
c., == ajj 1 = lin, and Equation 5.2-13 reduces to 

2 q 

~ = ~ ~ t~ (5.2-14)
S2 q~ J 

Yt j=l 

(If q = 1, Equation 5.2-14 is the same as the relation 
given in Example 4.3-1.) With three or more residual 
degrees of freedom, the significance level of F(q, n-q-l) 
is lower than the significance level of F(I, n - q - 1) 
which corresponds to the significance level of t. Thus, 
the possibility exists that some or all of the coefficients 
may prove to be nonsignificant by t-tests whereas the 
variance ratio is significant by one of the F-tests. The 
explanation is that a significant variance ratio does not 
indicate the significance of any given coefficient but 
merely the existence of at least one linear combination 
of coefficients that is significantly different from zero. If 
the independent variables are highly correlated and 
Pjk >0, the variance ratio can become quite large 
relative to the tJ's. 

Example 5.2-1 Estimation Without Replication or Proper 
Experimental Design 

A major problem which constantly faces engineers is that 
of corrosion. By use of electrical resistance probes, the 
corrosion rate in a suction header of two furnace feed pumps 
in a thermal cracking plant was measured. The probes 
themselves were made from 5 percent Cr-t percent Mo 
40-mildiameter wire. Along with the corrosion rate, readings 
were taken of the: (1) sulfur content of the oil, (2) tempera- " 
ture at the probe, (3) temperatures in the two cracking coils, 
and (4) rate of flow of the charge. See Table E5.2-1a. It was 
estimated that the wire diameter could be measured to . 
within 4 microinches. 

Based on the corrosion data provided, estimate the param-" 
eters in a linear model including all five variables listed 
in the table. Determine whether or not each variable might 
be deleted from the model by testing whether or not its 
associated coefficient might be equal to zero. Do the data 
meet the assumptions for estimation as described in Section 
4.2? 

Solution: 
Because no replicate data are available, it is impossible to 

obtain an estimate of the experimental error with which to 
test the hypothesis that a proper model is a linear one. The 
range of temperatures is quite narrow. Hence the tempera­
tures may prove to have little influence on the corrosion 
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TABLE E5.2-1a 

y X4 Xs 
5 percent Cr- Xl X2 X3 Temperature Temperature 
t percent Mo Total Sulfur Flow Rate Temperature in Cracking in Cracking 

Corrosion Rate in Feed at Probe of Probe Coil 1 Coil 2 
Day (in.Jyr) Stock (bbl/day) (F0) CF) CF) 

I 0.117 0.041 16.9 753 922 885 
2 0.107 0.041 17.0 748 925 885 
3 0.088 0.040 17.1 749 925 886 
4 0.077 0.041 16.6 747 925 887 
5 0.091 0.042 17.0 745 934 895 
6 0.040 0.008 17.5 743 940 905 
7 0.048 0.007 35.0 762 936 904 
8 0.022 0.008 34.5 760 935 895 
9 0.077 0.041 33.8 752 928 887 

10 0.121 0.041 33.6 752 928 887 
11 0.143 0.044 33.2 749 930 887 

rate ; if included they may cause the matrix a = xTx to be 
ill conditioned. Another defect in the data pro vided is that 
only two levels of sulfur and flow rate are available. Suppose, 
nevertheless, that a model 7) = {3o + {31X1 + {32X 2 + {33X3 + 
{34X4 + {3sxs is proposed as the model to fit the data, with 
the x's designated as in Table E5.2-1a. A computer ro utine 
for regres sion analysis was used with the result s indicated in 
Table E5.2-1b (the numbers have been truncated to save 
space). The point estimates of the {3's, the individual con­
fidence intervals for the {3's, and the confidence intervals for 
the 7) 's (for Wi == 1) which are tabulated in Table E5.2-1c 
indicate the unsatisfactory nature of the experiment with 

TABLE E5.2-1b 

respect to reaching a decision on the terms to include in the 
suggested model. 

If we successively form the variance ratio described in 
Section 5.2-2, page 155, to see if each one of the {3's could be 
equal to zero , we find the results shown in Table E5.2-1d. 
(The notation SS refer s to the difference in the sum of the 
squares with {3k = 0 and with 13k of- 0; "Xk removed" 
means that the hypothesis being tested is that (3k = 0.) 
Because for ct = 0.05, F1 - a(l , (n - q - 1)] = Fo.9s[l, 5] = 
6.61, each hypothesis that 13k = 0 in turn can be accepted. 
We see that no matter how sophisticated the treatment of 
the data, one cannot make a silk purse out of a sow's ear ! 

1.10 x 101 3.54 X 10- 1 2.72 X 102 8.26 X 103 1.02 X 104 9.80 X 103 

3.54 X 10- 1 1.38 X 10- 2 8.35 X 101 2.65 X 102 3.28 X 102 3.14 X 102 

2.72 x 102 8.35 x 10° 7.52 X 103 2.04 X 105 2.53 X 105 2.42 X 105 
a= 

8.26 x lQ3 2.65 x 102 2.04 X 105 6.20 X 106 7.68 X 106 7.36 X 106 

1.02 X 104 3.28 X 102 2.53 X 105 7.68 X 106 9.51 X 106 9.11 X 106 

9.80 X 103 3.14 X 102 2.42 X 105 7.36 X 106 9.11 X 106 8.73 X 106 

5.41 X 104 -9.88 X 103 1.69 X 101 -3.10 X 101 - 4.65 X 101 1.38 X 101 

- 9.88 X 103 3.08 X 103 -1.89 x 10° 4.87 x 10° 4.49 x 10° 2.22 x 10° 

1.69 X 101 - 1.89 x 10° 8.00 X 10- 3 - 1.12 X 10- 2 - 1.82 X 10-2 9.35 X 10- 3 

c= 
-3.10 x 101 4.87 x 10° -1.12 X 10- 2 2.06 X 10- 2 2.70 X 10- 2 -1.06 x 10- 2 

- 4.65 x 101 4.49 x 10° -1.82 X 10..,2 2.70 X 10- 2 6.38 X 10- 2 -3.68 X 10- 2 

1.38 X 101 2.22 x 10° 9.35 X 10- 3 -1.06 X 10- 2 - 3.68 X 10- 2 3.14 X 102 

9.31 X 10- 1 0.6751 

3.49 x 10- 2 2.3064 

2.27 x 101 0.0012 
G = 

6.99 x 102 b= 
-0.0007 

8.64 x 102 -0.0021 

8.28 x 102 0.0020 
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TABLE E5.2-1c 

Confidence Intervals on the fJ's; Pairs of Confidence Limits 
Are: 
fJo· = 0.675 +/- 15.562 
fJl = 2.306 +/- 3.714 
fJ2 = 0.001 +/- 0.005 
fJ3 = - 0.000 +/- 0.009, 
fJ4 = -0.002 +/- 0.016' 
fJ5 = 0.002 +/- 0.011 

Confidence Intervals on the 'Y]t'S; Pairs of Confidence Limits 
Are: 

Percent Deviation Between 
Predicted and Experimental 

Values 

'Y]1 = 0.098 +/- 0.040 15.9
 
'Y]2 = 0.095 +/ - 0.027 10.8
 
'Y]3 = 0.094 +/- 0.024 - 7.4
 
'Y]4 = 0.099 +/- 0.029 -29.4
 
'Y]5 = 0.100 +/- 0.062 -10.7
 
'Y]6 = 0.031 +/~ 0.060 20.3
 
'Y]7 = 0.044 + / - 0.059 7.3
 
'Y]8 = 0.031 + / - 0.061 -42.2
 
'Y]9 = 0.110 +/- 0.035 -43.8
 

'1]10 = 0.109 +/- 0.028 9.7 
7]11 = 0.114 +/- 0.039 ' 19.8 

Whether or not the experimental data meet the assump­
tions of Section 4.2 is difficult to tell without additional 
information. For example, the temperatures may represent 
random variables instead of fixed levels of temperature. If 
the temperatures are omitted from the role of variables, 
and if small variations in the sulfur content and flow rate 
are ignored as well, then in effect replicate values of the 
corrosion rate exist and can be used as a measure of the 
experimental error, which 'is evidently quite large. Finally, 
because measurements are made serially in time on the . 
same wire, the data may fall into the category discussed in 
Section 4.6 for nonindependent errors. To sum up, this 
example illustrates the difficulty of extracting' information 
from an experiment which has been completed without prior 
attention to setting up an efficient statistical design. Similar 
problems arise in the analysis of historical data. 

TABLE E5.2-1d 

5.3 ANALYSIS OF VARIANCE 

An analysis of variance can be carried. out 011 the 
model with several independent variables that isa direct 
extension of the analysis previously described in Section 
4.3. Table 5.3-1, based on Model 5.1-1, corresponds to 
Table 4.3-2 of simple linear regression. The sum of the 
squares of the residuals between Yi and ~, as well as 
the sum of the squares of the deviations between the ~ 

and the grand mean Y, is computed. The table corre­
sponding to Table 4.3-1 is not shown, although it can 
easily be written as an extension of the two-parameter 
case. In matrix notation the reduction in the sum of the 
"squares due to ~ ", or L:f= 1 Wi ( Yi - 0)2, is 

nL: Wi Y? = YTwY = (Xb)TW(xb) 
i=l 

= bT(XTWX)b = bT(XTWY) = bTG 

We can give a geometric interpretation to ~ (Yj - 0)2 in 

terms of Figure 5.1-1. The square of the length t is just 
split up into the sum of squares of its components in the 
x-plane. 

The number of degrees of freedom (n - q - 1) 
shown in Table 5.3-1 in row two equals the number of 
independent measurements that are available for esti­
mating the parameters; it consists of the total number of 
sets of data less the number of constraints which are 
established by the least squares method. For example, 
with eight data points (values of Yi and Xi), 'We have 
eight total degrees of freedom. Fitting an equation with 
three parameters, including the intercept as one param­
eter, introduces three constraints (three degrees of 
freedom "absorbed") and leaves five degrees of freedom 
as the "residual" degrees of freedom. 

Additional valuable information about a model can be 
obtained by computing the sum of SqUaRS' (SS) eorre­
sponding to removing one or more variable from a model 
initially containing all the variables. The SS betweea the 
predicted values from the regression equation and the 
mean, L: (Yi - y)2, is thereby reduced; the SS removed 
from L (Yi - Y)2 can be tested by an F-test, as will be 
explained shortly, to evaluate the significance of one or a 
group of the independent variables in the model. 

v = Degree 
Source of Variation of Freedom SS Mean Square Variance Ratio 

Xo removed (intercept) 1 8.416 x 10- 6 8.416 X 10- 6 1.243 X 10-2 

Xl removed 1 1.724 x 10- 3 1.724 X 10- 3 2.547 x 10° 
X2 removed 1 1.850 x 10- 4 1.850 X 10- 4 2.733 X 10-1 

X3 removed 1 2.246 x 10- 5 2.246 X 10- 5 3.319 X 10--2 

X4 removed 1 7.281 x 10- 5 7.281 X 10- 5 1.075 X 10-1 

, X5 removed 1 1.328 x 10- 4 1.328 X 10- 4 1.962 X 10-1 
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TABLE 5.3-1 ANALYSIS OF VARIANCE 

Degrees of Sum of Squares 
Source of Variation Freedom (v) (SS) Mean Square 

Due to regression q 

n 

L Wt(Yt -
t=1 

Y)2 s~ = 
L Wt(Yt -

q 

f')2 

Deviation about the empirical regression 
line (deviations from regression) 

n - q - 1 
n 

LWl~ 
t=1 

- Yt)2 S2r --
L Wt(~ - YtJA 

n - q - 1 

Subtotal n - 1 
n 

L 
i=l 

Wt(~- Y)2 sr = L Wt(~ -
n - 1 

f)2 

Deviations within sets (residual error) 
n 

LPt 
t=1 

- n 

n Pt 

L L (Ytj 
t=1 j=1 

- ~)2 2 
Se = 

n Pt 

L L (Ytj - Yt)2
t=1j=1 

L Pt - n
i 

Suppose we assign to one parameter in Model 5.1-1­
the last term for convenience in notation but the results 
are valid for any term-a value g, perhaps zero. The 
model can then be written q-1 

'YJ - t(xq - xq ) = f30 + .L f3k(Xk - xk) (5.3-1) 
k=1 

In the following discussion the weights will be suppressed 
to save space. To obtain the estimated coefficients in the 
regression equation, one could minimize the sum of the 
squares: 

.c!>q-l = .Ln 

[Yl - ('YJ1 - ~(Xiq - Xq))]2 
i=1 

to obtain the estimates b* of (3. The estimates, of course, 
would not be the same as the b obtained without assign­
ment of the value for f3q. The sum of the squares of the 
residuals and the normal equations for the case in which 
f3q = g can be expressed as follows. Let us partition 
Model 5.1-1, YJ = x(3, into two parts: 

y) = [x*xq ] [::J = x*(3* + Xq(3q 

where the last term represents the term (xq - xq)g. Then 
the normal equations and the reduction in the sum of 
the squares "due to ~" would be: 

One Parameter 
Assigned Full Model 

Normal 
equations 

Reduction in 
sum of squares 
"due to f3" 

(x*Tx*)b* = X*Ty 

b*TX*Ty 

2(Yi- O)2 

We now want to relate the parameters b* and b to 
each other, find how to evaluate the components of 

(X*Tx*) -1 in terms of the components of (xTx)-l, and 
find the difference in the sum of the squares (bTxTY ­
b*TX*Ty). We first state the important relationships and 
then indicate how they can be obtained. 

RELATION BETWEEN b* AND b. If hi is a regression 
coefficient in Model 5.1-1 and if ht is the corresponding 
regression coefficient in the reduced model in which 
the parameter 13k is assigned the value g, the h's are 
related by 

b~ = b· - Cik fbk ., g) (5.3-2) 
t t Ckk' 

RELATION BETWEEN THE COMPONENTS OF (XTX)-l AND 

(X*T X*)-1. The relation between the components of the 
(q - 1) by (q - 1) matrix c* == (X*TX*)-1 in terms of 
the original q by q matrix c == (XTX)-1 when the param­
eter 13k = g is 

(5.3-3) 

REDUCTION IN SUM OF SQUARES. If epq is the sum of 
squares for the original model and ep;-1 is the sum of 
squares for the model with 13k = g, then the difference in 
the sum of squares 2 (~ - Y)2 is obtained from 

A-. * ~ A-. + (g - bk)2 
'f'q-l - 'f'q (5.3-4)

Ckk 

We now describe how Equations 5.3-2 through 5.3-4 
can be derived. First, we write the normal equations in 
summation notation (omitting the equation for the intercept 
bo = Y which is the same for either model) for the full 
model: 

n n q 

L (Xtk - Xk) ~ = L L (Xik - Xk)(Xtj - Xj)bj 
i=1 i=ij=1 

k = 1, ... , q (5.3-5) 
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and for the model with fiq assigned as g: 

2:
n

(Xtk - Xk)[ Yt - (Xtq - xq)g]
 
t=1
 

n	 q-1 

=	 L L (Xtk -" Xk)(Xti - xj)b1 k =" 1, ... , q - 1 
t=1j=1 

(5.3-6) 

From the first (q - 1) equations of Equation 5.3-5, we 
subtract the respective equation in Equation 5.3-6 to get 

n 

g2: (Xtk - Xk)(Xtq - x q)
 
t=l
 

(5.3-6a) 

or, if we denote 2:f= 1 (XtP - Xp)(Xiq- x q) by {xTx}pq, Equa­
tion 5.3-6a becomes 

q-1 

(g - bq){XTX}kq = L {XTX}kiCbj - bf) 
j=1 

k = 1, .. . ,q - 1 (5.3-7) 

Because (xTx) -1 == c is the inverse of (x''x), we have 

n

2: {XTX}kj{(XTX) - 1}j1 = Okl k,/= 1, ... ,q 
j=1 

where Okl = 0 if k i:- l and Okl = 1 if k = I. Next, Equation 
5.3-7 is multiplied from the right by {(XTX)-l}kl == Cki; the 
result is summed over k from k = 1 to k = q - 1 to obtain 

q-1 q-1 q-1
 

(g - bq) L {XTX}qkCkl = L (bj - b1) L {XTX}jkCkl
 
k=1 i=1 k=1
 

l = 1, ... , q 
or 

q-1 

(g - bq)[Oql - {xTX}qqCqll = L (b, - b1)[Ojl - {xTX}jqCqll 
i=1 

l = 1, ... , q (5.3-8) 

For I = q, Equation 5.3-8 becomes 

q-1 

(g - bq)[l - {xTx}qqcqql = - CqqL (b j - bj){XTX}iq (5.3-9a) 
i=1 

For I i:- q, Equation 5.3-8 becomes 
q-l 

(g - bq)[- {xTX}qqCqll = (b j - bj) - Cql L (b, - bj){xTX},.q 
1"=1 

I = 1, ... , q - 1 (5.3-9b) 

Equation 5.3-9a can be used to eliminate the summation 
over j from Equation 5.3-9b to yield the desired relation 
between b* and b: 

l = 1, ... , q - 1 (5.3-2a) 

We now turn to evaluation of the components of (X*TX*)-1 

in terms of the components of (x/'x) -1. If the set of Equations 
5.3-6 are formally solved for the coefficients b:, we find: 

q-l n 

b-: = L cZj L (Xii - Xj)[Yt - (x,q - xq)] 
j=1 1=1 

k = 1, ... , q - 1 (5.3-10) 

where c* is the inverse matrix of the reduced (q - I) by 
(q - 1) matrix (X*TX*). A similar solution of Equations 
5.3-5 for bk gives 

bk = L
q 

Ckj L
n 

(Xii -""Xj) Yi k=I, ... ,q (5.3-11) 
j=1 t=1 

We subtract the first (q - 1) equation of the set of Equations 
5.3-11 from the set of Equations 5.3-10 and get 

q-1 n 

b: - bk = L (cZj - Ckj) L (Xii - Xj) Yf
 
j=1 t=l
 

q-1 n
 

- gL C:j L (Xii - Xj)(Xtq - Xq)
 
j=1	 t=1 

n 

- Ckq L (Xiq - Xq)Yi k=I, ... ,q-l 
. t=1 

(5.3-12) 

By use of Equation 5.3-11 with k = q, the set of Equations 
5.3-2a can be written as 

q n 
C Cqk Cqk ~ ~ - )

b~ - bk = S C - c* ~ Cqj L...t (Xii - x, Yi 
qq qq j = 1 t = 1 

k	 = 1, ... , q - 1 (5.3-13) 

By equating the right-hand sides of Equations 5.3-12 and 
5.3-13, we get 

q-1 [ * CqkCqf] n _L cki - Ckj + -c- L (Xij - Xj) Yi 
j =1 qq j =1 

q- 1 ] 
= g 2: Ct-JCjk + :qk k = 1, ... , q - 1 (5.3-14)

[ j=1 qq 

The set of Equations 5.3-14 must be independent of the 
value of g; hence the quantity in the square brackets on 
the right-hand side of Equation 5.3-14 must vanish. The 
summation over iin Equation 5.3-14 can be eliminated by use 
of the normal Equations 5.3-5 to reduce Equation 5.3-14 to 

q q-1 

~ b ~ [ * CqjCqk] { T }L. l ~ Ckj - Ckj + -c- X X fl = 0 
l =1 j =1 qq 

k	 = 1, ... , q - 1 (5.3-15) 

Because the coefficients of the b, in Equation 5.3-15 do not 
depend on the Yt, these equations are independent of the 
b, and each coefficient vanishes. Using the orthogonality 
property of CkjCjl = Okl to evaluate the sums in the resulting 
expressions, we get 

I = 1, .. . ,q 
(5.3-16) 

k=I, ... ,q-l 
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Multiplication of Equation 5.3-16 from the right by Clm 

with m = 1, ... , q - 1 in turn and summation over all 
values of I give the desired expression: 

* CqmCqk
Ckm = Ckm --­ k, m = 1, ... , q - 1 (5.3-3a) 

Cq l1 

Finally, in order to evaluate the sum of squares, we write, 
using Equations 5.3-5, 

n q q 

ePq = L Y? - L bk L {XTX}kjbj (5.3-17) 
i=1 k=1 j=1 

Similarly,' for the model with f3q == g, using Equations 5.3-6, 

n	 q-l 

~:-1 = L Y? - 2g{x T Y }q - L b: 
i=1	 k=1 

After the coefficients b: are eliminated with the aid of 
Equations 5.3-2a, 

~:= 1 - ~q = (g	 - bq)2 (5.3-4a) 
Cqq 

Omitting one term from the model amounts to letting 
g = O. Thus, from Equations 5.3-4 if 13k is omitted from 
the model 

(5.3-19) 

The quantity ~SS is often termed the sum of the squares 
for Xk' adjusted for all the other variables or the sum of 
the squares given the other variables. The ~ss for any 
group of p variables adjusted for all the others is com­
puted by 

(5.3-20) 

where b, is a single-column vector (matrix) composed of 
the selected groups of bk's only, and cp is the matrix of 
the related (Cjk) elements. 

For example, suppose we want to measure the com­
bined effect of Xl' X2' and X4 removed from a model based 
on Xl' X2, X3, X4, .•• , xq • Each X is associated with a 
corresponding b. Then 

In general, removing a term from a model by letting 
13k = 0 as computed by Equation 5.3-19 will not yield 
the same ~SS as is computed by removing the corre­
sponding term from the model after several other param­
eters have been removed first. It is only when the 
(x, - Xk)'S form an orthogonal set that the ~SS will, 

agree. Consequently, the sum of the ~SS computed 
from applying successively Equation 5.3-19 to each 
parameter cannot be expected to equal the total 
2:f= I W i ( ~ - 0)2for the full model unless the independent 
variables are orthogonal. 

T<? sum up the discussion so far, an F-test can be 
applied to test the significance of a variable (or a group 
of variables) in the full model by computing the variance 
ratio (S2/S~J, where S2 is computed as follows: 

zss v 

A single X k b~/Ckk 
b~C;lbp

A group of p x's p 
p 

If the variance ratio exceeds the value of F1 - a from 
Table C.4 in Appendix C for the selected significance 
level, then the variable (or group of variables) makes a 
significant contribution to the full model. 

Because the independent variables Xi may be correlated, 
the results of the t-test and the F-test may be misleading 
if interpreted in terms of a physical variable affecting the 
dependent variable in the model. The apparent significant 
contribution to a model of a single variable Xk may be 
really due to the facts that Y is influenced by X n and 
that Xk and x, are highly correlated; x, may not even 
be measured. 

To prepare a table for the analysis of variance in 
which several variables are successively removed from 
the model, we can proceed as follows: 

1. Remove the first variable and calculate ~SS by 
using Equation 5.3-19. 

2. Remove the first and second variables and calculate 
the combined ~SS by using Equation 5.3-20. Subtract 
from this combined ~SS the ~SS calculated in step 1 to 
give the net ~SS of removing the second variable. 

3. Remove the first, second, and third variables, 
calculate ~SS by using Equation 5.3-20, subtract the 
~SS for the first two variables, and so forth. 

Each additional variable removed will provide a new 
combined ~SS from which the previous ~SS can be 
subtracted to yield the residual effect of removing the 
additional variable. The total of all the ~SS for each stage 
calculated in this way will equal the sum of the squares 
2:f= I wlYi - Y)2 listed in the first row of Table 5.3-1. 
Keep in mind that if the x's are not orthogonal, the order 
of removal of the variables is important inasmuch as 
'different ~SSi will be obtained depending upon the 
sequence of removal. 

Table 5.3-2 summarizes the splitting of the 
2:f= I Wi( Yi - Y)2 into parts, the associated degrees of 
freedom, and the variances which can each be used in an 
F-test of the variance ratio S2/S~t' The fourth, fifth, and 
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TABLE 5.3-2 ANALYSIS OF VARIANCE IN WHICH SUCCESSIVE VARIABLES ARE REMOVED 

Degrees of 
Source of Variation Freedom (v) Sum of Squares (SS) Mean Square 

1. Due to removing Xl 
(e.g., hI = 0) 

~SSI 

~SSI 

= h~ 
Cll 

= ~SSI - 0 = ~SSl 

b~ 2 - =s 
CII 

2. Due to removing X2 (e.g., b« = 0) 
following the removal of Xl 

3. Due to removing X2 (e.g., b3 = 0) 
following the removal of Xl and X2 

~SSl+2 

~SS2 

~SSl+2+3 

~SS3 

= 
= 
= 

= 

b~C-lb2 

~SSI +2 ­

bIc- 1b3 
~SSl+2+3 

~SSI 

- ~SSl+2 

~SS2 
-1­

~SS3 
-1­

etc. 

4. Subtotal 

5. Due to removing as the last step bo 
(the intercept) 

6. Deviations about regression line 

7. Total 

8. Deviations within sets 

n -

q 

q 

n 

- 1 

n

L: Wt(:ft - Y)2 
t=l 

n n

L: wlY ­ 0)2 = (Y)2 L: Wj 

1=1 t=l 

nL: Wt( Yi - Yi)2 = (Y - Xb)TW(Y 
t=l 

n

L: Wt~2 
t=1 

See Table 5.3-1 

- xb) 2 
Sr 

_ 
-

1 

i Wt(Yt - yt )2 
t=l -----­

n-q-l 

sixth rows of the table represent the partition of the 
sum of squares L:f= 0 Wi( Yi - 0)2 into three parts: 

n n n

L Wj(Y; - 0)2 = (1')2 L Wj + L Wj(Y; - ~)2 
i=l i=l i=1 

n 

+ L Wj(rj - 1')2 
i=l 

The first, second, and third rows represent the partitioning 
of L (Yi - Y)2 into the sum of squares associated with 
each parameter. In Section 7.2 a method of building up 
a model, term by term, is ·described based on those ideas. 

The squared multiple correlation coefficient of Y is a 
measure of the overall fit of an empirical model. The 
multiple correlation coefficient is a measure of the overall 
degree of linear association between Y, the dependent 
variable, and the set of x's, the independent variables. 
We can give an informative geometric interpretation 
to the estimated multiple correlation coefficient, namely 
that the cosine of the angle between the vectors Yand 
Y is the multiple correlation coefficient. From a related 
viewpoint, it is the simple correlation between the 
observed values, ~,and those predicted by the regression 
equation, f i • 

The square of the estimated multiple correlation 
coefficient can be calculated by 

(Y ­ Y)Tw(Y ­ Y) (5.3-21) 
(Y - Y)TW(Y ­ Y) 

Because a regression equation with q parameters will 
fit exactly q observations, one must be careful to inter­
pret p; in light of the residual degrees of freedom of the 
model, Nevertheless, p; finds use as a single number 
which is a measure of the overall fit of a regression . 
equation. Kramer t gives tables that assist. in the esti­
mation of the confidence interval for Pn' 

In addition to using p; directly as an aid in model 
building, suppose we calculate 

-'\2 . _ 1 __l_ (5.3-22)Pn,'/, - GuCu 

where aii is the ith diagonal element of the matrix 
a = xTwx and Cii is the ith element of c = (xTWX) -1. If 
P;,i is high (approaching the value of one), then the 
variable Xi is virtually, if not completely, useless as a 
significant component of the model. 

t K. H. Kramer, J. Amer. Stat. .Assn. 58, 1082, 1963. 



ANALYSIS OF VARIANCE 163 

Contrast pi,i for the variables in Example 5.1-1 with 
those in Example 5.2-1 (such as the variable X2): 

Example 5.1-1 

1 
(8.00)(0.125) = 0 

Example 5.2-1 

1 
1 - (7.52 x 103)(8.00 x 10- 3) = 0.98 

The results substantiate the conclusion that X2 does 
contribute to the model in Example 5.1-1 but not to the 
model of Example 5.2-1. 

Example 5.3-1 Analysis of Variance 

To illustrate the difficulty of interpreting the analysis of 
variance when the independent variables are not orthogonal, 
we use the data of Gorman and Toman t who simulated 
experimental data with the model 

Yt = 1 + Xu + Xi2 + Ei 

I I I I I 

~.2.81.0 f ­
3.8 3.5

/- ­
/

/
/ 2.9.3.8 

/ /2.1 1.8 

/ /

/ 

/ "" /' 
0.5 f ­

-.%2 0.0­
/ "" / /

/"" / 
bQ.-O.4 /'/-0.5 ­

-0.1 -1.9 / 

/'
./ 

_-1_.4.-_1_,8 P11"1 = P1r2= 0.90-1.0 ­
-2.4 -0.6 

I I - I I 
-1.0 -0.5	 0.0 0.5 1.0 

Xl(a) 

FIGURE E5.3-1a Simulated data for the model Y i = 1 + 
Xn + Xi2 + €j (values of the response are underlined). (From 
Gorman and Toman, Technometrics 8(1), 598, Feb. 1966.) 

t J. W. Gorman and R. J. Toman, Technometrics 8,27, 1966. 

TABLE E5.3-1a 

where E was a normal random deviate with c9'{£,} = 0 and 
Var {e.} = 1. Four sets of simulated observations were 
generated at the points 

Xl: -1-1 
X2: -1 -t t 

The responses, Yi, are shown in Figure E5.3-1a. Note that 
Xl = X2 = O. 

Four models were selected and the coefficients estimated 
to give the corresponding estimated regression equations: 

Yu r = 0.94 + 0.85xI + 1.55x2 
Yu = 0.94 + 3.01xI 
Yr = 0.94 + 2.57x2 

Yrv = 0.94 

The coefficients,· except bo = Y, differ among the first three 
equations because the b's in the equations with only one 
independent variable are biased estimates of the respective 
{3's. 

Table E5.3-1a is an analysis of variance which indicates 
that the first three models are better than Model IV, but it 
is impossible to discriminate among Models I, II, and III. 

The error sum of squares was 

2 = 4.29 + 1.71 + 0.69 + 2.43 = 076 
Se 4(3) . 

which is less than a; = 1. However, for a = 0.05, the values 
of F l - a for (13,12), (14,12), and (15,12) degrees of freedom 
from Table C.4 in Appendix Care: 2.66, 2.63, and 2.62, 
respectively. Consequently, each model is deemed appro­
priate except Model IV (since 5.15 > 2.62). An F-test or 
r-test for the hypothesis that each coefficient in Models I, 
II, and III is zero is rejected. Removing Xl or X2 from the 
full model yields the following variance ratios: 

Estimated 'S2 

2S2	 S~
SYi. Yi FO•9 5 (1, 12) 

Remove C2.48 ~ 10007) 

0.76 3.17 4.67 
Xl 

C ~ 10007)Remove 1.23 0.76 1.53 4.67 
X2 

The F-tests indicate that a significant reduction in the sum 
of the squares of the residuals is not obtained when Xl or 
X2 is removed from the full model. 

If the effect of both Xl and Xz is desired in the regression 
equation, then the full model should be retained. If only 
Y is of interest, then an abbreviated model, I or II, will be 

Degrees Sum of Squares Estimated Multiple 
of Freedom of the Residuals Estimated Correlation Coefficient 

Model (v) (cPmin) Mean Square (p~) 

Model III (Xl and X2) 13 10.07 0.775 0.87 
Model II (Xl) 14 12.48 0.89 0.84 
Model I (X2) 14 11.23 0.80 0.85 
Model IV (intercept only) 15 77.28 5.15 
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(b) Xl 

FIGURE E5.3-1b Comparison ofVar Yfor Yu = bo + b2X2 and 
fur = bo + blXl + b2X2. (From Gorman and Toman, Techno­
metrics 8(1), 598, Feb. 1966.) 

1.0 

,~%\.~
0.5 

~fp 
~ 

\:)~ ~\:). 

'?>~X2 0.0 
/' . ~' 

f9 ~~ 
/ 

~'P

/'%/-0.5 

':\,~
/ 

~. 
Y 

-1.0 •	 / 

-1.0 -0.5	 0.0 0.5 1.0 
Xl

(c) 

FIGURE £5.3-1 c Expected value of bias for Y = bo + b2X2 when 
the. true equation is TJ = 1 + Xl + X2. (From Gorman and 
Toman, Technometrics 8(1), 598, Feb. 1966.) 

TABLE E5.3-2a ANALYSIS OF VARIANCE 

satisfactory. However, some danger exists in such simplifi­
cation, as demonstrated by Figure E5.3-1b, because the 
variance of Y as predicted by Model II, for example, as 
contrasted with that predicted by Model III is misleading. 
For example, if Yand its variance are to be predicted for 
Xl = -1, X2 = 1, Figure E5.3-1 b shows that Var {fIl} ~ 
0.12 whereas Var {YIII } = 2.3. Hence the variance of fis sub­
stantially underestimated by Model II. Model II also yields 
biased estimates of Y. Figure E5.3-1c shows that the bias 
at Xl = ..:.. 1, X2 = 1 is about 2.2, and even in the vicinity 
of the experimental data the expected value of the bias is 
from 0 to 0.4. 

Of course, the example" data" above have been simulated. 
What is important is that the variables in the experimental 
space be as orthogonal to each other as possible. 

Example 5.3-2 Analysis of Variance 

Further analysis of Example 5.2-1 is carried out in this 
example. The analysis of variance corresponding to Table 
5.3-1 is shown in Table E5.3-2a. Because F l - a(5, 5) = ~.05, 

the hypothesis that f3 = 0 would have to be accepted, as 
concluded in connection with Example 5.2-1. 

An analysis of variance corresponding to Table 5.3-2 
consists of removing successive groups of variables. As an 
example, two different groups are selected for removal from 
the full model: (1) xs, X4, and X5, and (2) xs, X4, XS, X2, and 
Xl. When Xs is removed first followed by X4, the sum of the 
squares for X4, ~SS = 7.281 X 10- 5, obtained in Example 
5.2-1 does not agree with 5.615 x 10- 5 listed in Table 
E5.3-2b. A similar lack of agreement is observed for 
x5(1.38 x 10- 4 versus 6.051 x 10- 5 ) . The sum of squares 
for removing X3, X4, and X5 all at once, ~SS = 1.391 x 10- 4, 

does not prove to be significant by an F-test. The analysis 
does indicate that Xl may be a significant variable. 

5.4 ESTIMATION WHEN ERRORS ARE NOT 
INDEPENDENT 

Ordinary least squares estimation will fail to yield 
satisfactory (in the sense of Section 3.1) point and 
interval estimates for the model parameters if the 
uno bservable but hypothesized errors are not inde­
pendent. This section continues the presentation of 
Section 4.6, but it is directed toward consideration of a 

Source of Variation 
Degrees of Freedom 

(v) 
Sum of Squares 

(SS) Mean Square. 
Variance 

Ratio 

Due to regression 

~ Wt(Yi - Y)2 
k.....I 

Deviation from regression
L - A 2Wt(Yi - Yi ) 

5 

5 

1.031 X 

3.383 X 

10- 2 

10- 3 

2.062 

6.767 

X 

x 

10- 3 

10- 4 

3.05 

Total 10 1.370 x 10- 2 
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TABLE "E5.3-2b 

Degrees of Mean Variance 
Source of Variation Freedom (v) SS (lOS) Square Ratio 

Xs removed 2.246 2.246 3.319 
X4 removed after 

removing Xs 

Xs removed after removing 
Xs and X4 

5.615 

6.051 

5.615 

6.051 

8.297 

8.941 

Total removed: xs, X4, 

and Xs 3 13.91 4.637 6.852 

Mean 
Degrees of Square Variance 

Source of Variation Freedom (v) SS (104) (104) Ratio 

Xs removed 1.32 1.32 0.196 
X4 removed after 

removing Xs 0.026 0.026 0.003 
X3 removed after 

removing X4 and Xs 0.036 0.036 0.005 
X2 removed after removing 

xs, X4, and Xs 2.83 2.83 0.418 
Xl removed after removing 

X2, X3, X4, and Xs 98.6 98.6 14.6 
Intercept removed after 

removing all the x's 787 787 116 

model with several independent variables. Major 
assumption No. 4 of Section 4.2 is now voided; we 
assume instead" that the €'s in Model 5.1-2 are serially 

, correlated, that is, C{EtEt+l} =1= O,but still that 

C{€t} = 0 
C{xn€t} = C{Xt2€,} = ... = C{XtqEt} = 0 (5.4-1) 

Here, as in Section 4.6, the subscript t designates a 
sequence of sets of data in time, t = 1, 2, ... , n from a 
stationary process. 

To determine whether or not the estimation procedures 
of this section are required, a test for serial correlation 
should be executed such as the Durbin-Watson test 
described in Section 4.6. If the test shows little or no 
serial correlation, the usual least squares procedure 
should be satisfactory, In matrix notation, the residuals 
are E = (Y - Y). . 

If serial correlation is established (with values of Y 
being calculated by the best regression equation), we 
can extend the technique described for the, model of 
Section 4.6 which contained a single independent 
variableto the case of several independent variables. The 
estimates of the {j's in Model 5.1...2 can be written as 
follows in a different form than in Section 5.1 : 

(5.. 4-2) 

where ~ is the determinant of the q x q matrix having a 
typical element 2~= 1 (Xti - Xi)(Xtj - Xj), i.e., an element 
of the matrix (xTx) in which the column of 1's is omitted 
from the design matrix x, and ~ij is a minor of !:i. Also, 
b~ = Y - b1x1 - ... - bqxq. 

As in Section 4.6, we can form the differences by 
introducing Yt into Equation 5.4-2: 

(5.4-3) 

(b~ - f3~) = € - L
q 

(b; - f3k)Xk (5.4-4) 
k=l 

where 

2:
n 

Et 
-, t= 1E=-­

n 

If we take terms with the same time lag, we can write 
expressions for the expected values of (bp - f3p)2, 
(b, - f3r)(b s - f3s), (bo - f30)2, and so forth, the details of 
which can be found in Lyttkens ], We shall write here 

t E. Lyttkens, "Standard Errors of Regression Coefficients in the 
Case of Autocorrelated Residuals," in Proceed. Symposium Time 
Series Analysis, ed. by M. Rosenblatt, John Wiley, New York, 
1963, p. 49. 
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just the final expression which gives an approximate 
estimate of the covariance of (b.; bs) : 

q q

L L ~ri ~SjCij 
i-I j-lCovar {bn b}s '" - - ~2 (5.4-5) 

where. 

Cij = gij(O) + gij(l) + gij( -1) + gij(2) 

+ gtJ( -2) + ... + gtj(ko) + gij(-ko) 

n 

glj(k) = L(xu - Xi)(Xt+k,j - Xj)EtEt+k 
t=1 

gij( - k) = gji(k)
 

k., = truncation index for the data
 

Et = Yt - b o - b 1 X tl - ... -"bqXtq = Yt - Yt 

Equation 5.4-5 provides an estimate to use in establishing 
a joint confidence region and in hypothesis testing. 

Many other models exist in which the E'S are not inde­
pendent but we do not have the space to describe them; 
references are given at the end of Chapter 4. 

5.5 ESTIMATION FOR MULTIRESPONSE MODELS 

Often a process will have more than one dependent 
variable or response, as illustrated in Figure 5.5-1. Each 
output can be represented as a linear combination of the 
inputs. For example, the model of Figure 5.5-1 might be 
represented as: 

Y1 = f311 X I X2 + f312 X2 X3 + f312 X2X3 + €1 

Y2 = 1321 eX! + f322 X2 + f323 XS + E2 

Certain features of estimation for multiresponse 
models are different than those for the single response 
models. The remarks in this section will apply to both 
linear and nonlinear models, so the general form for the 
model can be written as 

'YJl = If{ Y1 Ix} = 11«(3, x) 

'YJ2 = If{ Y2 Ix} = 12({3, x) 

'YJv = If{ F, Ix} = h({3, x) 

where the index v designates the last equation. In general, 
there is no universal choice of a "best" criterion to use 
in estimating {3. 

Inasmuch as maximum likelihood estimates of param­
eters have been demonstrated to have desirable prop-

Inputs Outputs 

FIGURE 5.5-1 A multiresponse process. 

erties in several earlier sections, it is natural to investigate 
the maximum likelihood estimates for multiresponse 
process models. 

Consider a model in which the observations Yare 
related to the responses as follows: 

Yli = 'YJli + Eli 

Y2i = 'YJ21, + E2i 
i = 1,2, ... , n (5.5-1) 

Yvi = 'YJvi + EVi 

(The first index refers to the model number and the 
index i refers to the experimental data set number.) If 
we assume that the errors Eri are each normally distrib­
uted and independent with zero expected value and 
fixed variances a rn which may be different for each 
model, and the covariances between models are ars, a 
probability density function can be written identical to 
Equation 5.1-11 for the observations for one response: 

P(Yr I x, (3, arr) = k" exp [--lEi .l- Er] (5.5-2) 
arr 

where k has been given in connection with Equation 
2.3-6 and e, has been earlier defined as 

_ [Yr1 ~ 'l)r1]
Er - • 

Yrn - TJrn 

If for all the responses the observations Yri and YSj 

are statistically independent, then the joint probability 
density function of all the n x v observations is analogous 
to Equation 5.1-11 (keep in mind that the covariances 
ars between models are not necessarily zero): 

p(Yl> ... , s; Ix,~, I') = k* exp { --Her· .. ~]r-1 [::J} 
(5.5-3) 

where k* is the normalizing constant not needed for 
what follows, and r is the covariance matrix between 
models 

After taking the data, we consider the observations as 
fixed and the parameters (3 as variables. Thus the likeli­
hood function is 

L«(3 I Yl' ... , Yv; x, I') 

= k* exp { -4~ ~ ars[~ (Yr i - 'l)rt)( Ys! - 'l)Si)]} 

(5.5-4) 
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where qrs is the element of r - 1. We have replaced the 
matrix notation in the exponent of Equation 5.5-3 with 
the equivalent summations. Because the double sum­
mation over rand s gives a positive quantity, minimiza­
tion of it with respect to ~ is desired. 

To minimize the double sum over rand s, estimates of 
the elements of r are needed, say, from replicate ex­
periments for each model: 

n _ _ 

L (Yrj Yr)( YSj Ys)
'" j=1Srs = ars = ~-----1----

p-

where Yr = 2:}= 1 Yrj/p. 
When the errors associated with the observations of 

the different dependent variables do not have equal 
variances, but ars can be assumed to be zero for all 
r =1= S, we need only minimize 

v n 

</;1 = 2: 2: Wi(r, - 7Jri)2 (5.5-5) 
r=1 i=1 

where 

This is equivalent to minimizing the weighted trace of 

E 

ET~·~V] 
~= 

Er : 1 (5.5-6) 
[ 

EfEv EvEv 

where EiEs = If=1 (Yri - 1]ri)(Ysi - TJSi)' When ars = 0, 
there is no correlation among the various observations 
Yli to YVi on one experiment. Each a; is the variance for 
the fit of model r and is estimated by s;. Certain useful 
information results from minimizing Equation 5.5-5 in 
addition to the parameter estimates. One obtains: 

1. Values of st the estimated parameter variances.
j

, 

2. Values of the residuals between the observed and 
estimated values of the dependent variable. 

Finally, if the variances for each a; are all the same, 
minimization of tP1 is the same as ~ minimization of the 
trace of the matrix 5.5-6. It has been suggested that, 
when the elements of r are known to be nonzero but 
cannot be estimated, the determinant of ~ be minimized. t 
t G. E. P. Box and N. R. Draper, Biometrika 52, 355, 1965. 

In general, one of the above criteria should be employed, 
depending upon the experimenter's knowledge or lack of 
knowledge about the unobservable errors among the 
model responses. 

Other criteria which have been used to secure estimates 
of the parameters in multiresponse models are: 

1. Maximize the square of the smallest correlation 
coefficient. 

2. Maximize the square .of the largest correlation 
coefficients. 

3. Maximize the sum of the squared correlation 
coefficients. 

4. Maximize the square of the product of the corre­
lation coefficients. 

Criterion No.3 gives the best average multiple corre­
lation coefficient. The equation for the square of the 
estimated multiple correlation coefficient is 

p~ = 1 

and the sum of the squared estimated multiple corre­
lation coefficients is just 

v 

</;2 = 2: flt (5.5-7) 
r=l 

To obtain estimates of the coefficients 13k in linear models, 
¢J2 can be differentiated with respect to each of the coeffi­
cients, the resulting expressions equated to zero and 
solved simultaneously. Although the algebra is tedious, 
the procedure is straightforward. Coefficients in non­
linear models can be estimated by the iterative optimiza­
tion techniques described in Chapter 6. 

To determine whether a multiresponse model ade­
quately represents the experimental data, the variance 
ratio 

tPmin/(n - m) 
S2 e 

can be formed and tested, where m is the total number of 
coefficients determined. Also, the residuals should be 
randomly distributed without correlation and outliers 
as explained in Chapter 7. 

5.6 ESTIMATION WHEN BOTH INDEPENDENT 
AND DEPENDENT VARIABLES ARE STOCHASTIC 

How to estimate the parameters in an empirical model 
when some independent variables as well as dependent 
variables are random variables is a problem of common 
occurrence, and has been considered briefly for a model 
with one independent variable in Section 4.5. 

One approach to estimation when more than one of 
the variables are random variables is termed the recursive 



168 LINEAR MODELS WITH SEVERAL INDEPENDENT VARIABLES 

method.t We ask the question: If there are many random 
variables, in which direction should the sum of the 
squares be minimized? Recall from Figure 4.2-2 that 
with a single dependent random variable, only one di­
rection can be selected, namely that of Y itself. No com­
pletely satisfactory answer can be given to the question 
for the multivariate model. However, in the recursive 
structure the covariance matrix of the errors for anyone 
set of data is diagonal, and the matrix of the coefficients 
of the jointly random variables has nothing but zeros 
to one side of the diagonal. 

Examine the following structure: 

q 

r, = 2: YlkXk + €l 
k=1 

q 

fJ2lYl + Y2 = 2: Y2k Xk + €2 

k=1 

q 

fJalYl + fJa2Y2 + r, = 2: YakXk + €a 
k=1 

fJllYl + fJl2Y2 + ... + 1'; = 2:
q 

Y,kXk + €l (5.6-1) 
k=1 

where the Y's are observable random variables, the x's 
are predetermined deterministic variables, the f3's and 
y's are coefficients to be estimated and the €'S are inde­
pendent unobservable random variables with go{Et} = 0 
and with constant finite variances and covariances. 

The parameters f3 and y can be consistently estimated 
in recurrent steps by least squares as follows. In the first 
equation, YI is the only random variable, and Ylb Y12' 

••• , Ylq are estimated by minimizing the sum of the 
squares in the YI direction. Then, with YI in the second 
equation predetermined by the first equation, i.e., 
YI = YI , and Y2 acting as the random dependent vari­
able, the parameters f32b Y21, Y22, ... , Y2q can be esti­
mated by minimizing the sum of the squares in the Y2 

direction. Repetition for each of the I random variables 
yields estimates in the last equation of all the parameters. 
How satisfactory the usual statistical inferences are 
based on the sum of the squares from the last equation 
is not well known. 

The references at the end of this chapter discuss some 
techniques which have been used in economics to treat 
cases where certain of the independent variables are 
stochastic variables. 

It is also of interest to discuss the consequences of 
estimating model parameters 'for a model such as 
Equation 5.1-2 by the method of least squares, even 
though direct application of the method gives estimates 

t R. H. Strotz and H. O. A. Wold, Econometrica 28; 417,1960. 

with undesirable statistical characteristics. Kerridge t 
considered the model 

(5.6-2) 

in which the Y, Xl' X2 , ••• , Xq are jointly normally 
distributed. If the coefficients in Model 5.6-2 were 
estimated by the usual least squares procedure and' if 
one more observation were made, Kerridge developed 
an expression for the error of prediction 

Lln + l = (Yn + l - Yn + l ) , 

where Yn + I is the correct predicted value of Y for the 

(n + l)th set of X's and Yn + l is the predicted value of 
Y obtained by assuming the X's are not random variables. 
We omit here the details of the development of the 
probability distribution of ~n + I and simply write the 
final result: 

Ll n + l = Ua(l -+ !)%(x~-~ + x~)% (5.6-3) 
n Xn-q 

where U is the standardized normal random variable 
and the subscripts on x2 indicate the associated number 
of degrees of freedom. . 

For practical purposes the mean square error may be 
of greater interest than the value of ~n + I itself: 

2 2a - a 1 + -1)( n - 2 ) 
~n + 1 - € ( n n - q - 2 

Thus, if n is large and the number of independent. vari­
ables q is small, the variance of Yn + I is 

Var{Yn + l } ~ a~.+ Var{Yn + l } 

where the Var {Yn + l } can be computed from' the equa­
tions in Section 5.2. However, if n is small, say 10, and 
q is large, say 5, then the variance of ~n + I becomes 
large: 

a~n + 1 = a~(l.l )(i) = 2.93a~ 

In fact, when (n - q) = 2, the variance a~n+ 1 is infinite. 
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ALSQ-A FORTRAN IV subroutine to solve the linear least 
squares problem, written by G. W. Stewart, III, Union 
Carbide Corp., Oak Ridge, Tenn. This program uses a 
modification of the algorithm by: 

Businger, P. and Golub, G. H. "Linear Least Squares 
Solutions by Householder Transformations," Num. Math. 7, 
269-276, 1965. 

BOJRCK-GOLUB-A FORTRAN V program to solve the 
linear least squares problem, written by Roy H. Wampler, 
National Bureau of Standards, using the Bjcrck-Golub 
algorithm described in: 

Bjorck, A., "Solving Linear Least Squares Problems by 
Gram-Schmidt Orthogonalization," BIT 7, 1-21, 1967. 
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BMD02R, Stepwise Regression-One of the Biomedical Com­
puter programs, written in FORTRAN and listed in: 

Dixon,W. J. (ed.), BMD Biomedical Computer Programs, 
Health Sciences Computing Facility, Univ. of Calif., Los 
Angeles, 1964. Revised 1965 and 1967. 

BMD03R, Multiple Regression with Case Combinations-One 
of the Biomedical Computer Programs, written in FOR­
TRAN. 

BMD05R, Polynomial Regression-One of the Biomedical 
Computer Programs, written in FORTRAN. 

LINFIT-A program which fits a linear function to collected 
data via least squares. Optional constraints may be applied 
to the fitting coefficients to make them nonnegative, add to 
a constant, etc. This is one of eighteen statistical routines 
written by J. R. Miller. This library of routines exists in the 
Project MAC 7094. See: 

Miller, J. R., On-Line Analysis for Social Scientists, MAC­
TR-40, Project MAC, Mass. Inst. of Tech., Cambridge, 
Mass., 1967. 

LINFIT-A-Another program written in BASIC for linear least 
. squares fitting and computing correlations developed at 

Dartmouth College, Hanover, N.' H., and available in the 
C-E-I-R Multi-Access Computer Services Library programs 
documentation, MAC 71-7-1, 1967: Addendum, MAC 
71-7-1, A 12-368, 1968. 

LSCF-A least squares polynomial curve-fitting subroutine 
written in BASIC developed at Dartmouth College, Hanover, 
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N.H. and available in the C-E-I-R Multi-Access Computer 
Services Library. 

LSFITW-A least squares curve-fitting program written in 
BASIC. Adapted by J. B. Shumaker, National Bureau of 
Standards, from the ORTHO algorithm by P. J. Walsh. 
This is available in the C-E-I-R Multi-Access Computer 
Services Library. See: 

. Walsh, P. J., "Algorithm 127, ORTHO," Communications 
of the ACM 5, 511-513, 1962. 

LSTSQ-A FORTRAN IV' subroutine which solves for X the 
overdetermined system AX = B of m linear equations in n 
unknowns for p right-hand sides. It was written by P. 
Businger, Computation Center, University of Texas, using 
the Businger-Golub algorithm. 

MATH-PACK, ORTHLS, Orthogonal Polynomial Least­
Squares Curve Fitting-Written in FORTRAN V., one of 
the Univac 1108 MATH-PACK programs. 

Univac 1108 Multi-Processor System, MATH-PACK 
Programmers Reference, Ui7542, Univac Division of 
Sperry Rand Corporation, 1967. 

MPR3, Stepwise Multiple Regression with Variable Transfor­
mations-A FORTRAN II program written by M. A. 
Efroymson, Esso Research and Engineering Co., Madison, 
N.J., using the Efroymson algorithm. This is available in the 
SHARE library: 7090-G2 3145MPR3. See: 

Efroymson, M. A., "Multiple Regression Analysis" in 
Mathematical Methods for Digital Computers, Vol. 1, 
ed. by A. Ralstmand and H. S. Wilf, John Wiley, New York, 
1960. 

OMNITAB-A general-purpose computer program for statistical 
and numerical analysis. OMNITAB allows the user to 
communicate with a computer in an efficient manner by 
means of simple English sentences. It was developed at the 
National Bureau of Standards and is available in an ASA 
FORTRAN version. See: 

Hilsenrath, J., Ziegler, G., Messina, C. G., Walsh, P. J.) 
and Herbold, R., OMNITAB, A Computer Program for 
Statistical and Numerical Analysis, Nat. Bur. of Standards 
Handbook 101, U.S. Government Printing Office, Washing­
ton, D.C., 1966. Reissued Jan. 1968, with corrections. 

ORTHO-A program written by P. J. Walsh, formerly with the 
National Bureau of Standards, which uses a Gram-Schmidt 
orthonormalization process for least squares curve fitting. 
ORTHO has been written as an ALGOL procedure and a 
FORTRAN program (see OMNITAB), and a BASIC 
program (see LSFITWA). 

POLRG Polynomial Regression-One of the programs of the 
IBM System 360 Scientific Subroutine Package written in 
FORTRAN IV. See: 

IBM Application Program, System/360 Scientific Subroutine 
Package (360A-CM-03X) Version III, Application De­
scription, H20-0166-5, 1968. 

IBM Application Program, System/360 Scientific Subroutine 
Package (360A-CM-03X) Version III, Programmer's Manual, 
H20-0205-3, 1968. 

STAT-PACK,	 GLH, General Linear Hypotheses-One of the 
Univac 1108 STAT-PACK programs, written in FORTRAN 
V. See:
 

Univac 1108 Multi-Processor System, STAT-PACK Pro­

grammers Reference, UP-7502, Univac Division of Sperry 
Rand Corporation, 1967. 
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STAT-PACK, REBSOM, Back Solution Multiple Regression­
One of the Univac 1108 STAT-PACK programs, written in 
FORTRAN V. 

STAT-PACK, RESTEM, 'Stepwise Multiple Regression-One of 
the Univac 1108 STAT-PACK programs, written in FOR­
TRANV. 

STAT20***-A program written in BASIC for stepwise multiple 
linear regression, developed at Dartmouth College, Hanover, 
N.H., and available in the C-E-I-R Multi-Access Computer 
Services Library. (See LINFIT above.) 

STAT21***-A program written in BASIC for multiple linear 
regression with detailed output, developed at Dartmouth 
College, Hanover, N.H., and available in the C-E-I-R 
Multi-Access Computer Services Library. (See LINFIT 
above.) 

Problems 

5.t	 The data in Table P5.1 were collected from different 
wells. Can you apply the least square methods of 
Section 5.1 to the data to estimate the parameters in 
a linear model? To estimate confidence limits of the 
parameters? 

TABLE P5.1 

Total 
Dissolved Hardness 

Well Depth Specific Solids as CaCOs 
Number (ft) Gravity (ppm) (ppm) 

E-71 225 43.1 2320 1030 
E-73 220 55.5 2320 1140 
1-2 203 34.8 2660 1280 
1-22 150 78.8 3060 1140 
1-24 136 77.4 4460 1640 
1-29 140 20.6 2160 673 
1-46 210 31.5 2540 868 

5.2	 Obtain the least squares estimates of /3l and /32 in the 
model Y = /3l + e- 1J2 X + E. Point out some of the 
difficulties. Let the weights be unity. 

5.3	 Given the model 

Y = /30 + /3lXl + /3'2X2 + € 

and using expanded notation, obtain the matrix a, 
invert the a matrix, and calculate the c matrix. Find 
the Var {hl}, Var {b2 } , and Var {ho} in the expanded 
notation. 

5.4	 Given that a matrix Y is distributed by a multi­
variate normal distribution with the parameters 
(x~, Ia 2 ) , show that the least squares estimates of (3 
are equivalent to the maximum likelihood estimates 
of (3, and show that &2 = E2In is the' maximum 
likelihood estimate of a 2 • Note: 

E2 = L (Yi - Yt)2 = (Y - Xb)T(Y - xb) 

5.5	 Show that the expected value of ~ (the sum of the 
squares of the residuals given by Equation 5.1-15) 
is equal to (n - q - l)a;t' One useful relation is 

8{Q} = a2 Trace [M] + ~TM~ 

where Q is the quadratic form yTMY, M is an 
n x n matrix, ~ = 8{Y}, and Var {V} = a2I . 

5.6	 Show that the least squares estimates of flo, Ph and 
/32 in the model 'YJ = /30 + /3l(Xl - Xl) + /32(Xl - X2) 
are the same as would be obtained from the model 
'YJ = /3~ + /3lXl + /32X2' in which /3~ = /30 - /3lXl - {J2X2. 

5.7	 To test whether a line passes through a given point 
( Yo, xo), show that the deviation ~ = bl + b2Xo - Yo 
has a variance 

2 (xo - X)2 ] [1

Var {~} = aYt Ii + L (x - X)2

n 

The model for the line is Y = /3l + /32X + E; n = 
the number of data sets; a~t = Var {E.}. 

5.8	 A student is asked to estimate the coefficient in a 
model 

(a) 

from given experimental data. He suggests that first 
he should use the model Y = /3~Xl + € to estimate 
/3~ and then use the model X 2 = /3;Xl + € to estimate 
/3~. Then either model (a) (Y - b~Xl) = /3aX2 + Eor 
(b) Y = (34(X2 - b;Xl) + € will yield the correct 
estimate of /32 in model (a); i.e., either bs or b4 will 
be b«. Is the student correct? Explain. 

5.9	 Consider the following model: 

'YJ = /30 + /3lXl + /32 X2 + /3sxs 

If the design matrix (matrix of x's) is arranged as 
follows (xo == 1): 

Y Xl X2 Xs 

Y ' 
1 -1 -1 -2 

Y2 1 -1 -1 
Ys -1 0 -2 
Y4 1 0 -1 
r, 1 1 -2 
Ya 1 1 -1 
Y7 -1 1 1 
r, 1 1 . 2 

the least square estimates of the (3's given by the 
normal equations can be expressed as linear functions 
of the eight observations, ¥t. 
Show, for example, that 

bo = 0.2193(Yl + Y2 + Ys + ... + Ya) 

- 0.0288( - Yl + Y2 - Ys + · .. + Ya) 

- 0.1042( -' Yl - Y2 + ... + Ya) 

+ 0.0814(-2Yl - Y2 - 2Y2 - ... + 2Ya) 

Consolidate the equations for bo, bl, b2, and bs in 
terms of each Yi and confirm the entries in Table 
P5.9. Each column represents the multipliers of the 
observations Yj for the expression b, = .2f=l au Yi. 
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TABLE P5..9 

bo bl b2 b3 

YI 0.1895 -0.1275 -0.1792 -0.0163 
Y2 0.2133 0.1514 -0.3192 0.0618 
Y3 0.0853 -0.1633 0.0684 -0.0847 
Y4 0.1091 0.1156 -0.0716 -0.0066 
Y5 -0.0765 0.0831 . 0.2444 -0.1597 
r, 0.0049 0.0798 0.1760 -0.0750 
Y7 0.2253 --0.2090 0.1108 0.1010 
Ya 0.2491 0.0699 -0.0292 0.1791 

Show that the Var {bo} is simply 

Execute a regression analysis and an analysis of 
variance as follows: 
(a)	 Code the x variables as 

T - 190 
x = 10 

(b)	 Find xTx and xTy. 

(c)	 From these, compute b, the estimate of ~, in 
the linear model 

(d)	 Write the estimated regression equation, both 
in coded (x) and uncoded form; Le., 

(e)	 Tabulate the analysis of variance for ex = 0.05
Covar {bjbk } = a~, (~ aijafk ) 

for both the coded and uncoded models. 
(f) Plot the experimental data on a graph of Y 

Suppose that the observation of Y3 is biased by versus T together with the regression line. 
10 percent. How much of a change (in percent) will (g) Plot the joint confidence region for f30 and {JI.
there be in the estimate of {J2? Determine the two 

5.11 The data in Table P5.11 have been taken from T.most important observations insofar as their contri­
Kunungi, T. Tamura, and T. Naito, Chern. Eng. butions to the variance of be- Which observation 
Prog. 57, 43, 1961. Assume a linear model contributes the most to the variance of Y? 

5.10 Temperature-yield data for a batch chemical reaction Y =	 ex + f3IXI + f32X2 + {J3X3 + E 

have been collected as follows: 
and determine the best estimates of ex and the {J's, inTemperature (OC) Yield (percent) 
other words, compute a and the b/s; the confidence 

200 6 limits on ex and {Ji; find the multiple correlation coeffi­
210 7 cient; carry out an analysis of variance; determine if 
220 8 any of the variables can be dropped from the model; 
230 11 and, finally, give the confidence interval at selected 
240 18 values of the independent variables for TJ = 8{:r Ix}. 

TABLE P5.11 

Conversion of Reactor Ratio of H 2 

n-heptane to Temperature to n-heptane Contact Time 
Acetylene (percent) (OC) (mole ratio) (sec) 

~ Xl	 X2 X3 

49.0 1300 7.5 0.012 
50.2 1300 9.0 0.012 
50.5 1300 11.0 0.0115 
48.5 1300 13.5 0.013 
47.5 1300 17.0 0.0135 
44.5 1300 23.0 0.012 

28.0 1200 5.3 0.040 
31.5 1200 7.5 0.038 
34.5 1200 11.0 0.032 
35.0 1200 13.5 0.026 
38.0 1200 17.0 0.034 
38.5 1200 23.0 0.041 

15.0 1100 5.3 0.084 
17.0 1100 7.5 0.098 
20.5 1100 11.0 0.092 
29.5 1100 17.0 0.086 
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5.12	 The analysis of labor costs involved in the fabri­
cation of heat exchangers can be used to predict the 
costs of a new exchanger of the same class. Let the 
cost be expressed as a linear equation 

where {3o, f3l' and f32 are constants, N = number of 
tubes, and A = shell-surface area. Estimate the 
constants f3o, f3b and f32 from the data below. 

Eliminate f30 from the model by calculating the 
mean of all the C's C, and estimate f3~ and f3~ in 
the model 

c = C + f3~(N - N) + f3~(A - A) 

where R and A are the means of N and A, re­
spectively. 

Predict the cost of a 350 psia working pressure 
exchanger with 240 16-foot long tubes and a shell 
LD. of 1 foot, 6 inches. Can you estimate what are 
reasonable cost limits, in dollars, at this pressure? 
What assumptions must be made about the variables 
C, A, and N? 

TABLE P5.12 DATA FOR MILD-STEEL 
FLOATING-HEAD EXCHANGERS (0-500 
WORKING PRESSURE) 

Labor Cost Area Number of 
($) (A) Tubes (N) 

310 120 550 
300 . 130 600 
275 108 520 
250 110 420 
220 84 400 
200 90 300 
190 80 230 
150 55 120 
140 64 190 
100 50 100 

5.13	 The phase-transition boundaries, in general, and 
liquidus and solidus curves, in particular, of the 
alloy phase (temperature versus composition) dia­
gram are generally determined by various rnetallo­
graphic methods. The liquidus and solidus curves 
define the temperatures at which a cooling melt (of 
given solute concentration) begins to freeze and 
completes freezing, respectively. Because a pure metal 
contains no solute, most of the sources of the un­
observable errors in the temperatures are avoided, 
and it is possible to say that the melting temperature 
(Tm) at c, = c, = 0 is a known value. Similarly, the 
temperature at the eutectic point (Tw ) where the 
concentration is cS w or Cl w is known. 

With these two boundary conditions specified, 
determine the best polynomial models for the liquidus 
curve (c, = !seT)) and solidus curve (C, = fi(T)) from 
the following data. 

T(OC) c., Yo C" Yo 

900 0 0 
850 1.0 6.25 
800 2.0 13.00 
750 3.0 20.25 
700 4.0 28.00 
650 5.0 36.25 
600 6.0 45.00 . 

5.14	 Will the inclusion of an additional independent 
variable in a model, even though it is shown not to 
be significant by an F-test, always improve the model 
(in the sense that the sum of the squares of the 
residuals = 2: (~ - Yt)2 will be reduced) or at least 
not make it worse? Explain. 

5.15	 A total of 142 datum points was collected for the 
purpose of determining a standard octane curve.t 
In addition to a standard curve, it was necessary to 
determine the precision of the derived curve in terrns 
of the single sets of data used and to estimate the 
limits of predictability of the derived curve for 
evaluation of yields of a new catalyst preparation. 

The results of the statistical calculations are: 

Model: I = ex + f3l ll + f321~ 
I = octane number 
t = temperature, °C 
Estimated coefficients: &. = 3.13 

Pl =	 0.258 
P2 = 0.001 

Sum of squares .of residuals: 9.439 
Degrees of freedom: 8 

Are PI, P2' and &. significant (i.e., differ from zero)? 

5.16	 In an empirical correlation, the friction factor I is to 
be made a function of the Re = Dvp/JL and the tube 
roughness g: 

lnl =	 f30 + f3l1n Re + f321n g (a) 

The friction factor itself is computed from the 
mechanical energy balance in which the" lost energy" 
is related to the friction factor or, in terms of measured 
quantities, 

6.p = 21pLv
2 

D 

where 

6.p = pressure drop 
P = fluid density 
L = tube length 
v = fluid velocity 

D == tube diameter 
JL = fluid viscosity 

t M. Greyson and J. Cheasley, Petrol. Ref. 38 (8), 135, 1959. 
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Is it possible to estimate a joint confidence region for 
the three parameters, /30, Ph and /32, in Equation (a)? 
Note that both f (the dependent variable) and Re 
(an independent variable) contain some of the same 
measured quantities. 

5.17	 Levenspiel, Weinstein, and Li t employed the method 
of least squares to estimate the parameters in a 
dimensionless correlation using the data of Sieder 
and Tate. t Their results were 

tt )0.142
Nu = 0.973 ReO.28B PrO.243 tt:( 

where 

Nu = Nusselt number for heat transfer 

Pr = Prandtl number 

Re =	 Reynolds number 

j.t = viscosity of fluids a and w 

Sixty-seven data sets were used and the variance of 
the residuals s; = L (Yi - Yi)2/(67 - 4) = 0.0026; 
L Y? = 108.9004. The elements of the c matrix for 
the model log Nu = Po + /31 log Re + /32 log Pr + 
/33 log (tta/ttw) were, omitting the first row and 
column, 

0.1455 0.1749 0,0134] 

0.1749 0.2627 0.0179 
[ 

0.0134 0.0179 0.0126 

What are the confidence limits on the estimated 
coefficients? 

By a theoretical analysis of heat transfer, the 
expression for the heat transfer coefficient in the 
form of a dimensionless group is 

Nu = 0.402 Re% Pr% e:t14 2 

Can the experimental equation be correct? Explain. 

5.18	 The following expression for the efficiency of a 
fractionating column was given as 

E =	 10.84A -O.28hO.241(~) 0.024 G-0.013 

( a )0.044( ttL ) 0.137 _ .	 -- -- a 0.028 
ttL Va pLD L 

Comment on the appropriateness of each variable. 
Can any of the variables or groups of variables be 
eliminated? The data used to obtain the above 
expression were based on seven different articles in the 
literature. 

t O. Levenspiel, N. J. Weinstein, and J. C. R. Li, Ind. Eng.
 
Chern. 48, 324, 1956.
 
~ E. Sieder and G. E. Tate, Ind. Eng. Chern. 28, 1429, 1936.
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Notation	 Range 

ttL =	 liquid viscosity, poise 
PL = liquid density, g/cc 

DL = liquid diffusivity, cm2/sec 

a =	 interfacial tension, dynes/em 
a = relative volatility, dimensionless 1.6-20.8 
A = fraction free area, dimensionless 0.041-0.125 

L fl . di . IV = re ux rauo, irnension ess 0.83-70 

h = height, in. 0.25-5 
G = gas velocity based on column 

crossection, Ib/(hr)(ft2) 100-2000 

70-609CLUVJ 
27.7-520(p~~J 

5.19	 An analysis of variance has been prepared based on 
some unreplicated experimental data for two models: 

Model I: Y = /30 + /31X + /32x2 + € 

Model II: Y = /31X + f32x2 + € 

Model I d.f. SS 

Due to regression 2 99,354 
Departure from origin 1 103 
Deviation about regression line 33 

- ­
863 

-- ­
Total 36 100,390 

Model II d.f. S 

Due to regression 2 21,621 
Deviation about regression line 33 863 

Total	 35 22,484 

Is Model II (a line through the origin) as good as 
model as Model I (the one with an intercept)? 

5.20	 Based on the listed experimental data: 

(a)	 For the model 'YJ = /3oxo + {3lXl, find b., and bs 
and prepare an analysis of variance. 

(b)	 For the model 'YJ = /3oxo + /3lX1 + {32X~" find 
b.; bs, and b2 and prepare an analysis of variance. 
Do you find a difference in removing be, bs, b2 

versus bo, b2 , bl versus i; b2 , bo? 

Xo	 Xl 
6.4 1	 1 

1	 15.6 

6.0 1	 1 

1 27.5 

1 26.5 
1 38.3 

y= x=7.7 1 3 

1 411.7 

1 410.3 

1	 517.6 

1	 518.0 

1	 518.4 
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5.21	 Hydrocyclones are used extensively in the mineral Equating the indicates of the three basic dimensions, 
industry and the pulp and paper industry for opera­ M, L, and T, on both sides of this equation yielded: 
tions such as classification, thickening, and de­ d-l d-3 

a = --, b = --, c = 2 - dwatering. This wide acceptance has been achieved 2 , 2 
because the hydrocyclone is efficient and has no
 
moving parts. 

or
 

Preliminary experiments were done with a small
 
which give glass hydrocyclone, using a water medium to which 

various quantities of sugar had been added to increase Q = KJk2 (PP)O .5D)d
 
(Pp3)O.5 Jk
the medium density. These experiments indicated that
 

the variables influencing the throughput of the When KDa was equated to a new constant K I (for a
 
hydrocyclone, Q, were : the pressure drop across it, given hydrocyclone) and Equation (b) was rearranged:
 
P, and the density, p, and viscosity, Jk, of the medium.
 Qp _ (Pp)o.5) a-1 

- - KI -- (c)In addition, it seemed reasonable to believe that the 
Jk Jk 

geometry of the hydrocyclone, as represented by a 
The coefficients K I and d in Equation (c) were

characteristic diameter, D, influenced the throughput: 
estimated from the data in Table P5 .21. K proved 

Q = [(P, p, Jk, D) to be 3970 and d proved to be 1.904. A straight line 
was obtained on a log-log plot which matched the

With the assumption of a simple power relationship 
data well. Comment on this experiment and the sub­

between the va riables, the following equation was 
sequent statistical analysis. Would the model be an

obtained: 
improvement over Q =K2 p m? 

(a) 
5.22	 If the two variables Xl and X 2 are distributed by a 

When the appropriate mass, length, and time units bivariate normal distribution with means Jkl and Jk2 
were substituted in Equation (a) , the following re­ and the variance-covariance matrix 
lationship was obtained : 

(L3T - I) '* (ML - IT- 2)G(M L - 3)b(ML -IT-I)CLd 

TABLE P5.21 EXPERIMENTAL RESULTS USED TO CALCULATE THE PARAMETERS 
QplJk AND (Pp)o.5/Jk 

P Q (Pp)O.5P Jk Qp X 10- 4 

(g/ml) (poise) (psig) (ml/min) Jk Jk 

1.199	 0.0846 2 3550 18.4 5.03 
4 5030 25.9 7.13 
6 6150 31.8 8.72 
8 7110 36.6 10.1 

10 7910 41.0 11.2 
11 8230 42.9 11.7 

1.164	 0.0498 4 5070 43.4 11.9 
6 6130 53.2 14.3 
8 6940 61.2 16.2 

10 7680 68.5 18.0 
1.122	 0.0288 4 5060 73.5 19.7 

6 6060 90.1 23.6 
8 6970 104 27.2 

10 7620 116 29.7 
11 8040 122 31.3 

1.000	 0.0127 4 5000 157 39.4 
6 6060 193 47.7 
8 6760 223 53.2 

10 7470 249 - 58.8 
12 8180 273 64.4 

0.989	 . 0.0054 4 4540 369 83.1 
6 5480 451 100 
8 6240 520 114 

10 6850 583 125 
12 7540 638 138 
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find the maximum likelihood estimates for /1-1, !L2, 
a1h a22, and a12 = a21. 

5.23	 Fit a second-degree polynomial to the following data 
in which' the dependent variable is known to be 
correlated in time, 

Time, t 

1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 

10
 
11
 
12
 
13
 
14
 
15
 

Discuss the data itself, 

Adhesiveness, Y 

21
 
9
 

14
 
16
 
10
 

1
 
14
 
14
 
26
 
40
 
41
 
59
 
74
 
91
 

105
 

carry out appropriate tests, 
and interpret your results. 

5.24	 An experiment was performed in 1959 in a first course
 
in the mechanics of materials. A TV section of 125
 
students was subdivided into five sections of 25 each
 
in four separate rooms (two sections of 25 each in
 
one larger room with two TV sets). Some 225 other
 
students were taught in the conventional way by
 
different experienced instructors who used con­

ventional-methods. A common final examination was
 
given.
 

The results of this experiment are given as a graph 
in Figure P5.24. The plotted points represent the 

means for the respective sections identified by the 
numeral. Since the point for the TV section falls on 
the regression line for the ,entire group, the achieve­
ment of this group is equal to the average of all 
students taking the course, relative abilities being 
considered. 

Comment on the use of least squares to obtain the 
estimated regression curve. 
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•2-D 

(38) 

•I-M 
(47) 

•3-M 
(36) 

Regression, Y on x 

Regression coefficient, 
b = 9.5 

•6-0 
(37) 

4-TV 
(125) 

2.4 2.5 2.6 
Grade point average 

FIGURE P5.24 Plotted points are section averages; numbers
 
identify sections; letters identify instructors; numbers of students
 
are in parentheses. (From J. Eng. Ed. 52, 316, 1962.)
 



CHAPTER 6
 

Nonlinear Models
 

As explained in the introduction to Chapter 4, the term 
" nonlinear" as applied to models in this part of the 
text means the model is nonlinear in the parameters 
(coefficients) to be estimated (and more than likely is 
also nonlinear in the independent variables). Not only 
is the estimation of the parameters in nonlinear models 
more difficult than in linear models, for reasons to be 
explained shortly, but confidence intervals for the param­
eters, hypothesis tests, and all the matters described in 
Chapters 4 and 5 are considerably more difficult to calcu­
late and interpret. Often we shall rely on approximate 
rather than exact methods. 

Before discussing the details of fitting empirical data 
by nonlinear models, we need to outline the notation 
and assumptions which form the basis of the nonlinear 
estimation methods. Then we shall describe several 
techniques which have been effectively employed to 
estimate model parameters. At the same time, we shall 
indicate what the difficulties are in carrying out these 
techniques. Next will come a discussion of the error 
involved in the estimated parameters and, finally, a 
summary of methods of estimation when the variables or 
parameters in the model are constrained in some way. 

6.1 INTRODUCTION 

Suppose we have a random observable dependent 
variable, the response, either Yi or Yh i = 1, ... , n, 
depending on whether or not several replicates are taken, 
and several nonrandom independent (controllable) 
variables = 1,2, ... , q. (We shall use Y i ratherx'ok 
than Yi in this chapter because very often, in experi­
mentation with nonlinear models, replicate experiments 
are not made.) Both Yi and x ; are presumed to be 
continuous variables, i.e., real numbers in sonle finite or 
perhaps infinite range. Let (3h j = 1, ... , m, be the 
parameters in the model 

(6.1-1) 

or, in matrix notation, 

1) = 1)(x ; (3) (6.1-2) 

where 
XII X12 X1q 131 

X21 X22 X2q 132 
X= (3= 

X n1 X n2 X nq 13m 

and n > m. Each observed Yt for a given set of x's 
denoted by Xi = [xu, Xt2, ••• , Xiq], is related to the ex­
pected value of ~, C{~ I Xi} == 'rJh by 

i = 1,2, ... , n (6.1-3) 

where t represents some type of unobservable" error." 
Two general types of errors can be considered. One 

is error in the measurement of the experimental dependent 
variable; the other is the error in the form of the model. 
If model error and measurement error are both present 
in an experiment, € must represent the combination of 
both effects. We assume that E, the vector of errors, is 
represented by a probability density function of known . 
form involving a set of unknown parameters 8. As in 
Sections 4.3 and 5.1, for a given Y and X, the estimates 
~ and 6can be regarded as the variables and we can write 
a likelihood function L: 

L(~, 61 Y, x) (6.1-4) 

If the estimation problerri is set up in this way, we can 
see that the information to be obtained about ~ and 6 
depends on x, that is, on how the experiment is designed. 
Certainly, if the variables selected for x are not chosen 
according to some effective scheme, the estimates of (3 
and 8 may not be very precise. 

To obtain the estimates of (3 and 8, we shall assume 
that the values of Yi in the vector Yare random observa­
tions from the distribution of Yi about 'rJh and that Y i 

can be interpreted as indicated in Equation 6.1-3. The 
expected value of ti for a particular set of x's will be zero 
and the- variance of ti will be a;i = a~i' When Equation 
6.1-3 is stated explicitly as 

Y = 1)(Xb ... , X q ; (31' .. ') f3m) + e (6.1-5) 

Equation 6.1-5 is called the regression equation. 

A different nonlinear model can be proposed which is of 
great practical significance, although we shall not make 
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use of it because of its complexity, namely a model in
 
which Y and X are jointly distributed random variables:
 

Y = Yl(Xb ... , X q ; (31' ... , 13m) + E (6.1-6) 

In Equation 6.1-6 the X k are observed values of random 
variables, while in Equation 6.1-5 the Xk are fixed 
numbers. 

As in linear estimation, we would like to obtain both 
the estimates b of the parameters ~ in the nonlinear 
model of Equation 6.1-2 as well as the estimates 6 of 
the parameters 6 in the probability density for E, because 
the values of 9 can provide estimates of the dispersion 
of the values b about the true values ~. However, it 
proves far easier to obtain b than to obtain 9, and we 
shall restrict our attention to the former. A wide choice 
of numerical estimation techniques are available, some 
of which are "better" in certain senses than others. 

The maximum likelihood technique to estimate ~ and 
6, that is the procedure to obtain the values of band 6 
which make Equation 6.1-4 a maximum, has been 
described in Sections 4.3 and 5.1, but it has two handicaps, 
First, it depends upon knowing some functional form 
for the likelihood Equation 6.1-4. Second, in general, the 
procedure cannot be carried out analytically for non­
linear models. While it is always wise, if possible, to 
explore the nature of the likelihood function in the 
vicinity of the maximum, as a practical matter one most 
often assumes that the following basic premises of 
Section 4.2 hold true (whether they do or not in a real 
experiment) : 

1. The error -€f is normally distributed. 
2. The variance of Yi given Xi is constant (or possibly 

some function of Xi)' 

Because the least squares estimation technique is the 
easiest to execute, we shall use it here in preference to 

I A 

-.........~ ---..!<Y-Y) Y2
 

~2 I 
Y ~ I Surface of ~ 

~ -~~ --: I esti mates-of 11 
~/ ",-Y 
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the maximum likelihood method. Also, many of the 
desirable properties of the least squares estimates 
(consistent, efficient, unbiased, and minimum variance) 
are independent of the normality assumption for the 
linear model and approximately so for the nonlinear 
model. If the probability density of E has a single param­
eter a~, the likelihood function has the same contours 
as the function expressing the sum of the squares of the 
deviations between the observed values Y and the pre­
dicted ones. Thus, the estimation technique to be used 
will be the same as that used in Chapters 4 and 5, namely 
the method of least squares. 

6.2 NONLINEAR ESTIMATION BY LEAST SQUARES 

Recall that in Chapters 4 and 5 we minimized the 
sum of squares function, ~, to obtain the desired param­
eter estimates. Exactly the same technique will be used 
here. We want to 

n 

Minimize 4> = L wi[¥i - 1Ji(X;, ~)]2 (6.2-1) 
i= 1 

where Wi represents appropriate weights, perhaps unity, 
and Yi is the single observation made at Xi' Figure 6.2-1 
illustrates the geometric interpretation of the method of 
least squares as applied to a nonlinear model, As in 
Figure 5.1-1, we look for the shortest vector from the 
point P in observation space to the curved surface, which 
is the locus of predictions of Y for a given set of estimated 
parameters, b1 and b2 • In parameter space the contours 
of the sum of squares, ~, will not be elliptical but might 
appear as shown in the right-hand side of Figure 6.2-1. 

Posed in the form of Equation 6.2-1, the nonlinear 
estimation problem appears as simply an optimization 
problem in parameter space in which the Y's and x's are 
given numbers and the {3's are the variables. Many of 

{j2 

Contours of 
constant 

cP 

{jl 

FIGURE 6.2-1 Geometric interpretation of least squares for a nonlinear model: (a) observation 
space (three .observations), and (b) parameter space (two parameters). 
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the tools of deterministic nonlinear optimization can be 
successfully brought to bear on this problem. From the 
user's viewpoint, these optimization techniques fall into 
two broad classes: (1) derivative-free methods and (2) 
derivative methods. If in the search for a minimum of 4>, 
the partial derivatives of eP (with respect to 13k) must be 
calculated, then we shall classify the method as a 
derivative-type method; otherwise, the method will be 
termed a derivative-free method of estimation. 

While the advantages of not having to compute 
analytical derivatives of the function eP can be overrated, 
inasmuch as numerical derivatives can be substituted 
for the analytical ones, the calculation and evaluation 
of numerical derivatives take a substantial amount of 
computer time. Moreover, near the minimum of eP the 
error in the derivatives rises; hence, termination of the 
iterative procedure leads to oscillation. 

We shall describe five of the more effective optimiza­
tion techniques, namely: 

1. Derivative-free methods: 
(a) Simplex method. 
(b) Direct search method. 

2. Derivative methods: 
(a) Gauss-Seidel. 
(b) Gradient methods. 
(c) Marquardt's method. 

All of the effective procedures are iterative ones which 
are best executed on a digital or hybrid computer. 
Wilde and Beightler ] and Beveridge and Schechter] 
describe ~ ... number of other nonlinear optimization 
methods. 

The reason why iterative methods of optimization are 
required and why the direct application of classical 
calculus fails to yield estimates of the parameters in a 
nonlinear model can be demonstrated by the following 
model: 

f31 X 
(6.2-2)

7J = x + 132 

or 

f31 X 
y= -- + € (6.2-3)

X + 132 

The unweighted sum of the squares of the unobservable 
errors, €, is 

n 

<P = L (Yi TJi)2 
i=1 

n n n
 

_ ~ y2 2R ~ Xi ~ R2 ~ Xf
 (6.2-4)- L i - fJ1 ~ X. + 13 +" fJ1 ~ (x, + 13 )2
i=1 i=1 J 2 i=1 J 2 

t D. J. Wilde and C. S. Beightler, Foundations 0/ Optimization,
 
Prentice-Hall, Englewood Cliffs, N.J., 1967.
 
t G. Beveridge and R. S. Schechter, Optimization-Theory and
 
Practice, McGraw-Hill, New York (1970).
 

By partially differentiating Equation 6.2-4, first with 
respect to 131 and then with respect to 132, and by equating 
each of the partial derivatives to zero, we obtain a pair of 
normal equations incorporating the estimates b, andb2 : 

n n 

b1 ~ x; _ ~ XiYj = 0 (6.2-5) 
~ (Xi + h2)2 L Xi + b2
i=1 i=1 

n . n 

b ~ Xf ~ XiYi - 0 (6.2-6) 
1 ? (Xi + h2)3 - ~ (Xi + b2)2 ­

J=1 i=1 

Note that Equations 6.2-5 and 6.2-6 are themselves 
nonlinear equations, so that we have converted the 
original optimization problem into a root-finding prob­
lem of a degree of difficulty equal to or greater than the 
optimization problem. Because finding the roots of a 
set of nonlinear equations involves some type of iterative 
technique, it seems to be equally (and perhaps more) 
feasible to minimize 4> by directly using an iterative 
procedure to minimize the original objective function, 
Equation 6.2-4. We shall now describe two derivative­
free methods of minimization which have proved to be 
remarkably flexible, easy to use, and relatively trouble 
free. 

6.2-1 Direct Search Methods 

The direct search method proposed by Hooke and 
Jeeves t has some distinct advantages in nonlinear 
estimation from the viewpoint of the user. No derivatives 
need be calculated and an acceleration phase is built 
directly into the logical scheme. The disadvantage of 
direct search methods is that they are slow in com­
parison with the derivative or simplex methods, especially 
as the number of parameters becomes large. 

The direct search algorithm operates in the foUowing 
manner. Initial values (guesses), b'?', for all the f3'st 
must be provided, as well as an initial incremental change 
for each parameter, tlb)o>-. eP is first evaluated at the 
initial point, b(O). Each b)O) of the set b(O) is changed in 
turn by + tlb)O) and, if 4> is improved, b)O) + Iib)O) is 
adopted as a new estimate of f3j, bj1). If 4> is not improved, 
b)O) - tlbJO) is tested. If no improvement is experienced 
for either ± llb)O), b)l).= b~-O). This process is continued 
for all the f3/s to complete an "exploratory move." The 
new estimated parameters define a vector in parameter 
space that represents a successful direction to reduce eP' 
A series of accelerating steps, or "pattern moves," is 
made along this vector as long as 4> is reduced. The 
magnitude of the pattern move in each coordinate 
direction is proportional to the number of prior success­
ful moves in that direction. If eP is not improved by one 

t R. Hooke and T. A. Jeeves, J. Assn. Compt. Mach. 8, 212,
 
1961.
 
~ All the intermediate estimates of the model parameters will be
 
designated as b' ); it is the terminal vector of estimated param­

eters which is the best estimate of~.
 



NONLINEAR ESTIMATION BY LEAST SQUARES 1'79 

of these pattern moves, a new exploratory move is made 
in order to define a new successful direction. If an 
exploratory move fails to give a new successful direction, 
the D..b/s are reduced gradually until either a new success­
ful direction can be defined or each Sb, becomes smaller 
than some predetermined tolerance. Failure to improve 
eP for a very small D.bj indicates that a local optimum has 
been reached. 

Two basic tests have been employed to determine 
when the search should terminate. One test is made on 
the fractional change in the individual estimated param­
eters, 6.bj, i.e., on the step sizes. Minimum desirable 
values of the fractional change in the variables are read 
into the computer program, and the test is conducted 
after each exploratory search failure. Another test occurs 
after each exploratory search or pattern move; the 
change in the value of 4> is compared to a specified 
fraction read into the computer program. If the value of 
4> has not decreased from the value on the previous move 
by an amount greater than the specified fraction, an 
exploratory search or pattern move is considered a 
failure. The calculations terminate when both tests are 
satisfied on a specified nurnber of cycles. 

It is very easy to add simple constraints to the search 
routine. For example, if one wishes to restrict the b/s to 
positive numbers only, as required in certain categories 
of engineering problems in which the b/s represent 
physical quantities which cannot be negative, one can 
readily build into the computer program the constraint 

where 
Ij = lower bound of the search for bj 

u, = upper bound of the search for b, 

and choose Ij = 0 and u, to be some very large number. 

Example 6.2-1 Direct Search Technique in Estimation 

A comparison can be made between estimation by direct 
search and linear estimation for nonlinear models if the 
models can be linearized by suitable transformations and 
then treated by linear analysis. Such a comparison is made 
in this example; some of the typical problems encountered 
in iterative nonlinear estimation are pointed out. Eleven 
sets of simulated data were prepared for the model 

or 
log YJ = log ex + /31 log Xl + /32 log X2 

by arbitrarily selecting = 1.0, /31 = 3.0, and /32 = 0.5.(X 

The values of YJ were then perturbed by normal random 
deviates with variances of 10 and 100, and also by uniform 
deviations of ±o. i percent, ± 1 percent; and ± 10 percent 
with random sign allocation. 

The simulated data were fit using three criteria, Equations 
(a), (b), and (c) below, respectively. The results appear in 
Table E6.2-1 for two initial starting vectors. 

n 

Minimize .2 (Yt - YJt)2 (a) 
t=l 

n ... (yt _ t)2Minimize.2 __YJ_ (b) 
t=l 1]t 

n 

Minimize .2 (log Yt - log 1]t)2 

t=l (c) 

The third criterion, Equation (c), is the criterion used in 
least squares linear estimation. In all of the searches the 
initial fractional step size for each D..bj was arbitrarily set at 
0.30, Past experience with the direct search technique 
indicated that ilbj = 0.30 was a reasonable compromise 
between a large initial step size, which might have to be 
reduced substantially before 4> would be reduced, and too 
small a step size, which would cause innumerable, time­
consuming, small steps. The criterion for stopping the 
search was a change of less than 0.01 percent in the value of 
each of the estimated parameters. In using a variance of 
100 to calculate the simulated Yt values, a negative value 
was obtained for one Y t which precluded calculation by 
criterion (c) for this one case. 

The estimated parameters by direct search using criterion 
(c), can be seen to give essentially the same values as the 
linearized technique for this simple problem, although they 
require, in general, more time to compute. Since the three 
criteria are not identical, the comparisons made in the 
table also demonstrate the effect of changing the criterion 
itself. If the unobservable error, E, is added to In 1], then linear 
least squares gives the desired estimates of the parameters. 
However, if the proper model is Y = 1] + E, then the 
estimated parameters can be quite different from those 
obtained from the model In Y = In 1] + €, particularly as 
the error increases. 

Figure E6.2-1 illustrates the progress of one search. Note 
that although the sum of the squares of the residuals steadily 
decreases, the values of the estimated parameters do not 
change monotonically, Other initial guesses for the param­
eters than those listed in Table E6.2-1 were tested and 
yielded essentially the same final answers for both the 
estimated parameters and the sum of the squares of re­
siduals. However, the choice of the initial estimates of the 
parameters is by no means as simple as it seems'. Unsuitable 
choices for the initial guesses can introduce scaling diffi­
culties. By selecting starting guesses for (x, /31, and /32 which 
led to the extremely small initial predicted values of Y, it 
was observed that the search program would not operate. 
For example, if the initial guesses were chosen to be -5, 
- 5, and - 5, respectively, then a comparison between the 
first few initial simulated and predicted values of Y revealed 
the following (for the data without error): 

Y Calculated from
 
YSimulated the Model using Percent
 

Data a(O) = biD) = b~O) = - 5 Deviation
 

0.48000 X 102 -0.2584 X 10- 8 -0.1857 X 1013 

0.61094 X 103 -0.19622 X 10- 7 - 0.3113 X lot3 

0.12626 X 104 -0.34845 X 10- 6 -0.3623 X lot2 
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TABLE E6.2-1 RESULTS OF NONLINEAR ESTIMATION BY DIRECT SEARCH USING SIMULATED
 

DATA FOR TH E MODEL 7J = axf1xg2
 

Direct Search-Initial
 
Guesses I:
 

a = 0.05 Degree of Error Introduced into Y 
hl = 4.0 
h2 = 0.7 None ±0.1% ±1% ±1O% 

a 0.999 0.988 0.886 .273
 
hl 3.000 3.004 3.047 3.516
 
h2 0.500 0.502 0.521 0.714
 
Minimum of Equ ation (a) 4.8 x 10- 3 2.15 214.3 2.1 x 105
 

Number of exploratory
 
searches 418 370 310 161
 

a 0.999 0.996 0.930 0.628
 
hI 3.000 3.001 3.026 3.159
 
h2 0.500 0.501 0.518 0.629
 
Minimum of Equation (b) 1.7 x 10- 7 7.7 X 10- 6 9.4 X 10- 4 7.2 X 10-2
 

Number of exploratory
 
searches 143 150 167 215 

a 1.002 0.996 0.931 0.651 
hI 2.999 3.001 3.025 3.142 
h2 0.500 0.501 0.517 0.617 
Minimum ofEquation (c) 3.2 x 10- 7 7.7 X 10-6 9.4 X 10-4 7.7 X 10-2 

Number of exploratory 
searches 142 170 157 120 

Linear regression analysis 
a 1.000 0.996 0.931 0.652 
hI 3.000 3.001 3.026 3.143 
h2 0.500 0.501 0.618 0.618 

Direct Search-Initial
 
Guesses II :
 

a.= 5.0 Degree of Error Introduced into Y 
b, = 5.0 
h2 = 5.0 None ±0.1% ±1 % ± 10'70 

a 0.998 0.973 0.889 0.276 
hI 3.000 3.011 3.046 3.513 
h2 0.500 0.503 0.521 0.712 
Minimum of Equation (a) 3.5 x 10- 2 4.42 · 214 2.1 x 105 

Number of exploratory 
searches 149 123 221 183 

a 1.001 0.997 0.930 0.625 
hI 2.999 3.000 3.026 3.162 
h2 0.499 0.500 0.518 0.630 
Minimum of Equ at ion (b) 4.1 xlO - 6 7.8 x 10- 6 9.4 X 10- 4 7.2 X 10- 2 

Number of explo ratory 
searches 105 70 127 114 

a 0.999 0.995 0.931 0.651 
hI 3.000 3.001 3.026 3.143 
h2 0.500 0.501 0.517 0.618 
Minimum of Equation (c) 9.2 x 10- 8 7.7 X 10- 6 9.5 X 10- 4 7.7 X 10- 2 

Number of exploratory 
searches 125 127 96 100 

Var {Y}= 10 Var {Y}= 100 

1.232 5.543 
2.907 2.229 
0.485 0.397 

760.9 7.8 x 105 

468 489 

0.716 19.704 
3.107 1.701 
0.608 0.244 
4.5 X 10-2 1.99 

280 231 

0.699 
3.115 
0.610 
4.4 X 10- 2 

105 

0.695 
3.118 
0.612 

Var { Y} = 10 Var{Y}=loo 

1.231 5.640 
2.908 2.222 
0.485 0.394 

761 7.78 x 105 

169 73 

0.717 19.55 
3.106 1.704 
0.607 0.247 
4.5 X 10- 2 1.99 

80 94 

0.694 
3.1'18 
0.612 
4.4 X 10- 2 

109 
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FIGURE £6.2-1 Progress of direct search for initial guesses a(O) = 0.050, 
b~O) = 0.700 for criterion (a). Error is uniform ±1 percent. 

h1 (0) = 4.000, and 

No successful exploratory or pattern search moves were 
possible in such circumstances, because the effect of any 
change in the parameters was well beyond the significant 
figures in the simulated values of Y. 

Although this example is somewhat specialized, it does 
bring out many of the typical problems encountered in 
nonlinear estimation, including: 

1. How to choose initial guesses for the parameters. 
2. How to choose a suitable step size for minimization. 
3. How the model, and thus the criterion for optimization, 

should be written. 

6.2-2 Flexible Geometric Simplex Method 

A second derivative-free method of minimization of a 
nonlinear objective function is by use of regular patterns 
of search involving simplexes. .These techniques have 
proved very successful in finding an extremum of an 
unconstrained objective function, as well as a constrained 
extremum, and are especially effective as the number of 
model parameters increases. For two parameters, a 
regular simplex is an equilateral triangle (three points); 

for three parameters, the design is a regular tetrahedron 
(four points). See Figure 6.2-2. 

In the search for a minimum of the sum of the squares 
of the deviations, ~, trial values of the model parameters 
can be selected at points in parameter space located at the 
vertices of the simplex, as originally suggested by Spend­
ley, Hext, and Himsworth t in connection with experi­
mental designs. The sum of the squares of the deviations 
is evaluated at each of the vertices of the simplex; a 
projection is made from the point yielding the highest 
value of the objective function, point A in Figure 6.2-2, 
through the centroid of the simplex. Point A is deleted 
and a new simplex, termed a reflection, is formed com­
posed of the remaining old points and one new point, B, 
located along the projected line at the proper distance 
from the centroid. Continuation of this procedure, always 
deleting the vertex that yields the highest value of the ob­
jective function, plus rules for reducing the size ofthe sim­
plex and .rules to prevent cycling in the vicinity of the 

t N. Spendley, G. R. Hext, and F. R. Himsworth, Technometrics 
4, 441, 1962. 
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(a) 

FIGURE 6.2-2 Regular simplexes for two and three independent parameters. The 
CD represents the lowest response. The arrows point in the direction of greatest 
improvement. (a) Two variable simplex. (b) Three variable simplex. 

extremum, permits a derivative-free search in which the 
step size is, in essence, fixed at successively reduced 
levels but the direction of search is permitted to change. 
Figure 6.2-3a illustrates the successive simplexes formed 
for a two-parameter model with a well-behaved sum of 
squares objective function. 

Certain practical difficulties in the original procedure, 
namely that it did not provide for acceleration of the 
search, and encountered difficulty in carrying on the 
search in curving valleys or on curving .ridges led to 
several improvements (for example the cornplex method 
of M. J. Box, Compt. J. 7, 42, 1965, using nonregular poly­

. hedrons). We describe here a straightforward technique, 
in which the simplex is permitted to' alter in .shape.t 
that has proved to be very effective and easily imple­
mented on a digital computer.] In general it is recom­
mended as better than the previously described direct 

t J. A. NeIder and R. Mead, Compt. J. 7, 308, 1965. 
~ Available from u.S. Naval Ordnance Test Station, China 
Lake, Calif., as Publication 2698, LSQ2, Jan. 1967. Also available 
as NOLSQ4. 

® 
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(b) 

search method because it takes less computer time 
even though the convergence to termination is slow. 

As before we want to minimize ~, where ~ is defined 
by Equation 6.2-1. To simplify the notation, we show 
only the functional dependence of ~ on the estimated 
parameters, suppressing in the notation the dependence 
on the independent variables, x: 

(6.2-7)~ = ~(b) 

Let b, = [bl,i' b2 , h ••• , bm.d be the vector specifying the 
m coordinates in the parameter' space bl , b2 , ••• , bm of 
the vertex i. There will be m + 'I vertices comprising the 

.simplex, andeach will be specified by a vector, bi. Let 
~i denote the corresponding values of the objective 
function. The initial simplex will be a regular simplex 
(it does not have to be) with vertex 1 as the origin.:From 
texts on' analytical geometry," it can be shown that the 
coordinates of the vertices of the regular simplex are 
designated as shown in Table 6.2-1. 

For ,example, for m = 2 and a = 1, the triangle given 

- - --Indicates projection 

(a) (b) 

FIGURE 6.2-3 Sequence of simplexes obtained in minimizing the sum of the squares of the devia­
tions: (a) regular simplex, and (b) variable size simplex. 



TABLE 6.2-1 

Coordinates 

Vertex b1 ,t b2 ,t bm-1,t bm,t 

1 0 0 0 0 
2 71'1 71' 71' 71' 

3 71' 71'1 71' 71' 

m 71' 71' 71'1 71' 

m + 1 71' 71' 71' 71'1 

where 

71'1 = ~ [vm + 1 + n - 1] 
mV2 

'IT = ~ [vm + 1 - 1]
mV2 

a = length of the path between two vertices 

in Figure 6.2-2 has the following coordinates for the 
three vertices: 

Vertex b1 , i b2 , i 

1 0 0 
2 0.965 0.259 
3 0.259 0.965 

We shall let
 

4>u = max {4>i} with the corresponding bi=u
 
i 

4>z = inin-{4>t} with the corresponding bi=z 
i 

and let c be the centroid of all the points of the simplex 
with i =f. u, i.e., .omitting the worst point. The procedure 
consists of sequentially replacing vertex b, with a new 
vertex according to the following scheme. 

1. First, reflection of the simplex is carried out to ob­
tain a vertex designated by b* with coordinates given by 

b* _= (I + 'Yr)c - Yrbu (6.2-8) 

where Yr is the so-called reflection coefficient, a positive 
constant determined by the user that may be unity. Let 
4>(b*) = 4>*. After b, is reflected, one of three outcomes 
can exist: 

(a)	 If 4>1 < ep* < 4>u, replace b, by b*. The resulting 
simplex is used as a new starting simplex in step 1. 

(b)	 If 4>* < 4>u, expand b* to b** by the relation 

b** = Yeb* + (1 - Ye)c (6.2-9) 

where Ye is the expansion coefficient (say a value 
of 2). If 4>** < 4>1' replace b, by 4>** and start 
step 1 again. If 4>** > 4>b the expansion has 
failed; replace b, by b* and start step 1 again. 

(c)	 If 4>* > 1>i for all i =1= u, that is, replacing b, by 
b* leaves b* as the point that gives the maximum 
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4>, then define a new b, which is either the old 
b, or is b*, whichever gives the lower value of 4>. 
Afterwards a contraction is carried out, denoted 
by b**, and computed as follows: 

b** = Ycbu + (1 - Yc)c (6.2-10) 

where Yc is the contraction coefficient, 0 ~ Yc S 1 
(usually j ), Replace b, by b** and start step 1 
again, unless the vertex obtained by contraction 
is worse than the max of {4>(bu), 4>(b*)}, that is, 
4>** > min {4>u, 4>*}, in which case replace all the 
b, by t(bi + b.) and go back to step 1. 

2. The search is terminated when 

where e is an arbitrarily chosen small number and '/J is 
the average value of 4>. 

Figure 6.2-4 is a flow chart of the program logic. 

Example 6.2-2 Flexible Simplex Method 

To illustrate the flexible simplex method, the data of 
Example 4.3-2 were fitted by the linear model 1] = f3~ + (31X. 
The starting vector was b~(0) = 1, biD) = 1, at which the sum 
of the square of the deviations, 4>(0), was 9.55 x 105 

• Figure 
£6.2-2 illustrates the progress of the search for 85 successive 
reflections, expansions, and contractions (which took 1.76 
seconds on a CDC 6600 computer), at which stage the search 
terminated giving b~ = 13.506, bI = 79.021, and 4>min = 
9.616 X 103 compared with 13.51, 79.02, and 9.617 x 103

, 

respectively, from Example 4.3-2. Starting at other starting 
vectors yielded identical results. 

Example 6.2-3 Nonlinear Estimation of a Stream Flow 
Model 

A model proposed to predict excess stream flow above a 
normal level of flow was 

where 

{3 = f + (1 - D« 
Q = predicted excess channel flow rate above the normal 

channel flow rate, the dependent variable 
Q* = ioput flow rate, a known value 

t = time, an independent variable 

;} = model parameters characterizing hold up, by passing, 
a and stagnancy, to be estimated 

i = mean residence time for the channel, a known value 
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Calculate the initial bi and cPi,
 
i =1,2, •••, n + 1,of the startingsimplex
 

Calculate b* = (1 +"Yr)e - "Yrbu 

No 

No 

No Replace b u by b* 

~----No -----I 

Yes ~* > cPu? ~ No 

Yes 

Calculate b** =I'cbu + (1 - "Yc)c 

No 

Yes--/ Stop 

FIGURE 6.2-4 Information flow chart for flexible simplex method. 

100...------r------r----.------y---.----...,..------.-----r-----; 
I 
, cP(O) =9.55 x 105 
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Iteration number 

FIGURE £6.2-2 
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1.0	 • - Predicted flow 

•	 Observed data
Q. 0.9 

m = 6.65""­
~ n = 14.67~ 0.8 

f= 0.719 
OJ" a =0.440 
~ 0.7 
3: 
.g 0:6 
en •.; 0.5 
c 

.Q 

~ 0.4 Mean normal "flow= 580 cfsE 
Q* =3220 cfs C 0.3 

0.2 

0.1 

• 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

Time from release at Austin, hours 

FIGURE £6.2-3 Predicted and experimental excess flow rates at Smithville".Texas. 

TABLE E6.2-3a The model was fitted, using the flexible simplex method, to 
data provided by the Lower Colorado River Authority forStage 
the Colorado River below Austin, Texas. The data con­Number * m n 1 a 
sisted of stream flow measurements at Smithville, Texas, a 

A 2.443 2.035 1.077~ 0.898 1.013 town about 45 miles downstream from Austin. The data 
B 0.470 1.077 4.035 0.898 1.013 were for water released at Austin on August 4, 1966,
C 2.460 1.131 1.119 0.155 1.080 which gave a crest at Smithville about one day later. Figure 
D 2.768 1.152 1.143 0.730 1.979 E6.2-3 compares the data and estimated Q/ Q*. Table 
E 0.107 2.000 4.000 0.040 2.000 E6.2-3a illustrates the path of the search in parameter space. 

5 A O~675 1.888 3.895 0.577 1.203 The search was terminated when. the "volume" of the 
B 0.471 1.077 4.035 0.898 1.013 simplex was reduced below 10- 7 (after approximately 8 
C 0.496 2.410 5.423 0.895 1.220 seconds ofcentral processing time on a CDC 6600 computer). 
D 0.977 1.969 3.973 0.266 0.574 Several starting vectors were used, all of which yielded 
E 0.489 1.814 4.460 0.652 0.613 essentially the same values of the estimated parameters. 

The lowest value of eP obtained was 0.0216 for which m = 10	 A 0.480 1.555 5.53 0.970 0.966 
6.13, n = 15.08,1 = 0.705 and a = 0.448. Interaction amongB 0.470 1.077 4.403 0.898 1.013 
the	 parameters (refer to Section 6.3) accounts for theseC 0.432 1.875 4.924 0.832 1.027 
differences.D 0.470 1.489 4.630 0.751 0.466 

The parameters in the same model were estimated, using E 0.413 1.675 4.647 0.731 0.853 
the direct search technique, in about the same time. The 

20 A 0.241 2~354 6.467 0.867 0.366 results are given in Table E6.2-3b. The estimates for m 
B 0.250 2.202 6.177 0.579 0.385 and n are somewhat different from those in Table E6.2-3a 
C 0.225 2.546 6.625 0.836 0.359 because the direct search program, using the same percentage 
D 0.249 2.393 6.243 0.778 0.489 change in the coefficients, terminated earlier than did the 
E 0.314 1.953 5.972 0.916 0.391 

50	 A 0.143 3.731 8.587 0.727 0.472 TABLE E6.2-3b
 
B 0.169 3.470 8.047 0.730 0.439
 
C 0.147 3.670 8.481 0.729 ' 0.472 Exploratory
 
D 0.167 3.228 7.822 0.788 0.384 Search 
E 0.126 4.167 9.458 0.713 0.500 Number m n ex f 

184 A 0.0219 6.651 14.672 0.719 0.440 
B 0.0219 6.653 14.676 0.719 0.440 o 1.067 2.000 4.000 0.040 2.000 
C 0.0219 6.653 14.675 0.719 0.440 5 0.434 4.400 7.600 0.028 0.800 
D 0.0219 6.651 14.672 0.719 10 0.048 3.200 36.40 0.280 0.8000.440 
E 0.0219 6.651 14.671 20 0.026 3.136 23.83 0.399 0.7160.719 0.440 

50 0.026 3.133 23.92 0.398 0.717
* A, B, C, D, and E, refer to the simplex vertices. 
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simplex search (at a cp of 0.026 versus a cp of 0.0219 for the 
simplex method). 

6.2-3 Linearization of the Model 

We now consider the first of the derivative-type 
methods of minimizing the sum of the squares of the 
deviations, that is, methods that require the numerical 
or analytical computation of first (and for some methods 
second) derivatives. Among the many varieties of 
derivative-type methods, we have the space to describe 
just those two most widely used: 

1. Linearization of the process model, itself. 
2. Linearization of the criterion, that is, linearization 

of the function ep. 

Wilde and Beightler ] described a number of additional 
methods. 

The first technique to be described here has been called 
by many names including the Newton-Raphson method, 
the Gauss-Newton method, and the Gauss-Seidel 
method, though Gauss deserves the lion's share of the 
credit. The method is very simple in concept: linearize 
the model in a truncated Taylor series in order to make 
use of linear analysis, and attain the desired minimum 
of the sum of the squares of the deviations by an iterative 
sequence of calculations. Initial guesses are made for the 
parameters; cyclically, new estimates are obtained by a 
method which has its foundations in the Newton­
Raphson algorithm. The calculations are repeated until 
a criterion for convergence is met. 

We begin by expanding 'YJ in a truncated Taylor series 
(refer toSection 2.4-4) about b(O), the initial guess for ~. 

Weights are included as in. Chapter 5. The initial" guess 
for f3j is designated bjO). If . 

n 

c/> = 2 Wi(l'j - 1]1)2 (6.2-11) 
i=1 

where 'YJi refers to the model with the vector for the ith 
data set introduced, Xh by minimizing cp we can find an 
improved estimate of f3j. (If 'YJ were truly a linear func­
tion, only one step would be needed to reach the mini­
mum of cp.) We expand 'YJ as follows: 

'YJ = 'YJo + ( -8'YJ) (131 - bi°») + ... + (8- TJ ) (13m - b~») 
~10 ~mo 

m 

= 'YJo + ~ (8'YJ) ~bjO) (6.2-12)s: 813· 0j=l J 

where ~b)O) = f3j - b}O), the subscript 0 on TJ means 'YJ 
evaluated using biD), ... , b~), and the subscript 0 on the 
partial derivatives means the same thing. To relieve the 
user ofone of the most burdensome features of employing 
derivative methods, computer programs have been written 

t D. J. Wilde and C. S. Beightler, Foundations 0/ Optimization, 
Prentice-Hall, Englewood Cliffs, N.J., 1967. 

which approximate the partial derivatives by partial 
difference quotients: 

'8bjO) 

where '8 represents a small perturbation. However, it 
may not always be possible to compute a derivative 
numerically with the required accuracy. If the regression 
curve for the model is flat, the quantity in the denomina­
tor grows small and the relative error in the approximate 
derivative can increase drastically. (The same feature -is 
true in the next section in connection with the numerical 
approximation of the derivatives of cp. As cp approaches' 
its minimum, the relative errors in the numerically 
computed derivatives become larger. Consequently, the 
search for the minimum of cp can oscillate and/or become 
very inefficient.) 

After the linear approximation for 'YJ, Equation 6.2-12,' 
is introduced into Equation 6.2-11, the partial derivatives 
of ep with respect to each of the t:,.bjO) can be equated to 
zero, as explained in Section 5.1 

8.~ Wi[Yi - ('YJi)O - .~ (8'YJi) t:,.bjO)]2 
t= 1 J =1 8f3j ° - 0 (6.2-13)

8(t:,.bjO») ­

Equation 6.2-13 yields a set of m linear equations corre­
sponding to the normal equations of Chapter 5: 

n 

26Wi [ Y1 - (1]1)0 - (:~:t !1b~Ol 

. _ (8'YJi) ~b~O) + ...J(8'1Ji) = 0 
8132 ° 8f:lm 0 

Let ElO) = Yi - ('YJi)O. Then these linear equations can 
be written as follows: 

!:J.b~Ol ~ W1(8'YJi ) (8'YJi) +!:J.b~O' ~ wi(8 
TJ i) (fhJi.) + ...? 8131 0 8131 ° ? 8132 0 BPI 0t=1 t=l 

+!:J.b<,;!l ~ W;(8TJ i) (8'YJi) = ~ w1E10l(O'YJi) ­
? 813m ° 8131 ° ~ 0f31 0t=1 t=1 

(6.2-14) 

TJ i!:J.b~O' ~ wi(8 ) (8'YJi) +!:J.Wl ~ Wi(8'YJi) (O'YJi\ + ...
.? 8131 ° 813m. ° L...t 8132 ° 8f3:J° .t=1 i=1 
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We now want to solve for the D..b/s. In the Gauss-Seidel method, h, == 1. Other techniques to 
The array of equations can be made much more evaluate hh which have been used with greater effective­

compact by introducing the following matrix notation: ness, are: 

[Xij] = 
81Ji(Xi; b) 

8f3j 

(8~1) 
8f31 0 

X(O) = 

e~n)
8f31 0 

i ~ 1,2, ... , n 
j = 1,2, ... , m 

(8~1) 
8f3m 0 

an n x m 
matrix 

(8~n) 
8f3m 0 

Then: 

A(O) = (XTwX)(O) 

~ w.gO)(81Ji ) 
~ l l 8f3 0
i=1 m 

and Equations 6.2-14 can be written in matrix notation as 

(6.2-15) 
or 

so that 
(6.2-16) 

where C(O) = (A(0)) -1. Observe the close analogy between 
the development in Section 5.1 and that above. 

Once the vector B(O) is calculated by Equation 6.2-16, 
a new estimate of each f3j is obtained by repeating the 
calculation with b)l\ the improved estimate of f3j, 
replacing bjO) in Equation 6.2-16 and in the matrix 
elements [Xij]. The recursion relation 

bj.n+l) = bjn) + hjn) D..bjn) (6.2-17) 

is used to calculate bJl); hj is an "acceleration factor," 
i.e., a factor supplied by the user to speed up the progress 
of' the search for the minimum of 1>.. In effect, Sb, 
determines the direction of the search for the minimum 
1> in parameter space, .and h, determines the step length. 

1. Select the length of each step along the vector 
B proportional to the slope of the approximating plane 
for the objective function 1>. 

2. Select equal size steps until an increase in 4> is 
experienced. 

3. Use a Fibonacci search along the direction of 
decrease in 1> to locate its lowest point. 

4. Use a multiple bigger or smaller than unity of 
some initially chosen step size, a multiple proportional 
to the number of previous successful moves in the given 
coordinate direction. 

The motivation underlying the adjustment of hj is 
that the minimization can be accelerated or decelerated 
automatically to: (1) speed up the initial approach to the 
minimum of 1> and also (2) slow down the final approach 
to avoid excessive oscillation. Successive vectors Bare 
calculated until each Sb, is small enough and/or the 
absolute or relative change in 1> drops below a pre­
determined number, in which case the search for the 
minimum ~ is terminated. 

Certain practical difficulties that arise in the procedure 
will now be mentioned. 

1. How can suitable initial guesses for the b(O)"sbe 
obtained? Because the function ~ is nonlinear, more 
than one minimum may exist in 1>-a feature absent 
from the linear analysis of Chapter 5. Consequently, if 
the initial guesses for the parameters are too far away 
from the estimates that minimize 1>, the search may not 
terminate at the global (lowest) minimum for ~ but at 
some other minimum. Figure 6.2-5 displays in' two 
dimensions what might happen with a poor choice for 
the initial vector b(O). One suggestion' to obtain suitable 
initial guesses for the f3's is to plot the response as a 
function of a single variable, holding all other 'variables 
constant, and to take some asymptotic value or other 
clearly indicated value for bjO). Then the initial values 
for other parameters can be based on the(se) initially 
selected values. Often, approximate values of the f3's will 
be known from earlier studies or from physical reasoning. 
The ultimate resort is just to try several starting vectors 
b(O) in the feasible range and ascertain whether or not 
they all yield the same value for the minimum of 1>. 
Kittrell, Mezaki, and. Watson t described other tech­
niques to obtain initial parameter estimates. 

2. The objective function may become unbounded 
in the range of the search for the minimum of C/J, or 
the first partial derivatives of the model may become 

t J. R. Kittrell, R. Mezaki, and C. C. Watson, Ind. Eng. Chern. 
57, 19, 1965. 
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FIGURE 6.2-5 Effect of the initial guess for fJ on: (1) convergence to a local minimum in the sum 
of the squares of the deviations (solid line), and (2) oscillation in ep in the search sequence (dashed 
line) and subsequent divergence. 

unbounded. Models with polynomials in the denominator 
are particularly subject to this problem, as for example 

in which both 7] and the partial derivative of 7] with 
respect to f32 

07] (f3o + f31Xl)X2 

8f32 (f32Xl + f33 X2)2 

become unbounded when b~n)Xl = - b~n)X2' The only 
ways to overcome this difficulty are to restrict the region 
of search for the f3's and/or to be quite careful in the 
original construction of the process model. 

3. The matrix A(O) may become singular because of 
redundancy among the data, or almost singular at one 
or more values of ~ in the search. A proper experimental 
design for the original collection of data can overcome 
this difficulty. 

4. The iterative technique at some stage may increase 
rather than decrease cP. Refer to the dashed line in Figure 
6.2-5. Suitable logical steps introduced into the computer 
code will avoid this outcome, such as testing to see if 
c/><n+l) < c/><n> at each cycle and, if not, cutting the value 
of hj by a preselected factor. 

We now give an example of the Gauss-Seidel method. 
With initial estimates of the parameters far from the 
final estimates, it is a characteristically slow method but 
converges rapidly near termination (in contrast to the 
method of steepest descent, described in the next section, 
which converges very slowly). 

Example 6.2-4 Application of the Gauss-Seidel Method 

Simulated data have been prepared to demonstrate 
estimation by the Gauss-Seidel method. The simulated data 
in Table E6.2-4a were generated by adding to the function 
'YJ = 3Xl + 3e-~2/2 random errors with a mean of 0 and a 
variance of 0.01. 

TABLE E6.2-4a 

Xl X2 

0.0 0.0 
0.0 1.0 
0.0 2.0 
0.0 3.0 

1.0 0.0 
1.0 1.0 
1.0 2.0 
1.0 2.0 

2.0 0.0 
2.0 1.0 
2.0 2.0 

2.5 2.0 

2.9 1.8 

SIMULATED DATA 

Y Y 
(Exact) (Simulated) 

3.00 2.93 
1.82 1.95 
1.10 0.81 
0.67 0.58 

6.00 5.90 
4.82 4.74 
4.10 4.18 
4.10 4.05 

9.00 9.03 
7.82 7.85 
7.10 7.22 

8.60 8.50 

9.92 9.81 

We shall now assume that we know nothing at all about 
the generation of the data in Table E6.2-4a, but merely that 
we have the data and want to estimate the parameters in 
the known (or assumed) model 

(a) 

by minimizing 

f32 e1J3 X 2 ]2 4> - f3lX! - (b)= .L
n 

[Yt 

i=l 

First, we have to determine the initial estimates b\O), 
b~O), and b~O). We might just select, out of thin air, 

or 

Instead, for illustrative purposes, we shall obtain estimates 
near the true minimum by some preliminary graphical work, 
We know from Equation (a) that if X2 is held constant, we 
obtain a straight line whose slope (07]/OX1)X2 is f3l. Figure 
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FIGURE E6.2-4a 

E6.2-4a illustrates a plot of Y versus Xl with X2 fixed at 
several different values. The slopes approximating (31 are: 

X2 b~O) 

o 3.1 
1 2.9 
2 3.2 

so that an average value of 3.1 can be used for biO). Note that 
if the X2 values had not been replicated, the above pro­
cedure would require considerable interpolation among the 
data points. 

To get b~O) and b~O), we can form 

(TJ - 3.1x 1) = (32 eIJax2 

In (1] - 3. 1x1) = In{32 + {33X2 (b) 

Figure E6.2-4b is a plot of the values of In (Y - 3.1x1) for 
some of the data sets versus X2'; the slope of the line is an 
estimate of b~O) while the intercept is approximately In (b~O». 

Figure E6.2-4b gives b~O) '" 2.9 and 

b~O) '" [(In 2.88 - In 1.02)/(0 - 2)] = - 0.52. 

These estimates are close to the true parameters because of 
the small error variance chosen for the simulated data. 

Next we must decide on a weighting scheme. In this 
example all the data sets will be weighted equally; i.e., 

2.0 r-------.....,.....------,.-----...., 

1.5 

€ 
-e 1.0 
8 
M Slope ~ biG)I 0.5 
-b 
..E 

0 

-0.5 
0 1 2 3 

(b) 

FIGURE E6.2-4b 
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Wi = 1. Finally, a termination criterion must be selected to 
let the computer know, when to stop, say for each b, when 

b(jn) - bj(n - 1) 

--b-~n---1-)- < 10- 6 ( c) 

The partial derivatives of 1] are 

01] 
- =X1 
0{31 

01] 
= eIJaX2 -

0{32 

01] 
- = (32X2 eIJax2 
0{33 

Consequently, 

OTJ 1)
( 0{31 0 = X11 = 0.0 

OTJ 2)
( 0{31 0 = X21 = 0.0 

OTJ 1)OP2 0 = e - 0.52(0) = 1( 

-
OTJ

2) = e- 0 •52( 1 ) = 0.594( 0{32 0 

01]1) = (2.9)(0)e - 0.52(0) = 0( 0{33 0 

( OTJ 2) = (2.9)(1) e- 0.52(1) = 1.723 
0{33 0 

These elements comprise the matrix X(O), from which the 
matrix (X(O»TX(O) == A(O) can be computed. The elements of 
E(O) are 

Ei O) = Y1 - (TJ1)0 = Y1 - (3.lX11 + 2.9 e- o 52X12) 

= 2.93 - [3.1(0) + 2.9 e - 0.52(0)] = 0.03 

E~O) = Y2 - (TJ2)0 = 1.95 - [3.1(0) + 2.9 e - 0.52(1)] = 0.23 

etc. 

from which the matrix (X(O)TE(O» can be computed. Then 
B(O) can be calculated from Equation 6.2-16, and the vector 
b(l) can be computed from Equation 6.2-17. 

Table E6.2-4b lists the progress of the Gauss-Seidel 
method by cycles (only four significant figures are shown in 

TABLE E6.2-4b PROGRESS OF THE GAUSS-SEIDEL METHOD 

Cycle Number bin) b~n) b~n) c/><n) 

o(initial 3.1 2.9 -0.52 0.1981 
guesses) 

1 3.017 2.958 -0.5222 0.1573 
2 3.017 2.958 -0.5220 0.1574 
3 3.017 2.958 -0.5220 0.1574 
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the table). Note that with the initial guesses close to the 
final" estimates" of ~ and with a well-behaved objective 
function, only a very few cycles are needed to meet the 
termination criterion. 

To make the iterative procedure converge faster and 
to avoid oscillation with less favorable objective functions 
than used in Example 6.2-4, several authors have sug­
gested that the behavior of the sum of the squares of the 
deviations, ep, be automatically explored during each 
cycle of iteration in the directions given by the elements 
of ~.t Hartley, after solving Equation 6.2-16 but prior 
to applying Equation 6.2-17, calculated several values of 
1> for different values of Vi ~b;·n) in the range 0 ::;; Vi ~ 1. 
Other ranges can be used, of course. The value of Vi for 
which ep<n)(v) was a minimum, say pj, was used to obtain 

Approximate v*~ 
I 

FIGURE 6.2-6 Exploration of the surface t/>. 

t G. E. P. Box, Bull. Inst. Int. Stat. 36, 215, 1958; G. W. Booth 
and T. I. Peterson, IBM Share Program Paper No. 687 WL NLI, 
1958; H. O. Hartley, Technometrics 3, 269, 1961. 

the (n + 1)st vector of b's by placing vf = h, in Equation 
6.2-17. If a parabola is used to fit the values of ep<n>(v) 
as illustrated in Figure 6.2-6: 

ep<n)(Vj) = 00 + 01Vj + 02V; 

only three values of ep are required to obtain 0O, 0b and 
02, and v1 = - 01/202. Hartley demonstrated that this 
modification of the Gauss-Seidel method converged to 
a minimum ep under certain specificconditions. However, 
because the given requirements cannot in general be 
established prior to finding the minimum of ep, the 
practical merit of Hartley's method lies in the evaluation 
of hi in Equation 6.2-17 by a flexible objective rather 
than a subjective criterion. The suggested exploration 
technique has an advantage over the method of steepest 
descent, which will be discussed" shortly, in that the 
scaling (selection of the magnitude) of the moves to 
improve ep is controlled. Any method that continuously 
adjusts h, so that ep can only decrease and never increase 
will avoid some of the difficulties of the standard Gauss­
Seidel method in which hi is unity. 

Example 6.2-5 Modified Gauss-Seidel Techniques 

Strand, Kohl, and Bonham ~ used a version of Hartley's 
modification of the Gauss-Seidel method to fit values for 
the Thomas-Fermi-Dirac potential for atoms as tabulated 
by Thomas. The' model was 

P2x	 P4x Pax 'Y}(x, f31' ••. , f36) = f31 e- + f33 e- + Ps e­

~ T. G. Strand, D. A. Kohl, and R. A. Bonham, J. Chern. Physics 
39, 1307, 1963. 

TABLE £6.2-5 LEAST SQUARE FIT OF THE THOMAS-FERMI-DIR~C POTENTI~ALFUNCTION 

n 
Cycle Number bln) b~n) b~n) b~n) b~n) b~n) 0-,103 * 

Modified Gauss-Seidel Method 

A:	 0 0.4660 1.1420 0.5410 6.4470 0.1000 9.9990 83.7 
1 0.4607 1.3458 0.4526 5.9621 0.0820 8.9045 7.415 
2 0.5261 1.6027 0.4302 6.9199 0.0414 9.0207 4.048 
5 0.5696 1.6775 0.3845 7.6433 0.0438 10.993 3.533 

10 0.4786 1.5047 0.4063 5.4189 0.1125 12.708 3.016 

B:	 0 5.180 1.5770 0.3910 6.2190 0.0890 25.000 6.624 
1 0.5625 1.6825 0.3674 6.5011 0.0699 22.126 2.390 
2 0.5313 1.6276 0.3892 5.9050 0.0792 21.504 1.923 
4 0.4578 1.4974 0.4758 5.2726 0.0651 28.376 0.786 
9 0.4256 1.4431 0.4918 4.8668 0.0823 24.116 0.572 

Unmodified Method 

AOt 10 0.5897 1.7177 0.2792 8.2340 0.1292 8.2392 3.574 
A2 9 -0.5899 1.7182 -199.47 8.2426 199.88 8.1085 402.7 
Bl 10 1.2226 - 0.7341 1.9944 2.0019 0.2384 -7.8010 1012 

* u = (~(~(n»))y' 
t 

t Values at cycle number n with starting vector AD, etc, as designated in the upper portion of the table. 



The parameter v was allowed to vary between - 1.5 and 
1.75 in intervals of 0.25. Fourteen values of 4><n)(v) were 
calculated on each cycle for each b~n); the smallest value of 
4><n)(v) was ascertained at Vi. The minimum v* was found as 
the minimum ofa parabola through the points [Vi-I, 4>(Vt-I)], 
[Vt, 4>(Vi)], and [Vi+l,4>(Vi+I)] (unless Vi was -1.5 or 1.75). 

Iteration was terminated when 
4><n + 1) - 4><n) 

4><n) < 10- 4 

or if 4><n + 1) increased. Table E6.2-5 lists selected results 
comparing the modified Gauss-Seidel method and the 
unmodified method. The modified procedure clearly 
exhibits a superior performance. 

6.2-4 Linearization of the Objective Function 

Another way to minimize the sum of the squares of the 
deviations, 4>, is to linearize the objective function itself. 
Such methods include the well-known method of steepest 
descent, the conjugate gradient method,'] and Mar­
quardt's method.I The gradient of 4>, i.e., grad 4> or V4>, 
is a vector perpendicular to the surface 4> in parameter 
space which extends in the direction of the maximum 
increase in 4> at a given point. The negative of the gradient 
extends in the direction of steepest descent. Figure 6.2-7 
illustrates the geometric interpretation of 4>, V4>, and 
- V4> in a space of two parameters, {31 and f32. The closed 
curves represent contours of constant 4> which are of 
increasing value proceeding from the minimum 4>. 

Suppose we expand 4> in a truncated Taylor series 
about b<O): 

m 

4> ~ (4))0 +6(:t)o(f3j - b~O») 

(the notation was defined in Section 6.2~3). The magni­
tudes of th~ components of - V1> :§ 

-V4>lb(O) = -(~!) 5/h - (84)) 5/3 - ... - (~) 5/3
UfJ1 . 8fJ2 0 2 813m m 

evaluated at b<O) are identical to the respective terms in the 
first-order expansion of 4> in paranleter space, and the 
components are used to establish the direction of search 
in the method of steepest descent. 

We assume that 4>, given by Equation 6.2-1, is single 
valued, -is continuous, and has a single minimum in the 
region of search. By finding the components of the 
vector - V4>, it is possible to carry out an iterative 
sequence of calculations and reduce the value of 4> to 
at least a local minimum. The general procedure is to: 

1. Compute analytically (or numerically) the com­
ponents of - V4> and evaluate themat b'?', 

t R. Fletcher and C. M. Reeves, Compt. J. 7, 149, 1964. 
t D. W. Marquardt, J. Soc. Ind. Appld. Math. 11, 431, 1963. 
§ tiPl is a unit vector in the PI direction; ti{jj is a unit vector in 
the Pi direction. 
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{jl. 

FIGURE 6.2-7 Geometric representation of the sum of the squares 
of the deviations, eP, V'eP, and the direction of steepest descent 
-V'eP, in parameter space at point P. ' 

The unit vector - V4>/II- V4>1I is computed to ascer­
tain the components of the direction of search: 

04> 04> 
-V4> -~5/31-8i35/32-'" 

II-V4>1I = J(- 84»2 + (~84»2 + ... (6.2-18) 
8{31 8{32 

As an example, for the linear equation z = 2f31 - fJ2: 

Vz = 25/31 - 5/32 

- Vz -2 1 
11- Vzll = vS 5/31 + vS 5/32 

2. The components of - V4>/II- V4>11 evaluated at b<O) 
establish the direction of search for the minimum of 4>. 
(In the above example, if z were 4>, the intial ~b's are 
~biO) = -2/v5 and ~b~O) = 1/V5; the components of 
the gradient above are not functions of (3 because the 
example is linear in (3.) Each new cycle of b~n)'s is com­
puted from the previous cycle (starting with b(O») by 
means of Equation 6.2-17: 

b~n + 1) = b)n) + h)n) ~b)n) 

3. The sequence of iterative moves continues until the 
process terminates because 4> is less than a specified 
criterion or because the process diverges or oscillates and 
no further reduction in 4> can be achieved. 

Improper scaling (i.e., the relative magnitudesof the 
components of - VeP) can cause difficulty in minimizing 
cP. If the hyperspace is badly elongated, as illustrated for 
two dimensions in Figure 6.2-8, the method of steepest 
descent may take an excessively long time to converge 
because the direction of steepest descent proves to be 
nearly perpendicular to the direction that will minimize 
4>. The negative of the gradient of 4> points in the direction 
that minimizes 4> only in a local region and not in the 
direction of the global minimum of eP, the minimum 
desired, unless the contours are arcs of circles with 4>min 
as a center. 



192 NONLINEAR MODELS 

Marquardt t observed in practice that for elongated 
ridges the method of steepest descent and the Gauss­
Seidel method gave directions of search nearly orthog­
onal to each other. He suggested a compromise between 
the two methods. Marquardt's method improves the 
conditioning of the matrix of partial derivatives, 
(XTWX) == A. Suppose that in Equation 6.2-15 a diagonal 
matrix is added to A: 

(A + Af)O = Z (6.2-19) 

where A 2 0. When A = 0, Equation 6.2-19 is identical 
to Equation 6.2-15 and B(n) is computed from Equation 
6.2-16 as in the Gauss-Seidel method. When A--+ 00, 

AI » A in some sense, and B is computed essentially as 

1 
B = xZ 

In the method of steepest descent, the components of the 
unit vector in the optimal direction can be multiplied by 
the step size h(n) to give 

Because 
n 

-2 LWi[Yt - 1Jt(bCnl)] O1]t~~c.nl) = _z~nl 
i=l J 

is the negative of the typical element in the matrix Z, 
we find that 

== z(n) 

t D. W. Marquardt,J. Soc. Ind. Appld. Math. 11, 431, 1963. 

fll 

Consequently, for the case in which A--+ 00, the identifi­
cation is made 

A =G= II - V~(b(n») II /h(n) 

Thus, we find that Equation 6.2-19 encompasses both the 
method of steepest ascent and the Gauss-Seidel method 
as limiting cases. Intermediate values of A represent a 
composite of the two directions of search. In general, 
A decreases as the computations proceed. 

We seek a small value of A where conditions are such 
that the unmodified Gauss-Seidel method (which has 
quadratic convergence) would converge satisfactorily. 
Large values of A should be used only where necessary 
to satisfy the condition that ~ on the (r + 1)st cycle 
should be less than ~ on the rth cycle: 

~(r + 1) < ~(r) 

Specifically, A can be chosen as follows. Let v > 1 and 
let A(r-1) denote the value of A from the previous itera­
tion (the initial A(O) ~ 10- 2) . Compute ~(A(r-1») and 
~(A(r-l)/v). Three conditions exist which govern the 
choice of A(r) : 

1. If ~(A(r-1)/v) ::; ~(r>, then let A(r) = A(1-l)/V. 
2. If ~(A(r-1)/v) > ~(r) and ~(A(r-l») ~ ~(r>, then let 

A(r)=A(r-1). 

3. If ~(A(r-1)/y) > ~(r) and ~(A(r-1») > ~(r>, increase A 
by successive multiplication by y until, for some small 
w, ~(A(r-1). yW) s ~(r). Then let A(r) = A(1-1). yW. 

Case No.3 is met only rarely, such as when large corre­
lations between parameter estimates exist that cause 
unreasonably large values .of A. In this case, Case No.3, 
certain special additional refinements exist in Marquardt's 
method. We shall not describe these refinements but they 
can be found in the original reference. 

Marquardt recommended that the elements of A andZ 
be scaled as follows to make the objective function less 
elongated: 

A;rj = gigjAij 
Zj = gjZj 

ep = 10 

ep=8 

ep=6 

+ 4>min 

-+-~ Marquardt's procedure Steepest descent from point A from point A 
+ + ++ Gauss-Seidel procedure from point A 

FIGURE 6.2-8 A disadvantage of the method of steepest descent. 
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where the (*) designates the scaled element and the scale 
factor is ~i = (A ii ) - %. The scaled elements of B* are 
converted back to the elements of B by 

l1b7I1bj =. 
~j 

However, Ball t showed that the recommended scaling is 
exactly equivalent to replacing the matrix I in Equation 
6.2-19 by the diagonal matrix D 

(A + AD)B = Z (6.2-20) 

where the elements of D are made up of the elements 
from the main diagonal of A = XTX. Equations 6.2-19 
and 6.2-20 were equally effective in estimation in a 
number of tests on kinetic rate models. 

Marquardt's method has been implemented by the 
IBM Share Library Program No. 3094, dated March 
1964, and is recommended as being quite effective. It is 
definitely superior to either the Gauss-Seidel method or 
the method of steepest descent. Because either analytical 
or numerical derivatives at the minimum of ep are avail- . 
able, it is superior to the flexible simplex method in that 
subsequent estimates of the precision of the parameters 
are easy to make. On the other hand, the flexible simplex 
method has the advantage that the partial derivatives of 
4> need not be calculated at all, thus saving considerable 
computer time in estimation. For very complex models, 
the flexible simplex method has proved the more effective 
in estimating the parameters in simulation studies. 

Example 6.2-6 Nonlinear Estimatlon by Marquardt's 
Method 

The same model as was used in Example 6.2-3 was fit by 
Marquardt's method as executed by the IBM Share Library 
Program No. 3094. Some initial difficulty was encountered 
in minimization starting with various initial parameter 
vectors, because the routine tended to make some of the 
parameters unbounded or zero. After parameter limits were 
added to the computer routine, the same minimum was 
obtained as in the direct search technique but a higher 
minimum was obtained than with the flexible simplex method 
(refer to Example 6.2-3). Table E6.2-6 is a summary of the 

t W. E. Ball, Ind. Eng. Chern. Fundamentals 6, 475, 1967. 

TABLE E6.2-6 

progress of the search; A is the parameter in Equation 
6.2-19; y is the angle, in degrees, between the direction of 
search indicated by the linearization of the model and that 
indicated by the gradient method. 

Numerical partial derivatives generated by the computer 
routine were employed in the estimation which caused the 
computer time to be about twice that for the simplex or 
direct search methods. 

The matrix of correlation coefficients between the 
elements of the (XTX) -1 matrix (which roughly shows the 
correlation among the estimated parameters-see Section 
6.4) was 

1.000 
0.047 

0.047 
1.000 

0.853 

0.008 -0.0.285 

7111 
[ 0.853 0.008 1.000 -0.851 

-0.711 0.285 -0.851 1.000 

Based on a value of tl-~ of 2.00, the individual confidence 

limits on the parameters (see Section 6.4) were 

Lower Upper 

m 2.65 3.61 
n 16.1 31.7 
f 0.29 0.49 
ex 0.64 0.78 

A joint confidence region could be estimated as described in 
Section 6.4. 

6.3 RESOLUTION OF CERTAIN PRACTICAL 
DIFFICULTIES IN NONLINEAR ESTIMATION 

Any of the procedures to minimize the sum of the 
squares of the deviations described in Section 6.2 can fail 
to reach a global minimum because: (1) of improper 
initial guesses for the parameters, and/or (2) the objective 
function becomes unbounded, as described in Section 
6.2. 

Additional difficulties discussed in this section, which 
may be encountered together or separately, are improper 
scaling, parameter interaction, and null effect. 

IMPROPER SCALING. Scaling difficulties can occur when 
the value of one of the terms in the objective function 
is of a much different order of magnitude than another 

Cycle 
Number ep m n f ex A y 

0 1.284 6.00 25.0 0.500 1.000 10- 2 27.3 
1 0.831 1.00 19.2 0.432 0.760 10- 3 29.9 
5 0.0284 3.22 25.1 0.371 0.722 10- 7 52.3 

10 0.0267 3.13 23.9 0.398 0.717 10- 8 50.5 
15 0.0267 3.13 23.9 0.398 0.717 10- 8 50.9 
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relative to the significant figures in each term. Then the 
objective function is insensitive to changes in the values 
of the parameters in the small term. For example, the 
value of an objective function 

4> = 100f3~ - 0.010,8~ 

would be unaffected by changes in ,82 unless the values of 
f32' because of its physical units, are much greater than 
,81. If the values of ,82 are of the same magnitude as f31' 
one or both variables should be multiplied by scaling 
factors which convert the two terms on the right-hand 
side of the equation to roughly equal magnitude. Let 

PI =	 10f31 ,8i = 10- 2Pi 

10- 1,82P2 = ,8~ = 102P~ 

Then the tern1S in the objective function become the 
same order of magnitude. After the minimum is found 
for 

4> = Pi - P~ 

the values of the estimates of the ,8's, namely hI and h2 , 

could be determined from the estimates b1 and b2 • 

It is clear from this example that spending some time 
in proper scaling before attempting a minimization is a 
sound practice. Poor scaling can lead to poor estimates 
of the model parameters. However, scaling for nonlinear 
models cannot usually be effected in advance for all 
ranges of the independent variables. 

PARAMETER INTERACTION. This term is used to de­
scribe the adverse mutual influence of the estimate of one 
parameter on that of another. If one parameter is 
incorrectly estimated, the" other is also incorrectly 
estimated (biased), but the combined effect of the 
estimated parameters when introduced into the model 
may yield quite reasonable predictions. Parameter inter­
action may be illustrated by examining an extremely 
simple objective function in which two parameters are 
multiplied by each other: 

4> = 2,81,82 + 10 

The individual estimates of ,81 and f32 can range over any 
series of values for a given estimate of the product ,81f32. 
Thus, once a parameter has been assigned a given value, 
the other parameter will compensate to make the" product 
satisfactory, even though both estimates are badly 
biased. Scaling is more difficult if interaction exists. 
Quadratic functions, as explained in Appendix Section 
B.5, can be transformed to canonical form so that the 
interaction term is removed. New coordinate axes are 
defined, as shown in Figure 8.2-2 by the dashed lines, 
about which the quadratic surface is symmetric. For 
example, the surface 

cP = 7,8i + 6f3~ + 5,8~ - 4,81,82 - 4,82,83 

- 6,81 - 24,82 + 18f33 + 18 

can be transformed to 

A.. -2 6-2 ,iJ2
'f' - 18 = 3f31 + f32 + 9P3 

by a translation of origin and rotation of axes (refer to 
Example 8.2-1). In the new coordinate system, the 
scaling of each term is decidedly clearer than in the 
original coordinate system. Nonlinear objective functions 
(in the parameters) become quadratic functions only if 
the model is linearized by some suitable transformation 
or by expansion in a truncated Taylor series, and 4> is 
defined by Equation 6.2-1. 

A more subtle example, but one just as vulnerable to 
interaction among the parameters, involves a model such 
as 'YJ = ,81 e/32 x in which ,81 in effect multiplies f32' as 
becomes clear if we expand the exponential e/32 x ~ 1 + 
,82X + (,82X)2j2 + .... The method of steepest ascent" is " 
particularly inhibited by parameter interaction and poor 
scaling. 

It is worthwhile examining the elements of the A 
matrix in order to obtain information about the inter­
action of variables. The smaller the off-diagonal elements 
are in relation to the main-diagonal elements, ·the less 
likely A is to be singular and the less interaction will exist 
between parameters. 

"Example 6.3..1 Reduction of Interaction of Parameters by 
Transformation of Variables 

A difficult nonlinear expression to fit because of the 
interaction between k and E is the Arrhenius rate equation, 
r = k e- E /T , and similar equations where the preexponentiaI 
factor k and the energy of activation E are constants to be 
estimated and rand T are the measured dependent and 
independent variables, respectively. If we form the elements 
of the matrix A: 

or = e- E /T = ~ 
ok k 

!!- = _~ e- E /T = r 
oE T T 

and calculate the determinant of A, we obtain 

det (A) = i2 [2: r~ 2: (~)2 - (2: ~)2] (a) 

Because rr, (rr/Ti )2, and (rfITt ) are all positive for any 
range of r, and Ti, the det (A) can be quite small if 11. takes 
on only a small range of values, and the matrix A becomes 
singular as the values of the two terms in the brackets 
approach each other. On the other hand, if a transformation 
of variable is carried out so that 

T* =	 T - T = 1 _ T.. (b)
T T 
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FIGURE E6.3-1 Comparison of the approximate 95-percent confidence regions obtained 
by fitting two related models. 

where T is the average value of the absolute temperature, 
the variable T* can assume both positive and negative 
values. Reformation of the Arrhenius rate expression as 

..., - * ..., E(l-!)
r=keET=ke if 

= (k eE)(e-ETIT) (c) 

makes it possible to identify 

k = k eE and E = ET 

In terms of the transformed temperature, the partial 
derivatives of rare 

8r _ ­
---::= = kT* eET~ = rT* 
8E 

and theequation for det (A) corresponding to Equation (a) is 

det (A) = ~2 [2 if 2 (r.rt')2 - (2 rFnn (d) 

Here, the second term in the brackets, with Ti * taking on 
both positive and negative values, will be relatively small. 
Hence, the det (A) will not approach zero, and A will not 
be singular. 

A related, commonly used transformation is to let 

r = k* e -E*(¥ -#0) (e) 

where To, may he T or some other arbitrary temperature. 
Figure E6.3-1 contrasts the approximate 95 percent con­
fidence region obtained .for the model r = k e- E1T with 
that" obtained for- Model (e). 

Example 6.3-2 Scale Factors and Transformations 
Fariss and Law t calculated the best fitting coefficients kh 

AI, k-, and A 2 for the following nonlinear objective function 

where t is in degrees Centigrade. One hundred experimental 
data points were simulated by using the following constants: 

20e11.82033k, = 01 = 5,000 
k« = 2e47.28132 . 02 = 20,000 

and by using random values of U1 and U2 in the range 0 to 
1 and random values of t in the range 100 to 200. A normally 
distributed error with a mean of zero and a variance of 

a~ = 0.01 + (0.05r)2 (b) 

was added to each deterministic data point: 

(c) 

The sum of the squares of the deviations, eP, given by 
Equation 6.2-1 with the weights defined as Wi = Ui-

1, was 
minimized to estimate ks, k 2 , a., and a2. The initial guesses 
for the parameters and the final results by a derivative-type 
estimation technique appear in Table E6.3-2. 

The derivatives were calculated analytically. The following 
scale factors, used in the calculations, 

Parameter k 1 k 2 a1
 

Factor used k, k 2 1000
 

were divided into k 1 , k2,aI, and a-, respectively, at the 
beginning of each iteration cycle. 

The transformation for the absolute temperature given in 
Example 6.3-1 was also applied to Equation (a); T was set 

t R. H. Fariss and V. J. Law, Paper presented at the Houston 
AICE meeting, Feb. 18, 1967. 
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TABLE E6.3-2 

k 1 k2 Q1 Q2 4> 

Initial guesses 
Estimated parameters 

at the minimum 4> 
Model parameters 

in Equation (a) 

lOe2O 

20.085e11.7 358 

20e11.82033 

5e2O 

1.9220e47 .781 3 

2e47.28132 

8,460 

4,964 

5,000 

8,460 

20,203 

20,000 

7,671 

90.7 

100 

equal to 423 (f = 150). Minimization of the transformed 
objective function gave the fol1owing results : 

k1 /(2 ii1 ii2 

Starting guesses 10 5 20 20 
Scale factors 10 5 20 20 
Estimated parameters 

at the minimum 4> 20.085 1.9220 11.7358 47.7613 

Several different minimization techniques were used to 
minimize the sum of the squares of the deviations . The 
authors' experiences can be summarized as follows. (The 
functional evaluation count below was based on Th of 
the sum of: (I) the number of calculations of (R , - 't), 
plus (2) the number of evaluations of a partial derivative 
of r with respect to one parameter.) 

I . Unweighted steepest descent with untransformed 
temperature but with scaling and an adjustable acceleration 
factor h: After 579 functional evaluations, 4> was reduced to 
only 3615; after 1019 evaluat ions, ,p was still 3523. Con­
clusion: not an effective procedure. 

2.' Steepest descent with transformed temperature, an 
adjustable acceleration factor h, and with scale factor s gj 
based on 

( 82,p/8f3f)]}In gJ = (In q){1 - exp [- (In0.5 q)In 82,p/8f3; 

where q = maximum scale factor = 100: After 206 func­
tional evaluations, ,p was 100; after 471 evaluations, ,p was 
90.95. Conclusion: effective but ' characteristical1y (for 
steepest descent) slow. 

j 
3. Gauss-Seidel with untransformed temperature : Ob­

tained a ,p of 2904 after 1265 functional evaluations, and a 
,p of 90.7 after 1317 functional evaluations. Conclusion: 
slow except for last 10 evaluations. 

4. Gauss-Seidel with transformed temperature: Obtained .! 
a ,p of 90.7 with 28 functional evaluations. Conclusion : ,I effective and quick . 

5. Marquardt's method with the initial ,\ = 1 (a large­
sized selection) and ,\ adjusted each 10 cycles: For the 
ultransformed problem, ,p was 90.7 after 1501 functional 
evaluations; for the .transformed problem, ,p was 90.7 after 
21 functional evaluations. ' Conclusions: essentially as 
effective and rapid as Gauss-Seidel. 

A second transformation of Equation (a) to 

by letting 
k ' = Ink 

was carried out. The starting values for k' were the logarithm s 
of the original starting values ; the scale factors were taken 
to be 1 for both k~ and k; . The results were essential1y the 
same as with the transformation of Example 6.3-1, although 
the number of functional evaluations was slightly greater. 

Estimation was also carried out by using fine-mesh 
forward difference schemes to approximate the derivatives 
numerical1y. With a parameter increment of 0.001 times the 
scale factor, little difference was experienced between the 
two methods. However, larger meshes indicated that 
additional functional evaluations were required . 

NULL EFFECT. This can be illustrated by using as an 
example the following objective function: 

,p = f3~ + 2f31f32 + f3~ + 2 

= (f31 + f32)2 + 2 

After the transformation f31 + f32 = P1 is made, we find 

,p = P~ + 2 

Observe that only one variable is left, Pl' The geometric 
interpretation of 4> = (fl1 + f32)2 + 2 is shown by the 
slanted lines in Figure 8.2-2e; in the new coordinates the 
values of,p are all parallel to the dashed axis, P2 (which 
corresponds to X2 in the figure). Although both f31 and 
f32 appear to be parameters, in truth there is only one 
parameter which must be varied to minimize ,p, namely 
P1 (corresponding to Xl in the figure). The Gauss-Seidel 
method is particularly vulnerable to the null effect of a 
parameter because the matrix A tends to be singular 
when such an effect exists . On the other hand, the method 
of steepest ascent continues to operate in the presence 
of unrecognized null effects with the penalty of a greater 
series of zig-zag steps. As to the procedure of Marquardt, 
the influence of the null effect depends on the value of A. 
For small A the Marquardt method is similar to the 
Gauss-Seidel method and is vulnerable to the null 
effect; for large A the Marquardt method corresponds 
more closely to steepest descent. Direct search methods 
for problems in which the null effect exists encounter 
difficulty mainly in improper scaling and parameter 
interaction. 
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6.4 HYPOTHESIS TESTS AND THE CONFIDENCE 
REGION 

In addition to estimating the parameters in a nonlinear 
model, the analyst would like to obtain some measure 
of the dispersion of the parameter estimates and also 
some measure. of dispersion of the predicted dependent 
variable Y. We shall describe below three methods to 
accomplish these objectives. 

6.4-1 Linearization of the Model in the Region About 
the Minimum Sum of the Squares 

An approximate confidence region for the parameters 
can be constructed by linearizing the nonlinear model (as 
described in Section 6.2-3) about the least square 
estimate b in parameter space. The variances and co­
variances of b are then given approximately by the 
analog of Equation 5.1-14, that is, by 

-<: 
Covar {b} ~ (XTWX)-lO'~t = CO'~t (6.4-1) 

Each element of the matrix X is evaluated at b. If the 
derivatives of 'YJ cannot be calculated analytically, they 
can still be evaluated numerically. To estimate O'~t' if the 
model is correct, one can compute 

S2 
r 

ETWE 
= - ­n - m (6.4-2) 

at the minimum ep and then 
-<:

Covar{b} ~ 
. ETWE 

(XTWX)-l_­
; n-m 

(6.4-3) 

where n is the number of data sets and m is the number 
of parametersestimated, Of course, if the model used is 
incorrect, Equation 6.4-2 will give a biased estimate of 
a~t; hence, as usual it is desirable to obtain s; from 
replicate data in order to determine· how well the model 
represents the data. 

From Equation 6.4-3 the approximate confidence 
intervals for the individual f3's'" can be calculated as 
described in Section 5.2 for the linear models; the con­
fidence interval for 'YJ can be approximated by using s~ 

calculated as follows. First, obtain' t 

-<: 
S~j = Var {hj} ~ S~iCjj 

where Cjj is a diagonal element of C = (XTWX)-l. Then 
use the linearized (about b) predicted response Y to 
obtain 

»<: ~ (OY)2 -<:
S~t == Var{Yi } ~ L u: Var{h j } 

j=1 j 

(6.4-4) 

An approximate joint confidence region, ellipsoidal in 
shape, can also be formed from the quadratic form 
corresponding to that used in Section 5.2 for the linear 
models 

(~ - b)T(XTwX)(~ - b) = S~tmFl-a[m, n - m] (6.4-5) 

where F1 _ a is the upper limit of the F-distribution for 
m and (n - m) 'degrees of freedom. The graph of 
Equation 6.4-5 can be drawn in two or three dimensions, 
as illustrated in Figure 6.4-1 which compares a true sum 
of squares surface with the contours determined from 
Equation 6.4-5 for simulated data from the model 

'YJ =	 _f3_1_ (e-132X - e-131X)
f31 - f32 

Note that f31 is estimated more precisely than ~. 

The approximate contours for the sum of squares 
surface can be written as in Section 5.2: 

epl-a = epmin + s~imFl-a[m, (n - m)] 

= epmin.[1 + ---!!!:....- F 1 - a(m, n - m)l (6.4-6) 
.	 n-m 1 

10.0 

8.0 

6.0 

"It 
0 
t"""'l 4.0x 
e 

3.0 

2.0 Sum of squares 
contours for the 
nonlinear model 

Sum of squares 
contours for the 
model linwized 

about «Jmin 1.0 

0.8 

2 3 4 6 8 
{31 X 104 

FIGURE 6.4-1 Contours for a true sum of squares surface and the 
corresponding contours based on Equation 6.4-5. Numbers next 
to contours indicate probability for indicated confidence region: 
(From G. E. P. Box and W. G. Hunter, Technometrics 4, 301, 
1962.) 
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where <PI-a is the approximate value of the sum of 
squares contour for the confidence level (l - a) and 
<Pmln = :Lf=l w,(Y, - Yj )2. 

Guttman lind Meeter ] discussed measures of non­
linearity that indicate when the degree of nonlinearity is 
small enough to justify using linear theory as an approxi ­
mating theory for nonlinear models. Bealet also provided 
some additional insight into estimating confidence limits 
for nonlinear models. 

Example 6.4~1 Approximate Joint Confidence Region for a 
Nonlinear Model 

To illustrate the estimated individual confidence intervals 
for estimated parameters and the joint estimate of the 
confidence region, a two-parameter model used in a chemi­
cal kinetic study will be descr ibed. Data were collected for 
a hydrogenation reaction in a tubular flow reactor repre­
sented by the empirical model (at constant temperature) 

f30P 
r = - - ­

I + f31P 

where r = initial reaction rate and P = total pressure. It 
was assumed that R = r + E. The data at 164°C were: 

R, g-moles/(hr)(g catalyst) P, psia 

0.0680 20 
0.0858 30 
0.0939 35 
0.0999 40 
0.1130 50 
0.1162 55 
0.1190 60 

A portion of the results calculated by a modified version 
of Marquardt's method (IBM Share Program SD No. 3094) 
employing analytical partial derivations were 

P (R - R) x loa 
20 0.433 
30 -0.656 
35 -0.0619 
40 -0.605 
50 1.636 
55 0.282 
60 -1.006 

0.0191 0.178]
XTX = [0.178 1.703 

2020 - 21I.l ]
c = (XTX) -1 = [ - 21I.l 26.65 

5.154 x 10-1 

,: 
1 b = [ 2.628 X 10-2Jj ',

1. .•'j. 
i 

t I. Guttman and D. A. Meeter, Technometrics 7,623, 1965. 
:j: E. M. L. Beale, J. Royal Stat. Soc. B22, 41 , 1960. 

The sum of the squares of the residuals was <Prn,n =4.76x 10- 6 ,
 

,\ ranged during the search from 10- 2 to 10- 6, and the
 
estimated parameter correlation matrix was
 

1.000 0.9902] \ 
[0.9902 1.000 

Note that the parameters are highly correlated. 
For a = 0.05 and v = 7 - 2 = 5 degrees of freedom, 

tl- ~ = to.9 7 5 = 2.571; hence the individual parameter con­
fidence intervals, calculated as in Section 5.2, for the linear­
ized model are 

bo - tl - ~S Y, V Cll :s; f30 < b« + tl-~ y, VCll 

b - tl -~l', VC2 2 :s; f31 < b1 + tl- ~S Y, VC2 2 

As an estimate of sY" 

_ V 2 _ )4.7604 x 10 6 
Sr - Sr - 7 _ 2 

= V O.952 x 10 6 = 0.975 X 10-3 

is used since no replicate data are available. If the model is 
a poor one, s, is a poor estimate of sY,. The respective con­
fidence intervals are then 

-0.107 :s; f30 < 0.117 

0.0119 :s; f31 < 0.0263 

An approximate joint confidence interval is defined by 
Equation 6.4-5: 

0.0191 0.178]
[({3o - 5.154 x 1O-3)({31 - 2.628 x 10-2)] [0.178 1.703 

({3o - 5.154 x 10-3)] 
= (0.952 x 10- 6)(2)(5.79) [ ({31 - 2.628 x 10-2) 

or 

f3~+ 18.64f31f30+89.13f3~-0.499f3o-4 .875f31 +0.00698=0 (a) 

and is illustrated in Figure E6.4-1. Note the typical long 
attenuated region which is characteristic of cases in which 
the parameter estimates are correlated. The sum of squares 
contour written in the form of Equation 6.4-6 is 

<PI-a = 4.76 x 10-6[1 + 7 =. 2 F1- a(2, 5)] (b) 

131 

FIGURE E6.4·1 Approximate 95-percent confidence interval 
contour. 

""'----~----------------------------,--_ . _ - . , - - , 
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6.4-2· The Williams Method 

Williams t reviewed some of the alternative methods 
of establishing parameter confidence intervals and also 
suggested a method for models containing one nonlinear 
coefficient. To clarify the technique, the model 

X'fJ = fJo + fJ1 e- 1C (6.4-7) 

will be employed for which the estimated regression 
equation is 

+ b1 e- k x Y = bo 

where k is the estimate of K. Equation 6.4-7 in general 
can be represented as 

(6.4-8) 

in which ft«, x) contains the nonlinearity, The usual 
assumption (that Yis distributed normally with constant 
variance a2

) is presumed to hold, and the criterion used 
in estimation is the minimization of the sum of the 
squares of the deviations, 4>, in Equation 6.2-1. 

First we linearize Equation 6.4-7 by means of a trun­
cated Taylor series expansion about an assumed k(O) 

'1J ~ flo + flI [/(x, k(O» + df(~Kk(O» (K - k(O»] 

= flo + fld(x, k<O» + b2 dl(~Kk(O» (6.4-9) 

- where b2 = f31(K - k<O»). The parameters flo and fJb as 
well as b2 and their variances, can be estimated by linear 
analysis. After. the first iteration, the second approxi­
mation for k starts with an assumed 

k(l) = k(O) + b2 (6.4-10)
b1 

and the iteration continues. At.such time as 

or 
b~n+1) 

bin + 1) --?- 0 

the iteration can be terminated. Thus the linear coeffi­
cient b2 vanishes at the minimum least squares estimate. 

To test the null hypothesis K = k(n), where k(n) is any 
in the sequence of values of k, we check to see if b2 is 
significantly different from zero. Ifit is, the null hypothesis 
is rejected. Williams established the confidence limits for 
K as the values of k for which b2 was not significantly 
different from zero at an assumed probability level. In 
the iterative process a number of values of k(n) are estab­
lished, but it may be necessary to start with different 
values ofk(O) in order to encompass the necessary range of 
values of b2 • 

t E. J. Williams, J. Royal Stat. Soc. 824, 125, 1962. 

From linear analysis we know that the sum of the 
squares of the deviations for any variable adjusted for 
all the others is 

where b, is the linear regression coefficient and Cu is an 
element on the main diagonal of the inverse matrix c. By 
selecting an initial set of values of the coefficient k(O) 

and/or using values of k developed during the iteration 
process, it is possible to plot ~SSb2 versus k and use the 
significance level associated with ~SSb2 to ascertain the 
confidence limits for K as shown in the example below. 
Halperin t extended Williams's procedure to a broader 
class of regression functions with more than one non­
linear parameter. He also pointed out that the Williams 
method will not yield exact confidence regions for the 
linear parameters independent of the nonlinear ones. 

Example 6.4-2 Confidence Limits for a Parameter in a 
Nonlinear Model 

Williams fit the following data (x = independent variable 
and Y = dependent variable, with 4 degrees of freedom for 
each entry): 

~ Xt 

51.6 0.4 
53.4 1.4 
20.0 5.4 

-4.2 19.5 
-3.0 48.2 
-4.8 95.9 

to the model 'fJ = Po + fJl e- 7CX An initial estimate for xwas• 

k(O) = 0.165. The regression results were 

First Iteration Second Iteration 

bil ) = 65.276 bi2) = 65.262 
b~l) = 0.0518 b~2) = - 0.0269 

(k<1) - k(O» = 0.0008 (k<2) - k(1» = -0.0004 
k(1) = 0.166 k(2) = 0.166 

b~2) = -4.85 

at which stage the analysis was terminated. 
Additional values of b2 were determined for 0.05 ~ k<0) ~ 

0.40, and ~SS for b2 was plotted versus the values of k. See 
Figure E6.4-2. The sum of the squares, 2J=1 CYij - Yt)2, 
for the six data sets was 1108.80. Consequently, the error 
variance was 

2 = 1108.80 = 4620 
Se 24 . 

The sum of the squares of the residuals, 4>, for k = 0.166, 
divided by the number of degrees of freedom, 3, gave s~ ~ 

24.66. 
Suppose an F-test were to be carried out at, for example, 

a significance level of 0.01 for which, from Table C.4 in 

t M. Halperin, J. Royal Stat. Soc. B24, 330, 1963. 
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FIGURE E6.4-2 (From E. J. Williams, J. Royal Stat. Soc. 824, 
125, 1962, with permission.) 

Appendix C, we find Fo.99[1, 24] = 7.28. If we equate 
(S~2/S~) to 7.28, we can compute S~2 = (7.28)(46.20) = 361.4 
at the 1 percent level. Because the degrees of freedom 
associated with b« are just 1, S~2 = (L'lSSb2/1) and 

L'lSSb2 = S~2 = 361.4 

At the intersections of L'lSSb2 = 361.4 with the curve for 
L'lSSb2 versus k, we can read k = 0.057 and k = 0.372. 
These values are the 99 percent confidence limits for K . 

They are exact in the sense that any values outside these 
limits are rejected at the I-percent level of significance by an 
exact test on the associated value of b2 • 

6.4-3 The Method of Hartley and Booker 

Hartley and Booker t suggested an alternate method to 
the least squares technique which can provide both the 
parameters and their confidence limits. It yields estimates 
b which are asymptotically (as n ~ 00) lOO-percent 
efficient under fairly general assumptions .(the details of 
which can be found in their article). Consider the case 
of n sets of observations with m parameters. Let n = 6 
and m = 3 and the model be 71 == 130 + 131 r P2X• We can 
describe the data by a set of six nonlinear equations: 

IJ2XU}Yll = Po + PI e _ IJ + IJ IJ x Group I ; k = 2Y12 - JJo JJI e 2 12 

Y21 = Po + PI e1J2X21} 
.y: _ IJ + IJ IJ x Group 2; k = 2 

22 - JJo JJI e 2 22 

Y31 = Po + PI e1J2X31} 
_ IJ + iJ IJ x Group 3; k = 2y: 3232 - JJo JJI e 2 

Although this is an overdetermined set of equations and 
thus calls for statistical treatment, we could average the 
equations into h sets of two equations each (k = 2) so 
that h = m (= 3 here). We would then obtain a com­
pletely determined system of nonlinear equations in 
which Pi is a consistent estimator of f3i and 

(6.4-11) 

t H. O. Hartley and A. Booker, Ann. Math. Stat. 36, 638, 1965. 

j
where 

r 

For example, for group 1: 

'VI = -!- L
2 

Yu = -!-( Yll + Y12) 
1=1 

2 

JO, ~) = t L!(Xlh ~) 
1=1 

= -!-rPo + PI eIJ2xll + Po + PI e1J2x12] 

= Po + ~1 (elJ2xll + e1J2x12) 

The solution of the nonlinear Equation 6.4-11 for ~ 

presumably can be carried out by the Newton-Raphson 
method, by one of the search methods, or by one of the 
optimization methods described in the references at the 
end of this chapter. . 

After the values of the elements of ~ have been 
established by solving Equation 6.4-11 , the ~ are used as 
the starting values to carry out a one-step iteration by the 
Gauss-Seidel method . At the termination of the first 
iteration, Hartley and Booker showed that one obtains 
~symptotically lOO-percent efficient estimates of (3, 
(3*. When the regression equations are linear, ~* agrees 
with the standard least squares estimators, b. 

If the experimental values of x are repeated for each 
of the k trials in the hth group of data, Hartley and 
Booker described how to obtain the confidence interval 
for each of the m functionsJ(h , (3) based on values of 'Vh • 

6.5 TRANSFORMATIONS TO LINEAR FORM 

Certain classes of nonlinear models can be easily 
transformed to linear form, and the linear model can be 
treated by linear analysis. For example, taking logarithms 
of both sides of 

71 = f30xf lX~ 2 (6.5-1) 
yields 

log 71 = log 130 + 131 log Xl + 132 log X2 (6.5-2) 

a model linear- in the coefficients. However, note that 
minimization of 'Lf= 1(log Y1 - log 711)2 is not the same 
as minimization of 'Lf=1 (Y1 - 711)2. 

If a linearizing transform .'7 exists that will transform 
the nonlinear model into linear form, in order that the 
least squares estimates b1 , • • • , bm of the related model 
parameters 131," " 13m possess optimal properties (i.e., 
unbiasedness, minimum variance, etc.) when estimated in 

. ._ ­ -- ._._-- ­ ,. _.,, - .__ _- ._---- _..~ .-
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the transformed regression equation, it is necessary that 
the assumptions concerning the additive unobservable 
random error' be applicable to the transformed model 
rather than to the original model. Thus, for the trans­
formed 'model and for an observed yt corresponding to a 
set of independent variables Xh we assume that 

5"(Yt) = 5"['tJi(Xb' . ., xq ; pb' .. , Pm)] + €t (6.5-3) 

where the random variable €i is independently distributed 
with zero mean and constant variance. For example, for 
Equation 6.5-1, 

log Yi = log Po + 131 log Xli + 132 log X2i + €i 

i = 1, 2, .. . ,n (6.5-4) 

The effect of the additive error in Equation 6.5-3 can 
be related back to the untransformed model only by 
examining each model as a separate case. The usual 
assumptions of linear analysis described in Section 4.2 
lead to the best linear unbiased estimates of the param­
eters 131' ... ' 13m in Equation 6.5-4. However, the 
estimation procedure produces the best linear unbiased 
estimate of log 130, not of 130 itself. In terms of the non­
linear model of Equation 6.5-1, the additive error in 
Equation 6.5-4 corresponds to a multiplicative type of 
error in the untransformed model 

i = 1,2, ... , n (6.5-5) 

where 4>i = log -1 €i is a positive error. The usual tests of 
hypotheses and confidence intervals require that 4>i be 
lognormally distributed. We can conclude that the log­
arithmic transform and subsequent least squares analysis 
are justified if the error 4> is proportional to Y rather than 
being a fixed value independent of· the value of Y. 
For example, rulers have a fixed error whatever the value 
of the measured distance, whereas many observed process 
variables come from measuring devices in which the 
error indeed is proportional to the value of the variable. 

As another example, suppose the model is 

= 131 eIJ2Y X 

and that Y is the dependent random variable available 
for fixed values of x. Since log x = log 131 + 132 Y, 

J':. = log Xi _ log 131 + €. 

t t132 132 

and linear regression yields the best estimates of the new 
parameters: 

P1 = log (i)1/02 

-- . 1 
132 ~ 132 

The calculation ofthe approximate confidence limits ofthe 
old parameters can be from those of the new parameters. 
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As a final example, replacement of the nonlinear 
Hougen-Watson-Langmuir-Hinshelwood type of rate 
equation, such as the" dual site" model 

kKc
 
Ro = (1 + KC)2 + €
 

where 

Ro = rate of reaction, dependent random variable 
c = concentration, independent deterministic variable 

k, K = constants 

by the linear model 

C)% 1 K
(R = vlkK + vlkK c + fE'o 

in order to use a linear (in the parameters) estimation 
routine ignores the fact that the additive error €' in the 
linear model is not the same as € in the original model. 
The relation evolved from the linear model would be 

- kKc kK (R' '2 2"" IR- ')Ro - (1 + KC)2 + (1 + KC)2 o€ - ·v oC€ 

Additional information pertaining to transformation of 
the independent variables can be found in Box and 
Tidwell t and of the dependent variable in Box and Cox.j 

6.6 ESTIMATION WITH THE PARAMETERS 
AND/OR VARIABLES SUBJECT TO CONSTRAINTS 

The idea of imposing constraints on the parameters 
and/or .the variables in a process model comes about 
quite naturally. For example, in. certain essentially 
empirical models for chemical kinetics such as 

kKAPAPBr=---...;;;........;;;;.....;;....-­
1 + KAPA + KBPB 

where r is a rate of reaction, k and K are constants, and 
P is the pressure, arguments on physical grounds lead to 
the conclusion that k, KA, and KB must be nonnegative. 
Consequently, fitting the model without restricting the 
region of search for the parameters estimates to k ~ 0, 
KA ;?: 0, and KB ;?: °will lead to unreasonable, often 
negative, estimates. An example of constraints on the 
independent variables occurs when the independent 
variables Xi represent mass fractions, in which case 
LXi == 1. 

In general, constraints can be classified into two types: 

1. Equality constraints. 
2. Inequality constraints: 

The strategy of optimization (minimization for least 
. squares) of an objective function subject to inequality 

t G. E. P. Box and P. W. Tidwell, Technometrics 4, 531, 1962. 
~ G. E. P. Box and D. R. Cox, Dept. of Stats. Tech. Rept. No. 26, 
Univ. of Wis., Madison, Mar. 1964. . 

L......- ..' 
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and/or equality constraints has come to be known as 
mathematical programming. Quadratic programming 
refers to optimization of a quadratic objective function 
subject to linear (in the parameters) inequality constraints. 
Nonlinear programming is the generic term applied to 
optimization of a nonlinear objective function subject to 
both nonlinear equality and inequality constraints. 

Certain commonly encountered· simple constraints can 
be accommodated without the use of nonlinear program­
ming. For example, the "trivial" constraints that 

f3j > k, 

where k, is a positive constant can be handled by letting 

pj = k j + elJ; 

where f37 is the parameter to be estimated. 
Although f31 may range from -00 to +00, f3j will 

always be greater than kj • 

The more general constraints: 

i = 1, 2, ... , q 

can be arranged as penalty functions added to ep and the 
following sum minimized 

Minimize f> = eP + 2:
q 

A/(g/Y (6.6-1) 
i=1 

where r is an even power to assure that the added terms 
are in fact all added to ep, and Ais a scaling factor. For the 
constraint b, > k; or b, - k, > 0, the function gi for 
r = 2 and A =·1 would be 

gi = 0 if hi > k j 

gi = (hi - k j )2 if hj S k j 

Eq uality constraints: 

j = 1,2, ... , r 

can be treated in the same fashion with each Ajg;(Y, x, (3) 
added to ep as a penalty function. When the constraint is 
violated, a dominant penalty is added; when the con­
straint is almost satisfied, a negligible penalty is added, 

However, the penalty function approach has its 
disadvantages, particularly in regard to the selection of 
the scaling factors, A. Moreover, since several computer 
codes are available to carry out nonlinear programming 
directly, it usually proves simpler to employ one of the 
available codes rather than to develop a new code for a 
special problem. We do not have the space here to 
describe the various algorithms which have been sug­
gested to accommodate both inequality and equality 
constraints into the optimization schemes discussed in 
Section 6.2, since they are all quite involved. However, 
Table 6.6-1 lists references to iterative types of codes. It 

TABLE 6.6-1 COMPUTER CODES FOR OPTIMIZATION SUBJECT 

TO· CONSTRAINTS 

Name Technique Reference 

POP/360 Iterative linear 
programming, numerical 
derivatives 1 

Simplex Search Simplex method 2 
SUMT Penalty function, 

analytic derivatives 3 

1 IBM Corp. Share Library.
 
2 Shell Development Corp., Emeryville, Calif.
 
3 G. P. McCormick, Mang. Sci. 10, 360, 1964; Research Analysis
 
Corp., McLean, Va. '
 

is also possible to seek extrema by analytical methods, 
if the constraints are solely equality constraints, by means 
of Lagrangian multipliers. 

Constraints on the independent variables of the model, 
either recognized or unrecognized, cause difficulty in the 
estimation of the model parameters. To give a simple 
example, if the model is 

'YJ = Po + f31 X1 + f32X2 

and the constraint is 

clearly the model is equivalent to 

'YJ = f3t + f3t X1 

in which X2 plays no role. Consequently, the remarks of 
Section 6.3 about the null effect apply. Each such 
equality constraint removes one degree of freedom among 
the independent variables in the model. 
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Bartlett, M. S., "The Use of Transformations," Biometrics 3, 39, 
1947. 

Beale, E. M. L., "Confidence Regions in Nonlinear Estimation," 
J. Royal Stat. Soc. B22, 41, 1960. 

Box, G. E. P. and Coutie, G. A., "Application of Digital Com­
puters in the Exploration of Functional Relationships," 
Proceed. Inst, Elec. Eng. 103, Pte B, Supplement 1, 100, 1956. 

Box, G. E. P. and Cox, D. R., "An Analysis of Transformations," 
Dept of Stats. Tech. Rept. No. 26, Univ. of Wis., Madison, 
1964. 

Box, G. E. P. and Tidwell, P.,"Transformation of the Inde­
pendent Variables," Technometrics 4, 531, 1962. 

Curry, H. B., "The Method of Steepest Descent for Nonlinear 
Minimization Problems," Quart. Appld. Math. 2, 258, 1944. 

Dickinson, A. W., in Chemical Division Transactions of the 
American Society for Quality Control, 7959, p. 181. 

Dolby, J. L., "A Quick Method for Choosing a Transformation," 
Technometrics 5, 317, 1963. 

; 
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Hartley, H. 0., " The Modified Gau ss-Newton Method for the 
Fitting of Nonlinear Regression Functions by Least Squares ," 
Technometrics 3, 269, 1961. 

Kale, B. K., "On the Solution of the Likelihood Equation by 
Iteration Processes," Biometrika 48, 452, 1951. 

Kale, B. K., " On the Solution of the Likelihood Equation by 
Iteration Processes. The Multiparametric Case," Biometrika 
49,479, 1962. 
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Problems in Least Squares," Quart. Appld. Math . 2, 1964, 
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Marquardt, D. L., "An Algorithm for Least Squares Estimation 
of Nonlinear Parameters," J. Soc. Ind. Appld. Math . 2, 431, 
1963. 

Pereyra, V., " Iterative Methods for Solving Nonlinear Least 
Squares Problems," SIAM J. Num , Anal. 4, 27, 1967. 

Tukey, J. W., "On the Comparative Anatomy of Transfor­
matio ns," Ann. Math . Stat. 28, 602, 1957. 

Turner, M. E., Monroe, R. J., and Lucas, H. L., "Generalized 
Asymptotic Regression and Nonlinear Path Analysis," 
Biometrics 17, 120, 1961. 

Williams, E. J., Regression Analysis, John Wiley, New York , 
1959. 

S urveys of Optimization Techniques for Nonlinear Objective 
F unctions 

Dorn, W. S., "Nonlinear Programming-A Survey," Mang . Sci . 
9, 171, 1963. 

Spang, H. A., " A Review of Minimization Techniques for 
Nonlinear Functions," SIAM Rev. 4, 343, 1962. 

Wilde, D . J. and Beightler , C. F., Foundations of Optimization, 
Prentice-Hall, Englewood Cliffs, N.J. , 1967. 

Wolfe , P., "Methods of Nonlinear 'Programming," in Nonlinear 
Programming , ed. by J. Abadie, North-Holland, New York, 
1967, Chapter 6. 

Zoutendijk, G., "Nonlinear Programming : A Numerical Survey," 
SIAM J. on Control 4, 194, 1966. 

Computer Routines for N onlinear Estimation 

Derivative-type methods: 
Booth, G. W. and Peterson, T. I ., AIChE Computer Program 

Manual No .3, Dec . 1960, AICE, '345 E, 47th St., New York 
(FORTRAN). 

Efroymson, M. A. and Mathew, D., " Nonlinear Regression 
Program with Nonlinear Equations," Esso Res. and Develop . 
Co. (FORTRAN). 

Marquardt, D . W., et al., " NU N, Least Squares Estimation of 
Non-linear Parameters," IBM Share Program SD 3094, 
1964 (FORTRAN). 

Moore, R. H., Zeigler, R. K., and McWilliams , P., " PAKAG," 
Los Alamos Scientific Laboratory, Albuquerque, N.M. 
(FORTRAN and FAP). 

Derivative-f ree methods: 
Beisinger, Z. E. and Bell, S., "HZ SAND MIN," Sandia Corp . 

(FORTRAN). Direct Search . 
Lindamood, G. E., " AP MINS," John Hopkins Univ. Baltimore, 

Md ., SD 1259 (FAP). Direct Search . 
Kaupe, A. F., "Collected Algorithms from the Association of 

Computing Machinery," Algorithm 178, New York, annu­
ally (Algol) . Direct Search. 

Problems 

6.1	 Using the following data (x, = independent variable 
and Yt = dependent variable) : 

X l Y1 

0.4 51.6 
1.4 53.4 
5.4 20.0 

19.5 :-4.2 
48.2 - 3.0 
95.9 -4.8 

find the best fitting parameters for the equation 

eb2x Y = b« + bl +€ 

6.2	 Fit the Antoine equation 

B 
10gIoP = A - ­

T 
whereP is the vapor pressure in millimeters ofmercury, 
T is the temperature in degrees Kelvin, and A and B 
are constants to be determined. 

TABLE P6 .2 VAPOR PRESSURE-TEMPERATURE DATA FOR 
SULFURIC ACID-WATER SYSTEM (95 PERCENT WEIGHT 
H 2S04 IN H 20)* 

Vapor Absolute 
Pressure, P Temperature, 
(mm Hg) TCK) 

a b a' b' 

0.00150 8.39000 308.16 438.16 
0.00235 10.30000 313.16 443.16 
0.00370 12.90000 318.16 448.16 
0.00580 15.90000 323.16 453.16 
0.00877 20.20000 328.16 458.16 
0.01330 24 .80000 333.16 463.16 
0.01960 30 .70000 338.16 468.16 
0.02880 36.70000 343.16 473.16 
0.04150 45 .30000 348.16 478.16 
0.06060 55.00000 353.16 483.16 
0.08190 66 .90000 358.16 488.16 
0.12300 79.80000 363.16 493.16 
0.17200 95 .50000 368 .16 498.16 
0.23700 115.00000 373.16 503.16 
0.32100 137.00000 378.16 508.16 
0.43700 164.00000 383.16 513.16 
0.59000 193.00000 388.16 518.16 
0.78800 229.00000 393.16 523.16 
1.07000 268.00000 398.16 528.16 
1.42000 314.00000 403.16 533.16 
1.87000 363.00000 408.16 538.16 
2.40000 430.00000 413 .16 543.16 
3.11000 500 .00000 418.16 548.16 
4.02000 580 .00000 423.16 553.16 
5.13000 682 .00000 428.16 558.16 
6.47000 790 .00000 433 .16 563.16 

Rosen, J. B., "GP90 Gradient Projection Method for Non-linear * Data for sulfuric acid are from J. H. Perry, Chemical
 
Programming" (FAP). Engineers Handbook , McGraw-Hill, New York, 1963.
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6.3 Fit the dat a belo w to the model y 

Y = 
AI XI log. (::) 

eA 3 x 3 + A 4 

8.0050 
6.1111 
3.1792 

X 

X 

X 

10-1 

10- 4 

103 

33 
97 
29 

17 
80 
61 

33 
97 
29 

Find AI , A2, A3, and A. by least squares. 

y Xl X2 X3 

0.81028 1.0000 ' 0.1000 0.1000 
8.1028 10.000 0.1000 0.1000 

12.154 15.000 0.1000 0.1000 
5.0514 5.0000 0.1000 0.1000 

60.771 75.000 0.1000 0.1000 

4.40359 
1.4448 x 
7.5917 X 

2.6723 X 

3.6466 X 

9.5717 X 

4.7435 X 

2.4336 x 

102 

10-3 

10-' 
10- 5 

10- 5 

10- 5 

10 

1.6 
13 
72 
43 
84 

100 
81 
63 

23 
32 
77 
67 
34 
15 
13 
11 

16 
13 
72 
43 
84 

100 
81 
63 

0.68833 
6.8833 

10.325 
3.4417 

51.625 
0.30451 
3.0451 

1.0000 
10.000 
15.000 
5.0000 

75.000 
1.0000 

10.000 

0.1000 
0.1000 
0.1000 
0.1000 
0.1000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.1000 
0.1000 

6.6 Select a series of (simulated) data points from the 
Steam Tables for water vapor, or for another gas 
fro m data available in the literature, and fit the 
(simulated) data to the follo wing equations of state 
for 1 mole. 

(a) Van der Waals : 

4.5676 
1.5225 

15.000 
5.000 

1.0000 
1.0000 

0.1000 
0.1000 (p + ; 2)(V ­ b) = RT 

6.4 

22.838 75.000 1.0000 

Fit the dat a belo w to the model 

0.1000 (b) Macleod: 

n(V- b') = RT 

Y = e-
X 

X 
[al + a2X + a3x 2 + x 

3J 
a. + a5X + asx 2 + x 3 

a 
7T=P+ V2 

by least squares. 
y X (c) Clausius : 

b' = boO - B7T + C~) 

6.5 

1.9697 0.1000 
3.867 x 10- 1 0.6700 
1.226 x 10- 1 1.3400 

. 4.611 x 10- 2 2.0100 
1.877 x 10- 2 2.6800 
1.5805 x 10- 2 4.6900 
7.2126 x 10- 3 5.3600 
3.3327 x 10- 3 6.0300 
1.5553 x 10-3 6.7000 
7.3177 x 10- 4 4.73700 
3.4665 x 10- 4 8.0400 
1.6516 x 10- ' 8.7100 
7.9076 x 10- 5 9.3800 
3.8024 x 10-5 10.050 

Given the dat a below, estima te a h a2, a3, and a. in 
the mod el 

(d) 

(e) 

(f) 

(g) 

RT a 
p = (V ­ b) - T( V + C)2 

Lorentz: 

RT a 
P = - (V+ b) -­V 2 V2 

Dieterici: 

RT -a/VRT 
P = (V ­ b) e 

Berthelot : 

R T a 
p = ( V - b) - T V2 

Wohl: 

RT a c 
P = ( V - b) - V(V - b) + TV3 

Y = (a1 + a2Xr + cos a3x 2)sln(a.x3 ) (h) Keyes: 

y 

7.7385 X 

4.2372 x 
10- 4 

10-4 

Xl 

75 
68 

X2 

33 
15 

X3 

75 
68 

RT 
P = (V ­ 0) 

o= fJ e - a/V 

A 
- (V ­ 1)2 

8.8133 
4.5851 
9.4883 
1.1336 
1.2052 
1.0767 
4.3098 

x 
x 

x 
x 
x 
x 

10 
10 

10- 3 

102 

10- 1 

10- 1 

39 
16 
58 
53 
61 
47 
99 

9 
25 
48 

5 
63 
72 
29 

39 
16 
58 
53 
61 
47 
99 

(i) 

(j) 

Kammerlingth-Onnes: 

p V = RT[I + ~ + ~2 + ...J 
Holborn : 

p V= RT[1 + B 'p + C'p2 + . ..J 

; . 

o==-~","--_----------------..,,----:-:=============~
 



(k)	 Beattie-Bridgeman: 

f3 y S 
p v = RT + V + V2 + V3 

Rc
f3 = RTBo - Ao - ­T2 

RBoc 
Y =	 -RTBob +aAo + T2 

S ., RBobc 
T2 

(1)	 Benedict-Webb-Rubin: 

f3 a '1J W 

PV = RT + V + V2 + V4 + V5 

Co
f3 = RTBo - A o - ­T2 

c y 
a = bRT - a + - exp - ­

T2 V 2 

y 
'1J = cyexp - V2 

w = aa 
The notations (use consistent units) are: 

p = pressure 
V = volume/mole 
T = absolute temperature 
R = gas constant 

All other symbols are coefficients to be determined. 
Discuss what should be done if the independent 
variables as well as the dependent variables -are sto­
chastic. 

6.7	 A compartment-type experimental dryer was built to 
simulate the drying conditions of a commercial 
.leather drier.] After a certain drying time (t), the 
thickness of the leather (L)' and the mass velocity of 
the drying air (G) were measured. The drying coeffi.. 

. cient	 (f3) was then calculatedfor that run from the 
equation 

dW 
- = -f3W6.H
dt 

where 
L = thickness of leather 
W = free moisture content of leather 

flH = unsaturation of air 
f3 = drying coefficient 
t = time elapsed 

G = mass velocity of drying air 
The purpose of the experiment was to find the value 
of B as a function of the parameters G and L in the 
nonlinear equation 

mGn­
B=­

L 

where m and n are the constants to be determined. 

t o. A. Hougen, "Rate of Drying Chrome Leather," Ind. Eng 
Chem., pp. 333-339, Mar. 1934. 

TABLE P6.7 ORIGINAL DATA 

Runs 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

B( )kg evap, 
(meter)2(min) 

1.305 
1.90 
2.71 
2.61 
2.48 
3.61 
3.48 
4.95 
4.38 
4.63 
4.65 
3.18 
3.55 

L (min) 

1.05 
1.17 
1.06 
1.00 
1.04 
1.13 
1.02 
1.02 
1.00 
1.06 
1.04 
1.32 
1.43 
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( kg )
G (meterf'(mia) 

14.1 
42.7 
42.0 
42.5 
42.3 
71.4 
70.0 

117.0 
115.0 
112.0 
114.0 
99.6 
99.6 

Find the best values of m and n for the following 
data. The values in the article were m = 0.282 and 
n = 0.2, obtained by graphical methods. Comment 
on the possible biasin the parameters m and n. What 
are their respective estimated variances? 

6.8	 Nitrogen oxide is absorbed in a reacting solution to 
produce a product; the data are given below. Estimate 
the coefficients f3h f32' and f33 in the model 

Y = f31 eIJ2XxIJa 

y x 
Nitrogen Oxide Concentration of Product 

Absorbed (g/liter) 

0.09 
0.32 
0.69 
1.51 
2.29 
3.06 
3.39 
3.63 
3.77 

6.9	 Diffusion data have been collected in the laboratory 
to fit an equation: 

N = cJE.
71'1 

where 
N = moles absorbed/min 
c =:= concentration, moles/cc 

D = diffusion coefficient, cm2/min 

1 = time, min. 

The variables N, c, -and 1 are measured. You are 
asked to calculate D from 12 sets of data. How would 
you go about this? Give the equations you would use 
in terms of the notations above. Give a means of 
calculating the confidence limits on a -predicted value 
of D. How should the magnitude of the experimental 
error in the work be determined? 

(g/liter) 

15.1 
57.3 

103.3 
174.6 
191.5 
193.2 
178.7 
172.3 
167.5 

_. .::::=:::JB 
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6.10	 In Example 3.6-3, Bartlett's test demonstrated that 
the variances at four values of X, were not homo­
geneous, i.e., were not the same. Since there is no 
physical reason to presume any particular functional 
relation between Var {Y, Ix} and x, the form of the 
relation can be established by regression analysis in 
fitting the best curve through the si'(x) data. 

However, a large number of functional forms for 
Var {Y, I x} can be proposed, many of which will 
prove to be essentially equivalent; For example, 
some possible regression equations are 

e- x a S2(X) = 

2( ) _ 1 
s x - a(x + b)2 

1
S2(X) =-­

ax + b 

and so forth. From the data in Example 3.6-3, 
determine a suitable functional form for S2(X) for 
use in equations incorporating nonunity weights. 
Also test the resulting predicted values of S2 for each 
of the four x's to see if they meet the modified 
Bartlett's test based on weighted variances: 

(the pooled variance is weighted also). Make a plot 
of the predicted values of S2(X) versus x, and show the 
experimental points for comparison. 

6.11	 The density and viscosity of anhydrous hydrazine 
were measured at elevated temperatures ranging 
from 288.16 to 449.83 degrees Kelvin.] Samples of 
99.6-percent purity were prepared by stirring com­
mercial-grade (about 97 percent) hydrazine over 
barium oxide for several hours, vacuum distilling, 
and passing the condensate twice through a packed 
column of Linde Molecular Sieves. The hydrazine 
content of each sample was determined by an iodine 
titration method. Density determinations were made 
with sealed borosilicate glass pycnometers. 

The following equation has been suggested to 
express the relationship between the absolute vis­
cosity, 'TI, the density, p, and the temperature, T: 

'TI = pic exp (a + ~ + ;3) 
Determine the constants a, b, 'c, and k ; the con­

fidence limits on the constants; and the confidence 
limits on the predicted values' of 7]. What basic 
assumptions have you made? List them. 

t R. C. Ahlert, G. L. Bauerle, and J. V. Leece, "Density and 
Viscosity of Anhydrous Hydrazine at Elevated Temperatures," 
J. Chern. Eng. Data, Jan. 1962. 

TABLE P6.11 DATA 

Temperature COK) 'TI (centipoise) p (g/cc) 

288.16 1.0275 1.0114 
310.94 0.7268 0.9934 
338.72 0.5363 0.9672 
366.49 0.4028 0.9392 
394.27 0.3266 0.9124 
422.05 0.2728 0.8862 
449.83 0.2344 0.8575 

6.12	 Fit the Berthelot equation of state (for 1 mole): 

RT a 
P= V-b-TV2 

for S02 to the following data.] 

Mass of Gas 
V (cm3/g) P(atm) (g) t ("C) 

67.810 5.651 0.2948 50 
50.882 7.338 
45.280 8.118 

72.946 5.767 0.2948 75 
49.603 8.237 
23.331 15.710 
80.170 5.699 0.2948 100 
45.664 9.676 
25.284 16.345 
15.285 24.401 
84.581 5.812 0.2948 125 
42.675 11.120 
23.480 19.017 
14.735 27.921 
23.913 20.314 1.9533 150 
18.241 25.695 
7.2937 51.022 
4.6577 63.730 

20.685 26.617 1.9533 200 
10.595 47.498 
5.8481 74.190 

6.13 A model for a surface reaction mechanism: 

(a) 

where 

k, K 
r 

P 

= 

= 

= 

constants 
dependent variable, stochastic 

independent variables, deterministic 

has been linearized as follows for regression analysis: 

P2 - (p3/K) 1 . K1 1 K3 
r = kK2 +kK2

P1 + I P2 + kK2
P3 (b) 

:j:T. L. Kang, Ph.D. Thesis, Univ, of Texas, 1960. 

I 
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How satisfactory would the values of k and K be if 
obtained from the coefficients of Pt in Equation (b)? 

where 
'YJ = ex + f31 e13 2 x 1 + f33 e13 4x 2 

What could be said about the confidence intervals on At the point where the respective estimates of the 
k and the K's? parameters are: a = 10, b, = 1, h2 = 2, ba = 2, and 

6.14 Linearize the model h4 = 1, give the components of the unit vector in the 

Y = f31 e-/32X + f33 e­ 13 4x direction of 
(10, 1, 2, 2, 1). 

steepest descent from the point 

by a truncated Taylor series and form the set of 
equations corresponding to Equation 6.2-12. Indicate 
what the elements of the P and Z matrices are. 

6.16 The power function Y = aX~lx~2 can be linearized by 
taking logarithms of both sides of the equation. 
However, if it is desired to use as a criterion 

6.15 Find the gradient of the objective function ~ (Y, - Yt)2 rather than ~ (In y! - In y,)2, what 

4>1 
n 

= ',L (Yt 
t::l 

- 'YJt)2 

weights could be used in conjunction with the latter 
criterion to give approximately the same results as 
minimizing the former? 

......... _.. _--_ ..__......_--~----------'---~----~----------------------------------



CHAPTER 7
 

Identification of the Best 
Models 

Chapters 4, 5, and 6 have been primarily concerned with 
the mechanics of parameter point and interval estimation 
and hypothesis tests for a given empirical model. In this 
Chapter we inquire as to which among several models is 
best, inasmuch as the main interest of the analyst is to 
select an appropriate model from among many feasible 
models. For example, if the objective is just to fit a 
polynomial to some experimental data in order to use 
the data in the form ofa function (rather than using 
tabulated data) in a computer program, a natural 
question to ask is: How many terms should be employed 
in the polynomial? In other instances, too many inde­
pendent variables exist in an empirical model; then the 
analyst is interested in finding a smaller set which con­
tains the important variables, deleting those of slight 
importance from the model. Chapter 8 describes the 
intermesh ing of experimentation with estimation and 
model building, but we are interested now in the analysis 
of process data. . taken in perhaps undesigned experi­
ments, for which the estimation and analysis may occur 
as afterthoughts. A discussion of the methods of experi­
mentation to discriminate effectively ainong models is 
deferred until Section 8.5. 

What we would like to do is select the "best" model 
when more than one is possible or proposed . For the 
linear models described in Chapter 5, it is impractical to 
employ computer procedures to evaluate all the possible 
regression equations obtainable by deleting and adding 
successive sets of variables, even if we ignore possible 
transformations. Instead, the analyst works with a 
limited number of different models and discriminates 
among them by one or more systematic procedures. As 
to the criterion of "best," one or a combination of the 
following is commonly used: 

I. Fewest coefficients consistent with reasonable error. 
2. Simplest form consistent with reasonable error. 
3. Rationale based on physical grounds ("seems to 

follow . . . 's law"). 
4. Minimum sum of squares of deviations between 

predicted and empirical values. 
5. Minimum variance, 41 (S~I is not an unbiased 

variance estimate since it contains a systematic com­

ponent that exists because of the difference between the 
estimated function and the true function; refer to Section 
5.2-2). 

To help identify suitable models, we shall discuss first 
the analysis of residuals, which should be one of the first 
phases in any model-evaluation program. Then we shall 
describe stepwise regression for linear models, which is a 
systematic estimation procedure that simultaneously 
isolates the important independent variables. Finally, we 
shall discuss certain tests that have been proposed to 
discriminate among two and among more than two 
models. 

7.1 ANALYSIS OF RESIDUALS 

The analysis of variance has been used in Sections 4.3 
and 5.3 to establish whether or not a linear model repre­
sents the data adequately. But the variance ratio test to 
determine if (s~ js';) is greater than F1 - a only demon­
strates that the overall fit of the model is satisfactory. 
Important discrepancies can still exist, even though the 
model passes the F-test . These discrepancies often can be 
detected through the analysis of residuals, that is, by 
examining the set of deviations between the experimental 
and predicted values of the dependent variable, 
(Y; - Yt) = Et • 

Certain underlying assumptions have been outlined for 
regression analysis, such as independence of the un­
observable errors 10, constant variance, and normal 
distribution for E. If the model represents the data . 
adequately, the residuals should possess characteristics 
that agree with, or at least do not refute, the basic 
assumptions. The analysis of residuals is thus a way of 
checking that one or more of the assumptions under­
lying regression analysis is not violated. For example, if 
the model fits well, the residuals should be randoml y 
distributed about the Y predicted by the regression 
equation . Systematic departures from randomness indi­
cate that the model is not satisfactory; examination of 
the patterns formed by the residuals can provide clues 
as to how the model can be improved. 

Examinations of plots of the residuals versus Yh X h 

or time, or a plot of the frequency of the residuals versus 
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the magnitude of the residuals, all have been suggested 
as numerical and/or graphical aids to assist in the 
analysis of residuals. t A study of the signs of the re­
siduals (+ or -) and sums of signs can be used.I Many 
of the nonparametric tests described in Section 3.7 can 
also be employed. In the following example (adapted 
from Nelson), five features of residual analysis are 
presented: 

1. Detection of an outlier (an extreme observation). 
2. Detection of a trend in the residuals. 
3. Detection of an abrupt shift in level of the experi­

ment. 
4. Detection of changes in the error variance (usually 

assumed to be constant). 
5. Examination of residuals to ascertain if they are 

represented by a normal distribution. 

When residuals are used to elucidate the adequacy of 
a model, keep in mind that as more and more inde­
pendent variables are added to the model, the residuals 
become less and less informative. Each residual is in effect 
a weighted average of the E'S; as more unnecessary x's 
are added to a model, the residuals become more alike, 
each one reflecting an indiscriminate average of all the 
E'S instead of reflecting primarily one E. 

t F. J. Anscornbe, Proceed. Fourth Berkeley Symposium on Math.
 
Stat. and Probability 1, 19, 1963; F. J. Anscombe and J. W.
 
Tukey, Technometrics 5, 141, ·1963; ,G. E. P. Box, Annals. N. Y.
 
Acad. Sci. 86, 792, 1960; R. J. Freund, R. W. Vail, and C. W.
 
Clunies-Ross, Jc.Amer. Stat. Assn. 56, 98, 1961; L. S. Nelson,'
 
Chern. Div., Amer. Soc. Qual. Control Trans., Houston, Texas,
 
1955, p. Ill.
 
~ N. R. Draper and H. Smith, Applied Regression Analysis, John
 
Wiley, New York, 1966, Chapter 3.
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In carrying out the analysis' of residuals, the analyst 
will quickly discover that graphical presentation of the 
residuals materially assists in the diagnosis because one 
aberration, such a single extreme value, can simul­
taneously affect several of the numerical tests.. 

Example 7.1-1 Analysis of Residuals 
Simulated data were generated by the following model: 

yt = 10.8 + 0.40XI - 0.20X2 + Et 

in which Xl and X2 took on integer values 1, 2, 3, 4, 5, and 
6, and the errors, Eh were random, normally distributed 
with an expected value of 0 and a variance of 1. Note that 
the model is linear and no replicate measurements were 
generated. The simulated data are listed in Table E7.1-1a; 
the numbers in parentheses above each Yt indicate the order 
in which the Yt's were calculated. Each cell will have a 
corresponding residual. 

Application of the linear estimation procedure described 
in Section 5.1 yielded the following estimated regression 
equation: 

Y = 10.52 + 0.49xI - 0.19x2 (a) 

and the analysis of variance given in Table E7.1-1b. 
The linear term for Xl was significant at P = 0.001, while 

the linear term for X2 was significant at P = 0.025. Note that 
2s: was 0.73 as compared with u = 1. 

DETECTION OF AN OUTLIER. If the value 9.6 in the cell 
(Xl = 1, X2 = 6) is replaced by 13.9 (a value 3.9 standard 
deviations higher than 10), a new analysis of variance 
indicates that the variable X2 was not significant (see Table 
E7.1-1c). The mean square for the residuals, s~, was still close 
to unity and the estimated regression equation was Y = 
10.32 + 0.39xI. Figure E7.1-1a is a plot of the residuals 
calculated by using this equation. The circled point. is an 
outlier. If the data had been taken in a real experiment, the 
adequacy of the experimental conditions for which the 
encircled point was collected should be reexamined. 

1 2 3 
Xl 

4 5 6 Sum Mean 

X2 

2 

3 

4 

5 

6 

(28) 
10.3 
(6) 
11.6 
(8) 
9.7 

(27) 
11.4 
(32) 
10.3 
(20) .. 
9.6 

(3) 
11.3 
(13) 
10.4 
(30) 
12.2 
(17) 
11.5 
(33) 
10.6 
(2) 
9.4 

(1) 
13.0 
(4) 
11.5 
(15) 
10.9 
(29) 
11.0 
(22) 
10.0 
(14) 
11.8 

(31) 
12.0 
(25) 
11.9 
(5) 
11.8 
(12) 
11.5 
(35) 
11.3 
(23) 
10.2 

(36) 
10.6 
(24) 
13.3 
(34) 
12.1 
(7) 
11.3 
(11) 
11.4 
(21) 
12.7 

(9) 
13.2 
(19) 
14.2 
(16) 
12.8 
(18) 
14.5 
(10) 
12.8 
(26) 
12.4 

70.4 

72.9 

69.5 

71.2 

66.4 

66.1 

11.73 

12.15 

11.58 

11.87 

11.07 

11.02 

Sum 62.9 65.4 68.2 68.7 71.4 79.9 416.5 

Mean 10.48 10.90 11.37 11.45 11.90 13.32 11.57 
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TABLE E7.1-lb ANALYSIS OF VARIANCE 

JJ Sum of Variance 
Source of Variation d.f, Squares Mean Square Ratio 

Xl 1 25.51 25.51 37.5 
X2 1 3.68 3.68 5.4 

Deviation from regression : 33 24.05 0.73 
-

Total 35 

TABLE E7.1-lc 

Source of 
Variation 

JJ 

d.f. 
Sum of 
Squares 

Mean 
Square 

Variance 
Ratio 

Xl 

X2 

Deviation from 
regression 33 

16.01 
0.75 

37.51 

16.01 
0.75 

1.14 

14.0 

Total 35 

DETECTION OF A TREND. Because the underlying process 
may shift with time , the experimenter must always check for 
a trend in the residuals. To simulate this characteristic of a 
real process , the values 0, 0.1, 0.2, 0.3, .. . , 3.5 were added 
to each of the entries in Table E7.1-la in the sequence given 
by the precedence order numbers (those in parentheses). 
The new simulated data are listed in Table E7.1-ld. 

The anal ysis of variance for the data in Table E7.1-ld 
indicated that Xl was a significant variable but that X 2 was 

3 
2 

(>;"1 1 

>;"
I J; 

-1 

-2 
-3 

40 
Sequence number 

FIGURE E7.1-1 a 

TABLE E7.1-ld 

0 t-\­ ·p-...; A-I~---:-kF---\---1 4cA-I--\t---:---1 

not. See Table E7.1-le. Note that s~ became somewhat 
larger than 1. The regression equation used in calculating 
the residuals, which are plotted in Figure E7.1-1b, was 

Y = 11.53 + 0.51xI (b) 

Figure E7.1-lb clearly brings out the trend of the residuals; 
a least square line which best fit the residuals indicated 
that the trend could be removed if 0,0.09, 0.18, .. . .,3.15 
were taken from the simulated data in order of their initial 
sequence. 

Other trends can be expected to occur in experimental 
data, such as a diverging or converging spread of values or 
a nonlinear trend. A graph such as Figure E7.1-1b can help 
in the detection of such a trend. 

TABLE E7.1-1 e 

Source of 
Variation 

JJ 

d.f. 
Sum of 
Squares 

Mean 
Square 

Variance 
Ratio 

Xl 

X2 

Deviation from 
regression 

Total 

33 

35 

27.31 
1.43 

57.44 

27.31 
1.43 

1.74 

15.7 

,.,. 

DETECTION OF AN ABRUPT SIDFT IN LEVEL. To simulate 
an abrupt shift in process level, each value in the sequence . ' 
of data in Table E7.1-la numbered 18 through 36 was 
increased by 3. The analysis of variance for the new data 
indicated again that Xl was a significant variable (P = 0.01) 

2 3 
Xl 

4 5 6 Sum Mean 

X2 

1 
2 
3 
4 
5 
6 

13.0 
12.1 
10.4 
14.0 
13.4 
11.5 

11.5 
11.6 
15.1 
13.1 
13.8 
9.5 

13.0 
11.8 
12.3 
13.8 
12.1 
13.1 

15.0 
14.3 
12.2 
12.6 
14.7 
12.4 

14.1 
14.6 
15.4 
11.9 
12.4 
14.7 

14.0 
16.0 
14.3 
16.2 
13.7 
14.9 

80.6 
81.4 
97.7 
81.6 
80.1 
76.1 

13.43 
13.57 
13.28 
13.60 
13.35 
12.68 

Sum 74.4 74.6 76.1 81.2 84.1 89.1 479.5 

Mean 12.40 12.43 12.68 13.53 14.02 14.85 13.32 

_J
I
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o 

-3 

1 40 

Sequence number 

FIGURE E7.1-1b 

and X2 was not. See Table E7.1-1f. (Observe that the mean 
square of the residuals is now significantly different from 1.) 
A plot of the residuals based on predicted values of Y from 
the equation of best fit 

Y = 11.44 + 0.465xI (c) 

clearly shows what has happened; examine Figure E7.1-1c. 
The difference between the sample mean values for the two 
groups of residuals was computed as 2.8. 

TABLE E7.1-1f 

Source of 
Variation 

v 
d.f. 

Sum of 
Squares 

Mean 
Square 

Variance 
Ratio 

Xl 

X2 

Deviation from 
regression 33 

22.63 
0.46 

98.24 

22.63 
0.46 

2.98 

7.6 

Total 35 

DETECTION OF CHANGES IN THE ERROR VARIANCE. A 
major assumption in the analysis of varianceusually is that 
the error variance is constant. It 'is of some importance to 
ascertain if this assumption is not fulfilled. The analysis in 
Chapter 5 gives an average valuefor.the error variance, and 
if the error variance is not homogeneous, this average value 
may not correctly represent any part of the experiment. To,.,.... 

TABLE E7.1-1g 
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FIGURE E7.1-1c 

simulate nonhomogeneity of variance, each error added to 
all the values at experimental levels 5 and 6 for Xl in Table 
E7.1-1a was multiplied by five to yield the simulated data 
listed in Table E7.1-1g. 

An analysis of variance of the data in Table E7.1-1g 
yielded the results shown in Table E7.1-1h. The effect of 
variable Xl showed up strongly (P = 0.001), but the effect 
of factor X2 was at the 10 percent level of significance. The 
residual variance s~ was very much greater than one. If 
variable X2 was ignored, the estimated regression equation 
was 

Y = 8.39 + 1.19xI (d) 

Table E7.1-1i lists residuals calculated with Equation (d). 
Analysis of the ranges of the residuals in Table E7.1-1i 
suggested that the two highest levels of variable Xl had a 
significantly different variance from the other levels. 

TABLE E7.1-1h 

Source of 
Variation 

v 

d.f. 
Sum of 
Squares 

Mean 
Square 

Variance 
Ratio 

Xl 

X2 

Deviation from 
regression 33 

148.93 
20.81 

236.27 

148.93 
20.81 

7.16 

20.6 
2.9 

Total 35 

2 3 
Xl 

4 5 6 Sum Mean 

X2 

1 
2 
3 
4 
5 
6 

10.3 
11.6 
9.7 

11.4 
10.3 
9.6 

11.3 
10.4 
12.2 
11.5 
10.6 
9.4 

13.0 
11.5 
10.9 
11.0 
10.0 
11.8 

12.0 
11.9 
11.8 
11.5 
11.3 
10.2 

22.4 
16.7 
12.8 
8.6 

10.0 
17.1 

14.2 
19.8 
13.4 
23.1 
15.1 
13.0 

83.2 
81.9 
70..8 
77.1 
67.3 
72.0 

13.87 
13.65 
11.80 
12.85 
11.22 
12.00 

Sum 62.9 65.4 68.2 68.7 87.6 98.6 452.3 

Mean 10.48 ·10.90 11.37 11.45 14.60 16.43 12.56 
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TABLE E7.1-li 

2 3 
Xl 

4 5 6 Range 

1 
2 
3 

X2 4 
5 
6 

Range 

0.72 
2.02 
0.12 
1.82 
0.72 
0.02 
2.00 

0.53 
-0.37 

1.43 
0.73 

-0.17 
-1.37 

2.80 

1.04 
-0.46 
-1.06 
-0.96 
-1.96 
-0.16 

3.00 

-1.15 
-1.25 
-1 .35 
-1.65 
-1.85 
-2.95 

1.80 

8.06 
2.36 

-1.54 
-5.74 
-4.34 

2.76 
13.80 

-1.33 
4.27 

-2.13 
7.57 

-0.43 
-1.63 

9.70 

9.39 
5.52 
3.56 

13.31 
5.06 
5.71 

2.00 

(d) • 
1.50 

• 
1.00 

0.50
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FIGURE E7.1-1d 

EXAMINATION OF RESIDUALS TO ASCERTAIN IF THEY ARE 
NORMALLY DISTRIBUTED. Figure E7.1-ld is a plot (according 
to the method outlined in Example 2.3-3) on normal prob­
ability paper of the 36 residuals based on the data of Table 

1.80 

1.00 
• 

(e) 
• 

• 
• • 

• 

• 

t 
• 

• 
•-1.00 

( ~ • 
I 0 

I>;" 10.0 
'-' 

11.0 •
• • • 

• • 
• 

• 

• 

•• 

• 

FIGURE E7.1-1e 

E7.1-la with f given by Equation (a). The residuals appear 
to be normally distributed. A plot of relative frequency 
versus the value of the residual will give the familiar bell­
shaped curve about a mean of zero; it also can be used to 
check for outliers . 

Figure E7.l-le is a plot of the residuals based on Equation 
(a) versus the predicted response f . No anomalous data are 
noted, except perhaps the one residual equal to 1.80. Factors 
such as: (1) systematic departures from the estimated 
regression equation (because the model is not adequate), or 
(2) nonconstant variance can be detected in figures such as 
E7.1-1e. 

7.2 STEPWISE REGRESSION 

Stepwise regression consists of sequentially adding 
(and/or deleting) a variable to an initial linear model and 
testing at each stage to see if the added variable is 
significant or not. For the reasons given in Section 5.3, 
the procedure is most effective when the independent 
variables are orthogonal because the calculational 
sequence is then unimportant. (Orthogonal experimental 
designs to implement this requirement can be found in 
Chapter 8.) At each stage in the computation, a decision 
is made as to whether to terminate the computer run . 
with the current regression equation or to move to the 
next stage by replacing the current regression equation 
by a new one . By starting to build the model from scratch 
and by using orthogonal independent variables, a unique 
model is obtained for a predesignated criterion of best . 
For nonorthogonal variables, using a different starting 
equation can lead to a different terminal equation; hence , 
there may be several adequate models. However, each 
terminating equation is locally optimal in the sense that 
it is "better" than the others tested. 

Efroymson t described a procedure (the " forward 
procedure") in which each of the independent variables 
(and corresponding parameters) is introduced into the 
model one at a time. At each stage that independent 
variable is added which causes the greatest reduction in . 

t M. A. Efroymson, "Multiple Regression Analysis," in Mathe­
matical Methods for Digital Computers, ed. by A. Ralston and 
H. S. Wilf, John Wiley, New York, 1960, p. 191. 
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the sum of the squares of the residuals, provided the 
reduction is significant. Essentially the same algorithm 
can be used to delete independent variables one' by one 
from a full model (the "backward procedure") if the 
subsequent introduction of another variable renders a 
model variable insignificant. Several variations of 
Efroymson's algorithm are available as computer 
routines.'] 

In determining at each stage which independent vari­
able to add to a model, use is made of the partial 
correlation coefficient which we have not yet defined. 
Suppose that in a model with three variables, defined as 
Xl> X2 , and Xa, we treat the variables X, and Xa as the 
dependent and independent random variables, re­
spectively, in a model 

(7.2-1) 

Then , in turn, we treat X2 and Xa as the dependent and 
independent random variables, respectively, in a model 

(7.2-2) 

From the bivariate normal distribution developed in 
Example 2.3-4, after integration over Xa we can obtain 
the conditional probability density: 

I , I Xa) =p(X Yhux, v I - Pi,xa 

-exp [_.I. {Xl - [/LX, +px,x a(~)(X a - /Lxa)]}l 

2 ux1 vI-Pi,xa 

The expected value of (X, I Xa) is 

C{X , IXa} = /Lx, + px, x~(U.Xl)(Xa - /Lxa) (7.2-3)
uXa . 

and the variance is 

(7.2-4) 

Similar relations can be obtained for (X2 I Xa), and they 
will be used shortly. 

Next we form the deviations between X, and its 
expected value and between X2 and its expected value, 
using Equations 7.2-1 and 7.2-2 as follows : 

X, .a == X, - C{X , I Xa} = X, - /Lx, - f3,aCXa - /Lxa) 
. (7.2-5) 

X2.a == X2 - C{X2 I Xa} = X2 - /Lxa - f32a(Xa ~ /Lxa) 

(7.2-6) 

t W. J . Di xon, ed., BMD : Biomedical Computer Programs, 
Health Sciences Computing Facility, UCLA, Los Angeles, Calif., 
1964; H. Thornber , A Manual for B34T-A Stepwise Regression 
Program, Center for Mathem atical Studies in Business and 
Economics, Univ. of Chicago, Chicago, lll. , 1966. 

The symbolism X, .a denotes a variab¥ X, after 
"eliminating" the effect of variable Xa ; a similar conno­
tation applies for X 2 to the symbol X 2 . a' The partial 
correlation coefficient between X, and X2 , eliminating 
Xa, is defined as the correlation coefficient of X, .3 and 
X2 • a : 

Covar {X, 'a, X2 . a}
P,2 ·a = . / ' (7.2-7)

v Var {X, .a} Var {X2 .a} 

We now proceed to express P,2 .a in terms of the usual 
correlation coefficients PX,X2' PX,Xa' and PXaXa' coefficients 
in which the effect of Xa is not eliminated ; the correlation 
between X, and X2 , for example, may exist solely because 
both are related to Xa in some fashion . From Equation 
7.2-5, employing Equation 2.2-9, 

Var {X, .a} = Var {X, } + f3r3 Var {Xa} 

- 2f3,a Covar {Xl> Xa} 

and by comparing Equation 7.2-1 with 7.2-3, we see that 
f3,a = Px,xaCUX,/UXa)' Consequently, 

2 2 (Ux,) 2 2Var {X}l.a = Ux, + PX,Xa - UXa
UXa 

= ai,(1 - Pi,xa) (7.2-8) 

Similarly, Var {X2 .a} = uia(1 - Piaxa)' Finally, 

Covar {X, .a, X2 .a} = C{X , .a, X2 .a} - C{X , .a}C{X2.a} 

= UX,UXa(PX, Xa - Px,XaPXaxa) 
(7.2-9) 

We are now able to express P,2'3 as 

P,2 ·3 = . / 2 2 (7.2-10) 
V (1 - PXIXa)(1 - PXaX.) 

The estimated correlation coefficients from a sample 
can be used in lieu of the respective ensemble correlation 
coefficient to give an estimate of P,2 .a, P12 .3' Although 
the calculation given by Equation 7.2-10 can be extended 
to obtain the partial correlation coefficient between two 
variables, eliminating the effect of several others, in 
general the quickest way to calculate the estimated 
partial correlation coefficient between Y and a single X 

among many x's , say Xi> eliminating the effect of all the 
other x's, is to include x, in the model and then compute :j: 

We return now to the constru ction of a model by 
stepwise regression. A typical computer program will 

t R. L. Gustafson, J. Amer. Stat. Assn. 56, 363, 1961. 
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accept a list of a suggested sequence of variables to 
include. in the model and/or it will select from the total 
list the one with the largest partial correlation coefficients 
PYxJ . Xk· After one variable is included, a second can be 
added which has the largest partial correlation coefficient 
among the remaining variables, and so forth. Various 
types of tests of significance can be applied to determine 
whether or not the added variable is a significant one. 
But, in general, either the variance ratio test described in 
Sections 5.2 and 5.3 or a test on the statistic Z = bj/Sbj 

is employed. 
In the example below a t-test of significance for 

PYXj . Xk is made. If the ensemble parameter P~Xj • Xk is zero, 
Le., the expected value of PYXj . Xk is zero, the estimated 
variance of PYxJ .Xk can be shown to be equal to 
(1 - P¥Xj .Xk)/(V) , where v = the number of data sets 
less the number of terms absorbed in the correlation. If 
the correlation is between Yand one x., v = n - 2; if 
it is between Y and one x, after incorporating one Xk in 
the model, v = n - 3, and so forth. Thus, the statistic tis 

t = PYXj • Xk (7.2-12) 
[(1 - P~Xj .x,)/v]% 

A variable once included in the model can be later deleted 
if it no longer makes a significant contribution to the 
sum of the squares. 

Example 7.2-1 Stepwise regression 

Stepwise regression was used. to identify the terms in a 
model of an extruder that related the shear stress to the 
temperature, viscosity, and pressure: 

V = {3o + (31(XI - Xl) + (32(X2 ..;,.." X2) + (3s(xs - xs) + E" 

where, in coded units, 

V = shear.stress 
Xl = viscosity 
X2 = temperature 
Xs = pressure 

The matrix of observations was (with Y = V) 

Y Xl X2 Xs 
-­

3.98 1 0 0 
-5.10 0 2 -1 
-1.03 -1 3 2 

9.00 4 10 1 
32.0 2 0 8 

In the first stage of the analysis the reductions in the sum 
of the squares, using in turn each of the individual terms to 
initiate the model, were: 

Square of the 
Reduction Partial Correlation 

Adding the in Sum of Mean Coefficient 
~2Term Squares Square PYXj. xk 

Xl 28.9 28.9 0.271 
X2 23.5 23.5 0.028 
Xs 722.0 722.0 0.857 

Inasmuch as the partial correlation coefficient for Xs was 
the largest coefficient, Xs became the key variable. The 
significance of the term involving xs was tested by a r-test 
of significance, using Equation 7.2-2: 

(0.857)%(5 - 2)%
I = = 4.24

(1 - 0.857)% 

From Table C.3 in Appendix C, 10.95 = 2.35 for 3 degrees 
of freedom, indicating that Xs was a significant variable and 
should be incorporated in the model. 

Next, the sum of squares and the partial correlation 
coefficients for the remaining two terms were reevaluated 
by assuming that Xs was already incorporated in the model 
(as; described in Section 5.3 by suitable manipulation of 
matrix elements) to give 

Square of the 
Reduction Partial Correlation 

Adding the in Sum of Mean Coefficient 
~2Term Squares Square PYxJ. xkl x3 

Xl 91.7 91.7 0.758 
X2 68.7 68.7 0.057 

The key variable was now Xl; the t-test based on 

= [(0.758)(5 - 3)] ~ = 2 10 
t (1 - 0.758) . 

indicated that variable Xl did not contribute (nor would X2) 

significantly to the model. 
As a consequence of the forward stepwise regression 

procedure, the estimated regression equation would be 

y = Y + bs(xs - xs) 
or 

Y = 0.201 + 0.38(xs - xs) 

(The intercept of the model was a significant term.) The 
model was so simple that no tests for stepwise removal of 
a variable had to be carried out as might be the case for a 
more complicated model. 

7.3 A GRAPHICAL PROCEDURE FOR SCREENING 
MODELS 

If there are q independent variables proposed for 
incorporation in a linear (in the parameters) modei, 
there are 2q possible models. Clearly, as q becomes large, 
it is not possible, even if the analyst wishes, to evaluate 
all the possible models. Also, if the experiment that 
provides the data has not been designed properly, 
inadvertently or otherwise, stepwise regression may lead 
to confusing results, especially when the independent 
variables are highly correlated. Furthermore, instead of 
one best model existing, several equally good models 
may exist. In view of these rather common handicaps, 
Gorman and Toman suggested a simple graphical method 
of screening models which has considerable merit.] The 

t J. W. Gorman and R. J. Toman, Technometrics 8, 27, 1966. 

..... _..._---_._---_ ... _..._---~------------:----------------~----
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development and the example which follow have been 
taken from their work . 

They used a graphical method for isolating the best 
among several regression equations based on a statistic 
originally proposed by Mallows.j For n data points and 
a linear model containing q parameters, an estimate of 
the sum of the squares of the bias error plus the residual 
error, both divided by a~" is given by the statistic Co: 

(7.3-1) 

When a q-term model has negligible bias, 

n

.2 [fi - :f\(q)J2 
1= 1 

is equal to s;(n - q) (refer to Table 5.3-1 where there are 
(q + I) parameters involved), so that 

Co ~ (n ~2 q)s; - (n - 2q) (7.3-2) 
Y, 

However, s; ~ S~l ' so that 

Co ~ q (7.3-3) 

Equation 7.3-3 is interpreted as follows. When Co 
calculated by Equation 7.3-1 is plotted against q for 

:j: C. Mallows, Paper presented at the Central Region al Meeting, 
I.M.S., Manhattan, Kansas, May 7-9, 1964. 

90 

80 f-­

I 
0 

I I 

-

70 f-­ -

Cq 

60 f-­

50 -

o Model IV 

• Model III 
• Model II 
x Model I 

-

-

40 - -

30 - -

20 I-­ -

10 f­

0 
· x 
A T 

-

0 2 3 4 
q 

FIGURE 7.3-1 Discrim ination among regression equations. 

TABLE 7.3-1 

Model Variables q L OF, - 1',)2 C. 

IV 
III 
II 
I 

None 
Xl> X2 

Xl 

X2 

1 
3 
2 
2 

77.28 
10.07 
12.48 
11.23 

87.6 
3.3 
4.4 
2.8 

different values of q, models leading to unbiased esti­
mated regression equations will yield Co's that tend to 
cluster about the line Co = q. A point well away from 
the line Co = q represents a biased equation. An unbiased 
estimate of a~j must be used for s~, in Equation 7.3-1, 
because if only s; is available, the graphical approach 
causes the values of Co to be near the line given by 
Equation 3.3-3. 

Figure 7.3-1 illustrates the graphical procedure of 
Gorman and Toman, using the data of Example 5.3-1 as 
shown in Table 7.3-1. Model I has the least bias and 
also the least sum of the squares. A point such as @ in 
Figure 7.3-1 would have a smaller sum of squares but 
more bias. If an equation is needed just for interpolation 
in the region in which the data are collected, it may be 
useful to accept the equation corresponding to point @ 

100 
I I I I I I 

.d e df 

90 I­
. cd 

. ,od!" -
. de • cdc 

. d'f 
• cd ef 

80 I-­ -

. bd ­70 I­

601­ .bcd . bde/ ­
.bde "bcdf Cq • bcde • bcdef 

501-- ­

40 I- ­

30 I- ­
-T-----~--.a~. a~a~ ~.~--

a I ac aef aed! 
20 - a included~ _ ---!:!..- _ acf,.ad!. ado.- = 

t abc . ade • abce 

a and b e ob . abe • abed . tJbaJe 
. I d d • abd e abde abedef.....10- mcue .abeef, 

e abf .~.--
1 b labdef ....====:=i===I==L=-~··I ~d~'f_iab~Cdf~oL a 

o 234567 
q 

FIGURE 7.3-2 Screening models involving six independent 
variables, X a through XI' 
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in order to use a simpler equation with a smaller variance, 
s~, and to aceeptsome bias; If the number of variables is 
large, Gorman and Toman suggested fractional factorial 
designs (described in Chapter 8) to reduce the extent of 
the calculations. Figure 7.3-2, based on the work of 
Gorman and Toman, is a plot corresponding to Figure 
7.3-1, except that six variables are involved in the possible 
models, X a through x, Forty-eight models were con­
sidered (only those with estimated Cq's less than 100 are 
plotted) of which the models containing the variables 
(the x' s are suppressed) abf, abdf, abdef, and abed! are 
candidates for further examination. 

7.4 COMPARISON OF TWO REGRESSION 
EQUATIONS 

We now turn to methods of discrimination among 
models that apply equally well to linear or nonlinear 
models. We shall first examine tests that can be applied to 
two estimated regression equations to determine which is 
the best . In the next section we shall take up the important 
case of discrimination among many estimated regression 
equations. 

Many different comparison tests can be executed 
depending upon the specific hypothesis selected. In the 
unsymmetrical test suggest by Hoel.t an estimated 
regression equation 1\ is presumed to represent correctly 
the data and a test is carried out to see whether Y1 
should be abandoned in favor of Y2 , another regression 
equation. The test is made by finding the slope ,\ of the 
relation 

(7.4-1) 

where Y represents the empirical measurement, flo and 
Z is the dependent variable. If ,\ is significantly positive, 
then Y1 is rejected in favor of Y2 • 

To select among two estimated regression equations 
which, initially at least, are equally feasible, one can use 
the symmetric test of Williams and Kloot.j The null 
hypothesis is that the two (perhaps nonlinear) regression 
equations are of equal ability in predicting the values of 
Y. The test is carried out by estimating the slope ,\ 
(obtained by linear regression) of the equation which 
passes through the origin: 

Z == [Y - i(Y1 + Y2 ) ] = '\(Y2 - Y1 ) (7.4-2) 

The argument underlying Equation 7.4-2 is as follows. 
Suppose two models exist: 

7)1 = 7)1(x, ~) 

7)2 = 7)ix, ~) 

in which the x and ~ vectors do 11,0t have to be the same. 
Furthermore, suppose that Modell is correct so that 

Y = 7)1 + (; 
t P. G.Hoel, J. Amer. Stat. A ssn. 42, 605,1947.
 
::: E. J. Williams and N. H. Kloot, Aust. J. Appld. Sci 4, 1, 1953.
 

If we define the variable 

Z == [Y - !(Y1 + Y2 ) ] 

and substitute in for Y, we obtain 

Z = 7)1 - ·HY1 + Y2 ) + (; 
Let us now assume that b is very close to Ii and, 

consequently, Y1 is very close to 7)1' Then, if we replace 
7)1 with Y1 : 

Z ~ -!(Y2 - Y1 ) + (; (7.4-3) 

and a plot of [Y - ·HY1 + Y2) ] versus (Y2 - Y1) should 
have a slope of approximately - ! if the hypothesis about 
Model I being correct is true. We can infer that a signifi­
cant negati ve ,\ ind icates that Y1 is a better estimated 
regression equation than Y2 ; hence Model 1 is better 
than Model 2. A similar anal ysis with the supposition 
that Y2 is the correct equation leads to the conclusion 
that ,\ = t; i.e., a significant positive slope should be 
found. If ,\ is not significantly different from zero, no 
choice can be made between Y1 and Y2 • 

Example 7.4-1 The Williams and Kloot Test 

The following data are for flood damage as a function of 
the discharge in Little Lehigh Creek in the Lehigh River 
Basin. These data represent an undesigned experiment, but 
they fulfill reasonably well the estimation assumption of 
independent error since they were collected at different 
time periods (the doll ar value s have been adjusted to a 1956 
price level). 

yX 

Discharge, Damage, $ x 10- 3 

cfs x 10- 3 (1956 price levels) 

61 o 
64 50 
70 100 
75 150 
83 180 

88 210 
94 250 

100 290 
105 340 
112 420 

120 520 
127 670 
134 810 
142 1200 
150 1600 

160 2100 
170 2500 
180 2900 
190 3300 
200 3700 

A plot (see F igure E7.4-1a) of the data indicated that a 
power series might fit the data well. To keep the model as 
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TABLE E7.4-1b RESIDUAL SUM·OF SQUARES4000 r-----,----...-----r-----r----r-----, 

• Data Mean Square 
-- Modell v x 10- 3 

Model d.f. <s:)95 - percent confidence 
limits for Modell

3000 
1 15 120 8.0 
2 16 151 9.4 

CV) 3 17 178 10.5 
I 
o,..... 4 16 171 10.7 
x 
~ 

OJ" 2000 simple as possible, linear regression equations containing
C) 
co x, x 2 , and x3 were fit. To improve the fit in the vicinity of E 
co x = 61, a variable l/(x - 60).was added to the polynomial. 

A term incorporating such a variable will have a" large 
value near its pole but a negligible value for large x. 

1000 The independent variables were scaled as follows to 
make the terms in the regression equation of roughly the 
same order of magnitude: 

c 

Xl = x(10- 2 ) 

2(10- 4X2 = x ) 

75 100 125 150 175 200	 SX3 = x 3(10 - ) 

1 
X4 = X _ 60 (10) 

FIGURE E7.4-1a 
y* = Y(10- 3 ) 

Table E7.4-1a lists the regression coefficients for four linear 
TABLE E7.4-1a ESTIMATED REGRESSION EQUATIONS FOR models as estimated by a least". squares procedure with 
MODELS * Wi = 1. 

Table E7 .4-1b lists the sum of the squares of the residuals 
...;-_._- 3 b

4 for each model and the respective mean squares, s~. There 
Modell: YI = bo + b-x + b2~ + bsx + X _ 60 

Discharge, cfs X10- 3 

(a) 

bo = 2840 ± 1490	 
200 

Zb, = -74.1 ± 37.3
 
b2 = 0.572 ± 0.298
 150 
b3 = - 8.92 X 10-4 ± 7.58 x 10- 4 

b4 = 267 ± 289	 • 
Model 2:	 Y2 = bo + b,» + b2r ·+ b3x3 

•b« = 1990 ± 1280 •• • 
Slope = 0.473b l = - 55.3 ± 33.7
 

b« = 0.437 ± 0.280
 
b3 = - 580 X 10- 4 ± 7.33 x 10- 4
 

Model 3:	 Y3 = bo + b,» + b2r 
bo = 1050 ± 452 
b, = -292 ± 7.6 -50 ..• 
b2 = 0.217 ± 0.030
 
... . b
 •Model 4: 4	 -100Y4 = bo + b,» + b2r + x _ 60 

bo = 1190 ± 589 • 
bI = - 31.3 ± 9.36 -150 

b« = 0.224.± 0.035 
b3 = -115 ±297 • 

-200 

* ± indicates value to be added to bk for 95 percent confidence (b) 

interval for flko . FIGURE E7.4-1b 

•50 
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TABLE E7.4-1c CALCULATIONS FOR THE WILLIAMS AND KLOOT TEST 

Z= 
y Y1 Y2 Y2 - Y1 (!)(Y1 + Y2 ) Y - (!)(Y1 + Y2) 

0 -19 118 137 50 -50 
50 143 64 -79 103 -53 

100 :'126 96 -30 111 -11 
150 110 69 -41 90 40 
180 113 88 -25 100 80 
210 136 122 -14 129 81 
250 186 182 -4 184 66 
290 257 261 4 259 31 
340 334 341 7 337 3 
420 465 475 10 470 -50 
520 647 657 10 652 -132 
670 833 841 8 837 -167 
910 835 888 48 859 51 

1200 1305 1304 -1 1305 -105 
1600 1593 1587 -6 1590 10 
2100 1984 1971 -13 1978 122 
2500 2404 2389 -15 2397 103 
2900 2847 2834 -13 2840 60 
3300 3308 3304 -4 3306 -6 
3700 3782 3796 14 3789 -89 

appear to be no significant differences in the fits of the 
. models. By arbitrarily eliminating the two models with the 
largest variances, the choice of models is reduced to a 
choice between Model 1 and Model 2. The only difference 
between them is that Model 1 contains the extra term 
f34/(X - 60). We shall use the test of Williams and Kloot 
to ascertain which of the two models is the best. 

200 

150 

(t) 

I 
0 100...-4 

X 
~ 

c"
 
0
 50 

.,tj 

's
co

Q) 

'"C 
Q) o 50en 
m 
E 
m 
0 -50 
<~ 

I 
~ 

-100 

-150 

-200 (c) 

FIGURE E7.4-1c Residuals for Model I, 

Table E7.4-1c lists the data and calculations needed for 
Equation 7.4-2. Figure E7.4-1b is a plot of [ y - (-}-)( Y1 + :Y2) ] 

versus (Y2 - Yl ) for all the values of Z except the first row 
in Table £7.4-1 c in which a negative Y1 appears. The slope 
of the best fitting line through the original, computed from 
Equation 4.3-7a, was -0.473. However, the Var {b} I'tJ 

8000/13,104 = 0.61, and the confidence interval for p 
for a significance level of a = 0.05 (t1-i = 2.13 for 15 
degrees of freedom), -2.13 ~ f3 < 1.19, does not lead to 
the conclusion that Model 1 is any better than Model 2. 

Figure E7.4-1c is a plot 'of the residuals for Model 1. 
Although DO longrange trends are visible, the residuals are 
Dot randomly distributed. Several shortrange trends are 
visible in the discharge regions of 90 to 125 x 10-3 cfs 
and 160 to 200 x 10- 3 cfs. The existence of shortrange 
trends in the residuals does not invalidate the model,. but 
it does demonstrate that the model can be improved 
somewhat. 

7.5 COMPARISON AMONG SEVERAL REGRESSIO:N 
EQUATIONS 

To compare several linear or nonlinear (in the coeffi­
cients) estimated regression equations simultaneously, 
Wilkst developed a test in which all the regression 
equations are considered to be on an equal footing. The ' 
test is posed in terms of the homogeneity of the residual 
sums of the squares for different regression equations. 
Williams~ gave a lucid description of the Wilks test and 

t s. S. Wilks, Ann. Math. Stat. 17, 257, 1946.
 
; E. J. Williams, Regression Analysis, John Wiley, New York,
 
1959. 
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TABLE 7.5-1 ANALYSIS OF VARIANCE FOR MODEL SELECTION 

Degrees 
Source of Variation of Freedom Sum of Squares Mean Square 

n n ~ (¥i - y)2 - ~ (Yi - 1'*)2
Improvement of y* 2 t=l t=lp-l L (¥i - f)2 - L (¥i - Y*)2 Sa = p _ 1over Y 

t=l t=l 

n ~ (¥i - y*)2 
s~ = t_=_l _Deviation from y* n-p+l L (¥i - y*)2 

n--p+l
t=l 

n "f

L (¥i - Y)2sr = __t=_lDeviation from Y n 
n 

also pointed out that it is essentially an approximate 
method since the sums of the squares for the equations 
which are not the "true" ones contain an extra system­
atic component not present for the "true" equation. 

Recall that for a single estimated regression equation 
an analysis of variance can be made (Tables 5.3-1 and 
5.3-2) which leads to the F-test as an overall test of 
significance for regression. An F-test can be used to 
discriminate among different estimated regression equa­
tions if they are assembled in a linear combination as 
follows. Let the various regression equations to be com­
pared be designated Yl' Y2 , ••• , Yp , and let y* be a 
linear combination of the regression equations 

(7.5-1) 

with the b*'s chosen so that each regression equation 
contributes toward f* according to its fitness as an 
estimator of Y*. For convenience we- shall adjust the b*'s 
so that Lk=1 b~ = 1. It would -also seem wise to restrict 
the f3~'s to be 0 ~ f3~ ~ 1. Define 

7\" 1 p " 

Y= (7.5-2)- 2: r, 
P k=1 

Suppose we consider Ytj, where the index i indicates 
the predicted value of Y for the ith set of data by the jth 
regression equation, as the independent variable with 
one set of Yit's existing for each observed dependent 
variable Yi (Yi if replicate observations are made). The 
test involves determining if the compound variable y* ~s 
a significant improvement over the average predictor Y. 
Table 7.5-1 summarizes the calculations needed for the 
analysis of variance. If the variance ratio s~/s~ with 
(p - 1) and (n - p + 1) degrees of freedom for the 
numerator and denominator, respectively, is greater than 
F1 - en then the null hypothesis that the compound 
function makes no significant improvement over the 
average Y is rejected. 

Once the b*'s are computed, as described below, their 
order of rank is a rough measure of the effectiveness of 
each regression equation in fitting the experimental data. 
Furthermore, any two b*'s can be tested as described in 
Section 5.2 to determine if there is a significant difference 
between them and, thus, to conclude whether one esti­
mated regression equation is better than another. 

The scope of the calculations can be simplified by 
computing the following quantities. To make the notation 
clear, we shall define a p x p matrix V whose element 
[Vj k ] is 

n I :::; ~ :::; n}
[Vj;c] = 2: (Yi - Y;j)( Yj - 1'ik) I~J~p 

{i=1 
l~k~p 

where ~ is the observed experimental dependent variable 
in the ith data set and fij is the predicted response. As 
examples, 

2:
n 

(YjVu = - 1'il )2 
i=1 

n 

V1 2 = 2: (Yj - 1'11)( Yj - 1'j 2 ) 

i=1 

The elements of the inverse matrix V -1 are [Vf k ] -1. In 
terms of this notation, 

(7.5-3) 

2:n

(Yj 1'*)2 = (7.5-4)- -p--p--­

i = 1 L: L: [Vj k ] - 1
 
f= 1 k= 1
 

(7.5-5) 
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= a~-{[Vrs]-l - b~b't ~ ~ [VJkl-1} 

(7.5-7) 

The variance a~. can be estimated from 

(7.5-8) 

To test the hypothesis that bf is different from some 
constant 'Y, we can compute 

bf - 'Y 
t=--

Sbj 

and for a significance level a, we can determine if t is 
greater than t1 - ~ obtained from the tables for (n - p) 

degrees of freedom. To test for a difference between two 
parameters, bf and b:, and some constant 'Y (perhaps 0), 
a value of t is computed as follows: 

(bf - bZ) - 'Y 
t = [Var{bf} + Var{bZ} - 2 Covar {bf , bnJ Yz 

If the null hypothesis is rejected, then b1 and bZ are 
different, and YJ is a better fitting equation than Yk • 

Another essentially equivalent test would be to follow 
the scheme outlined in Table 5.3-2and remove in sequence 
a YJ from Equation 7.5-1, testing each time to see if the 
deletion is significant. 

Example 7.5-1 The Wilks Test 

To illustrate the numerical computations in the Wilks 
test, the following data were generated using the model 
Y == 2 + x 2 + 10: 

x Y . 

1 3.1 
2 5.9 
3 1I.l 
4 17.8 
5 27.2 

Two linear models were fit to the data : 

7]1 = b01 + bUXl with Xl = X
 

7]2 = b0 2 + b2 l X 2 with X2 = r
 
The respective estimated regression equations were deter­

mined by the methods of Section 4.3 as 

Yl = - 4.83 + 6.01x 

Y2 = 2.20 + l.OOr 

The elements of the V matrix were next calculated: 

5 

Vu = ~ (Y, - :911)( Yj - :911) = I.l883 x loa 
1=1 

V1 2 = V2 1 = I.l795 X 103 

V2 2 = I.l807 X 103 

and thereafter the inverse matrix V-I: 

V-I = [0.10001 -0.09991] 

0.09991 0.10065 

The estimates of b* were 

b* = [0.120] 
0.880 

We conclude, as expected, that Model 2 is the best. 

Example 7.5-2 Selection Among Nonlinear Models 

An example based on simulated data illustrates the 
difficulty of selecting the best model among several non ­
linear models.j Fifteen data points (shown in Figure 
E7.5-2) were generated from the model 

e- O•U 5X)7] = 10 + 100(1 - (a) 

Random deviations with a mean of zero and a standard 
deviation of a were selected from a truncated (at 2a) normal 
distribution and added to each value of 7]. 

Five different nonlinear models were fitted to the simulated 
data 

(1) 7] = f30 + f3l(1 - e- P2X) 

(2) 7] = f30 + f3l (1 ~2;2J 
(3) 7] = f30 + f3l[tan - 1 (f32X ) ] 

(4) 7] = f30 + f3l[tanh (f32X ) ] 

(5) 7] = f30 + f3l e- P2!X 

with the corresponding estimated regression equations 
shown in Figure E7.5-2. 

Each equation fitted the data well and closely resembled the 
shape of the other four curves. As increasing error (from 
a2 = 0 to a2 = 100) was introduced, the estimates of the 
parameters in each model remained fairly stable, and S ~f 
increased in proportion to a2 • The covariances, i.e., elements 
off the main diagonal of Covar {b}, remained very much 
less than the variances. 

t W. L. Wilcoxson, U.S. Naval Civil Engineering Laboratory 
Tech. Rept. R419, Port Hueneme, Calif., Dec. 1965. 

,. ~. 

-
_. .__. _--_.-..-_ ....._. _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ­



SUPPLEMENTARY REFERENCES 221 

140r-----r-------r---------,r---------.----­

\\mit on generated data: true mean + 2(1 
u~~e{ 

120 

100 

80 

y 

True model 71 = 10 + 100 (1 - e-O.115x ) 

Model Regression equations 

1. Yl" =14.3 + 92.4 (l - e-O.115x ) 74.2 

2. Y2 =14.6 + 102.8 (0.167x)/(l + 0.1"67x) 113.0 

3. Y3 =14.8 + 100.3 tan- 1 (0.153x) 95.2 
20	 

4. Y4 = 14.8 + 90.7 tanh (0.0837x) 62.8 

5. Y5 =15.1 + 101.0e- 4.73/ x 94.7 

O...............;....---......L..-----J....----_-.L	 --'
J.....­

'0 20 40 
x 

FIGURE E7.5-2 Test results for a set of 15 generated points for alri = 100. 

TABLE E7.5-2 TEST RESULTS OF THE MODEL SELECTION Wilcoxson carried out the Wilks test by using the. five 
PROGRAM	 regression equations; he concluded that the coefficients b* 

were not arranged in descending order according to in­
creasing values of S~i' He also showed that selection by Degree of Random 

Fraction of Cases in which Correct using the minimum S~i was in general a better selection tool Error Introduced 
Model was Selected by for identifying the true model than using the b*'s. ExamineInto True Model,
 

a Coefficients b* Minimum S;t Table E7.5-2.
 

c* A N C A N 
0 1.0 1.0 Supplementary References 
0.5 0.8 0.2 0.8 0.2 
1.0 0.5 0.5 0.8 0.2 Gorman, J. W. and Roman, R. J., "Selection of Variables for 
2.5 0.4 0.6 0.6 0.4 Fitting Equations to Data," Technometrics 8, 27, 1966. 
5.0 0.2 0.8 0.4 0.6 Hoel, P. G., "On the Choice of Forecasting Formulas," J. Amer. 

10.0	 1.0 1.0 Stat. Assn. 42, 605, 1947. 
Hotelling, H., "The Selection of Variates for Use in Prediction 

* C = correct model selected; A = another model selected; N = with Some Comments on the General Problem of Nuisance 
no model selected. Parameters," Ann. Math. Stat. 11, 271, 1940. 

60 80 100 
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Larson, H. J. and Bancroft, T. A., "Sequential Model Building 
for Prediction in RegressionAnalysis," Ann . Math. Stat. 34, 
462, 1963. 

Mezaki, R. and Kittrell, J. R., "Discrimination Between Two 
Rival Models through Nonintrinsic Parameters," Can. J. 

, Chern. Eng. 44, 285, 1966. 
Newton, R. G. and Spurrell, D. J ., "A Development of Multiple 

Regression for the Analysis of Routine Data," Appl. Stat. 
16, 52, 1967. 

Problems 

7.1	 Carry out an analysis of residuals based on the 
estimated regression equation determined in Example 
4.3-2. What interpretation can you give to the experi­
ment and model of that example in addition to that 
already provided in the example? 

7.2	 The data of Example 7.4-1 were fitted by the linear 
model 

and the following estimates of the coefficients 
obtained 

a = 2.8389 

bl = -7.4057 

b2 = 5;7223 

b3 = -0.8916 

b, = - 0.02669 

MATRICES FOR P7.3 

R MATRIX = 1.0000 0.9755 0.9313 
0.9755 1.0000 0.9878 
0.9313 0.9878 1.0000 
0.8880 0.9647 0.9937 
0.8515 0.9407 0.9812 
0.8224 0.9195 0.9678 

-0.9410 -0.8509 -0.7673 

SIGMA = 0.8681 Fl (ENTER) 

B(O) = 0.1483 X 102
 

B(l) =-0.1120 X 102
 

B(2) = 0.1479 x W
 
B(3) = O.
 
B(4) = O.
 
B(5) = O.
 
B(6) = O.
 

In addition, the computer printout indicated the 
following residuals (truncated): 

Data Set 
Number Residual 

1 0.018 
2 -0.093 
3 -0.026 
4 0.040 
5 0.067 
6 0.074 
7 0.064 
8 0.033 
9 0.006 

10 -0.045 
11 -0.127 
12 -0.163 
13 0.075 
14 -0.105 
15 0.006 
16 0.116 
17 0.096 
18 0.053 
19 -0.008 
20 -0.082 

Carry out an analysis of residuals as indicated in 
Section 7.1. 

7.3	 The following model was fitted to the experimental 
data designated "actual value" in the IBM printout 
by stepwise regression. 

VISI	 = 14.637262 - 11.204441 PULSE 

+ 1.4795947 (PULSE)2 
where
 

VISI = visibility factor
 

PULSE = loglo (number of pulses) 

0.8880 0.8515 0.8224 - 0.9410
 
0.9647 0.9407 0.9195 -0.8509
 
0.9937 0.9812 0.9678 -0.7673
 
1.0000 0.9966 0.9897 -0.7007
 
0.9966 1.0000 0.9981 -0.6501
 
0.9897 0.9981 1.0000 -0.6121
 

-0.7007 - 0.6501 -0.6121 1.0000
 

= 2.500 F2 (REMOVE) = 2.500 

SB(O) = 0.3069 x 100
 

SB(l) = 0.1135 x W
 
SB(2) = 0.2477 x 10°
 
SB(3) = O.
 
SB(4) = O.
 
SB(5) = O.
 
SB(6) = O.
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VISIBILITY 

NUMBER ACTUAL PREDICTED PERCENT 
PULSES VALUE VALUE DIFFERENCE ERROR 

6000 -0.7100 x 101 - 0.6574 x 101 0.5257 x 10° -7.4 
6000 -0.6300 X 101 - 0.5420 X 101 0.8796 x 10° -14.0 

900 - 0.3300 X 101 -0.3310 X 101 -0.1042 X 10- 1 0.3 
900 - 0.2800 X 101 -0.3310 X 101 -0.5104 X 10° 18.2 
200 -0.3000 X 10° -0.1278 X 10° 0.1721 x 10° -57.4 
200 0.3200 X 101 0.4268 X 101 0.1068 X 101 33.4 
50 0.1040 X 102 0.9628 X 101 -0.7717 X 10° -7.4 
50 -0.6000 X 101 - 0.5574 X 101 -0.5742 x 10° 9.6 
12 -0.5100 X 101 - 0.5420 X 101 - 0.3203 x 10° 6.3 
12 - 0.1200 X 101 -0.1278 X 10° -0.1027 X 101 -110.7 
3 0.3400 X 101 0.4268 X 101 0.8688 X 10° 25.6 

Key: R is the normalized covariance matrix. It consists of the sums of products
 
and crossproducts normalized with respect to the diagonal elements.
 
SIGMA is the sum of the squares of the residuals.
 
B( ) is the vector of estimated parameters.
 
SB( ) is the vector of estimated standard deviations of B( ).
 
Fl (ENTER) and F2 (REMOVE) are the Fisher F-values for adding and
 
removing variables from the model.
 

(a) Has the model been properly constructed? 7.6 The data in the Table P7.6a represent the specific 
(b) Analyze and interpret the residuals . fuel consumption of a jet engine at 25,000 feet and 

a Mach number of 0.4. Several different functions 
7.4 Refer 

D. = 
to Problem 5.9. If a residual is defined as 
Y, ­ flo express each residual as a function of 

were used 
P7.6b. 

as models to fit the data; refer to Table 

all the observations (with the aid of the table in 
Problem 5.9). For example : (a) By stepwise regression, determine if a fourth­

D1 = 0.47J.Y1 - 0.257Y2 - 0.350Ya ­ . •. + 0.150Ya (b) 
order polynomial is the polynomial of best fit. 
Which model in Table P7.6b is the best and 

Prepare a table of coefficients for each residual in the which is the worst? 

form of Yj versus D J• 

TABLE P7.6a 
(a) Show that tf{DJ} = O. 
(b) Determine the tf{ D~} for each Db and sum them 
to obtain 

L tf{D~} = 4~ooou~, 
Thrust 

t 

Specific Fuel 
Consumption 

Y 

Note that the sum is the trace of the main diagonal 
in the table, and that 4.000 represents the degrees of 
freedom , namely 8 observations less 4 parameters. 
Also note that: 

2,000 
3,000 
4,000 
5,000 

1.295 
1.088 
1.010 
0.963 

1. Var { DJ} = tf{(DJ . - 0)2}is the main diagonal of 6,000 0.935 
the table. 7,000 0.920 

2. Covar {DJD k } is the off-diagonal element in 8,000 0.912 
the table. 9,000 0.910 

3. Calculate the correlation coefficient between 10,000 0.912 

7.5 

D7 and Da, PD7D . ' 

Obtain a stepwise regression program and ascertain 
the best model to fit the data of : (a) Problem 5.11 
and (b) Problem 5.21. Many stepwise regression 
programs also plot the residuals and carry out an 
analysis of residuals which aid in the interpretation 
of the model's adequacy at various stages of its 
construction. 

11,000 
12,000 
13,000 
14,000 
15,000 
16,000 
17,000 
18,000 

0.918 
0.929 
0.940 
0.952 
0.966 
0.980 
0.994 
1.010 

L ----,---­ ....,.;_=: 
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TABLE P7.6b 

Fourth-Degree 
Polynomial 

t ao 
x+a1 +a2X 

t= ao 
x+a1 +a2x+ aaX2 

t ao 2 
= x+0.65+a1 +a2x+ aaX 

I 

x y t Error t Error t Error t Error 

1 1.295 1.270 0.025 1.314 -0.019 1.299 -0.004 1.294 0.001 
2 1.088 1.123 -0.035 1.060 0.028 1.080 0.008 1.092 -0.004 
3 1.010 1.022. -0.012 0.982 0.028 1.003 0.007 1.005 0.005 
4 0.963 0.959 0.004 0.949 0.014 0.964 -0.001 0.960 0.003 
5 0.935 0.922 0.013 0.933 0.002 0.940 -0.005 0.935 +0.000 
6 0.920 0.906 0.014 0.927 -0.007 0.926 -0.006 0.921 -0.001 
7 0.912 0.903 0.007 0.925 -0.013 0.918 -0.006 0.914 -0.002 
8 0.910 0.909 0.001 0.926 -0.016 0.914 -0.004 0.912 -0.002 
9 0.912 0.918 -0.006 0.930 -0.018 0.915 -0.003 0.915 -0.003 

10 0.918 0.928 -0.010 0.935 -0.017 0.918 -0.000 0.920 -0.002 
11 0.929 0.938 -0.009 0.941 -0.012 0.925 0.004 0.928 0.001 
12 0.940 0.945 -0.005 0.948 -0.008 0.934 0.006 0.938 0.002 
13 0.952 0.952 -0.000 0.956 -0.004 0.946 0.006 0.950 0.002 
14 0.966 0.959 0.007 0.964 0.002 0.960 0.006 0.963 0.003 
15 0.980 0.970 0.010 0.972 0.008 0.977 0.003 0.978 0.002 
16 0.994 0.988 0.006 0.981 0.013 0.996 -0.002 0.995 -0.001 
17 1.010 1.019 -0.009 0.990 0.020 1.018 -0.008 1.013 -0.003 

Note: Coefficients of ao = 0.53069 ao = 0.42106 
x =(t/1000) ­ 1 fitted polynomial a1 = 0.77242 a1 = 0.88852 

in this form were a2 = 0.010964 a2 = ~0.011786 

not calculated aa = 0.00105556 

ao = 0.91148 
a1 = 0.73665 
a« = 0.004888 
a« = 0.004897 

7.7 The following experimental data 

x r Sy! 
- ­

0.12 3.85 0.09 
0.56 . 9.42 - 0.15 
0.83 12.90 0.42 
1.36 17.. 36 0.42 

n 1 2 
m 11 10 
ao -0.5567 4.8593 
a1 18.9928 -1.5784 
a2 7.3924 
a3 
a4 

1.48 19.31 0.23 
1.73 22.73 0.27 

a5 
ePmin 1004.01 147.1809 

3 4 5 
9 8 7 
1.9142 1.8899 1.9802 

17.0535 17.2574 16.2962 
- 8.0616 -8.3539 -6.2119 

3.0132 3.1472 1.4636 
-0.01877 0.5136 

~0.0580 

1.4002 1.6371 1.8340 
2.20 32.89 0.36 

Which polynomial is the most suitable to represent 2.57 44.5J 0.83 
the data? Explain why. .2.83 53.01 0.52 

3.01 62.09 0.61 7.8	 Spouting is a technique for contacting gases (or 
3.32 81.00 0.93	 liquids) with solid particles, usually one-eighth inch 
3.62 102.11 0.86	 in diameter or larger; see Figure P7.8. The technique 
3.90	 124.00 0.71 has been used to dry wheat and wood chips, for low 

temperature carbonization, etc. A gas is passed
were used to estimate the' coefficients in a model of 

through a conical opening in the bottom of the con­
the form 

tacting apparatus. After a certain gas velocity is 
reached, the solid particles rise rapidly through the 
center of the bed and move down at the sides. 

The central stream of particles which forms the
for q = 1, 2, 3, 4, and 5. The results obtained by 

"spout" may oscillate and may vary in diameter as stepwise regression were 
it rises through the apparatus. For design purposes, 

m=n-q-1 it is important to' know the diameter of the spout in 
n = 13 = number of data sets the apparatus. To obtain a correlation for spout 
q = number of parameters diameter as 'a function of operating' conditions, data 
eP = sum of the squares of the residuals on nine materials were listed in Table P7.8a; the 

~" 

I 

1
I

! 
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FIGURE P7.8 

known physical properties of the materials were 
listed in Table P7.8b. Although the spout diameters 
did vary along the bed height, variations were small, 
and average values of the spout diameter were 
tabulated. 

Make a list of the possible models which can 
represent the relationship between the spout diam-

TABLE P7.8a DATA ON SPOUT DIAMETER 

'. Column Orifice Bed 
Diameter, Diameter, Height, 

Material In; de In, do In,L 

Polystyrene 1 6 0.50 12 

8 

4 0.50 ­ 6 

0.25 12 

Polystyrene 2 6 0.50 12 

8 

eter and the independent variables. Screen these 
models by the method of Gorman and Toman. Then 
repeat the screening by using the method of Wilks. 
Compare the two techniques from the viewpoint of 
their ability to discriminate between models and the 
time required to reach a decision concerning any 
particular model relative to the others. 

Mass 
Velocity, 
Lb/(Hr) 
(Sq Ft), 

G 

326.0 
356.2 
416.3 
476.1 

259.5 
296.4 
355.8 

320.2 
373.6 
453.6 

598.9 
667.2 

595.0 
654.0 
713.8 

506.0 
536.2 
594.8 

Average
 
Spout
 

Diameter,
 
In, d,
 

1.13 
1.20 
1.27 
1.33 

1.07 
1.13 
1.16 

0.72 
0.80 
0.85 

1.06 
1.12 

1.47 
1.52
 

. 1.58
 

1.38
 
1.40
 
1.50
 

(continued) 

L
j
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TABLE P7.8a DATA ON SPOUT DIAMETER (Continued)
 

Column 
Diameter, 

Material In, de 

Barley 

Polyethylene 

4 

6 

6 

Millet 6 

Wheat 

4 

6 

4 

Orifice 
Diameter,
 

In, do
 

0.50 

0.50 

0.50 

0.50 

0.50 

0.50 

0.25 

0.625 

Bed
 
Height,
 
In,L 

6 

12 

8 

12 

8 

12 

8 

6 

12 

8 

12 

8 

10 

Mass 
Velocity, 
Lb/(Hr) 
(Sq Ft) 

G 

Average 
Spout 

Diameter, 
In, d, 

762.7 
890.0 

1.10 
1.20 

635.0 
705.0 
775.4 

1.35 
1.47 
1.49 

528.4 
563.6 
634.0 

1.31 
1.35 
1.44 

512.0 
530.0 
619.0 
706.0 
795.0 
883.6 

1.37 
1.43 
1.50 
1.62 
1.68 
1.75 

442.0 
486.0 
530.0 
573.6 
618.2 

1.23 
1.34 
1.37 
1.50 
1.50 

386.2 
416.0' 
575.6 
535.2 
594.0 

1.02 
1.10 
1.16 
1.25 
1.28 

326.0 
356.4 
416.0 
475.6 

1.00 
1.05 
1.10· 
1.14 

455.0 
567.0 
624.3 

0.80 
0.85 
0.90 

704.0 
776.0 
845.4 

1.39 
1.45 
1.50 

563.6 
634.2 
704.0 

1.35 
1.42 
1.45 

795.9 
884.3 

1.47 
1.53 

663.4 
707.5 
795.9 

1.34 
1.44 
1.53 

954.8 
1028.2 
1175.1 

1.12 
1.25 
1.28 

(continued) 
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TABLE P7.8b PHYSICAL PROPERTIES OF SPOUTED PARTICLES 

Absolute Bulk Particle 
Density, Density, Percent Diameter, Shape 

Material Lb/Cu Ft Lb/Cu Ft Void In Factor 

Polystyrene 1 66.02 40.00 39.41 0.0616 1.141 
Polystyrene 2 66.02 37.00 43.94 0.1254 1.176 
Polyethylene 57.58 36.97 35.80. 0.1350 1.020 
Millet 73.69 45.37 38.44 0.0783 1.070 
Rice 90.95 56.47 37.92 0.1071 1.041 
Barley 79.87 45.24 43.36 0.1458 1.141 
Corn 83.75 46.39 44.60 0.2857 1.500 
Flaxseeds 70.51 43.88 37.77 0.0824 1.050 
Wheat 87.40 53.98 39.24 0.1420 1.073 

7.9	 Kabel t obtained the following data from undesigned 
experiments for the dehydration of alcohol (A) to 
form ether (E) and water (W). The sum of the partial 
pressures, 2 Ph was held constant at 1 atmosphere. 
Kittrell'[ proposed 47 models to represent the data; 
the models could be reduced to the following five 
general models (the variables and coefficients are 
deterministic) : 

Model Mechanism 

(a) r = ai Desorption 

Adsorption 

(c)	 r = (Cl. + C2PA)2 Adsorption
PA 

Surface reaction 

Surface reaction 

Fit the models, assuming R. = r + E, and apply the 
screening method of Gorman and Toman to discrim­
inate among them. All the a's, b's, c's, d's') and e's 
are nonnegative constant parameters. List the models 
in two categories-" keep" for further analysis and 
"reject." How can S;t be estimated? 

Repeat, using the Wilks procedure. 

7.10	 In developing empirical mathematical models, instead 
of using a polynomial it is suggested that a product 
form of a model will be better: 

Specifically take the model 

t R. L. Kabel, Ph.D. Thesis, Univ. of Washington, Seattle, 1961; 
R. L. Kabel and L. N. Johnson, stce J. 8, 621, 1962. 
~ J. R. Kittrell, Ph.D. Thesis, Univ. of Wisconsin, Madison, 1966. 

TABLE P7.9 RATE OF REACTION DATA 

PA Pi Pw 
R, Alcohol Ether Water 

Reaction Rate, Partial Partial Partial 
g-moles/(g-cat) Pressure, Pressure, Pressure, 

(Min) Atm Atm Atm 

0.00000385 0.27308 0.05391 0.67301 
0.00000600 0.33130 0.02480 0.64390 
0.00000900 0.38090 0.00000 0.61910 
0.00006890 0.73027 0.13487 0.13487 
0.00009366 0.87864 0.06068 0.06068 
0.00013291 1.00000 0.00000 0.00000 
0.00005780 0.65488 0.19911 0.14601 
0.00010180 0.83945 0.10683 0.05373 
0.00013647 0.94690 0.05310 0.00000 
0.00007235 0.65848 0.23221 0.10931 
0.00010550 0.80092 0.16099 0.03809 
0.00013035 0.87710 0.12290 0.00000 
0.00010674 0.73596 0.24142 0.02262 
0.00006986 0.66312 0.27784 0.05904 
0.00013766 0.78120 0.21880 0.00000 
0.00006541 0.43042 0.54909 0.02049 
0.00004646 0.32314 0.60273 0.07413 
0.00008877 0.47140 0.52860 0.00000 
0.00004815 0.44593 0.49093 0.06313 
0.00007427 0.51953 0.45414 0.02634 
0.00010270 0.57220 0.42780 . 0.00000 
0.00005019 0.54041 0.37769 0.08189 
0.00007652 0.60424 0.34578 0.04998 
0.00010354 0.70420 0.29580 0.00000 
0.00007309 0.58620 0.38655 0.02725 
0.00005695 0.55396 0.40267 0.04337 
0.00010984 0.64070 0.35930 0.00000 
0.00006421 0.71662 0.14169 0.14169 
0.00009257 0.82606 0.08697 0.08697 
0.00012128 1.00000 0.00000 0.00000 
0.00003912 0.59116 0.08192 0.32692 
0.0005768 0.75500 0.00000 0.24500 
0.0001957 0.52736 0.01222 0.46042 
0.0001608 0.30069 0.02556 0.47376 
0.0002430 0.55180 0.00000 0.44820 
0.0004715 0.52422 0.22389 0.25189 
0.00005209 0.62260 0.17470 0.20270 



-- --

The following simulated observations were generated 
with a normal random error with the parameters 
(0, 1) for a = 2, Pl = t, and P2 = t: 

Xl X2 ~ Y 

o 0 2 1.344 
1 1 3.75 '2.972 
2 1 4.5 4.852 
2 2 6 7.352 
3 2 7 7.017 

Would it be possible to use a linear estimation 
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procedure to estimate the coefficients a, Ph and P2 ? 
Explain. 

An estimated regression equation was obtained 
using the above data: 

f = 1.867(1 + 0.024xl)(1 + 1.176x2) 

with ePmln = 0.388. Is this equation the best one to 
represent the simulated data? Test it against a linear 
model with three parameters:. ~ = Po + PlXl + !J2Xz. 
Propose several additional models and determine 
which is the best. 



CHAPTER 8
 

Strategy for Efficient 
Experimentation , 

Up to this point we have paid only minimal attention to 
one of the most important aspects of empirical model 
building, namely how to obtain an appropriate model 
with a minimum of experimentation. A trial-and-error 
approach to .the design and execution of experiments 
cannot only be time consuming and expensive but even 
self-defeating. Whatever the objectives of an experiment , 
something more than an analysis of the experimental 
results is required if the experimenter wants to obtain 
estimates of the parameters in his model with small con­
fidence regions. No amount of analysis wiII ever over­
come the handicap of poorly designed experiments . On 
the other hand, if the experimenter plans his experiments 
so as to provide a maximum amount of information, he 
can achieve his goals most effectively. 

This chapter outlines some basic methods for efficient 
experimentation which have proved useful in the planning 
of experiments and their sequential execution. These 
methods are designed to assist in : 

1. The selection of the best model among the set of 
plausible models . 

2. The efficient estimation of the parameters in the 
selected model. 

Both objectives are sought simultaneously and usually 
sequentially, because the experimenter generally does not 
know what variables to measure nor their range nor what 

series of experiments to run until his experimental pro­
gram is at least partially completed. In practice, he plans 
one or more experiments, carries them out, analyzes the 
results, and modifies his experimental plan accordingly. 
This strategy of experimentation is outlined in Figure 
8.0-1. The designs we seek are the values of the indepen­
dent variables. The methods to be described cannot 
replace imagination or judgment, but they can save time 
and money and can provide some objective data to 
substantiate any decisions made on the basis of the 
partial or complete experiments . 

Before proceeding, we should remark that every series 
of experiments should have carefully defined objectives 
or criteria expressed in mathematic~ terms insofar as 
possible. The designated objectives underlie the choice of: 
(I) the controllable variables involved in the experiment, 
(2) the procedure, and (3) the methods of analysis of 
the results of the experiment . Table 8.0-1 is a catalog 
of certain practical aspects of experimentation which 
must always be taken into account. 

8.1 RESPONSE SURFACE METHODS 

One major contributor to the practice of effective 
experimentation has been G. E. P. Box and his co­
workers (see references at the end of this chapter) who 
developed statistical techniques in the design and analysis 
of experiments, termed" response surface methodology," 

FIGURE 8.0-1 Strategy of efficient experimentation. 
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TABLE 8.0-1 CHECKLIST FOR EXPERIMENTATION 

Statement of Objectives 
1. Why is the work to be done? What questions will be 

answered by the experiment? 
2. What are the consequences of a failure to find an 

effect or to claim one when it does not really exist? 
3. What is the experimental space to be covered? 
4. What is the time schedule? . 
5. What is the allowable cost? 
6. What previous information is there about the experi­

ment or its results? 
7. Is an optimum among the variables sought or only 

the effect of the variables? 

Type of Model(s) to be Used 
1. Will empirical or transport phenomena models be 

used? 
2. Is the form of the model correct or is the form to be 

determined? 
3. What will be the independent and dependent variables? 

Experimental Program 
1. What are the variables to be measured? How will they 

be measured and in what sequence? 
2. Which variables are initially considered most 

important? Which least important? Can the desired effect 
be detected? 

3. What extraneous or disturbing factors must be con­
trolled, balanced, or minimized? 

4. What kind of control of the variables is desirable? 
5. Are the variables independent or functions of other 

variables? 
6. How much dispersion can be expected in the test 

results? Will the dispersion be different.at different levels of 
the variables? 

Replication and Analysis 
1. What is the experimental unit and how are the experi­

ments .to be replicated-all at once, sequentially, or in a 
group? 

2. What are the number and type of tests to be carried 
out? 

3e- · How are the data to be analyzed and interpreted? 

which can be applied to solve practical process problems. 
The strategy of response surface methodology, as 
indicated in Figure 8.0-1, is to decide on a model in 
which the response is expressed as a function of the 
independent variables presumed to be involved in the 
process. 

This model provides the basis for new experimentation, 
which in turn leads to a new model, and the entire cycle 
is repeated. Compared with the method of holding all 
the. variables constant except one that is varied, thus 
testing one variable at a time, the response surface method 
is much more efficient. Even compared with orthodox 
experimental design methods in which all combinations 
of the factors, or suitable fractions thereof, are tested, the 
response surface method proves to be more effective for 
continuous processes. 

J 

I 

I 
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A second attractive feature of response surface methods 
is that conclusions can be drawn from the very first 
experiments. The experimentation can be terminated any 
time further experimentation appears uneconomic. 
Finally, response surface methods are a prelude to the 
determination of optimum operating conditions for a 
process (discussed in Section 8.3). 

Before discussing response surface methods, it should 
be pointed out that the models to be described have 
only one dependent variable. If more than one response 
is being observed, surfaces can be constructed for each 
and they can be studied in juxtaposition to one another. 
This can often best be done by means of superimposing 
the various contour plots; refer also to Example 8.1-5 
and Section 8.3-1. 

To answer the question as to what is a proper re­
sponse, a brief scrutiny by the analyst of any continuous 
process will reveal a number of independent and de­
pendent variables and some of intermediate character 
whose classification is by. no means clear. Dependent 
variables are considered to be responses to independent 
(preferably controllable) variables. Typical examples of 
the former are product purity, yield, and weight.Examples 
of the latter are temperature, pressure, flow rates, con­
centration, and time of reaction. Before starting any 
program of experimentation, it is essential to be able to 
measure quantitatively both the response variable and 
the independent variables and to control the independent 
variables if meaningful results are to be achieved. 

8.1-1 One-Dimensional Models 

By first examining the detailed calculations for one 
dependent variable and one independent variable (the 
" one" dimension in the section heading refers to the 
number of coordinates needed to represent geometrically 
the independent variables), the response surface method 
can be illustrated both analytically and graphically. 
Then, higher dimensional examples can be examined and 
a general procedure outlined. 

Example 8.1-1 One-Dimensional Experiment 

We start by assuming we know nothing about the relation 
between the shear stress of a non-Newtonian fluid (the 
response) and the temperature (the independent variable). 
We carry out an experiment, collecting five sets of data: 

t, V, 
Temperature Shear Stress 

(OF) (dynes/cm'') 

60 15 
80 17 

100 20 
120 28 
140 45 
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To fit a straight line to the data, a trial model is used of the 
form 

V' = f30 + f31t1 + € 

where € represents the unobservable random error and V 
is a random variable. To simplify the calculations (if done 
by hand rather than on a computer), the temperature can 
be coded as follows : 

t - 50
x=lO 

and the shear stress can be coded as 

Y = V -IS 

These transformations lead to the following matrices 
(the column of dummy variables, 1, appears in order to have 
an intercept in the model) : 

Uncoded 

40 r---r----r-,.---r-,--.....,--,--r-r---, 

30 -­ .Estimated regression line • 

.y 20 

10 

o 

" 
10 

Coded data 

• Experimental data 

50 .---,----,--,----,- ......--,--,---,--,--, 

40 

30 

V 20 

10 

050 60 70 

FIGUREE8.1-1 

These equations are plotted in Figure E8.1-1 together with 
the experimental data points. Next we carry out an analysis 
of variance as shown in Table E8.1-1a. 

Both constants are meaningful. But a glance at the plot 
of the original data indicates that a linear first-order model 
does not fit the data very well! This paradox brings out an 
important point. The sum of the squares of the residuals 
about the empirical regression line, epmln = 93.9, will 

TABLEE8.1-1a ANALYSIS OF VARIANCE OF CODED DATA 

- Estimated regression line 

• Exper imental data 

Vari-} 2 
Source of Mean an~ 3~.3 
Variation SS d.f. Square Ratio 

Effect of re­
moving b1 

n

t=1 
y')22 Pt( Yl - 504.1 504.1 16.1 

Effect of removing 
bo (with b, 
already removed) 

n

2 pt(Y- 0)2 500 500 16.0 
1=1 

Deviation about 
the empirical 
regression line 

n

2 Pl( Y1 - Yt)2 93.9 3 31.3 
1=1 

Total (2 Y?) 1098.0 5 

Note: FO•9 S(l , 3) = 10.13 

60 

80 

t= 100 

120 

1 140 

tTt = [50~ 500] 
54,000 

tTV = [ 125] 
13,920 

Coded . 

1 

1 3 

x= 1 5 

1 7 

1 9 

V= 

y= 

15 

17 

20 

28 

45 

0 

2 

5 

13 

30 

25]xTx = 
[2: 165 

xTy = [3:~]
 
From the least squares analysis , the estimate of 13 is :
 

Uncoded
 

Coded 

Consequently, the estimated first-order regression equa­
tions are, respectively, 

Uncoded : r = - 10.5 + 0.355t 

Coded : f = -7.75 + 3.55x 

~~~~ ._---_. . -_.._.. ._--- - ----~----~----~ 



TABLE E8.1-1b ANALYSIS OF VARIANCE OF UNCODED DATA 

Vari-} 2 
Source of Mean anc.e 3~ .3 
Variation SS d.f. Square Ratio 

Effect of removing 
bl 

Effect of removing 
bo (with hI al­
ready removed) 

Deviation about 

504.1 

3125 

504.1 

3125 

16.1 

100 

the empirical 
regression line 93.9 3 31.3 

Total 3723.0 "5 

Note: Fo.9s(l, 3) = 10.13 

include the effect of the fit of the empirical regression line, 
and it will also include any effect of selecting an inappro­
priate mathematical model. Visual observation points out 
that some type of curve will fit the data better than a straight 
line. 

To decide if a model is appropriate, one might try all 
sorts of models and see which give the lowest variances for 
the variation about the empirical regression line. A better 
way, if at all feasible, is to make replicate experiments and 
thus obtain an estimate of theexperimental error which is 
independent of the mathematical model. As explained in 
Chapter 4, the F-test can be employed to ascertain if the fit 
about the estimated regression line is significantly different 
from the experimental error. As a matter of policy, it is 
wise to have sufficient replication to yield several degrees of 
freedom for theerror estimation, thereby reducing the error 
mean square to as Iowa value as is- economically feasible. 

Example 8.1-2 One-Dimensional Experiment with 
Replication 

Replicate experiments (the series of experiments done 
completely over) have been carriedout to extend the experi­
ment of Example 8.1-1 as follows: 

Temperature (OF) Shear Stress (dynes/cm2) 

14 
60 15*{ 

16 

16 
80 17*{ 

18 

20 
100 20*

{ 
21 

26 " 
120 . 26 " 

{ 
28* 

44 
140 45*

{ 
46 

* = old values. 

RESPONSE SURFACE METHODS 233 

A first-order model, Y = {3o + {3IXI + €, can be fitted to 
the coded data (coded as in the previous example), yielding 
the following matrices: 

a Matrix 

1.500 X 101 7.500 X 101 

7.500 X 101 4.950 X 102 

Inverted a Matrix (c Matrix) 

2.270 X 10- 1 -4.166 X 102 

- 4.166 X 10- 2 8.333 X 10- 3 

g Matrix 

1.470 X 102 1.153 X 103 

Regression Coefficients 

bo = -7.616 
b l = 3.483 

The corresponding analysis of variance is shown in 
Table E8.l-2a. 

TABLE E8.l-2a 

vari-}. S 2 
Source of Mean ance -­

Ratio 0.933Variation SS d.f. Square 

Effect of removing 
hI 1456 1456 1560* 

Effect of removing 
bo (with b l al­
ready removed) 1440 1440 1500* 

Deviation about 
the empirical 
regression line 309.0 3 103.0 110* 

Deviation within 
sets 9.33 10 0.933 

--­ -
Total 3215 15 

Note: Fo.95(l, 10) = 4.96 
FO•95(3, 10) = 3.71 

* Significant. 

A quick computation provides a result similar to Example 
8.1-1, namely the residual sum of squares, " 

309.0 
9.33 

318.33 
which leads to 

318.33 _ 2 
13 - 4.4 

compared with 31.3 in Example 8.1-1. 
The F-test points out that the deviation about the first­

order regression line is significantly higher than the experi­
mental error, and that the model can be materially improved. 
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Once the first-order linear model is known to be unsatis­
factory, another first-order model can be tried , one perhaps 
obtained from some type of transformation. Of course, if 
such a transformation is carried out, the additive unobserv­
able error will be added to the transformed response rather 
than to the original response. If no better success is achieved 
with these other models, a second-order model can be tried. 
It is best to proceed in as simple a fashion as possible rather 
than indiscriminately picking a complicated model. 

With the model 

Y = {30 + {31 X1 + {32X'f + € 

the matrices are : 
a Matrix 

1.500 X 101 7.500 X 101 4.950 X 102 

7.500 X 101 4.950 x lQ2 3.675 X 103 

4.950 X 102 3.675 x 103 2.900 X 104 

Inverted a Matrix (c Matrix) 

7.050 X 10- 1 -2.946 X to - 1 2.529 X to- 2 

-2.946 X 10- 1 1.571 x to- 1 -1.488 x to- 2 

2.529 X 10- 2 -1.488 x 10- 2 1.488 x to- 3 

g Matrix 

1.470 X 102 1.153 X 103 9.458 X 103 

Regression Coefficients 

b« = 3.210 
b1 = -2.885 
b2 = 0.636 

The analys is of variance is shown in Table E8.1-2b. 
The second-order model also proves to be inadequate. 

By removing b« and then bi , the first two sums of the 

TABLE E8.1-2b 

vari-} 2 
Source of Mean anc.e 0.~33 · 
Variation SS dJ. Square Ratio 

Effect of removing 
b1 1456 1456 1560* 

Effect of removing 
.b2 (with b, al­
ready removed) 273 273 292* 

Effect of removing 
b« (with b1 and 
b2 already 
removed) 1440 1440 1500* 

Deviation about 
the empirical 
regression line 36 2 18.2 19.5* 

Deviation within 
sets 9.33 10 0.933 

--­
Total 3215 15 

Note: Fo.9 5(1, 10) = 4.96; FO•9 5(2, to) = 4.10 

* Significant. 

squares in the analysis of variance would become 1676and 
53, respectively. These differences exist because the inde­
pendent variables Xl and x'f are not orthogonal, but the 
conclusion that the model is inadequate is not changed. A 
third-degree polynomial can be tested as a model 

Y = {30 + B1X1 + {32X'f + {33X~ + € 

Or perhaps a linearized form of a nonlinear (in the coeffi­
cients) model such as 

log Y = Ct + {3x + € 

might better fit the data and give a nonsignificant F-test for 
the deviations about the empirical regression line. These 
calculations will not be shown here in order to save space, 
but the procedure should now be clear. 

8.1-2 Two-Dimensional Models and Experimental 
Designs 

Next let us consider models involving two geometric 
coordinates and one dependent variable. By employing 
orthogonal designs, the response surface method can be 
made most efficient. When the estimates of the coeffi­
cients are orthogonal, the sum of the squares of the 
deviations associated with the coefficients are orthogonal 
also, and the maximum amount of information can be 
obtained for a given amount of experimentation. 

Orthogonal experimental designs are arrangements of 
the independent variables such that for all pairs j, k, 
the sum over the data sets i = 1, 2, . .. , n, vanishes, i.e., 
LIX lJXlk = 0, for j l' k. In the following discuss ion the 
term dimension will refer to the number of geometric 
coordinates required to represent the response excluding 
the coordinate for the response itself. The term order of 
the model will refer to the degree of the polynomial 
forming the model (first degree:c= first order, second 
degree:c= second order, etc.). The order of the design is 
related to the order of the model; that is, a first-order 
design can be used with linear first-order models of one, 
two, three, or more dimensions but not with second­
order models. While second-order designs can be used 
for first-order models, more experimentation would have 
to be carried out with such designs than is actually 
needed. 

A very simple orthogonal two-level factorial t experi­

t A factor denotes any of the experimental variables which are 
deliberately varied from experiment to experiment, such as 
temperature, pressure, time, and concentration. A factor may be 
qualitative, such as " high" or " low," " present" or " absent," 
when quantitative values cannot be assigned to the experimental 
variables. A factorial experiment is one in which all possible 
combinations of the factors are used. For example, if two 
variables are to be controlled at two levels each, then there are 
four possible combinations of experimental conditions; the 
experiment is termed a two-level factorial experiment, often 
abbreviated 22 design. 

L 



mental design (22 design) suitable for the first-order 
two-dimensional model 

y = Poxo + PIXI + P2X2 + € (8.1-1) 

is (in coded form) 

Levels 
(xo == 1 at all levels) 

Xl X2 

-1 -1 
1 -1 

-1 1 
1 1 

To provide the replication needed for an estimate of the 
experimental error, the entire series of values might be 
run two or three times. An alternate means of providing 
replication with less experimentation is to replicate the 
center point of the design, (0, 0). We assume in the 
regression analysis that the error is the same at each 
point. The estimated coefficients are easy to calculate by 
Equation 5.1-10 because of the orthogonality of xo, Xl' 

and X 2. Note that L x, = 0, L x.x; = 0, and L x.x, i= O. 
The estimated coefficients are 

L YiXiO 
h = _i__ (8.1-2)o n 

L ~Xil 
hI = _i__ (8.1-3)

n 

L ~Xi2
h = _i__._ 

2 (8.1-4)n . 

where n = Li XtoXiO = Li XilXil = Li Xi2 Xi2' 

A word might now be said about coding. In Example 
8.1-1 we coded the temperatures to set up a series of 
integers. In the 22 factorial design, each value can be 
portrayed geometrically as the corners of a square in 
two dimensions (see Figure 8.1-1). If Xl represents the 

t, OF 

(1,1)
240 ­

(1, -1)i 1 

,xl 
(0,0)

220 0 

200 -1~ 
(-1,1)(-1,-1) 

1.I 
-1 o 

X2-----;" 

3 5 p, atm 

FIGURE 8.1-1 Two-level factorial design for the factors tem­
perature and pressure. 
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coded temperature and X 2 represents the coded pressure, 
the analyst sets up a series of four experiments at pairs 
of (t, p) values such that when properly transformed the 
factorial design is obtained. For example, the tem­
perature might be held at 200 and 240°F, and the pressure 
at 1 and 5 atmosphere. Then the coding would be 

t (OF) - 220 
Xl = 20 

p (atm) - 3 
X2 = 2 

The design in Figure 8.1-1 also will provide an estimate 
of the lack of fit due to: 

1. Interaction between Xl and X2; i.e., a hl 2 coefficient 
can be obtained in an estimated regression equation 
such as Equation 8.1-5. 

2. Effects of quadratic terms (by taking the difference 
between the average of the four peripheral values and 
the average of the center values). 

Another often employed simple design for first-order 
two-dimensional models is the so-called "equilateral 
triangle" design shown in Figure 8.1-2. The matrix of the 
X elements for the equilateral triangle design is 

Xo Xl X2 

1 -vi -Vi 
X= 

1 vi -Vi 
1 0 v'2 
1 0 0 

Note that L Xil = 0, L Xi2 = 0, and L XilXi2 = O. To get 
an estimate of the error, two or more sets of data can be 
taken at the point (0, 0). The difference between the 
average of the three peripheral values and the average of 
the center values provides a measure of lack of fit. Be­
cause the design in Figure 8.1-2 contains only four sets 
of the.independent variables, at the very maximum only a 
four-parameter model can be used. Neither it nor the 

(0,0) 

------I-~ 4_--- Xl 

(-~, --Jr)&---..........---- (-{f, -~)
 

FIGURE 8.1-2 Equilateral triangle design. 
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design in Figure 8.1-1 are suitable for second-order 
models (of two dimensions). 

If a first-order model proves inadequate to represent 
the experimental data, the experimenter usually next 
considers a second-order model. Because a complete 
second-order two-dimensional model, 

Y = flo + fllXI + fl2 X2 + fJllX~ + fl22X~ + fll2XIX2 + E 

(8.1-5) 

incorporates six coefficients, to fit Equation 8.1-5 three 
additional estimated coefficients have to be determined 
beyond those in a linear model, namely bil , b22, and b12, 
the latter being associated with the so-called interaction 
term, the XIX2 term. Experimental designs of the type 
shown in Figures 8.1-1 and 8.1-2 are not adequate for 
estimating six constants. 

Examination of the matrix of the variables in Model 
8.1-5 in terms of the previously mentioned two-level 
factorial design: 

Xo Xl 

-1 
1 

-1 
1 

X2 xr X~ Xl2 

-1 1 
-1 -1 

1 -1 
1 1 

reveals that the columns headed xo, xr, and x~ are identi­
cal. Hence there is no way to distinguish between the 
coefficients bo, bll , and b22 with the type of designs 
described so far (this characteristic is called confounding), 
although bl2 can be determined. Since all the lack of 
fit can be explained by calculating a bl2 term, it becomes 
apparent that the mere addition of the interaction term 
to a first-order model is not sufficient justification to use 
the model 

Y = fJoxo + fJIX I + fJ2 X2+ fll2XI X2 + E (8.1-6) 

in lieu of a fullscale second-order model, Model 8.1-5, 
without trying Model 8.1-5 first. 

A geometric interpretation of the 22 design as shown 
in Figure 8.1-1 is that it can be rotated 45° to yield the 
design shown in Figure 8.1-3. This latter design is a 
perfectly good design with a matrix of 

Xo Xl X2 XIX2 

1 0 0 

0 1 0 

-1 0 0 

0 -I 0 

but it will not provide any information about the inter­
action between Xl and X2' Since one does not usually 

FIGURE 8.1-3 Design of Figure 8.1-1 rotated 45°. 

know the orientation of the response surface, at least at 
the start of an experimental program, the use of Model 
8.1-6 without first trying the fullscale second-order model 
can be very "misleading. 

Rotatable designs are those in which the variance of Y 
is the same for all the peripheral points in the design. 
For the first-order designs, using the estimated regression 
equation 

the variance of Y at x, is 

Because the Covar {b} = U~tC and the elements of c on 
the main diagonal are all the same except for the leading 
element 

en+ k) -l 0 

C = 0 n­
[ 

l
 

o 0 

the variance of Yf is 

- X~l X~2 )Var {Yj} = Ul'
2 (1
-- + - +­'n+k n n 

where k is the number of replicates. In as much as xTI = 
X~2 = 1 except at the center of the design, the Var {J'i} is 
invariant at the peripheral points. 

Typical examples of two-dimensional, rotatable, second- " 
order designs are the vertices and at least one center Ipoint of any (n - 1) dimensional regular polygon which i 

can be inscribed in a circle. A few such polygons are 
illustrated in Figure 8.1-4. As an example, the variance of IYj using the octagon design, the c matrix for which is 
given in Example 8.1-3, is I 

i 
Var Yf = Var {bo} + (X ~l + x~2)(0.1250) 

+ (Xtl + X(2)(0.15625) + (xnx d 2(0.250) 

+ 2[(X~1 + X~2)( -0.1250) + (xnxf2)2(0.03125)] 

= Var {bo} - 0.1250(X~1 + X~2) 

+ 0.15625(Xfl + X& ) + 0.3125(xnx j2)2 

The design points in sequence following Figure 8.1-4 
yield 

I 
L 
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Xfl + Xf2 Xfl + Xf2 (Xn Xi2)2 

2 2 1 
2 2 1 
2 2 1 
2 2 1 
2 4 0 
2 4 0 
2 4 0 
2 4 0 

and also yield the san1e Var {:Vi} for each point: 

Var {:Vi} = Var {ho} + 0.375 

An example of a nonrotatable design in which each 
independent variable is fixed at the + 1, 0, and - 1 levels, 
and all combinations of all levels are used, is shown in 

Experimental Levels 

Xl X2 

1.000 0 

XI	 
0.309 0.951 

-0.809 0.588 
-0.809 -0.588 

0.309 -0.951 
-1 

0 0 
Pentagon design 

X2 

1 

0 11 

-1 

Experimental Levels 

-1 -1 
o -1 
1 -1 

-1 o 
o o 
1 o 

-1 1 
o 1 
1 1 

FIGURE 8.1-5 32 design (nonrotatable). 

Figure 8.1-5. For this design the number of experi­
ments can be generalized as 3\ where k is the number of 
variables. Figure 8.1-5 is for k = 2. 

Since the experimenter does not .know in advance 
how the response surface will be oriented with respect to 
his x's, use of a rotatable design is sound policy.j 

In initiating an experimental program, assuming no 
prior information on the nature of the response surface 
is known, the experimentalist would probably start with 
a first-order model and see how well it fitted. If it did not 
fit the data, then a second-order model would be tested 
for fit. To do this efficiently, the initial first-order design 
should preferably be one that can be expanded into a 
second-order design merely by the addition of extra 
data points. A simple first-order design which can be 
augmented to form a rotatable second-order design, 
specifically the octagonal design, is illustrated in Figure 
8.1-4. In using the designs, the data collection should be 
randomized; that is, the different combinations of the 
experimental variables should be randomized. 

We now turn to some examples to illustrate the prin­
ciples and techniques presented up to this point. 

Example 8.1-3 Sequential Experimentation to Obtain a 
Suitable Model 

The following data were obtained for a first-order design 
(Figure 8.1-1), which can be augmented to an octagon 
design if needed. 

t For pertinent references on the construction of rotatable 
designs, see: J. S. Hunter, Amer. Soc. Qual. Control. Trans. 15 
(7), 1958; G. E. P. Box and J. S. Hunter, Ann. Math. Stat. 28, 
1957; W. G. Cochran and G. M. Cox, Experimental Designs 
(2nd. ed.), John Wiley, New York, 1957. 
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--
y Xl X2 These values were processed with the following results: 

24.500 -1 -1 
60.141 1 -1 
54.890 -1 1 
67.712 1 1 

a=
77.870 0 0 
78.933 0 0 
70.100 0 0 

A linear model Y {3o + {3IXI + {32X2 +E was fitted to=

12.00 0 0 8.000 8.000 0 

0 8.000 0 0 0 0 

0 0 8.000 0 0 0 

8.000 0 0 12.00 4.000 0 

0 

0 0 0 0 0 4.000 

8.000 0 0 4.000 12.00 

the observations, including the replicated point, with the 
0.2500 0 0 -0.1250 - 0.1250 0following results (here Xo == 1 and the replicated data were 

assigned a weight of 3) : 0 0.1250 0 0 0 0 

o 0 0 0.1250 0 0 0 

0.250 -0.1250 0 0 0.15625 0.03125 0 
a ~ [~ :]: 0.:,J 

c= 

-0.1250 0 0 0.03125 0.15625 0 

0 0 0 0 0 0.2500 
o 

G
= y=76.75 + 1O.66xI + 1O.53x2 -7.50xr-13.08x~-5.70xlx2[4::::6] 
37.96 The analysis of variance is shown in Table E8.1-3b. 

=f 62.020 + 12.116xI + 9.490X2 
TABLE E8.1-3b 

The anal ysis of variance is shown in Table E8.1-3a. 
The degrees of freedom for the deviations about the Source of Mean Variance 

empirical regression line are equal to the number of different Variation SS d.f. Square Ratio 
sets of x's less the number of coefficients, (5 - 3) 2, and =
the degrees of freedom for the deviations of the replicated Effect of 130.17 130.17 Not
point are equal to the total number of replicated data removing b,« significant
values less the number of constraints imposed, (3 - 1) 2. = Effect of 
The constraint comes from the calculation of Y at the removing b22 1,094.86 1,094.86 Significant
center. The analysis of variance shows that the first-order Effect of 
model is not lln adequate fit. 

Additional experimental values to complete an octagon 
removing bu 359.94 359.94 Significant 

Effect of 
design were next collected: remo ving a, 886.88 886.88 Significant 

Y Effect of 
remo ving s, 910.11 910.11 Significant79.162 1.414 o 

Effect of 53.095 -1.414 o 
removing bo 23,567.5 23,567.5 Significant71.328 o 1.414 

Deviation about38.609 o -1.414 
empirical Not .80.131 o o 
regression line 178.14 3 59.38 significant 

TABLE E8.1-3a Deviation at 
replicated point 61.67 3 20.56 

Mean Variance ­
Source of Variation SS d.f. Square Ratio Total 12 I 

I
Note: FO•9 S(l , 3) = 10.12 
!

I

I
I
I
I 

I
I 

Effect of removing 
b2 360.3 360.3 Significant 

Effect of removing 
bl 587.2 587.2 Significant 

Effect of removing 
bo 26,926.1 29,926.1 Significant 

Deviation about 
the empirical 
regression line 1,103.2 2 551.6 Significant 

Deviation at 
replicated point 46.5 2 23.3 

The number .of degrees of freedom for the deviations 
about the estimated regression line are equal to 9 sets of 
x's less 6 constants, or 3, and the degrees of freedom for the 
replicated point are equal to the total number of repli­
cated data points, 4, less the number of constraints , or 1, 
for a net of 3. The analysis of vari ance shows that the 
second-order model is a good fit as well as the fact that the 
crossproduct term might be deleted from the model. 

Once a suitable model has been obt ained, it can be used 
- for optimization and further analysis. Total 7 !
 

I
 
! 
I
I 
I
I
L 



--Example 8.1-4 The Problem of Insufficient Replicated 
Valuest 

Consider the following matrix based on a 22 factorial 
design with a repeated center point: 

y Xl X2 
- ­
80.8 -1 -1 
85.1 1 -1 
82.9 -1 1 
71.9 1 1 
82.9 0 0 
81.1 0 0 

The estimated regression equation based on a first-order 
model is 

Y = 80.8 - 1.7X1 - 2.8x2 

The analysis of variance is as shown in Table E8.1-4a. 

TABLE E8.1-4a 

Source of Mean Variance
 
Variation SS d.f. Square Ratio
 

Effect of removing 
ho 39,155.7 39,155.7 24,400 

Effect of removing 
hI 11.2 11.2 7.0 

Effect of removing 
h2 30.8 30.8 19.2 

Deviation about 
empirical 
regression line 63.0 2 31.5 19.7 

Deviation at 
replicated point 1.6 1.6 

Total 39,262.3 6 

Note: FO•9S(2, 1) = 200; Fo •9s(l, 1) = 161 

None of the mean squares is significantly different from 
1.6 except for 39,155.7. This paradox develops because 
only 1 degree of freedom is associated with the variance of 
the error. A brief examination of the tables for F will show 
that a few replications at (0, 0) will materially improve the 
experimenter's ability to, evaluate the model (ex = 0.05): 

F1 ,1 = 161.00 F2 , 1 = 200.00 
F1 ,2 = 18.51 F2 , 2 = 19.00 
F1 ,3 = 10.13 F2 •3 = 9.55 
F1 , 4 = 7.71 F 2 •4 = 6.94 
F1 ,s = 6.61 F2 , 5 = 5.79 

We shall assume that these runs have been carried out 
and that the F-test proves significant, so additional data are 
collected to fit a second-order model: 

t J. S. Hunter, Ind. Qual. Control IS (8), 6, 1959. 
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y Xl X2 

81.7 Y2 0 
82.9 -Y2 0 

57.7 0 V2 
84.7 0 -V2 
83.8 0 0 

80.9 0 0 

The estimated regression equation is: 

Y = 82.18 - 1.05x1 - 6.11x2 + 0.92x~ - 4.63x~ - 1.19x1x2 

The new analysis of variance is shown in Table E8.1-4b. 

TABLE E8.l-4b 

Source of Mean Variance
 
Variation SS d.f. Square Ratio
 

Effect of removing 
bo 76,225.0 1 76,225.0 Significant 

First-order terms 305.6 2 152.8 Significant 
Second-order terms 184.5 3 61.5 Significant 
Deviation about 

regression line 
(lack of fit) 157.1 3 52.4 Significant 

Deviation at 
replicated point 6.0 3 2.0 

-
Total 76,880.2 12 

Note: FO•9 5(3, 3) = 9.28 

It appears as if the model is still not satisfactory. Upon 
reexamining the model and data, the value of Y of 57.7 
looks suspicious and should be checked, or perhaps the 
point (0, Y2) should be redone. 

8.1-3 Three- (and Higher) Dimensional Models and 
Experimental Designs 

The first-order model for three controllable variables is 

(8.1-7) 

A two-level factorial design for three variables, 23, is 
satisfactory for estimating the coefficients. Replication 
will provide an estimate of the error. In experimental 
space the design is a cube with corners at the circles, as 
indicated in Figure 8.1-6. 

To cut down the amount of experimentation needed, a 
so-called half-replicate can be used. The first set of 
points (solid circles) in Figure 8.1-6 form a tetrahedron 
as do the second set (open circles). The half-replicate is 
an orthogonal design itself which provides unconfounded 
estimates of the f3's. In cutting down the experimental 
work to one-half, it is necessary to give up some of the 
advantages of the full design. First, it becomes impossible 
to test lack of fit unless center 'points are taken. Second, 
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TABLE 8.1-1 FULL FACTORIAL AND HALF-REPLICATE EXPERI­

MENTAL DESIGNS FOR FOUR AND FIVE VARIABLES 

k=4 

-1 -1 -1 -1 1 -1 -1 -1 
1 1 -1 -1 -1 1 -1 -1 

23 Design 1 -1 1 -1 -1 -1 1 -1 
-1 1 1 -1 1 1 1 -1Points used for 

Xa Half-Replicates 1 -1 -1 1 -1 -1 -1 1 
-1 1 -1 1 1 1 -1 1 

-1 -1 -1 
-1 -1 1 1 1 -1 1 1..; t 

1 -1 -1 
1 1 1 1 -1 1 1 1 
o o o o 0 

..;-1 1 -1 
1 1 -1
 

-1 -I 1
 o o o o 0~}* ~ ~}* 
1 :""1 1 ..;
 

-1 1 1 ..;
 
1 1 1
 

k=5 
FIGURE 8.1-6 Two-level, three-dimensional, factorial design 
(replicate points not listed). 

-1 -1 -1 -1 -1 -1 -1 -1 -1 1 
if an interaction term does exist, x.x., it will bias estimates 1 1 -1 -1 -1 1 1 -1 -1 1 
of the coefficient of the succeeding variable Xk. For 1 -1 1 -1 -1 1 -1 1 -1 1 
example, if an XIX2 interaction exists, it will bias the -1 1 1 -1 -1 -1 1 1 -1 1 
estimate of f33. By running the full factorial, not only can 1 -1 -1 1 -1 1 -1 -1 1 1 

-1 1 -1 1 -1 -1 1 -1 1 1one get unbiased estimates of f3i but also of f312' f313' 
-1 -1 1 1 ~1 -1 -1 1 1 1and f323. 

1 1 1 1 -1 1 1 1 1 1Higher dimensional first-order models are of the form 
1 -1 -1 -1 1 1 -1 -1 -1 -1 

k -1 1 -1 -1 1 -1 1 -1 -1 -1 
-1 -1 1 -1 1 -1 -1 1 -1 -1Y = .2f3iXi + E (8.1-8) 

i=O 1 1 1 -1 1 1 1 1 -1 -1 
-1 -1 -1 1 1 -1 -1 -1 1 "-I 

Full factorial designs require 2k experimental points. All 1 1 -1 1 1 1 1 -1 1 -1 
that has been said about unbiased estimates and the 1 -1 1 1 1 1 -1. I 1 -1 

use of center-point replication and half-replicates applies -1 1 1 1 1 -1 1 1 1 -1 
o o o o o o 0to Equation 8.1-8. Table 8.1~ 1 gives the four- and five­ O. ~l' o o o o o o 0dimensional full factorial and half-replicate first-order o Of~}*

factorial designs. One can see that with five variables a '\ 
half-replicate can be quite a saving in work. Additional 

* Replicated center points. 
details concerning these designs can be found in the 
references listed at the end of this chapter. 

The linear second-order model with three independent 
design includes a center point. Figure 8.1-7 illustrates the variables is 
central composite design. As usual, replicate points at 
the origin are needed to estimate the experimental error 
and obtain the estimate of f3o. 

(8.1-9) Second-order models with more than three variables 
can be expressed mathematically as Again, rotatable designs exist which can be used in 

conjunction with Equation 8.1-9. They can be described k k k 

geometrically as the vertices of a icosahedron (12 points), Y = (8.1-10).2 f3iX; + .2 Lf3liXiXj + E 

a dodecahedron (20 points), and a so-called central i=O i=llr1 
composite figure (14 points), the latter being formed 
from the vertices of a cube (8 points) plus the vertices A few rotatable designs (omitting central points) that 
of an octahedron (6 extra points). In addition, each can be used for such models are listed in Table 8.1-2. 



Xl X2 X3 

-1 
1 

-1 
-1 

-1 
-1 

23 factorial 
(cube) 

-1 
1 

-1 
1 

-1 
-1 

-1 
-1 

-1 
1 

1 
1 

-1.68 
1.68 

0 
0 

0 
0 

Octahedron 
vertices 
(" star") 

0 
0 

0 
0 

-1.68 
1.68 

0 
0 

0 
0 

-1.68 
1.68 

Center points {0 

0 

0 

0 

0 

0 

FIGURE 8.1-7 Central composite design. 

TABLE 8.1-2 ROTATABLE CENTRAL COMPOSITE DESIGNS FOR 

k ~ 4· 

Factorial Star 
Xl X2 X3 X4 

{ 

± 2 
-, 0 

k=4: 24 factorial + ~ 

o 
±2 

o 
o ±r ±~} 

8 points 

Xl X2 X3 X4 X5 

±2.378 0 0 
0 ±2.378 00 o­001 

k = 5: 25 factorial + 0 0 ±2.378 0 0 
0 0 o ±2.378 0 
0 0 o 0 ±2.378J 

10 points 

k =k: 2" factorial +{k. by k matrix in which the main}
diagonal has the numbers ± 2k /4 

2k points 

* Each design must be augmented by replicate points at the 
center of the design.­
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Example 8.1-5 Development of. Empirical Models for 
Water-Soluble Films t 

Commercial water-soluble packaging films .must have a 
number of desirable properties including: (I) good water 
solubility and (2) toughness and stretchability. Beatz and 
Roth investigated these properties for a low molecular 
weight polyvinyl alcohol (PVA-L) on which was grafted 
ethyl acrylate (EA). After grafting, but before casting,' a 
high molecular weight PVA (PVA-H) was blended with the 
grafted material to increase the tensile strength of the film. 

The independent variables and the coded and actual 
levels for a central composite design for experimentation are 
listed in Table E8.1-5a. 

TABLE E8.1-5a 

Coded Levels 

Variable -1.68 -1 0 1.68. 

Ceric ion conc., 
meq/g PYA 

EA in graft, wt 
percent 

PVA-H in blend, 
wt percent 

0.029 

5 

43 

0.112 

15.1 

40.5 

0.233 

30 

50 

0.255 

44.9 

59.5 

0.437 

55 

66 

Measurements of the desirable properties which repre­
sented the- dependent variables in category (2) were made 
according to ASTM standards. These properties were: 

1. Tensile strength. 
2. Tear strength (tab tear). 
3. Tear strength (Elmendorf tear). 
4. Elongation. 
5. Initial modulus. 

Solubility was measured in terms of rupture time and total 
dissolution. Table E8.1-5b shows the results for four films 
at the center point of the design (O, 0, 0). Measurements in 
italics were rejected on the basis of t-tests. 

The large error in the measurements of tab tear strength, 
rupture time, and solution time prohibited development of 
first- or second-order models that had meaning. Figures 
E8.l-5a, E8.1-5b, and E8.1-5c illustrate the response surfaces 
within cubes with sides at distances of 2.5 coded units 
from the center of the design for three responses: (I) tensile 
strength, (2) elongation at break, and (3) initial modulus. 
Figure E8.1-5a represents a first-order model andsbows the 
planes of constant tensile strength in the cube. The inter­
sections in any face are a series of parallel straight lines. 

Figure E8.1-5b corresponds to a series of cylindrical 
annuli lying at an angle to the cube. -At lower eerie con­
centrations, the elongation is never more. than 215 percent. 
For packaging, a high elongation is desirable. Elongation 
does increase with eerie -acid concentration as evidenced _by 
the 275-percent contour. Without a suitably, designed 

t A. P. Bentz and R. W. Roth, J. Appld.Polymer Sci. 9,1095, 
1965. 
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(a) 

FIGURE E8.1-5a Tensile strength. (Reproduced with permission 
of John Wiley, publishers of J. Polymer Sci.) 

(b) 

FIGURE E8.l .5b Elongation at break. (Reproduced with per­
missionof John Wiley, publishersof J. Polymer Sci.) 

t 
PVA-H
 

%
 

{c} 

FIGURE E8.1-5c Modulus. (Reproduced with permission of John 
Wiley, publishers of J. Polymer Sci.) _ 

experiment, one might have concluded that, for medium 
levels of EA and PVA-H , eerie ion concentration had little 
effect on elongation. 

Figure E8-1.5c illustrates saddle-shaped surfaces . At low 

eerie ion concentration, the surfaces are closer together; at 
high eerie ion concentrations there is only a slight change 
with high molecular weight PVA. To minimize the modulus 
at high eerie concentrations, a decrease in PVA-H and EA 
is necessary. At low, low eerie ion concentration, the PVA-H 
would have to be reduced but the EA would have to be 
increased . 

These results emphasize the merit of a sound statistical 
approach. The authors used the regression equations 
obtained from their preliminary experiments to predict the 
factors needed to improve films. They were then able to 
develop films successfully with these properties. 

8.1-4 Blocking 

In an y sequential series of experiments extending over 
a period of time or using several batches of material or 
carried out on different shifts, a change may take place 
in the experimental environment. To avoid the bias in 
the average level of response caused by such changes, 
normally the levels in the experimental design should be 
run in random order. However, in certain cases the 
effect of variables can be segregated by suitable blocking 
of the raw materials or sequence of trials. 

Schemes to block the second-order rotatable designs 
so that linear, cross-product, and square coefficients are 
not influenced by block-to-block differences can be 
found in G. E. P. Box and J. S. Hunter, Ann. Math. 
Stat. 28, 195, 1957. Fortunately, the 2k factorial. the 
half-replicate, and the" star" designs are by themselves 
rotatable first-order designs. To make the variables fti 
the second-order model independent of any block . 
effects, the number of center points must be weighted 
properly. 

As long as the points comprising a rotatable design 
can be broken into blocks, each with an equal number of 
points and each by itself forming a first-order rotatable 
design, the number of points required at the center of 
each block remains equal, and the full second-order 
design remains rotatable. For example, the octagon 
design can be broken into two blocks, each block having 
four peripheral points plus two center points for repli­
cation. However, it is not always possible to split a 
second-o rder design into blocks, each with an equal 
number of points and each being a rotatable first-order 
design. For example, the central composite design for 
k = 3 variables can be split into three rotatable first­
order designs : two provided by the two one-half rep­
licate s of the 23 factorial , each with four peripheral 
points, and the third block pr ovided by the star design 
with six peripheral points. It is now impossible to 
guarantee rotatability of the first-order designs for each 
block and orthogonality among the estimated coefficients 
in the second-order model. However, if the axis arm of the 
star design is changed from 1.682 units (the distance for 
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TABLE E8.1-5b FILM TEST RESULTS OF REPLICATED CENTER POINT * 

Tensile 
Strength 

Film (psi) 

2 

3 

4 

4,920 
5,690 
4,920 
4,920 
4,770 
5,500 
4,920 
7,230 
6,620 
5,830 
6,920 
6,620 
6,770 

10,170 
6,670 
5,690 
5,330 
7,540 
5,080 
5,080 

Tear Strength (g) 

Tab Elmendorf 

~1 3.5,3.0 
33 4.0,3.0 
24 3.0,3.0 
25 3.0,3.5 
23 3.5,4.5 
38 3.0,2.5 
47 2.5,2.5 
49 3.0,3.0 
55 3.0,3.0 
56 3.5,3.5 
18 2.5,4.0 
19 3.0,3.5 
19 3.0,3.0 
18 3.0,3.0 
18 3.5,3.0 
24 3.5,4.0 
24 4.5,3.0 
20 3.5,4.0 
25 3.5,3.0 
23 3.0,3.5 

Solubility 

Rupture 
Time 
(sec) 

20 

Solution 
Time' 
(min) 

3 

Elongation 
at Break 
(Percent) 

219 

15 2 234 

20 2 243.5 

20 3.5 253 

Modulus 
X 10-6 

(psi) 

,0.12 

0.12 

0.15 

0.09 

* Italic responses are to be questioned. 

rotatability) to 1.633 units, and' two center points are 
placed in each block, then orthogonality is obtained 
among the coefficient estimates., The design is only 
slightly nonrotatable, the change' from 1.682 to 1.633 
being barely noticeable. 

The central composite design for k = 4 variables can 
be arranged into rotatable first-order designs which give 
orthogonality among the coefficient estimates if two 
blocks are formed from the half-replicates of the 24 

factorial (each has eight peripheral points) and from the 
star design (also with eight peripheral points). The axis 
arm for rotatability as well as orthogonality is 2.000. 
Each block should contain at least two center points. 

Tables giving the design coordinates for rotatable and 
orthogonally blocked second-order designs can be found 
in Box and Hunter. 

The following example on the use of blocking has been 
taken from J. S. Hunter, Ind. Qual. Control 15 (6) 16, 
(7) 7, and (8) 6, 1959. 

Example 8.1-6 Blocking 

It will be observed that the first, third, and fifth entries 
in the hexagon design, Figure 8.1-4, form an equilateral 
triangle with the length of the sides equal to V3. Similarly, 

the second, fourth, and sixth entries form an opposite 
triangle. Suppose that the first triangular design is used to 
fit a first-order model: 

Vector of 
Observations 

Matrix of
 
Independent Variables
 

Xo Xl X2 

1.000 0 

-0.500 0.866 

-0.500 -0.866 

0 0
 

0 0
 

The estimated regression equation proves to be Y = 85.58 + 
16.83xl + 6.90X2 while, the analysis of variance is as 
shown in Table E8.1-6a. 

Because only one degree of freedom is involved in the 
error variance, the adequacy of the fit proves to be mar­
ginal. Suppose that the experimenter wishes to augment the 
equilaterial design to provide adequate' information for 
estimating all the coefficients in a second-order model in 
this experimental region. Imagine that a second equilateral 
triangle (the even-number runs) with two center points is 
added to the first; the two blocks of experiments together 

y 

96.0 

76.7 

64.8 

97.4 

93.0 
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TABLEE8.l-6a 

Source of Variation 

Due to removing b« 
Due to removing b, 
Due to removing b2 

Deviation about empirical 
regression line 

Deviation at replicated 
point (error) 

Total (L: Y{) 

Note : Fo.eo(l , I) = 39.86 

d.f. 

I 
-

5 

Variance 
SS Ratio 

36,551 
431.7 
70.8 

370.2 38.24 

9.68 
-­
37,433 

form a hexagon design . The matrix of all the independent 
variables and the vector of observations are 

Vector of Matrix of 
Observations Independent Variables 

y Xo Xl X2 

96.0 I 1.000 0 

78.7 I 0.500 0.866 

76.7 1 -0.500 0.866 

54.6 1 -1.000 0 

64.8 1 -0.500 - 0.866 

78.9 I 0.500 -0.866 

97.4 1 0 0 

90.5 1 0 0 

93.0 1 0 0 

86.3 1 · 0 0 

The estimated regression equation is · 

1"=91.80+ 16.48xl + 3 . 38x2 - 1 6. 50x! - 1 7.20x~ - 6.98xlx2 

Now let us suppose that the second block of experiments 
gives responses uniformly depressed by 10; that is, the second 
observation would be 78.7 - 10 = 68.7 and so forth. The 
new vector of observations would then be 

Vector of Matrix of 
Observations Independent Variables 

y Xo Xl X2 

96.0 1 1.0 0 

68.7 1 0.5 0.866 

76.7 1 - 0.5 0.866 

44.6 1 -1.0 0 

64.8 1 - 0.5 -0.866 

68.9 1 0.5 -0.866 

97.4 1 0 0 

80.5 1 0 0 

93.0 I 0 0 

76.3 1 0 0 

We have in effect blocked separately two different groups of 
data. The estimated regression equation would be 

1"= 76.48+ 16.48xl +3.38x2 -16.50x! -17.20x~-6.98xlX2 

With the expection of the bo coefficient, the fitted model is 
identical to the first one . The shape of the fitted contour 
surface thus remains unchanged, despite the fact that in the 
second block all yields were depressed by 10. 

An analysis of variance can be prepared to show the 
difference, if any, between the data in the two blocks. The 
SS for the effect" due to blocks " is calculated by 

where B, = total sum of the squares for block i and 1Ij = 
number of observations in block i: 

d.f. = 1(427.9)2 (339.0)2 _ (766.9)2 = 7903' 
5 + 5 10 . , 

The expanded 
E8.1-6b . 

analysis of variance is shown in Table . , 
!. 

TABLE E8.l -6b 

Source of Variation 

Due to blocks 
Due to removing b« 
Due to removing 

linear terms 
Due to removing 

second -order terms 
Deviation about 

empirical regression 
line 

Deviation at replicated 
point (error) 

Mean Variance 
d.f. SS Square Ratio 

790.3 Significant 
58,813 Significant 

2 849.3 Significant 

3 718.4 Significant 

Notsignif­
.. 1:60 1:60 icant 

2 18.5 9:25 
-

Total 10 61,191 

The number of different data sets less the number of 
coefficients is 7 - 6 = 1 degree of freedom for the devia­
tions about the empirical regression line. The error sum of 
squares is obtained from within e'ach block and then pooled. 
Since there are two repeated observations in each block, the 
error sum of squares is given by L: d2J2 or 

(4.4)2 ; (4.2)2 = 18.5 

with 2 degrees of freedom. We observe that the lack of fit 
term is not significant, that the second-order terms are 
significant , and that the contribution of the block effect is 
significant. However , the differences between the blocks 
have not altered the shape of the fitted contours, since all 
the estimated coefficients associated with Xl> X2, :G, x~, and 
X1X2 have remained unchanged. 



8.1-5 Practical Considerations 

In a continuous process which is operating and must 
continue to operate, a number of practical difficulties in 
the precise use of response surface methods, as described 
above, are encountered: 

1. Use of orthogonal ' designs can be impractical. 
Preselection of the levels of the independent variables 
may yield uneconomic or dangerous operating conditions 
so that orthogonal designs may be incompatible with 
production requirements. Adjustment of one variable can 
throw others out of adjustment. Replicate points at the 
center may be impractical to obtain. 

2. Randomization may be impractical; the selection of 
operating points cannot be run in random order. Ran­
domization removes the possibility of confusing the 
effect of an uncontrolled independent variable with the 
observed effect of a controlled variable. 

Two other problems associated with response surface 
methods are related to the assumptions underlying the 
linear regression techniques employed. These are yet 
unresolved and hence will only be briefly mentioned here. 

3. Effect of errors in the levels of the design. A basic 
assumption in regression analysis , as discussed in Chap­
ter 4, is that all the unobservable error occurs in the 
dependent variable, Y, and none in the independent 
variable. Obviously, errors will exist in the x's which are 
of unknown character, and the experimental data will 
be analyzed as if no errors exist. Boxt demonstrated that 
the standard statistical anal ysis is justified even if the 
experimental levels are in error as long as the response is 
linear in x. Each case for a quadratic (in x) function and 
other nonlinear functions has to be considered separately 
because the size of the error transmitted from the x's to 
the response depends upon the slope of the response 
surface at the design point. Two-level factorial and some 
fractional factorial designs appear to be quite robust 
with respect to errors in the x's. 

4. Designs to use for correlated data. A second basic 
assumption of the regression analysis technique used in 
response surface methods is that the experimental re­
sponses are uncorrelated, but it is well known that data 
collected from continuous processes are quite likely to 
be subject to trends or drifts in the mean level (low­
frequency changes) and to serial or time correlation in 
spite of deliberate attempts to avoid them. Section 5.4 
described some of the difficulties in the analysis of corre­
lated data. 

Finally, we should mention that the orthogonal de­
signs illustrated in this section are just one among the 
many useful classes of designs. A vast literature exists 
concerning other experimental designs that have been 

t G. E. P. Box, Technometrics 5, 247, 1963. 
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proposed and applied, examples of which can be found 
in the general references at the end of this chapter. 

8.2	 CANONICAL ANALYSIS 

In this section we are interested in the graphical and 
analytical interpretation of the response surface (i.e., the 
estimated regression equation) itself. Surfaces that are a 
function of two experimental variables can easily be 
represented in a two-dimensional plane in which the 
response appears as contours of constant value. Surfaces 
that are a function of three experimental variables also 
can be illustrated, although less readily . Lind and 
Young:j: described a three-dimensional device to display 
response surfaces, and computer programs can be 
prepared to plot response surfaces and illustrate them on 
cathode ray . display tubes. If more than three experi­
mental variables are involved in the response surface, 
graphical portrayal is difficult. 

To gain an understanding of the nature of the response 
surface, canonical analysis, as described by Box and 
Wilson,§ can be effectively used. Canonical analysis 
transforms the estimated regression equation into a 
simpler form and interprets the resulting expression in 
terms of geometric concepts. We shall initially look at 
two- and three-dimensional surfaces in order to compare 
the geometric concepts with the algebraic terms in the 
regression equation. We shall then explain how the 
canonical transformation is carried out. And finally, 
through an example, we shall demonstrate how to 
interpret a response surface with many variables through 
use of the canonical equation. 

A canonical equation is a second- (or higher) order 
equation in an original coordinate system which is 
transformed to a new coordinate system by translation 
of the center of the old coordinates to the extremum of 
the response surface with subsequent rotation of the axes 
to achieve symmetry..Figure 8.2-1 illustrates figuratively 
the general procedure. 

The old coordinates are designated by Xl and X2; the 
new coordinates, termed principal axes, by Xl and Xi! . 
The two transformations yield a new expression for the 
response surface, termed the canonicalequation, expressed 
in terms of the principal axes, an equation that is much 
simpler than the original regression equation in as much 
as all the first-order terms and crossproduct terms have 
been eliminated. For example, the estimated regression 
equation for Model 8.1-5 transforms to 

(Y - Ye) = bllxr + Z; 22X~ (8.2-1) 

where Ye is the predicted response at the center of the 
response surface, bl1 and b2 2 are the transformed esti­
mated parameters, and the overlay tilde designates "in 
canonical form." The translation indicated in Figure 

:I: E. E. Lind and W. R. Young, Ind. Qual. Control 23, 436, 1967. 
§ G. E. P. Box and K. B. Wilson, J. Royal Stat . Soc. B13, 1, 1951. 
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Original 
coordinates 

X2 X2 X2' X2 

,Translation Rotation 

==? --+\-\-+~~~--~Xl' ==? 

t 
-I----'~------,/---~Xl -I--->"d-------,/---~Xl 

, 1 

FIGURE 8.2-1 Transformation of coordinates into the princ ipal axes. (Canonical coordinates are 
the heavy lines.) 

X2 X2 

\ 

" 

·1· 

--'-t---.:::-""""'-,----XI 

\ 
\­

(a) X2 (b) 

--t-j----jf---;f--'<--- Xl 

(c) (d) 

%2 

I" 

I "
• 

(e) (f) 

FIGUR E 8.2-2 Contours for second-order models with two independent variables. 
(Adapted from G. E. P. Box, Biometrics 10, 16, 1954.) 

, 
.. ~ __.. ._ _,•.._ ._J 

.... . .... .• . _- . .. . ._---------~---~---------~
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TABLE 8.2-1 INTERPRETATION OF TH E CANONICAL EQUATION 

f' - r, = bllX~ + b22X~ 

Coefficient 

Case Relations 

Signs 
Type of 
Curves 

Geometric 
Interpretation Center 

Figure 
8.2-2 

1 bll = b22 Circles Circular hill Maximum (a) 
2 bll = b22 + + Circles Circular valley Minimum (a) 
3 bll > b22 Ellipses Elliptical hill Maximum (b) 
4 s.. > b22 + + Ellipses Elliptical valley Minimum (b) 
5 bll = b22 + Hyperbolas Symmetrical saddle Saddle point (c) 
6 bll = b22 + Hyperbolas Symmetrical saddle Saddle point (c) 
7 bll > b22 + Hyperbolas Elongated saddle Saddle point (d) 
8 b22 = 0 Straight lines Stationary ridge None (e) 
9 b22 = 0 Parabolas Rising ridge At infinity (f) 

8.2-1 corresponds to the deletion of the linear terms; the 
rotation corresponds to the deletion of the cr.<fs'sproduct 
term appearing in Equation 8.1-5. Figure 8.2-2 illustrates 
typical examples of two-dimensional response surfaces 
related to their original and principal axes. . 

Table 8.2-1 interprets the information provided by the 
canonical equation in terms of the shape of the response 
surface. If Ib11 1> Ib221 , the contours are elongated 
along the X 2 (smaller coefficient) axis, and vice-versa. If 
the center on the x2 axis is at infinity and b11 is negative, 
the fitted contours are parabolas as illustrated in Figure 
8.2-2f. Either 9f the surfaces shown in Figure 8.2-2e or 
8.2-2/ is known as a ridge and appears when one of the 
coefficients is very small in magnitude compared with 
the other. Figure 8.2-2 is only an idealization of what is 
encountered in practice, but it can be of material aid in 
evaluating the nature of response surfaces. 

All that has been said about response surfaces involving 
two experimental variables can be extended to those 
involving more variables . Figure 8.2-3 illustrates the 
three-dimensional canonical equation 

(f - f e) = b11X~ + b22X ~ + baax~ (8.2-2) 

When one or more of the bit becomes small, a ridge is 
present. The other features described in Table 8.2-1 can 
also be applied to three- and higher dimensional surfaces . 
Consequently, one can obtain a mental picture of the 
surface even though it cannot be represented graphically. 

To effect the transformation to canonical form for a 
second-order model , all that is required is to (1) find f e' 
the center of the new system in terms of the old co­
ordinates, (2) translate the origin to f ., and (3) rotate 
the axes about the new origin to obtain the new principal 
axes X l ' X2' • . .• We first derive the equations which 
locate the center of the surface in experimental space. 
Matrix notation is used for compactness in much of the 
following discussion. 

The complete second-order response surface with three 
controllable variables associated with Equation 8.1-9 
can be written as 

f = bo + bix i + b 2X2 + baxa + b 11xr + b22X~ + ba ax~ 

+ b l 2X I X 2 + b 21X2XI + b1aXIXa + b 31Xa XI 

+ b a2XaX2 + b2aX2Xa (8.2-3) 

(e) 

(a) 
(b) 

(d) 

(f)(e) 

FIGURE 8.2-3 Contours for second-order models with three 
independent variables. (Adapted from G. E. P. Box, Biometrics 
10, 16, 1954.) 
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or 
(8.2-4) 

where 

The crossproduct estimated coefficients are split into two 
coefficients of equal value to fill the matrix . By definition, 
b., = bjj • In the off-diagonal element, bi; is one-half of 
the related coefficient in the usual response surface 
equation. 

The center of the new system in experimental space is 
to be located at the extremum (minimum or maximum) 
of the old system; hence , to locate the coordinates of the 
center equate the partial derivatives of the response 
function to zero , check for a minimum or maximum by 
using the second derivatives, and solve the resulting 
simultaneous equations for the extremum coordinates. 

For the three-dimensional second-order Equation 
8.2-3, the general term obtained upon differentiation is 

(8.2-5) 

The expression in the square brackets is identical to zero I

because : (I) premultiplication of Equation 8.2-7 succes­ I 

sively by bll and xT yields 

xTbllxe = - ·!(xTbD 

while (2) the equality of 

xJbllx = xTbllxe = --!(xTbD 

can be demonstrated by multiplication of the elements 
of the respective matrices, and (3) (blx - :iTbD = O. 
Consequently, 

(8.2-11) 

which is an equation with the first-order terms deleted 
as desired . 

The final step is to carry out a rotation of axes for 
Equation 8.2-11. The technique, described in detail in 
Appendix B.5, results in an equation without cross­
product terms. The essential step is to find a real unitary 
matrix V such that, upon introduction of the trans­
formation x = Vi into Equation 8.2-11, one obtains 

Y - Ye = iTVTbllVi = Alxi + A2X~ +. .. (8.2-12) 

where the At are the eigenvalues of the det (bll - AI) = O. 
xrepresents the final set of coordinates, shown in Figure 
8.2-2, which we have termed the principal axes. If you 
are not familiar with orthogonal transformations, refer 
to Appendix B.5 before reading the following example. 

or, in matrix notation, 

bI + 2bllx = 0 (8.2-6) 

Solution of Equation 8.2-6 for x gives the set of x' s at 
the extremum: 

Xextremum = -(!)bilbI == Xe (8.2-7) 

Introduction of x, into Equation 8.2-4 enables Ye to be 
evaluated (one should be sure that Equation 8.2-6 is 
consistent, i.e., the det (bll) =f. 0, if the surface is to have 
a center): 

Yextremum == Ye = bo + b.x, + xJbllxe (8.2-8) 

Now, to eliminate the first-order terms, define new 
independent variables which are to be measured from 
the new center: 

or 
X=X-Xe 

and introduce the relation for x into Equation 8.2-4: 

Y = bo + bl(x + Xe) + (x + xe)Tbll(x + x.) (8.2-9) 

Subtract Equation 8.2-8 from Equation 8.2-9 to get 

Y - Ye = [blx + xTbllxe + x;bllx] + xTbllx (8.2-10) 

Example 8.2-1 Transformation to Canonical Form 

Reduce the following equation to canonical form: 

Y =7xr + 6x~+ 5x~-4xIX2 -4X2Xa- 6Xl -24x2+ 18xa+ 18 

(Note that the integers are used in the example equation to 
enable you to follow the calculations by hand-in any model 
developed by regression analysis, it would be quite unlikely 
that integers would represent the model coefficients.) 

Solution: 
1. Check the determinant of the quadratic terms to make 

sure it is not zero : 
7 -2 0 

det bll = -2 6 -2 162 =F­ 0 

o -2 5 

2. Locate the center of the surface by using Equation 
8.2-7 : 

[26 '0 1:] 

r
Adjoint of bll = 10 35 

4 14 38 

10 

Inverse of bll = bi? = 1~2 I: 35 I:]
14 38 

. . _._-- -_.. _ ... _--- --- - - - - - - - - ­
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x, = -~ C~2) [:4: ;~ I:][ ~:] [ ~] 
14 38 18 - I 

The translation is then 

Xl = Xl - I 

;(2 = X 2 ...:. 2 

X3 = X3 + I 

and Y. is 

f.~I8+[-6 -24 18{_:] 

+[1 2 -+~ ~~ -:J[J 
- 18 

3. The last step is the rotation of axes for Equation 
8.2-11 : 

Y - 18 = ;,(Tbllx 

as described in Appendix B.5. 
(a) First, find the eigenvalues of bll :
 

det (bll - AI) = 0
 

(7 - A) - 2 0 

- 2 (6 - A) -2 =0 

0 -2 (5 - A) 

Al = 3, A2 = 6,' A3 = 9 

Equation 8.2-12 shows that the canonical form of the 
original response surface is 

Y - 18 = 3x~ + 6x~ + 9X5 (a) 

where the Xt are the principal axes. The initial and final 
stages of the translation and rotation are illustrated graphi­
cally in Figure E8.2 -1. 

(b) The new coordinates Xl can be related to the old 
coordinates x, through the unitary matrix V and the 
transformation 

x = vi 
or 

x = V-Ii = VT(x - x.) 

Recall that V-I = V T • 

For A = 3, (bll - AI) = 0 is 

(7 - 3) -2 

- 2 (6 - 3) =0-: ][::][ 
o - 2 (5 - 3) U3 

or 
4Ul - 2U2 = 0 

- 2Ul + 3U2 - 2U 3 = 0 

-2U2 + 2U3 = 0 

-f--f,---fI---f,---+f+--X3 ---1H-+-+---~~_++-H-~ 

FIGURE E8.2-1 

A non trivial solu tion of these equations is u, = 1, U2 = 2, 
and U3 = 2 which form the orthonormal vector VI (refer to 
Appendix B4-4): 

u,~ m 
For A = 6 

0 -2 U2 =0 

- 2 -I U3
[-: 

-2 

0]["'] 
which has a nontrivial solution: ui = 2, U2 = 1, and 
U3 = -2, and 

Finally, for A = 9 

The unitary matrix V is 

V = [ : : -:] 

t - t -t 

Consequently, 

If the det bll = 0, the response surface degenerates to 
an infinite cylinder, cone, or paraboloid, and one of the 
eigenvalues is zero. Equation 8.2-7 can no longer be 
applied; instead the procedure is as indicated in the next 
example. 
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Example 8.2-2 Degenerate Response Surface 

Transform the following equation to canonical form: 

y = 2x~ + 2x~ + 3x~ + 4XlX2 + 2XlXS 

+ 2X2XS - 4Xl + 6X2 - 2xs + 3 (a) 

Solution: 
In matrix notation, Equation (a) is equivalent to Equation 

8.2-4 with 

It is also easy to show that 

det bl l = 0 

"so that Equation 8.2-7 cannot be applied. Still, the rotation 
of axes can be carried out by the methods described in the 
previous example: 

det (bl l - AI) = 0 

or 
(2 - A) 2 

2 (2 - A) =0 

1 (3 - A) 

The eigenvalues are obtained from the characteristic 
equation 

A3
- 7A2 + lOA = 0 (b) 

and are A = 0, A = 2, and A = 5. 

For"each A'an orthonormal eigenvector can be computed 
as in the previous example: " 

u, = 12Ul + 2U2 + U3 =O} 
A = 0 2Ul + 2U2 + Us = 0 U2 = -1 

{ 
u, + U2 + 3us = 0 U3 = 0 

norm = vT+1 = V2 

UI = 12U2 + U3 = O} 
A = 2 Zu, + U3 = 0 U2 = 1 

{ 
ui + U2 + U3 = 0 U3 = -2 

norm = VI + 1 + 4 = V6 

- 3 Ul + 2U2 + Us = O} 
A = 5 2UI - 3U2 + U3 = 0 

{ 

Ul + U2 - 2U3 = 0 

norm = VI + 1 + 1 = V3 

The matrix U is thus 

1/V2 1/V6 1/V3] 
U = -1 /V2 I/V6 I/V3 (c)

[ 
0 -2/V6 I/V3 

The new coordinates in terms of the original ones"are 

-2~V6]X " 
I/V3 

The canonical form of Equation (a) is 

y = 2i~ + 5i~ + linear terms (d) 

The first-order terms are obtained by introducing Xl, X2, 
and X3 into each linear term in Equation (a), using the 
transformation x = UX or 

Example 8.2-3 Canonical Analysis for a Plastics Extruder 

The following example is taken from the work of Klein.t 
In the study of plastic extrusion, data for a composite 
design with six independent variables were collected to fit a 

TABLE E8.2-3 

Design Values 

Variable Coded: -1 0 +1 

Xl, Screw speed (rpm) 
X2, Channel depth (in) 
X3, Barrel temperature (OF) 
X4, Flow rate (lb/hr) 
xs, Input temperature (OF) 
X6, Metering zone length (in) 

30 
0.100 

330 
50 

280 
10 

45 
0.120 

340 
100 
310 

19 

60 
0.140 

350 
150 .: 
340 
28 

second-order regression equation' having as the dependent 
variable the outlet stock temperature, T. See Table E8.2-3. 
The calculations were performed for a 2.5-inch diameter 
extruder using a plasticized polyvinyl chloride at 228 com­
binations of levels of the six independent variables. The 
following estimated regression equation was obtained: 

t = 349.392 - 2.369xl - 3.78xl - 3.78x2 + 6.077x3 

+ 7.064x4 + 1.6795xs + 3.956x6"+ 3.957x~ 

+ 0.655x~ + 10.019x~ + 7.602x~ - O.0428xg 

+ 2..33x~ + 0.564xlX2 + O.564xIX3 - lO.793xlx4 

+ 0.473xIXS + O.003XIX6 + O.011x2x3 

- 3.852x2X4 + O.201x2xs - O.005X2X6 

- 1.376x3X4 - O.Ol0x3xs + O.012x3x6 

+ 0.942x4XS + 2.739x4X6 - 1.847xsX6 (a) 

t I. Klein, Paper presented at the 53rd National AIChE Meeting, 
Pittsburg, Pa., May 17-20, 1964. 



- The square of the multiple correlation coefficient of this 
regression was 0.998, but the equation was rather com­
plicated and the effect of each variable was not easily 
visualized. Consequently, it was processed by a computer 
program designed especially for the analysis of response 
surfaces. Equation (b) is the canonical equation obtained 
and immediately below are listed the coordinates of the 
center of system: 

t - 349.96 = -1.388xi - 0.064x~ + 0.604x5 

+ 1.20lX~ + 9.776x~ + 12.049x~ (b) 

Center of System: (Coded Variables) 

Xl e = 2.07 X4e = 1.84 
X2e = 6.57 Xse = 4.73 
Xse = -0.23 Xae = 2.87 

T, = 349.96 

Note that two of the coefficients in Equation (b) are 
negative whereas four are positive. Inspection of Table 
8.2-1 leads to the conclusion that Equation (b) is a hyper­
saddle surface. Examination of the coordinates of the center 
of the system, however, indicates that the center is quite 
outside the range of the design. Whenever this situation 
arises, the surface in the region of the experiments represents 
the multidimensional equivalent of either an inclined ridge 
or an inclined trough. Furthermore, the surface along 
certain axes is either always increasing or always decreasing; 
it is likely to be well represented by only linear terms in 
some of the variables. 

Because of the remoteness of the center of the system, it 
was believed that some crossproduct terms and second­
degree terms in Equation (a) did not significantly contribute 
to the response. This .indeed proved to be the case; a 
simplified equation obtained frorna new regression analysis 
was 

t = 356.57 - 4.0975xi - 1O.5077xlx4 - 2.445xI 

+ 0.6509x~ - 3.84l8x2x4 - 3.7421x2 + 6.1038x3 

I
i + 7.5876x~ + 7.1016x4 + 1.706xs + 3.945xa (c) 

which had a multiple correlation coefficient of 0.923. 
Equation (c) indicates that the dependence of temperature 
on the variables X3, Xs, and Xa is purely linear. 

At this stage of the analysis , these latter three variables 
were temporarily fixed at the zero level to simplify the 

I analysis somewhat. t was analyzed as a function of the 
three remaining variables Xl, X2, and X4' The new center of I the system was 

Xl< = -0.643
1 

X2e = 0.707 

I X4e = -0.734 

The new canonical equation obtained was : 

t - 353.426 = -O.7477Xi + 11.6025x~ + 1.4812x~ (d) 
I 

with the corresponding transformation equations: 

~ 
I 
! 

L
i

_ _ ~ _ 
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Xl = 0.538(XI + 0.643) + 0.681(x2 - 0.707) 

+ 0.496(~4 + 0.734) 

X2 = 0.568(XI + 0.643) + O.l42(X2 - 0.707) 
(e) 

- 0.811(x4 + 0.734) 

X4 = 0.623(XI + 0.643) - 0.718(x2 - 0.707) 

+ 0.310(x4 + 0.734) 

Inspection of Equation (d) reveals that one term has a 
negative coefficient and the other two are positive-again 
the equation of a saddle surface. But notice that now the 
center of the fitted system is within the experimental range 
and the maximum values of the canonical variables Xl> X2' 
and X4 will be small numbers, all of the same order of 
magnitude. Consequently, the relative smallness of coeffi­
cients of the first and third terms of Equation (d) made it 
possible to drop these terms without introducing an appreci­
able error in the calculated response, t. The simplified 
equation therefore was: . 

t - 353.4 = 11.6025x~ (f) 

or, by rearranging, 

- 353.4) t (g)
11.60 

By substituting for X2 from Equation (e), Equation (g) 
becomes 

0.568xI + 0.142x2 - O.811x4 - 0.331 = )t - 353.4 (h)
11.60 

which is the equation of a family of planes for different 
values of t having a minimum temperature of 353.4°F. 
Geometrically the equation represents a stationary ridge 
with parallel planes distributed around the one representing 
the minimum response as shown in Figure E8.2-3. 

Keep in mind that Equation (h) and Figure E8.2-3 are 
only simplified representations of the original response 
surface which was a function of six independent variables. 
To include the effect of the variables Xs, xs, and Xa, which 
had been held at zero level for Equation (f), the linear terms 
deleted from Equation (c) were added to Equation (f) to 
yield 

t - 353.4 = 11.6025x~ + 6.1038xs + 1.706xs + 3.945.\6 (i) 

Equations (i) and (e) lead to: 

0.568xI + O.142x2 - O.811x4 - 0.331 

= )t - (353.4 + 6.1038xs + 1.706xs + 3.945x.) (j) 
11.60 . 

The deleted terms x s, xs, and Xa were previously shown to 
be linear and to represent an inclined trough or ridge on the 
response surface. .Since all three terms have positive coeffi­
cients , for minimization of the response they must be 
selected at their lowest level, namely - 1. This will reduce 
the term in parentheses, the modified t e» from 353.4 to 
341.6 and represents an additional reduction of 11.8°F in 
the response. Equation (j), however, still represents a family 
of planes with parameter t: and Figure E8.2-3 is therefore 
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X4 (flow rate) t 
1'-1'.=30 

/'
/'

/'
/'

/' 
/'

/'
/'

./
»: 

X2 (channel depth)-

+1(0.14in) 

-1 (50Ib/hr) 

-1 (30rpm) 

Xl (screw spee~ 

still an accurate representation of the full response surface 
with the minimum t: now at 341.6°P. 

It should be pointed out that the analysis presented 
applies only to the experimental range investigated and 
does not necessarily bear any resemblance to the response 
surface outside the range. 

8.3 STRATEGIES FOR PROCESS OPTIMIZA ...'ION 
BY EXPERIMENTATION 

This section is concerned with optimization of steady­
state processes by a sequence of designed experiments 
having the objective of improving process performance. 

Conceptually, optimization can be visualized in three 
dimensions as an analog ofclimbing a hill. While objective 
functions containing two independent variables rarely 
have the exact shape of the hill shown in Figure 8.3-1, 
nevertheless the general procedure is to start at some 
point (set of values of the independent variables) on the 
hill and climb to the top (or descend to the bottom of a 
valley in minimization). One has to decide which way is 
"up " and , subject usually to certain constraints, how 
to proceed to the top most efficiently. The significant 
difference between determini stic optimization and experi­
mental optimization is that in the latter the shape of the 
hill is unkn own; consequently, its representation may 
vary from experiment to experiment. 

""--=-..J._-L_L.Jll-->-=--X2 
(a) 

L--------------X2 

(b) 

FIGURE 8.3-1 Hill climbing as an analog of optimi zation by sequential experimentation: 
(a) Three-dimensional representation of the objective function of two independent variables, X l 

and X 2. (b) Contour representation of the objective function F of two independent variables, Xl 

and X2' 

e 
I 

I 

J
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In a very general sense the analyst would like to 
optimize the monetary profit of the entire process, but 
so many qualitative factors become involved with the 
quantitative ones (i.e., how safe is it, will it last, what 
about the impurities, can we sell it) that in practice it is 
not easy to establish a universal objective function. He 
usually selects one or more of the principal process 
responses, weights them by. some cost values or sub­
jective weights to form the objective function, and. 
decides what constraints need to be satisfied on the 
responses and controllable variables. As a simple 
example, an objective function might be just the yield 
from a chemical reactor and the constraints the fact that 
the process controllable variables must be positive. 

8.3-1 The Box-Wilson (Gradient) Method 

In 1951, Box and Wilson popularized a new concept in 
experimentation by recognizing that for many processes 
the engineer is nat so much interested in testing the 
significance of the process variables as in simply deter­
mining the best operating conditions for the process. 
Although earlier work had been reported by Hotelling.] 
the method to be described is that evolved by Box and his 
coworkersj who made use of the experimental designs 
and response surface analysis described previously in 
Sections 8.1 and 8.2. 

Suppose we wanted to find the extremum (say the 
maximum) of the response Y, the dependent variable of 
quadratic Equation 8.1-10. In principle, because the true 
functional form of the response surface is unknown, any 
functional formcould be used in lieu of Equation 8.1-10, 
but the latter is easy to fit and interpret, hence its use in 
the Box-Wilson method. Our objective is to find the 
combination of values of Xi which optimizes the response 
within the region of the q-dinlensional observation space 
where experimentation is feasible with the least cost or 
with as few experimental observations as possible. The 
number of observations required will, of course, depend 
upon the desired accuracy and precision of the estimation 
as well as their cost. 

Because the estimated response surface represents the 
true functional relationship only in a local region, the 
simplest possible models are used. Usually the experi­

t H. Hotelling, "The Experimental Determination of the Maxi..
 
mum of a Function," Ann. Math. Stat. 12, 20, 1941.
 
t G. E. P. Box and K. B. Wilson, J. Royal Stat. Soc. B13, 1, 1951;
 
G. E. P. Box, "The Exploration and Exploitation of Response 
Surfaces: Some General 'Considerations and Examples," Bio­
metrics 10, 16, 1954; G. E. P. Box and P. V. Youle, "The 
Exploration and Exploitation of Response Surfaces: An Example 
of the Link Between the Fitted Surface and the Basic Mechanism 
of the System," Biometrics 11, 287, 1955; G. E. P. Box and J. S. 
Hunter, "Multi-Factor Experimental Designs for Exploring 
Response Surfaces," Ann. Math. Stat. 28, 195, 1957; G. E. P. 
Box and N. R. Draper, "A Basis for the Selection of a Response 
Surface Design," J. Amer. Stat. Assn. 54, 622, 1959. 

menter starts working with first-order models until the 
vicinity of the optimum is reached. From the initial 
estimated response surface, he calculates the direction of 
steepest ascent by evaluating the components of the 
gradient of Y. The gradient of Y can be normalized by 
dividing by its norm, II V YII, to give a unit vector 

oY oY 
... -Sl + -S2 + ... 
~ _ OX1 OX2 

(8.3-1) 
IIVYII - [~(~~rr 

whose components indicate the relative step sizes for 
steepest ascent in each of the Xi coordinate directions. 
The unit gradient of the estimated first-order regression 
equation Y = bo + b1X1 + b2X2 is 

VY b1S1 + b2S2 (8.3-2)IIVYII = Vb~ + b~ . 

which is a constant vector (does not depend on x). 
The unit gradient of the estimated regression equation 

for the second-order model 

namely, 

VY (b1+2b 11X1 +b12X2)Sl + (b2+2b22X2 +b12Xt)S2 

II VYII [(b1+.2b11X1 +b12X2)2 + (b2+2b22X2 +b12X1)2]7'2 

(8.3-4) 

varies with its position in observation space as shown, in 
Figure 8.3-2, because it is a function of both Xl and X2' 

Once the direction of steepest ascent is ascertained, the 
experimenter selects a new local region for experimen­
tation at some distance along the components of the 
vector of steepest ascent. How far to go before additional 
experimentation is carried out depends on judgment, 
the model, costs, etc. In the new region, data are collected 
to fit a first-order model, and the cycle is repeated. By 
this step-by-step procedure, points of higher and higher 
responses are reached. 

First-order relations alone cannot, however, be used 
directly to reach the maximum response if it lies within 
the feasible region in observation space-and not on a 
boundary-because, as the experimenter approaches the 
extremum, the coordinate components of the gradient 
become smaller and thus more difficult to estimate. After 
arrival in the vicinity of the optimum, location of the 
optimum point itself usually requires a series of 00­

ordinated experiments and the use of a second-order 
model. 

As a practical matter, in moving along the path of 
steepest ascent, the analyst may find that one or more 
of the coefficients in the response surface equation will 
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Xl 

Region of 
experlmentation 

Region of 
experimentation 

LL. -- X2 

(a) 

/
/ 

Extreme 
extrapolation 

I 
/

/ 

L--------------X2 
(b) 

FIGURE 8.3-2 Vectors indicating direction of steepest ascent for a second-order model. 

become very small before the others do. Three possible 
explanations must be considered: 

1. The variable is near its optimum level. 
2. The coding scheme has produced a coded value too 

small to have much influence on the fitting process (a 
scaling problem). 

3. The variable really is not a significant one. 

It is easy to avoid problem 2 by initially selecting an 
appropriate coding schemer moving off the path of 
steepest ascent will help resolve problem 1. The tests 
described inSection 5.3 and Chapter 7 can be used to 
recognize problem 3. 

As soon as the region of the extremum is reached and 
a suitable order model is fitted to the experimental data, 
the location of the optimum point can be estimated. If 
the extremum of f is located on a single boundary, as is 
point B in Figure 8.3-2b, then a one-dimensional search 
(sequence of experiments with only Xl changing) ,:long 
the boundary will yield the maximum value of Y. In 
multidimensional observation space, several variables 
may be at their physical constraining limits; hence, 
several values may be held constant in the model while 
at the same time others are permitted to vary. If the 
extremum lies within the feasible region, as illustrated 
by point A in Figure 8.3-2a, the extremum can be located 
reasonably well by analytic maximization (or minimiza­
tion) of the response function. For- two independent 
variables, according to Lagrange's criterion, a function 
q; must in some bounded region satisfy the necessary 
conditions (to give a stationary point): 

and (8.3-5) 

and the sufficient conditions 

for a maximum: B2 
- AC < 0 and A + C< 0 

for a minimum: B2 
- AC < 0 and A + C> 0 

where 

If B2 - AC > 0, a saddle point exists; if B2 
- AC = 0,­

the nature of the stationary point is undetermined (one 
examines higher derivatives). 

For response functions involving more than two 
independent variables, it is convenient to form the Hessian 
matrix to check for the sufficient conditions 

where 

and hj k is evaluated at the stationary point in observation 
space. If each of the principal minors of h. is negative­
definite ( < 0) at the stationary point, then the response 
is a maximum; if each of the principal minors of h is 
positive-definite (.» 0), then the response is a minimum. 

The experimenter can perform an analysis of variance 
as described in Section 8.1 by using the experimental data 
in the vicinity of the optimum to establish the significance 
of the respective variables and the adequacy of the fit of 
the model itself. If a second- or higher order equation 
adequately fits the data, after the optimum is located the 
response surface can be mapped (for two- or tbree­
dimensional models), and a canonical reduction of the 
response equation can be carried out as described in 
Section 8.2. From the signs and relative magnitudes of 

--------------------------~_._-_._----.._.... __._.....• 
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the canonical coefficients, it is easy to gain insight into 
the nature of the response surface. 

Example 8.3-1 Optimization by Sequential Experimentation 

In one application of process optimization, the de­
pendent variable Y, the quality, was related to the following 
three independent variables: 

Possible 
Variable Units Range of Variable 

Viscosity (Xl) poise 1 to 100 
Pressure (X2) atm 1 to 100 
Flow rate (X3) lb/min o to 100 

The objective was to maximize the quality. Each independent 
variable was coded as follows: 

Xt - 50 
Zt=~ 

To reduce the amount of initial experimentation, a half­
replicate of a 23 factorial design was carried out in the 
center of experimental space, with four replicates at the 
center yielding the following results (in uncoded numbers): 

Y Xl X2 X3 

786.8 50.0 50.0 50.0 
744.1 50.0 50.0 50.0 
642.6 50.0 50.0 50.0 
684.9 50.0 50.0 50.0 
142.7 25.0 25.0 25.0 
955.9 75.0 75.0 25.0 

1123.5 75.0 25.0 75.0 
lQ7~.6 25.0 75.0 75.0 

From the first four data sets, the estimate of the error 
variance O'~ can be calculated as 

L Y? _ (2: Yt )2 

n (2.0551 - 2.0430) x 106 
S2e -- = 4030 

n - 1 3 

Se =,63 

The coefficients in the estimated regression equation 

Y = bo + b-x, + b2X2 + b3X3 (a) 
were 

b« = 823 

bl = 215 

b2 = 191 

b3 = 245 

Now, an experimenter may be shrewd enough or lucky 
enough to start the experimentation close to optimum 
conditions-near the top of the hill so to speak. If so, then 
the equation of the plane will not bea very good approxi­
mation to the response surface because the response surface 
will have considerable curvature. Or the plane may not be 
a good approximation in any case. However, in this study, 
only one degree of freedom was left for the residual sum 
of the squares (n - m = 5 - 4). Instead of carrying out 

an analysis of variance at this stage of the optimization, in 
the interests of reducing the experimentation, one move 
toward the optimum response was made and then a full 
factorial design was planned. One could, of course, instead 
make a few check runs -in the direction of the gradient to 
see how well Model (a) held up and continue as far as the 
equation could be extrapolated with confidence. 

The normalized gradient of the response, Equation (a), 
was 

= 0.5481 + 0.4882 + 0.61 83 (b) 

On the basis of Equation (b) but in view of the approximate 
nature of Equation (a), each value of X was changed from 
a 23 design centered about (50, 50, 50) to a 23 factorial 
(part of a central composite design) centered about (85, 
85, 85). 

To avoid exceeding their given upper limits, the variables 
were recoded so that 

Xi - 85 
Zt·= --4­

and the (uncoded) results from the 23 factorial experiment 
were 

Y Xl X2 X3 

2011.0 81.0 81.0 81.0 
2432.0 89.0 81.0 81.0 
2345.6 81.0 89.0 81.0 
2391.7 89.0 89.0 81.0 
2449.6 81.0 81.0 89.0 
2833.7 89.0 81.0 89.0 
2494.3 81.0 89.0 89.0 
2629.0 89.0 89.0 89.0 
2458.0 85.0 85.0 85.0 
2129.9 85.0 85.0 85.0 
2121.4 85.0 85.0 85.0 
2389.5 85.0 85.0 8"5.0 

After _the 23 factorial design was completed, the first­
order estimated regression equation was determined to be 

Y ~ 2448 + 123.2z 1 + 16.78z2 + 153.3z3 (c) 

An analysis of variance (Table E8.3-1a) was then carried 
out, using the value of s~ calculated from the four replicate 
experiments at (85, 85, 85). Clearly the error variance was 
not constant (compare 30,440 with 4030), and the _first­
order model was an adequate fit. 

Also, the sum of squares associated with each variable as 
it was removed from the first-order model was as shown in 
Table E8.3-1b. From this analysis of variance, the variable 
X2 might well be deleted from the model. 

It is quite common; particularly by the time one is ready 
to fit a second-degree equation, that some of the variables 
can be deleted from the model. This, of course, reduces the 
number of runs required and simplifies experimentation. 
To protect from being misled by the coding of the variables 
resulting in too small a change in the variable, one should 
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TABLE E8.3-1a 

Mean 
Source of Variation v = d.f. ss Square 

Due to regression 

3 311,684 103,894 

Deviation of residuals 

4 76,788 19,197 

Experimental error 3 91,326 30,440 

make a run in which the xi in question is changed by a 
larger amount. This could be done in the next set of runs 
needed for the steepest ascent. If the variable(s) is(are) not 
significant, it will again be without effect (very small bt) 

and can be dropped from the design. 
The first-order model was not fit again with X2 deleted, 

but instead a new direction of steepest ascent was' obtained 
from Equation (c) with X2 deleted: 

123.281 + 153.383 = 0.628 0.788 (d)
(1232 + 1542 )% 1 + 3 

No particular scale factor has been mentioned for the 
move in the direction of steepest ascent, but obviously 
extreme extrapolation can lead' away from the optimum 
rather than toward it. Examine Figure 8.3-2b again. One 
procedure is tomake a run at one of the extrapolated points. 
If the observed response is close to the calculated response, 
one can extrapolate further. After one _or more extrapola­
tions, Model (c) will no longer correctly predict the response. 
Then a new set of coefficients must be determined by making 
additional runs in the same way that Model (c) was obtained. 
However, at this stage in the experiment being described, it 
appeared as if the optimum operating conditions lay near 
the upper limits on Xl and X3 at least. Consequently, in 
anticipation of this eventuality, rather than moving strictly 
in the direction of steepest ascent as dictated by Equation 

TABLE E8.3-1b 

Source of Variance* 
Variation v = d.f. ss Ratio 

Xo removed 
(intercept) 

Xl removed 
X2 removed 
X3 removed 

4.7957 X 107 Significant 
1..2142 X 105 Significant 
2.2512 'x 102 Not significant 
1.8801 x 105 Significant 

. . 76778 + 91 326 . * USIng a pooled varIance sfi = ' 4 + 3 ' = 24,015 and 
Fo.9 5(1,7) = 5.59. 

(d), a 23 half-replicate design centered about Xl = X2 = 
X3 = 97.5 was selected. The following experimental results 
were obtained: 

y Xl X2 X3 -­
3861.5 100.0 100.0 100.0 
3284.9 95.0 100.0 100.0 
3349.2 100.0 95.0 95.0 
3982.2 100.0 95.0 100.0 
3483.9 100.0 100.0 95.0 

After these experiments, it became clear that the process 
variability was quite large at these high values of quality, 
camouflaging the effect of changes in the three variables. A 
series of three replicate experiments was carried out at 
Xl = 98.0, X2 = 99.0, and X3 = 99.0: 

3821.0 98.0 99.0 99.0 
3471.7 98.0 99.Q 99.0 
3961.5 98.0 99.0 99.0 

from which s~ = 6.55 x 104 and s, = 254. On the basis of 
this rather large mean square, rather than replicating further 
experiments extensively, which was costly, an investigation 
was initiated into the reasons for the variability in Y and 
the experimentation was terminated. However, substantial 
improvement had been achieved in the operating conditions, 
and the high dispersion at the extreme operating conditions, 
the main barrier to possible further improvement, which of 
course would be much smaller and perhaps not worth the 
expense of investigation, was clearly isolated. 

So far we have considered an objective function 
comprised of a single variable, the process response. 
However, in Section 5.5 we discussed ways in which the 
parameters in a multiresponse model can be estimated. 
How to optimize by experimentation when multiresponse 
models are involved is not well defined. One approach, 
that of using a monovariate response model, is to weight 
the individual responses suitably so as' to form a single 
response. If a unified objective function cannot be 
evolved, each response must be individually carried 
along in the analysis. After each stage in the experi­
mentation, a judgment must be made for each response 
as to its relative influence in establishing the region for 
the next series of experiments. For example, Lind, 
Goldin, and Hickman t ran a series 'of experiments to 
ascertain the effect of complexing agents on the yield 'of 
an antibiotic. They used second-order models for two 
responses: (1) cost and (2) yield. Figure 8.3-3 illustrates 
the two responses at their optima in the form of contour 

ldiagrams in two-dimensional observation space. They i 

were able to find new operating conditions that increased f 

the yield by 5 percent and reduced costs by $5 per kilo-

t E. E. Lind, J. Goldin, and J. B. Hickman, Chern. Eng. Progress 
56 (11), 62, 1960. I 

l'
j 
i 
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Plant standard 
before experimentation: 
61% yield and $54/kg 

Minimum cost • 
$148.20/kg at 

64.5% yield /- 65% yield 

2.5 

/ , 
2.0 .r-. \ \ 
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FIGURE 8.3-3 Cost contours and yield contours as a functi on of 
two compl exing agents, A and B, for a cert ain antibiotic. (Adapted 
from E. E. Lind, J. Goldin, and J . B. Hickman, Chem. Eng. 
Progr. S6 (II), 62, 1960, with permission of the publi sher , The 
American Institute of Chemical Engineers.) 

gram of product, because the optima both fell within 
the feasible region for experimentation and the matrix of 
independent variables for both responses was roughly 
in the same region . Clearly, such favorable conditions 
will not always exist. Hill and Hunter t listed a number of 
other examples of optimization by experimentation with 
multiple responses. 

8.3-2 Evolutionary Operation (EVOP) 

Hunter described evolutionary operation as .. a 
method which compels a production process to pro vide 
information about itself of immediate applicability 
without upsetting either production quality or through­
put." t The technique is a deliberately simplified sequen­
tial approach to experimental optimization, one that is 
oriented toward a direct application by production 
personnel. A good summary of the theory and com­
putational aspects of EVOP can be found in Box and 
Hunter.§ Because continuous processes which have been 
in operation for some time usually have been well 

t W. J . Hill and W. G . Hunter, " A Review of Response Surface 
Methodology : A Literature Survey," Technometrics 8,571, 1966.
 
t J . S. Hunter, Chem. Eng., 193, Sept. 19, 1960.
 
§ G. E. P. Box and J. S. Hunter, Technometrics 1, 77, 1959.
 
Additional references on experience s with EVOP are listed in
 
W. G. Hunter and J. F. Kittrell, " Evolutionary Operation: A 
Review ," Technometrics 8, 389, 1966. 

studied by engineers, EVOP may have little to offer and 
has not been as widely adopted as might be expected. 

EVOP makes use of small changes in operating con­
ditions, whose effect on the output of the process is 
likewise small but which are repeated many times until 
the general effect of the many small changes becomes 
noticeable. Since the result of each small change wallows 
in a sea of" noise," it is necessary to detect small differ­
ences in performance between the normal process and 
the perturbed process; this can only be accomplished by 
extensive replication. EVOP perturbs the process inde­
pendent variables according to a repeated series of 
experiments, each of which comprises one cycle or 
experimental design. The cycle is repeated again and 
again until the phase is ended and a new set of operating 
conditions is established. In practice it has been found 
convenient to study the effect of only two or three 
variables at a time on the process response since the 
results can be portrayed graphically in two or three 
dimensions . 

Past plant records can give information concerning 
variables to consider, the nature of the random changes in 
the response, the time for a change in a continuous 
process to become effective, etc. But the reasons plant 
data and" natural" variations in operating variables are 
not too effective in determining the nature of the 
response surface are that: 

I . Many important variables do not change at all. 
2. Variables that do change, change over uncontrolled 

ranges . 
3. Variables are not orthogonal; hence it is hard to 

discriminate the effect of one from the other. 
4. Spurious correlation develops because of the time 

factor; a change caused by time may appear to be due to 
another variable changing. 
Hence the use of EVOP. 

As a simple example of EVOP applied to a batch 
process, assume that a process involves three dependent 
variables (yield, percent solvent recovered , and particle 
size) and two independent variables (time and tem­
perature). Current operating procedure calls for 300°C 
temperature and 3 hours reaction time. Past experience 
shows that changes of ± 3°C and ± 5 minutes are not 
injurious to the process ; in fact, variations of this 
magnitude are normally encountered in the process. 

A 2 x 2 factorial design with a center point is set up 
as follows with the coded temperature equal to (T- 300)/3 
and the coded time equal to (t - 180)/5; the circled vari­
ables in Figure 8.3-4 designate the responses from the 
experiments. One batch of material is run at each pair 
of operating conditions including the center. The points 
can be run randomly or in some particular order until 

.- -- - ---- --- -- - -- - - - -- _. _. _---- - _. _--- -- - -- --_.­
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FIGURE 8.3-4 Experimental design for first cycle of EVOP. 

all five points have been completed, thereby ending one 
cycle. Assume the responses are as follows: 

Percent Solvent 
Yield Recovered Particle Size 

76.4 77.2 83.8 83.2 4.0 5.2 

75.6 82.8 4.4 

75.4 75.8 82.2 82.6 4.6 5.4 

If the proc.ess is continuous rather than a. batch process, 
a suitable time should be allowed for the process to 
settle. down to its steady-state values after making a 
change in the setting of the independent variables. 

Since the design is orthogonal, it can easily be shown 
that the contrasts (differences in the sample means), such 
as (Y1 - Y2) , ·are mutually orthogonal. The notations to 
be used are as follows: 

Ytj =	 measured response for the jth pair of points in the 
experimental design on the ith cycle; 1 < i < n; 
i <j < k 

n=1

L ytj
Yj ' =	 1=2 2 = average of the responses for point j 

n - starting with the second cycle and con­
, tinuing up to the most recent cycle but 
one 

D, =	 Yj - Y i j = difference between average value of Y 
and the most recent value of Y for the jth point 

Two major types of calculations must be made: One is to 
calculate the contrast (Yp - Yq) to measure the effect of 
changing a variable, and the other is to calculate the 
standard deviation to be used as a measure of the error. 

To find the effect of time, we form the contrast 

or 

time effect = -!-( Y3 + Y4 - Y2 - Ys ) (8.3-6a) 

Also: 

temperature effect = t( Y3 + Ys - Y2 - Y4) (8.3-6b) 

interaction (time x temperature) effect 

= -!(Y2 + Y3 - Y4 - Ys) (8.3-6c) 

change in mean effect = t( Y2 + Y3 + Y4 + Ys - 4 Y1 ) 

(8.3-6d) 

The center point responses enter only in Equation 
8.3-6d, which measures the difference between the grand 
mean of the response for all the exterior points for all the 
experiments in the cycle less the mean for the center of 
the design: 

t( Y1 + Y2 + Y3 + Y4 + Ys) - Y1 = ~ 

If the response surface' is convex (" hill-like") as in 
Figure 8.3-1, the average of the sum of the responses for 
the points surrounding the center point will always be 
less than the center point so that t::. will be negative. 
Conversely, for a concave topography, ~ will be positive. 
For a response surface represented by parallel lines, ~ 

will be zero. Equations 8.3-6a and 8.3-6b can be used to 
move in a direction for improving the response by taking 
steps in the direction indicated for each effect. If the 
response is a cost function, Equation 8.3-6d is a measure 
of the cost of obtaining information. 

In addition to the contrasts given 'by Equations 8.3-6, 
an estimate of the error variance is required. Box and 
Hunter recommended that the range be used as an esti­
mate of a~i because of its simplicity; otherwise,' use 

n 

s~ = LsUn- 1) 
t=2 

where 

2. 

S" 
.1k _ [~] [* D2.I: i' ~ 1 

_ ct Dif]
~-k--

j=1 

At the end of a few cycles, one can get a feeling for the 
effect on the response of each variable and decide to 
either accumulate more information or perhaps make a 
specificchange in one of the controlled variables so as to: 

1. Start a new phase about a new center point chosen 
in the optimal direction. 

2. Explore in the optimal direction. 
3. Select levels of variable more widely spaced. 
4. Substitute new variables for one or more of the 

previous ones. 

When several simultaneous responses are, tallied, a 
compromise is needed. For example, if at the end of 
several cycles the effect of the design is to: (1) reduce the 
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cost per batch by 0.3 ± 0.4 units, (2) reduce the yield 
by 0.5 ± 0.06 percent, and (3) increase the particle size 
by 1.5 ± 1.1 units, it will be necessary to assess the 
deleterious effects of (2) and (3) compared to the advan­
tage of (1) through use of an objective cost evaluation or 
subjective judgment. For a given significance level ex and 
operating characteristic {3, the number of cycles required 
to detect an effect of a variable depends on the allowable 
increase in variability in the process. For a 30-percent 
increase in (1, four or five cycles are needed for a 22 

factorial design, and two to three cycles are needed for 
a 23 factorial design if ex and {3 are about 0.05 to 0.10 
each.] 

8.3-3 Simplex Designs 

An EVOP program does not have clearcut rules as to 
when or where to move to a new region of experimen­
tation. These decisions are left to the experimenter. 
Spendley, Hext, and Himsworth.j as mentioned in 
Section 6.2-2, introduced the concept of automatic 
evolutionary operation through the use of regular 
simplex designs. They developed a number of rules which 
can be applied relatively objectively to decide (1) when 
and (2) where to move the experimental program. These 
rules have been supplemented by successive investigators 
to improve the performance of the experimental program 
from cycle to cycle. 

The essence of the rules is to use only the most recent 
observations and to use frequent but small changes in the 
independent variables. The strategy which will be 
described applies to a regula~ simplex, (The flexible 
simplex of Section 6.2-1 has not yet. been adequately 
tested for experimental, as opposed to deterministic, 
optimization. With error present in. the response, the 
possibility appears that the system. of simplexes will 
become. hung up on a spuriously high (low) response.) 
A regular simplex (refer to Figure 6.2-1) is a first-order 
design with the minimum number of experimental 
points. If q independent variables are used, the regular 
simplex contains q + 1 points. Given one vertex of the 
simplex at [0, 0, ... , 0] to define the origin, a regular 
simplex with an edge length a was specified in Section 
6.2-2. It is desirable to scale each independent variable 
so that a unit change in each scaled variable will produce 
approximately the same change in the response. 

Experimental optimization proceeds by constructing a 
new simplex on the face of the old one opposite the point 
that yields the poorest response, as shown in Figure 
6.2-1. The new point added to the simplex is thelocation 
of the new experiment; hence the design incorporates n 

t G. E. P. Box and N. R. Draper, Dept. of Stat. Tech. Rept. 106,
 
Univ. of Wisconsin, Madison, 1967.
 
t W. Spendley, G. R. Hext, and F. R. Himsworth, Technometrics
 
4, 441, 1962.
 

old experiments and one new one on each move. To find 
the coordinates of the added vertex, which is the Xnew, 

mirror image in hyperspace of the deleted point, take 
twice the average of all the coordinates of the common 
points (those retained in the simplex) and subtract the 
coordinates of the deleted vertex, Xj: 

(8.3-7) 

where Xi is the vector of the coordinates of vertex i. The 
coordinates of the centroid of the new simplex are 

q + l ]

Cnew=q~l 
[ 
LXi-Xj+Xnew (8.3-8) 
l=l 

and the predicted response at X new is 

A A A2~ [2 ]
~new = - L Yi - - + 1 Yj (8.3-9) 

q i=l q 

The consensus of the effective decision rules § for 
optimization, using a regular simplex, is as follows: 

1. At each stage, ascertain the lowest response and 
exclude the corresponding vertex from the new simplex. 
Replace the excluded vertex by the vertex calculated by 
Equation 8.3-7. 

2. To reduce the risk of being hung up on some 
spuriously high vertex, if a response occurs in (q + 1) 
successive simplexes and is not eliminated by rule 1, 
discard the response and replace it with the results of a 
new experiment. , 

3. To cycle about an optimum and also be able to 
follow a ridge, if the new response, Ynew, is the lowest 
response in the new simplex, do not apply rule 1 but 
return to the previous simplex; instead of x., delete the 
vertex giving the second lowest response. Such a move 
advances in the second most favorable direction. 

4. If the experimental error is too large relative to the 
expected changes in the response, to avoid error-bias 
buildup, replace all the old observations with new ones 
after every 2(q + 1) experiment. 

5. Replace a new vertex which exceeds a constraint by 
the alternate vertex selected in rule 3. 

6. To accelerate the search for the optimum, apply 
one of the rules of Section 6.2. 

§ Spendley et 01., Ope cit.; B. H. Carpenter and H. C. Sweeny, 
Chern. Eng. 72, 117, July 5, 1965. 
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7. To close in on the optimum (if it is not changing 
with time) , successively reduce the size of the simplex by 
a factor such as one-fourth. 

Spendley, Hext, and Himsworth compared the regular 
simplex method by using some simulation data with 
univariate search, factorial experiments, steepest ascent, 
and random search; their general conclusion appeared 
to be that the simplex method is at least as satisfactory 
as any of the other techniques. The regular simplex is 
both efficient and rotatable, and it yields an optimal 
estimate of the slope of a response surface in the presence 
of error. The best features of the regular simplex method 
appear to be: (I) the direction of the advance depends 
solely on the rank;ing of the responses and not on their 
absolute values, (2) the technique can be extended to 
higher dimensions with relative ease, and (3) only one 
new experiment must be conducted at each stage. The 
path of ascent followed by the regular simplex method 
has been observed from simulation studies to be roughly 
that of steepest ascent, as might be expected from the 
nature of the local linearization of the response surface 
related to the simplex. 

8.3-4 Optimization by Direct Search 

A strategy in which each independent variable is 
changed in turn cyclically also can be employed to 
optimize by experimentation. Given that Y is an unknown 
function of several variables, X l> X 2, • • • , X q , in any real 
experiment the value of Xk will be bounded between lk' 
the lower limit, and Uk' the upper limit. Or , in matrix 
notation with x = [xi, X2,' . . , xq]T, 

l:s; x s u 

gives the admissible region. During experimentation, 
changes are made in the values of Xk' If the change 
called for is less than lk or exceeds Uk' the constraining 
value is substituted for the designated value . 

The search for the optimum set of operating con­
ditions, x*, takes place in cycles from an initial set of the 
x's designated Xkl). To start the nth cycle, changes are 
made in each X k from the previous cycle, and the Y's 
are measured . A single variable Xk may be changed at a 
time, or alI the x's can be changed simultaneously Or, 
as described in Chapter 6 for the Hooke and Jeeves 
method,t sequences of individual changes followed by 
group changes can be carried out Decisions of how to 
change the xk's on the (n + l)st cycle are based on the 
changes in Y observed on the nth cycle. , 

We now describe one direct search method which does 
not require the functio nal form of the model to be 
written down. Starting with the nth cycle, changes in the 
set of x's can be executed as follows (the subscript on the 
vector (n ) indicates the precedence order of the change, x 

t R. Hooke and T. A. Jeeves, J. Assn. Compt , Mach. 8, 212, 1961. 

the superscript in parentheses is the cycle index, and 
Skn) is the change in x~»: 

Vector 
Designa­ Re­

Order,j tion sponse 

o(Start) [x ~o) -Il~o)][x~o) _Il ~o)] •.. [x~O) _Il~o)] 

1 [x~o) + Il~o)][x~o ) _Il~o)] . • . [xl:) _1l~0)] 

2 [x~o ) - Il\'o)][x~o) + Il~o )] ... [x~o) - Il~o )] 

XC y eo)
•o)q • 

(8.3-10) 

The S's can be evaluated in almost any way and may 
constantly be reduced from cycle to cycle, or they can 
grow and recede depending upon the accumulated 
successes or failures in improving Y, as in the Hooke 
and Jeeves technique. Here the S's are reduced as 
follows: 

_ I)n+IS(l) (s (n ) _ k (8.3-11)
k - n~ 

with SkI) = O.l(Uk - lk)' As an initial condition for the 
, " 

x's, we let I 

'' ji.;1(8.3-12) 

A series of Y?)'s is obtained from the series of experi­
ments indicated by the list 8.3-10. From these y/n),s, a r-
decision is reached as to how to modify the x's for the 
next cycle according to the following rule : 

(8.3-13) 

The symbol ~kn) is determined on the nth cycle according 
to the folIowing rules: 

+1 if Yr' -YJn) > O} 
~kn) = 0 if Y? ) - YJn) = 0 (8.3-14)

{ 
- 1 if yr - YJn) < 0 

The constant akn) is an arbitrary value related to Skn
) and 

can be, for example, calculated by 
_ I )n+ Ia(l ) (d n) _ k (8.3-15)

k - n% 

lwhere ak ) = O.2(Uk - lk) = 2W). The constant p can 
be unity, or it may be equal to any acceleration factor 
chosen to make the optimization process converge more 
rapidly than p = I . 

After the sequential series of experiments indicated by 
the list 8.3-10 has been completed, the sign of ~kn ) is 
known. It may then prove desirable to continue with the 
same cycle but adjust all the x's simultaneously to ~\ 
accelerate convergence as follows : II 

i. 

(8.3-16) 
, 

:j 
~ 

I ';where h is a secondary index equal to I for the first d 
simultaneous adjustment, to 2 for the next adjustment, I 

4 
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and so forth. The adjustment indicated by Equation 
8.3-16 is continued until the Y<")'s first fail to show an 
ascending trend in the cycle, i.e., until 

y<m1) < y<m2) < ... < y<,,;h -l) < y<,,;h) 

no longer holds (because the last y<mh) is smaller than 
y<",h-l). In this event, Xk to start the (n + l)st cycle is 
equated to 

x~" +1) = Xk,, ;h -1) 

= Xk") + (h - 1) ~k")ak") (8.3-17) 

In general, the sequence described above converges to 
the local optimum x*; in practice, it can converge fairly 
rapidly so that too many cycles are not required. Certain 
easily satisfied requirements for the process to converge 
were specified by Fabian.'] If the hypothetical process 
response has only one extremum, the sequence con­
verges to it; if several extrema exist, there is no guarantee, 
of course, that the global extremum will be selected, but 
as a practical matter this handicap is not significant. A 
radical change in starting point can help the experimenter 
investigate the nature of the objective function but at the 
expense ofadditional experimentation. A major advantage 
of the direct search technique is that, as the number of 
variables increases beyond three or four, the number of 
experimental runs for each additional variable is much 
less than for factorial-type experiments. The experimenter 
can also attempt to use his subjective knowledge about 
the experiment to achieve more rapid convergence to the 
optimum by adjusting p. 

Example 8.3-2 Optimization Without a Model t 

An experiment was carried out to find the maximum 
extinction coefficient of a mixture of citric acid, sodium 
dihydrogen phosphate, and sodium chloride by varying three 
variables : 

Xl = wave length 
X2 = citric acid concentration 
Xs = sodium chloride concentration 

The extinction coefficient was measured with a photometer. 
The admissible values for each variable, the necessary 
constants , and the starting conditions obtained through use 
of Equations 8.3-11, 8.3-12, and 8.3-15 were: 

I" xj,,1l olel) all) 

5000 4000 4500 100 200 
2 o 1 0.2 0.4 
7.5 2.5 5 0.5 1.0 

Table E8.3-2a lists some useful values (which have been
 
rounded off) for 0" and a" required in the calculations based
 
on ole") = (_1)n +l olel)/(n)'I. and alenl = (_1)n+lalel l/ (n)%.
 

t V. Fabian, Czech. Math . J. 10, 123, 1960.
 
:I: Adapted from V. Fabian, Aplikace Matematiky 6, 162, 1961.
 

TABLE E8.3-2a 

n o~n) o~n) o~n) a~nl a~n) a~n) 

1 100 0.20 0.5 200 0.4 1 
2 -80 -0.20 -0.4 -120 -0.25 -0.6 
3 80 0.15 0.4 80 0.20 0.4 
4 -70 -0.15 -0.35 - 70 -0.14 -0.4 

Table E8.3-2b lists a sequence of fivecycles of calculation. 
In the cycle n = 1 (and subsequent cycles), the initial con­
ditions are placed on the line with the *. The second line, 
corresponding to the trial j = 0, indicates the execution of 
the experiment corresponding to the change made in the 
initial conditions described by the first row of list 8.3-10, 
namely the subtraction of olel) from each variable : 

(4500 - 100) = 4400; (l - 0.2) = 0.8; (5 - 0.5) = 4.5 

The next line, corresponding to j = 1, initiates the change 
of each variable in sequence by (+ olel». The decision to 
retain the new value of xlell or the old one, after carrying 
out the changes indicated by the rows of list 8.3-10, depends 
upon whether Yj1) is increased or decreased. If YP) improves, 
the new value of X"ll is adopted ; if it does not , the old value 
of xlel) is retained. For j = 1, 46 < 313, so xl) remains at 
4400; for j = 2, 266 < 313, so ..4l ) .remains at 0.8; and so 
forth. During the first three steps, j = 1, j = 2, and j = 3, 
the sign of ~lel) is established for further calculations in 
cycle 1. 

After the experiments outlined by the list 8.3-10 were 
executed, and the ~lel)'S determined, Equation 8.3-11 was 
used to accelerate the change in ym. For h = 1 (row 
j = 4): 

xl;l) = 4500 + 1(-200) = 4300 

xl;l) = 1 + 1(-0.4) = 0.6 

X~1 ;1) = 5 + 1(-1.0) = 4 

For h = 3 U = 6), the value of xl;3l = 1 + 3(-0.4) = 
- 0.2 exceeds the value 12 = 0, hence xl;3) is placed equal 
to the lower limit O. The accelerating sequence was con­
tinued according to Equation 8.3-11 until j = 7 when 
y<l;4) < y<l ;3>, i.e., 3200 < 4140. At this step, according 
to Equation 8.3-17, 

X~2) = 4500 + (4 - 3)(- 200) = 3900 

X22 l = I + (4 - 3)(- 0.4) = - 0.2; 0 is used instead 

X~2l = 5 + (4 - 3)( -1) = 2 

y(2) = 4140 

New values of 0" were computed as in Table E8.3-2a, line 2; 
new values of a" were obtained from Equation 8.3-15; 
and the entire procedure was repeated starting with a new 
cycle. Figure E8.3-2a illustrates the values of the independent 
and dependent variables obtained as the optimization proc­
ess continued . By the end of the fourth cycle, Y became 
4800, Xl = 3800, X 2 = 0, and Xs = 0.6, at which time 26 
experiments had been carried out. 

For more accurate location of the optimum near the 
end of the optimization sequence (or throughout the 

-"-: 
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TABLE 8.3-2b 

Cycle, Trial, Variables, Extinction, 
n j x~n) x~n) x&n> YJn> k = 1 2 3 

* 4500 1 5 200 0.4 
o 4400 0.8 4.5 313 
1 4600 0.8 4.5 46 -200 
2 4400 1.2 4.5 266 -0.4 
3 4400 0.8 5.5 288 -1 
4 4300 0.6 4 819 
5 4100 0.2 3 1696 
6 3900 0 2 4140 
7 3700 0 1 3200 

2 * 3900 0 2 4140 -120 -0.25 -0.60 
o 3980 0.20 2.4 2850 
1 3720 0.20 2.4 4210 -120 
2 3980 0.00 2.4 3240 -0.25 
3 3980 0.20 1.6 3120 -0.60 
4 3780 0 1.4 4080 
5 3660 0 O~8 3100 

3 * 3180 0 1.4 4080 90 0.20 0.40 
o 3700 0 1.0 3700 
1 3860 0 1.0 4350 90 
2 3100 0.15 1.0 3400 -0.20 
3 3700 0 1.8 3600 -0.40 
4 3810 0 1 4400 
5 3960 0 0.6 3980 

* 3870 0 1 4540 -70 . -0.14 -0.40 
o 3940 0.15 1.35 4010 
1 3800 0.15 1.35 4700 -70 
2 3940 0 1.35 4150 -0.14 
3 3940 0.15 0.65 4120 -0.40 
4 ~ -3800 0 0.6 4800 
5 3·720 0 0.2 4300 

5 * ~800 0­ 0.6 4800 

process in the absence of interactions), it may be helpful 
to plot estimates for the derivatives of the hypothetical 
response surface. 

The quotient [yj(n) - Yrin>]/[20kn)] may be regarded as an 
estimate of the partial derivative of the response surface 
dependent variable (insofar as such a derivative exists) at 
the point x(n). The variables are said not to be interacting if 
this approximation to the partial derivative depends solely 
on thexth coordinate Xkn). If the no-interaction condition is 
not satisfied, it generally becomes evident that the derivative 
estimates obtained cannot be connected by a smooth curve. 

For the example under consideration, we obtain the 
following derivatives with respect to the wavelength, Xl, for 
values of wavelength equal to 4500, 3900, 3780~ and 3870 
for the first four cycles, respectively: 

4210 - 285046 - 313 = -1 34 -8.50200 . -160 

4350 - 3400 = 5 94 4700 - 4010 
-4.92160 . -140 

15 __--.---..,...--~-----r-----,.--.., 
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Refer to Figure E8.3-2b. The approximation to a zero 
derivative occurs at approximately Xl = 3800. 

8.4., SEQUENTIAL DESIGNS TO REDUCE UNCER­
TAINTY IN PARAMETER ESTIMATES 

We shall suppose in the first part of this section that a 
single adequate model has been selected, perhaps from 
among a group of several potential models, and that 
we would like to obtain better estimates of the model 
coefficients. How should additional experiments be 
carried out to accomplish this objective most effectively? 
As we have previously noted, if the experiments are not 
properly planned, the estimates of the model coefficients 
may not only be imprecise but also highly correlated. 
Box, W. G. Hunter, Draper, and their coworkers have 
made important contributions in developing sequential 
design procedures to decrease the uncertainty in param­
eter estimates, especially in connection with non­
linear models. References can be found at the end of this 
chapter. 

We shall use the notation of Chapter 6 here in which 

'YJ = 'YJ((3, x) (8.4-1) 

is the model containing m f3's and q independent variables 
x. The observations .are 

i= 1,2, ... ,n 

where the E/S are independently normally distributed with 
zero mean and a variance of u;. Also 

. [X..J = o1]i(b, Xi) j = 1,2, ... , m 
t} of3j 

is the typical element in the matrix X defined in Section 
6.2-3. 

8.4-1 Processes with a Single Response 

We shall assume at the beginning that some observa­
tions have already been taken and shall inquire as to 
what values of x should he chosen for the next obser­
vation(s) .to estimate the f3's most effectively in some 
sense. We shall consider later how to decide on the initial 
vector x when no initial observations are available. The 
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procedure rests on the use of the Bayes theorem and an 
assumed multivariate normal distribution for (3'.centered 
at a vector of estimates, b. 

Bayes' theorem, given as Equation A-2 in Appendix 
A , written in terms of the notation of this section is 

(.). I ) L(~ IYn+ I)Pn(~) (84-2) 
Pn+l «to' Yn +l = r oo L(~ I Yn +l)Pn(~)d(3 . 

where 

Pn +l(~ I Yn +l) = 

Pn(~) = 

L(~ IYn+l) = 

the posterior probability density for ~ 

after (n + I) observations of Y have 
been obtained 
the prior probability density function 
for ~ (before the last observation or 
group of observations was obtained) 
the probability density function which 
is the likelihood (function) of (3 given 
Yn +l (described in Section 3.2) 

and where the subscripts on P and y designate the ex­
perimental run numbers. The integral in the denominator 
of Equation 8.4-2 represents the normalization factor. 
The dependence of the posterior density function on the 
independent variables x as well as on Y is implied, 
although not specifically stated, in the arguments of the 
probability density functions in Equation 8.4-2. It is the 
future values of the x's that are of major interest in 
establishing the experimental design. From the Bayesian 
point of view, the posterior probability density function 
contains all the available information about the (3's. A 
natural criterion to use in fixing the values of an experi­
mental design for a new experiment would be to select 
those values of x which bring about -the most desirable 
posterior distribution in some sense and , in particular, 
bring about the biggest desired change from the distri­
bution that existed at the end of the nth experiment. 

Once the first n observations have been made, a likeli­
hood function can be written similar to Equation5.1-lla, 
except that here the model itself may be nonlinear: 

(8.4-3) 

To obtain Pn(~) for use in Bayes' theorem, we need to 
have the init ial pri or probability density for (j before the 
n observa tio ns were taken , say Po«(j), and L«(j I Yn) ' 
Then applicat ion of Equation 8.4-2 will give the desired 
posterior density Pn«(j IYn), which in turn can be used 
as the prior density for the succeeding observations. 
Instead of assuming a uniform probability density for 
Po(~) , we follow Draper and Hunter] and assume that 

tN. R. Draper and W. G. Hunter, Biometrika 54,147,1967. 

( 
prior information is available on the {3's from some source 
so that the initial density for the (3's can be given by 

(.).) = 1 exp [_1«(.). _ b<O»TQ -1«(j _ b<O»] . Po«to' (27T)m/2IQ IYz ~ to' 

(8.4-4) 

where b(O) is the vector of initial estimates for the {3's and 

is a covariance matrix for the (3's in which each element 
is specified. 

Introduction of Equations 8.4-4 and 8.4-3 into Bayes' 
theorem gives the desired probability density function 
after n observations have been made: 

where k; represents the appropriate normalizing factor 
which need not be specifically specified as yet. 

Now, let us consider what should be done in the way 
of setting up the values of X n + 1> X n + 2, ... , the design 
matrix, for n* additional observations of Y. Equation 
8.4-5 now becomes the prior distribution in Bayes' 
theorem, Equation 8.4-2, and the likelihood function 
L«(j I Yn +n.) is analogous to Equation 8.4-3 except that 
n* products are involved. Thus, the summation in the 
exponent is from i = n + 1 to i = n + n* ; i.e., it is over 

.the new observations 

1 [ t:X:IYI- TJi«(3, XI)]2] 
L«(j IYn+n·) = (27T)n"2 rexp - 2a~ a

(8.4-6) 

Introduction of Equat ions 8.4-5 and 8.4-6 into 
Equation 8.4-2 yields the desired posterior probability 
density for the (3's: 

. n +n-

L [Y1 - TJt«(j, Xi )]2] 
Pn+n·«(j I Yn +n') = kn+n• exp 1=1 2~ ..r 

x exp [- t «(j - b(O»)TQ -1(~ - b(O») 

(8.4-7) 

where k n + n• is the new normalizing factor. 
How can Equation 8.4-7 be used for deciding on the 

values of the x's in the design matrix? The references at 
the end of this chapter interpret the meaning of "best " 
as applied to the probability density, Equation 8.4-1, in 
terms of the objectives of the experimenter. Draper, 
Hunter, and others, have maximized the posterior density 

I
 
....L 
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given by Equation 8.4-7 both with respect to the f3's and 
with respect to the settings of the new x's (x n+ 1,· . . ,xn..-n')' 
Once u? and Q are specified, it would in principle be 
possible to maximize Pn+n.«(3 IYn+n') by one of the 
iterative methods of optimization described in Chapter 
6. However, by making a few reasonable assumptions, 
the computations required can be substantially reduced. 

In Chapter 6, the model was. expanded as in Equation 
6.2-12 in a truncated Taylor series about an assumed b(O). 
Here we shall assume that a similar expansion in (3 
space is valid in any local restricted region about some 
selected vector b*: 

m 

7]i(~' Xi) ;;;;: 7]1(b* , Xi) + 2: (f3j - bnXij (8.4-8) 
j=1 

Equation 8.4-8 introduces the assumption of local 
linearity, which is not the same as assuming that the 
model is linear for all values of [3. 

The summation term in Equation 8.4-7 is (Y - "lY' 
(Y - "l); after Equation 8.4-8 is introduced for 7];, the 
summation becomes ' 

n+n·

.2 (Yi - 7]i)2 = [Y - "l(b*, x) - X([3 - b*)]T 
i= 1 

X [Y - "l(b*, x) - X([3 - b*)] 

= [Y - "l(b*, x)]T[Y - "l(b*, x)] 

[Y - "l(b*, x)]T[X(~ - b*Y] 

[X([3 - b*)]T[Y - lJ(b*, x)] 

+ ([3 - b*YXTX([3 - b*)] 

If for b* we use the maximum likelihood estimator of (3, 
b, then we know from Equation 5.1-8 that the two cross­
product terms in the summation vanish. Consequently, 
the posterior density given by Equation 8.4-7 becomes 

Pn+n·([31 Yn+n') 

_ k* ([Y - "l(b, x)]T[Y - "l(b, x)]) 
- n + n' exp - 2 2 

Uy 

x exp { - 2~? [«(3 - b)TXTX([3 - b) 

+ «(3 - b<Ol)Tu?Q - 1([3 - b(O»)]} (8.4-9) 

The normalizing factor k:+ n , now becomes of interest, 
Equation 8.4-9 is the combination of two multi normal 
probability densities; hence (k:+ n.)2 by analogy with 
Equation 2.3-7 is proportional to . 

(8.4-10) 

where I I signifies the determinant. If the posterior 
probability density Equation 8.4-9 is maximized with 

respect to both [3 and the vector of new observations 
(Xn+b "" x n+ n.), ~ depends on b<n +n') and b<O) and 
cannot be determined in advance of taking the observa­
tions. But whatever the observations and (3 prove to be, 
at the extremum the exponent of the last exponential in 
Equation 8.4-9 becomes zero; hence we conclude that 
n.: and thus 6. given by Equation 8.4-10 is the quan­
tity that determines the value of Pn+n" Consequently, we 
should maximize 6. as the criterion for determining the 
values of (Xn+b"" xr.+n')' One difficulty is that the 
elements of (XTX) contain [3, the unknown vector of 
parameters. Therefore, we substitute the most recent 
estimate of [3, such as b<n>, for [3 in the elements of X, in 
which case , to avoid confusion, the matrix X may be 
designated by x (n). 

In the determinant in Equation 8.4-10, the matrix X 
(for n observations ' at hand and -n* observations to be 
taken) is 

X ll X 12 X 1m 

X 21 X22 X2m 

X= 
Xn1 Xn2 X nm 

Xr.+n·.1 Xn+ n•. 2 Xn + n-, m 

and the individual elements in X are .... 

X _ °7]i(b<n>, Xi) 
ij - of3f 

The elements of the matrix XTX will be denoted by Au 
and , as an example, with three parameters after four 
experiments with one new experiment being con­
templated, 

(~XI~+Xl1) (~XilXI2+XS1XS2) (i: XilXI3+XS1XS3) 
1=1 

(~ XI2 X13+ XS2 X53)(~X'HXl2) 

,(~ X,~ + Xl3) 

In the above matrix the summed quantities are known, 
and the terms with the index 5 are sought in terms of 
the new values of the independent variables for the 
fifth experiment. 

Examination of a model with two parameters provides 
some insight into the character of the criterion 6.: 

L __ .
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We shall let p be the cor relation coefficient between f3l 
and f32' Wll = w~ , and W22 == w~, as in Example 2.3-4. 
Theil 

5. Reestimate the values of the parameters. 
6. Evaluate the elements of X by using the new esti­

mates. 
7. Select the next design by maximizing ~. 

8. Revert to step 4 and continue until the desired 
precision in the parameters is obt ained or the experi­
mentation must be terminated. 

We now illustrate by examples how Equation 8.4-10 
can be used to determine more effective experimental 
designs . Example 8.4-1 describes the initial design; 
Example 8.4-2 illustrates how additional values of the 
independent variables can be selected based on prior 
knowledge gained from earlier observations. 

Suppose Wl = W 2 = O. This means that the initial 
estimates biD) and b~O) have zero variance and therefore 
are certainties. Thus, ~ is a maximum no matter what the 
Al/s are , and no additional experiments need be run . 
Another extreme case is when Wl = W 2 -+ 00 , because 
then 

which is the criterion developed by Box and Lucas t and 
later investigators. They suggested that the settings of the 
independent variables be those that minimize the con­
fidence region associated with the parameters (3 . If the 
joint confidence region is given approximately by 
Equation 6.4-5, which is based on the linearized model, 
the size of the confidence region is inversely proportional 
to det (XTX) = ~h all other factors remaining the 
same. By maxim izing ~1> the joint confid ence region can 
be minimized. Exactly the same conclusion could be 
drawn from Equation 5.1-14, even though the equation 
is for a linear model , because to make Covar {b} a 
minimum, with c equal to the adjoint matrix of (x/wx) 
divided by the det (xTwx), we see that maximization of 
~l minimizes the Covar {b}. 

The interpretation of infinite variances for biD) and b~O ) 

is that joint prior information is completely absent at 
the initiation of experimentation. Various other inter­
mediate inferences can be drawn given the relative values 
of p, the w's, and ai!. In general the better the prior 
information on a parameter, the greater is the emphasis 
placed on the other parameter in selecting the x's. 

To sum up, the general procedure for parameter 
estimation is : 

1. Select initial estimates of the parameters, their 
variances, and covariances. 

2. Evaluate the elements of X by using the estimated 
parameters. 

3. Decide on an initial design by maxim izing ~. 

4. Carry out the experiments according to the design. 

t G. E. P. Boxand H. L. Lucas, Biometrika 46,77, 1959. 

Example 8.4-1 Optimal Sequential Designs for a Nonlinear 
Model 

This example illustrates how an initial experimental 
design is developed, assuming a complete absence of prior 
information as to the values of the parameters in a model 
and the covariance elements for the model parameters. 
Subsequent designs are also obtained after the initial experi­
ments are carried out . 

Shaft-grinding mills are used for the combined pulveriza­
tion and drying of lignite, shale, coal, etc. Inasmuch as no 
valid theoretically based process models for these devices 
have been developed to relate the heat transfer to the process 
independent variables, the following empirical model was 
developed: 

(a) 

where 

g= fraction of heat transferred to the pulverized
° material (a random variable) 

Xl = concentration of coal in the gases, kg/kg dry gas 
X2 = square of the mass flow rate of gases in the shaft, 

[kg dry gas/(meter)2(sec)]2 
f310 f32 = coefficients to be estimated 

In what follows we shall let Q/Qo be denoted by the random 
variable Y. Several tests were planned on industrial shaft 
grinders; to reduce the costs of the tests, it was desired to 
carry out a sequential series of experiments in which 
Equation 8.4-10 was used as the criterion for establishing 
the values of X l and X~ . The range of coal concentrations 
was 0.17 to 1.1 and the range of mass flow rates was 0 to 12 
(0 to 144 for X2)' 

Since no initial estimates of the three parameters in 
Model (a) were available, by inspection of the equation it . 
could be seen that f32 had to be small anough so that 
(l - f32X2) was not negative ; hence, b~O ) = 0.001 was a 
reasonable guess. Because f31 could be either positive or 
negative, it was decided to let bioi = 1. Furthermore, it 
was assumed that all elements in the matrix Q - 1 were zero. 

The minimum number of observations required to esti­
mate two parameters is two. Consequently, the criterion ~ 

in Equation 8.4-10 reduced to 

_..• --_ ..-­



~(O)
1 

-
- IXTXj 

2 

2:xt~ 
t=l 

2

2: Al1Xl2 
t=l 

I: 
;1 

I 

I
 
L
 

SEQUENTIAL DESIGNS TO REDUCE UNCERTAINTY IN .PARAMETER ESTIMATES 267 

2

2: XUX'2 

1=1 

2 

Lxt~ 
i=l 

Here, the elements Xij can be obtained analytically: 

Xi! = - Xi! [exp (b l xn)](1 - b2X i2) 
(c)

Xi 2 = - Xi2[l - exp (blxu)] 

If the model functions are so complex that analytical 
derivatives cannot be taken, numerical derivatives can be 
used in their place, as pointed out in Section 6.2-~. 

The two pairs of initial values of Xu and Xt2 can be obtained 
by introducing the b(O)'s into Equations (c) and by maximiz­
ing ~l given by Equation (b) with respect to all four of the 
x's. As might be expected, when functions (c) are intro­
duced into (b), the expression for ~l becomes quite non­
linear in Xi! and Xi2; hence a numerical optimization scheme 
is required to find the two pairs of x's. Quite possibly more 
than one local optimum may exist for such nonlinear 
functions in a mathematical sense, but because of the 
restricted range on the x's and the correspondence of the 
model to a real process, this difficulty is not encountered too 
often. In such cases, by starting at different initial x vectors, 
the difficulty can be disclosed and the largest ~l discovered. 

The location of the values of Xi! and Xi2 for the special 
case in whichfhe -number of experiments is equal to the 
number of parameters can also be obtained by maximizing 
the determinant of X itself if we make use of two properties 
of determinants: (a) the determinant of the product of two 
square matrices is equal to the product of the determinants 
of the respective matrices, (A "BI = IA r IBI, and (2) the 
determinant of a square matrix is equal to the determinant 
of its transpose, IAI = IATI. Then" 

~10) = IX(O)TX(O)I = rX<O)TJ IX(O)I = IX(O)12 (d) 

and it is only necessary to maximize (X(O)I, subject to 0.17 :::; 
Xu s 1.1 and 0 s Xi2 s 144 to find the initial design. Con­
sequently, the following expression was maximized by the 
flexible simplex method of Chapter 6, in lieu of Equation 
(b): _ 

!X(O)I = IXlI Xl21 = X I1X22 - X 2lXl 2 
X 21 X 2 2 

IX(O)I = xllx22(1 - b~O)X12) exp (biO)Xll)[1 - exp (b~t)X21)] 

- Xl2X21(1 - b~O)X22) exp (b~O)x21)[1 - exp (b~O)Xll)] 

(e) 

The effect of initial guesses for the x's on the final design 
is shown in Table E8.4-1a. As might be expected, the 
design falls at the extremes of the range of the x's-at the 

upper limit of Xl in both runs and in one run at the upper 
limit and in one row at the lower limit of X2. 

The final results listed in Table E8.4-1a can be compared 
with those obtained by maximization of ~lO) given by 
Equation (b) as listed in Table E8.4-1b. Exactly the same 
values for XI, namely 1.10 and 1.10, are obtained for both 
experiments, but the values for X2 could just as well be 144 
and 0 as the 0 and 144 selected for the first two experiments. 
It is not possible to illustrate the contours of ~lO) versus X] 

and X2 because of the four-dimensional experimental space. 
As a result of the first two experiments, the following 

observations were made: 

Y1 = 0.646 at Xl = 1.10, X2 = 0 

Y2 = 0.194 at Xl = 1.10, X2 = 144 

From these observations the first two parameters' were 
estimated by using the flexible simplex method of Section 
6.2: 

biG) = 0.944 

b~O) = 4.86 X 10- 3 

To determine the next experimental point, ~~3) was 
maximized by using Equations band c with biD) and b(~) 

introduced for the estimated parameters. Table E8.4-1c lists 
the results; Figure E8.4-1 shows the contours of ~i3) versus 
Xl and X2. It was clear that the new run should either be 
taken at Xl = 1.06 and X2 = 0 or at Xl = 1.10 and X.2 = 
144. The former was chosen, the Y3 observed was 0.627, 
and the resulting parameter estimates were 

bi3 ) , = -0.937 

b~3) = 4.85 X 10- 3 

TABLE E8.4-1b MAXIMIZATION OF ~lO) = /X(O)TX(O)! SUBJECT 

TO 0.17 S Xi! ::;; 1.1 AND 0 ::; Xi2 ::; 144 WITH biD) = 1 AND 

b~O) = 10- 3 

Initial Guesses for X Final Results for x ___________ ' i).~O) 

Xl1 X 10- 5 

0.2 0.6 40 80 1.10 1.10 41.9 82.7 
0.17 1.1 0 144 1.10 1.10 2.35 143 
0.9 1.0 120 130 1.10 Ll0 144 '·5.98 
0.17 0.17 0 0 1.10 1.10 0.33 144 
1.1 1.1 144 144 1.10 1.10 144 0 
0.5 0.5 50 50 1.10 1.10 144 0 
0.2 1.0 10 130 1.10 1.10 0 144 

0.725 
8.71 
-8.36 
9.05 
9.08 
9.096 
9.095 
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X31 

1400 

OL-_----I__--l__-'-__---'-__--'-_-' 

o 25 50 75 100 150 
X32 

FIGURE E8.4-1 Contours of ~~3); and location of experiments 
(designated by circled numbers). 

TABLE E8A-lc RESULTS OF MAXIMIZATION OF 1).~3) TO 
DETERMINE THE THIRD EXPERIMENTAL POINT 

)-­ --,-­ -.,-----,----,---...----{ 2,4 

0.25,=--­

Initial Guesses Final Results 
Value of 

1).~3 ) X 10- 3
X 31 X 32 X3 l X 32 

0.17 0 1.06 0 2.62 
0.20 20 1.06 0 2.62 
0.80 100 LIO 144 2.26
 
LIO 144 LIO 137 2.50
 
0.17 144 LIO 144 2.62
 
LIO 0 1.06 0 2.62
 

Although it was now clear that the experimentation could 
be terminated, it was decided to carry out one more experi­
ment. Table E8A-l d lists the results of the maximization of 
,W>(in which bl"> and b<.J>were employed). The contours of 
1).~4) are similar to those illustratedin Figure E8A-1. The 
final run was carried out at Xl = 1.10 and X2 = 144 to 
yield a Y4 = 0.173 . The final estimated parameters, using 
all four runs, were 

b l = -0.937 

b2 = 4.96 X 10- 3 

TABLE E8A-ld RESULTS OF MAXIMIZATION OF 1).~4) TO 
DETERMINE THE FOURTH EXPERIMENTAL POINT 

Initial Guesses Final Results 

M 4 ) X 10- 3
X u X42 X 4l X 4 2 

0.17 0 1.07 0 3.96 
0.20 20 1.07 0 3.96
 
0040 50 LIO 144 5.28
 
0.80 100 LIO 100 4.04
 
LIO 144 LIO 144 5.28
 
0.17 144 1.10 144 5.28
 
1.l0 0 1.07 0 3.96
 

The next experiment would have been at Xl = 1.07 and 
X2 = O. Figure E8A -1 illustrates the location of the experi­
ments in the Xl - X 2. plane. 

Although the variance s~ was known, because 
F1- a [ml (n - m)] was so large-Fo.9s(2, 1) = 199 and 
FO•9 4(2, 2) = 19, the joint confidence regions for f31 and f32 

after experiments three and four were run are not shown. 
The next example does illustrate how the area enclosed by 
the confidence region shrinks as the sequential experiments 
continue. From the parameter correlation matrix, it was 
observed that the correlation coefficient between b~3) and 
b~3> was only -0.194. 

TABLE E8A-le EFFECT OF THE ASSIGNMENT OF VARIOUS 
WEIGHTS ON THE SELECTION OF THE EXPERIMENTAL DESIGN 
OBTAINED BY MAXIMIZING 1).(0) = Ilfio>TX(O> + a?Q-ll (FOR 
INITIAL VALUES OF Xli GIVEN IN TABLE E8A-IA) 

Elements of n with u~ = 1 Final Design 

01 11 01 12 01 2 1 01 2 2 X11 X12 X2l X22 

0.5 5 50 500 LIO 144 1.10 O' 
5 50 500 0.5 1.06 144 1.10 0 

50 500 0.5 5 1.04 144 1.10 0.2 
500 0.5 5 50 LIO 142 1.10 144 

10 20 30 40 1.04 144 LIO 0 

To ascertain the effect of prior information on the design 
of the experiment, several combinations of assumed elements 
for n were selected for use with Equation 804-10. Then I). 

itself was maximized with the results indicated in Table 
E8.4-le. Not only did the xu's still fall essentially on the 
boundaries, but the inclusion of prior information clearly 
made no significant change in the experimenta l design. Thus 
letting n -1 = 0 was quite satisfactory. 

Example 8.4-2 Experimental Design to Reduce Parameter ' 
Uncertainty 

This example, which is based on the work of Kittrell, 
Hunter, and Watson.j illustrates a sequential series of 
designs for a model with three coefficients . It also brings 
out some additional features of model building not en ­
countered in the previous example. The react ion studied was 
the catalytic reduction of nitric oxide: 

The reaction mechanism was assumed to be the surface 
reaction between an adsorbed nitric oxide molecule and 
one adjacently adsorbed hydrogen molecule, a mechanism 
that can be represented by the following mod el: 

(a) 

t J. R. Kittrell, W. G. Hunter, and C. C. Watson, .ucu:J. 12, 5, 
1966. 

~._ ..~_. __._._-- _._.__ .,- - - - - . _ .. --- -~ 
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where 

r = reaction rate, g-moles/(min)(g catalyst) 
k = forward rate constant, g-moles/(min)(g catalyst) 
K = equilibrium absorption coefficient, atm ' ' 
p = partial pressure, atm 

It will be assumed that the random variable is R = r + € , 

as usual. 
The "experimental observations" given below were in 

fact a simulated set of deterministic values for r generated 
using k = 4.94 x 10- 4 g-moles/(g catalyst)(min), KN O = 
14.64 atm" ', and K H 2 = 19.00 atrn r Added to the deter­'. 

ministic rate was an independent, normal random error 
with zero mean and 0 2 = 9.508 X 10- 1 2 • These simulated 
observations will be treated as real observations, and the 
simulation has the advantage that it will be possible to 
compare the estimated model parameters with the assumed 
ones. 

UNPLANNED EXPERIMENT. The one-variable-at-a-time 
procedure, as used by Ayen and Peters,t was simulated first 
so that it would be contrasted with planned experiments. 
The values of the partial pressures and reaction rates are 
listed in Table E8.4-2a. 

TABLE E8.4-2a ONE-VARIABLE-AT-A-TIME DESIGN 

Run p 
Number NO 

1 0.00922 
2 0.0136 
3 0~-t)197 

4 0.0280 
5 0.0291 
6 0.0389 
7 0.0485 
8 0.0500 
9 0.0500 

10 0.0500 
11 0.0500 
12 0.0500 

H2 

0.0500 
0.0500 
0.0500 
0.0500 
0.0500 
0.0500 
0.0500 
0.00918 
0.0184 
0.0298 
0.0378 
0.0491 

Simulated
 
Observed Rates,
 

R 

2.01 
2.52 
3.10 
3.65 
3.82 
3.82 
4.90 
2.02 
2.83 
3.75 
4.32 
4.53 

t R. J. Ayen and M. S. Peters, Ind. Eng. Chem. Process Design 
Develop. 1, 204, 1962. 

The first row of Table E8.4-2b lists the results of a non­
linear least squares analysis as well as the values of the 
square root of the determinant of (XTX), which is inversely 
proportional to the volume of the joint confidence region. 
Figure E8.4-2a illustrates the approximate 95-percent con­
fidence region surface calculated using all 12 runs for the 
sum of the squares based on Equation 6.4-5. Although no 
replicate runs were available, the model was assumed to be 
the correct one, and s~ was assumed to be equal to 
<Pm1n/(n - m). Note that the confidence region does not 
contain the true value of the forward rate constant. 

The region for Model (a) is characteristically large and 
attenuated, indicating that the coefficiertts are not adequate 
estimates, primarily because of a high degree of correlation 
among the coefficient estimates. What happens is that the 
least squares fitting procedure compensates for improper 
values of one coefficient by the choice of the values of the 
other coefficients so as to yield an overall fit (in the sense of 
predicting the dependent variable) nearly as good as that 
obtained with the best estimates of the parameters. For 
example, values of the predicted rate R calculated by using 
three sets of reasonably spaced estimated parameters, 
namely those at points A, B, and C in Figure E8.4-2a, 
are compared in Figure E8.4-2b. Little difference in the 
predicted rates is observed, and each set of estimated pa­
rameters appears to be equally able to represent the 
experimental data. 

PLANNED EXPERIMENTS. The use of planned sequential 
experimentation is now demonstrated to obtain estimates 
of the parameters in Model (a) using the same number of 
experimental runs, namely 12. A two-level factorial design 
about an arbitrary point in the parameter space was used 
to get the initial parameter estimates; refer to the first four 
runs of Table E8.4-2c. 

The fifth experimental point was chosen to maximize Lll 
with the estimated parameters from the fourth run intro­
duced into the elements Xij' A grid with intervals of 0.005 
atm between 0 and 0.10 atm was superimposed on the 
independent variable space, and a search for the settings of 
the partial pressures which maximized Lll resulted in row 5 
of Table· E8.4-2c. The fifth experiment was run, the reaction 
rate observed, and again the parameters k, K NO' and K H 2 

were estimated by least squares. Afterwards, Ll was maxi- . 
mized to get the experimental settings for the sixth run, 
and so on until 12 runs had been completed. 

TABLE E8.4-2b RESULTS OF THE UNPLANNED DESIGN COMPARED WITH THOSE FROM THE 
SEQUENTIAL DESIGN 

k x 104 g-moles • 2
1011 [ g-moles ]

ePmin x(min)(g catalyst) K N O ' atm '! KH 2, atm- 1 (min)(g catalyst) ... JXT~J~ 

10- 1 4 

t4.7 ± 0.53 16:9 ± 4.0 20.2 ± 4.2 6.88 9.02 x 10- 13 
*2.9 ± 0.92 38.0 ± 26.1 38.0 ± 24.9 4.62 5.02 x 

* The numbers ± designate the bounds of the 95-percent individual confidence limits.
 
t Sequential design.
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FIGURE E8.4-2a Approximate 95-percent contour for the joint confidence region derived from 
unplanned experiments. Contours shown on the surface are the loci of lines of constant k in the 
surface. (Reproduced from J. R. Kittrell, W. G. Hunter, and C. C. Watson, AIChE J. 12, 5, 1966, 
with permission of the publisher, The American Institute of Chemical Engineers.) 

The square root of the determinant 6.1 is inversely pro­
portional to the size of the confidence region. Figure 
E8.4-2c contrasts the change in the relative volume of the 
confidence region by the sequential design procedure with 
the constant volume of the unplanned design . It can be 
seen that the estimates from the sequential design procedure 
after the fifth point (i.e ., the first point chosen by the mini ­
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FIGURE E8.4-2b Predicted (the lines) and observed (the solid 
dots) rates for three different parameter estimates. (Reproduced 
from J. R. Kittrell, W. G. Hunter, and C. C. Watson, AIChE J. 
12, 5, 1966, with permission of the publisher, The American 
Institute of Chemical Engineers.) 

TABLE E8.4-2c EXPERIMENTAL CONDITIONS USING 
SEQUENTIAL DESIGN 

Run . 
Number PNO, atm PH" atm 6.1 x 10'5 

1 
2 

0.01 
0.01 OO'}0.03 Initial 

3 0.03 0.01 design 
4 0.03 0.03 0.0003 
5 0.10 0.06 0.022 
6 0.06 0.10 0.498 
7 0.10 0.03 1.14 
8 0.10 0.10 1.96 
9 0.04 0.10 3.15 

10 0.10 0.03 4.60 
11 0.10 0.10 6.93 
12 0.03 0.03 8.15 

mum volume design) are as good as those obtained after 12 
unplanned experiments. Figure E8.4-2d is a visual repre­
sentation of the confidence region at the end of 12 experi­
ments and can be compared with Figure E8.4-2a. 

Figure E8.4-2e brings out another feature of the planned 
experiments, namely that the experimental runs, after the 
initial 2' design, fell along the periphery of experimental 
region. Figure E8.4-2b shows that it was only in the region 
of high partial pressures that the downward trend of the 
rate curve could be detected. 

CONCLUSIONS. This example demonstrates for a model 
with three coefficients how planned experiments can be more 
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effectivethan unplanned ones. It also shows that the planned 
experimental program delineates the important regions in 
the experimental space for experimentation. One question 
not answered is whether the added cost and time of estimating 
the model coefficients and maximizing Ll l outweigh the 
benefits arising from effective experimentation. One can 
obtain an approximate idea of the magnitude of the expected 
decrease in the confidence region beyond that which could 
be obtained, say, with orthogonal experimental designs by 
practical experience or by simulation studies. One would 
then be more capable of deciding by which route to proceed, 
and how far. 

8.4-2 Multiresponse Processes 

In this section we continue with the development of 
sequential experimental designs to reduce uncertainty in 
parameter estimates. The new feature of this section is 
that multiple responses are observed for a model com­
prises of several equations of known form, such as 

x7]1 = f31 e- 1J 
2 

7]2 = 
f32 X2 + f33 

We shall designate each response by 

1 5:. r 5:. v 
1 5:. i 5:. n 

where the index r refers to the number of the model and 
the index i to the data set number. The model 7Jr will be 
a function of the m parameters f3, as before, and the 
independent variables x, ,ik' where the superscript k, 
1 S k 5:. q, designates the variable number. The errors 
€ri have ~{€ri} = 0, ~{€ri€Sj} = °for i » I. ~{€ri€rj} = 0, 
~{€ri€ri} =. arr == a~, and ~{€ri€si} = G rs = G sr for r i= s. 
Thus the observations on one experiment for one model r 
and another s may be correlated, and the covariance 
matrix among models whose elements are G rs will be 
denoted by I': the elements of the inverse r -1 will be 
designated byars. Note that for different experiments the 
errors are independent. 

As before we follow the arguments of Draper and 
Hunter.] We assume that the observations of Yare 
represented by a multivariate normal distribution 
analogous to Equation 8.3-3 and that after n experiments 
the likelihood function for ~ is 

Ir- 1I n /2 r 1 ~ v ]rs)
L((3 IYn, x, a = (27T)nq /2 exp l-2 r~ ;S arsVrs 

(8.4-11) 
where 

n 

VAn) = - 7)rl((3, XI)]2: [Yn 

i=1 

denotes the sum of the sums of squares of deviations of 
the observed Yr/sfor n experiments. 

t N. R. Draper and W. G. Hunter, Biometrika .55, 662, 1968. 
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FIGURE E8.4-2d Confidence region after 12 runs using planned 
experiments. (Reproduced from J. R. Kittrell, W. G. Hunter, 
and C. C.Watson, AIChE J. 12, 5,1966, with permission of the 
publisher, The American Institute of Chemical Engineers.) 
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Also , as before, we assume that the prior information 
available after n experiments, but before the n* additional 
experiments, leads to a density exactly the same as 
Equation 8.4-4. Introducing the prior density and the 
likelihood of Equation 8.4-11 into Bayes' theorem, we 
obtain the posterior density analogous to Equation 
8.4-5. To select n* additional values of the independent 
variables, as in Section 8.4~1, the posterior density 
analogous to Equation 8.4-5 can be used as a prior density 
together with a likelihood function corresponding to 
Equation 8.4-11 (except that as before the summation on 
i is over i = n + 1 to i = n + n*) in Bayes' theorem to 
give the posterior density after (n + n*) experiments : 

IQI - y. lr -1 1- <n+n·)/2 
Pn+ n·({3 I Yn +n') = (27Tym+ <n+n')vl/2 

-exp [-4~ ~ ~'VT~n+n. )] 
-exp [_.!({3 - b<Oy,Q-l({3 - b<O)] 

(8.4-12) 

Note the analogy to Equation 8.4-7. 
The remainder of the development is exactl y the same 

as in Section 8.4-1. To maximize Pn +n' with respect to 
{3 and the vector of new values of'x., == XT. i for i = n + 1, 
. . . , n + n*, we introduce the equivalent of Equation 
8.4-8 into Equation 8.4-12, except that now we must 
expand each model as 

"7r(b*, XT,i) + L
m 

(f3J "7r({3, XT, I) ~ - bnXT• ii 

J=1 
where 

If we replace b* with b, the maximum likelihood estimate 
of {3 after (n + n*) experiments", the crossproduct terms 
in 1he double summation in Equation 8.4-12 vani sh for 
the reasons presented in Section 8.4-1. The following 
then can be written for the double summation: 

v v

LL ars Vr~n +n' ) 
T= 1 8 =1 

= ~ ~ ars ~~' [dT! - ~ (f3J - b1)Xr,iJ] 

.[ds! - i (f3J - bJ)XS.iJ] 

!where i,
XT,ll r 

X , l m ] \ _ X T• 21 XT ,2m
 
XT-
l .,', IX:,<n+n')1 X r,<n+n')2 

dTI = Yri - "7ri(b, XT,i) ! 
iTo obtain the design for the next n* experiments, we 

should maximize the determinant: j 
! 

(8.4-14) 

which is proportional to the square of the normalization 
factor that would be obtained after Equation 8.4-13 is 
introduced into Equation 8.4-12. All the derivatives in X. 
must be evaluated at b<n), and the elements aTS are 
presumed known . Criterion 8.4-14 reduces to the 
criterion developed by Draper and Hunter]' and others if 
the elements of ,Q-l are zero . Equation 8.4-14 also 
appeals to common sense because it weights the X 
matrices of each model inversely proportional to the 
error associ ated with the model. 

To give a specific example of ~ for the multi response 
situation, let us take the case of two models (v =2) 
with three coefficients each (m = 3), n = 0 (no experi­
ments yet completed), all the w's zero, and n* = 4 
(four experiments to be planned). Then : 

6. = lall(XI ,n+n.)T(XI.n+n') + aI2(XI.n +n.)T(X2.n +n') 

+ aI2(X2.n+ n.)T(Xl ,n+n') + a22(X2.n +n·)T(X2,n+n·)1 

where 

x r.ll XT,12 XT.13]
 

_ X T,21 X T, 22 X T, 23

XT 9 n + n· - for model r
 

X T,31 X r•32 X r,33
 lXr • 4 1 XT, 42 XT, 43 

Iand Xr,l J has been defined earlier. Estimates of all , 0"22, i
and al2 can be obtained from replicate data (or other­ I 
wise) as described in Section 5.5. Then all, a22 , and a12 I

j
can be used to replace the respective ensemble parameters. 

Example 8.4-3 Experimental Designs for Parameter Esti­
mation in Multiresponse Models 

Constant pressure, ternary component, vapor-liquid 
mixtures, which are ideal in the liquid phase and follow the 
ideal gas law in the vapor phase, can be represented by the 

. following equations: ~ 

J=1 i 
(a) !

YA == 1 + (f3Ac - l)xA + (f3BC - l) XB 

T=1 s=1 1=1
 
v v (b)


YB = I + (f3AC - l) xA + (f3BC - l )x B + L L ({3 - b)T(arsXi Xs)({3 - b) (8.4-13) 
r= 1 s = l t N; R. Draper and W. G. Hunter, Biometrika 53, 525, 1966. I

J 

! 
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where 

A, B, C = the three components, respectively 
y = the mole fraction in the vapor phase 
x = the mole fraction in the liquid phase 

{JjJ = relative volatilities, essentially empirical param­
eters, to be estimated 

Although the assumption that x is a deterministic variable 
and only Y = y + € is a random variable stretches the 
truth for any real series of experiments, for this example, 
we shall assume that Y is the random dependent variable. 

Because we have two parameters to fit, we need to make a 
minimum of two initial runs . At what values of XA and XB 
should the first two experiments be carried out? Isobaric 
ternary component experiments for the acetone (A)-benzene 
(B)-carbon tetrachloride (C) system were planned at 760 
mm of Hg pressure. Mixtures of A, B, and C could be 
prepared at selected values of Xjas measured by refractive 
index, and Yj was determined by gas chromatographic 
analysis. 

A study ofthe literature indicated that although the param­
eters in Equations (a) and (b) had not been specifically 
reported, values of Y versus x had been reported t from 
which initial estimates of the {J's could be computed from 
two Y versus x measurements. For example, at a tem ­
perature of 62.4°C and a pressure of I atm, 

XA = 0.389 YA = 0.572 

XB = 0.332 YB = 0.200 

Xc = 0.279 Yc = 0.228 

Only two pairs of Yversus x measurements are independent 
because, by definition, 2: Xf = I and 2: Y f = 1. Then 

0.572[1 + (bAC - 1)0.389 + (b BC -:1)0.332] = bAC(0.389) 

0.200[1 + (bAC - 1)0.389 + (bBC - 1)0.332] = bBC(0.332) 

and 
b~d = 0.74 

bPd = 1.21 

for the initial estimates. 
The three additional data points chosen and initial esti­

mates of {Ju calculated were as follows : 

Point 
Number XA XB Xc YA 

I 0.234 0.268 0.498 0.441 
2 0.288 0.476 0.236 0.480 
3 0.624 0.206 0.170 0.723 

Point 
Number YB Yc bAC bBC 

I 0.169 0.390 2.41 0.80 
2 0.310 0.210 1.88 0.73 
3 0.121 0.156 1.26 0.64 

t B. V. Subbarao and C. V. Rao, J. Chem. Eng. Data 11, 158, 
1966. 

It is apparent that the b's change significantly with composi­
tion . Thus, the proposed model may not prove satisfactory 
over a wide range of compositions. As initial guesses for 
the parameter, it was decided to use 

b~od = 1.85 

b~~ = 0.72
 

Equation 8.4-11 in this instance becomes
 

(c) 

and D.. was maximized to obtain the first two experimental 
points : (XlA' X1B) and (X2A, X2B)' The two matrices X, are 

Specifically, 

- {JACXfAXIB
 
X1,f2 = [I + ({JAC - l)xfA + ({JBC - l)xtB]2
 

x _ -{JBCXtBXjA
 
2 ,fl - [1 + ({JAC - I)XfA + (f3BC - l)xtB]2
 

X _ [1 + ({JAC - I)XjA+ ({JBC - I)XIB]XIB - {JBcXfB 
2 .12 - [1 + ({JAC - I)XfA + C{JBC - I)XfB]2 

The elements of g are 

and when W12 = W21 ---+ 0, we can write 

Inasmuch as no estimates of the elements of I' were available 
nor of the elements of g , a num ber of different assumptions 
were made concerning the values of those elements, and D.. 
in Equation (c) was maximized by the flexible simplex 
method of Section 6.2 with the results listed in Table E8.4-3. 
The relation 

was used to calculate (]1 2 . 

With a few exceptions, practically all the pairs of experi­
mental points' fall at zero mole fraction of component C, ' 
an unexpected result. Clearly defined points emerge re­
peatedly, such as X1A = 0.280 and X1B = 0.720, no matter 
what the assumed elements of r and g are . Recalling that 
Wll = W22 = ex) and W12 = W21 = 0 correspond to the case 
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T ABLE E8.4-3 MAXIMIZATION OF II FOR VARIOUS ASSUMED 

VALUES OF THE ELEMENTS OF rAND n TO OBTAIN THE 

INITIAL EXPERIMENTAL DESIGN 

(a) Wll = CO, W 2 2 = CO, W12 = w 2I = 0 

Objective 
Function , 

a~ a~ to.. 

o 1 1 o 0.573 0.280 0.720 4.40 x 10- 3 

o 0.1 1 0.280 0.720 o 0.580 2.42 x 10- 3 

o 1 0.1 0.351 o 0.280 0.720 2.42 x 10- 3 

o 103 10- 3 0.351 o 0.281 0.719 2.20 x 10+3 

o 10- 3 103 o 0.582 0.280 0.720 2.20 xlO +3 

0.5 1 1 o 0.582 0.269 0.428 2.11 X 10- 3 

0.5 103 10- 3 0.351 o 0.280 0.720 2.20 x 10+3 

0.5 10- 3 103 o 0.585 0.281 0.719 2.20 x 10+3 

(b) Wll = l,w22 = l ,w12 = W2I = 0 

Objective 
Function, 

a~ a~ to.. 

o 1 1 0.280 0.720 0.280 7.720 1.555 
o 0.1 1 0.280 0.720 0.280 0.720 1.305 
o 1 0.1 0.280 0.720 0.280 0.720 1.305 
o 103 10- 3 0.279 0.721 0.347 0.001 2.36 x 103 

o 10- 3 103 0.282 0.718 o 0.593 2.46 X 103 

0.5 1 1 0.281 0.719 0.284 0.716 1.278 
0.5 103 10- 3 0.291 0.709 0.360 0.005 2.33 x 103 

0.5 10- 3 103 0.282 0.718 o 0.593 2.46 X 103 

(c) a.'ll = 102 
, W22 = 10-2

, W1 2 = W2 I = 0 

Objective 
Function, 

a~ a~ to.. 

o 1 1 0.274 0.726 0.277 0.723 8.307 
o 0.1 1 0.280 0.720 0.280 0.720 5.020 
o 1 0.1 0.279 0.721 0.279 0.721 5.020 
o 103 10- 3 0.341 0 0.277 0.723 5.85 x 103 

o 10- 3 103 0.280 0.720 0.280 0.720 3.66 X 103 

0.5 1 1 0.351 0 0.351 o 4.652 
0.5 103 10- 3 0.351 0 0.280 0.720 5.85 x 103 

0.5 10- 3 103 0.280 0.720 0.280 0.720 3.65 X 103 

(d) Wll = 10- 2 , W22 = 102 , W1 2 = w2I = 0 

Objective 
Function, 

P 12 a~ X I B to.. 

o 1 1 0.280 0.720 0.280 0.720 49.23 
o 0.1 1 0.279 0.721 0.281 0.719 27.52 
o 1 0.1 0.280 0.720 0.280 0.720 27.52 
o 103 10- 3 0.280 0.720 0~280 0.720 2.41 x 104 

o 10- 3 103 o 0.577 0.280 0.720 2.63 X 104 

0.5 1 1 0.280 0.720 0.280 0.720 25.11 
0.5 103 10- 3 0.280 0.720 0.280 0.720 2.41 x 104 

0.5 10- 3 103 o 0.581 0.281 0.719 2.63 X 104 

in which nothing initially is known about the precision of 
the fl's but it is known that they are uncorrelated, we can 
observe the effect of the assumed correlation between 
models, or lack of it, among the observations on one 
experiment. If there is no correlation, the effect of high 
precision (a2 = 10- 3 ) versus low precision (a2 = 103) can 
be seen in the fourth and fifth rows of part (a) of Table 
E8.4-3. The direction of experimentation is to gain infor­
mation concerning the parameters with the least precision. 
Other prior information can be examined analogously in 
others parts of the table. 

8.5 SEQUENTIAL DESIGNS TO DISCRIMINATE 
AMONG MODELS 

Often an experimenter sets up more than one model to 
represent a process , and it is natural to inquire what would 
be the best experimental design to use from the viewpoint 
of discriminating among the proposed models. In 
addition, what series of experiments will provide the 
most information with the least effort so that a quanti­
tative decision can be reached as to the better model(s)? 
It is clear that only in certain critical areas of data 
collection can a distinction between two (or more) 
models be established. As an example , Figure 8.5-1 
illustrates the hypothetical responses for two multi­
coefficient models that are a function of a single inde­
pendent variable. Any data collected In the lightly 
shaded region will not pro vide useful information to 
enable the analyst to discriminate between models A 
and B; the data taken in the unshaded region are what 
matter. 

We shall look at discrimination between two models 
first before proceeding to discrimination between several 
models. Suppose an investigator has carried out n 
experiments and has in mind two possible models that 
might represent the process. After the n experimental 
runs , he is unable to conclude which is the best model; _._ . 
he would like on the (n + I)st run to collect observations 
that will help him to discriminate as much as possible 
among the proposed models. How should he select the 
new set of experimental conditions, i.e., the values of 
the independent variables, to achieve this objective? 

Dependent 
variable 

~_-'---r Model A 

'----:'----~ Model B 
Xl X2 

Independent variable 

FIGURE 8.5-1 Data collection for discrimination among models. 

._---\' 
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8.5-1 Model Discrimination Using One Response 

Hunter and Reinert proposed that the (n + 1)st 
experimental point be selected by using the maximum 
likelihood parameter estimates obtained from the n 
completed runs so as to strain the incorrect model the 
most in its attempt to jointly explain the previous data 
and the new observation. Let the two models under 
consideration be Yl and Yz. TheIl if Yl is correct, x <n+l) 

is chosen to max Sz, and if Yz is correct, x <n+ 1) is chosen 
to max Ss , where: 

x<n+l ) = a matrix composed of elements of the inde­
pendent variables on the (n + I)st run 

ST = n) - yT<n»z, r = 1,22: (y<
r 

y in) = value of the nth observed response 
yT<n) = predicted response for model r, r = 1, 2, after 

n data points have been collected 

(Note that the index for the experimental run number is 
now a superscript in parentheses in order subsequently 
to avoid excessive subscripts.) The sequential design is 
essentially insensitive to which model is correct; hence a 
practical solution was proposed. That is, choose x <n +l) 

which maximizes 

(8.5-1) 

where yr<n + l)(b<n» is the predicted value of the response 
for the (n + I)st observation in the rth model, using 
estimates of the parameters obtained from the previous 
n runs. 

Kullback t suggested that a discriminant junction, e.g., 
a function used in deciding which of two states of nature 
is true , could be used to distinguish between two models. 
Let Y be a random variable that is distributed with a 
probability density Pl(Y) when hypothesis HI is true and 
distributed with the probability density pz(y) when Hz is 
true. These hypotheses will be that' Model I or Model 2 
is the correct model, respectively. Then in some sense the 
quantity 

can be said to be a measure of the odds in favor of 
choosing HI over Hz or, from the information theory 
viewpoint, of the information in favor of hypothesis HI 
as opposed to hypothesis Hz. 

The "weight of evidence" or expected information in 
favor of chosing HI is defined as 

/(1:2) = J"" Pl(Y) In Pl(Y) dy (8.5-2a) 
c­ cc pz(y) 

t W. G. Hunter and A. M. Reiner, Technometrics 7, 307, 1965. 
:f: S. Kullback, Information Theory and Statistics, John Wiley, 
New York, 1959. 

Similarly, the expected information for discrimination in 
favor of choosing Hz is 

/(2:1) = J"" pz(y) In pz(y) dy (8.5-2b) 
- co Pl(Y) 

Kullback suggested that 

J(I ,2) = /(l :2) + /(2:1) 

= J~"" [Pl(Y) - pz(y)] In;~~;~ dy (8.5-2c) 

be maximized to distinguish between two states of nature. 
From the linearized analysis in Chapters 5 and 6, we 

can further assume that the (n + l)st observation is 
normally distributed about the expected value for model 
r, tS'{ Yr<n + I)} = y~n +1), with a variance of ail. Further­
more , y~n + 1) is distributed in a local (linearized) region 
about its predicted value, yr<n+ l), with a variance of a~. 

Consequently, y <n+l) is distributed about sr-»with a 
variance of a~ + a~ . We conclude that the probability 
density of y <n+l) for the rth model is 

I [ 1 (y <n+l) _ y<n+l»Z] 
PT(y<n+1» = V 2 ( z Z) exp - -2 z + z 

7T ay + ar ay o; 

r = 1, 2 (8.5-3) 

The quantities Yr and a~ represent the mean and variance 
of Y when H = HI or alternately H = Hz . Kullback 
showed that when Equation 8.5-3 is substituted into 
Equations 8.5-2, it follows after completing the inte­
grations that 

/(I :2) = ! In ail + a~ + ! ail + a~ I
 
2 a~+a~ 2ail+a~-2
 

J(I,2) = t(a~ - an(~ ~ ~ - z ~ z) y . z ay al 

Thus , after n observations become available, 'the appro­
priate / or J could be maximized with respect to the 
independent variables in the model to obtain the next x 
vector for the new experimental run . 

Box and HiII§ described an impro ved version of 
Kullb ack's discriminant functions in which the prior 
probabilities are included. We do not have the space to 

§ G. E. P. Box and W. J . Hill, Technometrics 9, 57, 1967. 

---: 

I 
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go through the development of Hill t but instead employ 
a heuristic argument to obtain the same result. To make 
full use of the prior information available about the 
validity of each model, in addition to computing the 
estimated coefficients used in f~n + n, it would seem 
reasonable to weight /(1 :2) and 1(2 :I) by the respective 
prior probabilities of Model I or Model 2 being the 
correct model, Pin) and p~n),. respectively. 

Let us extend the previous problem and assume that 
several competing models exist, among which the 
(n + I)st experiment is to discriminate. A scalar dis­
criminant function can be formed using the matrix 
of relative likelihoods and a vector of prior probabilities 
as foIlows 

/ (1 :1) /(1:2) 
1(1 :V)][Pin)l/(2:1) /(2 :2) 1(2:v) p(n) 

· ~ (8.5-4)· .· . · .· . · .[ 
I( v :l) / (v:2) I( v:v) Ptn) 

Each element on the main diagonal of the /(r:s) matrix 
is zero so the discriminant function becomes 

K; = P1P2J(l, 2) + P1PaJ(l, 3) +...+ P1PJ(l, v) 

+ P2PvJ(2, v) + . . .+ p v - 1PJ(v - I, v) 

v v 

= p (n)p<n) aT 2 ­
2 T S . (a ~ + a;)(a~ + a~)
 
_I 2: 2: [( as 2)2 

r =1 8 =r+1 

(8.5-5) 

(Note that J(r, r) = 0.) Equation 8.5-5 is the same 
equation as that developed by Box and Hill. 

One way to obtain the posterior probability that model 
l is correct after taking n observations is to apply succes­
sively for each model Bayes' theorem in the foIlowing 
form : 

p~n ) = P? -l)PT(y(n» (8.5-6) i -p~ n - npT(y(n» 
T=1 

where p~n -1 ) is the prior probability associated with the 
rth model. The initial probabilities P~O) can be set equal 
to I/v if not known. 

In general , neither a~ nor a;, r = I, . . . , v, will be 
known; hence the values of these variances must be 
estimated . To obtain the variance of f T for a model, 
we can use the intermediatecalculations developed in the 
least squares estimates of the coefficients (3. If f T is 
linearized by expansion in a truncated Taylor series, 

t W. J . Hill, Ph.D . Dissertation, Univ. of Wisconsin, Mad ison, 
1966. 

,
 
the variance of f ro a;, is given by Equation 6.4-4 and the I 
elements of matrix C are given by Equation 6.4-1. But 
the estimate of a~ given by Equation 6.4-2 cannot be 11 
used for each model inasmuch as Equation 6.4-2 is iI 
based on the concept that the model is the correct one. I 

Hence, a~ should be taken as a~ and the latter estimated ifrom replicate experiments (as s~). 

The sequential procedure to discriminate among I
models can be summarized as follows: 

I. Based on an experimental design selected in some 
arbitrary or suboptimal way, coIlect n data points. 

2. Estimate the parameters in the v models by linear 
or nonlinear regression; estimate a? and calculate each 
a;, using Equation 6.4-4. 

3. Calculate the prior probabilities for the (n + I)st run 
which are equal to the posterior probabilities for the nth 
run by using Equations 8.5-6 and 8.5-3 with n sub­
stituted for (n + I) in the latter. The initial P's can all 
be equal to i]» if no better choice is available . 

4. Select the vector of experimental conditions for the 
(n + I)st run (the vector x (n +1 » by maximizing K; 
using a numerical optimization routine. 

5. Run an experiment at x'" + 1 ) and repeat starting 
with step 2. Figure 8.5-2 illustrates figuratively theprob­
ability of each of several competitive models representing 
the experimental data after a few cycles of the suggested 
procedure . 

The sequential procedure continues until one (or 
more) p~n) reaches a value that causes acceptance of the 
model by some criterion. Or the experimenter can just 
observe the trend of the changes in the P, as the number 
of experiments increases, drop models with low values of ­
Pro and add models, if he wishes, terminating the experi­
ments when he feels satisfied with the discrimination 
actually achieved. 

Because in practice the models will usually be non­
linear, the assumed probability distribution underlying 
the development of Equation 8.5-3 will be only approxi­
mately correct. Also, because the variances a? and;: ­
must be estimated from experimental data, as must be 
the coefficients used to predict fro the vector x (n + 1) which 
maximizes K, may be only approximate. However, the 

Initial 
experiment 

2 3 4 5 6 7 8 9 10 
Observation number, n
 

FIGURE 8.5-2 Model discrimination by sequential designs.
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sequential nature of the design procedure overcomes 
these handicaps in analysis. 

One desirable feature of the Box and Hill discrimina­
tion technique is that it can discriminate between a 
model and its augmented relative. For example, two 
models might be 

I:	 Yl = {3lX~ + {32x2xa 
I + {3axl + {J4X2 + {Jsxa + {J6X4 

II {3lX~ + {32x2xa
 
: Y2 = I + {JaXl + {34X2 + {3sxa
 

If (36 == 0 in Model I, the models are identical. It appears 
at first glance that model discrimination is impossible 
because if Model II is correct, Model I also appears to be 
correct. However, the model discrimination procedure 
described above works effectively because the variances 
of the dependent variables, ~ and a~, are a function of 
the number ofcoefficients in the model. For an equal sum 
of squares, the model with the smallest number of coeffi­
cients will prove to be best. . 

We now illustrate the detailed calculations of the Box 
and Hill method by an example. 

Example 8.5-1 Sequential Discrimination Between Models 

Cattle feedlots rank high on the list of sources of water 
pollution. To model the runoff from such lots for evaluating 
pollution control measures, three models were developed of 
increasing complexity: 

1.	 Stirred tank model:
 

c = {Jo exp (-{31X) + EO
 

2. Stirred tank model with injection:
 

c = {J2 exp (-{JaX ) + {34
 

3. Two stirred tanks in series with injection in first tank: 

c = {39 exp ( - {Jsx) + {36 exp ( - {J7X ) + (3s 

The notations are 

C = concentration of COD, chemical oxygen demand 
= c + € 

X = water quantity, mm/hr 

The ranges of the dependent and independent variables 
were: C(3000 to 10,000) and x : (0 to 12). It was necessary to 
estimate the following parameters: 

Modell: {3o and {3l.
 
Model 2: {32' e; and {J4.
 
Model 3: {3s, {J6' {J7' {3s, and ·{J9.
 

At least five experiments were required to estimate the 
parameters in Model 3; hence six experiments plus two 
replicates were carried out by sprinkling, reasonably uni­
formly, a small concrete-surfaced feedlot to obtain the 
following results : 

C, mg/liter x, mm/hr 

8140 0.1 
7430 1.0 
6310 2.0 
5510 4.0 
5390 5.0 
5250 6.0 
6140 2.0 
6490 2.0 

The replicate runs for essentially the same conditions pro­
vided the information to estimate the residual variance. 

It was not clear from any of the tests in Chapter 7 as to 
which model represented the data the best. Therefore, it was 
decided to carry out a sequence of experiments for model 
discrimination. From the initial eight experiments the 
estimated coefficients were 

bo = 7919 bs = -2.490 X 10- 2 

bl = 0.07937 be = 8.649 x 104 

b2 = 3431 b7 = 3.730 X 10- 2 

b« = 0.3630 be = - 1.908 X 105 
b4 = 4797 b« = 1.102 X 105 

The estimated parameters bs through b9 were for the trans­
formed model 

c = {3g exp [-(3s(x - x)] + {J6exp [-(37(X - x)] + {Js 

where x = 3.000. The transformation improved the speed 
of convergence of the nonlinear estimation routine (Mar­
quardt's method) substantially over that obtained for the 
untransformed model, as mentioned in Chapter 6. 

The sums of the squares of the residuals for each model 
were: 

Model ePmtn v = d.f. 

1 4.416 X 105 4 
2 1.039 X 105 3 

Transformed 3 7.217 X 104 I 

and from the replicate data s~ = 3.11 X 104 • 

• Initial 8 runs3.90 -10. 
... \~	 4 Additional runs(desiganted by numberl 
.~ 11 
~ \.~E 3.85 

-, '" ---- MOdell} Predicted .:3­
'" - - Model 2 after 11 

,,"-, -- Model 3 experiments
c: 

'" E 3.80e ~',
's :>. 

~ 
o 3.75 
o o 

.38 
3.70 

3.65 '--_--'-__"---_--'-__I-_--I:>__.l-_...J 

o	 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
x, mm/hr 

FIGURE E8.5-la	 COD concentration in the runoff for a concrete 
101. 

....- . , . _- -- ~.--~- . . .." 
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Two different assumptions were made concerning the 
1";8), one that 1'\.8) = 11.8 ) = 118 ) = -1, and the other that 
P~8) was inversely proportional to </>mln/V, or 

P~8) = 0.17 

Introduction of these probabilities into Equation 8.5-5 for 
p <n), together with s; substituted for a~ and values of y (9) 

calculated using the coefficients estimated after the initial 
eight runs, yielded the folIowing values of X ( 9) on maximiza­
tion of K«: 

X PI P2 P3 

Assumed 
.x<9) 

Posterior 
4.2 

0.333 

0.22 

0.333 

0.40 

0.333 

0.38 
Assumed 

X (9) 

Posterior 
4.2 

0.17 

0.20 

0.53 

0.42 

0.30 

0.38 

The poster ior values of P were computed from Equations 
8.5-6 and 8.5-3. Clearly, the initial values of P have little 
influence in this problem on the value of x for the ninth run. 

Because of the high experimental error at low flow rates, 
caused mainly by nonuniform coverage of the feedlot by 
waste material, no experimental runs were carried out at 
an x of less than 0.1 mm/hr. At the end of 11 runs the experi­
ments had to be terminated for economic reasons, but it 
was clearly shown that Model 1 was considerably poorer 
than Models 2 and 3, and that Model 3 was preferred over 
Model 2 because its ro» was higher, although not decisively 
so, and it was a simpler model. Both Models 2 and 3 
represented the data sat isfactorily. 

Figure E8.5-la illustrates the experimental data after II 
runs, 3 of which were replicate runs, together with the pre­
dicted values of the COD based on the coefficients estimated 
at the end of the eleventh run. Figure E8.5-lb shows how 
the probabilities for the models changed as the sequential 
experimentation was carried out. 

8.5-2 Model Discrimination in the Case of Multiple 
Responses 

In this section we consider the problem of discrimina­
ting among process models that include more than one 

response. Such models occur quite naturally in multi ­
component processes such as those involving physical 
equilibria or chemical reactions. For example, the 
reaction 

might be best represented by one of two models: 

Model I Model II 

rA = -klcA rA = -k~c~ 

t e = k lcA - k2cB rB = k~c~ - k~c~ 
ro = k 2cB rc =k~d 

(Only two of the equations in each model are indepen­
dent inasmuch as the third equation can be formed by 
a linear combination of the other two .) 

A criterion for discrimination among multiresponse 
models can be obtained in exactly the same fashion as 
indicated in Section 8.5-1 for single response models. 
Although the concepts applied are no different than in 
Section 8.5-1, the bookkeeping for the variables, param­
eters , and equations is more complex . Since each model 
can consist of several equations, a double index is needed 
to designate the specific equation in a given model. Let 
YTf stand for the rth model, r = I , ... , v, and the jth 
equation, j = I, . . ., u, in the model. Corresponding to 
thejth equation is thejth observation. In vector notation, 
then : 

Observations Expected Values Models tr, YTI 1 

YT = YTf Y = YT 

YTU Yv 

The additive error for the jth response in the nth run is . 

l > I, ... ,u (8.5-7) 

We assume that the observations Yare normally distrib-" 
uted about their expected values, Y" for a given model Iwith a covariance matrix I: y , where 

_r::2:~2I:y - • .. 
alu a2u 

Then the probability density for 
I:\., is 

p(y<n +1) IY" I:y ) 

II: I-Yo= -y-- exp [_l(Y<n +l) _
(21T)u /2 "2 

!:::]
.. •

1 
a~ 

y<n+1),given _YT and 

Y' )TI:-l(y<n +l) _ y)] 
T Y T 

(8.5-8) 

t 
1

~~--,-------~~~~~=-~-------------------- ---" ~--_ " " ' -
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As in Section 8.5-1 , we assume that each model can 
be locally linearized in parameter space about the 
estimated parameters ~ : 

y~j' ) = Yr;(~ ~n ), xW) 

To simplify the notation in the subsequent development, 
we let 

X <n) _ [8Yr;(~~n ), Xm]
rJ k ­

, 8fJrk (3r= l'Wl
 

and the matrix X rJ be
 

[ 
Xr~~ i Xr~~ h Xr~~ ~] 

XrJ = : 

Xr~~)l Xr~~h Xr~~~ 

The posterior probability density function for (3 
(which is a column vector of all the parameters) after n 
runs is 

IMI Yz A A 

p«(3Il:y, Y) = (21T)m /2exp [_.!«(3- (3)TM«(3 - (3)J (8.5-9) 

where M = 'LY=1 'Lf=1 ailX;;Xr1and ail is an element from 
l:y 1. In other words, «(3 - ~) is normally distributed 
about 0 with a covariance matrix M -1 . After n runs 
the matrix of partial derivatives evaluated at ~<n ), but 
using the (n + l)st matrix of independent variables, is 

x <n+l ) x <n+1)
rl ,l r1,2 rI.m 

X<n+1) =
,.... 

:
. 

: 
r . 

[. x <n+1) x <n+l) ..rU,l Tu,2 . xsn»- Tu.m 

The matrix x~n + 1)«(3 - ~<n» is normally distributed 
about 0 with a covariance matrix of 

w~n+1) = x~n+l )M-1(x~n+ll)T 

Next, because of the linearization of the models, Yr is 
normally distributed about the ' predicted response, 
y~n+1 ) , with a covariance matrix w~n+ l ) and a probability 
density · 

Iw~n+1)I- Yz 

(21T)u/2 

-exp [-'!(Yr- y~n+ll)T(w~n+1» -1(Yr-y~n+l»J 

(8.5-10) 

Finally, after combining Equations 8,5-8 through 
8.5-10 and after some extensive manipulations, the 
probability density function for y~n+l ) , given I: y , is 

p(y~n + 1) I I:y) 

1I:<n+1)1- Yz 
r - exp [_.Hy<n+1) _ y <n+l)Y
(21T)U r 

. (l:~n +1» - l(y<n +1) _ y~n +1» J 

(8.5-11) 

where l:~n+1) = l:y + w~n+1 ) . Equation 8.5-11 corre­
sponds to Equation 8.5-3 of Section 8.5-1. 

Introduction of Equation 8.5-11 into Equations 8.5-2 
and use of the following two relations for the expected 
value of quadratic forms: 

tf{(y<n) _ y~n )Y(l:~n » -l(y<n) _ y~n» } 

= [tf{(y<n) _ y~n)Y}J(l:~n»-l[tf{(Y<n ) _ y~n» }] 

+ trace l:~n)(l:~n» - 1 = trace I u 

where I, is a u x u identity matrix, and 

tf {(y<n) _ y~nl)T(l: ~n» - l(y <n) _ y~n»} = trace l:~n)(l:~n»-l 

lead to the general Kullback criterion 

! <n+ll(r:s) = f'" Prey) InP.(Y) dy<n+1) 
-'" Ps(Y) 

1[ 1l: ~n+1 )1 
= 2 In Il:~n +1)1 - trace I, 

+ tracel:~n+1)(l: ~n+1 »-1 + (y~n+1 ) _ y~n+l )Y 

. (l:~n +1» -l(y~n +1) _ y~n +1»] (8.5-12) 

A similar expression is obtained for !<n+ll(s:r) by inter­
changing indexes. Introduction of the quantities given in 
Equation 8.5-12 into Equation 8.5-4 results in the multi­
response analog of Equation 8.5-5 : 

s; = t 2:
v 

2:
v 

p~n )p~n ) 
1=1 8 =1+1 

.{trace [l:~n +1 )(l:~n +1» -1 + l:~n +l)(l:~n +1» -1 - 2I u J 

+ (y~n + 1) _ y~n +1)y 

. [(l:~n+1 » -1 + (l: ~n+1 »-lJ(y~n+1 ) _ y~n+1 »} 

(8.5-13) 

Equation 8,5-13 can be used as a design criterion for 
selecting the values of the independent variables on the 
(n + l)st run after n runs have been completed . 

The discrimination procedure is essentially the same as 
that presented in Section 8.5-1. An initial set of experi­
mental runs is carried out, the parameters in each model 
are estimated, the posterior probabilities are calculated 
by Equation 8,5-6, the next experiment(s) is(are) designed, 
and the next run is carried out. These steps are repeated 
until the desired degree of discrimination is achieved. 
Because of the presence of the prior probabilities in the 
function for K; less emphasis is placed on the poorly 
fitting models and more emphasis on the better models. 
Thus, maximizing K; leads to experimental designs at 
conditions at which the maximum discrimination takes 
place between the best models. 
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8.5-3 Sequential Designs for Simultaneous Discrimina­
tion and Parameter Estimation 

Hunter and Wichern t simulated the discrimination among 
three chemical kinetic models, each having two responses: 

k1KAKBPAPB 
Model I : rl = (l + KAPA + KBPB)2 

r2 = 
k 2KAKBPAPB 

..,..,..---::--.....:.......:.."-----:"":"
(l + KAPA + KBPB)2 

Model II: rl 
k 1 KAKBPAPB 

(l + KAPA + KBPB)2 

k 2KAPAPB 
r « = (l + K APA + KBPB) 

Model III : rl 
k 1KAPAPB 

(l + KAPA) 

k 2KAPAPB
r 2 = 

(l + K APA)2 

where A and B are the components, P is the partial pressure, 
K is the absorption equilibrium constant, k is the rate 
constant, and r, and r2 are the responses (reaction rates) 
to be observed. For the simulation, Model III was chosen as 
being the " true " model , with k 1 = 0.0005, k 2 = 0.16, and 
K A = IS. Simulated observations, Yl and Y2 , of the re­
action rates were prepared by adding to the deterministic 
ri. andr2 a normal error with zero mean and 'standard 
deviation of Ul = 3.162 X 10- 6 and U2 = 1.0 x 10-\ 
respectively. 

It was first assumed that only a single response, Y2, 
would be observed . The initial values of P were PiG) = 
PWl = Pi£l .~ t , and the first experiment was a 22 factorial 
design. Figure £8.5-2 illustrates the change in the posterior 
probabilities as successive simulated experiments were 
carried out by the procedure discussed in Section 8.5-2. 
Progress in discrimination between Models I and III was 
slow, although (the correct) Model III was emerging as the 
preferred one. 

If both responses Y1 and Y2 were observed and used to 
plan the experiments, the posterior probabilities were as 
listed in Table £8.5-2. After the four initial experiments in 
a 22 factorial design, Model III was fairly well identified as 

, 
H 

15 
! I I 

0.8 .-r.,..,--,-,--.-r-T-,---,-,-,....,r-r--r--,-,.--,r-r-,-~ 

00 

FIGURE E8.5-2 

t W. G. Hunter and D. W. Wichern, Depts, ofChern. Eng. and 
Stat. Tech. Rept. 33, Univ. of Wisconsin, Madison, bet. 1966. 

0.7 

0.6 

0.5 
p 0.4 

0.3 

0.2 

0.1 

T ABLE £8.5-2 POSTERIOR PROBABILITIES WITH BOTH Y1 AND
 

Y2 MEASURED
 

Run PI 

o 0.333 0.333 0.333 
4 0.039 0.753 x 10- 6 0.961 
5 0.001 0.000 0.999 

being the best model. Clearly, measuring both responses, if 
feasible, in an experiment is more effective in discriminating 
among tentative models. 

8.5-3 Sequential Designs for Simultaneous 
Discrimination and Parameter Estimation 

So far we have discussed designs for parameter 
estimation separately from those for model discrimjna­
tion. But suppose, as is often the case, the experimenter 
wants to obtain designs which will fulfill both objectives 
simultaneously. What should he do then? Rather than 
discriminate first and resolve the coefficients subsequently, 
Hill , Hunter, and Wichern t suggested that a weighted 
criterion be used which involves the criterion K; given 
by Equation 8.5-5, or 8.5-13 for multiple responses, 
and the criterion !i given by Equation 8.4-10, or 8.4-14 
for multiple responses. 

Specifically, they proposed that the following criterion 
be used: 

(8.5-14) 

where 

v 

E = L Pin) !iT/s;max 

T=l 

WI = [v(1 - p~n »)/(V - 1)]h 

In Equation 8.5-14, Kv•max and !iT ,m ax are the maximum 
values of K; and !iT in the experimental region, re­
spectivel y; !iT represents the criterion !i for a single model, 
the rth; p~n ) is the prior probability associated with,the ., 
best model, b, that is the largest P (n) for a model after the 
nth observation is completed ; and r is the index for 
the models,r = 1,2, ... , v. Under ma ximum uncertainty 
with P = I/v, WI = I and W2 = 0, all the weight will be 
allocated to the discrimination criterion. On the other 
hand, if p~ n) = I, WI = 0 and W2 = I, the parameter esti­
mation criterion dominates. The choice of ,\ is up to the 
experimenter. High values of ,\ (,\ » 1) emphasize the 

~ W. J. Hill, W. G. Hunter, and D. W. Wichern, Technometrics 
10, 145, 1968. 

.1 
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parameter estimation criterion whereas low values of TABLE E8.5-3b DESIGNS USING CRITERION K; 
A(A « I) emphasize the model discrimination phase. As 

Run XI = t T YA~ 0, WI ~ 1 and C ~ D; as A~ 00 , WI ~ °and C ~ E. 
In effect, A acts as a parameter governing the transition 

1 25 575 0.3961 from one criterion to the other. If there is considerable 
2 25 475 0.7232 variability in the observations, then initially the prob­
3 125 475 0.4215abilities are likely to fluctuate from one run to the next. 
4 125 575 0.1297 0.0060 0.4335 0.4087 0.1518Hence, a small value of Ashould be chosen so that param­
5 150 550 0.1504 0.0004 0.5580 0.3740 0.0676 

eter estimation is not prematurely emphasized if P, 6 25 525 0.5565 0.0001 0.6278 0.3446 0.0275 
increases suddenly solely because of experimental error; 7 150 550 0.1558 0.0000 0.6865 0.3020 0.0115 
Acan be subsequently increased. 8 150 550 0.0671 0.0000 0.9424 0.0570 0.0005 

9 25 525 0.6196 0.0000 0.9895 0.0105 0.0000 
10 150 525 0.1427 0.0000 0.9978 0.0022 0.0000 

Example 8.5-3 Sequential Designs by a Combined Criterion 11 25 525 0.5979 0.0000 0.9993 0.0007 0.0000 
Hunter, Hill, and Wichern also described a simulated 12 150 525 0.1717 0.0000 0.9997 0.0003 0.0000 

experiment in which the sequential experiments were 13 150 525 0.2419 0.0000 0.9995 0.0005 0.0000 
selected by the combined criterion of Equation 8.5-14. 14 25 525 0.5441 0.0000 0~9994 0.0006 0.0000 
Four models were proposed to represent the reaction 15 150 525 0.1977 0.0000 0.9996 0.0004 0.0000 
A-+B:" 

Reproduced from Technometrics 10, 152-159, 1968, with permis­
sion of the authors and the American Statistical Association. 

Y2 = [I + Xl exp ({321 - {322X2)]-1 (b) 
A preliminary 22 factorial design was chosen to generate 

YI = exp [- Xl exp ({3u - {312X2)] (a) 

Ya = [I + 2XI exp (f3al - {3a2X2)]- y, (c) four initial values of Yat the following levels: 
Y4 = [1 + 3XI exp (f341 - {342x2)]-Y.(d) 

Xl (min) T CK)

where Y is the dependent variable, the concentration; Xl is 25 475 
the time ; and X2 = [(l IT) - (1/525)], a scaled inverse 25 575 
absolute temperature. In the simulation study , Model 2 was 125 475 
selected as the "true" model , and the data YT = YT +ET 125 575 
gener ated by using G . = 0.05, {321 = 3.53235, and {322 = 5000. 
The range for" experimentation " was limited to The initial values of the P,'s, presumably in view of the 

lack of other information, were all set equal to 0.25. After 
o ::::; Xl -s 150 min the fourth value of Y was generated, the posterior proba­

bilities were calculated by using Equation 8.5-6 (see row450 ::::; T ::::; 600 -x 

TABLEE8.5 -3a D ESIGNS USING CRITERION C 
• 

Run XI=t T Y PI P2 Pa P4 2.5 

1 25 575 0.3961 
2 25 475 0.7232 
3 125 475 0.4215 ., 

o
4 125 575 0.1297 0.0060 0.4335 0.4087 0.1518 -; 1.5
 
5 150 550 0.1504 0.0004 0.5580 0.3740 0.0676 <l
 
6 25 525 0.5565 0.0001 0.6278 0.3446 0.0275 

. : 
7 150 450 0.5542 0.0001 0.5011 0.4541 0.0447 1.0 
8 150 550 0.0671 0.0002 0.9031 0.0953 0.0014 
9 25 600 0.3356 0.0002 0.9208 0.0780 0.0009 

0.5 10 150 450 0.4842 0.0002 0.9312 0.0680 0.0006 
11 25 600 0.3140 0.0002 0.9322 0.0671 0.0005 
12 150 450 0.5133 0.0002 0.9307 0.0685 0.0006 
13 25 600 0.3500 0.0~2 0.9386 0.0607 0.0005 
14 150 450 0.4936 0.0002 0.9402 0.0592 0.0004 
15 25 600 0.3058 0.0002 0.9381 0.0613 0.0004 

Reproduced from Technometrics 10, 152-159, 1968, with permis­
sion of the authors and the American Statistical Association. 

2.0 

FiGURE E8.5-3a The value of .6. for sequential designs using two 
different criteria. (Reproduced from Technometrics 10, 152-159, 
1968, with permission of the authors and the American Statistical 
Association.) 
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6000 .----,----r--.--,---.-----r---, 

5500 
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4500 
1hz 

4000 
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3000 ,For criterion s , only 
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fJZl 

FIGURE E8.5-3b Approximate 95-percent confidence contour for 
the combined criterion C and the single criterion K- after 15 runs ; 
+ and x indicate the respective parameter estimates. (Re­
produced from Technometrics 10, 152-159, 1968, with per­
mission of the authors and the American Statistical Association.) 

n = 4 in Table E8.5-3a . From the initial experiments it 
appeared as if Models 2 and 3 would be the best. 

To determine the settings of Xl and X2 for the fifth run, C 
in Equation 8.5-14 was maximized by search on a grid of 
mesh size 25. The weights, based on ,\ = 2, were 

W2 = 1 - WI = 0.43 

and the optimal conditions proved to be Xl = 150 min and 
T = 550oK : At this stage the experimental designs began to 
diverge somewhat from those which would be obtained if 
K; alone were the criterion. Tables E8.5-3a and E8.5-3b 
show the results after each series of hypothetical experi­
ments. Figure E8.5-3a indicates that for the early series of 
runs, up to say number 8, 'f:J. did not change substantially 
while P2 went from 0.4335 to 0.9031. In other words, the 
early runs were mainly discriminatory and the later runs 
mainly reduced the confidence region for the model selected. 
Figure E8 .5-3bshows the 95-percent joint confidence 
region for f321 and f322 of Model 2 after 15 runs using C and 
K; alone as the criteria. The confidence region obtained by 
using C is clearly smaller than that obtained by using Ku• 
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Problems 

8.1	 A replicated two-level factorial experiment is carried 
out as follows (the dependent variables are yields) : 

Time (hr) Temperature (OC) Yield (%) 

1 240 24 
5 240 42 
1 280 3 
5 280 19 
1 240 24 
5 240 46 
1 280 5 
5 280 21 

Find the coefficients in a first-order model, Y = 
/30 + fhxl + {32X '4 + € , and determine by an analysis 
of variance whether or not the model successfully 
fits the data. 
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8.2	 Tell whether or not the variables in the following 
designs comprise an orthogonal set of independent 
variables; show calculations. 

(a) Xl X2 Xa 

:-1 -1 -1 
1 -1 1 

-1 1 1 
1 1 -1 

(b)	 Xl X2 Xa X4 

-3I -"3I -4.84 -2.48 

t t -2.47 -2.01 
-~ I -2.46 -2.473 "3 

.i, ~ 
3 3 -0.08 -1.99 

-32 0 -4.84 -2.72 
2 0 -0.08 -1.763 

0 -t -4.85 -2.25 
0 t -0.08 -2.22 
0 0 -2.46 -2.24 

8.3	 Develop equations to code the following variables to 
accommodate a: 

(a)	 Two-level factorial design. 
(b)	 Equilateral triangular design. 

Range of Variables for Fuel Codes 943F to 977F 

Ignition Delay, Independent Variables 
Degrees, 

Dependent Cetane Volume, Percent 
Variable Number Oletins 

16.2-8.0 22.3-49.6 1.3-60.7 

8.4	 Determine the suitability of a first-order model in 
fitting to the data in Table P8.4. 'Note 'that the x's 
are not orthogonal. 

TABLE P8.4 

Controlled Coded 
Variables Controlled 

Response, Tempera­ Catalyst Variables 
Yield ture Nitrite 

23 110 0.54 -0.55 -1.075 
27 117 0.63 0.85 0.725 
24 113 0.71 0.05 2.325 
22 107 0.48 -1.15 -2.275 
32 118 0.57 1.05 -0.475 
29 117 0.63 0.85 0.725 
18 102 0.59 -2.15 -0.075 
31 118 0.60 1.05 0.125 

temperature - 112.75 CjN - 0.59375 
Xl =	 X2 = 

5.00	 0.05 
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8.5	 Demonstrate, by calculations, that the following 
second-order designs are rotatable: 

(a) Pentagon. 
(b) Hexagon. 
(c) Central composite. 

Demonstrate that the 32 design of Figure 8.1-5 is not 
rotatable. 

8.6	 An experiment based on the hexagon design was 
carried out with four replications at the origin, 
giving the data in Table P8.6. 

TABLE P8.6 

Factor Levels Design Levels 

Yield Tempera- Time 
('70) ture COC) (hr) Xl X2 

96.0 75 2.0 1.000 0 
78.7 60 2.866 0.500 0.866 
76.7 30 2.866 -0.500 0.866 
54.6 15 2.0 -1.000 0 
64.8 30 1.134 -0.500 -0.866 
78.9 60 1.134 0.500 -0.866 
97.4 45 2.0 0 0 
90.5 45 2.0 0 0 
93.0 45 2.0 0 0 
86.3 45 2.0 0 0 

di . _ temperature - 45 time - 2 
Co mg. Xl - 30 X2 = 1.000 

Fit a full second-ord~r model to the data, deter­
mine if the model fits the data, and, if it does, establish 
which parameters can be removed from the full 
model. 

8.7	 Comstock, Jurnack, and Mooney] investigated the 
effect of temperature of precipitation, concentration 
of reactants, and rate of addition of diammonium 
hydrogen phosphate on the yield of precipitate and 
on four physical properties of powders: 

1. B.E.T. surface area, by gas adsorption. 
2. Particle size, by optimal measurement of sedi­

mentation rates. 
3. Fisher subsieve size (SSS). 
4. Bulk density, by a conventional pyconometer. 

A central composite design for four independent 
variables required 24 points plus replicates . The 
design was run in three blocks, as indicated in Table 
P8.7, and arranged so that a first-order response 
could be estimated after running the first block. 

Obtain both a first-order model fit to the first block 
of data and a second-order fit to all three blocks. 

t A. J. Comstock, S. J. Jurnack, and R. W. Mooney, Ind. Eng. 
Chem. 51, 325, 1959. 

Prepare an analysis of variance which indicates the 
effect of each coefficient, the first and second-order 
effects for the second-order model, the experimental 
error, and the lack of fit of the model. The coding 
of the variables was 

temperature - 80
 
Xl = 7.5
 

CaCl 2 concentration - 1.25 
X2 = 0.375 

(NH4hHP04 concentration - 1.25 
X 3 = 0.375 

addition rate - 180 
X4 = 85 

8.8	 Are the following experimental data fitted well or 
poorly by a first-order model? The matrices are: 

Observed 
Yields 

1.0 

1.7 

6.0 

5.2 
y= 

7.0 

7.9 

18.0 

19.2 

Xo Xl X2 

1 -1 -1 

1 -1 -1 

1 1 -1 

I 1 -1 
x= 

1 -I 1 

I -1 I 

1 I 1 

I I 1 

8.9	 An experiment was designed to determine if the ratio 
of fresh to recycle monomer in monomer blends af­
fected the polymerization conversion or any of the pro­
duct qualities.t A second factor studied was the level 
of catalyst concentration in the monomer at the start 
of the polymerization. Both factors affect the con­
version and the molecular weight of the product. 
The two responses measured were: 

1. Conversion. 
2. ZST (a measure of the apparent molecular weight 
of the polymer). 

Seven polymerizations were run at each monomer 
concentration according to the scheme below: 

Catalyst Concentration 
Blend 
Ratio 2 3 

I 
2 

7 
7 

7 
7 

7 
7 

The results are given in Table P8.9 on page 286. 

:I: L. A. Pasteelnick and W. B. Leder, Chem. Eng. Progress 53, 
392, 1957. 
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TABLE P8.7 BOX-WILSON DESIGN AND EXPERIMENTAL DATA 

Coded Values of Independent Variables Particle Size Measurements 

Sedimen­

Xl X4 B.E.T. sur­ Fisher tation, Bulk
 

Run (tempera­
 (addition face area SSS dop density Yield 
Number ture) rate) (sq meters/g) (microns) (microns) (g/cu in) (%) 

Block I 
I -I -I -1 -I 11.0 2.2 4.2 4.7 97.0 

· 2 o o o o 9.4 3.0 4.5 5.6 95.9 
3 -1 +1 +1 -1 3.5 3.2 4.7 5.3 98.5 
4 +1 -I -I + I 2Ll 2.2 3.6 6.7 90.5 
5 +1 +1 -I -1 8.9 5.0 4.5 9.0 94.4 
6 -I - I +1 + I 13.6 1.3 4.4 2.8 95.2 
7 +1 +1 +1 + I 9.2 2.9 3.5 5.3 94.6 
8 o o o o ILl 3.4 4.0 5.3 93.4 
9 +1 -I +1 -1 12.3 5.6 4.9 8.8 94.0 

10 -1 +1 -1 + 1 13.0 2.1 3.9 3.7 92.8 

Block II 
1 +1 +1 -1 + 1 10.9 3.8 3.9 6.4 93.0 
2 -1 -1 +1 -1 13.1 2.6 4.4 5.6 94.2 
3 o o o o 10.5 2.7 5.1 5.5 95.6 
4 -I +1 +1 +1 10.8 1.3 3.4 2.4 98.3 
5 +1 +1 +1 -,-1 5.4 4.5 5.0 6.4 96.3 
6 o o o o ILl 2.2 3.9 5.9 95.1 
7 -I +1 -1 -1 11.2 3.3 4.1 6.4 91.8 
8 +1 -1 +1 + 1 18.0 2.5 3.6 6.2 92.0 
9 -1 -1 -1 + 1 15.2 1.2 3.2 2.9 94.8 

10 +1 -1 -1 -1 18.4 4.0 3.5 8.5 91.6 

Block III 
1 ..- 0 o o o 10.6 2.8 3.2 5.6 93.3 
2 -2 o o o 11.6 1.4 3.5 2.9 95.7 
3 o o -2 o 20.9 3.1 3.8 7.8 90.0 
4 o o o o 10.1 3.3 4.0 5.7 94.5 
5 o o o +2 13.0 1.6 3.2 .. 3.6 94.9 
6 o o o -2 3.8 U.s 5.8 12.3 94.5 
7 o -2 o o 27.9 1.3 2.7 5.9 90.0 
8 o +2 o o 7.6 2.9 3.2 5.0 96.4 
9 +2 o o o 9.4 4.2 3.4 7.5 95.2 

10 o o +2 o 15.4 1.6 3.1 3.9 95.3 

(a) Develop an orthogonal design for the experi­
ment. Assume both catalyst concentration and 
blend ratios are coded as follows: 

(d) Set up a new design and new location for experi­
mentation. Give the coordinates for the next 
series of experiments. 

bl d 
. 

en rano = 
true blend ratio 

b 
- a 8.10 Transform the following response surface into 

canonical form and find the relations to express the 
canonical vector x in terms of the original vector x. 

. 
catalyst concentration = 

true concentration -
d 

c f= 95.0+0.05xl -1.58x2 ­ 8.13xi - 5.87x~ ­ 6.25xlX2 

(b) 

(c) 

Determine the best fitting model for the prob­
lem; estimate the coefficients. 
Predict the location of the optimum catalyst 
concentration and blend ratio (in coded values) 
for the first experiment, as reported. 

8.11 Transform the following estimated regression equa­
tion to the canonical form and interpret the nature 
of the response surface. 

f = 60.64 - 3.672xl + 11.661x2 

- 3.5l4xi -0.924x~ + 2.220XIX2 

--------- - - - - -- - - - - - - - - - - __- - .-- -,--- ----- -- - -- --. - - _ .....----_.-----~_L
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TAB LE P8.9 

Blend Ratio I Blend Ratio 2 
Cat alyst 
Concen- Conver- ZST Con ver- ZST 
tration sion sion 

- 4.2 --; 15 1.7 2 
0.5 2 -3.6 -8 

-2.3 I 0.4 8 
-2.4 - 6 0.7 -4 
-0.9 I - 0.9 - 2 
-l.l -2 -3.3 -II 
-l.l I 3.2 0 
-- ­ - ­ - ­ - ­

L X2 -1l .5 -18 - 1.8 - 15 
L X 32.17 272 38.44 273 

-0.9 0 -0.7 - 4 
0.4 0 -0.7 0 
0.0 I -0.3 - 2 

2 0.3 6 0.4 -I 
- 2.9 -4 0.3 -3 

l.l 2 1.7 2 
2.1 3 -0.1 -7 

-- ­ - ­ - ­ - ­
L X2 -0.1 8 0.6 -15 
L X 15.09 66 4.22 - 15 

1.4 7 0.1 2 
0.7 I 0.6 0 
1.6 6 -2.3 6 

3 2.7 6 1.6 -2 
1.2 0 3.2 -I 
1.3 3 - 3.5 -9 
0.3 -2 3.9 10 

-- ­ - ­ - ­ - ­
L X2 9.2 21 3.6 6 
LX 15.2 135 45.92 226 

8.12	 Transform the follow ing estimated regression equa­
tions to canonical form and give the equations for 
the coordinate transformations. Find the center of 
the system in terms of the original coordinates . What 
type of a surface does the equation represent (maxi­
mum, minimum, or saddle point) '! 

(a)	 Y = 95.00 + 0.05Xl - 1.58x2 

- 8.13x! - 5 .8 7x~ - 6.25x IX2 

(b)	 Y = 19.43 + 8.86xl - 0.145x2 

- 2.302x! + 0.000293~ + 0.04777xI X2 

(c)	 Y = 349.392 + 3.957x! + O.564XIX2 

+ 0.536xI X3 - 1O.793xIX4 + 0.473xIXS 

- 2.369xl + 0 .665x~ - 3.852x2X4 

+ 0.201x2XS - 3.78x2 + IO.019.ra 

- 1.376x3X4 + 6.077x3 + 7.602xi 

+ 0.942x4XS + 2.739x4Xa + 7.064x4 

- 0.0428xg - 1.847xsXa + 1.6795xs 

+ 2 .33x~ + 3.956xa 

(d)	 Y = 57.71 + 1.94xl + 0.91x2 + 1.07X3 

- l.54x! - 0.26x~ - 0.68x~ - 3.09xIX2 

- 2.19xIX3 - 1.21x 2x3 

8.13	 For the following design matrix and responses, find: 
(a) the second degree canonical equ ation of best fit 
and (b) the coordinates (y, Xl , X2 ) of the center of 
the surface. 

Xl X2 Y 

0 I 93.7 
0.866 0.5 98.5 
0.866 . - 0.5 88.8 
0 -I 85.8 

-0.866 -0.5 92.4 
-0.866 0.5 87.8 

0 0 97.8 
0 0 99.0 

8.14	 In pressure sintering the important variables are 
time, temperature,and pressure. The objectives of a 
study were to obtain the maximum density for 
sintered alumina (which has a theoretical pressed 
densit y of 3.98 g/cc) and to learn as much as possible 
about the effect of the independent variables on the 
density. Preliminary work indicated the following 
range of vari ables in which further experimentation 
was to be carried out. 

Pressure Temperature Time 
(ps i) eC) (min) 

1000 1205 10.2 
2200 1695 29.8 

A second-order model was chosen to represent the 
influence of each vari able on the pressed density : 

p = {3o + {31Xl + {32X2 + {33X3 + {3llX! + {32 2X~ 

+ {33 3X~ + {312XIX2 + {313XIX3 + {323X2X3 
where : 

Xl = (pressure - 1600)/370 

X2 = (temperature - 1450)/150 

X3 = (time - 20.0)/6 

p = pressured density (g/cc) 

The scaling was designed to produce equal changes 
in density for a I unit change in each x. 

Experi ments were carried out according to .the 
exper imental design shown in Table P8.14. Each 
" group" number represents a successive period of 
experimentat ion . Such separation permitted a separ ­
a te assessment of the influence of each variable 
independently. Also , each group had a built-in 
measure of experimental error for control. From the 
overall design, a test could be made to judge whether 
the model chosen was adequate. 

(a)	 Obtain the estimated regression equ at ion . 
(b)	 Find the best fitting second-order model. 
(c)	 Carry out an analysis of vari ance to show the 

effect of the intercept, the first-order terms, the 
second-order terms, the groups, the residual 
error, and the experimental error. 

i,
! 



(d)	 Carry out a canonical analysis and indicate the 
transformed coordinates and value of the maxi­
mum density in terms of pressure , temperature, 
and time. 

8.15	 The objectives in this problem were: (1) to find the 
optimum operating conditions for an experiment 
involving three variables by using the least possible 
amount of experimentation .and (2) to ascertain the 
nature of the response surface in the vicinity of the 
optimum. Three independent variables were involved 
with limiting values as shown: 

Temperature, T 460 to iooo-n 
Pressure, p 1 to 100 atm 
Flow rate, F o to 100 lb/rnin 

The dependent variable was the yield (lb/rnin). 
For the first cycle of experimentation, a two-level 

factorial design (23 
) was chosen . The center of the 

design was arbitrarily taken to be at values of the 
independent variables of T = 600oR, p = 50 atm, 
and F = 50 lb/rnin . The independent variables were 
coded to prov ide an orthogonal design: 

T-	600 
Xl = 10 

p - 50 
X 2 =-2­

F -	 50 
X 3 =	 --2­

To rrummrze the amount of experimentation, a 
half-replicate was used with the center point rep­
licated three times to provide a measure of the 
experimental error. This resulted in a total of seven 
experimental points for the first cycle. See Table 
P8 .15. 

The resulting equation for the response surface was 

Y = -457.9 + 7.48T - 6.08p + 24.4F 

t 0 0 OJo t	 o o 
(XTX)-l = 

o 0	 { 0[ 
o 0	 0 t 

3142.31J 
29.92 

xTy = 
-24.34

[ 
97.62 

7 0 0 OJ 
o 4	 0 0 

xTx = 

[004 0 

o 0	 0 4 

Show by an analysis of var iance that the first ­
order model was a poor fit to the experimental data 
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TABLE P8.15 EXPERIMENTAL DATA 

Temperature Pressure Flow Rate 
Response (OR) (atm) (lb/min) 

422 .356 590 . 48 48 
425.146 610 52 48 
486.126 610 48 52 
458.998 590 52 52 
449.447 : 600 50 50 
449 .962 600 50 50 
450 .256 600 50 50 

in the vicinity of the center of the design . Indicate 
the direction of steepest ascent; suggest a center 
point for the next sequence of experimentation. 

8.16	 As in Problem 8.15, a ha lf-replicate of a 23 design 
with the center point replicated three times was used . 
The design was centered about: 

T = 8000R 

p = 30 atm 

F = 70lb/min 

By using a linear model, the response surface was 
found to be 

]> = -1012.05 + 12.48T - 8.08p + 32.4F 

See Table P8.16. 

[ 
~989 .l 8J 

49.93 
xTy = 

-32.33 

.' 129.53 

Carry out the analysis indicated in Problem 8.15. 

TABLE P8.16 EXPERIMENTAL DATA 

Temperature Pressure Flow Rate 
Response COR) (atm) (lb/rnin) 

960.93 790 28 68 
969.73 810 32 68
 

1050.66 810 28 72
 
1009.53 790 32 72
 
999.00 800 30 70 
999.52 800 30 70 
999.81 800 30 70 

8.17	 After several cycles of experiments, the optimum 
operating conditions for the problem posed in 8.15 
were believed to be the maximum allowable tempera ­
ture and flow rate and - the minimum allowable 
pressure: 

T = 10000 R 

p = 1 atm 

F = 100 lb/rnin 

A series of experiments was then made in the vicinity 
of the optimum to determine the nature of the 
response surface in this region. 

To make use of both first - and second-order linear 
models, a full central composite design was run with 
the center point replicated four times. See Table 
P8.17a. 

TABLE P8.17a EXPERIMENTAL DATA 

Tempera- Flow 
ture Pressure Rate 

Point Response COR) (atm) (lb/min) 

1 1915.01 993 1.5 97.0 
2 1923.26 997 1.5 97.0 
3 1910.08 993 2.5 97.0 
4 1918.33 997 2.5 97.0 
5 1954.72 993 1.5 99.0 
6 1963.18 997 1.5 99.0 
7 1951.01 993 2.5 99.0 
8 1959.48 997 2.5 99.0 
9 1931.61 991.6 2.0 98.0 

10 1945.25 998.3 2.0 98..0 
11 1943.16 995 1.159 98.0 
12 1934.62 995 2.840 " 98.0 
13 1905.17 995 2.0 96318 
14 1971.80 995 2.0 99.681 
15 1937.72 995 2.0 98.0 
16 1938.16 995 2.0 98.0 
17 1938.62 995 2.0 98.0 
18 1938.98 995 2.0 98.0 

The coded variables were 

T - 995 
Xl = 2 

p - 2.0 
X2=O:S­

F- 98 
X 3 = - -1­

and the first-order response surface was 

]> = -2113.61 + 4.18T - 2.16p + 20.21F 

23,248,55J 
33.43

(XTX)-l = [~2- : : :J; xTy = 
o 0 t 0 - 17.27 [ 

o o 0 t 161.71 

The analysis of variance is shown in Table P8.17b. 
Can the first-order model successfully represent the 

response surface in the vicinity of the optimum ? If 
so, what are the optimum response and optimum 
values of T, p, and F? 

1 
1 

I 
1 

. 1 

'f 

I
I 

,1 ­

•	 il' 
~-~ - ---- , _. --- -- -- ---"'" 
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TABLE P8.17b ANALYSIS OF VARIANCE point of the first half-replicate was labeled I while the 
center point accompanying the second half-replicate 

Source of Mean was labeled 6. Based on the data in the Table P8.20, 
Variation SS d.f. Square estimate the main effects of the independent variables 

D ue to bi 4.50 X 107 1 4.50 X to 7 

and the interactions between the blocks (the two half­
replicates) separately. Include the error limits; 

D ue to b2 

D ue to b3 

D ue to b; 
Deviation about 

regression line 

139.8 
37.2 

3270 

7.5653 

1 
1 
1 

5 

139.8 
37.2 

3270 

1.5131 

8.21 After the third cycle for the design and data shown in 
Table P8.21 and Figure P8.21, is it possible to deter­
mine an optimal direction? 

TABLE P8.21 

Error 

Total 

0.9012 3 
-
12 

0.3004 
Operating Conditions 

2 3 4 5 

8.18 The result of fitting experimental data to a full 
second-order model in the vicinity of the optimum 
(Problem 8.15 completed) was the response surface : 

Sum from 
previous cycle 

Average from 
17.30 15.06 19.87 17.29 19.44 

:Y = - 91,898 + 173.58T + 70.84p + 73.66F 

- 0.0865T2 - 0.3668p2 - 0.3266F2 

- 0.1424Tp + 0.0091TF + 0.684pF 

previ ous cycle 8.65 7.53 
Previous sum = 

Previous average = 

9.94 
1.185 
1.185 

8.64 9.72 

8.19 

Find the location of the optimum. Sketch the 
response sur face in the vicinity of the optimum in a 
three-dimensional representation. 

A square design (points 1, 2, 3, and4) with a center 
point (point 5) has been used to obtain the response 
for a process with two pres umed 'independent vari­
ables . After four cycles of data taking (in random 
sequence in each cycle), the responses have been 
tabulated as follows : 

u B 

II::E., .... 

Design 

[J1 3 

2 4 

3 4 
--->~ A 

Time(hrl 

FIGUREP8.21 

Cycle 
Number 

1 
2 

16 
14 

2 3 4 

to 22 13 
12 18 13 

Date Points 

5 

16 
14 

8.22 It was desired to find the optimal operating con­
ditions for chromatographic separation of iso­
octane-heptane. The independent variables and the 
experimental design were as shown in Table P8.22 
where 

3 12 11 17 16 15 
4 18 11 27 10 15 

Work up the EVOP calculations, including the 
experimental error, and suggest the direction to move 

Xl 

X2 

X 3 

X4 

= 

= 
= 
= 

column temperature 
column length 
carrier gas flow rate at outlet 
weight of liquid phase per weight of solid phase 

8.20 
for a new sequence of experimentation. 
In a three-variable EVOP program, a 23 factorial 

TABLE P8.22 

design was used . One of the half- replicates of the 
cube was labeled 2, 3, 4, and 5 while the other half­

Variables 

replicate was labeled 7, 8, 9, and to. The center X2 

(em) 
X 3 

(mljmin) 

TABLE P8.20 PROCESS RESPONSES 
Zero level 0 45 230 20 25 

Cycle 

First 
Half-Replicate 

2 3 4 5 

Second 
Half-Replicate 

6 7 8 9 10 

Low level -1 
Upper level + 1 
Starred points : 

-2 

35 
55 

25 

190 
270 

150 

35 
35 

20 

20 
30 

15 
+2 65 3to 80 35 

1 68 72 53 71 78 75 69 65 68 57 Variation interval to 40 15 5 
2 72 62 69 85 66 59 67 71 60 73 Number of starred 
3 55 72 58 75 69 79 86 56 73 62 points 20 80 30 10 

..•._._ - - _ . .. _..•....._ - - - - - - - - - ---------­
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The other column parameters-diameter, particle 
diameter, type of carrier, etc.-were all held constant. 

Sixteen experiments were carried out about an 
arbitrarily chosen point in experimental space 
according to a central composite design. The esti­
mated regression equations obtained described the 
dependence of the separation coefficient, K, and the 
duration of the analysis, t, on the x's: 

K = 0 .87 - 0.0408xI + 0.0672x2 - 0.0675xa + 0.102x4 

- 0.002x~ - 0.003x~ + O .006x~ - 0.027x~ 

+ 0.0128xlx2 - 0.00406xIXa - 0.000313xlx4 

+ 0.OO094x2Xa + 0.0303x2X4 - 0.00531xax4 (a) 

t = 8.8 - 2.195xI + 1.52x2 - 2.095xa + Ll lx, 

+ 0.37x~ - 0.I4x~ + 0.92x~ - 0 .06x~ 

- 0.495xIX2 + 0.673xIXa - 0.371xIX4 

- 0.336x2Xa + 0.283x2X4 - 0.349xaX4 (b) 

Illustrate the nature of the response surfaces by 
plotting jointly contours of K and t versus: 

(a)	 Xl and Xa for constant X2 and X4' 
(b)	 X2 and X4 for constant Xl and Xa. 

At what values of x should the next series of experi­
ments be conducted 1 

Estimate .pmln and the corresponding vector x for 
each response. What criterion should be used to 
obtain the best compromise between K and rt 

8.23	 Three models have been selected to represent a 
process. They all yield roughly the same form of the 
response in the range of interest of the independent 
variable, x. 

Model 

e- a 2 X )7J =	 a1(I ­

{Jl{J2X
2 1] = -- ­

. 1 + (J2X 

3 1] = Y1XY2 

The range of X is: 0 =:;; X =:;; 10, and the experimental 
increments are 0.1. Four initial data points have 
been determined as follows: 

yX 

0.5 2.95 
5.0 9.78 
0.5 3.66 
5.0 7.59 

At what value of X should the fifth experiment be 
carried out 1 What are the estimated coefficients in 
each model after the fourth experiment 1 What are 
the prior and posterior probabilities for each model 1 

8.24	 For the same models as in Problem 8.23, the following 
values exist C' = estimated value) after the eighth 
run: 

al = 9.31 PI = 10.83 '91 = 4.61 

a2= 0.76 P2 = 0.87 '92 = 0.35 

PI = 0.019 P2 = 0.847 Pa = 0.132 

The coefficient of variation is estimated as 0.153. 
At what level of X should the next experiment be 
run 1 Are additional data needed 1 

8.25	 Three kinetic models are proposed as possible 
mechanisms for a chemical reaction (A ~ D + H): 

I. Single site surface reaction controlling, D 
adsorbed: 

kO[PA	 - (PDPH/KE) ] r =	 -::-,;:....;.:__-:::..::.:...::.:.-=;;.:; 

1 + KAPA + KDPD 

2. Adsorption of A controlling, single site, D 
adsorbed 

kO[PA	 - (PDPH/KE ) ] r =	 :--='-,;:---"-'=-=:-::::':--="­
1 + KDPD + KHDPDPH 

3. Adsorption of A controlling, single site, H 
adsorbed 

kO[PA - (PDPH/KE,')]r =	 .,---::':=':'---"-'--'=:,-'--"­
I + KHPH + KHDPDPH 

The notations are as follows: 

r =	 rate of reaction for a steady-state process 
measured in a reactor such as was proposed 
by Perkins and Rase. t 

p =	 partial pressure of component (as indicated by 
subscripts)
 

KE = reaction equilibrium constant
 
ko = reaction rate constant
 
K =	 absorption constants (as indicated by sub­

scripts) 

The purpose of the experimental investigation is to 
determine which model is most appropriate. Six 
initial runs were conducted with the following results: 

PA PH PD R=r+E; 

1.0 2.0 2.0 -4.39 
1.0 0.1 0.1 3.24 
5.0 0.1 2.0 6.54 
5.0 2.0 0.1 14.80 
1.0 2.0 2.0 -2.32 
5.0 0.1 2.0 7.19 

The ranges for the variables are 

o =:;; PA =:;; 5 

o =:;; PH =:;; 2 

o =:;; PD -s 3 

What should be the next values of the partial pressures 
in order to achieve maximum discrimination 1 

8.26	 A 22 factorial experiment has been used to collect 
four data points to help determine the coefficients 
in the estimated regression equation 

t T. K. Perkins and H. F. Rase, stcu: J. 4, 351, 1958. 

I ~j 
! 

. 
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The data are as follows: 

Y 

1 I 1.26 
2 1 2.19 
I 2 0.76 
2 2 1.25 

Determine the best values of Xl and X2 at which to 
run the fifth experiment. Does the 22 factorial 
design appear to have been a good or a poor design 
from the viewpoint of its effectiveness in reducing the 
confidence region for fJ10 fJ2' and fJa? How can you 
represent Ll(5 ) graphically? 

8.27	 Table P8.27 shows the results of a model discrimina­
tion sequence of designs (starting with three models). 

TABLE P8.27 

Partial Pressures (atm) 

Observa­ Alcohol Ether Water 
tion (A) (E) (W) 

I 1.00 0.00 0.00 
2 0.80 0.00 0.20 
3 0.60 0.00 0.40 
4 0.70 0.30 0.00 
5 0.50 0.70 0.00 
6 0.25 0.75 0.00 0.713 0.Q75 0.212 
7 3.00 0.00 0.00 0.910 10- 5 0.090 

Model 

kAL[PA - (PEPW/K)'h) 
r=-:------::-:-=::-=-......::::...:.:....--:7-':.:....:.:.:....:.:.:....:...:.--­

I + [(KA/K)PEPW)'h + KEPE + K wPw 

k1K1[p1 - (PEPW/K )) 
2
 

3
 

The notations are as follows:
 

r = reaction rate 
k = reaction rate constant (with subscript) 
K = equ ilibrium constant 
K = absorption constant (with subscript) 
P = partial pressure 
L = concentration of active sites 

Contrast the experimental design at the end of the 
seventh experiment for discrimination with that which 
would be used to obtain the best estimates of the 
coefficients in Model I at the end of the seventh 
experiment. 

8.28	 Consider the first-order irreversible reaction 

A--+B 

The differential equations are 

dCA dCBdt = -kCA - = kCA
dt 

CA(O) = 1 CB(O) = 1 

(a)	 At what time should the first experiment be 
taken in order to get the smallest confidence 
region for k? 

(b)	 Is it necessary to measure both CA and CB, or 
is the measurement of one component sufficient? 

(c)	 At what values of CA and CB should the two 
observations be made? Hint: Let k o be the 
prior assumed value for k. 

(d)	 Suppose three initial experiments are to be made 
instead of just one . Repeat questions (a) through 
(c). 

8.29	 The reaction 

A~B~C 

can be represented by a model with two responses : 

dCA
dt = - k 1cA CA(O) = 1 

where C = concentration and the k's are the reaction 
rate coefficients to be estimated. After integration of 
the coupled equations, we obtain 

Response 2: CB =	 _k_1_ (e-k2t - e-k1t) (a2) 
k 1 - k 2 • 

(a)	 At what values of t should the first two experi­
mental observations be taken if only two obser­
vations can be made? 

(b)	 How would your choice of Ull, U12, U12 = U210 
and P12 affect Your an swer to (a)? Try several 
variations of U rs and Prs. 

8.30	 As a result of an assumed kinetic scheme, the follow­
ing nonlinear model was proposed as suitable for a 
model: 

fJl P1X)7J =	 fJ1 _ fJ2 (e- P2X - e- fJt > 0 

Develop an initial design for this equation and 
examine the results graphically. What are the two 
best values of x at which to observe Y? 

8.31	 This problem has been adapted from the article by 
Hunter and Atkinson'] which used data representative 
of the isomerization of bicyclohexane.j For a first­
order irreversible react ion of A --+ B, 

dCA

dt = - kCA CA.O(O) = 1 (a)
 

t W. G. Hunter and A. C. Atkinson, Chern. Eng., 159, June 6, 
1966. 
t R. Srinivasan and A. A. Levi, J. Amer. Chern. Soc. 85, 3363, 
1963. 
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the integrated model is	 (b) Two sets of observations were nexttaken using 
the above experimental design, yielding the 
response Y1 = 0.912 and Y2 = 0.382, re­

or spectively. Determine the designs for the next 
(b) run . Plot the ellipse in parameter space for the 

where the rate coefficient k has been replaced by the approximate 95-percent confidence contour. 
Arrhenius expression k = k o e- I1E /RT , R is the gas Plot the contours of 1:11 in the experimental 
constant, T is the absolute temperature in "K, k« is space. 
the frequency factor, and I:1E is the activation (c) Carry out the next cycle of design specification,
 
energy. assuming that the response from run 3 was
 

A sequential series of experiments is to be carried Y3 = 0.397. Repeat the plots of question (b).
 
out to estimate the !3's to within a certain degree of Hint: To reduce parameter interaction, trans­

precision. form the temperature so that Equation (b) may
 

be written as 
(a)	 At what values of the independent variables 

should the first run(s) be conducted? The 
feasible values of T range from 600 to Mo oK 
and the times from 15 to 150 minutes. where E = 1:1 EjR. Let To be 620°K. 

! 
1, 

j' 

. ! 

;1 

!
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Part III
 

Estimation Using Models 
Based on Transport 
Phenomena Principles 

In Section 1.1 it was pointed out that process models 
can be based on empirical relations, population balances, 
and transport phenomena principles, or combinations 
thereof. Part III describes how the parameters in models 
based on transport phenomena principles, including 
ordinary differential equations, partial differential equa­
tions, and transfer functions (frequency response) can 
be estimated. Four different categories of information 
may be available to the analyst: (1) the form of the 
model itself, (2) the model parameters (coefficients), 
(3) the model inputs, and (4) the model outputs. The 
type of problem which evolves can be classified by the 
following arrangement ("; denotes the known factors). 

Model 
Including Model 
Boundary Param- Model Model 

Topic Conditions eters Input Output 

Model 
identification " " Parameter 
estimation ..; " " Prediction ..; " " Inverse problem " " " 

A quite comprehensive and- exceedingly difficult 
problem is that of characterizing the process by an 
appropriate model, otherwise known as the identification 
problem. Given a class of process models and a process, 
the identification problem is to determine the best model 
in some sense through observations of the output of 
and input to the process. Specificclasses of models might 
be impulse responses, transfer functions, differential 
equations, integral equations, difference equations, and 
so forth. To ascertain the best model among all the 
possible classes of models is probably generalizing the 
identification problem excessively. Furthermore, we 
cannot ask -that the "true" model of the process be 
obtained as a result of the identification, because practi­
cally all the process models are simplified to such an 

~----
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294 ESTIMATION IN PROCESS MODELS REPRESENTED BY ORDINARY DIFFERENTIAL EQUATIONS I 
extent that they can describe the process only approxi­
mately even if their parameters are known exactly. 

Chapter 7 described various techniques that can be 
used to discriminate among empirical models; these 
same techniques can be applied to transport phenomena­
based models. In addition to the criteria of representative­
ness (the differences between the responses of the process 
and those predicted from the model satisfy some 
criterion) and simplicity, the criterion of prior knowledge 
of the formes) of the model is(are) involved. Certain 

physical constraints noted in Chapter I govern the selec­
tion of the class of models. 

Once the form of the model is tentativelychosen, and 
the process inputs and outputs are known or can be 
obtained, the objective of parameter and state estimation 
is to determine the" best" values of the parameters and 
dependent variables in the model. Part III describes for 
several different classes of transport phenomena models 
appropriate techniques of estimation , employing both 
discrete and continuous experimental data. 



CHAPTER 9
 

Estimation in Process Models 
Represented by Ordinary 
Differential Equations 

After the algebraic equations, the simplest types of 
models based on transport phenomena (see Figure 1.1-2) 
are models containing ordinary differential equations. In 
this chapter we shall be concerned with estimation of the 
parameters in models involving single or multiple 
ordinary differential equations, primarily of the first but 
also of higher order. Such models represent unsteady­
state lumped systems or steady-state distributed param­
eter systems as encountered, for example, in : 

1. Missile trajectory analysis. 
2. Chemical reactor analysis. 
3. Signal processing. 
4. Cybernetics. 
5. Transport in human beings. 

We shall describe parameter and, to some minor 
extent, state estimation. Estimation of the "state" of a 
process means estimation of the process dependent 
variables. Three types of state estimation can be dis­
tinguished. Given the observations over an interval to to 
t., estimation of the state vector at time t can be classified 
as: 

1. Interpolation or smoothing if t is less than t.. 
2. Filtering if t = tf • 

3. Prediction or extrapolation if t is greater than tf • 

The ·inst rumentation used to carry out the numerical 
computations for number 2, which is the topic of interest 
here, is termed a filter; state estimation often is spoken 
of as filtering . 

We cannot go into some of the very practical compu­
tational aspects of estimation, such as: 

I. The time requirements for measurement and 
evaluation. 

2. The choice of test inputs to be used, if any. 
3. The efficiency of the data collection set-up. 
4. The speed of convergence in the estimation pro­

cedure. 
5. The type and arrangement of the data processing 

instrumentation, if any. 

These factors are not readily susceptible to generalization, 
and they are best elucidated by specific examples in the 

current literature. The requirements outlined in previous 
chapters for experimentation and model evaluation still 
pertain to transport phenomena-based models. Experi­
mental data should be taken by using a good experimental 
design (Chapter 8), the designs should be such that the 
errors in measurement are independent (Chapter 5), and 
the model in which the coefficients are to be estimated 
should be an adequate one (Chapter 7). 

Some of the methods to be described yield unbiased 
estimates of the parameters while others do not. Estimates 
of the precision of the parameter estimates are always 
approximate in cases in which they can be made, because 
all the models solutions are nonlinear in the parameters 
and must be linearized (in the parameters) to obtain the 
precision estimates. In some instances the model differ­
ential equations can be solved explicitly for the dependent 
variable(s) ; in others this step is not feasible . Frequently 
the number of experimental observations which can be 
made and the time available in which to make them are 
restricted by economical factors or physical obstacles, 
and often the assumed stationarity and independence 
among the observational errors are not valid . 

We shall commence by reviewing the type of models 
to be treated and the manner in which the unobservable 
errors are assumed to be introduced into the deter­
ministic process model. Next, the least squares and 
maximum likelihood estimation techniques will be 
applied, after which three somewhat different methods of 
estimation will be described and illustrated: sequential 
estimation, qua silinearization, and the" equation error." 
Both discrete and continuous obser vations will be 
treated. The latter are important for estimation in real 
time, i.e., when the time of estimation is less than the 
time for the observed process variable to change signif­
icantly . 

9.1 PROCESS MODELS AND INTRODUCTION OF 
ERROR 

In this section we shall briefly characterize the types 
of models to be treated and certain of their significant 
features. 
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9.1-1 Process Models and Response Error 

Table 1.1-2 indicates the relation between the models 
of this chapter and those of Chapter 10. A model in the 
sense used here is comprised of (I) the differential 
equation(s), plus (2) the boundary and/or initial con­
ditions . Both (I) and (2) are required if the model is to 
have a unique solut ion. We must distinguish between 
linear (in the dependent variabletsj) and nonlinear 
models because analytical solutions for the latter are 
generally nonexistent and numerical or approximate 
solutio ns are needed, leading to estimation problems of 
a higher degree of complexity. We must also distinguish 
between initial value models and boundary value 
models. 

In an initial value model,for a singledifferential equation, 
initial conditions (values of the dependent variable or its 
derivatives at the coordinate, or time, origin) must be given 
equal in num ber to the order of the highest order derivative. 
For a set offirst-order differential equations , one initial 
condition on the dependent variable is usually given for 
each equation. If the general solution for the model is 
known , the arb itrary constants in the general solution 
ar ising from integration can be evaluated by substituting 
the given initial conditions into the general solution and 
solving the resulting set of equat ions for the constants. 
If the general solution is not known and a numerical 
solution of the differential equation(s) is carried out , the 
init ial cond itions give the starting point (s) for the inte­
gration which is usually executed by a stepwise or 
" marching " technique . A simple example of an initial 
value model -in which the differential equation is linear 
in the dependent variable is a'model of an isothermal 
well-stirred tank in which a first-order reaction takes 
place (see Figure 9.1-1). ­

Flow velocity. II 

An In it ial Value Model: A Boundary Value Mod el :
 
The-Well-Sti rred Ta nk Stead y Flow in a River
 

M odel : Model : 
dc", d 2c A t' d CA 
til = - kc", dz' + Jj7h"= 0 

In itial condition : Boundary condition : 

dc ,.{L) 
~ =I 

c",(O) = CA . 

Solution : Solut ion : 

cA = c",. + !!. e<uLID )( 1 - ,-(uID ).) 
v 

FIGURE 9.1-1 Comparison of an initial value model and a 
boundary value model; c.. = concentration of A; k is a react ion 
rate coefficient, t = time; D is a constant. 

On the other hand , in a boundary value model the 
proper number of values of the dependent variable or its 
derivat ives is given at various values of the independent 
variable , some values not being at the origin but 
(usually) at the end of the range for the independent 
variable. If the general solution for the model is known, ­
the given values can be substituted into the general 
solution and the arbitrary constants evaluated. But if a 
numerical solution of the differential equations is re­
quired , the starting values for the numerical integration 
scheme are missing ; hence the solution of a boundary 
value model is more complex and requires more time to 
execute than that of an iriitial value model. For example, 
we might use an initial value integration scheme but 
assume the initial values and compare the calculated 
values of the dependent variable with the given values at 
the other boundary. By iteration, these are made to 
agree. Refer to Collatz t and other texts on numerical 
analysis for specific calculation schemes. One particular 
method is described in Section 9.5. Figure 9.1-.J shows a 
typical boundary value model, that for idealized dis­
persion in a turbulent stream . 

It is quite possible that the initial and/or boundary 
conditions must be estimated along with the model 
parameter, and we shall subsequently indicate how this 
may be accomplished. 

The simplest model to be considered is the scalar 
single, first-order, linear (in the dependent variable): 
ordinary differential equation with a constant coefficient: 

- d~~) = ay(t) + x(t) yeO) = Yo (9.1-1) 

which has the well-known solutiorut 

yet) = Yo eat + f: x(r) ea(t- f) dr (9.1-2) 

where r is a dummy variable. In Equation 9.1-1, a is the 
coefficient, y is the dependent variable often termed the 
system "state,"! is the independent variable (usually but 
not always time), Yo is the initial condition independent 
of time, and x(t) is the deterministic input (or "forcing 
funct ion") . Conceptually the unobservable error E(t) is 
added to yet) to give the observable dependent variable 
yet) ; refer to Figure 9.1-2. For discrete observations 

Y(tl) = y(tt) + E(tt) (9.1-3a) 

and for continuous variables 

yet) = yet) + E{t) (9.1-3b) 

If the estimated par ameter a replaces the model param­
eter a, the residual error is E(t) = yet) - Yet). The 

t L. Collatz, The Num erical Treatm ent 0/ Differential Equations 
Springer-Verlag, Berlin , 1960. ' 
t W. Kaplan, Ordinary Differential Equations, Addison-Wesley, 
Reading, Mass., 1958. 
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dO 

Y(O
x(O---r----i~ 

Model 

Initial or boundary
 
conditions
 

Ero 
Estimated 
parameters b 

+ 

dO 

y(O 

FIGURE 9.1-2 Information flow for the process and the model ; 
y(t) is the determ inistic model output; Y(t ) is the experimen tal 
process output ; Y(t) is the pred icted output. 

objective in parameter estimation is to obtain the "best," 
in the sense described in the next sections , estimate of a 

based on the observations Y(ft) or Y(f). To do this we 
shall need to prescribe what X(f ) is and have some 
informationabout the nature of t"(f). 

A more general model than Equation 9.1-1 is that 
comprised of a set of simultaneous, first-order, linear (in 
the dependent variables ), ordinary differential equations . 
with constant coefficients, of which the typical equation is 

v 

~r = .2 arsYs + Xr( f ) y.(O) = YrO 
8 = 1 

r = 1,2, . . . , v (9.1-4) 

Figure 9.1-3 illustrates the model. Equation 9.1-4 is 
usually written in matrix notation as 

~ = ClY + X(f) yeO) = Yo (9.1-5) 

where 

Y2 a X2(f ) a 
y = v x I X(f) = : . V X .1 

. matrix 

[X'('l] 
; v mat rix 

xlf)n 
a1 2[au au]


a 21 a22 a2v a 
Cl= v x v . 

. matnx 

avl av2 a w 

Model 

Initial or boundary 
conditions 

Parameters il 

FIGURE 9.1-3 Multi variate process with mult iple inputs. 

Suppose that the tank in Figure 9.1-1 contains three 
components that react according to the scheme 

A...!:4 B~ C 

where the k's represent reaction rate coefficients. Then 
the individual equations and specified initial conditions 
in Equation 9.1-5 would be 

dCA 
(jj" = -k1cA 

CB(O) = 0 

CeCO) = 0 

We assume that X(f ) is given a priori but that Yo and 
Cl are to be estimated over the time interval 0 :$ t :$ t« 

from discrete observat ions described by the following 
relation : 

I s i s n (9.1-6) 

where Y(tt) is an n x 1 column vector, hCtt) is an n x v 
matrix given a priori, and e(ft) is an n x 1 column vector 
(" noise " vector) whose elements are the unobservable 
errors . 

The solution to Model 9.1-5 can be written in a form 
analogous to Equation 9.1-2 as 

yet) = exp (Clt)yo + f: exp [Cl(f - r)]x(r) dr (9.1-7) 

For example, the solution to the model of three chemical 
components in the well-stirred tank is 

1 - k t - k t
Cc = 1 - k k (k 2 e 1 - k1 e 2 ) 

2 - 1 

Introduction of Equation 9.1-7 into Equation 9.1-6 
yields 

Y(ft) = hCtt) [exp (Clft)yo+f:'exp [Cl(tt - r)]x(r) dr] + e(lt) 

(9.1-8) 
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which can be written in general form as 

(9.1-9) 

A similar expression can be written for continuous 
observations by dropping the subscript index i on t. 
Although Equation 9.1-9 is somewhat formal, it can be 
seen from the example solution used to illustrate Equa­
tion 9.1-7 that the coefficients and the initial conditions 
are involved quite nonlinearly in the model solution. 

It should be pointed out that a model containing one 
or more higher order linear (in the dependent variable) 
differential equations with constant coefficients, such as 

d2y dy
dt2 + (Xl dt + (X2Y = x(t) 

can be transformed to a model containing a set of first­
order ordinary differential equations as follows. Let 

dy
w=­

dt 

and 

d 2ydw 
dt dt 2 

Consequently, the second-order differential equation 
becomes two first-order differential equations : 

dy
 
dt = w
 

However, w is a derivative. For some of the criteria 
discussed in subsequent sections.the experimental values 
of the derivative must be observed as functions of time 
in order to use the above scheme. 

Finally, the general nonlinear (in the dependent vari­
ables) first-order model is 

dy
dt = f(l1, y, t) y(O) = Yo (9.1-10) 

where f(l1, y, t) represents a very general nonlinear 
function . Equation 9.1-10 will not have an analytical 
solution except in rare instances, and it must be solved 
by numerical methods. However, . Equation 9.1-3 still 
applies if the solution to Equation 9.1-10 can be obtained. 

9.1-2 Unobservable Error Added to Derivatives 

Because of the difficulty of obtaining analytical 
solutions to the deterministic process model as repre­
sented by Equation 9.1-10, experiments have been 
arranged whereby the vector of derivatives dYjdt is 
measured rather than Y itself. Carberry t compared 
chemical reactor configurations which enable the experi­
menter to observe either CA or dCAjdt. Also , in some types 

t J. J. Carberry, Ind. Eng. Chern. 56 (11), 39, 1964. 

of optical instruments the rate of change of the dependent 
J

variable is measured rather than the dependent variable ,
 

itself. In such cases it is assumed that the unobservable
 
error is added to the deterministic derivative dyjdt as
 
follows:
 

When the derivative is the observed variable, the estima­
tion procedure does not involve a differential equation at 
all ; the parameters and initial conditions can be estimated 
by the techniques described in Chapters 5 and 6. 

9.1-3 Differentiation of Process Data 

Another, less satisfactory, approach to eliminating 
working with derivatives in estimation is to observe Y 
and to evaluate the derivatives numerically. Two main 
types of error must be considered in the numerical evalu­
ation of derivatives. One type involves error introduced 
by the numerical scheme employed, and the other type 
involves the stochastic error associated with the observa­
tions. We examine the numerical error first. 

Numerical differentiation of deterministic variables 
involves evaluation of dyjdt, or higher derivatives, at 
some arbitrary value of the independent variable t, say 
to, given a series of values of y in the interval about to. 
Most texts treating numerical analysis describe relations 
that can be used to calculate derivatives from values of 
y taken at equal or unequal intervals. However, even 
the use of polynomials, .y = g(t), to approximate the 
values of y requires careful treatment because, as Figure 
9.1-4 illustrates, a suitable fitting polynomial at each y 
may have the wrong slope at each base point as well as 
elsewhere . 

As one would expect , the deterministic error in the 
derivative is smaller when the data are centered about a 
to in the middle of the range of t than when the to is 
placed at one or the other end of the interval for the y's . 
Any of the interpolation polynomials (divided, forward, 
central, and backward difference, Lagrange, Gram, etc.) 
can be used to replace the continuous derivative, de­
pending on the circumstances. Table 9.1-1 lists the 
numerical errors for several difference formulas used to 
evaluate the temperature gradient at a wall, (dTjdz)zo' 

y(t) 
or g{t) g(t) = polynomial approximation

\/---­
--- --..... I 

-...:---~-

,""_...... y(t} = true function 

FIGURE 9.1-4 Polynomial approximation of a function. 

-----="=----------:--~---------------------
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TABLE 9.1-1 CALCULATION OF THE TEMPERATURE GRADIENT dT/dz AT z = z~ 

Order of Numerical 
Order of Error Value of 

Polynomial Approximation of d'I'[dz at z = Zo Term (dT/dz)z=o 

T l - To 
--h­ h 4.12 

2 4.71 

3 

4 

2Ts - 9T2 + 18Tl - lITo 
6h 

-3T4 + 16Ts - 36T2 + 48Tl - 25To 
12h 

5.25 

3.47 

Measured temperatures were To = -1.000, T1 

T5 = -0.305, and h = 0.1. 

from measured temperatures if the temperatures were 
treated as deterministic variables.t 

The approximations of d'I'[dz in Table 9.1-1 and the 
" order of error" obscure a far more important source of 
error in the evaluation of d'I'[dz, namely the stochastic 
error engendered by measuring T. Most approximation 
schemes for derivatives can be written in the general 
form: 

where a, is a constant, D is the differential operator, k 
is the order of the derivative, h. is the interval between 
the y's, and (m + 1) designates the number of data 
points used. Thus, the variance of the derivative can be 
estimated by using the propagation of error formulas 
(assuming that the Y's are stochastically independent­
which may be unlikely in practice): 

Var"{D~+l(Y)} = ::k [a~ Var {Yo} + ... + a; Var {Ym}] 

(9.1-11) 

If we assume the variances of all the Y's are equal, 

2	 m 

Var{D~+l(Y)} = :2k Var{Y} 2: af (9.1-12) 
i=O 

From Equation 9.1-12, we observe that the smaller the I	 interval h and the more terms in the formula, the larger 
the error in the derivative and that the error goes up 

I	 with the order of the derivative, To take a specific 
example, suppose all the T's in Table 9.1-1have a common 

t J. O. Wilkes, "The Finite Difference Computation of Natural 
Convection in an Enclosed Rectangular Cavity," Ph.D. Thesis, 
Univ. of Michigan, Ann Arbor, 1963. 

= -0.588, T2 = - 0.295, T = - 0.259, 

standard deviation of 0.01 (1 percent of To) or a variance 
of 10- 4. Then, for the fourth-order polynomial, 

dT ) .} 4490 -4I'V 

Var {( dz Z=Zo = [12(0.1)]2 (10 ) = 0.311 

and
 
.G(dT/dz)z=o ~ 0.56
 

or 16 percent of (dT/dz)z=zo' 
In other words, if the numerically evaluated derivative 

is to be used as the response in estimation, the error in 
the stochastic dependent variable is amplified tremen­
dously. Consequently, we conclude that the general 
admonition to avoid numerical differentiation of experi­
mental data, if possible, in the estimation of parameters 
has a sound foundation. In the "equation error" 
estimation technique, described in Section 9.6, we shall 
assume that observations -of the derivatives themselves 
are used rather than derivatives calculated from the 
observations. 

9.2 LEAST SQUARES ESTIMATION 

Inasmuch as least squares parameter estimation does 
not require prior knowledge of the distribution of un­
observable errors, yields unbiased estimates, that is, 
G{ yet)} = y(t), and results in the minimum variance 
among all linear unbiased estimators, the least squares 
technique is used as extensively for transport phenomena 
models as it is for the empirical models described in 
Part II of this text. If the observations Y for the m.odel 
responses are continuous functions of time from t = 0 
to t = t.; the Markov (or "rigorous least squares") 
criterion is to minimize 

(9.2-1) 
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where r is the covariance matrix (or perhaps a matrix of 
appropriate weights) described in Section 5.5, and 1> is 
the time integrated value of the error squared (" integral 
squared error "). If the observations are made at discrete 
instants of time, t.; i == I, 2, ... , n, the Markov criterion 
is to minimize 

1> = t L
n 

[y(tl) - 'I'(t,wr'-1[Y(t1) - 'I'(t,)] (9.2-2) 
'=1 

(Sometimes the number t is omitted in Equations 9.2-1 
and 9.2-2.) If, as in Chapter 5, r is a diagonal matrix (all 
the off-diagonal elements are zero) , 1> becomes a 
"weighted least squares " criterion ; if r = a~I, 1> is the 
"ordinary least squares" criterion. 

9.2-1 Discrete Observations 

To minimize 1> for discrete observations, we can 
formally differentiate Equation 9.2-2 with respect to Yo 
and with respect to a and then equate the resulting 
expressions to a null vector 0 and a null matrix 0, 
respectively. We obtain the following set of nonlinear 
(in the estim ators) equations] 

1(t:1> = OT = - L
n 

[Y - 'I'(a, Yo, tlw r - l ) :' 'I'(a, Yo, tJ 
Yo ' = 1 VJO 

(9.2-3) 

:: = 0 = - L
n 

[Y -'I'(a, Yo, tiwr-
1(tl) :a'l'(a, Yo, tl) 

i = l 

A similar set...gf equations can be obtained for con­
tinuous data except .that time integrals replace the 
discrete summations. Equations 9.2-3 represent the 
n + (n x n) = n(1 + n) nonlinear equations used to 
estimate the n(1 + n) elements in a and Yo. 

To obtain estimates of the precision of the estimates 
a and Yo, some assumption must be made about the 

.distribution of the unobservable errors, such as that of a 
joint normal distribution. To obtain estimates of the 
precision of £, the solution to the model must be ex­
pressed approximately as a linear function of the param­
eters by expanding the solution about the estimated 

t The symbol 0'1'/0(3 means that each element in the matrix 

. [~1]'I' = : 

'Fv 

is differentiated with -respect to PI to give O'l'/OPI, next with 
respect to P2 to give the matr ix 0'l'/OP2, and so on . The elements 
o'l' /OPi assembled as a column vector comprise 

0'1' = [ :~]0(3 . 
0'1' 
opm 

parameters as described in Section 6.4. In circumstances 
in which an analytical solution for the model is not 
known, an approximate analytical solution can be 
substituted and linearized. If it is assumed that r = a2)", 
Equation 6.4-3 gives the approximate covariance matrix 
for the elements of 

b = [~] 
and Equation 6.4-5 gives the approximate joint con­
fidence region. If r =f a~I, then the elements of r must 
be estimated as described in Section 5.5 and the esti­
mated covariance matrix of b, as described in Section 
5.1, is 

/'. AA A -1X)-1Covar {b} ~ (XTr 
where the overlays denote that estimated parameters A 

are used to evaluate the matrix elements. 
As an example of Equations 9.2-3 applied to a specific 

model, we use the scalar Equations 9.1-1 through 9.1-3. . 
By differentiating 1> : 

1> = t .i[yet,) - Yo eat! + :0(1 - e"t!)r 
1=1 

with respect to Yo and next with respect to a and then
 
replacing Yo and a in the resulting expressions with their
 
estimates, we get
 

n

L [Y(tl) - Yo eat! + -; (1 - eat!)] eat, = 0 
'=1 

n

L [yeti) - Yo eat! + ~o (I - eatl) ]
 

1=1
 

.{tl yO eat! - ~~ [e,xt'(1 - IXl,) - l]} = 0 

The important points to keep in mind when using 
Equations 9.2-3 are that: (1) the unobservable error is 
added in a special way to the deterministic response; 
(2) all the n responses are used simultaneously in the 
estimates, and (3) no prior statistical information enters 
into the criterion except perhaps as introduced through 
the matrix r. Because Equations 9.2-3 are nonlinear, 
some type of numerical solution such as the Newton­
Raphson technique is required to ascertain the values of 
a and Yo. As explained in Section 6.2, this requirement 
often leads one to select one of the optimization pro­
cedures described in Section 6.2 rather than work widl 
Equations 9.2-3 directly. 

9.2-2 Computational Problems 

The main difficulty involved in the least squares 
estimation procedure for transport phenomena models 
remains the same as that recited in Sections 5.5, 6.2, and 
6.3, namely how to carry out successfully the optimiza­



tion of 4> for a nonlinear model. Because of the 
complex nature of the solutions to the model, local 
optima can be expected to be encountered; hence the 
choice of initial guesses for the parameters is important. 
If the initial guesses can be chosen so that the dominant 
time constants t of the model are of the same order of 
magnitude as the dominant time constants of the 
measured responses, the difficulty can be ameliorated. 

In addition, one new problem arises related to the 
experimental design, that of the stability of the deter­
ministic model. If the model is stable, the dependent 
variable reaches some asymptotic value in time (or 
distance). To estimate successfullythe model parameters, 
the bulk of the experimental data must be collected in 
the early portion of the run. See Figure 9.2-1. On the 
other hand, if the model is unstable so that the deter­
ministic solution increases without bound, the data also 
have to be properly collected or weighted if the last, 
and largest, responses are not to overwhelm the earlier 
ones. 

Examples of estimation using nonlinear (in the param­
eters) analytical solutions to the deterministic process 
model corresponding to Equation 9.1-7 have been 
previously given in Chapter 6. Consequently, we show 
below the application of least squares to a process model 
which is nonlinear in the dependent variables-analogous 
to Equation 9.1-IO-and hence requires a numerical 
solution. 

y 

Data colIected in 
this region influence 
estimates the most 

Data collected in this region 
represent the steady-state 
solution to the model and 
do not involve Cll 

y=e"t 

y 

b 

(a) 

0-.::::...-------'------ ­

(b) 

FIGURE 9.2-1 Characteristics of stable and unstable solutions 
for process models : (a) stable solution to deterministic model 
and (b) unstable solution to deterministic model. 

t That is, exponential exponents associated with t in the solution 
to the model, which are the same as eigenvalues of the matrix a . 
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Experimental design 
(Chapter 8) 

~
 
Data collection:
 

input x
 
output Y
 

!
 
Introduction of data and model 

into the computer program 

!
 
Assumption of values 

of the parameters 

!
 
Application of difference 

scheme to solve differential 
equation for each element of x 

~ 
Nonlinear estimation of 

parameters and associated 
statistics (Chapter 6) 

! 
Analysis I

I (Chapter 5, 6, and 7) I 

FIGURE 9.2-2 Information flow for estimation of initial value 
model parameters with the aid of numerical difference schemes. 

If difference equations are used to solve the differential 
equations, the addition of a suitable computer routine 
to a nonlinear estimation routine is reasonably straight­
forward. The Adams-Moulton multistep method and 
the Runge-Kutta single-step method for the initial 
computations are well known as standard techniques for 
initial value problems; t most computer centers have 
computer codes to execute the solutions . Analog and 
hybrid computers, or digital simulators of analog com­
puters (such as MIMIC), provide easy execution of 
standard codes for those unskilled in programming. It is 
necessary to provide initial estimates of the model 
coefficients, which are then improved by some iterative 
scheme as outlined in the information flow diagram 
of Figure 9.2-2. Of course, difficulties can be encoun­
tered with the numerical schemes and with roundoff. 
In the Runge-Kutta and other numerical difference 
schemes, numerical instability can arise if certain stability 
criteria are violated.§ In some models, large terms of 

:j: P. Henrici, Discrete Variable Methods in Ordinary Differential 
Equations, John Wiley, New York, 1962; L. Lapidus, Digital 
Computation for Chemical Engineers, McGraw-Hill, New York, 
1962. 
§ J . Certaine, "The Solution of Ordinary Differential Equations 
with Large Time Constants" in Mathematical Methods for 
Digital Computers, ed. by A. Ralston and H. S. Wilf, John Wiley, 
New York, 1960. 
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approximately equal value are subtracted from each 
other, with a resulting loss of significant figures. 

Example 9.2.1 Estimation of Kinetic Rate Coefficients using 
Discrete Observations 

Ball and Groenweghe t applied the procedure outlined in 
Figure 9.2-2 to estimate the kinetic coefficients for the 
second-order kinetics of certain organometallic compounds 
represented by the following reaction scheme : 

k , 
+ 3~2 + 2 

k . 
2+4~3+3 

k 3 

3+5~4+4 

k. 
2+5~3+4 

k. 
+ 5~2 + 4 

in which the k's are the forward rate constants and the 
numbers designate the chemical species. The rate constants 
were first assumed and later verified to be independent of 
the composition of the mixture. The six equilibrium con­
stants (Kl ) for the reactions were evaluated separately so 
that only half of the twelve rate constants had to be esti­
mated (the reverse rate constant could be derived from the 
forward one) . 

The react ion mechanism indicated that five species 
existed, 1, 2, 3, 4, and 5, but they -were constrained by two 
total material balance equations based on the original 
compositions at t = 0, with the consequence that only three 
independent differential equations were required to make 
up the model. The remaining components then could be 
obtained from the total material balances . The three differ­
ential equations were 

dC3 
dt 

t W. E. Ball and L. C. D. Groenweghe, Ind. Eng. Chern. Funda­
mentals 5, 181, 1966. 

The initial conditions were known deterministic values : 
Cl(O) = ClO ; C2(0) = 0; C3(0) = 0; ciO) = 0; and cs(O) = 
CSO. The integration scheme was taken from Fehlberg.t who 
presented a number of fast and accurate numerical inte­
gration formulas of the predictor-corrector type. The 
particular method was to continue the solution dC/dt = 

C' = f(t , C) from values already found for previous times 
to, t}, . . . , tn. Let Cn be a vector of composition values at tn' 

Then the procedure would be to (h = tn+l - t n): 

1. Predict {estimate) the next value of the dependent 
variable vector : 

C:+ 1 = Cn - 3 + ~h (2C~ - C~-l + 2C~- 2) 

2. Evaluate the derivative function : 

3. Correct the estimated value: 

4. Evaluate the derivative function : 

5. Check the local truncation error using the value of 
-ilj(C:+ l - Cn+ l ) . Bal and Groenweghe indicated that the 
Fehlberg equations required less machine time than Ham­
ming's integration formula.§ 

Marquardt's method as described in Chapter 6, partic­
ularly Equation 6.2-20, was used to carry out the least 
squares estimation. The required partial derivatives were 
obtained numerically by integrating the rate equations with 
slightly perturbed rate constants and then calculating the 
appropriate differences: 

8CIj Clj(k 1 , • • • , k l + !i.k" . . . , kL) - CII(kl , . •• , kz, ... , k L) 

8k; = !i.k r 
1= 1,2, .. . ,6 

Hence, one Marquardt iteration required the integration of 
the rate equations at least seven times to obtain the neces­
sary number of derivative values. 

In one application of the above . program, compositions 
were measured (in moles/liter) for each of the five com­
ponents for the times (in minutes): 0, 10, 40, 70, 202, 490, 

t E. Fehlberg, " Numerically Stable Interpolation Formulas with 
Favorable Error Propagation for First and Second Order 
Differential Equations," Tech. Note n-S99, National Aeronautics 
and Space Administration, Mar. 1961. 
§ R.W. Hamming, "Stable Predictor-Corrector Methods for 
Ordinary Differential Equations," J. ACM 6, 37, 1959. 

- -; 



1190, 1453,2410, 2795, and 3765. Thus a total of (5)(10) = 
50 measured composition values were used to estimate the 
six rate coefficients. Starting estimates of the rate coeffi­
cients were obtained by hand calculation of the slopes of 
the concentration-versus-time curves at several points. The 
decrease in the function </> for each iteration was as follows: 

IBM 7040 
Iteration </> Machine Time (sec) 

0 0 
1 0.0278 100 
2 0.0254 186 
3 0.0215 273 
4 0.0206 360 

The changes in rate constants were: 

Initial Estimated k Values Final Estimated k Values 

0.053 0.0418 
0.Q25 0.0272 
0.0048 0.0218 
0.0085 0.0208 
0.0069 0.000532 
0.0141 0.0108 

The estimates tended to converge satisfactorily in very 
few iterations when the proposed kinetic model adequately 
represented the chemical system, i.e., when </> was small. 
However, as might be expected, when the model was a 
poor one, many more iterations were performed and the 
estimated parameters changed in a seemingly random way. 

1.00 r------r-----..-----..--,

C4

C3

C5
C2 

C 

0.80 

c 
0 

'B 
~ 
'" 0 
:E 

1000 2000 3000 

Reaction time(min) 

FIGURE E9.2-1 Calculated response curves and experimental 
data : 

Experimental points: 
• = C1 = (rerr-BuO),Ti, ... = C2 = (tert-BuOMMe2N)Ti, 
o = C3 = tert-BuOMM~NhTi,
 
D, = C4 = (tert-BuO)(Me2NhTi, 0 = Cs = (Me2N)4Ti
 

Values of kinetic constants : 
k 1 = 3.74 X 10- 3, k 2 = 8.33 X 10- 3, k3 = 5.33 x 10-4, 
k4 = 2.47 x 10- 4, k s = 1.58 x 10-4, ke = 2.58 X 10-5 

Equilibrium con stants: 
K1 = 7.40 X 10-2, K 2 = 2.97 X 10- 1, K3 = 9.50 X 10-2 

(Adapted with permission from Ind. Eng. Chern. Fundamentals 
5 (2), 183, 1966.) 
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Estimates of the precision of the estimates of the estimators 
were not given nor were estimates of the precision of c; 

Figure E9.2-1 compares the computer output curves for 
the predicted concentrations (the " state") for a slightly 
different run with the experimental points. Note that the 
bulk of the observations of concentration were taken in the 
steady state (t > 1000 min); such an experimental design 
makes the estimation of a response with a maximum, such 
as <72 • or a response that rapidly reduces to zero. such as 
('t, quite difficult. The fact that the initial conditions were 
known was of material assistance in the estimation. 

9.2-3 Continuous Observations 

Example 9.2-1 describes least squares estimation 
oriented toward data processing by an off-line digital 
computer. In the fields of engineering. biomedicine, 
geophysics, and oceanography, large volumes of data 
must be processed in real time on-line. with the result 
that the model parameters are estimated and adjusted 
continuously by continuously reducing </> in Equation 
9.2-1. 

Several techniques have been applied to minimize </> 

continuously. but we shall restrict our attention to the 
most common procedure. namely that of steepest 
descent. In steepest descent . the time rate of change of a 
model parameter f3J is given by 

of3J = -k o</> (9.2-4)dt of3 j 

Equation 9.2-4 evolves from the following analysis. 
Consider a function of several parameters, </>({1h P2' .. .• 

f3n) ' To mo ve toward the minimum of </>, we need to go 
a distance ds in parameter space where ds is defined in 
the Euclidean sense: 

m 

ds2= :L df3r (9.2-5) 
J=1 

The change of </> with respect to s is 

m 

d</> = ~ o</> df3J (9.2-6) ds L... of3JdsJ=1 

and the direction of steepest descent is the biggest 
negative value of (d</>fds) which makes Equation 9.2-6, 
subject to Equation 9.2-5, stationary. 

A Lagrangian function can be formed (see Appendix 
B) 

g =*o</> df11+ '\[1 _*(df1j)2]L... of1j ds L... ds 
j= 1 j =1 

After equating the partial derivatives of g with respect to 
(df1Jfds) to zero, we have 

o</> + ,\(-2 df1J) = 0 
of1J ds 
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or 

df3j 1 ot/> 
j = l, .. . ,m (9.2-7)ds = 2'\ OXt
 

Introduction of Equation 9.2-7 into
 

1 = i (~r 
j=1 . 

gives the function for ,\: 

Introduction of Equation 9.2-8 into 9.2-7 gives 

df3j = ± [~(Ot/» 2]- Y,(Ot/» (9.2-9) 
ds L. of3j 0f3 j

1=1 

where the positive sign indicates the rate of change for 
steepest ascent and the negative sign for steepest descent. 

If (ds/dt) is now identified as v, a "velocity," because 

df3j df3j ds df3j
-=--=-v
dt ds dt ds 

all we have to do is choo se v proportional to the magni­
tude of the gradient: 

k » 0 

Data input . Real time integration 

-

+Yet) L..-__

to find one expression for the rate of change fJ. in the 
direction of steepest descent : 

j = l, . . . ,m (9.2-4) 

as previously indicated. Equation 9.2-4 can be com­
pared with the stepwise version of steepest descent given 
in Section 6.2-4 by letting 

df3j f35n +1) - f3~n) _ k ot/> 
di ;;:;' 6.t = of3j 

or 

f35n+ 1) = f35n) - k (6.t) 0</> 
of3t 

If k (6.t) is denoted by the constant h, the step size, the 
relationship with Equation 6.2-l7a becomes evident. The 
use of Equation 9.2-4 will be illustrated by the next 
example. 

Example 9.2-2 Continuous Linear Estimation Using Steepest 
Descent 

For a simple illustration of continuous parameter esti­
mation by the method of least squares using steepest 
descent, consider the determination of the parameters in the 
linear model y = f30 + f31X . The criterion for estimation is 
to minimize t/> : 

Steepest descent calculations 

fo'dt'= t 
-100 

X(t) -----+----..----i 

-+__--j 

FIGURE E9.2-2 



where Y represents the stochastic dependent variable, t ' is 
a dummy variable, and t is real time. For steepest descent, 
we let 

d{3o ae/>
-ko - (b1)dr = a{3o 

d{31 ae/>-k1 - (b2 )dr a{31 

where r is the time scale of operation on the analog or 
hybrid computer. 

The derivatives on the right-hand side of Equations (b) 
can be evaluated as follows: 

oe/> 
- 0 (Y - {3o - (31 X) dt ' (C1)

o{3o = r 
ae/> 

-r- f~ (Y - {3o - (31 X)X dt ' (C2) 
a{31 = 

Substituting Equations (c) into (b) and denoting the esti­
mates of [3 by b give 

t 
dbo [11 r ]dr = k o 0 Y dt ' - bot - b1Jox dt ' 

Figure E9.2-2 portrays an analog circuit to carry out the 
calculations. Note that the values of the estimated param­
eters do not feed back into the real time calculations 
(integrations), so the data processing circuits which operate 
in real time are decoupled from the steepest descent calcu­
lations which operate in the scaled time r, 

The model used in Example 9.2-2 was selected to be 
linear in the parameters for illustrative purposes only. 
Least squares estimation by steepest descent , as given by 
Equation 9.2-4, can be applied equally well to process 
models stated in the form of ordinary differential 
equations whose solution is given by the continuous 
analog of Equation 9.1-8 and in which the error is 
added as in Equation 9.1-9. In general , 

dJ: = -k :~ = k I: [Y - 'I'(~, t)] o'l'~ t') dt ' (9.2-10) 

The elements of the matrix (o'l'j0r-) are termed the 
sensitivity coefficients or parameter influence coefficients; 
they can be evaluated as follows. Differentiate both sides 
of Equation 9.1-10 with respect to ~t, assuming ~ is 
independent of t : 

~ (dY) = ( Of(~, Y, t»)(Oy) . of( ~, Y, t) 
o~ dt oY o~ + or-

t Weuse[3rather than a because the initialconditions can be put 
in Model 9.1-10 as differentialequations bynotingthat dYoldt = 0 
and adding theseequations to dyldt = f . 
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If y is continuous and differentiable, the order of differ­
entiation can be exchanged to yield 

!!- (8Y) = Of(~, Y, t) (oY) + of(~ , Y, t) (92-11) 
dt 8~ 8y o~ o~ . 

Equation 9.2-11 is an ordinary differential equation 

. of Of 
u(O) = 0 (9.2-12)u = oy u + 8~ 

, 

in the sensitivity coefficients u == oyjo r- (here we have 
assumed h = I, the identity matrix, in Equation 9.1-6). 
Even if ~ changes, as e/> -'r e/>mln, the estimated parameters 
approach constant values so that in the end the adjust­
ment of ~ meets the assumption that ~ is constant. 

Thus we see that continuous time estimation by least 
squares using steepest descent requires only that the 
input and the output of the process be measured . It has 
the disadvantage that the partial derivatives in Equations 
9.2-4 and 9.2-12 are functionals, that is, they are functions 
of the coefficients to be estimated. Therefore the gradient 
of e/> does not exist unless the coefficients are constant, 
but this contradicts the original objectives of allowing the 
coefficients to change with time. Consequently, the 
steepest descent procedure is satisfactory only when k is 
small, because the coefficients used to evaluate the 
response must be those from earlier estimates: How to 
calculate the precision of the estimates as a function of 
time is not clear, hence the advantage of sequential 
estimation to be described in Section 9.4, but at tf there 
is no reason why estimates of the precision of the esti­
mated parameters cannot be obtained from samples of 
the observations as described in Section 9.2-1. 

Example 9.2-3 Continuous Estimation 

A set of differential equations was proposed to represent 
a waste-disposal plant containing several units. Only the 
first two equations are considered here: 

dY1di = allYl + a12Y2 + X1(t) 

dY2di = a21Y1 + a22Y2 + X2(t) 

where Y1 and Y2 are the dependent variables and Xl and X2 
represent the external inputs to the process units; 

A disturbance was introduced at zero time in each process 
unit by making X1(t) and X2(t ) each a small step up for R 

fixed time and then returning to the original reference 
input. In Figure E9.2-3a the solid line shows the responses 
recorded for Y1 and v, (as deviations from their initial values) 
as a function of time. The signals from the detectors were 
fed to a tape recorder, and the information from the tape 
was processed off-line using the schematic information 
flow sketched in Figure E9.2-3b. The gains used were each 
0.05. The circuits for the hypothetical analog computer 
are not shown inasmuch as the processing was actually 
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carried out on a CDC 6600 computer using the analog 
simulator MIMIC. All the integrations, solution of the 
differential equations, and calculation of the sensitivity 
coefficients could be executed in a few seconds. 

The broken lines in Figure E9.2-3a indicate the predicted 
responses as a function of time for the estimated coefficients 
shown in Figure E9.2-3c. Only small step changes could be 
introduced into the process units if reasonable deviations 
between the predicted and measured responses for the 
linear model were to result, no doubt because the actual 
performance of the equipment was nonlinear for large step 
changes. Hence the linear model was inadequate . 
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FIGURE E9.2-3c 

The parameter estimates will be asymptotically un­
biased only if the assumptions hold true concerning the 
way in which the unobservable errors are added. In 
practice, many immeasurable and uncontrolled external 
factors influence the observations so that the estimates 
may be biased to some extent, as dem onstrated by 
simulation studies.'] 

t P. C. Young, Simulation, 125, Mar. 1968. 



9.2-4 Repetitive Integration of Experimental Data 

Another technique that has been used effectively for 
both continuous and discrete observations is to integrate 
repeatedly the experimental data, using a numerical 
quadrature scheme. t Suppose, for example, that the 
deterministic process model is 

d
2 
y dy 2 a 1 (0)

dt 2 + ao dt = alY + a2Y + aa e , jl = Yo 

If the model is integrated over the interval 0 to t, we get 
(t' and t " are dummy variables) 

dy (dY)
dt - dt 1=0 + ao(Y - Yo) 

= a l J: y dt' + a2J: y2 dt ' + a a J: ea,t dt' 

and if integrated again, 

y - Yo + [aoyo - (tt] J: dt ' + aoJ> dt' 

= al j~ U: y dt'] dt" + a2J: U: y2dt'] dt " 

+ a a J: U: ea,t' dt '] dt " (9.2-13) 

The resulting equation is expressed solely in terms of y 
and integrals of functions of y . 

Suppose now that the deterministic variable y is 
replaced by the stochastic observations Y in the integrals, 
and that a series of different upper limits are selected for 
t, such as ts , t2, ... , tn, with n greater than the number of 
parameters to be 'estimated. Then an overdetermined set 
of equations is obtained that might be solved for the 
estimated parameters by the method of least squares. Of 
course, the unobservable error added to y now is im­
meshed in the integrals themsel ves; hence the "indepen­
dent variables " are random variables. Also , because the 
observed Y's are taken as a sequence in time, the inte­
grals are not statistically independent. Nevertheless , the 
computations are easy to carry out continuously or 
off-line for data taken at equal or unequal time incre­
ments ; simulation studies indicate that the procedure 
has some merit.j 

Repeated integration of second- and higher order 
differential equations does require knowing the initial 
values of the next lower order derivative of y (and x if 
derivatives of the latter appear in the model) . It may be 
possible to estimate the quantity [aoyo - (dy/dt)ol as a 
whole in Equation 9.2-13, but this procedure has not 
been tested as yet. If the initial values of y and its deriva­
tives are all zero, there is no problem. 

t E. Mishkin and L. Braun, Adaptive Control Systems, McGraw­

Hill, New York, 1961.
 
:j: D . M. Himmelblau, C. R. Jones, and K. B. Bischoff, Ind. Eng.
 
Chern. Fundamentals 6,539, 1967.
 

MAXIMUM LIKELIHOOD ESTIMATION :{ (I'i 

Loeb and Cahen § circumvented the requirement thai 
all the initial conditions for y, x, and their derivatives 
be known by multiplying each term in the differential 
equation by a so-called modulus function, a function 
chosen so that it and its first (n - I) derivatives vanisi. 
at the ends of the interval of integration. 

9.3 MAXIMUM LIKELIHOOD ESTIMATION 

Maximum likelihood estimates have been described in 
several earlier section s. They have the desirable charac­
teristics of asymptotic efficiency and normality. Each 
time they have been associated with the (joint) normal 
distribution because of mathematical convenience. Con ­
sider the j oint probability density function (the likelihoo« 
function) p(a., Yo I y(tl), y(t2), ... , y{tn» for a. and Yo. JJ 
a maximum of this function over all choices of Yo and 
a. can be found, the estimates so obtained are maximum 
likelihood estimates. The conditions at the maximu m 
can be evolved incorporating prior information as follows, 

The posterior probability density p(a., Yo I y(t l), y{t2), 
... , y{tn» can be expressed as the ratio of two proba­
bility densities if we make use of the analog for con, 
tinuous variables of Equation A-8 in Appendix A : 

(a. y Iy(t) y(t» = p(a.,Yo, y{tn), "" y(tl» (93-1) 
p ,0 .n , .. . , 1 p(y(tn), oo .,y(t » .

l 

The numerator of the right-hand side of Equation 9.3-1, 
using Equation A-8a in Appendix A, becomes 

p(a., Yo, y{tn), . . . , y(tl» 

= p(y(tn) I a., Yo, y{tn-l)," ., y(tl» 

-pt«, Yo, y(t n - l ) , • . . , yell»~ (9.3-) ', 

These operations can be continued repetitively until we 
get 

p(a., Yo, y(tn),. . . , y(tl» 
n 

= p(a., Yo) TIp(y(tj) I a., Yo, y(tt-l), " " y(tl» 
j=l 

(9.3<:) 

Examination of Equations 9.1-7 and 9.1-9 shows tha : 
Y{tt) depends only on tj, Yo, a., and e(lj) and is not 
conditioned by any previous measurements. Con­
sequently, we can write 

p(y(tj) I a., Yo, y{ti-l)' . .. , y(tl» = p(y(tJ I a., Yo) (9.3­

provided Equation 9.1-9 is observed as a constra int. 
The desired joint conditional probability density functir 
is thus 

p(a., Yo) fr p(y(tt) I a., Yo) 
p(a., Yo Iy{tn), " " y(tl» = ( ()l ( »pytn, .. · , y tl 

(9.3- 5) 

§ J. Loeb and G. Cahen, Automatisme 8, 479, 1963. 
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The function to be maximized will be the logarithm	 Finally, we assume that Yo and a.* are distributed by r 
of the likelihood function L = p(a., Yo I y(t,.), . . . , y(tl» a joint normal distribution and that the prior distri­

constrained by Equation 9.1-9, which can be written as butions of a.* and Yo are, respectively,
 
In L plus the Lagrangian multipliers A(tk ) (refer to
 
Appendix B.6) times the constraint function, or ( *) _ 1
 

p a. - (21T)<V/2) In...Iy. 

-exp [-t(a.* - a.*(O)yn;,1{CI* - a.*(0»]L* == Inp(a., Yo) + .2
n 

{Inp(r(tt) Ia., Yo) + AT(tl) 
1=1 . 

(9.3-11a) 
. [y(tl) - 'I'(a., Yo, tl) - e(tl)]} 

1
 
- In [p(y(tn) , .• • , y(tl»] (9.3-6) p(Yo) = (21T)v/2I nYol Y.
 

By assumption of the relation of Equation 9.1-9, -exp [- t(yo - y&o>yny/(yo - y &O»] (9.3-lIb) 

p(y(tl ) I a., Yo) = p(e(@ (9.3-7) where the n's are the respective covariance matrices for 
and specifically,	 a.* and Yo, and the superscript (0) designates the prior
 

estimates of a.* and Yo. If we assume that 11* and Yo are
 
independent,
p(e(t l» = (21T)"/2:r(t ) ly.exp [-teT(tl)(r(@-le(@
 

l
 

Inp(a.*, Yo) = Inp(a.*) + Inp(yo)(9.3-8) 

Introduction of the prior distributions, Equationswhere /rl is the det r, and r is the covariance matrix 
9.3-11a and 9.3-11b, plus the expression for A(tl) into the of e, i.e. , of the responses. 
first two equations of 9.3-9 gives the final equations from After Equation 9.3-7 is substituted into Equation
 
which the estimators of a.* and Yo can be obtained:
 9.3-6, and L * is differentiated with respect to each of the 

estimates and e(t l), and the resulting expression is n . 

equated to zero, we get -(Yo - y&O»Tny;,t + .2 [Y(tl) - 'I'(a, Yo, tl»)'1'-l(tl) 
1=1 

.-:- 'I'(a, Yo, tl) = or (9.3-12) 
uyo 

n 

- (a * - a.*(O>yn;/ + .2 [Y(tl) - 'I'(ci, Yo, tlW 
1= 1 

r - l ( tl
) 8'1' (A A ) OT . 8a.* «, Yo, tl = 

Substitution of Equation 9.3-8 into the last equation of where the overlay caret denotes estimated parameter. 
9.3-9 makes it possible to solve for A(tl) : .Note that under the assumption that the elements of 

n are essentially infinite (prior knowledge is diffuse), the A(tl) = - (r(tl» -le(tl) 
elements of n -1 are zero, the equations for the maximum = -(r(t.)-l[y(tl) - 'I'(a. , Yo, tl)] 
likelihood estimates coincide with those for the least 

and to eliminate A(t;) from the first two equations of squares estimates, and the same calculations for precision 

9.3-9. in the estimates apply. Maximum likelihood estimates 

For convenience we shall define a new column vector and least square estimates are compared in Example 

a.* in which all the elements of a. are arranged as follows: 9.4-1. 

9.4 SEQUENTIAL ESTIMATION 

Sequential estimation involves using prior observa­
tions together with the latest observation to estimate the a.* = (9.3-10) 
model parameters and init ial conditions and/or re­
sponses. We shall write Equation 9.1-8 in a slightly 
different notation : 

(9.4-1) 



where lJ will be used to represent the model solution. To 
avoid confusion in the notation, (3 is defined as 

and ex*, the column vector of the elements of ex, has been 
previously defined by Equation 9.3-10. The essent ial 
feature of Equation 9.4-1 that makes it tractable for 
further analysis is that Yr(tj) is a linear combination of 
the elements of lJ. In signal processing, lJ is regarded as 
the unknown input to a linear system , and the major 
emphasis is on the estimation of the value of lJ through 
observations of Y. But here we regard lJ as a function of 
known form and we want to estimate the parameters (3 
in the function . 

The elements of (3 can be estimated from a series of 
observations bya method variously known as the 
Wiener-Kalman method, the Kalman-Bucy method, 
Schmidt's method, and other names (see references at 
the end of the chapter), depending upon the particular 
derivation and the computational algorithm. One of the 
easiest developments, but not the only development, of 
the estimator equations is to use Bayes' theorem as 
outlined in Section 3.1-3. 

We assume that the following information is known 
(corresponding to the list in Section 3.1-3): 

1. A set of observations of Y at successive times 
t lo t 2 , ••• , t;, all of which together will be denoted by 
Y(tj) . 

2. A functional relationship between the observations, 
lJ, and e, narnelyEquation 9.4-1. 

3. The joint density function - of lJ and e, p(lJ(tl ) , 

e(t j»; here lJ(tl) and e(tl) are independent so P(lJ(tf), 
e(tf» = p(lJ(@p(e(tj». Furthermore 

(1) p(lJ(@ is Gaussian with 

tS'{lJ(tf)} = !J.'l 

Covar {lJ(tl)} = tS'{lJ(tj)lJT(tj)} = Q~ 

(2) p(e(@ is Gaussian with 

tS'{e(tj)} = 0 

Covar {e(@ = tS'{e(tf)eT(@ = f 

and the tS'{lJ(tl)eT(@ = O. 

In the above list the functional dependence of certain 
of the matrices on time has been denoted explicitly; in 
what follows the argument of time is suppressed to save 
space but the dependence still holds. We now proceed 
through the steps given in Section 3.1-3 to obtain the 
posterior den sity p(lJ, y). 

1. Obtain the density function p(y) for the random 
variable Y. Since Y = hlJ +. e, and lJ and e are both 
Gaussian, Y is Gaussian; also 
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tS'(Y) = htS'{lJ} = hIL~ 

Covar {Y} = tS'{YYT} = tS'{(hlJ +. e)(hlJ +. e)"} 

= hQ~hT +. f 

Therefore, the probability density function per ! is 

p(y) = k1 exp {-!(Y - hIL~)T(hQ'lhT +. f)-l (y - hIL'l)} 

(9.4-2) 

where k1 is a normalizing factor that is not needed here. 
2. Obtain the density function p(y IlJ) from the 

relation given in Section 3.1-3: 

p(y IlJ) = p~~~) = pee) 

= p(y - hlJ) 

= k2 exp [-t(Y - hlJ)Tf-1(Y - hrOJ (9.4-3) 

3. Obtain the posterior density p(YJ I y) from Bayes' 
theorem: 

p(lJ Iy) = p(y IlJ)p(lJ) = p(e)p(lJ) 
p(y) p(y) 

= ks exp {--H(Y - hlJ)Tf :-l(Y - hlJ) 

+. (lJ - !J.'lYQ,;-l(lJ - IL~) 

- (Y - hIL~Y{hQ~hT +. f)-l(y - hIL'l)l) (9.4-4) 

By completing the squares in the [ ], Eq uation 9.4-4 
simplifies to 

p(lJ Iy) = ks exp {-HelJ - ilyn-1(lJ - ii}j} (9.4-5) 

in which we have let 

(9.4-6) 
or 

and 
(9.4-7) 

Maximization ofp(lJ Iy) is equivalent to minimization 
of the expression in the square brackets in Equation 
9.4-5. Minimization of the expression in the r. ] with 
respect to lJ by differentiating and equating the resulting 
expression to zero , as in Section 5.1, gives 

-2n(Yj - ~) = 0 

Consequently, the best estimate of lJ, Yj, is equal to ii as 
given by Equation 9.4-7. 

To obtain a relationship to calculate Yj recursively and 
save effort, that is, to compute Yj at tf + 1 from the previous 
information at t, plus one new observation i i.-' 1> w.e 
pr oceed as follows. The subscript index i or I- I will 
designate both time dependence and the specific lime. We 
assume that the following information is known at tl + 1 

(corresponding to the list in Section 3.1-3): 

1. A 'set of observations of Y at successive times t1 to 
ti + 1• The observations up to and including tl will be 
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designated by YI> and the observations taken solely at 
tl + 1 will be designated by YI+1' 

2. A functional relationship between the observations , 
~, and E. It is assumed still that at any t, 

YI = hi")i + E1 (9.4-8) 

and that, in addition, 

1)1+1 = h*1)1 + SEt (9.4-9) 

where h* and S are given matrices . Equation 9.4-9 
relates the value of the function l) from one time period to 
another. 

3. The density function P(1) i IYi) as Gaussian, and E* 
and E as independent unobservable errors. Also, 

C{(l)1 I Yi)} = iJl 

Covar {1)i 1YI} = C{(1)11YI)(l) i I Yi)T} = Q'll 

The joint density function between Ei +~ and Et is 

p(Et, Ei+1 Il)l> Yi) = p(Ef)p(EI+1) 
and 

C{EI} = C{EI +1} = 0 

Covar {En = C{EtEt T} = r 

Covar{E1+1} = C{EI +1Ef+1} = r 

We proceed as before except that the posterior density 
function we are seeking is now 

_ P(l)i+b YI+1, Yi) p(1) Iy ) (9.4-10) 1+ 1 1+1 - P(YI+1, Y;) 

By integration of the numerator and denominator of the 
right-hand side of Equation 9.4~1O over all the observa­
tions except YI+b i.e., integration over YI> Equation 
9.4-10 reduces to 

Y ) - P(1)i+1, YI+1 I YI)(1)P ;+1 1 1+1 - P(YI+1 I YI) 

P(Yi+1 1l)I+h YI)P(1);+1 IYI) (9.4-11) 
= P(YI+1 I YI) 

Consequently, we need to obtain the three probability 
density functions on the right-hand side of Equation 
9.4-11. 

1. Obtain P(YI+1 I YI)' As before, P(YI+1 I YI) is Gauss­
ian with 

C{(YI+1 I YI)} = hh*iJl 

Covar {Y1+ 1 I YI} = C{(YI+1 IYI)(Yi+1 IYi)T} 

= hQ'll+lhT + r 
2. Obtain the density function P(l)i +1 IYi) ' The 

density is Gaussian and independent of p(Ei +1) with 

C{(1)I+ 'l IYI)} = h*iJi 

Covar {1)1+1 1YI} = C{(l)i+1 IYI)(1)1+1 IYI)T} 

= h*Q'llh*T + ersT == M I +1 

3. Obtain the density function P(YI +1 ! l)I+h Yi)' The 
density is Gaussian with 

C{YI+1 11)1+1, YI} = hl)l+1 

Covar {Y1+1 11)I+b YI} = C{(YI+1 11)1+1, YI) 

' (YI+1 1l)l+h YI)'} = r 
Introducing the appropriate quantities for the density 

functions into Equation 9.4-11, we obtain 

P(1)1 +1 I YI+1) 

= k 1 exp {-t[(l)1+1 - h*iJl)TM;-+\(l)1+1 - h*iJ;) 

+ (Yj+1 - h1);+l)Tr -l(Yi+1 - b1)i+1) 

- (Yi +1 - hh*iJi)T(hM i+1hT + r)-1 

' (YI +1 - hh*1Ji)]} 

(9.4-12) 

where k 1 is a normalizing factor. Completing the squares 
in the [ ] reduces Equation 9.4-12 to 

P(l)I+1 1Yi+1) 

= k 1 exp {-'H(l)i+1 - iJI+1)TQ.,j,:1(l)1+1 - ~;+1)]} 

(9.4-13) 
where 

111+1 = h*lli + MI+1hT(hMl+1hT + r)-l(YI+1 - bb*~i) 

(9.4-14) 
and 

(9.4-]5) 
or 

Q'll+l = MI+1 - M;+1hT(hMI+1hT + r)- lhMl+ l 
(9.4-16) 

and MI+1 is defined above in terms of QI' As before, 
maximization of P(1)1+1 I YI+1) with respect to '111+1 leads 
to 1)1 +1 = iJi+1 ' so Equation 9.4-14 is the estimator 
equation. Equation 9.4-14 is often termed the discrete 
"Wiener-Kalman filter." 

To obtain specifically the equations for estimating p, 
it is necessary to use a recursive technique employing the 
linearized (in p) solution to the .model. Suppose we 
linearize l)1+1 by a truncated Taylor series about the 
reference values P1' P2' ..., where the overlay tilde repre­
sents the reference value: 

1)i = 1);(~) + ~~~) ({3l - Pl) + ~~~) ({32 - P2) + ... 

= 1);(p) + V(3l) i(~) 8~ (9.4-17) 

where 8~ = ~ - ~ and V(3 == 8/8{31 + 8/8{32 + , , '. Then, 
after substituting Equation 9.4-17 into Equation 9.4-8, 
assuming that h* = I, the identity matrix, and that 9 is 
zero in Equation 9.4-9, we obtain 



or 

8YI == YI - h(tlt(~) = [h lVIl:'lI(~)] 8(3 + £1 (9.4-18) 

Note that Equation 9.4-18 corresponds to Equation 
9.4-8 with 8Y, corresponding to YI and 8(3 corresponding 
to n., Consequently, 8(3 can be estimated through use of 
Equation 9.4-14 with 8~l +1 replacing lil+1 if the assump­
tions made about the probability den sities involving 'l 
apply to 8(3, and we shall assume that they do . 

Consequently, if the refere nce state ~ is assigned as 
the previously estimated (3, i.e., let ~ = ~;, ~1 +1 is 
formed from Equation 9.4-14 : 

8~1 +1 =	 8~, + QIl,[hf+1 VIlY 

·[(hl+1VIl'l I (~I»QIl I (hl +1 VIl'l I(~ I)Y + f] - l 

. [8YI+1 - hI+1(VIl'lI(~I» 8~tl 

Because 8~1 = ~I - ~I = 0, and 

8YI+1 - hl+ 1VIl'll~l) 8~, ~ YI+1 - hi+1'l 1(~ i ) 

we find 

~1 +1 =	 ~l + Ki + 1[Yl+1 - h f +1'l f +1 (~I)] (9.4-19) 

where 

+ J:Iexp [(tl - r) a(ti) ]x(r) dr 

K l+1 =	 QIl(tI +l)[h(t1 + 1 ) VIl'l(~;, tl +1)Y
 

. ([h(t' +1)VIl'l (~;' tl +1)]QIl(tI+1)
 

. [h(tl+1)VIl'l (~" tl Ctl)Y + f(tl +1)} -1 

and the recursion relationship for the covariance matrix 
of (3, QI3, from Equation 9.4-16 is 

The matrix Q Il can be used to estimate the precis ion of 
~ for the linearized model as described in Section 6.4. 

Example 9.4-1 Comparison of Estimation Techniques 

Suppose we take the scalar model, Equat ion 9.1-1: 

I dy

dt = ay + xo Y(O) = Yo (a)
 

I.	 (b) 

where x o is a constant input , and find the estimation equa­
tions for each of the three main procedures described in 
Sections 9.2, 9.3, and 9.4. The initial state Yo and the param­
eter a are assumed to follow a Gaussian distribution with 

<9'{Yo} = Yo tf{a} = a 
tf{(yo - Yo)2} = a¥o tf{(a - a)2} = ~ 
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and the variance of the unobservable error is assumed to be 
constant with 

The least squares estimation equations, already given in 
Section 9.2, are 

i [Y(tl) - Yo edt, + ~ (l - edtl)] e'it, = 0 (c) 
1= 1 

eatt)]i [ Y(t l ) - Yoeat, + ~o (l ­
1=1 

The maximum likelihood estimation equations are quite 
similar and can be obtained directly from Equations 9.3-11: . 

2 

(Yo - YbO» ;'e + Equation (c) = 0 (e) 
Yo 

(ex - a(O» cr. + Equation (d) = 0 (f) 
a~ 

Equations (c) through (f) are nonlinear in the estimated 
parameters but can be solved by an iterative technique such 
as the Newton-Raphson method . 

The sequential estimation equations can be obtained from 
Equation 9.4-19: 

h = I 

r = cr.I Q(O) = [~o ~~J 
~(tl +1) = ~(tl ) + K(tt+1)[ Y(t l +1) - TJ(p" tl+ 1)] . (g) 

in which 

KI+1 = .Q13.1+1[ V'131] (~ " t I+ 1 )]T 

'{[(V' I3 1]( ~h ti+ 1 »QI3. l+ 1 ( V'I3 1] (~ h tl+l »T] + a; }- 1 

Q 13.t+ 1 = QI3.1 - K I+ 1V'131] (~ h t ' +1)QI3.1 

In the above expressions the subscript index i designates the 
time. 

A direct comparison of the results of estimation of real 
or simulated data may not be meaningful since one esti­
mation procedure may be more sensitive to theparticular error 
configuration of the data than another. Consequently, Cantey 
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and Goldwyn t employed Monte Carlo simulation to evaluate 
the three estimation procedures. Monte Carlo simulation 
uses a pseudorandom number generator to provide the 
values of errors to be added to the assumed initial condition 
(initial state) and the parameters for an assumed Gaussian 
distribution of errors. Then the deterministic process model 
is solved in time repetitively, using the simulated values of 
Yo and a . To the generated deterministic outputs are added 
the observation errors ,,(tl ) drawn from a random number 
generator. Finally, the simulated stochastic outputs are 
introduced as Y(tl) into the estimator equations, and 
estimates of Yo and a are obtained. Because a large number 
(about 200-300) of values of Yat any time were calculated, 
the estimated variances of Yo and il could also be determined. 

Values of the parameter, init ial conditions, etc. for the 
simulation were 

Xo = I CTyO = 0.1 

t, = 2 CTa = 0.1 

n = 20 CT. = 0.1 

a Yo 

Stable process -I -I
 
Unstable process I I
 

~ g 
Ql 6 -Ay I I I I I 
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.2 b'U
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-
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~ E 
<: '" 
.~ co - '\ ­co .~ 2 
> 'c 
-0 .- MaXimum,\'" Least squares\.MaXimum likelihood 
~ 0 likelihoodf -"- I and sequential ........
 , .Ji,. _ I
E 
o o v 
z 

g 
Ql 6 ,....-"r;r-----r----.---~---_r_--___. 

<: 
0 .. ,<seqUential.;: 'o'U 

.§~ 
t:~ -,Q) ~ 4 
.s > Least squares '",, ­

-"­

O'-'\r-'----.L----..l-----I..-~-L--___J 

0.0001 0.001 0.01 0.1 1.0 

Noise standard deviation, 0;, 

(c) 

FIGURE E9.4-lc Variation of estimation error variance with 
measurement noise (stable process model). 

t T. M. Carney and R. M. Goldwyn, J. Opt. Theory and Appli­
cations 1, 113, 1967. 
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Figures E9.4-la and E9.4-lb illustrate the estimates and 
the variances of the estimates for 300 trials, i.e., 300 different 
pairs of {(Yo + "yo) and (a + "a)}, for the unstable model 
which exhibits ·behavior typical of both the stable and 
unstable cases. All three methods of estimation yielded 
essentially the same curves . For clarity, the least squares and 
sequential estimates have been omitted. In Figure E9J1·1b 
the vertical axes are respectively, the variance of tbe devia­
tion IX = (il - a) , not the Val' {il} itself, and the variance of 
p= (Yo - Yo), not the Val' {Yo} itself. 

Some aspects of changing certain of the assumed " true" 
quantities were also exam ined . Figure E9.4-1c illustrates the 
influence of changing CT. from 0.0001 to 0.5, all the other 
quantities remaining constant, for 200 trials. For low 
observation error (noise), the sequential procedure for the 
stable model is poorer. But as the observation error becomes 
larger, its relative position with respect to least squa res 
improves because least squares estimation does not use the 
a priori information that becomes relatively more accur ate 
as the noise increases. For the unstable model (not shown), 
the same relative trends hold true; however the ratio of 
.Var {ti} /CT~ or Val' (b}/rr. is of the order of 100 smaller. 

Figure E9.4-ld shows the effect of changing the prior 
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standard deviations of the initial condition and the param­
eter for the stable model. For very small a priori errors, 
circa ayO = a« = 0.01, the maximum likelihood estimator 
and the sequential estimators give comparable results, 
while the least squares estimate is degraded as a natural 
result of not using the rather accurate a priori information. 
As the standard deviation in the a priori errors grows, the 
least squares estimate improves relative to the others. 

A third effect studied was that of data length. Sampling 
intervals of 0.1, 0.2, and 0.4 were used for the same total 
number of data points (20). As shown in Figure E9.4-1e, 
for the stable model the signal-to-noise ratio grows worse 
with time because the deviations from the steady-state 
solution damp out. However, because the steady-state 
solution is - (xo/a), the stable model enables improved 
estimates of a to be obtained as the data length grows. The 
maximum likelihood and sequential estimation methods 
give comparable results, while the least squares estimation 
procedure gives poorer precision in the estimates, mainly 
because the a priori information is quite important when the 
measurement information is degraded with time. 

For the unstable model, Figure E9.4-lf, all the estimators 
are essentially the same and show improvement in precision 
as the length of data increases because the measurement 
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noise has a constant standard deviation whereas the response 
is growing with time. Consequently, the signal-to-noise ratio 
is continually improving. 

The times required to execute the estimation phase of 
the study proved to be almost the same for each of the three 
methods. This result can be explained by the fact that in 
sequential estimation the data stilI have to be operated on a 
number of times equal to the number of measurements at 
each cycle. Also the covariance matrix has to be updated. 
The nonlinear estimators operate on the entire data set 
simultaneously, but iteration is stilI required because the Iequations are nonlinear. 

It can be concluded that the maximum likelihood esti­ I
mation procedure in general is best in the sense that it 
pro vides the most precise estimates. It also gives estimates 
which are not any more biased than the other procedures . 
Sequential estimation compared favorably with maximum 
likelihood estimation. Least squares estimation is adequate 
except when precise a priori estimates of the parameter and ' 
initial state errors are assumed to be known. 
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Through use of a limiting process, the discrete,sequen­
tial estimator equations can be converted to continuous 
estimation equations. In the most general case the process 
model is 

d~~) = f(t)y(t) + g(t)X(t) (9.4-20) 

and the unobservable error is added as follows: 

yet) = h(t)y(t) + E(t) 

The elements of the E(t) and x(t) matrices are then 
assumed to be random variables (X(t) is a random input) 
with the covariance matrix 

tf{ [ X( t )] [XT(T)ET(T)]} = [Q(t)S(t)] aCt _ T)
E(t) ST(t)r(t) 

where act) is the Dirac delta function. 
The equations to estimate yet) were first derived by 

Kalman .] 

dAIt = f(t)y(t) + K(t)[Y(t) - h(t )Y(t)] (9.4-21) 

where 
K(t) = [Q(t)hT(t) + g(t)S(t)]r -1(t) 

The covariance matrix Q(t) ofy(t) given Y(t) is computed 
from the matrix Riccati equation (the argument (t) is 
suppressed) : 

dQdt = fQ + QfT + gQgT 

...~ [QhT + gS]r-1[STgT + hQ] (9.4-22) 

Q(O) = Qo 
If Q o is singular, the equations are valid. But if r is 
singular, modifications are needed. Refer to the references 
at the end of this chapter. 

9.5 METHOD OF QUASILINEARIZATION COM­
BINED WITH LEAST SQUARES 

The method of quasilinearization is essentially a 
technique for solving nonlinear (in the dependent 
variable) differential equations in either initial value 
models or in models where the boundary conditions are 
split .' The latter model has been termed a "boundary 
value model" in Section 9.1. Quasilinearization as 
applied to parameter estimation offers a proven strategy 
tha t can be coupled with any criterion for optimal 
estimation, although it is usually used in conjunction 
with least squares. 

t R. E. Kalman, .. New Methods and Results in Linear Pre­
diction and Filtering Theory " in Proceedings of the First Sym­
posium on Engineering Application of Random Function Theory 
and Probability, John Wiley, New York, 1963. . 

As an introduction to the method of quasilinearization, 
consider the problem of determining a solution of a set 
of simultaneous deterministic equations: 

i = 1,2, . .. , v (9.5-1) 

In matrix notation, Equation 9.5-1 is 

fey) = 0 (9.5-2) 

Equation 9.5-2 can be expanded in a truncated Taylor 
series about some initial approximation y(O) as follows: 

fey) ~ f(y(O» + J(y(O»(y _ y(O» (9.5-3) 

where J(y (O» is the Jacobian matrix. The argument of J 
indicates that the elements are evaluated at y(O): 

O°YvII]. . 

o/v 
0Yv y=y(O) 

In the Newton-Raphson method of solving Equations 
9.5-1, the next approximation for y, after y(O), is obtained 
by equating the right-hand side of Equation 9.5-3 to 
zero and solving for y: 

y(l) = y(O) _ [J(y(O»] -If(y(O)) 

In general, the Newton-Raphson iteration scheme uses 
the recursion relation: 

(9.5-4) 

Suppose now that the model is Equation 9.1-10, a set 
of nonlinear differential equations in which the param­
eters in ex are to be estimated as well as a set of initial 
conditions : 

dy* .
tit = f(ex, y*, x, t) y*(O) = Yo (9.5-5) == (9.1-10) 

(The * is used to distinguish 'the model responses here 
from related variables in subsequent equations .) If the 
right-hand side of Equation 9.5-5 is replaced with a 
linearized form off(ex, y*, x, t) , then a method ofsucces­
sive approximations can be used to find y*(t), because 
the right-hand side of Equation 9.5-5 will be linear on 
each cycle of iteration. Bellman and Kalaba t showed 
that this technique of "quasilinearization" has the 
prope rty of quadratic convergence. 

We transform the problem of estimating the coeffi­
cients in the differential equations and the initial condi­
tions into a problem of estimating only initial conditions 

:j: R. E. Bellman and R. E. Kalaba , Quasilinearization and Non­
linear Boundary- Value Problems, American Elsevier, New York, 
1965, Chapter 1. 
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by letting the constant coefficients in the model be con­
sidered as functions of time. Then 

da2 = 0 
dt 

dam = 0 
dt 

become a set of supplementary differential equations 
added to Equations 9.5-5 to form an initial value model : 

dy
dt = fey, x, t) yeO) = Yo (9.5-6) 

Notice that f(y*, x, t) is not explicitly a function of the 
parameters, because in evaluating f the a's and the Yo's 
are presumed known from the previous iteration. 

By replacing the right-hand side of Equation 9.5-6 
with the linearized form of the function fey, x, t), we 
obtain the recursive relation needed for the calculations : 

d (n+ l ) 7 = J (n)y(n+l) + f(Ybn), x, t) - J (n)y(n) (9.5-7) 

To start, an initial estimate of Yo is selected, YbO), 
comprised of estimates of the initial conditions in 
Equations 9.5-5 and estimates of the parameters. It is 
also necessary to obtain a starting approximate functional 
relationship for y(O )(t) to use in Equation 9.5-7, obtained 
either by assumption or by integrating some (approxi­
mate) form of Equation 9.5-6 on the interval 0 .:::; t ::; tf. 

An improved solution to the model, y(l)(t), can be 
obtained by using Equation 9.5-7: 

dy(l)
(jf = f(y(O), x, t) + J(O)(y<l)' - Y<0») (9.5-8) 

where J (O) presumably exists and has the elements 
8j;(y(O), x, t)/8y/. 

Because Equation 9.5-8 is a linear differential equation, 
a particular solution, y~I )(t), can be numerically deter­
mined on the interval 0 .:::; t .:::; tf with the unknown 
initial conditions set at some convenient values, say zero 
if otherwise unknown : 

d ( 1 ) 

~: = J(O )y~l) + f(y(O), x, t) _ J(O)y(OI 

y~I )(O) = 0 

A general solution of Equation 9.5-8 is the sum of the 
particular solution and the solution to the homogeneous 
equation (Equation 9.5-7 with the last two right-hand 
terms zero): 

v +m 

y(l)(t) = y~l)(t) + .2 C~l)W )(t) (9.5-9) 
/ = 1 

where hp)(t) are the v + m linearly independent solutions 
(also obtained numerically) of the homogeneous set of 
differential equations: 

dh(l )- - = J (O)h(l) (9.5-10)
dt 

with the initial conditions given by Sj, a (v + 1) x 1 
vector with all elements equal to zero except for the jth 
which is unity. 

All that remains -to complete -the solution for y(l)(t) 
is to select the coefficients e(l). The statistical aspects of 
the estimation procedure enter here, because the c's are 
selected so that the least squares criterion t/> in Equation 
9.2-1 or Equation 9.2-2 or some other criterion is 
minimized. If we substitute Equation 9.5-9 for 'I' in 
Equation 9.2-1 with t = ti> and minimize t/> analytically 
by placing 8t/>/8c/ = 0, j = v + 1, v + 2, . . . , v + m, a 
set of linear algebraic equations is obtained that can be 
solved for the c/s : 

v +m

.2 "li jC j + W j = 0 j = 1, ... , v + m (9.5-11) 
j = 1 

where 

;;1
 

••_- . - ••• _--,...-~--- ~ - .. ",;- ....~ .;:: ~P 1 
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(For Equation 9.2-2, we would replace the integral by a The observed values of Y were 

sum over i = 1 to n.) Y 
The c's so chosen make it possible to calculate a new o 0

approximation for the initial vector Yo. If .vtl' yt2' . . . , 
1 1.4 

y~v are all known fixed values, then Equation 9.5-11 2 6.3 
will be just a set of m linear equations in the m param­ 3 10.5 
eters in the model, and the initial condition vector at 4 14.2 
the end of the first iteration will be 5 17.6 

(l) _
Y° ­

&l,}) 

6 21.4 
7 23.0 
9 27.0 

11 30.5 
14 34.4 
19 48.8 
24 41.6 
29 43.5 
39 45.3 

The coefficients k 1 and k« were estimated by the method 
of quasilinearization by minimizing 4> = Lt~ 1 [Y(tl) _ Yj]2. 
The matrix differential equations corresponding to Equation The entire procedure can be repeated to obtain a.~ and 
9.5-6 were 

y~ ), and so on until the change in the estimators (all or 
some) falls below some prefixed number. The precision ~1 = k 1(126.2 - Yl)(91.9 - Y1)2 - k2 Y~ == 11 
in the estimators is calculated in the same way as 
described in Section 9.1. 

dk1 = 0 (b)Because J (n) contains many zero entries and has a dt 
special structure, the computational effort can be 
reduced on a digital computer by taking advantage of dk 2 = 0 

this structure.] By any computational method, quasi­ dt 

linearization has quadratic con vergence if the procedure Initial values assumed for ki and k 2 , respectively, were 
converges. But it also exhibits the ills of the Newton­ 10- 6 and 10- 4• The equations corresponding to Equation 
Raphson procedure described in Section 6.2-3, such as 9.5-8 were 

convergence toward a local rather than global optimum 
d~~1 ) = 10- 6(126.2 _ Y10»(91.9 _ Y10»2 _ 10- 4(Ylol)2

and oscillation. The remedies discussed in Section 6.2
 
can be applied to overcome these difficulties. - [2 x 10- 6(126.2 - Y10»(91.9 - Y10»
 

+ 10- 6(91.9 - Y10» 2 - 2 x 1O-4Y10)][Y1 - YlO)] 

dk1 = 0Example 9.5-1 Estimation of Kinetic Coefficients by 
dt

Quasllinearfzatlon 

dk2 = 0Bellman, Jacquez, Kalaba, and Schwimmer illustrated 
dtthe results of the quasilinearization procedure as applied to 

the gas-phase reaction of nitrogen oxide with oxygen.t For this special case it was easy to obtain YbO) by inte­
Bodenstein and Linder suggested for the reaction grating Equation (a) with k-: = 10- 6 and k 2 = 10- 4 as a 

function of time. Table E9.5-1lists the estimated coefficients 
at the end of each cycle of iteration. 

the following model : 
TABLE E9.5-1 

Cycle k1 k 2 

yeO) = 0 0 1 X 10- 6 1 X 10- 4 

1 0.3413 X 10- 5 0.2554 X 10- 2 

t J. K. Donnelly and D. Quon, preprint 19F, Second Joint 2 0.4859 X 10- 5 0.3683 X 10- 3 

AIChE·IIQPR Meeting, Tampa, Fla., May 1968. 3 0.4578 X 10- 5 0.2808 X 10- 3 

t R. E. Bellman, J. Jacquez, R. E. Kalaba, and S. Schwimmer, 4 0.4577 X 10- 5 0.2797 X 10- 3 0.21 X 10- 2 

Rand Memorandum RM-4721-NIH, Aug. 1965. 

L -------~------_._----_ . __. _- -- -- - - . _.__._---- - . 
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Subsequent iterations produced no significant changes. 
The values after cycle4 can be compared with those obtained 
by Bodenstein and Lindner of k 1 = 0.53 X 10- 5, k 2 = 

0.41 X 10- 3 , and a sum of squares of deviations of 
0.55 x 10- 2 • 

The variances of the estimates can be obtained as de­
scribed in Section 6.4 ; an approximate joint confidence 
region for them can be set up .if an approximate analytical 
solution for the model is linearized. 

Quasilinearization also can be employed for two point 
or multipoint boundary value models. As explained in 
Section 9.1, when the boundary conditions are split in 
models which describe the special dependence of the 
dependent variables, different numerical procedures 
must be substituted for direct integration of the differen­
tial equations. The method of quasilinearization can be 
employed as follows . Consider the two differential 
equations 

d~l = 11(Y1, Y2, t) Y1(0) = Y01 (9.5-12a) 

d~2 = 12(Y1,Y2, t) Y2(L) = YL2 (9.5-12b) 

We assume that the starting profiles for Y1 and Y2 can be 
approximated. The right-hand side of Equation 9.5-12a 
can be linearized about yiOl(t) and y~O)(t) : 

81' (y (O ) y(O ) t) 
11(Y1,Y2, t) = h(YiO ),y~), t) + 'J 1 18~1 2 , (Y1 - YiO» 

-_. + 8/ 1(yiO),y~O ), t) (Y2 _ y~O» 
8Y2 . 

and a similar equation can be written for the right-hand 
side of Equation 9.5-12b. 

The linearized set of equations is 

dY1 1 +1 +1 \ 1 (0 ) 1 (0) . dt = llY1 12Y2 10 - llY1 - 12Y2 
(9.5-13) 

dY2 I' + I' + I' I' (0) I' (0)dt = J21Y1 J22Y2 J20 - J21Y1 - J22Y2 

where the first subscript on 1 refers to the function 
number and the second subscript refers to the dependent 
variable with respect to which the function is being 
differentiated. Equations 9.5-13 can be solved by, say, 
Runge-Kutta integration for a set of initial conditions: 

Y1(0) = Y01 

YiO) = a1 (assumed) 

to give a solution at t = L of yt(L) and yt(L). A second 
profile can be found for the initial conditions 

Y1(O) = Y01 

Y2(O) = a2 (assumed) 

to give Yt +(L) and yt +(L). 

The superposition property of linear equations states
 
that any solution of Y1 can be obtained as a linear com­

bination of other solutions of Y1 or , here,
 

Y1 = w1yt(L) + w2y ++(L) 

We can find the relative weights from the initial con­

ditions
 

or W2 = 1 - w1• Consequently, 

or 

(9.5-14) 

The functional relation between Y1 and t and Y2 and 
t for any cycle of calculation after the zeroth cycle can 
be obtained by using theiweights given by Equation 
9.5-14 and from 

YrCt) = w1y,+ (t ) + w2y,+ "(r) r = 1,2 (9.5-15) 
.­

New estimates of Y2(0) can be made sequentially from 
Equation 9.5-15 with t = 0 until Yr(t) from stage to 
stage is less than a preselected number. The point at 
which the boundary condition at L matches corresponds 
only to one cycle of the initial value problem; hence the 
complete computations prove quite extensive. 

9.6 ESTIMATION USING THE EQUATION ERROR 
(MODEL RESIDUE) 

Many process models consist of an nth order ordinary 
differential equation: 

d (q )y dy 
CXq dt (q) + . . . + CX1 dt + CXoY 

dx(t) d(m)x 
= x(t) + fJ1 (f( + .. .+ fJm dt(m) (9.6-1) 

in which Y is the process output, x is the process input, 
and the coefficients are not necessarily constant but may 
be functions of Y, x, their derivatives, or t. To simplify 
the notation, we shall let 

d (l<)y d (k)y
 
Yk = dt (k) = dt (k) + €k k =O,I, ... , q
 I 

1 

j = 0, 1, . .. , m I 
I 

be the stochastic variables which are observed (the 
process input does not have to be stochastic). In Equation 
9.6-1 the coefficient of x(t) has been made 1 by prior 
division of every term by the original coefficient. 

We want to find the best estimates of CXk and fJi (given 
at least m + q + 2 observations), best in the sense of 
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minimizing the square of the " equation error" (" model 
residue," "satisfaction error ") , £, defined as follows: 

£ = 2:
q 

al< Y" - 2:
m 

flJXJ - X (9.6-2) 
k = O J= 1 

The equation error is a weighted sum of the errors €" and 
( - £J), the weights being the model parameters them­
selves. The square of £ in Equation 9.6-2 defines an 
m + q + 2 dimensional hypersurface with coordinates £2, 
a", and flJ ' The hyperplane £ = 0, which is tangent to the 
hypersurface, can be sought (as a function of time) by 
using steepest descent or another optimization technique. 

As a simple example of the equation error, for the 
model 

dy
fll - + floY = xdt 

the corresponding equation error is 

£ = fll ~; + flo Y - X 

and the surface £2 versus fll and flo is shown in Figure 
9.6-1. The surface £2 is tangent to the flo - fll plane in a 
line denoted by A - A'. As the values of d Yldt , Y, and 
X change with time, the line A - A' rotates about the 
point (hI> ho) and £2 ~ 0. 

Let us rewrite the generalized error given by Equation 
9.6-2 in a slightly different way so that some of the 
parameters may be negative: 

£ = 2:
q 

a"Yk + L 

m 

'flJXJ + X (9.6-3) 
k = O J= 1I 

I If discrete values of Y", Xi> and X are measured, because 
! £ is a linear function of the parameters, minimization of i 
I L:r=1 £T with respect to the parameters yields a set of 
I 

I equations analogous to those described in Section 5.6. 
rr Y", Xi> and X are continuous functions of time, then 

I' by imitating the least squares approach of Section 9.2, 
I , we can minimize 

(9.6-4) 

by the method of steepest descent, computing (k > 0): 

da" = -k" oljJ ~ -k" rl
, £ o£ dt 

dt oa" J0 oak (9.6-5) 

To simplify the notation further, we let 

rl 
, £ ! £ dt = fl' £Y" dt ;: ( £, Yk) k = O, . . . , q Jo uak 0 

and 

j = I, ... ,m 

The restriction that the coefficients are constant in the 
interval °to tJ is not a severe one since the data accumu­
lation time can be reduced to as short as a few system 
time constants. 

Expansion of £ in Equations 9.6-5 into individual 
terms, introduction of the estimates aj and b, for the 
respective parameters ai and fli> and organization as a 
matrix yield 

1) dbm(- kq+m +l ""dt 

Uo <X, Yo> 

(9.6-6)+ 

Equation 9.6-6 can be solved on an analog or hybrid 
computer in real time (or another selected time scale), 
assuming that the estimated parameters are constant or 
change slowly. At the minimum of ljJ, when tf is large, 
ljJ ~O, 

dao da;- ,_.. ·~ o 
dt dt 

in which case if the matrix of time-averaged quantities 
does not prove to be singular, the estimated coefficients 

l 
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IA 
\ 

bo 

FIGURE 9.6-1 Geometric representation of equation error. 

can be obtained after equating the right-hand side of 
Equation 9.6-6 to zero. How well the estimation pro­
cedure converges depends on the shape of the surface .p 
in parameter space . 

Figure 9.6-2 illustrates the progress of the steepest 
descent search for two models when the error , is not 
explicitly a function of time. 

Calculation of the bias and precision of the estimates 
Ok and b, is uncertain inasmuch as the statistics associated 
with the terms in Equation 9.6-6 are unlikely to be known. 

Astrom t showed that for a particular model of a 
dynamic system a lower bound can be placed on the 

o 
~ 

605040302010 

., -1.0 

3.0 I:::----------------=::J 

820 
~ . 

.r 1.0 ~-;;;:==============={} 

8 2.0 L­__- ..... 

t 

FIGURE 9.6-2 Parameter estimat ion using the equation error 
criter ion. Models are : (a) first-order and (b) second-order 
ord inary differential equat ions with step inputs. 

t K. J. Astrorn , Preprints of the International Federation of 
Automatic Control, Paper 1.8, Prague, Czechoslovakia, June, 
1967. 

elements of the covariance matrix of the estimated 
parameters for any estimation procedure involving the 
equation error. Equation 9.6-2 can be rewritten as 

(9.6-7) 

where 
d(q) yet)

Dk[Y(t)] = lXq dt q + .. . + lXo 

d(m)X(t)
Dj[X(t)] = 13m dtm + .. .+ X(t) 

,\ = a constant 

If the C{' (t)} = 0, the C{' (t) ' (t)} = I, and the Laplace 
transform of D, does not have real negative roots (i.e., 
Equation 9.6-7 represents a stable process), we can 
proceed as follows. 

Observations yet) and X(t) are made of yet) and 
x(t), and Astrom gives the logarithm of the likelihood 
function of the vector of parameters 6 (,\ is not included 
in 6) as 

In L= - 2~2 I:' ' 2(t) dt - tf In ,\ + constant (9.6-8) 

where' is ,(t) = DdY(t)] - Df[X(t)]. He applied the 
Cramer-Rae theorem.f which states that if 6 is an un­
biased estimate of 6 and In L is continuous in Y and X 
and twice differentiable with respect to 6, 

(9.6-9) 

where J is the" information matrix" defined by : 

J = c{e~~L)( O~~Lr} 
~ 

.i 
! 
r 
(02 In L 02ln L 021nL
 

081081 08108m 081 0'\
 1 
1 

02ln L 021n L 021nL (9.6-10)- C 
08m081 08m08m 08m0'\ 

02ln L 021n L (J21n L
 
0'\ 081 0'\ 08m 8F""
 

The following quantities are required: ! • 

02 In L 3 rt" 2 tf 
~ = -,\4)0 .~ (t)dt + X2 :~ , 

, I 

t H. Cramer, M athematical Methods of Statistics, Princeton 
Univ. Press, Princeton, N.J., 1946. 
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Each second derivati ve of € vanishes ; hence the follow­
ing expected values result: 

(9.6-lla) 

(9.6-11b) 

Specifically, the expected values in Equation 9.6-11c will 
be of the following type: 

or 

that have been previously related in Example 2.2-4 to 
the auto- and crosscorrelation functions of X and Y. 

Instead of using Equation 9.6-4 as the criterion to be 
minimized , another technique calls for minimizing !€2 
instantaneously. Then the equivalent of Equations 9.6-5 
are 

(9.6-12) 

The rationale for these equations can be seen by assuming 
that € is also explicitly a function of time, because then 

Introduction of Equations 9 .6~12 for the time derivatives 
of the coefficients yields 

d(t€2) = _€2[* k y2 + ~k X2] + €o€ (9.6-13).dt L..- k k L..- j j ot 
. k=O j= l 

Although the first term on the right-hand side of Equa­
tion 9.6-13 is always negative (and follows the path of 
steepest descent with respect to time), it can be out­
weighed by the term €(O€/ot). Hence, convergence is 
obtained by choosing kk and k, such that the sum of the 
two terms is always negative. Convergence can be proved 
for cases in which etk and f3 j are constant, and it has been 
found empiricall y for certain other special cases. All 
that is requ ired to prove convergence is to show that 
Equation 9.6-6 is asymptotically stable, either through 
the use of linear systems theory or a Lyapunov function as 
described in texts on systems analysis. The rate of 
convergence cannot be arbitrarily increased by increasing 
k. As the gain k isincreased or decreased from its optimal 
value, the time required for the parameter value to 

converge increases because the surface .p is not positive­
definite with closed contours. 

Example 9.6-1 Continuous Estimation Using the Equation 
Error 

The deterministic model for a well-mixed reactor with 
flowin and out and a reaction (first order to make the model 
linear) is (V = volume, C = concentration, and F = flow 
rate): 

F F 
cco 

c(O) =co 

dc 
V dt = Fco ­ Fe - Vk,« (a) 

or 

(b) 

where 

and eto = 
F+ k,V 

F 

The coefficients et1 and eto are to be estimated from observa­
tions of Co, dcjdt, and c; we let al = 0;1 and ao = ao• 

In what follows the observations of dcldt, c, and Co will 
be stochastic variables. 

The equation error from Equation 9.6-3 is 

(c) 

where Y1 = dcldt + £1, Yo = c + £2, and X = Co + £3 . 

The matrices corresponding to Equation 9.6-6 for this 
problem are 

If we let ko = k l = 1 and 

; = [<Yo, Yo> <Yl , Yo>] 

<Yo, Yl > <Yh Y1> 

then Equation (d) becomes 

ooda = -;a _ ~ a(O) = a ] (e)
dt [alO 

where aoo and alO are the selected initial values of the coeffi­
cients. The solution of Equation (e) is 

a = e -~tao _ ; -l~ 

or 

.< 
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Input X 

FIGURE E9.6-1 

The stability of the calculations for ao and a1 depends on 
the signs of the eigenvalues of 1;. 

Figure E9.6-1 illustrates a possible analog computational 
scheme for the coefficients. Figure 9.6-2a illustrates the 
estimates of ao and 0:1 as a function of time for one run in 
which C and Co are measured continuously. The bias and 
precision of the estimates are not known. 

The specific calculations of <Yj, Y,>are 

<Yo, Yo> = 0
1/ 

C2 dt5. 

(dC)<Yo, Y1>= 5.0
1/ (C) dt dt 

1/ . 

<X , Yo> = 0 CoCdt 5. 
1/ dC 

<X , Y1>= e Co dt dt5. 

were compared in a simulation study under equivalent 
conditions of additive noise for the derivatives and y . The 
gains (k's) were the same in each test, and the input x(t) = 

sin t was the same in both cases. By increasing the gain the 
response error became unstable; hence by decreasing the 
gain the time for tP -+ tPrnln can actually be reduced. Typical 
paths of the estimates using Equations 9.2-4 and 9.6-12, 
respectively, are shown in Figure E9.6-2. The trajectories 
shown are characteristic of Equation (a) for the selected 
parameters only; other combinations of parameter values 
will yield different simulated responses and , hence, different 
trajectories in parameter space. 

As long as the parameters to be estimated enter the 
model equation linearly, a model nonlinear in the de­
pendent variable or its derivatives is treated by the equa­
tion error criterion in exactly the same way as the linear 
(in the independent variable) model. For example, in the 
model 

and 

(g) 

a = a e- <Y l'Y1 )1 _ <X, Y1> 
1 10 <Y1 , Y1> 

At the minimum of tP when of/oao = 0f/oa1 = 0, 

<~ ~> <~ ~> 
Q o = and Q1 = --:-=-::'---:-"'­

< ~, ~> < ~, ~> 

Example 9.6-2 Comparison of 'Equation Error and Least 
Squares Estimates 

Estimates of two parameters 0:0 and f31 in the second-order 
model 

there is no reason why the term involving c2 should not 
be treated in exactly the same fashion as the one con­
taining c or dcldt ; consequently the estimation procedure 
remains unchanged. 

Models that incorporate several dependent variables 
in the form of independent ordinary differential equations 
require the use of a weighted objective function such as 

and tP1 can be minimized by any of the previously 
described methods. The weights can be unity or selected 
according to one of the characteristics listed in Section 
5.5 for multi response models. 
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FIGURE E9.6-2 (a) Least squares estimation. (b) Instantaneous equation error estimation. 
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Problems 

9.1	 A continuous flow, stirred tank reactor (illustrated in 
Figure P9.l) can be described by the following de­
terministic model for the component designated by c: 

dc 
V dl = F(CF - c) + VR 

C(O) = 0
 

where
 

F = liquid flow rate 
V = reactor volume 
C = concentration' in the reactor 

CF = concentration in the feed 
R = loss by reaction = - kcn 
1 = time 

All the variables are deterministic. 

F F 

c 

FIGURE P9.1 

(a)	 Explain why each of the dependent variables is 
stochastic in a real process. 

(b)	 Is this model a boundary value or initial value 
model? 

(c)	 Are: (I) the model and (2) the solution to the 
model linear or nonlinear in the parameters 
k and n? 

(d)	 What criterion might be used to estimate k 
and n from measurements of c versus I? 

9.2	 A tank overflows from a notch as shown in Figure 
P9.2. The height of the water, H, above the notch, 
is given by the differential equation 

dH = F(t) _ kH3f2 
dt 

H(O) = 0 

where F(/) is the flow in, k is a coefficient, and t is 
the time. If F is a random variable and 1 a deter­
ministic variable : 

FIGURE P9.2 

(a)	 What is the expected value of H in terms of the 
expected value of F(/)? 

(b)	 Is the equation linear or nonlinear in k? 
(c)	 What is the "equation error" for the model? 

9.3	 A surge tank damps out the oscillations of pressure 
in a water line (see Figure P9 .3) . The unsteady-state 
material balance is 

where 
a = crosssectional area of the tank 

H = height of the water 

F1 = CAVPl - P2 

F2 = CBVP2 - Pa
 
P2 - Po = Hp
 

Po = atmospheric pressure, a known constant 
p = pressure at indicated point 
p = density of water, a known value 
C = valve coefficient, an unknown constant 
1 = time, a deterministic variable 

Suppose that PI is a random variable. 

_.~ 



Po 

H 

.....:----t~L:.J--~P2Fl ---+.:...,,:.p....l_v
Valve	 ValveVI 

A	 B 

FIGURE P9.3 

(a)	 Are P2 and Pa also random variables? 
(b)	 Is H a random variable? 
(c)	 Is the differential equation that represents the 

process linear or nonlinear? Explain in what 
sense. 

(d)	 What criterion might be used to estimate CA 

and CB from values of H versus t? 
(e)	 Can this model be decomposed for experimen­

tation into simpler submodels ? Give an example 
or explain why not. 

9.4	 An nth-order differential equation can be expressed 
as n first-order differential equations . For example, 
in the equation 

d2y dy
dt 2 + al dt + a2Y = x(t ) (a) 

if 
dy 
dt = w 

d 2y dw 
dt = dt 

and then Equation (a) becomes 

dy 
dt = w 

(b) 
dw 
dt = -alW - a2Y- x(t) 

TABLE P9.5 
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Suppose that y is now considered to be a stochastic 
variable, Y = y + E. What can be said about the 
stochastic variable w in terms of the expected value 
and the variance of E? What kind of criterion would 
be most useful for estimating a l and a2 in: (I) Equa­
tion (a) and (2) Equation (b) if Y is the observed 
variable? Assume that x(t) and t are deterministic 
variables. Keep in mind that two initial conditions 
are required for both Equations (a) and (b). 

9.5	 The steady-state dispersion equation for a packed 
bed with a first-order reaction is (in dimensionless 
form) 

d 2y dy 
a- - - - fly = 0 (a)

dz2 dz 
where 

a =	 D/vL 
D = dispersion coefficient 
y = dimensionless concentration 
z = dimensionless axial length, 0 =:; z =:; 1 
fl = ki 
v = velocity 
L = length 
k = kinetic rate constant 
i = mean holding time = Llo 

See Figure P9.5. 
Table P9.5 lists the solutions to Equation (a) for 

various possible boundary conditions. Plot In y 

LIE 'I 
>E' PackedFlow bed I 

z=O	 z=1 

FIGURE P9.5 

Boundary Conditions 
Solution 
Number Entrance (z = 0) Exit or Other Solution to Model 

y = 1.0 z -+ 00 , Y = 0 

dy
2 y = 1.0 z = 1.0, dz = 0 

I dy dy
I 3 y =I+a­

dz z = 1.0, dz = 0 

dy
I,	 4 y=I+a­z -+ 00 , Y = 0 y = ,,--- ­

dz	 1 - aml 

l
l	 1 

m, = 2a (l - V I + 4afl) 

. [	 1 
-
'I 
I	 m2 = 2a (1 + V I + 4afl) 

I
I 

<. t 
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versus f1 on semilogarithmic paper and answer the 
following questions : 

(a)	 Under what experimental conditions will it be 
important to control the boundary conditions, and 
under what circumstances will it be unimportant? 

(b)	 How can k and a be obtained from separate 
experimental set-ups? 

(c)	 How can k and a be obtained from the same 
experimental set-up? 

(d)	 Is it possible to distinguish between a plug flow 
model (omit dispersion term -the second deriva­
ative) and the dispersion model? 

(e)	 Repeat (a) through (c) for a continuous stirred 
tank reactor model. See Problem 9.1. 

(f)	 If the reaction term were f1y 2, how could k be 
estimated? 

9.6	 Thaller and Thodos t measured the initial rates (i.e., 
time derivative at t = 0) of the dehydrogenation of 
sec-butyl alcohol at 600°F: 

PA, Partial 
R, Initial Rate Pressure 

(Ib moles alcohol/ F, Feed Rate of Alcohol 
(hr)(Ib catalyst)) (100% alcohol) (atm) 

0.0392 0.01359 1.0 
0.0416 0.01366 7.0 
0.0416 0.01394 4.0 
0.0326 0.01367 10.0 
0.0247 0.01398 14.5 
0.0415 0.01389 5.5 
0.0376 0.01384 8.5 
0.0420 0.01392 3.0 
0.0295 0.01362 0.22 
0.0410 0;01390 1.0 

Estimate the coefficients k H , kIlo and K A in the model 

r = [kH + k'tI (1 + KAPA)2] 
u; KAPA 

_{[kH + k'tI (I + KAPA)2]2 _ k'tI}Yz 
2k R KAPA 

by minimization of L.l~ 1 (r, - Rt)2 where R, = r l + EI. 

9.7	 In many fields the solution to the differential equation 

dy b1 
- = - (y - a)[b 2 - (y - a)]
dt b2 

is known as the logistic function 

b2 

where c is a constant of integration (related to the 
initial condition), y is the dependent variable, t is 
time, and b1 , be, a, and c are constant parameters 
to be estimated. 

t L. H. Thaller and G. Thodos, AIChE J. 6, 369, 1960. 

Given the following data, where Y is a random 
variable, Y = y + E, determine the best estimates of 
a, bh b2 , and c. 

YObserved 

195 72 
377 144 
542 216 
687 288 
783 346 
911 432 

9.8	 A proposed model is 

dCA(j( = -k1CB - k 2CE 

The initial conditions for CD and CE are zero, but the 
initial conditions for CA and CB are unknown. Several 
values of CD for five runs are shown in Table P9.8. 

TABLE P9.8 

Time (sec) 

Run 80 160 320 640 1280 

1 
2 
3 
4 
5 

14.7 
3.72 

13.3 
30.8 
62.6 

23.4 
3.81 

27.1 
44.4 
88.0 

34.3 
17.2 
43.0 
46.7 
89.5 

34.6 
20.0 
58.0 
24.9 
43.4 

20.3 
23.9 
49.0 

2.94 
5.80 

Describe two ways in which the coefficients k 1 and 
k« (k1 > 0 ; k« > 0) can be estimated from the data. 
Can the initial conditions for CA and CB in each .run 
be estimated? Draw an approximate confidence 
region in k 2 versus k1 space for each run. What can 
you conclude? 

9.9	 Svirbely and Blaner t modelled the reactions 

A+B~C+F 

A+ C~D+F 

~ W. J . Svirbely and J. A. Blaner, J. Amer. Chern. Soc. 83, 4118, 
1961. 
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(a) 
dA -
dt 

= -k1AB - k 2AC - k 3AD 
dCB 
d(= -k1CACB (b) 

dB -
dt 

= -k1AB sc;
- = k1CACBdt 

(c) 
dC 
dt = k1AB - k 2AC 

dC D"dt = k1CACB ­ k 2CACD (d) 
dDdi = k 2AC - k 3AD 

dCE y,- = k 2(CACD ) 2 
dt 

(e) 

dE 
dt 

= k AD 
3 Assumed values of k 1 = 0.3, k 2 = 0.01, CA(O) = 1.5, 

and CB(O) = 1.0 were used to generate the data 
Estimate the coefficients kb k 2 , and k« (all positive) labeled "true" in Table P9.1O. Experimental error 

from the following experimental data: was simulated by adding a normal random error to 

C(O) = D(O) = 0 
the true values with a standard deviation of from 0.01 

A(O) = 0.02090 mole/liter TABLE P9.1O SIMULATED CONCENTRATION DATA 

B(O) = (t)A(O) 
Character-

A x 103 ization 

Time (min) (mole/liter) Time A B C D E of Data 

4.50 
8.67 

12.67 
17.75 

51.40 
14.22 
13.35 
12.32 

0.00 

1.00 

1.5000 

1.1529 
1.1652 

1.0000 

0.6747 
0.6795 

0.0000 

0.3252 
0.3185 

0.0000 

0.3035 
0.3056 

0.0000 

0.0434 
0.0430 

True 

True 
Good 

22.67 11.81 0.1147 0.6198 0.3111 0.3033 0.0492 Bad 

27.08 11.39 2.00 0.9333 0.4944 0.5055 0.4444 0.1221 True 

32.00 10.92 0.9251 0.4887 0.5060 0.4442 0.1201 Good 

36.00 10.54 0.9465 0.5279 0.5352 0.4372 0.1321 Bad 

46.33 9.780 3.00 0.7806 0.3828 0.6171 0.5148 0.2044 True 

57.00 9.157 0.7941 0.3771 0.6224 0.5136 0.2090 Good 

69.00 8.594 0.7022 0.4256 0.6145 0.5058 0.2048 Bad 

76.75 8.395 4.00 0.6675 0.3083 0.6916 0.5508 0.2815 True 

90.00 7.891 0.6803 0.3106 0.6927 0.5570 0.2806 Good 

102.00 7.510 0.6495 0.2993 0.7034 0.5479 0.2770 Bad 

108.00 7.370 5.00 0.5801 0.2558 0.7441 0.5684 0.3513 True 

147.92 6.646 0.5724 0.2547 0.7869 0.5688 0.3536 Good 

198.00 5.883 0.5133 0.2468 0.6495 0.5916 0.3294 Bad 

241.75 5.322 6.00 0.5104 0.2173 0.7826 0.5758 0.4136 True 
270.25 , 4.960 0.5103 0.2215 0.7863 0.5790 0.4103 Good 
326.25 4.518 0.5383 0.1855 0.7144 0.5376 0.4688 Bad 

418.00 4.075 7.00 0.4535 0.1881 0.8118 0.5772 0.4691 True 
501.00 3.715 0.4528 0.1897 0.8237 0.5750 0.4707 Good 

0.4501 0.2103 0.8014 0.5738 0.4837 Bad 
The estimates reported in the ar ticle were 8.00 0.4060 0.1653 0.8345 0.5752 0.5186 True 

k 1 = 14.7 0.4072 
0.3689 

0.1626 
0.1979 

0.8264 
0.8312 

0.5766 
0.5874 

0.5135 
0.4671 

Good 
Bad 

k« = 1.53 9.00 0.3658 0.1473 0.8526 0.5711 0.5628 True 
k« = 0.294 0.3705 0.1494 0.8624 0.5736 0.5699 Good 

Could estimates be obtained if the initial conditions 
were unknown? 10.00 

0.3961 

0.3314 
0.3276 

0.1489 

0.1327 
0.1327 

0.9286 

0.8672 
0.8744 

0.5725 

0.5659 
0.5613 

0.6203 

0.6024 
0.6028 

Bad 

True 
Good 

9.10 Eakman (private communication) prepared some 0.3397 0.1061 0.8383 0.5756 0.6599 Bad 
simulated data to be used in fitting the model: 
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to 0.09. a, = 0.01 represents approximately a 2­ MIMIC can be used for the simulation if a large­

percent error in the value of CI' The "good " data sized digital computer is available, or the simulation
 
represent a, = 0.01 and the" bad" data alA = 0.07, can be executed on a hybrid computer.
 
alB = 0.08 , U,o = 0.05, a,D = 0.02 , and alE = 0.09 .
 9.12	 Numerically differentiate the good and bad data of 

Problem 9.1O. Estimate the variance of the derivatives 
(a) Are all the differential equations in the model 

in terms of	 variances of each observed variable.independent? 
Select a scheme of differentiation for which the deter­(b) Can k,	 and k 2 be estimated solely from the 
ministic numerical error in the derivative is less than 

concentration of one component? If so, which 
10 percent of the estimated stochastic error in the one? 
derivative.(c) Est imate k 1 and k 2 for each of the three sets of 

9.13	 Two methods of obtaining derivatives to be used in data labeled "true," " good," and " bad." 
ordinary differential equations have been suggested. 

9.11	 Simulate experimental data by using the following set One is to differentiate the experimental data numeri­
of differential equations, adding normal random cally. The other is to fit a polynomial to the data first 
error	 to the dependent variables R, S, T, U, W, X, and then to differentiate analytically the polynomial. 
and Y. . Which technique will lead to the smallest variance for 

the derivatives? Explain. 

9.14	 Newton's forward interpolation formula gives the 
derivatives in terms of forward differences: 

dS
 
dt = -k1RS - k 2RS - k3RS - kaTS - k7US
 

- k 8US + k gT + k 12W + kllX + k 12Y 

dT The following data were takenfrom a drying experi­dt = k1RS - k sT - kaTS - kgT
 
ment:
 

dU Y tdt = k2RS + ksT - k7US - kaUS + kllX + k 12 Y 
(Ib H20/lb dry solid) (min) 

dW	 0.1834 0.9dt = k3RS - k 12W 0.1634 1.0 
0.1460 1.1 

dX 0.1313 1.2dt = kaTS + k7US - kss X 
0.1198 1.3 
0.1117 1.4 

dt = k8US - k 12Y 
Starting with increments of /1Y at t = 0.9 min , 
compute 11 Y, /12Y, etc. , and compute (dY/dt)I=O,9' 

dY .. 

Design a suitable set of experiments to estimate k 1 Then compute the vari ance of the derivative.assuming through k 12, and carry out the estimation. 
the variance of each observed Y is 1 percent of theEach k can be represented as follows: 
value in the table. 

9.15	 Apply the method of steepest descent to obtain least k; = PI exp b,[;. - 4~3] 
squares estimates of the parameters in the model 
TJ = {3o + {31 X1 + {32xr for continuous data. Drawwhere T · is the absolute temperature. For the 
the analog computer diagram for the circuits which following values of PI and b.; again generate simulated 
will be required to carry out the computation.experimental data but this time estimate the P's and 

9.16	 Use the method of the " equation error" to estimate b's: 
the coefficients in the model given in Problem 9.5 for 

PI a continuous response. Use a hybrid computer or an b, 

1	 6.3 X 10- 3 17,800 analog simulator such as MIMIC on a digital com­
2	 2.1 x 10- 3 18,000 puter to carry out the calculations. Select known values 

3	 9.0 x 10- 3 11,100 for the parameters in the differential equation and 

4 1.1 x	 10- 3 12,300 add a known normal random error to the response 

5	 2.8 x 10- 2 13,100 Y prior to feeding the simulated response incorpora­

6	 5.0 x 10- 4 14,000 ting the error to the estimation phase of the calcu­
10- 4 lations.7	 4.9 x 20,800 

8	 5.6 x 10- 4 4,330 9.17 Repeat Problem 9.16 but use the techniques of 
- 29	 6.7 x 10 28,900 sequential estimation. It may be necessary to use the 

10 2.8 16,000	 final estimated parameters from the procedure as the 
11	 1.03 x 10- 1 14,600 initial guesses for a second pass through the estimation 
12 3.5 x 10- 1 10,800	 procedure. 
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9.18 In Table P9.18 are yields (concentrations) of the (b) Plot the joint confidence region for k, and k« 
desired component Pformed in the follo wing react ion : for contours of 80 percent and 95 percent . 

A+ B -+P 
(c) Plot and analyze the residuals for each run. 

A+P -+R TABLE P9.18 
102 AT 160°F 

CONCENTRATION OF P (MOLES/LITER) X 

Because the init ial concentration of A was very much CBO 
larger than B, the amount of A used up in the reac tion 
was small and its concentration could be considered Run 

(mole/ 
liter) 

t = 
1 hr 

t = 
2 hr 

t = 
4 hr 

t = 
8hr 

t= 
16 hr 

essentially constant. 
Suppose a proposed model of the reaction system I I 3.17 5.39 8.66 15.9 22.6 

is as follows (the initial concentrations are known 2 I 14.7 23.4 34.3 34.6 20.3 
values) : 3 2 4.80 10.8 22.5 34.6 42.0 

I 
I 

I 
dCA 
di= -k1cB ­ k 2cp CA(O) = CAO 

4 
5 
6 

2 
I 
I 

23.2 
3.72 

17.9 

39.0 
3.81 

28.3 

55.6 
17.2 
40.5 

63.4 
20.0 
34.2 

41.6 
23.9 
21.6 

I 
,. 

dCB 
di= -k1cB CB(O) = CBO 

7 
8 
9 

2 
2 
1 

8.60 
30.9 
7.48 

13.3 
51.4 . 
9.93 

25.9 
72.2 
20.0 

39.8 
76.4 
30.9 

50.8 
38.9 
24.9 

de; 
di = ksc« - k 2cp cp(O) = 0 

(a) 10 
11 

1 
2 

25.3 
13.3 

35.3 
27.1 

39.1 
43.0 

28.4 
58.0 

7.50 
49.4 

12 2 50.8 75.6 84.2 57.0 11.5 

dCR 
(jf = k ec» CR(O) = 0 

13 
14 

1 
1 

9.15 
30.8 

15.8 
44.4 

27.5 
46.7 

33.9 
24.9 

23.0 
2.94 

(a) F rom the data in Table P9.18, estimate the values 
of k 1 and k 2• 

15 
16 

2 
2 

22.8 
62.6 

37.2 
88.0 

57.9 
89.5 

69.1 
43.4 

53.9 
5.80 



CHAPTER 10 

Parameter Estimation in 
Models Containing Partial 
Differential Equations 

.I' 
I
I
I 

Differential equations that contain derivatives with 
respect to more than one independent variable are 
classified as partial differential equations. A wide variety 
of processes can be represented in terms of such equa­
tions such as flow in a porous medium, dispersion of 
pollutants in air or a river, packed-bed chemical reactors, 
and transmission lines. Partial differential equations can 
provide a more detailed description of a process than can 
ordinary differential equations. But , as indicated in 
Figure 1.1-2, obtaining either an analytical or numerical 
solution to a model written in terms of partial differential 
equations is more difficult than obtaining corresponding 
solutions for a model written in terms of ordinary differen­
tial equations. 

Whereas the integration of ordinary differential 
equations gives rise to arbitrary constants of integration, 
the general solution of a partial differential equation 
involves n arbitrary functions : for the nth-order case. 
Consequently, except for first-order equations and a few 
other special cases, it is seldom possible or necessary to 
seek a general solution; instead one seeks a particular 
solution for the specific boundary and initial conditions. 

One standard method for the solution of partial 
differential equations is by separation of variables . A 
form of the solution is set up such that the dependent 
variable(s) is (are) equal to the product of the solutions of 
two or .more ordinary differential equations, each of 
which has a known solution. The initial and boundary 
conditions for a given problem are used to evaluate the 
arbitrary functions so that a unique solution can be 
obtained for the model. 

Because the boundary conditions play such an import­
ant role in the formulation and solution of the process 
model, the experimenter tries to select boundary con­
ditions that make the model solution as simple as possible 
and yet are feasible to achieve experimentally, Naturally, 
poor results can be expected from a lack of control over 
the experimental conditions, because then the model and 
the experimental conditions do not jibe. 

In this chapter we shall first examine process inputs 
and their related outputs that can be used to evaluate the 
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model parameters. We shall then describehow to arrange 
the experimentation in order to simplify the analytical 
solution to the process model. Finally, we shall discuss 
the use of so-called deterministic moments to evaluate 
the model parameters. 

10.1 PROCESS INPUTS 

Certain process inputs are more effective than others 
from the combined viewpoint of experimental execution 
and model solution. The three deterministic inputs most 
often used in the evaluation of model parameters are the 
step, impulse (delta), and sinusoidal inputs; refer to 
Figure 10.1-1. The stochastic input most often used is the 
random square wave (random binary sequence); some­
times the process input itself can be employed. A dis­
cussion of stochastic inputs is deferred until Chapter 12. 

The main reason for using deterministic step, impulse, 
and sinusoidal inputs in models of a process is mathe­
matical convenience. It is relatively easy to establish the 
output for a given model when these functions are used 
as inputs. The outputs of linear (in the dependent vari­
ables) models for sinusoidal inputs are most often inter­
preted directly in Laplace transform space, whereas the 
outputs for impulse or step inputs are analyzed in the 
time domain. In practice, the use of an output from a 
sinusoidal input requires considerable algebraic mani­
pulation and becomes awkward for modestly complicated 
models as compared to impulse inputs. However, certain 
well-established process control system design techniques 
are based upon the responses to sinusoidal inputs in 
transform space; hence, it often proves convenient to 
work with subsystem dynamics with superimposed 
sinusoidal inputs. In the time domain, any of the three 
inputs is effective for estimation of the coefficients in 
linear systems. However, when a sinusoidal input is 
introduced into nonlinear models, the frequencies of the 
input and amplitudes are shifted in a nonadditive fashion 
when they appear in the output. The equivalence of the 
information provided by step, impulse, and sinusoidal 

- ,,--_.~-_ ._-~-----~----..,.---------------' 
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inputs for linear systems was described by Nyqui st 
et al.t 

As a matter of interest at this point, it is worthwhile 
to mention some of the advantages and disadvantages 
involved in the use of deterministic step functions, 
impulse functions, and sine waves as inputs for probing 
the nature of an actual process (in contrast to a mathe­
matical model of the process). 

Experimentally it is impossible to produce an exact 
step function, but in many studies an input with a fast 
rise time compared to the process response time can be 
produced, so the step function : can be reasonably 
approximated . An advantage of the use of a step input 
is that all the information about the process dynamics is 

t J. K. Nyquist et al., Chern. Eng. Progr., Symposium Ser. No . 
46, 98, 1963. 

x( t) 
.-­ .-­ - .-­ r-­

0 

- - - -
(d) 

FIGURE 10.1-1 Typical input functions : (a) unit step, (b) impulse, (c) sinusoidal, and 
(d) random square wave (random binary sequence). 

contained in the response to a single step input; hence, 
the experimentation is economical. But herein lies the 
major disad vantage in the step input-all the informa­
tion is packed into a small amount of record. If some . 
noise is present, then much of the fine detail present in the 
record will be obscured. 

Whereas a step function involves moving the process 
from one stead y-state value of the input to another, and 
therefore require s considerable input materi al or tracer, 
the impulse input require s only a relatively small amo unt 
of material. But the engineer must consider the possible 
disruption of the process by a pulse input, and, of course, 
he bas less outlet material to measure than for a step 
input. 

In execution , a sinusoidal input to a real process 
requires more complicated input equipment to be built 

--- -_. _- _ .--,---------------,---------------~~--------~~~----==------~ 



I
 
332 PARAMETER ESTIMATION IN MODELS CONTAINING PARTIAL DIFFERENTIAL EQUATIONS 

and operated than step or impulse inputs and is very time 
consuming, since several frequencies are needed and 
steady state must be achieved for each frequency (which 
may require hours to achieve). A sinusoidal input does 
permit only small perturbations to be introduced into the 
process. However, as mentioned before, if the process is 
nonlinear, the frequency of the output is shifted from 
that of the input. Hougen t provided additional infor­
mation on some of the practical aspects of choosing a 
process input. 

10.2 RESPONSES TO PROCESS INPUTS 

The step response for models represented by partial 
differential equations cannot be formulated in general 
but must be determined separately for each individual 
case. The examples in Table 10.2-1 illustrate typical 
analytical solutions for models linear in the dependent 
variable in which a step input is introduced. Note the 
highly nonlinear (in the parameters) character of the 
model solutions. 

The impulse input to a process model can appear 
either as a boundary condition in the model or as a 
source term in the differential equation itself. For 
example, an impulse input at z = 0 (the start of the axial 
coordinate z) and t = 0 can be introduced into the model 
as a source term : 

8y 
8y + v = aBet) o(z) y(O-, z) = 0 (10.2-1)
8t 8z 

where theterrn ex oCt) o(z) is interpreted from the prop­
erties of the delta function as meaning that the pulse 

t J. O. Hougen, "Experiences and Experiments with Process 
Dynamics," Chern. Eng. Progr ., Monograph Ser. No.4 , 60,1964. 

takes place at t = 0 and z = O. Or the input can be 
introduced as a boundary condition : 

y = (0-, z) = 08y 8y- + v- = 08t 8z y = (t,O) = fJ oCt) 

In Equation 10.2-1, v represents the velocity of the 
flowing fluid and y is the dependent variable . Because 
in the definition of o(x), f.: oo 

o(x) dx == I,o(t) must 
have the units of time ", o(z) has the units of length ", 
and the units of a and fJ must be properly assigned to make 
the differential equation dimensionally consistent. Sup­
pose that a fixed quantity of tracer material m, uni­
formly spread over the cross-section A of the duct or 
channel (in which the flow takes place), is introduced 
into the duct at a fixed location (z = 0) at t = O. Then 
the coefficient in source term specifically becomes 
a = mlA. 

Equation 10.2-I can be solved by taking successive 
Laplace transforms of both sides on t and z and collecting 
like terms, followed by inversion 

Yet, z) = .: o(t - ~) (10.2-2) 

a 

Input xtt) = 
0 

asinwt 

-a 

b
 
Output y(tl =
 
bsin(wt+>/JJ
 

-b
 

FIGURE 10.2-1 Definitions of gain (amplitude ratio) and pbase 
angle (lag). Amplitude ratio = li(w)1 = bla. Phase angle = 
Lg(w) = .p = w /1 t . 

TABLE 10,2-1 RESPONSES TO STEP INPUTS FOR DETERMINISTIC DISTRIBUTED MODELS* 

Process Model of Process Model Solution 

oT(t, z) oT (t , z) = h('" _ T( )]Heat transfer to a pipe ot + v OZ J a t, Z
with flowing fluid 

T(O, z) .= Ta[l - e- (h/VlO] 

T(t,O) = ToU(t) 

. id OCL OCL (k)(Fixed bed adsorber Liqui : - + VL - = - CL - CL.e)
ot OZ with flowing fluid 

* (k)zz =­Solid: 
VL 

C = 0, t < ­
z

z ::; 0 - 10 = Bessel function 
VL 

C(t,O) = cLOU(!) ~ = dummy variable 

* U = unit stepfunction; T = temperature; c = concentration ; z = axial direction; v = velocity ; t = time; h = interphase heattrans­
fer coefficient ; k = interphase mass transfer coefficient. . 



The interpretation of Equation 10.2-2 is that the input 
pulse appears at time t = zlo at the point z, still re­
taining its impulse shape. Since there is no provision for 
dispersion in the model, this interpretation seems quite 
reasonable. The impulse proceeds as a front down the 
duct without spreading and can be measured at the 
process exit. 

A more comprehensive model includes axial dispersion: 
oy oy _ 02yot + v OZ = D OZ2 + source term (10.2-3) 

T ABLE 10.2-2 FREQUENCY RESPONSE IN THE TIME DOMAIN 

PARAMETER MODELS 
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where 15 is an effective dispersion coefficient and the 
source term is the same as before if the material is 
uniformly spread over the duct or channel at the location 
z = Zo: 

m 
source = A 8(z - zo) 8(t) (10.2-4) 

where 

m = amount of tracer injected 
8(z - zo) = delta function needed to indicate that the 

FOR SELECT ED DISTRIBUTED 

Model Frequency Response 

oy 
ot 

= K 02y 
oz 2 y(t, z) = exp [-G~) \] sin [wt - G~) \] 

y(O, z) = 0 
y(t,O) = el"'t 

oy (t, O) = 0 
oz 

oy 
ot 

oy 
+ v oz = 

02y 
K OZ2 - ky y(t, z) = [ 

vzexp 2K ( 1 ­ J 4K(k + iw»)] .1 + v2 exp (lOOt) 

y(O,z) = 0 
y(t, 0) = el "' ! 

oy (t , O) = 0 
oz 

oy (t, 0, z) = 0
Y(O,r,z) = 0 ,\n are the roots of Jo('\R) = 0 

or 

y(t, r, 0) = yoel"'t y(t, R, z) = 0 

oy (t, r, 0) = 0 
oz 

oy oy '\1'\2 [ ( ) I tH - + V - = - ka(y - y*) ( )Y t, z = Q exp q2Z0 + q1Z) - exp (q1Z0 + Q2Z ] e '" 
ot oz 

ox ox 1 
h - + L - = ka(y - y*) x (t , z ) = Q [,\2exp (Q2Z0 + Q1Z) - '\1 exp (Q1Z0 + Q2Z)] el"'t 

ot OZ
 

y* = Kx
 

y(O, z) = 0 x(O, z) = 0
 
y(t, zo) = e -I ",t x(t, 0) = el"'!
 \ _ Kka 

"12­
• VQ1,2 + Hiw + ka 

Q1 .2 = - (tcJ ± J(far - (~) 
a = VL ; y = Hhiw + (h + HK)ka 

f3 = (Vh + LH)iw + (VK + L)ka 
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tracer input takes place at position z = Zo 

only 
oCt) = delta function needed to indicate that the 

tracer input takes place at t = 0 only 

Table 1004-1 lists known solutions for Equation 10.2-3 
for zero initial conditions. 

The portion of the respon~e function for a sinusoidal 
input that remains after the transients die out is cal1ed the 
frequency response of the system. Since the response of a 
linear (in the dependent variable) system to a sinusoidal 
input is a sinusoidal output, by comparing the output 
and input it will be found that they differ (usual1y) by a 
displacement in time (phase) and an increase or reduction 
in amplitude. The former is termed the phase angle 
(phase shift) of the response while the latter is known as 
the gain (magnitude ratio, amplitude ratio) of the 
response. The relationships involved are shown in Figure 
10.2-1. The frequency response can be obtained by solving 
the differential equation(s) for a sinusoidal input and 
then letting t ~ 00 . But it is most commonly obtained 
from the process transfer function g(s) (refer to Section 
12.1) by letting the real part of the complex parameter s 
be zero and the complex part be los,Then the frequency re­
sponse can be written in terms of the ratio of the amplitude 
of the output divided by the input which is equivalent to
Ilg(w)ll, the absolute value (modulus) of g(w), and in 
terms of the phase shift .p, the argument (angle) of g(w). 
Table 10.2-2 lists the frequency response in the time 
domain for selected models taken from Schiesser.t The 
frequency ~ .becomes a control1able independent vari­
able in the experimentation in addition to the time and 
axial coordinate. . 

In the remainder of this Chapter we shal1 use a least 
squares criterion in estimation and make the same 
assumptions as in Section 9. I concerning the unobserv­
able error, namely that 

(10.2-5) 

for each response r, We shal1 assume that the model 
adequately represents the process and want to estimate 
the model parameters from experimental observations Y. 
~or the cases of the step and impulse responses, the Y 
III Equation 10.2-5 is simply the process response to a 
determinist ic step, or impulse, input. However, for the 
frequency response, usual1y two measurements are made 
neither of which is directly the process response. Th; 
gain (amplitude ratio) may be measured as a single 
random variable, the output amplitude. Or it may be the 
ratio of two random variables if the input amplitude is 
stochastic, in which case Equation 10.2-5 is applied both 
to the numerator and denominator of the ratio. Refer to 

t W. E. Schiesser,Preprint, Joint Automatic Control Conference
1%~ , 

Example 10.3-2. The phase angle is usual1y measured as 
a single random variable. 

10.3 DESIGN . OF EXPERIMENTS TO SIMPLIFY 
MODEL SOLUTIONS 

The major emphasis in the estimation of parameters in 
partial differential equations and/or in the accompanying 
boundary conditions is to : (I) arrange the experimental 
set-up so as to isolate, insofar as possible, the evaluation 
of each parameter from its fellow parameters, and (2), 
for a given model and solution, reduce the solution to as 
simple a form as possible by selecting appropriate values 
of the independent variables. 

As an example of the first strategy, consider the 
nonlinear model for chemical reaction in a packed bed: 

OCA fl OCA 02CA 
8t + 0 8i = fll OZ2 + fl2C~ 

CA(O, z) = c. 

CA(t,O) = CAo 

OCA{t, L) = 0 
oz 

where CA is the concentration of component A, t is the 
time, z is the axial coordinate ranging from 0 to L , fl2 
is a reaction coefficient, fll is a dispersion coefficient, 
and flo is a velocity of flow-a known value. The deter­
mination of the coefficient fl2 could be carried out separa­
tely and in a different apparatus from the determination 
of fll. Measurements to calculate the reaction coefficient 
might be made in a well-stirred tank using the model 

dCA fl 2
(li = 2CA 

CA(O) = c. 

whereas fll might be estimated from a steady-state 
experiment in a packed bed without reaction using the 
linear model 

CA(O) = CAo 

dCA(L) _ 0 
dz ­

Methods of estimating the coefficients in these much 
simpler models have been described in Chapter 9. Hope­
fully, the separate experimental set-ups would faithfully 
represent the simpler models, and the estimated coeffi­
cients from each series of experiments could be validly 
combined in the full model without impairing the 
predictive ability of the full model. 

_.~ 
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As an example of the second strategy mentioned above, 
we examine models of heat and mass transfer that can be 
represented by the diffusion equation 

oy = flV2y

ot 
because for certain boundary conditions these models 
have solutions in the form of an infinite series: 

00 

y = 2: ajUj e-m,Pt (10.3-1) 
j=O 

where the aj are constants depending upon the initial 
conditions, and the Uj and m, are functions of the co­
ordinates whose parameters are determined by known 
properties of the system. 

1.0 ~;::::-r-.--.-------r-.,...-.-----r----r-.-~ 

0.9 Yo = initial temperature 
0.8	 excess of body above 

surface temperature 
Yi= temperature excess of 

0.7 

0.6	 center at time r 
L = radius or half-side 

0.5 length of cross-section 
13 = thermal diffusivity 

0.4 

0.3 

0.2 

J5 
>': 
i.."
~ 0.1 
8­
E s 
~ 
g
.;;; 
<: 
~ 0.05 

o 
0.04 

0.03 Infinitely wide
 
plate
 

II Infinitely long
 
square bar
 

0.02 nr Infinitely long 
cylinder
 

IV Cube
 
V Cylinder of length
 

equal to diameter
 
VI Sphere
 

0.1 

F IGURE 10.3-1 Change of center temperature of different 
bodies cau sed by sudden change of surface temperature. (From 
M. Jakob, Heat Transfer , Vol. 1, John Wiley, New York, 1949, 
p. 266, with permission.) 

With increasing time the quantities e-m,Pt tend to 
very small values. After a sufficiently long period of time, 
the variable y becomes independent of the initial con­
ditions. Some authors have termed this state the "reg­
ular" or "quasistationary" condition. In particular, 
when the first term in Equation 10.3-1 becomes much 
larger than any of the succeeding terms, Equation 10.3-1 
reduces to 

(10.3-2) 

As usual, a logarithmic transformation reduces Equation 
10.3-2 to an equation linear in fl: 

In y = -flmot + constant (10.3-3) 

Figure 10.3-1 illustrates solutions of the diffusion equa­
tion (as applied to heat transfer) at the center of various 
shaped bodies for certain boundary conditions and 
different geometries as a function of dimensionless time 
(Fourier number). Note the linear or quasilinear (in the 
case of the infinitely wide plate) form the functions on 
the semilogarithmic plot at the longer times. 

An important fact to keep in mind when using Equa­
tions 10.3-2 and 10.3-3 and their analogs is that the 
absolute changes in y become vanishingly small with 
longer times so that increasingly large relative error 
accompanies their use. Consequently, both long and 
short times are less favorable for measurement than are 
intermediate times. 

By selection of a suitable measuring point and bound­
ary conditions, considerable simplification can be made 
in the solution to the diffusion equation used to estimate 
{3. The solution, that is the temperature distribution 
itself, in an infinite flat plate of thickness 2L, which is 
initially at a uniform temperature y(z, 0) = Yo and is 
heated on both sides by a constant heat flux q, i.e., for 
the boundary conditions 

y(z,O) = Yo 

-k oy(; t) = q = h[Ya - y(L, t)] (10.3-4) 

oy(O, t) = 0 
oz 

(where h is the interphase heat transfer coefficient, z is 
the direction perpendicular to the plate, k is the thermal 
conductivity, and Ya is the ambient temperature) is 

_qL [flt £2 - 3z
2	 ~ ( 1)"+1 2()y Z, t - Yo - k £2 - 6£2 +;s - ~ 

-cos (A" I)e-I>.;DtIL2] (10.3-5) 

where A" is an eigenvalue. 
Fortunately, the series in Equ ation 10.3-5 converges 

quite rapidly . Thus, for values of the Fourier number 
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(fJt/L2) greater than 0.5, the summation can be neglected 
in comparison with the first two terms in the brackets 
with an error of less than 0.5 percent . Hence, the tem­
perature distribution in the plate is a parabolic function 
of the distance z, and it can be estimated as described in 
Chapter 5 assuming Equation 10.2-5 applies. 

In addition, there exists a plane in the plate at which 
the temperature is exactly equal to the mean temperature 
of the plate, say at Ze . There 

Y(Z., t) = yet) 

From Equation 10.3-5, for Fo > 0.5 it can be shown that 

v1 
ze=-L

3 

A similar unique point exists for other configurations as 
well. (In a cylinder, 'e = (V2/2)R; in a sphere, 'e = 
(v'15/5)R.) 

Now the average rate of heat transfer to the slab can 
be calculated by 

pCpL[y(z., t) - Y(Z., 0)] 
q = (t - 0) 

where y has been replaced by y(ze), and the expression for 
q can be evaluated and introduced into the truncated 
Equation 10.3-5. For example, if the temperature is also 
measured at the center of the slab (at Z = 0), a little 
manipulation gives fJ explicitly as 

Y(Z., t) - Yo 6fJ (10.3-6)
Y(Z., t) - yeO, t) = L2 t 

A distinct difference exists between Equations 10.3-5 
and 10.3-6. In Equation 10.3-5, the left-hand side is the 
response; hence the unobservable error can be conceptu­
ally added as shown in Equation 10.2-5. But in Equation 
10.3-6, the left-hand side is a rational fraction of re­
sponses, and € is not added directly to the deterministic 
left-hand side. 

Suppose now that this fact is ignored , that Equation 
10.2-5 is assumed to hold, and that a least squares esti­
mate of fJ is calculated by minimizing 

~ [ Y(Z., tl ) - Yo 6fJ]2
L ( - 2 tl . Y z., ti) - YeO, tl ) L 
.= 1 

(To simplify the notation, we shall let Y(Z., tl) = Yll 

and YeO, ti) = Y2i ; the capital letters indicate random 
variables.) Equation 4.3-7a indicates that 

i ( Yli - Yo )t
iP= i = 1 Y~I - Y2 i (10.3-7) 

L: t f 
1= 1 

Unfortunately, the expected value of pis not fJ, that is, 
Pis a biased estimator, and the calculation of the extent 
of the bias is by no means easy. 

If we seek tS'{p}, with Pcalculated by Equation 10.3-7, 

tS'{p} = (-..!-)'i tltS'{ Yll - 'Yo} (10.3-8) 
Yll Y21 L: t? ­1=1 

1=1 

we can assume that Y1 and Y2 are normal random vari­
abies . We need to know what the distribution of the 
quantity (Yll - Yo)/(Yli - Y21) is. Let us assume that 
tS'{YU}=fL1> tS'{Y21}=fL2' and that Var {YlI}= Var {Y21}= 
u2

• Physically these assumptions mean that Y(Z., t) and 
yeO, t) are different , but the error in their measurement 
is the same. 

We also need an expression for the expected value of 
the ratio of two normally distributed random variables . 
An approximate expression for the probability density of 
Z = X/ Y, good when the ratio fLx/Ux is large, ist 

~ UyCJLxUy - PxyfLyUx) - ZUx(fLyUx - PxyfLxUy)
( )p Z - (2 2 2 2)0/:ax - PXyZUXUy + Z Ux • 

._I_ exp [_! 2 (ZfLx - fLy)2 2 2] (10.3-9) 
.y2; 2 Uy - 2pxyuxuyz + Z Ux 

where PXy is the correlation coefficient between X and 
Y. Because Yll and Y21 are independent and normally 
distributed, (Yli - Yo) and (Yli - Y21) are normally 
distributed with the following parameters: 

Expected Value Variance 

(Yll - Yo) (h - Yo) a2 
(Yll - Y21) (Yl - Y2) 2a2 

These quantities (or their estimates) may be substituted 
for the expected values and standard deviations in 
Equation 10.3-9 together with PXy or its estimate to get 
p(z). The expected value (and variance) of Z can be 
evaluated numerically from the moments of Z as de­
scribed in Chapter 2, and the bias in Pcan be evaluated 
for any specific experiment at each t.. Each expected 
value of (Yll - Yo)/( Yll - Y21) can be substituted into 
Equation 10.3-8, and the bias in the estimate of fJ can be 
approximated. Clearly, the evaluation of the bias in a 
least squares estimator when the ratio of two random 
variables is arbitrarily used as the dependent variable is 
arduous and only approximate. Equation 10.3-9 in 
principle can also be used to form a likelihood function 
so that a maximum likelihood estimate can be made as 
described in Section 9.3, but the numerical computations 
would be lengthy. 

The precision in the parameter estimates must come 
from replicate experiments. 

Example 10.3-1 Determination of Diffusion Coefficients in 
a Gas Mixture 

Isothermal gaseous diffusion coefficients of ethane in 
methane are to be measured by use of a long vertical 

t R. C. Geary, J. Royal Stat . Soc. 93, 442, 1930. 
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cylindrical tube. The model assumed for diffusion is 

8c 82c
(a)-=f)­

8t 8z2 

C = 0 at t = 0, Z ;::; 0 

C = 0 at z = 0, t > 0 (b) 

C = Co at z = L, t > 0 

where C is the concentration of ethane in moles /liter and 
Co is a known value. Physically, the experimental set-up 
calls for one gas to be initially placed in the tube and then , 
at t = 0, one end of the tube is opened to the second gas. 
The denser gas should be underneath the less dense gas to 
avoid convective mixing engendered by density differences ; 
see Figure E IO.3-l a. 

The solution to Equation (a) and (b) is t 

C z 2 2'" (_l)n _( IL)2 "' I • n7TZ - = - + - -- e nn :u sm- (c)
Co L 7T n =1 n . L 

Several possible methods of measuring the concentration 
of ethane continuously or at discrete intervals (depending 
upon the analytical equipment available) can be suggested. 
As one example, suppose two samples are taken simul­
taneously at several time intervals with hypodermic syringes 
at sampling points I and 2, each located a distance u from 
the ends of the diffusion tube. The concentration of ethane 
in methane in the samples .can be measured with a gas 
chromatograph or by other methods. Equation (c) gives, 
for points I and 2, 

Cl U 2 { [(7T)2] . 7TU- = - + - -exp - - f)t sm-
Co L 7T L , L 

+ ~ exp [- (~r f)t]sin 2Z + ...} 

:: = L_-_u + 3{-exp [_ (~)2 f);]sin 7T_(.:....L---::--_u....:.) 
Co L 7T L - L 

LL+ ~ exp [ - (~r f) t]sin 27T( - u) + .. -} 

d
(L-a) 

Pressure 
equalization 

t #1 
a 
I -..,..u.......-Slide 

FIGURE EIO.3-la 

t H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids 
(2nd. ed.), Oxford Univ. Press, Oxford, 1959,p. 313. 

Addition of Cl to C2 gives 

Cl : C2 = I +§{-2 exp [ - (I) 2 f)t]sin 7 

+ exp [ -~ exp [ - 9(Ir f)t]] sin 7T~3 +.. -} (d) 

Note that all the even terms cancel and that the odd terms 
combine during the addition of Cl to C2 because 

. 7T(L - a) . 7Ta 
sm L = sm/; 

. 27T(L - a) . 27Ta 
sm L = -smT 

etc . 

An additional reduction in the complexity of Equation 
(d) can be effected by proper choice of the location of the 
two sampling points. Suppose that the distance a is selected 
so that 

. 37Ta 0 L 
sm- = or a=­

L 3 

Then the third term in Equation (d) vanishes, and for any 
reasonable times the coefficients of the exponents in the 
expression exp [- 25(7T/L)2~t ] and in higher order terms are 
so small that effectively 

Cl + C2 = I _ ~exp (_ 7T2 f)t)(sin~) (e)
Co 7T L2 3 

If only a single measuring location is used, the distance a 
can be made equal to L/2. Then Equation (c) becomes 

Ca I 2 { [(7T) 2 ]Co = '2 +;; -exp - L ~t 

0.900.50 
• = experimental data 
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Estimation by least squares of E1 from Equation (f) , 
including the first and perhaps second exponentials, is 
straightforward since Ca + £ = Ca. Similarly, in Equation 
(e), C1 and C2 are independent and 8{C1 + C2} = Cl + C2, 
so that (Cl + C2) + (£1 + £2) = (Cl + C2) + e' ; Figure 
ElO.3-1b illustrates the predicted and experimental values 
for one experiment in which L = 100 ern. The estimated E1 
was 0.076 cm2Jsec, and from replicate experiments S f) = 
3.1 X lO- a cm2Jsec. Two exponential terms of Equation (f) 
were used. 

Example 10.3-2 Parameter Estimation Using Frequency 
Response 

If a deterministic sinusoidal input is used as the process 
input, the steady-state output, termed the frequency re­
sponse, can be used to estimate the coefficients in a linear 
(in the independent variables) model of the process. For 
example, if the model for heat transfer in an infinite slab is 
expressed in rectangular coordinates as (Figure EIO.3 ~2a) 

o f 02f 
-=ex­no. I) at OZ2 (a) 

f(o, t) = ao cos wt 

FIGURE EIO.3-2a 

where 

f = deviation from the mean temperature, a deterministic 
variable _ . 

z = distance measured from face of the slab 
t = time 

ao = amplitude of the ma ximum temperature deviation at 
Z = 0, a deterministic variable 

ex = thermal diffusivity 
w = frequency of the temperature fluctuations 
the time-dependent solution of Equation (a) is quite com­
plicated, but the solution at the point z = L as I becomes 
large is 

tit; I) = ao e - LV"'/2acos (WI - (b)LJ':;.) 
Although the parameters ex (and ao if necessary) in 

Equation (b) can be estimated by nonlinear est imation 
techniques from temperature measurements, the phase angle 
(lag) and amplitude ratio both can be measured and used to 
estimate ex by much simpler expressions. The phase angle 
can be calculated graphically or analytically from measured 
data, as indicated in Figure 10.2-1, as can the amplitude 
ratio : 

Phase angle: ,p = w!!1t = - L J w 
, 2ex 

AL V-Amplitude ratio : - = e - L"'/2a 
ao 

The phase angle , and amplitude ratio act as dependent 
variables, and the frequency, w , can be varied as the inde­
pendent variable for least squares estimation. 

We shall observe next ' that experimentation in a rec­
tangular geometry may be more difficult than in a cylindrical 
geometry (particularly for a gas), but that the estimation 
of ex is simpler in the rectangular geometry. Heat transfer in 
an infinite cylinder Can be modeled by 

at	 = ex(02t + ~ at) 
at ar r or 

f(R; I ) = an cos wI (d) 

o f (O, I)	 = 0 
or 

where 

r = radial direction measured from the center of the cylinder 
R = radius of the cylinder, a constant 

and where the sinusoidal temperature fluctuation is applied 
at r = R. The solution of Equation (d) for t(r, I) is quite 
complex, but the frequency response for the center of the 
cylinder where a fine thermocouple might be placed is 

f(O, I) = an cos wI[ber (R V-;;;j;.) + sin wI[bei (R~)] (e) 
[ber (R V W/ex)]2 + [bei (R V W/ex)]2 

Both ber and bei are tabulated Bessel functions similar to 
sine and cosine functions. 

If Equation (e) is rewritten as 

f(O , I) = an 
Iber" (R vw/ex) + bei2 (R vw/ex)] % 

-cos [wt ., tan -1 (bei (R~»)] 
, ber(R~) 

the phase lag and amplitude ratio are clearer: 

be i (R~»)Phase angle: ,p = w!!1t = tan ? ( ~ 
ber (R w/ex) 

Amplitude ratio: 

Ao = 1 
an [ber2 (R V w/ex) + bei" (R V w/ex)] % 

It is interesting to note from Figure EIO.3-2d that,p becomes 
a linear function of R~ over certain ranges of w: 

,p = blJ~ -bo (g) 

where bo and b, are empirical coefficients. If Equation (g) is 
not used, then (e) or (f) must be fitted by nonlinearestimation. 

In a typical experiment, a 2.20 em a.D. (R = 1.00 ern) 
stainless steel tube 1 meter long, containing oxygen, was 
heated by an electrical current flowing in the tube wall. 
Temperatures were measured by platinum resistance 
thermometers at the center and the inner wall of the tube. 
A syncrogenerator pro vided the desired sinusoidal input 
from 0 to 150 amperes. 

Figure EIO.3-2b illustrates a typical temperature-time 
recording from which the phase shift and amplitude ratio 
were obtained as follows. The frequency w was calculated 
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Time~ 

FIGURE EIO.3-2b Time record of input and response on the 
same chart. 

from the period of the temperature cycle (both input and 
output frequencies were the same; hence the process was 
proved linear) as recorded, and inasmuch as the frequency 
was controlled, it was regarded as a deterministic variable. 
.To calculate the phase angle ljJ, the frequency was multi­
plied by the measured phase shift from the time record. To 
calculate the amplitude ratio, the amplitudes from the chart 
were measured and adjusted for the proper scaling factor. 

As mentioned in connection with Equation 10.3-9, the 
amplitude ratio may give a biased estimate of a; the extent 
of the bias would be difficult to determine inasmuch as 
Equation (f2) is highly nonlinear. Consequently, a ~as 

estimated from Equation (f1) . The additional advantage of 
using Equation (f1 ) was that it gave a linear relation between 
if; and V(w/a)R for V(w/a)R > 3 that could be approxi­
mated within 0.7 percent by the relation 

f	 = 0.172J~ R ~ 0.631 (h) 

Typical valuesof the precision for a were obtained from 
replicate experiments at 150°F and 1 atm, yielding Se = 

0.065 cm2/sec. Figures E10.3-2c and E10.3-2d illustrate the 
experimental measurements and the predicted amplitude 
ratio and phase angle for 150°F and &. = 0.275 cm2/sec with 
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FIGURE EIO.3-2c Ratio of amplitude at center of cylinder and 
amplitude at radius R. 
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FIGURE EIO.3-2d Phase angle between signal at radius Rand 
response at center of cylinder. 

&. calculated by least squares using Equation (g) but with the 
predictions being made using Equations (f1) and (f2) . Even 
though the amplitude ratio was not used to estimate a, the 
predictions were good at the lower frequencies. 

10.4 PARAMETER ESTIMATION USING DETER­
MINISTIC MOMENTS 

Deterministic moments provide an alternate method of 
estimating the parameters in a distributed model. The 
term "deterministic moment" will be used to distinguish 
the moments of this section from the moments of a 
stochastic variable described in Chapter 2. The major 
advantage of employing deterministic moments is that 
the moments of the process responses are related to the 
model parameters by much simpler equations than the 
full solution to the process model. Furthermore, no 
analytical solution can be obtained for some models, 
whereas the moments can be found analytically. Deter­
ministic moments can be computed only for linear (in the 
dependent variable) differential equations and have been 
applied extensively to models involving axial and radial 
dispersion. 

10.4-1	 Models of Axial Dispersion 

If a pulse of tracer is injected into an actual flowing 
stream such as in a pipe, porous medium, or open channel, 
the pulse spreads out as it moves with the fluid down­
stream because of dispersion. For a fixed distance 
between the injection point and the measurement point 
of the response, the amount of spread depends on the in­
tensity of the dispersion in the process. Conversely, the 

L 
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spread can be used to characterize quantitatively the 
dispersion phenomena, that is, to evaluate the dispersion 
coefficient in the process model of Equation 10.2-3, 
written here in dimensionless form: 

oc* oc* 1 02C*
 
ot * + oz* = POZ*2 + S(z* - zt ) Set*) (10.4-1)
 

where 

* Vt qt t di . I .t = T = V = T rmension ess time 

c* =.!!...., a dimensionless deterministic dependent 
Cay variable 

p = dimensionless coefficient called the Peclet1;,a 
number 

z* = I' a dimensionless axial directiori 

q = volumetric flow rate of fluid 
V = volume of vessel or channel , a deterministic 

variable 
L = length between the injection point and the measure­

ment point = (z., - zo) 
v = velocity of fluid 

Cay = m[V; that is, Ca y is the concentration of injected 
tracer if the quantity of tracer m were evenly 
distributed throughout the vessel 

i = (V/q) , mean residence time of fluid 

Note that Model 10.4-1 assumes that a pulse input is 
introduced into the vessel or channel so that c* is the 
dimensionless deterministic impulse response. 

We define two deterministic moments as follows: 

m, = fa"" t*c* dt* (10.4-2) 

mf = fa"" (t* -ml)2c* dt* (10.4-3) 

Notice that the definition of ml is actually 

S"" t*c* dt* m - ~o,:=- _ 
1 - fa"" c* dt * 

but we have normalized the denominator, that is, 
required that 

fa"" c* dt* = 1 

Consequently, introducing the definitions of c* and dt * 
into the normalization equation, we find 

-=-1 i "" e dt . = "Cay 
t a 

and 

Levenspiel and Smith t first showed that mf can be 
conveniently related to the dispersion coefficient. Van der 
Laan t and Aris§ pointed out that in using Laplace trans­
forms to solve Equation 10.4-1,ifthekth moment is finite, 

fa"" t kc*(z*, t) dt 
mk = ~:;:--~--­

fa"" c*(z*, t) dt 

then 

. d kc*(z* s) 
11m ' k 
8- 0 ds _ ( l) k 

lim c*(z*, s) - - mk 
8- 0 

in which c*(z*, s) is the Laplace transform of c*(z*, t) 
and s is the usual complex parameter. Hence the ml and 
mf can be found from 

r oc*(z*, s) (10.4-4)m, = -Ln;} os 

# 2 li 02C*(Z*, s)
m2 + ml = im " 2 (10.4-5) 

s.... o cJS 

Keeping in mind that the dispersion coefficient is 
contained in P, one would like to relate ml and mf to P 
for various boundary conditions. Levenspieland Bischoff] 
gave a number of such relation s and appropriate ref­
erences. Table 10.4-1 is a brief summary of a few of the 
more useful relationships. Observe that the explicit 
solutions for the concentration are quite complex or just 
not available; it would be very hard to evaluate P from 
c* versus t* data , whereas it would be easier to obtain P 
from mI and mf. 

Because the deterministic moments are actually 
estimated by "using a stochastic variable C through 
relations : 

(l0.4-6a) 

II = L'" tC dt (l0.4-6b) 

I 
12 = fa"" t 2C dt (1O.4-6c) 

I 
1 I I q2 

M 1 = -e- - = - II (10.4-7a)
t 10 m V I 

i
Mf = ­/2[fa (far] 

I 
= ~ (~r[I2 - 2 ~ If + (~rINo] (l0.4-7b) i 

I 

t o. Levenspiel and W. K. Smith , Chern. Eng. Sci. 6, 227, 1957.
 
t E. T. Van der Laan, Chern. Eng. Sci . 7, 187, 1958.
 
§ R. Aris, Proc. Royal Soc. (London) A245, 268, 1958.
 
II O. Levenspiel and K. B. Bischoff, Aduan. Chem. Eng. 4, 95,
 
1963. 
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TABLE 10.4-1 RELATION BETWEEN MOMENTS AND PECLET NUMBER FOR MODELS WITH AXIAL 

DISPERSION ONLY 

Configuration Solution	 Moments 

2 
ml = 1 +­

c* = ~ (_P_) Y. exp [_ P-..:...(I_-_t_*):....2] P 
: 2 7Tt* 4t* 

2	 8
/; input Response	 m#=-+­

2	 P r» 
(I)	 Doubly infinite pipe 

(single measurement) 

c* = eP/2 ~ (-l)n +18a~ e- ant· 
~l 4a~ + 4P + p 2 

p2 + 4a~ 

an = 4P/; input Response 

(2)	 Closed pipe 
(single measurement) 

1
None available ml = 1 + ];[2 .(1 - a)e-PZi - (I - ,8)e-P (Z~-Z2 )] 

2	 1
m# = - +­

2	 P r» 
/; input Response 

X {8 +2(1 - a)(I - ,8) e-Pzi - (1 - a) e-Pzi 

x [4ztP + 4(1 + a) + (I - a) e-PZi] 

- (I - ,8)e - P(Z; -z'2) 

(3) General case ····	 X [4(z: - Z;)P + 4(1 +,8) + (I - ,8)e-P (Z~-Z2)]} 

~
 
Any input zt z~ 

. Response Response 

(4)	 Infinite pipe conditions 
(double measurement) 

None available~	 1 - ,8
6.ml = 1 - --p- [1 - exp ( - P)] exp [P(z: - zm

"TTR 2	 1-,8Any input zj z~ 6.mf = p + Ji2 exp [P(z~ - z:)] 

Response Response 
x {4(l + ,8)[exp (-P) - 1] + 4P(z~ - z:)

(5) Double measurement 
+ (1 - ,8)[exp (- 2P) - 1] exp [P(z~ - z:)]within test section
 

jjb + 4P(z: - zt) exp (-P)}
 
,8 = jj
 

P = Peclet number; * indicates dimensionless variable. 

L	 _
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where C is the observed response, a function of time, 
Ml is the estimate of ml, and Mf is the estimate of mf, 
we need to investigate the statistical properties of 10 , 11> 
and 12 , The integrals 10 , 11> and 12 are statistically 
independent. 

Consider the integral I: 

1 = I: <p(t)X(t) dt 

where <pet) is a deterministic function and X(t) is a 
nonstationary stochastic function. For a given <pet) and 
integration limits, I is a stochastic variable. The prob ­
ability distribution of I depends on the chosen function 
<pet), the probability distribution of X(t) and the integra­
tion limits. For the specific case in which X(t) is a 
normal random function, the integral is also a normal 
random function, and 

tS'{I } = I: <P(t)tS'{X(t)} dt (10.4-8) 

Var {I} = I: <p(t) Var {X (t )} dt (10.4-9) 

Given the expected value and variance of X(t) , Equations 
10.4-8 and 10.4-9 can be used to calculate the expected 
value and variance of 1. Even if X(t) is not a normal 
variable, if the integral is approximated by a sum and 
the individual observations Xj(t) are independent, by the 
central limit theorem I is approximately normally 
distributed. 

Inasmuch as the function X(t) is nonstationary, its 
statistical properties such as expected value and variance 
are not invariant with respect to a translation in time as 
described in Section 2.1. COnsequently, the expected 
value of X(t) will be a function of time, and an unbiased 
estimate of tS'{X (t )} can be computed from n time records 
i = 1, .. . , n at any fixed time t by 

n 

P-x(t) = ~ ~ Xj(t) (10.4-10) 
1=1 

Unfortunately, large sample sizes are required to reduce 
the error in the estimates to a reasonable magnitude. 

The variance of P-x(t) at any fixed time t is 
n n 

Var {p,x(t)} = ~2 ~ ~ Covar {Xi(t)Xk(t)} 
1= 1 k=l 

.tS'{[Xj(t ) - /Lx(t)][Xk(t) - /Lx(t)]} 

(l0.4-11) 

If Xj(t) and Xit) are independent, Equation 10.4-11 
reduces to 

Var {P-x(t)} = aiet) (10.4-12)
n 

As we let !1t ~ 0 with n = t,/!1t ~ 00 , the sample data 
average converges to that of the continuous variable. If 
Xi(t) and Xk(t) are correlated, the double sum on the 
right-hand side of Equation 10.4-11 has to be evaluated, 
and the variance of P-x(t) mayor may not decrease to 
an acceptably small level with increasing sample size n, 
depending upon the nature of the double sum. If rxxC.k, t) 
decreases as k increases for large n, Equation 10.4-11 
reduces to 

n -l 

Var {P-x(t)} = ai~t) + ~ ~ (1 - ~) [rxx(k, t) - /Li(t)] 
k = l 

n - l 
uHt) 2~ 2 

~ - + - Rxx(k , t) - P-x(t) (10.4-13)n n 
k= l 

where Rxx(k , t) is the estimated autocorrelation function 
at time t. 

Application of Equation 10.4-8 to 10 , 11> and 12 gives 

tS'{Io} = Io'" tS'{ C} dt = LX) c dt 

tS'{I l } = L'" ttS'{C} dt = 50'" tc dt 

tS'{I2} = Io'" t 2tS'{C} dt = Io'" tc2dt 

Consequently, if M, is calculated from (q2/m V )Il, M l is 
an unbiased estimate: 

q2 q2 r'" 
tS'{Ml } = mV tS'{I l } = mV Jo tcdt = m, 

But if M l is calculated from the ratio (Il/(lIo»: 
tS'{Ml } = i tS'(~~) 

it would be necessary to use Equation 10.3-9to evaluate 
the bias in the estimate of m«. 

Rather than calculate P-c(t) and a~c(t), and from those 
quantities determine the estimates of tS'{Ik}, it may prove 
simpler, depending upon the data processing equipment 
available, to evaluate I k for several different experiments 
and to calculate a sample average lk : 

k = 0,1,2 

Very little can be said about M! as a means of esti­
mating the coefficient in the differential equation. 
Because the relation between .M! and the integrals 1o, 11> 
and 12 is nonlinear, it is difficult to evaluate the bias in 
tS'{Mf}. The precision in Uf can be estimated from 
replicate experiments. 

No matter what the probability distribution of C(t), 
Ik , or M k , Chebyshev's inequality, Equation 3.3-8, can 
be used to ascertain the precision in P-c(t), Ik, or Mk, 
respectively. 
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As an example of approximating the precision of the Bischoff and Levenspiel also presented solutions that 
dimensionless parameter P from the deterministic relate Equations 10.4-14 and 10.4-15 to the dimensionless 
moments, let us take the first entry in Table 10.4-1: parameter P for probes both inside and outside the test 

section. Two such relations are shown in Table 10.4-1. 
m, = 1 + P2 

In experimental work it is highly desirable to make 

After 

2
n 

- q2 1
M 1 = -- InmVn 

1=1 

has been calculated for independent experiments, 
n _ 

»<. Z (Mil - M 1)2 
Var {M } = i_=_1 _ 

1 n - 1 

and thus 

1'=_2_ 
M1-1 

Va;{P} ~ e~2r Va:{M1} 
Both Levenspiel and Smith's and Van der Laan's 

work depended on being able to represent the tracer 
injection by a delta function, a mathematical idealization 
which physically can only be approximated since it 
requires a finite amount of tracer be injected in zero 
time. To circumvent this difficulty, Aris, t Bischoff.t and 
Bischoff and Levenspiel § described a method that does 
not require a perfect delta function input. The method 
involves taking concentration measurements at two points, 
both within the test"section, rather than at only one point 
as" described above..The deterministic moments of the 
concentration curves at the two-points are calculated as 
before and then the "difference between them found. This 
difference can be related to -the parameter P and thus 
to the dispersion coefficient. It does not matter where the 
tracer is injected into the system as long as it is upstream 
of the two measurement points. The injection may be 
any ..type of pulse input, not necessarily just a delta 
function. 

Since the position of the injection point is not impor­
tant, it is convenient to base the dimensionless quantities 
on the length between the two measuring points. There­
fore, let Z1 designate the first measuring point and Z2 the 
second measuring point. Let 

dm1 = (m1)Z2 - (m1)Zl (10.4-14) 

dm: = (mf)Z2 - (mf)Zl (10.4-15) 

The expected value and precision in ~M1 (or dMf) are 

<f{dM1} = <f{(M1)Z2} - <f{(M1)Zl} (10.4-16) 

Var {LlM1} = Var {(M1-)Z2} + Var {(M1)Zl} (10.4-17) 

t R. Aris, Chern. Eng. Sci. 9, 266, 1959.
 
t K. B. Bischoff, Chern. Eng. Sci. 12, 69, 1960.
 
§ K. B. Bischoff and O. Levenspiel, Chern. Eng. Sci. 17, 245, 1962.
 

measurements far enough away from the ends of the 
vessels so that end effects become negligible, in which case 
the extremely simple expressions for the infinite tube can 
properly be used. Another even more important reason 
for using ·the infinite tube expressions is that the end 
effects cannot be exactly accounted for in real systems 
because of the complex flow patterns at these locations. 
Bischoff and Levenspiel presented design charts which 
allow estimation of the position of the measuring point 
sufficiently far from the end of the system to neglect end 
effects. 

Example 10.4-1 Estimation of an Axial Dispersion Coeffi­
cient from Experimental Data . 

The response at two measuring points for an experi­
mental set-up corresponding to configuration 4 in Table 
10.4-1 is qualitatively shown in Figure E10..4-1a, assuming 
the dependent variable C is itself recorded. The major 
source of distortion in the calculation of the estimates of the 
deterministic moments is in the tail of the C curve where 
small errors in concentration contribute unduly to the 
moment. By markinga reference time on the two output 
"charts at the instant when the input pulse of tracer is In­
jected (upstream) into the system, the times on the two 
output charts can be associated as follows: 

/2 = /1 + (82 - 81) 

. where the subscript 1 signifies the first measuring point and 
2 the second. In computing 1o, II, and 12 , the integrals are 
actually evaluated from the first noticeable breakthrough 
for each curve, where /1 and /2 are placed equal to zero, up 
to some ti and t~ which represent the time at which the 
curve again reaches the horizontal axis. 

Table E10.4-1 lists some actual concentration-time data 
(the concentrations were calculated from observed intensities 
by means of Beer's law and the times from the known chart 
speeds) for dispersion in a bed packed with 6 mm glass 
beads. Other measured data were (again calculated from 
calibration curves, etc.): 

Length between points 1 and 2: 60.96 cm} _ 60.96 
Interstitial velocity, v: 0.7537 cm/sec t> 0.7537 sec 
Fluid temperature 27.4°C 
Flow rate: 5.586 cclsec 
81 : 32.88 sec 
82 : 78.84 sec 

If continuous recorder output is to be used directly to 
calculate the moments, some subsidiary electronic circuitry is 
required. Otherwise, successive points can be sampled 
visually or digitally from the recorder output, as listed in 



FIGURE ElOA-la 

Table ElOA-l , at times suitable for use in the numerical 
quadrature scheme to be employed. The integrals 10 , II, 
andI2 , calculated in real time at z, (i = 1, 2) from Equations 
10.4-6, are 
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Data from first measurement point 
A = initialization of time record 

Data from second measurement po int 

12 = L [(Cltl +1 - C1+1tl)(tf+1 + t l+1tl + tJ) 
1=0 

C1+1 - CI( 3 2 2 3)] (d)+ 4 t1+1 + t l + l tl + t1+1tl + tl 

The first data point in the sum is at t = 0, j = 0; the upper 

n -l 

limit of the sum is at t = t' andj = n - 1; and n + 2 data 
and the values of M ll a~d -Mft can --be calculated from points are needed . The values-of the integrals are 
Equation 10.4-7. The desired moments I1Ml and 11M! in 
real time are Point 1 Point 2 

10 (ppm)(sec) 112.18 112.22 "­I1M1 = (M1h - (M1);\+ (82 - 81) 
11 (ppm)(sec)2 1.905 x 103 5.833 x 103 
1 (ppmjtsec)" 3.923 X 104 3.358 x lOS11M! ~ (M!)2 - (M!h 2 

Notice that the shift in the time -origm carried out in From these integrals the deterministic moments were 
calculating lot, Ill> and 12 1 must be adjusted for in subt ract ing found to be 
(M1)l from (M1)2, but that M ! is independent of the com­ Point 1 Point 2 
puting origin since it is calculated about M 1 • A very practical 

iM1 , sec 16.99 51.98feature about the method of moments is that the units of C 
are not important. An arbitrary multiplier of C (to convert PM!, sec" 349.7 2992.7 

from one set of units to another) cancels out if the ratios of 
which gave 

the integrals I are used (perhaps at the expense of some
 
bias in the estimate of M 1 and M !). - (0.7537)
I1M1 = [(51.98 - 16.99) + (78.84 - 32.88)] 60.96 

The integrals lot, Ill , and 121 can be evaluated from the 
data in Table ElOA-1 by means of the following quadrature = 1.001 

.; 

formulas based on the trapezoidal 'rule (the subscript i is 
suppressed for simplicity) : 11M! = (2992.7 - 349.7)(~~~:67r = 0.0351 

(b) Since 10 1 and 10 2 should represent the same quantity of 
tracer, we observe that the loss of tracer was negligible. 

-,
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TABLE ElO.4-1 CALCULATED CONCENTRATIONS AND TIMES TABLE El0.4·1 (continued) 

FOR INPUT PULSE RUN FOR 6 MM GLASS BEADS 
First Measuring Point Second Measuring Point 

First Measuring Point Second Measuring Point 
Concen­ Concen­

Concen­ tration, Time, tration, Time,Concen­
tration, Time, C(ppm) t (sec) C(ppm) t (sec)tration, Time,
 

C(ppm) t (sec) C(ppm) t (sec)
 
0.053 49.8 0.015 127.2 

0.000 0.0 0.039 51.6 0.008 132.00.000 0.0 
0.012 0.6 0.006 3.6 0.031 53.4 0.000 134.0 

0.024 1.2 0.018 7.2 0.026 55.2 

0.083 1.8 0.050 9.6 0.020 57.0 

0.282 2.4 0.094 12.0 0.016 60.0 
0.142 14.4 0.010 66.00.836 3.6 

1.461 4.8 0.224 16.8 0.004 72.0 

2.061 6.0 0.325 19.2 0.000 84.0 

2.814 7.2 0.468 21.6 
3.772 8.4 0.728 25.2 The dimensionless coefficient P can be approximated
4.832 9.6 1.073 28.8 

from the relationships listed in entry 4 of Table 10.4·1:
5.314 10.2 1.470 32.4 Sm, = 1, which appears to be satisfied, and D.mf = 2/P. 

I -
' 

5.772 10.8 1.809 36.0 
i,	 

Three replicate experiments yielded the following results for 
r- 6.189 11.4 2.327 39.6 

D.M! from Equations 10.4-16 and 10.4·17:6.492 12.0 2.412 40.8 
6.746 12.6 2.511 42.0 D.M! = 0.0376 
6.913 13.2 2.618 43.2 

-<:6.999 13.8 2.701 44.4 [Var {D.M!W" = 0.00351 
6.991 14.4 2.775 45.6 _ 2 2 
6.913 15.0 2.800 46.8 P ~ D.M! = 0.0376 = 53.2 
6.754 15.6 2.820 48.0 
6.563 16.2 2.831 49.2 

[Va0P}]y. ~ (~2)[Va0D.M!}] Y. = 4.966.304 16.8 2.820 50.4 
6.025 17.4 2.786 51.6 

Because the distribution of M! and, hence, P is not known,5.730 18;0 2.749 52.8 .-_..-- "-_.• we apply the Chebyshev inequality, Equation 3.3-8, to5.078 19.2 _, 2.685 54.0 
determine the approximate confidence limits on P :4.416 20.4 2.622 55.2 

3.785 21.6 2.425 57.6	 53.2 - 3(4.96) < P < 53.2 + 3(4.96) 
3.220 22.8 2.193 60.0 with a probability of 1 - t = 0.89. 
2.719 24.0 1.965 62.4 
2.263 25.2 1.608 66.0 
1.900 26.4 1.276 69.6	 10.4-2 Models of Axial and Radial Dispersion 
1.556 27.6 0.991 73.2 The experimental methods for measuring radial­
1.271 28.8 0.749 76.8 dispersiori coefficients involve injection of tracer into the 
1.056 30.0 0.619 79.2 process and measurement of its concentration at some
0.871 31.2 0.505 81.6 

point downstream from the injection point. However, the0.715 32.4 O.4Hl 84.0 
tracer should not be-injected over a plane nor measured0.590	 33.6 0.326 86.4 
over a plane. Instead, to study the radial movement of0.479 34.8 0.260 88.8 

0.400 36.0 0.212 91.2	 tracer and thereby gain information on the radial mixing 
0.330 37.2 0.166 93.6	 that occurs in the subsystem, an experimental method 
0.268 38.4 0.133 96.0	 must be used in which the concentration varies with 
0.227 39.6 0.103 98.4	 radial position. Usually the tracer is injected at the axis 
0.194 40.8 0.084 100.8	 of the tube (" point source input"); the axis is chosen 
0.150 42.0 0.068 103.2 so that there is radial symmetry about the tube axis 
0.125 43.2 0.052 106.8 which simplifies the mathematics. As the tracer moves 
0.109 44.4 0.040 110.4 down the tube, it spreads radially by dispersion. At long
0.089 45.6 0.Q35 114.0 

distances (theoretically infinite) from the injection point,0.073 46.8 0.027 117.6 
the tracer completely mixes with the flowing fluid. As a0.063	 48.0 0.019 121.2 
consequence, the measurement point must not be so far 

.,.

-
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from the injection point that the existing concentration 
differencescannot be detected. 

The mathematical developments are based on the 
dispersion model 

OC OC - 02C DR 0 ( OC)
ot + v. oz = D L OZ2 + r or r or + m o(z - zo)f(r) 

(10.4-18) 

with all the coefficients assumed to be constant. The 
last term represents the" source" (injection) of tracer at 
a specific point . For simplification, Equation 10.4-18 is 
put in dimensionless form as follows: 

t* = v.t 
R 

z* =!...
R 

r* =!....
R 

C* =.!!.... 
Cay 

The mean concentration of the tracer at a point suffi­
ciently downstream from the point of the steady-state 
tracer injection of rate m is Cay' By a mass balance that 
equates the rates of injection to the rate of flow out of 
tube, we have -' ­

m =~R2v.cav - - : 

After introduction of these dimensionless quantities 
into Equation 10.4-18, we obtain 

l*
:~: - ;L :;~: - ;R r [0:* (r*:~:)] = o(z* - zt)f(r*) 

(10.4-19) 

Solutions to Equation 10.4-19 can: be used to estimate 
dispersion coefficients from experimental data. 

The general solution to Equation 10.4-19 is quite 

cumbersome to use. Table 10.4-2 lists various less 
complex cases involving simplifications in the differential 
equation or the boundary conditions. Bischoffand Leven­
spielt examined the conditions under which some of the 
less rigorous expressions would be justified and presented 
design charts which allow evaluation of the approxima­
tion errors in the calculated dispersion coefficients for 
various conditions. They found that the end-effect 
approximation errors are smaller for radial than for 
axial-dispersion coefficients. Even though the error may 
be large for measurement right at the end of the vessel, 
the error decreases very rapidly when the detection probe 
is moved into the bed. Hence, in most typical packed 
beds, taking measurements one or two particle depths 
into the bed is often sufficient to make the end-effect 
approximation errors negligible. 

Table 10.4-3 summarizes a number of commonly 
used models and gives their deterministic moments, as 
defined in this section, as well as their corresponding 
frequency response functions. The models in Table 
1004-3 are for the experimental arrangement shown in 
Figure 10.4-1. 

Inspection of Table 10.4-3 might lead one to conclude 
that the deterministic moments are simpler to use than 
the frequency response . in obtaining estimates of the 
coefficients. But this conclusion is true only for simple 
models. Further examination brings out the fact that a 
model with p coefficients requires the calculation of p 
deterministic moments if an adequate number of inde­
pendent equations are to be used. Moments of order 
greater than two become quite inaccurate because the 
inherent errors in the "tail" of the response curve are 
greatly magnified, causing the higher moments to be of 
little practical use. 

In the estimation of parameters in models represented 
by linear (in the dependent variable) partial differential 
equations with more than two coefficients, use of the 
frequency response is recommended. The drawbacks, of 
course, in the use of the frequency response are that the 
functions of AT and t/J are highly nonlinear and that the 
coefficients in the phase shift, t/J, are quite insensitiveto 
the type of model used. 

t K. B. Bischoff and O. Levenspiel, Chern. Eng . Sci. 17,245, 1962. 

Entrance 

-1
t 

Test section 
Exit 

sectionsection j-L­
1

Tracer First Second
 
input measurement measurement
 

point point
 

FIGURE 10.4·1 Experimentation for axial dispersion . 
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TABLE 10.4-2 RESPONSE FOR POINT INPUT IN MODELS WITH RADIAL DISPERSION * 

Experimental Scheme Response to Input~ . 
f 
j 
f· ,I·

t
 
[L 

~~
 ~/~ ~ 
Tracer in Measurement 

(point source) point 

(1) 

Restirction : DI/ = ii,.: 

~
 
Tracer in Measurement 

point 

No restriction 

with (2) 

with (3) 

. 'J' 1 a~Tracer in Measurement «> .. +-­
point 4 Pr.Pn 

Restriction : DL =0 

-~ ~~ with 
Tracer in 

(finite injector 
tube) . . 

Measurement 
......point 

radius of injector = E; e = E/R 
(4) 

z=o z=zo . Z = Ze 

For (a) : 

Tracer in Measurement
 
point
 (5) 

(a) 

~?'?2'71""'--

.... 
For N, for (b) , refer to reference 5 

Tracer in Measurement 
point 

(b) 

* References for Table 10.4-2: 
1. W, L. Towle and 'T. K. Sherwood, Ind. Eng. Chern. 31,457, 1939. 
2. R. A. Bernard and R. H. Wilhelm, Chern. Eng. Progr. 46, 233, 1950. 
3. A. Klinkenberg, H. J . Krajenbrink, and H. A. Lauwerier , Ind. Eng . Chern. 45, 1202,1953 . 
4. R. W. Fahien and J. M. Smith, AIChE J. 1, 28, 1955. 
5. K. B. Bischoff and O. Levenspiel, Chern. Eng. Sci . 17, 245, 1962. 

i . 
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TABLE 10.4-3 LINEAR MULTIPLE GRADIENT (DISPERION) MODELS* I

I 
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Boundary 
Model Differential Equations Conditions Model Coefficients 

1. e(z,O) = 0DL-Flow u= Il() oe ; oe . 102e 

-+- =-­ e(oo,O) = finite P Peclet Number 
ot oz P OZ2 

e(zlo t) = 1Dispersion only 

2. 
u.;. U() oe 1 oe 1 02e P-+--=-- Same as Model 1 

ot h OZ P OZ2 h = ulu« 
Dispersion only 

3'j)_Flow 
L Mass transfer U =Il() 

~t~_
 
Dispersion plus accumu lation 

by equilibrium adsorption 

oe oe 1 02e P 
y ot + OZ = POZ2 Same as Modell y = [l + (k1/€)J > 1 

10q k 1 Be k 1 = distribution coefficient for 
is r :» equilibrium adsorption 

4. 

P 
Same as Model 1 I = fraction of void volume 

containing mobile fluid;I < 
Dispersion plus 
stagnant reqion 

5. 

Dispersion plus accumulation 
by finite rate adsorption 

6. 15 ' 
~Flow u=uo 

Mass transfer 

Uniformconcentration, C. 

Dispersion plus interphase
 
mass transfer to a
 

porous stagnant region
 

oe ·'·oe 1 02e 1 oq- + - = -- - -_. Same as Model 1 Pot oz . P BZ 2 e ot 
plus k 1 

oq .. (q)- = k 2(e - e*) - k« e - ­ q(z,O) = 0 k2 = mass transfer coefficient 
ot . k1 

oe oe 1 02e oe.
1- + - = - - - (1 - I) - Same as Modell Pot OZ P OZ2 ot 

plus I 
oe. 

(l - f) at = ka(e - e.) e.(z,O) = 0 ka = mass transfer coefficient 

oe oe 
I ot + fu = 

1 02e 
POZ2 

7. Dispersion plus accumulation by 
finite rate adsorption plus mass 

transfer to a stagnant region 

_ (l - /)(1 + k 1 ) oe. _
Ie dt 

oe, 
(1 - f).at = k a(e ­ e,) 

! oqm 
£ ot 

= 0 
. 

Same as Model 1 
plus 

e.(z,O) = 0 

qm(Z,O) = 0 

oqm = 
ot 

k 
2(e 

_ qm) 
k 1 

* For notation, refer to Table 10.4-4. 
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Deterministic Moments Frequency Response Parameters for ATand t/J 

2 w 

P p 

h 

2y 2 wy 
P p 

2j2 wi1< 0 P p 

1 w 2k 2 

4 + €P [w2 + (k 2/k1 )2] 

2(1 - 1)2 2 1 w2ka w [ k~_1 
k +p 4 + P[w2 + (k a/(I - 1))2] p I + (I - f)[w 2 + (k a/(I - 1))ijJa 

2(1 - 1)2[1 + (kdM] 1 w [k aw(l - 1)2[1 + (k1/1€)] 

ka 4 + P k~ + w2(l - f)2 

2k~ 2(I k1)2 k 2w+-+- +­ek« P I€ + €[w2 + (k2/k 1)2] 
] 

~---- - _ ._, -_ ._---------,------,-------------,....----------------

I 
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TABLE 10.4-4 NOTATION FOR TABLE 10.4-3 

AT = amplitude ratio, the ratio of the amplitude at Z2 to that 
at z~; In (A T) = (P/2){1 - [2Al + v'(2Al)2 + (2A2)2] y'}; 
AI is given in the table 

c = dimensionless concentration 
Cl = concentration at ZI (dimensionless) 
c. = concentration in stagnant region (hypothetical value) 
fJ = axial-dispersion coefficient
 
f = fraction of the void volume filled with mobile fluid
 
h = u/uo
 

k 1 = adsorption equilibrium coefficient (Henry's law coeffi­
cient) between q and c 

k« = dimensionless interphase mass transfer coefficient in 
model with adsorption 

ka = dimensionless interphase mass transfer coefficient in 
model with capacitance effect 

L = length of test section 
P = Peelet number uel-] i5 
q = quantity of tracer adsorbed per unit volume of porous 

media; q = k 1c/€ so that the accumulation rate is 
(dq/dt) = (k 1c/€)(dc/dt) 

qm = quantity of tracer adsorbed per unit volume of solid 
on surfaces that confines the mobile fluid
 

t = dimensionless time = {Juo/L
 
u = mean interstitial velocity
 

Uo = open tube velocity divided by the porosity € 

z = dimensionless axial distance = ilL 
Zl = first measu ring point (dimensionless) 
Z2 = second measuring point (dimensionless) 

€ = porosity (void fraction) 
{J = time 

w = dimensionless frequency = wL/uo 

t/J = phase shift = ( 2A-;C2 """+-(""'2'A2'")2] %; AI is(P/2) [ - 2Al -+v"~"I )n
given in the table 

Superscript' designates dimensional quantity 

Even though the frequency response is used for coeffi­
cient estimation, a pulse input is preferred in experi­
mentation because a Fourier analysis of a single pulse 
response can be run .to get the desired frequency informa­
tion. A single experiment with a pulse input thus can take 
the place of a number of experiments in which the input 
is varied sinusoidally at different frequencies . 
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cients in Parabolic Differential Equations," Comm . Pure 
Appld. Math . 16, 33, 1963. 

Kudryavtsev, Y. Y., Unsteady State Heat Transfer, Iliffe Books 
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Systems Described by Partial Differential Equations," 
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Problems 

10.1	 A packed bed through which a fluid passes in steady 
flow is a common piece of chemical processing 
equipment and also has significance in oil reservoir 
engineering. If heat transfer from the fluid to the 
bed is of interest, the process can be described in a 
number of ways. Suppose that a multiple gradient 
balance is selected with one adjustable parameter in 
the following form : 

where
 

p = density
 
C; = heat capacity
 
v.	 = velocity 
Z = axial direction 
T = temperature, the random variable 
r = radial direction 

Suggest a series of experiments (i.e., prescribe the 
initial and boundary conditions for the actual 
process represented by the model) that will be 
satisfactory to estimate the effective thermal con­
ductivity fe. What observations should be made? 
What will be the estimated error in T at Z = 0 (bed 
entrance) and at z = L (bed exit)? 

10.2	 A tubular reactor can be represented by the follow­
ing model: 

oC + v. oC = - koc exp ( - /)"E) 
8t OZ RT 

OT OT] 2h 
pCp[at + v. oz = Ii (Tw - T) 

+ /),.HRx n [ -koCexp (-~:)] 
where 

C = concentration, a random variable 
/),.HRx n = heat of reaction, a constant (known) 

/),.E = energy of activation, a constant 
R = ideal gas constant (known) 

k o = a constant 
h = interphase heat transfer coefficient, a 

constant 
Tw = wall temperature (known) 

" ' -- ' '' ' - ' '' ' --' '-'~---~-----------'--------.,......._............III
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and the remaining notation is the same as in Prob­ 10.5 A convenient method of determining diffusion coeffi­
lem 10.1. 

By what type of experiments can estimates of ko, 
h, and dE be obtained independently? What will be 
the respective boundary conditions? Note: T and 
C are quite sensitive to small changes in Ljo, and 
T« in certain ranges of these variables for the model 
as formulated above. 

10.3	 For incompressible laminar flow, the Navier Stokes 
equations are 

Dv 
p- = -V(p + pgz) + fLV2V

Dt 

where 

p = density, a constant (known) 
v = velocity, a vector 
p = pressure 
g = acceleration of gravity, a constant (known) 
z = height above a reference level 
fL = viscosity 

D b ial deri 8 V-D =	 su stantia erivative = -8 + v-
t , t 

Assume that v is stochastic (it has three com­
ponents) as is p and that the other variables are 
deterministic. How can fL be estimated most effec­
tively from velocity measurements? Describe the 
experiment in detail, giving equations, boundary 
conditions, and the estimation criterion. 

10.4	 The dimensionless diffusion equation for absorption 
or desorption from a finite slab is 

8c* 02C* 
ot * = o.z* 

where 

c* = WA .- 'W A co 

WAO - WA OO 

z* =	 !,.
L 

* Dt 
t =	 L2 

z = diffusion direction 
L = slab width 

WA = mass fraction of A 

For the boundary conditions: 

c* = 1, t* < 0, o .s z* :s; 
c* = 0, t* ~ 0, z* = 0 

z* = I 

how could D be estimated from measurements of 
WA and t? 

Hint: Let the fraction of the original material in 
the slab at time t be 

I' c* dz* M= ~o=--__ 
g c*(O) dz* 

cients of liquids is the capillary method. A "labelled" 
(usually with radioactive tracer) liquid is introduced 
into a uniform capillary tube, roughly 1 mm in 
diameter and 2 ern long. One end of the tube is 
sealed. The open end of the tube is placed in contact 
with a large quantity of the same liquid Containing 
no radioactive tracer. After a selected time t 
(seconds), the tube is removed and the fraction f of 
the initial radioactive material left' is determined. 
The diffusion coefficient D of the labelled liquid 
can then be calculated from the solution to the 
diffusion equation for a cylinder initially at a 
uniform concentration Co: 

C	 8 
f= - = -[exp(-.p) + !exp(-9.p)

Co	 7T
2 

+ i\	 exp ( - 25.p) + .. .] 
where .p = 7T

2 Dt/412 and I = length of tube. 
How can D be estimated from the ratio f which 

is a stochastic variable? Assume I and t are deter­
ministic variables. 

10.6	 Two cylinders, a standard moist cylinder and 
a cylinder with unknown moisture, are being dried 
under the same conditions. Solution of the deter­
ministic mathematical model for the temperature 
profile by Laplace transforms yields an equation 
which cannot be inverted except into imaginary 
(rather than real) temperatures. What might ' be 
done to enable the experimenter to obtain a solution 
in terms of real variables? The form of the solution 
in Laplace transform space is 

rex, s) = (a cosh AX)(bsinh Ax) 
where x is the distance from the end of the cylinder, 
S is the Laplace transform parameter, and T is the 
temperature. 

10.7	 The differential equation governing steady, laminar, 
isothermal, horizontal, fully developed flow of an 
incompressible Newtonian fluid in a rectangular 
conduit of constant cross-sectional area is 

02 V 02V l ap 
-+- =-­ (a)2ox oy2 fL 8z 

where V is the velocity in the axial (z) direction, x 
(horizontal) andy (vertical) are orthogonal Cartesian 
coordinates also orthogonal to the z direction, op/8z 
is the pressure gradient in the axial direction, and 
fL is the viscosity, a constant. If Equation (a) is 
integrated for a conduit having zero surface velocity, 
a width 2a and a depth 2b, V is as follows : 

V = _ 16b2 ~ ~ [(-1)";' cosh '!ji cos n7TY] 
7T

3fL OZ L..- n3 mra 2b
"=' .3.... cosh 2fj 
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The volumetric flow rate Q is as follows : 

3
Q = _ op {I 192b ~ [..!... tanh '!!!!!!]}4ab _ 

3p- OZ 1T5a L n3 2b 
n=1.3 •. .. 

Can p- best be estimated from measurements of 
op/oz and V or from measurements of op/oz and 
Q? Keep in mind that tV is a point velocity, a 
function of x and y, whereas Q is the rate of flow 
in the total volume of fluid in the duct, and that the 
precision in Q may not be the same as the precision 
in Y. Assume x and yare deterministic variables. 

10.8	 A pulse input to a fluidized bed yielded the following 
output. The concentration is a coded variable of 
fraction of full scale of the chart, and the time is in 
seconds . Select one .or more appropriate models and 
ascertain their parameters by use of the moments of 
the output curve . 

Response x 102 Response x 102 

1.90 0.000 55.11 0.486 
3.80 ' 0.000 57.01 0.420 
5.70 0.356 58.91 0.363 
7.60 1.245 60.81 0.314 
9.50 2.194 62.71 0.271 

11.40 2.759 64.61 0.241 
13.30 3.229 66.51 0.215 
15.20 3.431 68.41 0.192 
17.10 3.454 70.31 0.171 
19.00 3.346 72.21 0.154 

20.90 3.197 74.11 0.142 
22.80 2.996 76.01 0.131 

. ~ ~24.71 2.761 77.92 0.120 
26.61 2.527 79.82 0.111 
28.50 2.303 81:71 0.094 

30.40 2.089 83.62 0.081 
32.30 1.876 85.52 0.068 
34.20 1.667 .87.42 0.0583 
36.10 1.480 \ 89.32 0.0496 
38.10 1.315 91.22 0.0422 

40.00 1.169 93.12 0.0359 
41.81 1.040 95.92 0.0305 
43.71 0.926 96;92 0.026 
45.61 0.821 98.82 0.022 
47.51 0.724 100.72 0.018 

49.41 0.644 102.62 0.016 
51.31 0.586 104.52 0.014 
53.21 0.534 

10.9	 Residence time curves such as in Figure PIO.9 can 
be used to obtain the parameters in models of tubular 
chemical reactors. The figure.represents octadecane 
tagged with C-14 for a pulse input. For two or three 
models of the reactor, estimate the coefficients in the 
models . Which model represents the reactor the best? 
Use either the method of moments and/or the solu­
tions of the differential equations. 

500,----r---.-------r----,,--.,....----, 

.g400 

s 
c: 
g300
 
8
 
~ 

Q) 
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FIGURE PIO.9 Typical residence time distribution curve. 

10.10	 Phillips t used a pulse injection of KCI solution into 
an orifice plate mixing column to help construct a 
model for the column. The orifice plate mixer was a 
column 6 in in diameter and either 6, 12, or 18 in 
long with 1 or 2 interior plates . Various perforations 
were used in the plates . Flow of gas and water was 
concurrent. The output concentration of KCI was 
measured by a conductivity probe ; the ' millivolt 
output was a linear function of concentration. 

TABLE PlO.1O 

No. plates 1 Water rate 0.94 ft/sec 
No. holes 1 Air rate 0.40 ft/sec 
Column height 18 in Volume fraction 0.8 

liquid 
(e mv) t (sec) e (mv) t (sec) e (mv) t (sec) 

0	 1.22 350 2.12 200 2.92 
85 1.52 355 2.22 128 3.32 

200 1.72 340 2.32 73 3.72 
310 1.92 282 2.52 50 4.12 

0 6.12 

Water and air rates are total volumetric flows into the 
column divided by the column cross-sectional area. 

Based on Table PI0.1O, determine how well a : 
(a) maximum gradient model 

oe ec I 
ot + v. oz = A8(x) 8(t) 

(b) or a multiple gradient model 

oe ec 02e I 
ot + v. ox = lh or + 1TR2 8(x) 8(t) 

represents the data. Estimate the value of [h for the 
run . A probe correction, which should be included 
in the analysis , can be ignored, to simplify the calou­
lations. 

t J. B. Phillips, M.S. Thesis, Univ. of Texas, 1965. 

/ 
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The notations are: 

e = concentration, g/liter 
I = tracer injection, g 

R = tube radius, ern 

lo.t1	 Schiesser and Lapid us t used both step and pulse 
response techniques on a 4 in. diameter column, 3 ft 
long, packed with spheres. Water was introduced 
through a flat distributor at a uniform flow rate , 
and a step or pulse input of tracer NaCl was intro­
duced by suitable values. Details of the apparatus 
and procedure can be found in the article. 

Data for t in. porous and nonporous alumina 
spheres are listed in Table PIO.ll for a water flow 
rate of 4.06 gal/m in. The internal ho ldup in the 
porous spheres, as calculated from the difference in 
step reponses, was 0.215 ft3/ft 3 bed, or 79 percent 
of the pore volume. Determine how well a: (1) macro­
scopic model, (2) maximum gradient model, and 
(3) multiple gradient model fit the process. See 
Problem 10.10 for these latter two models . Explain 
any discrepancies you note in the conclusions drawn 
from the respective step and pulse data or type of 
pack ing. Est imate the dispers ion coefficient in the 
multiple gradient model. 

t W. E. Schiesser and L. Lapidus, AIChE J. 7, 163 (1961). 
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TABLE PIO.l1* 

Pulse Response 
eQ/mo, sec ? Step Response cleo 

Time Non- · Time Non­
(sec) Porous porous (sec) Porous porous 

12.5 
13.5 
14.5 
15.5 
16.5 
17.5 
18.5 
19.5 
20.5 
21.5 
22.5 
23.5 
24.5 
25.5 
26.5 
27.5 
29.0 
31.0 
33.0 
35.0 
37.0 
39.0 
41.0 
43.0 
45.0 

0.0015 
0.0050 
0.0080 
0.0160 
0.0220 
0.0350 
0.0460 
0.0590 
0.0650 
0.0670 
0.0660 
0.0630 
0.0580 
0.0510 
0.0470 
0.0400 
0.0310 
0.0220 
0.0170 
0.01250 
0.0100 
0.0075 

,0.0060 
0.0050 
0.0030 

0.0015 
0.0050 
0.0100 
0.0190 
0.0380 
0.0620 
0.0850 
0.1100 
0.1030 
0.1010 
0.0910 
0.0780 
0.0650 
0.0530 
0.0420 
0.0330 
0.0240 
0.0140 
0.0090 
0.0070 
0.0050 
0.0040 
0.0030 
0.0020 
0.0020 

1.0 
3.0 
5.0 
7.0 
9.0 

11.0 
13.0 
15.0 
17.0 
19.0 
21.0 
23.0 
25.0 
27.0 
29.0 
31.0 
33.0 
35.0 
37.0 
39.0 
41.0 
43.0 
45.0 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
0.990 
0.950 
0.820 
0.630 
0.620 
0.500 
0.410 
0.340 
0.290 
0.260 
0.220 
0.210 
0.200 
0.190 

0.180 

1.000 
·1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

0.950 
0.880 
0.750 
0.450 
0.290 
0.190 
0.120 
0.070 
0.050 
0.040 

.0.030 
0.020 
0.020 
0.010 
0.010 

• Notation : 
Q = volumetric flow rate, ft3 liquid/sec 
e = concentration 

m OQ = moles injected in a pulse input 
t = time elapsed since injection of input 



CHAPTER 11
 

Parameter Estimation in 
Transfer Functions 

All the process models described in Chapters 9 and 10 
incorporated differential equations in the time domain, 
either unsteady-state models or steady-state models 
involving spacial derivatives. For the special case of 
models represented by nth-order linear (in the dependent 
variable) ordinary differential equations with constant 
coefficients and zero initial conditions : 

(11.0-1)
d 2y(0)dy(O) d<n-lly(O)
 

yeO) = --;{f = (fj2 = . .. = dt<n 1) = 0
 

an alternate way to represent the relation between the 
model output and input is by means of the transfer 
function defined below by Equation 11.1-1. 

We shall describe how the coefficients in Equation 
11.0-1, which also appear in the transfer function, can 
be estimated in both the time domain and in the Laplace 
transform domain when the transfer function itself is 
specified as the model. 

11.1 THE TRANSFER FUNCTION AS A PROCESS 
MODEL 

The transfer function, which will be defined as the 
ratio of the Laplace transform of the output divided by 
the Laplace transform of the input of Model 11.0·1, can 
be found by taking Laplace transforms (refer to Appendix 
B) of each side of Equation 11.0-1 : 

sny(s) + an_1sn-1y(s) + . ..+ alsy(s) + aoY(s) = xes) 

(11.1-1) 

where s (in this chapter) is the complex parameter and 
the overlay (v) on the dependent variable signifies it is 
in the transform domain rather than the time domain. 
If we rearrange Equation 11.1-1 into the following form : 

we obtain the transfer function corresponding to 
Equation 11.0-1. If the input function x(t ) is generalized 
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'11.·.....·.. . . .. ·

·;' 1
 
i 
I 

to include derivatives of x(t) of order m, then a poly­
nomial in s will appear in both the numerator and de­
nominator of the transfer function: 

If the input to the subsystem is an impulse (delta) 
function, x(t) = 8(t), the Laplace transform of the 
impulse input is 

x es ) = ff[x(t)] = f 'e- st 8(t) dt = 1 

For the impulse input, Equation 11.1-3 becomes 

yes) = -(s) = bmsm + bm_1sn-1 + + b1s1 + bo
 
1 g sn + an_1sn- 1 + + alS + ao
 

where g(s) = 2[g(t)] is the Laplace transform of the 
impulse response, usually denoted by get) . Therefore, 
the transfer function proves to be just the Laplace trans­
form of the impulse response function, and Equation 
11.1-3 can be written in general as 

~(s) = g(s) 
xes) 

or 
yes) = g(s)x(s) (11.1-4) . I 

I 

Equation 11 .1-4 states that the output can befound from ! 
the product of the input times the impulse response, all I 

jevaluated in Laplace transform space. When the transfer 
function is known, the output of a linear (in the de­ :; /I

. ~ 1pendent variable) model for any type of input can be , 
found in Laplace transform space from Equation 11.1-4. ~~, I 

If we now take the inverse Laplace transform of both .. ·'·' 1
sides of Equation 11.1-4 to obtain the response in the 
time domain for any input, we obtain ~ 1,': , 

. i 
yet) = 2-1[y(s )] = ff-1[g(s)x(s)] 

= f>(t-a)x(a)da (11.1-5) 

Integrals of the type given in Equation 11.1-5 arise in 
many different applications; they are known in transform 
theory as convolution integrals and in classical mathe­
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matics as Duhamel's integrals. The impulse response 
function get) is also known as a weighting function from 
its role in Equation 11.l-5, because get - a) acts as a 
weighting function on the input x(t). The response yet) 
is equivalent to a weighting of the input values at various 
times from zero to t. For a model with constant coeffi­
cients, the shape of the response to an input applied at 
any instant depends only on the shape of the input and 
not on the time of application. 

Since Model 11.0-1 in the time domain and the transfer 
function 11.1-3 have been shown to be directly related, 
one might inquire as to why transfer functions are used 
as models at all. One use of transfer functions is in 
control systems analysis where rather complicated sets of 
subsystems must be analyzed and combined . Because 
Laplace transformation reduces differential Equation 
11.0-1 to an algebraic equation, historically the study of 
stability and sensitivity was easier to execute analytically 
or graphically in Laplace transform space than in the 
time domain. Then , too , Equation 11.1-4 makes the 
relation of one subsystem to another quite easy in La­
place space. For example, consider the packed column in 
Figure 11.1-1. The actual measurements in the flowing 
stream are made by thermal conductivity cells placed in 
the inlet and outlet streams . However, to measure 
dispersion in the packed section, corrections are neces­
sary to exclude instruments and column effects. Figure 
11.1-1 shows the information flow of the experimental 
set-up in the form of a block diagram. The model transfer 
function for the total process, including the packed 
section and instruments, is 

v( ) _ f c(s) 
v ( 

(l1.l-6)gt S - )x, S 

whereas the desired transfer function for the packed 
section, excluding end effects, is 

v ( _) fis)
gp s - v ( ) (l1.l-7)

X p S 

1'(8) ~-----..,.---------l Outlet sect ion 

Outlet thermal 
conductivity cell '---r----' 

Packed sect ion of 
Cp(s) the column 

Inlet th ermal
 
conductivity cell
 Xp (s) 

X (s) Inlet section 

FIGURE 11.I -1 Block diagram of a real process. 

The subsystem transfer functions are related (as can 
be verified by tracing the information flow) as follows: 

xc(s) = glc(s)x(S) 

xp(S) = Ms)x(s) 

f c(s) = goc(s)y(s) 

yes) = go(s)yp(s) 

so that with the packed section present, 

Without the packed section present (designated by the 
superscript #), gis) = 1 and 

Consequently, 

(l1.l-8) 

Equation 11.1-8can be interpreted as relating the transfer 
function for the nonobservable packed section of the 
column to the observable transfer function for the entire 
column with and (in the denominator) without the packed 
section being present . By experimenting with and without 
the packed section, the instrumental end effects can be 
eliminated . 

If the frequency response is desired, it can be obtained 
from the impulse response and/or the step response by 
the methods described in Hougen, t Nyquist et al.,t 
and Schechter and Wissler.§ The frequency response can 
more easily be obtained directly from the transfer 
function by replacing the parameter s by iw and separat­
ing the real and imaginary parts of g(iw). Figure 11.1-2 
shows the relation between the time domain , the Laplace 
transform domain, and the frequency domain. It is 
because the inversion process indicated in the figure is so 
difficult that techniques of process analysis have arisen 
that make direct use of the parameters in the transfer 
function , and hence make estimation of the parameters 
in the transfer function itself of significance. 

The general set of first-order linear equations given by 
Equation 9.1-5 with constant ex and zero initial con­
ditions : 

dy + exy = x(t) yeO) = 0 (l1.l-9)
dt 

t J . O. Hougen, " Experiences and Experiments with Process
 
Dyn amics," Chern. Eng. Progr., Monograph Ser. No.4, 60,1964.
 
:I: J . K . Nyquist et al., Chern. Eng. Progr., Symp. Ser. No . 46, 98,
 
1963.
 
§ R. S. Schechter and E. H. Wissler, Ind. Eng. Chern. 51, 945,
 
1959. 

.... , 
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Direct transformation 

Direct 
transformation 

Multiplication by 
transfer function 

y(s) = g(s)x(s) 

Multiplication by 
transfer function 
yrw) = g(wmw) 

Convolution process
f g( t -r )x( r ) dr 

Inverse transformation 

Inverse 
transformation 

Time domain Laplace transform space Frequency domain
IFourier transform) 

space 

FIGURE 11.1-2 Representation of relationships between input and output of a linear 
subsystem. ,~ -' , 

TABLE 11.1-1 TRANSFER FUNcTION FoR: ' A DISTRIBUTION MODEL OF DISPERSION IN A ' PIPE 

WITH TWO MEASURING POINTS a 

Model Transfer Function 

•Test section: 
oe. oe* 1 02e*-+-= -­
ot * oz* P OZ*2 

e*(z*, 0) = 

e*(z: - ) = 

oe* oe* 
_b +_b 
ot * oz* = 

ct(z*, 0) = 

ct(z: +) 

1 02ct 
Pb OZ*2 

0 

Exit section: 

Al = 

A2 = 

[(~ + ~t ­ (~ + ;J Yz ] exp {(z~ -

[(~ + ~t + (~ + ;J Yz ] exp {(Z~ -

zt)p[~ + (~ ~ ~t]) 

zt)P G- (~ + ~t]) 

";4e*(zo, t)= c~ A3 = [(~ + ~t (~+ ~t] exp { (z t - zt)P [~ + (~ + ~t])
 
et(ex), t) is finite
 .,

• ! *( *_) _ ~ oe*(z: -) _ *( *+)._",!- oet (z: +) A 4 = [(~ + ~t + (~ + ;JYz] exp { (zt - z: )P [~ - (~ + ~t]) 
e z; p oz* - Cb Ze P oz* 

b 

a P = Peclet number ,-.:.. :
* = dimensionless variable 

zt = location of first measuring point in test section 
z: = location of second measuring point in test section 
z: = length of test section 



can be shown by taking Laplace transforms of both 
sides : 

yes) = (sI + «)-li(s) 

to have the transfer matrix 

g(s) == (sI + «)-1 

with elements glf. Thus, the relationship 
! 

yes) = g(s)i(s) (11.1-10) 

still applies. If Equation 11.1-10 is written in terms of its 
elements: 

Yj(S) = L
n 

gjj(s)xJCs) i = 1,2, ... , n 
f = l 

we see that the effect of x1c on YI is given by gl1c(S). Each 
of the elements gl!Cs) is called the transfer function of YI 
with respect to Xf. 

A transfer function can be obtained for models 
represented by linear partial differential equations, but 
each model provides a different form for the transfer 
function; examine Table 11.1-1 for a typical example. A 
point of interest is that the transfer functions for distrib­
uted models include an exponential term containing s 
as an exponent. Reference to a table of Laplace trans­
forms brings out the factthat in the related time domain 
the output is delayed by some factor from the input. 
This delay is characteristic of models represented by 
partial .differential equations which contain the con­
vective term v(8c/8z ) or its equivalent and physically 
represents the transittime for the input to move through 
the subsystem:'--Models with only a dispersion term, 
such as is found in the diffusIon equation (8c/8t) = 
£iJ(8c2/8z 2), have instantaneous responses, although the 
initial magnitude of the response is nil. 

Now that we have seen how transfer functions originate 
and what they look like, we shall turn to consideration 
of methods of estimating the parameters in a transfer 
function of known form. 

11.2 LEAST SQUARES ESTIMATION OF 
PARAMETERS 

In this section we shall describe how the parameters 
in a transfer function can be estimated both in the time 
domain and in the Laplace transform domain by least 
squares. We shall assume that the form of the transfer 
function is given and that we want to estimate the coeffi­
cients therein. Section 11.3 will treat the situation in 
which the form of the transfer function is unknown, and 
both the form and coefficients must be determined. 

We shall assume that the coefficients in g(s) are 
constants or at least vary insignificantly during the time 
required to carry out the estimation. The class of func­
tions get) in the time domain corresponding to g(s) 
must be limited to those that are zero for all times less 
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than zero and that tend to zero as t -+ 00, i.e., stable 
processes . This latter requirement is not particularly 
restrictive since, for example, if get) -+ Co as t -+ 00, by 
redefinition of get), [get) - co]-+°as t -+ 00. In a like 
manner, a function which tends to a periodic function as 
t -+ 00 can be made to approach zero by subtracting the 
periodic term, and so forth. Uniqueness of ~-l[g(S)] 

also is assumed. 
Because experimental data are collected in the time 

domain, we turn to time domain estimation first. 

11.2-1 Estimation in the Time Domain by Inversion of 
the Transfer Function 

The criteria for "ordinary" least squares estimation 
for continuous data: 

rtf 
<P = J0 [G(t) - get, (3)]2 dt (11.2-1) 

or for discrete data: 

<P = L
n 

[G(tt) - get\> (3)]2 (11.2-2) 
1=1 

where G(t) is the observed (empirical) impulse response, a 
random variable, get, (3) is the model impulse response, 
the inverse Laplace transform of the transfer function, 
and (3 is the vector of parameters to be estimated, have 
been discussed in Section 9.2. The sufficient conditions 
for .p to be minimized are that: 

8.p 
1. j = 1,2, ... , m8f3f = 0, 

2. The Hessian matrix of .p: 

82.p 82.p 
8f31 8f31 af31 8f32 

is positive-definite (or some equivalent condition to 
ensure a minimum). 

Let us expand the model 

g(s, (3) = ;~;~ 
into partial fractions t as described in most books on 

tIf 
i (s) = ~(s) e~f(S ) 

des) 

as in some distributed models , the parameters in the exponential 
term are usually evaluated separately from the elements of 13 
from data based on the time it takes for an impulse input to give 
the first noticeable response (" breakthrough time "), 

Ie­

~, : 
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process control); other types of expansions can also be 
used 

g(S, (3) = --E.L + ~ + ... (11.2-3)
S + Sl S + S2 

where -S1> -S2, ... are the roots of the denominator 

dCs) = (s + Sl)(S + S2) ' .. i.e., are the poles of g(s, (3), 
and may be both real and complex, and where a1> a2' . •. 
contain the real and imaginary parts of several of the 
poles. For example, if 

in which (3 has the elements a1' a2, and f3, the partial 
fraction expansion can be shown to be 

gV(S (.I) = ~ + a2 + aa 
, t' S + a1 S + a2 + if3 S + a2 - if3 

where 

' 1 

a2 = 2f3[i(a2 - a1) - f3] 

1 

As a matter of interest, in the time domain the model is 

It can be shown that the condition o~/of3J = 0 can be 
replaced by , 

1t . 

regardless of whether a, and SI are real or of a complex 
conjugate pair. 

Then (for continuous data): 

r{Go~ = = Ct) _ff-1[~ ----!!L]}0 (-2)f,t
oaJ 0 L.- S + SJ

1=1 

.{ ff - 1[S ~ sJ} 
o</> = 0 = (2)f,t, {G(t) - ff - 1 [~ ----!!L]}
OSJ 0 L S + SJ

1=1 

and the estimation equations are 

I~/ [G(t) - ~ tiJe- JJt] e-JJt dt = 0 

j= 1, .. . ,m (11.2-4) 

I~/ [G(t) - ~ tiJe-JJt]tiJt e-1Jt dt = 0 

j = m + 1, .. . , 2m 

Similar equations can be obtained for discrete data with 
the integral replaced by a summation. 

Unfortunately, quite a few vectors (3 satisfy the highly 
nonlinear Equations 11.2-4; in fact, Deex t showed that 
the upper bound on the number of solutions is C4d - 3) 
where d is the order of the denominator of the transfer 
function used as the model. Thus, the use of Equations 
11.2-4 for estimation can lead to quite biased estimates, 
because of the existence of multiple local extrema for ~. 

Iterative methods of minimizing ~ in Equations 11.2-1 or 
11.2-2 in the time domain, as described in Chapter 6, 
provide a more favorable route to parameter estimation 
by least squares. 

A more satisfactory procedure for estimating the 
parameters in Equation 11.1-3 is as follows. Suppose we 
divide Equation 11.0-1 byao and introduce an appropriate 
x(t) so that the right-hand side of Equation 11.0-1 has 
unity in front of the zero-order term for x. Then the 
transfer function can be written in the revised form : . 

Next, define the ,following transfer functions : 

gl(S) = ! [1 - g(s)]
s 

where yt is the limiting value of Yt(t) defined as follows 
as t ---+ 00 : 

Y1(t) = I~ [1 - yet)] dt 

Y2(t) = I~ [yf - Y1Ct)] ". (11.2-7) 

Ym+n(t) = I~ [Y~+n -1 - Ym+n-l(t)] dt 

t A. J. Deex, Ph.D. Dissertation, Univ. of Texas, Austin, 1965. 
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In other words, 

yt = f '[1 - yet)] dt 

fo
QO 

y~ = [yt - Y1(t)] dt 

The values of yt can be related to the parameters in 
Equation 11.2-5 as follows. Because 

)\(s) = gl(S)X1(S) 

= ! [1 - g(S)]X1(S) 
S 

if we assume x1(s ) = lis (i.e., X1(t) is unity for t ;:: 0), 
then by making use of the final value theorem for Lap­
lace transforms given in Appendix B, we can state that 

lim S)\(s) = lim [1 - g(s)]! = lim Y1(t) = yt 
8- 0 8- 0 S t- 00 

With a little algebraic manipulation, it is easy to show 
that 

[1 - g(s)] (a1 - b1) + (a2 - b2)s + .. . 
s I + a1s + a2s2 + ... 

so that as s ---* 0, S)\(s) ---* (a1 - b1). Consequently, 

and , after some more algebraic manipulation, 

_ () [yta1 - (a2 - b2)] + [yta2 - (a3 - b3)]s + . .. 
SY2! = I + a1s + a2s 2 + .. . 
Then 

lim SY2(S) = lim Y2(t ) = y~ = y!a1 - (a2 - b2)
8- 0 t _ a:> ' 

Successive continuation of this type of analysis leads 
to the following matrix equation : 

0 0 0 0 a1 y! + b1 

y! 0 0 0 - a2 y~ - b2 

y~ y! 0 0 a3 y~ + b3 

y~ y~ y! 0 - a 4 yt - b4 

. * Y4 y~ y~ y! as y~ + bs 

(11.2-8) 

Equation 11.2-8 is a set of linear equations in a and b, 
but the elements of the left-hand matrix (other than 0 
and 1) are random variables if the y*'s are computed 
from experimental data. In that case, the estimation 
procedure that should be applied is not ordinary least 
squares but one of the methods discussed in Sections 
5.4 and 5.6. 

If all the b's are zero, as would be the case in an experi­
ment in which no derivatives appear on the right-hand 
side of Equation 11.0-1, a set of nonlinear equations in 
the a's and y*'s results if each y* in sequence is replaced 
by its appropriate a : 

By replication of the experiment, the ensemble mean and 
variance of a1 can be estimated by the sample mean and 
variance of Y:. Then , given the (normal) distribution of 
a1 and the sample values of Y2*, the mean and expected 
value of a2 can be approximated, and so on. It is assumed 
that the numerical error introduced in the integrations in 
Equations 11.2-7 is unbiased and negligible. 

Simulation studies have indicated that if each y1 in 
Equation 11.2-8 is replaced by its sample average f l* 
obtained from replicate experiments for the case in 
which all the b's are zero, then the solution of Equation 
11.2-8 leads to only slightly biased estimates of the 
parameters in the transfer function and the variances of 
the coefficients can be approximated from Equation 
11 .2-8 if solved for a1, a2, ... as follows: 

etc. 
so that 

Var {a1} :::; Var {f n 

Var {a2} :::; Var {f :')2} + Var {fn 

etc. 

Example 11-2.1 Estimation of Parameters in a Transfer 
Function 

A simulated experiment is described in this example to 
illustrate the use of Equation 11 .2-8in parameter estimation. 
A transfer function 

g(s) = 1 2 (a)
I + a1S + Q2S 
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was assigned the values of a1 = 0.200 and a2 = 0.050. The 
response to a unit step input in the Laplace transform 
domain is 

y(s) = g(s)i(s) = g(s) 
s 

In the time domain the corresponding response with g(s) 
given by Equation (a) is 

i 
y(t) = 1 - v 1.25 e- ilt sin (4t + 1.107) (b) 

A normal random error was added to y(t) : 

Y{t) = y{t) + € (c) 

with G"{€} = 0 and Var {s} = 5 X 10- 4• The generation of 
both € and y( t) was carried out by the digital analog simu­
lator MIMIC. Figure Ell.2-la illustrates a typical simulated 
response Y(t) . 

Equations 11.2-7 were evaluated (also by MIMIC) with 
Yj(t) being replaced by Yj(t) , the' random variable. Figure 

1.6 r--r--,--,--,----,,----,,........--,
 

Y(t) 

oI<.-_'----'_--I._-'-_--'-_.....L.._...J 

0.4r--,--,--,--,--,--,---, 

0.3 

2.0 2.4 2.8 

1 
Y; = -0.0105 

o 

-0.01 

Y2!"t) 

0.01 

0.02 

E11.2-1 shows the asymptotic values of Yj{t) as t becomes 
large. The numerical integration error was less than 10- 6 

of Y. Four replicate runs were completed from which the 
following sample values were computed: 

Y1* = 0.207 S~i = 7.61 x 10- 4 

Yt = -0.0111 S~2 = 9.83 x 10- 6 

,r,yj)2 = 6.41 X 10- 6 

Equation 11.2-8 gave 

1
] 

0.207][ I 0] [ a
[ (d)

0.207 I - a2 - 0.0111 
or 

a1 = 0.207 

a2 = (0.207)2 + 0.0111. = 0.0539 

The approximate variances were 

11.2-2 Estimation in Laplace Transform Space by 
Transforming Observations 

Some authors have suggested that instead of trans­
forming the transfer function into the time domain, the 
experimental observations should be transformed into 
the Laplace transform domain. Two difficulties exist in 
connection with this suggestion. First, of course, is the 
problem of how to transform continuous and especially 
discrete data without significant numerical error being 
introduced into the results. Second, if .least squares is 
used in Laplace transform space, that is, if 

~(s) = 2: [G(s) - g(S)]2 (l1.2-9) 

or some similar expression is minimized to estimate the 
parameters in g(s), it is not possible to estimate analyti­
cally the bias in the parameters (assuming that time domain 
least squares would yield unbiased estimates). Simula­
tion studies have indicated that considerable bias exists 
when either 

~(s) = 2: [G(S) _ ii(S}X(S)]2 
s des) 

or 

~(S) = 2: [G(s)d(s) .:..- ii(s)X(S)]2 

is minimized by the methods of Section 6.2. Unfor­
tunately, it is not possible in general to answer the 
question : What criterion should be used in the Laplace 
transform domain for the estimates to be equivalent to 
the least squares estimates in the time domain? Nor is 
it possible generally to answer the question: What 

., --,---c::=----~-------------

,,.if " 



criterion in the time domain proves to be equivalent to 
least squares in the Laplace transform domain? 

The first mentioned problem, numerical transformation 
of data, is less serious . Bellman and others t suggested 
that the experimental data for the impulse response be 
collected at specially spaced . times (listed in the first 
reference) so that a special quadrature formula can be 

. used in the transformation. However, this may not prove 
convenient nor sound from the viewpoint of an appro­
priate experimental design. Much of the information in 
the data may be lost between the required sampling 
timeL , 

Probably a better approach is to take the observations 
at the most appropriate times and , thereafter, to approxi­
mate the empirical response G(t) by piecewise linear 
segments. If we let the slope of any segment for tl ~ t ~ 

li «: be 

b, = G(tl+ 1) - G(tl ) 

tl+ 1 - t l 

then the response function G(t) for the same time interval 
is 

where V(t - tl) is the unit step function which is zero 
for t < tl • Also it is necessary to terminate the contri­
bution of G(t) after t l + 1 by subtracting the following 
expression from Equation 11.2-10: 

G(tl+1) - G(tl ) ( . ) ( ] I
G21(t ) = [ . ... t - tl +1 + G tl +1) V~t - tl+1 ) . t H .1 - t1 _ 

After adding GlI(t), subtractiit'gG2 l t), and taking the 
Laplace transform of the sum, wefind for the period 
tl ~ t ~ tl+ 1 

where 2[G(t,)] == G;(s). The empirical impulse response 
in Laplace transform space for any time t :» 0 is the 
sum of the segments given by Equation 11 .2-11 : 

G(s) = ~ e- st .(bl + GI(S)) ._ e- stl+l(bl + GI+1(S))
L.. S2 s S2 S 
1= 1 

(11.2-12) 

Continuous data can be transformed by analog or 
hybrid computer or by numerical quadrature. If in 

t R. E. Bellman, H. H. Kagiwada , R. E. Kalaba , and M. C. 
Prestrud, Invariant Imbedding and Time-Dependent Transport 
Processes, American Elsevier, New York, 1964; R. Bellman , 
H . H . Kagiw ada , and R . E. Kalaba, IEEE Trans. Auto . Control 
AC-I0, Ill, 1965. 
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we substitute st = z: 

g(s) = S -l f 'e-'i(~)dz 

A power of z inj(zjs) can be removed to give increased 
accuracy in the calculations: 

q> -1 

The integral can be approximated by a linear combination 
of functions involving Laguerre polynomials: 

fa'" z" e- ZljJ(z) dz ~ Ln 

AkljJ(t,J 
k = l 

Detailed tables of Ak and ljJ(tk) are in Salzer and Zucker.] 
In Equation 11.2-9 the sum on s requires some com­

ment. Because s is complex, s can take any path in the 
complex plane that does not contain the poles of the 
transformed solution . For convenience, one usually lets 
s take on real integer values from s = 1 to s = N after 
making sure that the poles of g(s) do not occur on the 
real axis. The suggested values of s give more weight to 
the earlier observations and less weight to the later 
observations because .P[t] = l/s 2• 

We can conclude that estimation in Laplace transform 
space can be .carried out by least squares if the observa­
tions are transformed, but that the parameter estimates 
will be biased. 

11.3 ORTHOGONAL PRODUCT METHODS 

We shall now describe a method of estimating the 
coefficients in transfer function s, a method originally 
proposed by Puri and Weygant.§ Let 

_ n(s) 
g(s, (3) = c n(s) (11.3-1) 

be the process model where 

c = a constant 

n(s) = bns n + bn_1s n - 1 + + b1s + 1 

des) = ads d + ad_1sd -1 + + a1s + 1 d~n+l 

and the a's and b's are parameters to be estimated. For 
each of the p = n + d + 1 unknown parameters in 

:j: H. E. Salzer and R . Zucker, Bull. Amer. Math . Soc. 55, 1004, 
1949. 
§ N. N. Puri and C. N. Weygant , "Transfer Function Tracking 
of a Linear Time Varying System by Means of Auxiliary Simple 
Lag Networks," Preprints, Fourth Joint Automatic Control 
Conference, 1963, p. 200. 

'--:---- -- -----_. 
- - --". , ,~ 
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g(s , (3), we define an identification constant computed as 
follows: 

= 10
00 

z, g(t , (3)jf(t) dt j=O,I , .. .,p 

wherejf(t) are arbitrary functions to be described shortly. 
By Parseval's theorem, 

100 l 'fl ooZf = g(t, (3)jf(t) dt = -2: g(s, (3»);( -s) ds 
o 171 - 100 

If the order of };(s) is such that the denominator of the 
product [g(s, (3)h( -s)] is two or more degrees higher 
than the numerator, then 

Zf = 2~i fg(s, ~)};( -s) ds (11.3-2) 

where the contour encloses the right half-plane in the 
clockwise direction. 

For the functions jf(t), Puri and Weygant chose the 
following: 

j I(t) /(s) 

j=O lo(t) = U(t) Iris) = -
1 
s 

1
j ~ 1 jf(t) = e - a,t h (s ) = -­

s + af 

in which the a/s are arbitrary and U(t) is the unit step 
function. Deex t proposed using the following functions ; 

jf(t) };(s) 

- aft jj(t) = (e "'::;"e- yt) , )' y - af 
af < y Ji-$) = (s + y)(s + af) 

1 1 
'. =8 + af - S + y 

1
j y(s) =­

;, s+y 

1
lo(t) = U(t) .Io(s) = ­

s 

Then, from Equation 11.3-2: 

Zf = _1): [-g(S, (3)] ds __1): [- g(S, (3)] ds 
2m 'j s - af 2m 'j s - y 

== g(af) - g(y) j = 1, 2, ... , p (11.3-3) 

Z =_IJ.-g(s,(3)ds==g() (11.3-4) 
y 2m 'j s - y y 

Zo = roo g(t, ~)/o(t) dt = lim [~g(s, (3)]Jo s-O s 

n(O)
= c -v- =c (11.3-5)

d(O) 

t A. J. Deex, Ph.D . Dissertation, Univ. of Texas, Austin, 1965. 

If Equations 11.3-3, 11.3-4, and 11.3-5 are combined 
as follows: 

we find 

zo1l(af) = (z, + Zy)d(af) 
or 

n(af) = hfd(af) (11.3-6) 
where 

_ zf + Zy 
hf - Zo 

For a slightly more general transfer function than 
Equation 11.3-1, namely 

g(s, (3) = cs" ~(s) m ~ 1 (11.3-7)
d(s) 

Deex showed that if we define 

f [g(t )] == J: g(t) dt 

and f k as k successive integrations from 0 to t, then we 
can define new identification constants: 

k = 1000 

ZO fk[g(t, (3)]/o(t) dt = 0 for k .< m 

ZOk = fro fk[g(t, (3)]/o(t) dt = c ~(O) = c for k = m
Jo d(O) 

where jj, is still U(t). The procedure is to evaluatez.; for 
k = 1, 2, 3, . . . until one finds the first nonzero ZOk, 
which becomes the Zo used. Thus 

m n(af)
Zf = zOaf -v- - Zy

d(af) 
and the equivalent of Equation 11.3-6 is 

a'tii(af) = hfd(aJ) (11.3-8) 

Equation 11.3-8 leads to the matrix equation that can be 
used to solve for the parameters in the transfer function 
Equation 11.3-7: 

-h1af J 
-h2a~ 

-h: + da~+d 

h
1 

- aT J 
h2 - a~ 

(11.3-9) 

[ 
= h

n+: 
- a:;'+d 
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An example will clarify the details of the execution of the 
technique for deterministic variables. . 

Example 11.3.10 Estimation of Coefficients in a Transfer 
Function 

Suppose the transfer function is 

V( r.l) m hIS + 1 ( ) 
g S, t' = CS asss + a~s2 + als + 1 a 

We illustrate the application of Equation 11.3-9 in the 
absence of error by using analytical rather than numerical 
integration simply to make the procedure clearer. For this 
example we shall assume that the experimental impulse 
response in the time domain is the deterministic function 

g(t) = 2e- 2t - e:' (b) 

which is equivalent to 

des, ~) = S2 + ;s + 2 (e) 

Consequently, we know we should find that c = !, a, = !, 
a2 = t, as = 0, bs = 0, and m = 1 by solving Equation 
11.3-9. 

The first step is to calculate ZOk'S by introducing the values 
for the impulse response in the time domain until the first 
nonzero ZOk is obtained: 

k = 0: Zoo = !o'" JO[g(t)] dt = I''' (2e- 2 t - e- I) dt = 0 

k = 1: ZOl = fa'" Jl[g(t)] dt 

= J J.,.t (2e - 21 .:e -1) dr dt00 

o 0­

=L'" (-.: e- 21 + e~1)dt = t 

From ZOI = t, we know that c = t, -and because k = 1, 
m = 1., 

The next step is to choose four .. values of aj (for four h's) 
and one value of y: 

Y =-2 

and to compute the z/s: 

Z4 = reo (2e- 2t - e-t)(e- %t - e- 2t) dt = 9~O 
~O . 

Equation 11.3-9 then is 
__1­__1._ 1 1 hIt 15 -15 -'30 30 

al -t-t -t -t 
(d)

SI.2- IS 27 a2 -704 -35 -35 -~! 

2 1...!­ -lS30as16 -45 -llo -320 

Equation (d) has the solution 

hI 0 

al 3 
"2 

a2 t 

as 0 

Note especially that bs = 0 and as = 0 as in the assumed 
experimental response. 

Next we shall inquire into the effect of process error 
on the use of Equation 11.3-9 as an estimation procedure 
if the experimental values G(t) are to be used for the 
impulse response in lieu of the deterministic get). We 
shall assume that the error is added to the deterministic 
process output in the time domain: 

G(t) = get, ~) + E(t) 

where E(t) is stationary noise normally distributed with 
respect to amplitude, having zero mean and variance u:; 
uncorrelated with get, ~). 

Suppose thatjj(t) is e:".'. Then (Z, is now a random 
variable) . 

z, = fo'" [get, ~)jj(t) + €(t)jj(t)] dt. 

and the expected value of Z, is 

6"{Zj} = 6"{f OO [get, ~) e-ajl + €(t) e- aJI] dt } 
o 

= g(aj) (11,.3-10) 

The variance of Z, is computed as follows: 

Var{Zj} = a;j = C{Z;} - [C{ZJ}]2 

= 6"{[r g(t,~) e-aJI dt + fooo 

€(t) e-aJI dt r} 
- g2(aj) 

= 6"{g2(aj) + 2g(aj) fooo 

€(t) e - aJI dt 

+ foOO 

€(t) e-aJI dt foOO 

€(t) e-aJI dt } - ~(aj) 

OO 

= g2(af) + 2g(af)6"{ f o €(t) e-ajl dt } 

+ 6"{I OO foOO 

€(t)€(T)e-a;t e-
aj' dt dT} - ftaj)o
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i 

(11.3-11) 

If fi(t) = e - ajt - e:", then by a similar calculation 
it can be shown after some extensive manipulation that 
when Z , is computed separately from Z j as foll ows : 

that 

C{Z j} = g(aj) 

Var {Zj} = a;[y2 - 2yaj + 2aT] (11.3-12) 
, 2a jY(y + aj) 

where E(t) and E1(t) may be different but must be un­
correlated, 

C{E(t )E(r)} = 0 

C{E(th (r)} = 0 

and a; = a;1' The choice of fi(t) = e - ajt - e- yt is an 
improvement over the choice 

if aJ < y, as originally required. For maximum variance 
reduction, Deex recommended , 

~ ~ . . 

By replicate experiments the variance of ZJ can also be 
reduced ; Equation 11.3-9 would become a set of over­
determined equations which could be solved by some 
type of least squares procedure, or perhaps the estimated 
values of the parameters could , be an average of those 
obtained from each experiment. Even though the 
Var {ZJ} can be calculated, the variances of the coeffi­
cients in g(s , ~) cannot be directly calculated although the 
variances can be approximated by linearizing Equation 
11.3-9 in terms of the Z/s. 

Example 11.3-2 Estimation in the Presence of Noise 

The examples given here have been taken from Deex and 
illustrate the influence of normally distributed noise with 
zero mean as well as the effect of the selection of the values 
of /),./, af> etc. The necessary integrations were carried out on 
a digital computer by the trapezoidal rule; matrix inversion 
of Equation (11.3-9) for the parameter vector was by 
Gaussian elimination. 

EFFECT OF CHANGING THE TIME INCREMENT IN TIlE TRAPE­
ZOIDAL RULE. Simulated data were generated to fit the model , 

(a) 

by adding normal random error to g(t) = 8e-0.41 - 7e- O.61 , 

a function in the time domain which corresponds to a 
function in the Laplace domain of g(s )=(s +2)j(S2+ S+0.24). 
Hence the " true " values of the parameters are : c = 8.333, 
b, = 0.500, 01 = 4.167, and 02 = 4.167. Table EI1.3-2a 
demonstrates the effect of the time increments M in the 
trapezoidal rule . The estima tes were made by using Equa­
tion 11.3-9 with the simulated data used to calculate the 
Z/s. It can be concluded that small time steps are more 
effective. 

TABLE EI1.3-2a EFFECT OF TIME INCREMENTS ON ESTIMATION 

M (sec) C 61 Ql Q2 

0.01 8.327 0.504 4.163 4.191 
0.10 8.326 0.509 4.166 4.217 
0.50 8.306 0.617 4.259 4.770 

If = 20 sec, a l = 0.3, (t2 = 0.6, a3 = 0.9 

EFFECT OF CHANGING THE TERMINAL TIME FOR INTEGRATION, 
If . Simulated data were generated by using g(t) = 0.5e- t + 
0.5e- 3 t which corresponds to g(s) = (s + 2)j(S 2 + 4s + 3). 
Then the "true" values of the coefficients are : c = 0.667, 
b, = 0.500, 01 = 1.333, and a2 = 0.333. Table El1.3-2b 
illustrates the effect of changing ff. Values of /f less than 5 

TABLE EI1.3-2b EFFECT OF CHANGING THE TERMINAL TIME 
FOR ESTIMATION 

t, (sec) C 61 Q1 Q2 

6 0.665 0.096 0.918 0.021 
10 ' 0.666 0.471 1.304 0.315 
20	 0.667 0.500 1.333 0.333 

/),./ = 0.01, (t1 = 0.05, a2 = 0.10, a3 = 0.15 ­

or 6 times the largest t ime constant of the "process" 
yielded relatively poor estimates for models such as this 
one in which the matrix Equation 11.3-9 is ill conditioned. 

EFFECT OF SELECTION OF a's. Simulated data were gener­
-12e- o.4 t - O•6 t ated from g(t) = + Be , which corresponds 

to l(s) = (s - 2)j(s + O.4)(s + 0.6), from "which one finds 
the "true" coefficients : c = - 8.333, b, = - 0.500, 01 = 
4.167, and az = 4.167. Table El1.3-2c shows the effect of 
the selection of the a's on the estimates. For those choices 
of a's for which the matrix Equation 11.3-9 was better 
conditioned (in the sense that the value of the square 
determinant on the left-hand side of the equation was 
larger), the estimation tended to be better. The best estimates 
were obtained when the a' s had values approximately equal 
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TABLE El1.3-2c EFFECT OF SELECTION OF THE a's ON ESTIMATION 

Absolute Value of 
al a2 a3 C hl al a2 the Determinant 

Exact solution - 8.333 -0.500 4.166 4.166 
0.4 0.6 2 -8.333 -0.500 4.157 4.166 3.23 x 10- 3 

0.3 0.9 i 2.7 -8.333 -0.500 4.156 4.164 1.35 x 10- 2 

0.3 1.5 2.7 -8.333 -0.500 4.157 4.163 1.47 x 10- 2 

3 6 9 -8.333 -0.501 4.226 4.155 1.69 x 10- 2 

3 5.196 9 - 8.333 -0.500 4.215 4.154 1.77 x 10- 2 

0.3 0.5196 0.90 -8.333 -0.500 4.155 4.174 5.01 x 10- 4 

0.3 0.6 0.9 - 8.333 -0.500 4.155 4.173 5.35 x 10- 4 

0.001 5 10 - 8.333 -0.499 4.146 4.146 1.40 x 10- 3 

0.001 0.1 10 -8.333 -0.505 4.141 4.210 9.48 x 10- 5 

0.4 0.566 0.8 -8.333 -0.500 4.156 4.172 1.67 x 10- 4 

0.4 0.6 0.8 -8.333 -0.500 4.156 4.171 1.72 x 10- 4 

0.4 0.489 0.6 -8.333 -0.499 4.156 4.176 2.25 x 10- 5 

0.4 0.5 0.6 -8.333 -0.499 4.156 4.176 2.27 x 10- 5 

0.03 0.06 0.09 -8.333 -0.464 4.182 4.425 2.85 x 10- 8 

om 0.02 0.03 - 8.333 -0.448 4.198 4.508 6.18 x 10- 11 

0.001 .0.002 0.003 - 8.333 - 0.388. 4.258 4.791 7.71 x 10- 1 7 

t, = 20 sec !::J.t = 0.01 sec 

to the magnitude of the real part of the poles and zeros of 
the process model (the poles are -0.4 and -0.6, the same 
as in the first case). 

From these and other studies, Deex concluded that: 

1. The a's should be separated ,as much as possible. 
2. The a's should have magnitudes of the same order as 

the poles and .zeros.of.the process transfer function. 

11.4 ESTIMATION FOR SAMPLED DATA 

11.4-1 The z-Transform 

The z transform is the basis of a calculus analogous to 
the Laplace transform, a calculus that is quite useful for 
sampled, i.e., discrete, data. We shall briefly examine the 

g(t) 

Continuous function 

g(t) 

Sampled function 
a 

g * (t) =n;o g(nT)O(t - ns) 

o T 

FIGURE 11.4-1 Sampling of a deterministic impulse response 
function. 

pertinent relations needed for estimation before describ­
ing how the estimation can take place. If a deterministic 
process impulse response is sampled at discrete instants 
of time, t = 0, t = 1, .. . , each separated by a constant 
interval l' as in Figure 11.4-1, we can designate the 
sampled sequence of values of get) by g*(t) and the 
number of samples as n = tlr. The a-transform to be 
denoted by !l', of a time domain function with satis­
factory properties (fulfilled by gU)) is defined as 

g(z) = !l'[g(nT)J = .2
00 

g(nT)Z-n (11.4-1) 
n =O 

and the inversion relation 

gem) = !l' - l [g(Z)] . . (11.4-2) 

The Laplace transform corresponding to Equation 
11.4-1 is 

g(s) = .2
00 

genT) e- nts 

n = O 

from which we observe that the quantity z- n in Equation 
11.4-1 has replaced e- nts in the Laplace transform. Table 
1I.4-1 lists a few z-transforms, the related time domain 
functions, and the related Laplace transforms; refer to 
Jury] for more complete tables and for formulas to 
obtain the z-transform from the Laplace transform. 

Unfortunately, from the viewpoint of estimation, 
transformation from the Laplace transform to the 

t E. I.. Jury, Theory and Application of the z-Transform Method, 
John Wiley, New York, 1964. 

. ..__.. ._~._--_. __. _- _._--------------...,.-~~-:-----



366 PARAMETER ESTIMATION IN MODELS CONTAINING PARTIAL DIFFERENTIAL EQUATIONS 

TABLE 11.4-1 LAPLACE AND Z-TRANSFORMS Suppose the process is to be represented by a difference 
equation of known form: 

Time Domain Laplace 
y(tk) + a1y(tk- T) + a2y(tk - 2T) + ... + any(tk - m)Function Transform Z-Transform 

= bOx(tk) + b1x(tk - T) +... + bmx(tk - Tm) (11.4-3)
8(t) 

where the sequence of y's are the sampled outputs, the 
Z 

sequence of x's are the sampled inputs, and tk is the kth 
/ s Z - 1 

sample time. Taking the z-transform of Equation 11.4-3 
TZ gives 

S2 (z - 1)2 
y(z) -t a1z-1y(Z) + ... + anz-ny(z) 

T2 z(z + 1)
t 2 = box(z) + b1z- 1X(Z) + .. .+ bmz-mx(z)S3 "2 (z - 1)3 

The transfer function in z-space is 1 Ze- t
 

s + 1 Z - e-'
 "'( ) = y(z) = bo + b1z- 1 + + bmz-
m 

(11.4-4)
[(t - nT)U(t - nT) z-n/(z) l5 Z X(Z) I + a1r 1 + + anz- n 

Contrast Equation 11.4-4 with 11.1-3, but note that the 
z-transform proves to be of very little assistance. As an parameters in Equation 11.4-4 will not be equal to the' 
example of the complicated nonlinear relationship same symbols in Equation 11.l-3 but to very complicated 
between the parameters in the Laplace and z-transforms, functions of several of the symbols as mentioned before. . 
consider the transfer function 

11.4-2 Introduction of Error 

We shalI designate the vector of "the (m + n + 1)
 
coefficients in Equations 11.4-3 and I 1.4-4 as usual by ~
 

for which the equivalent z-transform is in order to express Equation 11.4-3 in matrix notation as
 

(11.4-5) 
g Z = I + q1Z-1 + Q2Z-2 

And, also as usual, we shall add the error, which incor­

V( ) Po + P1Z- 1 

The folIowing relationships exist between the coefficients: porates alI effects in the process response not attributable 
to the process input, to the deterministic response Po "= "61 -; " 

- a1"2)[Y3 sin (Y1 T) -~1 cos (Y1T)] (11.4-6)P1 = (e 
whereQ1 = -2(e-alt/2) cos (Y1T) 

J
 y(tk)
 €y(tk)a~ 
Y1 = ao +"4 

y(tk-T) €y(tk-T)a1 

a1b1 
Y2 = b0 + 2 y(tk - m ) €y(tk-nT)an 

~= Ek=Yk= 
-bo x(tk) €X(tk) Y2

Ya =­
-b1Y1 X(tk-T) €X(tk- T) 

T = sampling period 
-bm x(tk-mT) €X(tk - mT) 21T 

(samples cycle)(frequency) The additive errors are assumed to have the known 
covariance matri x rand individualIy to have expected Thus, the primary value of using z-transforms is not to 
values of zero. estimate the coefficients in a-space and then determine 

the equivalent parameters in the transfer function in s­
11.4-3 "Equation Error" Estimationspace but to analyze a dynamic system represented by a 

difference equation. The difference equation may, of If in Equation 11.4-5 we replace Yk by (Y k - Ek), we 
course, be the difference analog of a differential equation, can define an "equation error": 
or it may just represent discrete sampled data as a distinct 
model. 

t , 

. " 



The elements of the vector (3 can be chosen to minimize 
the sum of the squares of the equation errors £k for all 
the Yk vectors, as in Chapter 5 : 

K k = ~,2, . .. ,K 
Minimize 2: £~ 

K>n+m+lk=l 
to yield 

(11.4-7) 

where Yk is the matrix Y k with the first element Y(tk) 
deleted and ~ is the estimate of the matrix f3 in which 
the first element, I, is deleted. The inverse matrix in 
Equation I 1.4-7 will exist if the input sequence is not the 
solution of a homogeneous difference equation of order 
less than m. 

Estimation using the equation error does not yield 
unbiased nor best estimates for the parameters. Its major 
appeal is that it is simple and may yield reasonably good 
estimates. 

11.4-4 Maximum Likelihood Estimates 

Levin t developed a maximum likelihood estimate for 
the parameters in Equations 11.4-3 and 11.4-4. To 
obtain independent errors in all the observations, the Y 
and X sequences must be obtained from nonover/apping 
sequences in time. Also , there must be more sets of 
observations than parameters to be estimated. The 
probability density function for .all the observations Yk 

(both Yand X) is assumed to be a multivariate Gaussian 
density.t and thelikelihood function is 

I 
p(Yl>" '.' YK) = (27T) ( -K(n+m+2»/2 

exp [ - t ~ (Yk - Ykyr -1(Yk - Yk)] 

Maximization of p(Yl> " " YK) can be achieved by 
minimizing 

if> = 2:
K 

(Yk - Ykyr-1(Yk - Yk) (11.4-8)
k=l 

with respect to the Yk' where the Yk are constrained to 
satisfy . Equation 11.4-3. Rogers and Steiglitz§ con­
sidered the related maximum likelihood estimation in z­
transform space. 

Clearly if the errors are correlated for closely spaced 
samples, the spacing must be extended to allow sufficient 
time to make the errors uncorrelated. Hence a good 

t M. J. Levin, IEEE Trans. Auto. Control AC-9, 229, 1964.
 
t The probability distribution is P{Y1 =::; .Yl; Y 2 =::; Y2;"';
 
YK =::; YK}'
 
§ A. E. Rogers and K. Steiglitz, IEEE Trans. Auto. Control
 
AC-12, 594, 1967.
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share of the available data may not be used in the 
estimation procedure. 

Smith and Hilton II and others showed that the con­
strained minimization of if> defined by Equation Il.4-8 is 
equivalent to the minimization of . 

(11.4-9) 

with respect to (3. The minimum <p is the smallest value 
of,\ that satisfies the equation 

(11.4-10) 

and ~, the estimated coefficient vector, is the eigenvector 
corresponding to ,\ = <Pmln' 

Although the estimated parameters are usually biased, 
Levin stated that if the errors are small in comparison to 
the observations, the bias is small compared to the 
standard deviations of the parameters. Levin also stated 
that, when overlapping sets of observations are used, the 
bias is no more than when nonoverlapping vectors are 
used. An approximation for the variances of the estimated 
coefficients was given as . 

Covar~} ~ ~~~ [~ ~ fkfkrl (11.4-11) 

where the overlay (-) signifies that the first element in 
the matrix is deleted. 

Example 11.4-1 Estimation of Parameters in Difference 
Equations 

Consider the following difference equation : 

y(tk) + aly(tk - 1") +a2y(tk - 21") = bOx(tk) + blx(tk - 1") (a) 

for which the z-transform is 

"( ) bo + blz- l 
g Z = 7 z"""'1~+-a-2z---;;2 (b)

1-+:--a-l­

where 1" = sampling period = 27T/(samples per cycle). 
(frequency). For brevity, we shall let the first pair of observa­
tions at the time equal to 1l' be Xl and Yl for the input and 
output respectively, X 2 and Y2 for the observations at 
t = 21', and so forth . 

Equation (a) with 

al = 1.96664 bo = 0 

a« = 0.969072 bl = 0.002428 

corresponds to a transfer function in the Laplace domain of 

"( ) 40 (c)g s = S2 + 4s + 40 

II F. W. Smith and W. B. Hilton, IEEE Trans. Auto. Control 
AC-12, 568, 1967. 

--_  ~"'7 __._..__'_" .__'.. '. __ '_.." '_ _._-:_;_..." ._ -



368 PARAMETER ESTIMATION IN TRANSFER FUNCTIONS 

For a process input of 

e- 101x(t) = I - (d) 

the "true response " in the time domain is 

800Cl ....y(t) = -2--2 (e- 21) cos (6t) e 
QlCl + C2 

; ~ 
Ql 

_ 8ooC2 (e - 2f) sin (6t) - 4e- 101 + I (e) . 0 

c~ + c~ '" 
~ 
E'where .!!! 

Cl = -432 .5 

e
C2 = 624 

Figure EllA-la illustrates the deterministic input and the 
deterministic output. 

A normal random error was added to x(t) and y(t) to 
simulate a real process , and the simulated input and re­
sponse were periodically sampled. The noise added to x(t) 
and y(t) when sampled gave a normal distribution for the 
frequency of samples versus amplitude with a mean of 0 
and a variance of u2. The 3a limit corresponded to 5 percent 
of the steady-state value of I, or a = (0.005/3) = 0.0167. 
Figure EI1.4-lb shows the percent error in the largest 
coefficient among the a's and b's defined as 

estimated value - true value 1100percent error = true value 
l 

for various estim ated schemes. 

1.2 r----,---,---r-....,--.-.....--.-~ 

Time. sec 
1.4.----,----,.----r----.---.-.....-.---, 

1.2 

... 1.0 
s

,0.8
 
51
 
c:
 
~ 0.6
 
Ql 

a: 0.4 

FIGURE EI1.4-la Deterministic input and response. 

li; 
.... e 
Ql 

~ 
Q. 

10-3 L..-::--_..J....-=-_-l---:-_---l 

10-3 10-2 10-1 1 
Percent error added to ytt) (3000 

A 
100 B 

C 

10-2 

FIGURE EI1.4-1b 
A-Consecutive equations, Equation (f) 
B-Intermittent collocation, Equation (g) 

..J....__...J 

10 100 
= %1. % 

C-Least squares of equatioll'errar; 'Equation'1I :4"7 
D-Maximum likelihood, Equation 11.4-10 
E-Maximum likelihood 

USE OF CONSECUTIVE SAMPLES. Consecutive samples were 
introduced into Equation (a) to replace y and x, and the 
resulting matrix equation was solved: 

OXn+2 Xn+l Yn + 1 n 
X n + 3 1X n+ 2 Y ][ b lYn+2]3Yn ] Yn 

+ . .b.1 . = + (f) 

[
Xn + 4 Xn + 3 Yn + 2 -01 Yn+4
 

Xn + 5 Xn + 4 Yn + 3 - a 2 Yn + 5 

Equation (f) represents only 5 consecutive samples of the 
input and 6 consecutive samples of the output; it therefore 
contains less information about g(z) than does Equation (g) 
below. 

INTERMITTENT COLLOCATION. Instead of using consecutive 
data sets, every tenth data set was used as shown in Equation 
(g) : 

Xn+2 z.,. 
Yn][ hO] _['Yn+2]1X"+2 X"+1 Y" b Y"+2 (g) 

[X p +2 XP +1 Yp -al Yp + 2 

XY + 2 XY + 1 r , -a2 YY + 2 

Curve B in Figure EI1.4-lb illustrates the error for n, a, 
fl, and y , each differing by 10. With both Equations (f) and 
(g), the error in the largest estimated coefficient increased 
rapidly with the error representing the process noise. 

LEAST SQUARES OF EQUATION ERROR. If Equation (11.4-7) 
is used in the estimation, curve C in Figure EllA-Ib shows 
the results for 100 consecutive samples. 

-~ -----. _ ._- -- --,- , -- _._ ..--;----..--- - - - - -- .._- - -- --- ------_..__._--_.._..-.- - - - - -_.._- ­ -

0.2 

http:L..-::--_..J
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DATA SMOOTHING FOLLOWED BY LEAST SQUARES OF A normal random error was added to the deterministic 
EQUATION ERROR. A polynomial was fit to the input and response (illustrated in Figure E11.4-1a). A z-transform with 
output observations, the smoothed continuous time functions 4 parameters 
were sampled at the original sampling times, and the re­

(b)sulting values of X and Y were introduced into Equation 
11.4-7. The smoothing, using a sixth-order polynomial, was 

was estimated from data sampled at 4 different delay times not satisfactory because the polynomial deviated too far 
(T = 0.25, 0.50, 1.0, and 2.0 seconds) for a duration of from the true response curve to be of use in estimation. 
- T ~ t ~ 8.0 seconds. The signal-to-noise ratio was 100. Direct smoothing by a fifth-order fdrmula followed by least 

Figure E11.4-2 shows the bias in the parameters assquares of the equation error gave estimates no better than 
estimated by two different methods: (1) the equation error, those shown by curves A and B in Figure Ell.4-1b. 
and (2) maximum likelihood, for the average of 25 different 

MAXIMUM LIKELIHOOD ESTIMATION. Curves D and E in estimations. The correct values of the parameters in Equa­
Figure EI1.4-1 b illustrates maximum likelihood estimation tion (b) were 
for two different assumed covariance matrices r. 

Ul = -1.824 bl = 0.030 

Example 11.4-2 Sampling Times and Bias U2 = 0.882 b2 = 0.030
 
Smith and Hilton t provided some information, by means
 Table E11.4-2a gives the standard deviations calculated by 

of a Monte Carlo simulation study, on the effect of sample Equation 11.4-11. 
times and process error on the bias and variance of the Figure E11.4-2 and Table E11.4-2a show that the bias 
estimates of parameters in a difference equation. for the maximum likelihood estimates for all T is much less 

A deterministic step response was introduced into a than the standard deviation. In contrast, the bias of the 
process model whose transfer function was parameter estimates in the denominator by the equation 

I 
(a) error for T ~ 0.50 is two or more standard deviations in 

S2 + O.5s + 1 magnitude. Note also that for each T the estimated coeffi­
t F. W. Smith and W. B. Hilton, IEEE Trans. Auto Control AC-12, cient by the equation error with the largest bias magnitude 
568, 1967. is more biased than the most biased coefficient for the 

1.0 ....------..-,---......,.-----,-----.., 0.5..-----,----...,..----r----, 
\ 
\ 
\ 
'------- ­

'" 
iii'" ,- - - - - .........=.:==-==-1
o 

/
/

I 
I-0.5 ~----'-----::;'_:;_--:_'::_----='-=---::' -1.0 ~----'-----::;'_:;_--_:_I_=_--....,..L:,...._---::I o 2.0 o 2.0 
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// 
$ \ ..0 '" /c.s 0.25 - \ - .;;; -0.25 /
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I I I I-0.25 -0.75 
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--- Maximum likelihood 
-- Equation error 
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FIGURE El1.4-2 High signal-to-noise ratio. 
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TABLE El1.4-2a STANDARD DEVIATIONS BASED ON 25 ESTIMATES (APPROXIMATE TRUE VALUE
 
IN PARENTHESES)*
 

Sampling 01 0 2 b1 b2
 

Interval
 
T I II I II I II I II
 

0.25 0.109 1.825 0.125 2.133 0.172 1.457 0.152 1.191 
(0.22)	 (0.25) (0.55) (0.50)

i 

0.50 0.108 ' 0.221 0.151 0.312 0.187 0.175 0.154 0.103 
(0.20) (0.25)	 (0.37) (0.31) 

1.00 0.116 0.137 0.169 0.223 0.205 0.252 0.138 0.148 
(0.15) (0.24) (0.25)	 (0.17) 

2.00 0.173 0.578 0.485	 0.159 
(0.17)	 (0.61) (0.47) (0.17) 

* I: equation error estimates; II : maximum likelihood estimates. 

TABLE El1.4-2b BIAS AND DISPERSION AT LOW SIGNAL-TQ-NOISE RATIOS * 

01 0 2 b1	 b2 

I II I II I II I II 

Overlapping Sequences 
Normalized bias 32.92 -0.184 -28.56 0.186 -0.311 0.123 3.801 - 0.166 
Sample Standard Deviation 0.040 0.348 0.042 0.333 0.030 0.123 0.032 0.148 

Nonoverlapping Sequences 
Normalized Bias 16.76 0.205 - 14.49 - 0.203 0.711 -0.091 2.37 0.107 
Sample Standard Deviation 0.078 7.49 0.081 7.438 0.043 0.705 0.056 2.25 

* T = 0.25; signal-to-noise ratio = 4.25 sequences. 

maximum likelihood estimate. Although the estimates by Supplementary References 
the equation error appear less.sbiased at short sampling 
intervals, quite the opposite is true for low signal-to-noise 
ratios as shown in Table Ell.4-2b.Thenormalized bias is Bigelow, S. C. and Ruge, R ., " An Adap tive System Using..Periodic 
the bias divided by the sample standard deviation. Estimation of the Pulse Transfer Function, " IRE Nat. 

Table El1.4-2c compares the square root of the co ­ Convention Rec.; Part 4, 24, 1961.
 
Ellington, J . P. and McCallion, R ., " The Determination of a
variance matrix elements calculated by Equation 11.4-11 

Control System Characteristics from a Transient Response," with those obtained from 25 samples for T = 1.0 and a 
Proc. IRE 105, Part C, 370, 1958.signal-to-noise ratio of 100. The matrix is symmetric. The 

Kalman, R. E., " Design of a Self-Optimizing Control System," 
standard deviations (on the main diagonal) are reasonably 

Trans. ASME 80,468, 1958.
well estimated, but the elements on the off diagonal are Levin, M. J ., " Optimal Estimation of Impulse Response in the 
quite different. Presence of Noise," IRE Trans. CT7, 50, 1960. 

Rutm an, R. c., "Self-Adaptive Systems with Adjustment by 
T ABLE Ell.4-2c (COVARIANCES) y, CALCULATED BY EQUATION Dynamic Characteristics," Automatic and Remote Control 
11.4-11 (SAMPLE VALUES IN PARENTHESES) 23 (5), 1962. 

Sanathan , C. K. and Koerner, I., " TransferFunction Synthesis 
as a Rat io of Two Complex Polynomials," lEE Trans. AC-9,

0 1 
56, 1963. I

" 
Senf, B. and StoOOI, R ., " Methods for Determ ining Transfer 

01 0.0648 Functions of Linear Systems from Measured Values of the 
(0.0711) Frequency Response," Measurement, Control and Regulation
 

02 0 0.0902
 10,411, 1961. .
 
(- 0.48 1) (0.117) Shinbrot , M., "A Description and Comparison of Certain Non­


b1 0 0.696 0.160 linear Curve Fitt ing Techniques with Applications to
 
( -0.346) (0.933) 0.199 Analysis of Transient Data," NACA Tech. Note 2622, 1952.
 

b2 0 - 0.591 - 0.849 0.156 Westcott, J. R ., " The Problem of Parameter Estimation," Proc.
 

(0.276)	 ( - 0.906) -0.971 0.191 First Conf. International Fed. in Auto . Control 3, Butter­
worths, London, 1961. 
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Problems No. mm No. mm 

I 48.5 51 14.7 
11.1 As an accelerometer moves over the earth's surface, 2 46.7 52 14.5 

the deflection angles along a geodetic are, Ylt and 3 44.9 53 14.4 
transverse to the are, Y2 , are random variables. 4 43.3 54 14.2 
Typical data are: 5 41.8 55 14.0 

Distance, Y1 , Y2 , 6 40.3 56 13.9 
km 

10 

sec 
-+­
30.5 

sec 

31.0 
7 
8 

39.0 
37.7 

57 
58 

13.7 
13.6 

25 27.4 29.2 9 36.4 59 13.4 
50 23.5 27.0 10 35.4 60 13.3 
75 19.9 24.3 11 34.2 61 13.2 

100 15.9 22.1 12 33.1 62 13.1 
150 10.6 17.3 13 32.1 63 -12.9 
200 9.3 13.7 14 31.2 64 12.8 
250 8.4 12.4 15 30.3 65 12.7 
300 8.0 11.5 16 29.4 66 12.6 
350 7.5 11.1 17 28.6 67 12.5 
400 7.3 10.8 18 28.0 68 12.4 
450 7.1 10.4 19 27.1 69 12.5 
500 6.6 10.0 20 26.5 70 12.2 
550 6.4 9.7 21 25.7 71 12.5 

It has been suggested that Y1 , or perhaps Y2 , can 22 25.1 72 12.3 
best be represented by a transfer function containing 23 24.5 73 12.0 
a polynomial of the first to third degree in the complex 24 23.9 74 11.9 
parameter s in the denominator and a constant in 25 23.2 15 ··· 11.8 
the numerator. The independent variable is the 
distance. 

Determine which order transfer function represents 

26 
27 
28 

22.8 
22.3 
21.8 

76 
77 
78 

11.8 
11.7 
11.6 

11.2 

the data best and estimate the parameters in the 
transfer function. Three different techniques can be 
applied : (1) least squares, Equations 11.2-4, (2) Equa­
tion 11.2-8, __ and _J 3) orthogonal product method, 
Equation 11.3-9. Compare these methods with La­
place transformation of the data followed by least 
squares using Equations 11.2-10 and 11.2-12. 

Figure Pl1.2 is a schematic representation of a well­
mixed tank; .hence the bulk temperature is the same 
as T in the tank. Process fluid enters at lln at flow 
rate F. The fluid in the tank heats the wall (at Tw) 

which has resistance to heat transfer. In turn, the 
wall gives up heat to the exterior flowing fluid at Ti: 

In the list below are the process response pen 
read ings in mm from a strip chart at one-second 
intervals for a step down in lln (the equilibrium 
value is 10 mmj.f The chart ratio is 0.10°Fjmm. 

29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

21.3 
20.9 

20.4 
20.0 
19.6 
19.3 
18.5 

18.0 
18.0 
17.8 
17.6 
17.3 

17.0 
16.7 
16.5 
16.2 
16.0 

79 
80 

81 
82 
83 
84 
85 

86 
87 
88 
89 
90 

91 
92 
93 
94 
95 

11.6 
11.5 

11.5 
11.4 
11.4 
11.3 
11.1 

11.1 
11.0 
11.0 
11.0 
11.0 

11.0 
11.0 
11.0 
10.9 
10.8 

46 15.7 96 10.8 
47 15.5 97 10.7 
48 15.3 98 10.5 

Coolant out at Tt	 49 15.1 99 10.5 
50 14.9 100 10.6 

Because the actual tank may not be well mixed, a 
transfer function is to be used as the process model. 
What transfer function represents the data sati s­

L-"":""'-Tin factorily?
Process fluid input 

FIGURE PI 1.2	 t K. A. Bishop, Ph.D. Dissertation , Univ. of Oklahoma, 1965. 

F 

Coolant in 

...
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11.3	 The transfer function for a liquid extraction column t 11.4 Tseng: evaluated the dynamic response of a finned­
is tube heat exchanger. See Figure Pl1.4. 

v TUv(TLTa-fg+ 1)2-4TLTa 
G(s) = TLTa(D~-Df-Dr;.-I+IYt-I)-fg(M.-Df) 

Steam t. 
where 

T	 hLs kLs ~ 
L=Z:+Z:+ 

Exit air 
Entering air temperature,has k L 
temperature,~	 ~Ta = G + mG + 1	 t 

to ~l~f= !:.!:..
Lm / \ 
kr•	 Condensate 

g=G 
FIGURE PI 1.4
 

S = Laplace tr ansform parameter
 
L = 13.04 grams water/(min)(cm)2
 For the zero initial conditions, a general second­
G = 11.0 grams organicjfminjfcm)" order transfer function (assuming the tube and fin 
m = 0.766 temperatures were the same) was 
kc =	 interphase mass transfer coefficient, grams/
 

(minjtcrn") 6.t 1 2
{tC..,.-(s) = mCg h h A A S
ho , he = total organic, water phase holdup, grams/em", f,.l.t, 1 2 1 2
 

reported to be 0.075 and 0.5080, respectively
 
N = number of hypothetical lumped mixing cells
 

D1 TLA1
= ­
D 2 = TLA2
 

where A 1 and A2 are the + and - roots, respectively,
 
of
 
A _ (TLTa - fg + 1) ± v (TLTa - fg + 1)2 - 4TLTa
 

1 ,2 -	 2T . 
L 

whereEstimate kc and N from the given data for the 
pulse response. Repeat but estimate kc , N, hi, and 6. = change in temperature 
ha• Use the orthogonal products method. The impulse Cm = 0.61 Btu /"F (metal total heat capacity) 
response is in terms of acid Concentration in weight Cg = 0.0021 Btu/"F (air total heat capacity) 

.....:: ~ 

percent: ; .	 A 1 = 0.905 ft2 (inside heat transfer surface) 
A 2 = 19.7 ft2 (outside heat transfer surface)t (sec) C x 103 .' .t(sec) C x 103 

-- -- K; = 0.0194 x 60 x Q-Btu/( ~F)(hr~ 
0 0 400 2.250 Q = flow rate , ft3/min 

20 0.250 420 1.870 hI, ha = heat transfer coefficients 
40 0.451 440 1.575 
60 0.750 460 1.298 A simplified first-order model transfer function is . 
80 1.250 480 1.068 

6.1 {( 1 1 )100 1.750 500 0.875 6.t, (s) =	 tCg h + h S 
1A1 2A 2

120 2.500 520 0.726
 
140 3.054 540 0.599
 

+ Ka(h1~1 + h2~J + t} -1 (b)160 3.750 560 0.474
 
180 4.580 580 0.376
 

while another hypothetical model -transfer function is 
200 4.967 600 0.291
 
220 5.050 620 0.223 6.1 1
 

(c)6.t, (s) = 1240 5.063 640 0.169 
h	 c,» +260 5.001 660 0.124 2A 2
 

280 4.850 680 0.076
 
Inasmuch as both h1and h2 are hard to determine 

300 4.586 700 0.045 individually, estimate h, for two models and h2 for 
320 4.349 720 0.020 all three models from the following results obtained 
340 3.851 740 0.008 for a sinusoidal input with the air at 14.0 psia,
360 3.510 760 0 Q = 864 scfm, steam pressure = 11 psig, to == 
380 2.726 96.0 oP, and t = 126.00 P (average). 

t J. E. Doninger, Ph.D. Thesis; Northwestern Univ., Evanston, 
Ill., 1965. ~ Y. M. Tseng, Ph.D. Thesis, Univ. of Rhode Island, 1965. 
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Frequency Normalized Phase y = heat capacity ratio, Cp/C. , dimensionless 
(cycles/min), Amplitude Angle 8 = stagnant surface area, em" 

w Ratio (degrees) D = diffusivity of gas in liquid, cm2/sec 

w = frequency, radians/sec · 0 1.00 0.0 
V = average volume of gas chamber, em"

1.17 0.99 5.5 
b = height of gas chamber above liquid, em

2.26 0.93 15.3 
3.24 0.87 26.2 Pd - Pw I' d f diff . I . f.....:..-::-......;; = amp rtu e 0 merence signa In terms 0 
4.62 0.~2 41.6 Pw pressures of dry (d) and wet (w) chambers 
5.72 0.74 41.1 
6.80 0.68 46.3 From the following data and Table PI1.5, estimate D. 
7.90 0.59 50.3 

Surface-stagnant 8-668 sq ern8.10 0.67 58.7 
Surfactant-none t-19.78°e10.66 0.56 58.9 
b-3.077, 3.070 y-l.29212.50 0.48 73.9 
V-ll08 cc. 

Data have been corrected for a measurement lag of 
1 sec. Reported values of h1 and h« (from the literature) 
are TABLE PI1.S 

h1 h2 

1900 ill Frequency Pd Pw 

11.5 Lamb j used a frequency response technique to (cps) (in H 2O) (in H2O) !1P/Pw 

evaluate the rate of absorption of sulfur dioxide gas 
into stagnant and turbulent water through a flat 0.159 lO.ll 9.83 0.03398 
interface. The frequency - response to sinusoidal 10.11 9.86 0.03173 
pulsations in gas pressure was ,measured in terms of 
the difference in the gas pressures in two similar 

0.250 10.21 
10.21 

9.98 
10.01 

0.02695 
0.02517 

chambers, one with liquid and the other without. 
For a stagnant model of the liquid, the approxi­

mate result for the amplitude of the difference of the 
two chambers was 

0.388 

0.612 

10.27 
10.27 

10.31 

10.06 
10.09 

10.14 

0.02404 
0.02271 

0.01945 
10.31 10.17 0.01730 

. IIG(w) II 

where 

= Pd - Pw = Q(l
Pd 

_ VZQ + Q2)y' 0.636 10.31 
10.31 

10.18 
10.16 

0.01539 
0.01809 

Q = Hy8 V~ 
V+ us 

-r . 
0.999 10.33 

10.33 
10.21 
10.21 

0.01360 
0.01569 

H = Ostwald absorption coefficient = 42.25 
g-mole/cc liquid/g-mole/cc in gas at 25°e 
and (42.25)(1.1815) at 200e 

1.557 

2.445 

10.35 
10.35 

10.36 
10.36 

10.23 
10.25 

10.28 
10.26 

0.01233 
0.01265 

0.00949 
0.01260 

t W. B. Lamb, Ph.D. Thesis, Univ. of Delaware, Newark, 1965. 



CHAPTER 12
 

Estimation in "the Frequency 
Domain 

Frequency domain estimation is employed in lieu of time
 
domain estimated for two primary reasons, aspects of
 
which have been brought out in connection with the use
 
of moments and the transfer function:
 

1. The analytical solution of the model may be simpler
 
in the frequency domain than the related solution of the
 
model in the time domain.
 

2. For some models, anal ytical solutions can be 
obtained for the frequency response but not for the 
response in the time domain. Or , the model response may 
be in the form of a complicated series which is hard to 
evaluate numerically. Because of the character of the 
transformations carried out on both the experimental 
data and the model , the types of models suitable for 
analysis are restricted to those corresponding to linear, 
constant coefficient, ordinary ' or partial differential 
equations or to their equivalent in the frequency domain. 

Impulse orpulselike inputs are the most convenient t
"" .

use in experimentation because the pulse provides infer- .. 
mation at all process frequencies. .Of course , the pulse 
may prove to be a significant disturbance to the process, 
large enough to invalidate" the linearity assumption. 
Therefore, tests should be carried out to verify the 
linearity of the process by checking, say, with the aid of 
asinusoidal input to see that the frequency of the output 
is not shifted from that of the input. 

Along with estimation in the frequency domain, we 
shall also describe how the coefficients in the process 
model can be obtained from an applied stochastic input., 
For random inputs, it is important to ensure that the 
variations in the input cover the desired frequency range 
and that they have sufficient amplitude. 

Two types of data processing "can be employed : 
analog and digital. The data collected at the testing site 
can be stored on charts, magnetic or paper tape, etc., 
either as continuous or discrete functions of time, and 
processed elsewhere. Or the data can be processed in " 
real time as taken. As a general rule-of-thumb, continuous 
data are collected when an analog or a hybrid computer 
is to be used in the analysis; individual frequencies are 
isolated by harmonic analysis (filtering). Discrete dat a, 

374 

on the other hand, are analyzed by a. digital computer, 
often by autocorrelation and cro ss-correlation methods. 

12.1 THE PROCESS MODEL IN THE FREQUENCY 
DOMAIN 

In Section ] l.l , in connection with Equation 11.l-5 , 
it was pointed out that the impulse response (also known 
as the weighting function) for a constant coefficient 
linear deterministic model corresponding to Equation 
11.0-1 can be used to determine the response for any 
input : 

y(t) = fooo g{t - or)x(-r) dr (12.]-]a) 

Equation l2.l-la can be shown to be identical to 

y(t) = Jooo g(or)x(t -or)dor(J2.I-lb) 

by letting t - or = or' and carrying out the change of 
variable. If we take the Fourier transform of g(t), we 
obtain the frequency response function: 

g(w) = ff[g(t)] = J~oo g(t) e - i"' ! dt ~ too g(t) e '''-"l'''! dt 

where w = 21Tf has the units of radians per unit time and 
f has the units of cycles per unit time. The lower limit 
on the integral can be zero instead of -00 because 
g(t) = 0 for t < O. Only modest restrictions are placed on 
the nature of g(t), restrictions that can be found in any 
advanced calculus text. In effect, we have replaced s in 
the transfer function by ica, as mentioned in Chapter ] I 
in describing the relation between the frequency response 
and the transfer function. 

The transfer function (frequency response) can be 
characterized in two ways in the frequency domain. 
Because g(w) is complex, one way of representing the 
transfer function is 

g(w) = 8?[g(w) ] + i J[g(w)] (12.]-2) 

where ~ [g (w) ] is the real part of g(w) and J [g(w)] is the 
imaginary part (Figure 12.1-]). In polar form, the 
absolute value or modulus of g(w) is 

II g(w) II = V~2 [g(w)] + J 2[g(w) ] = r 
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g(w) =r(cos 1/1 + 1sinlP) =reit/! 

Id[g(w») 

I 
I 
I 

I 

t/!~[g(w)] I 
Real axis 

FIGURE 12.1-1 Polar representation of a complex number. 

and the argument (angle) of g(w) is t{J, where 

J[g(w)] 
tan t{J = ~[g(w)r 

Thus a second method of representing the transfer 
function arises from its polar notation 

g(w) = r(cos tP + i sin ifJ) = r eil/! = Ilg(w)/1 eit/l(W) (12.1-3) 

For any input x(t )" the model response is 

yew) = g(w)x(w) (12.1-4) 

Consequently, if g(w) and x(w) are expressed in polar 
form: 

the magnitude of .P(w) is seen to be the product of the 
magnitudes of y( w) and x(w), and the angle of y(w) is 
the sum of the..__respective angles 

yew) = Ilg(w)llllx(1)llei(\II+8) 

As a matter of interest, the frequencyresponse in the 
time domain, i.e., the steady-stateresponse for a sinusoidal 
input of frequency w, is the product of the amplitude 
ratio (which is equal to II g(w) II and the sin (wt +·ifs): 

.. 

yet) = Ilg(w) II sin (wt + ifs) 

as can be demonstrated by taking the .Laplace or Fourier 
transform ofy(t), by taking the inverse Laplace or Fourier 
transform of Equation 12.4-1, or byapplying the con­
volution theorem mentioned in Section 12.3-1. 

In what follows, the observed output, yet), will be 
regarded as being composed of the true response plus a 
stochastic error, E(t) (see Figure 9.1-2), whose source may 
be the process itself or the data collection equipment. In 
any case the stochastic component will be assumed to be. 
essentially stationary: 

yet) = yet) + E(i) (12.1-5) 

Figure 12.1-2 compares the confidence region in the 
time domain with the related confidence region in the 
frequency domain for a process response. 

Least squares estimation of the parameters calls for 
minimizing 

(12.1-6) 

with respect to the parameters. Because of the upper 
limit of Equation 12.1-6, yet) should preferably decrease 
with time as in a pulse response or decrease at the end 
of a period as in a sine wave. Parseval's equality: 

'''' [I(t)]2 dt = ! r"'/I/(w)11 2 dw (12.1-7)J.0 7TJO 

applied to Equation 12.1-6 gives, in the frequency 
domain, 

oo 
1i v1> = - II Yew) - y(w)112 dw (12.1-8a) 

7T 0 

li oo 
v== - [(al[ Yew)] - al[y(w)]}2 

7T 0 

+ {[J[Y(w)] - J[y(w)]}2] dw (12.1-8b) 

where &i[ ] is the real part of the Fourier transform in 
the argument enclosed by [ ] and J[ ] is the imaginary 
part. Equation 12.1-8b can be interpreted as calling for 
minimization of a criterion composed of two terms in the 
frequency domain, a combination of real and imaginary 
deviations squared. 

eft) = y(tJ - yi t} 

// 
~ 

/
/ /


/ /

/ /

/ / 
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I I 
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/" 

o. 
(a) 

Imaginary axis 

Real axis 

7 " 'I 
/"

" '........... . 

// 

-"'---~One possible ¥(w) 

(b) 

FIGURE 12.1-2 Process response represented in the time 
domain and in the frequency domain: (a) time domain, indicating 
the confidence region by dashed lines for stationary error, and 
(b) frequency domain, indicating the circle for the confidence 
region containing the head of the vector y(w) at one frequency. 
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Equation 12.1-8a can be interpreted more clearly if 
both the observed and model responses in the frequency 
domain are put into polar form as follows (the w is 
suppressed to save space): 

Yew) = V[cos W + i sin W) 

yew) = v[cos w!+ i sin w) 

where V(w) and v(w) are the magnitudes of Yew) and 
yew), respectively, and W(w) and w(w) are the angles, 
respectively, all real. Substitution of these expressions 
into Equation 12.1-8a gives 

ep=!I '" II V (cos W+ i sin W)-v(cos w+i sin w)112 dw 
7T 0 

=!1'" I/(Vcos W-vcosw)+i(Vsin W-vsinw)112dw
7T 0 

=-II '" [V2 +v2- 2Vv cos (w- W») dw (12.1-9) 
7T 0 

;. Inspection of Equation 12.1-9 indicates that the opti­
mum choice of w should be such that [2Vv cos (w - W)] 
is a maximum or w = W. If so, the resulting equation is 
expressed only in terms of the amplitude ratios 

ep = -II '" (V - V)2 dw 
7T 0 

and leads to the conclusion that V = v for ep to be zero. 
Equation 12.1-8a can also be related to the transfer 

.function if we recall that the absolute value of a product 
is equal to the product of theindividual absolute values. 
Then 

v v ~ [yew) yew)]
Yew) - yew) = x(w) x(w) - X(w) 

= x(w)[G(w) - g(w») 

so that Equation 12.1"8a becomes 

<P = ~ fa'" [ll x(w) IIIIG(w) - g(w)I\l2 dw (12.1-10) 

In one sense, x(w) is a "weighting function," because 
although the Fourier transform of a delta function is just 
1, if the input is other than a delta function, its Fourier 
transform "weights" the expression IIG(m) - g(w)!I. 

12.2 ESTIMATION USING.DETERMINISTIC INPUTS 

Simple pulselike inputs or triangular inputs with 
known Fourier transforms are the most appropri ate to 
use, both because of their mathematic simplicity and 
because of their ease of execution as process inputs. 
Table 12.2-1 illustrates typical deterministic inputs and 
their Fourier transforms. The input pulse excites a 

wide range of frequencies of the process, a range whose 
exact characterization depends on the shape of the pulse. 
Hougen t discussed the advantages and disadvantages of 
various types of pulse shapes. 

Certain problems exist in transforming the experi­
mental data collected in the time domain into the 
frequency domain without introducing excessive numer­
ical error. A number of algorithms are available for 
digital processing of continuous data; processing on an 
analog or hybrid computer, if available, is straightfor­
ward. Usually the Fourier transformation is truncated 
before 00 is reached so that 

It.v 1wt dtYew) ~ 0 yet) e­

= I0 
t.

yet) cos (wt) dt + i It. 0 yet) sin (wt)d~ 

(12.2-1) 

where ty is the termination time. The key to the successful 
transformation is to evaluate accurately these integrals 
for use in Equation 12.1-8. Several digital computer 
programs exist for executing what is known as the Fast 
Fourier Transform .j 

Hays et al.§ suggested that instead of using Equation 
12.2-1 and a quadrature formula to evaluate the integrals 
in the equation for discrete data or for sampled con­
tinuous data, the following method is more flexible and 
efficient. The function x(t ) or yet) in' the time domain is 
characterized through a series of discrete points by a 
piecewise series of polynomial segments: ;. 

n 

yet) ~ L U(t - tk)[ak + bk(t -.l-k) ,+Ck(t - tk)2 +... .) 
k~l 

(12.2-2) 

where U(t - tk ) is the unit step function , tk is the time 
location of the observation, and ak, bk, etc., are coeffi­
cients selected to best represent the response between 
two observations. If only ak and bk are used, the data are 
represented by a piecewise series of straight line seg­
ments: if Ck is added , the curves are segments of para­
bolas, and so forth. 

The Fourier transform of Equation 12.2-2 is 

(12.2-3)
 

t J . O. Hou gen, " Experiences and Experiments with Process
 
Dynamics," Mon ograph Ser. No.4, AIChE , New York , 1964.
 
:j: J. W. Cooley, R. E. Miller, and S. Winograd , Harmonic
 
Analyzer, IBM Watson Research Center, Yorktown Heights,
 
N.Y., 1963; G. D . Bergland and H . W. Hale , "Digital Real­

Time Spectral Analysis," lEE Trans. EC-16, 180, 1967.
 
§ J. R . Hays, W. C. Clements, and T. R . Harris, AlChE J. 13,
 
374, 1967.
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TABLE 12.2-1 TYPICAL DETERMINISTIC PULSELIKE INPUTS '" 

Type of Input x(t) x(w) 

L Impulse at t = 0 ~(t) o t
 

LL Impulse at t = to ~(t - to)

o to t 

Triangular input cotU(t) + C1(t - t1)U(t - t1) 
initiated at t = 0 + C2(t - t2)U(t - 12) 

'" U(t) is the unit step function. 

and Yew) can be split into its real and imaginary parts 
for introduction into Equation 12.1-8b 

/1}j ~ L:" [ak 2Ck J'm[ Y(w)] ~ -- + - + .. . SIn wt" , w w3 

, k=1 

J[Y(w)] ~ L:" [-:: + ~: + ...Jcos wt k 

k=1 

Truncationof-the summation in Equation 12.2-3 with n 
too small a number will lead toapoor approximation of 
yet) in the time domain. It can easily.be shown by using 
Parseval's equality that the representation of yet) by the 
truncated series is the best approximation in the least 
squares sense of yet) that can be made with the truncated 
frequency spectrum. \ 

Once Equation 12.1-8 or 12.1-iO has been formulated, 
the estimation problem corresponds exactly to the 
nonlinear estimation problem discussed in Chapter 6. 
Minimization of c/> can be carried .out by one of the 
numerical methods described in Section 6.2. The inter­
pretation of the expected value and variance of the esti­
mated parameters is the same as given in that chapter, 
eventhough the actual computations are executed in the 
frequency domain. 

Example 12.2-1 Estimation in the Frequency Domain 

A typical dispersion equation that was described in 
Section 10.4 is 

(a) 

where y is the dependent variable, t is the time, v is the 
velocity, z is the axial direction, and D is a dispersion coeffi­

cient to be estimated from observed values of the dependent 
variable, Y. Equation (a) applies to flow in packed beds, 
porous media, pollution in rivers, etc. It is assumed that 
Y = y + e. Only certain boundary conditions can be used 
in conjunction with Equation (a) if an analytical solution 
to the process model is to be written. For the initial and 
boundary conditions : 

y(z, 0) , = 0 .( b) 

Y(O, t) = x(t) (b) 

lim y(z, t) = 0._ ro 

an analytical solution to Equations (a) and (b) cannot be 
formulated conveniently. However, a solution in the 
frequency domain can be formulated. 

After taking the Laplace transform of Equation (a) and 
the boundary conditions in Equation (b), 

- d2y(Z, s) dy(z , s) ., ' ( ) _ 0 
n . dz2 - V ~ - sy z, s - (c) 

y(O, s) = x(s) 

lim y (z, s) = 0 (d)._ro 
we can solve for y(z, s) and evaluate the two arbitrary coeffi­
cients in the solution by using Equations (d) to obtain 

V - Vv2 
- 4Ds ]

y(z, s) =x(s) exp [ 2D z (e) 

At some distance z = L, i.e., at the observation point, the 
dependent variable in the time domain is y(L, t) and in the 
Laplace transform domain is 

«); s) = x(s) exp [;~ (I - J1 --4~f) ] (f) 

Note that the transfer function is the exponential quantity. 
The Fourier transform can be obta ined by replacing s by 
(iw): 

«); w) = x(w)exp [;~ (I - JI_4(i:}D)] (g) 
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%(t) 

FIGURE EI 2.2-1 

Equation (g) can be introduced into Equation 12.1-8b, or 
the transfer function itself can be introduced into Equat ion 
12.1-10. 

Suppose that a triangular pulse input, as illustrated in 
Figure EI2.2-1, is introduced into the process tube or 
channel. The time domain representation of x(t) is 

x(t) = 2tU(t) - 4(t - t)U(t - t) + 2(t - 1)U(t - 1) 

and in the frequency domain 

, I 
x (w ) = -2 [2 - 4 cos (O.5w) + 2 cos (w)] 

w 

+ ~ [-4 sin (O.5w) + 2 sin (w)] (h) 
w 

The value of x (w ) at w = 0 cannot be calculated from 
Equation (h) but must be obtained from the area under the 
x(t) relation or x (O) = t . (A similar remark applies to 
yew) at w = 0 and the area under the yet) curve.) 

Before Equations (g) and (h) are substituted into Equa­
tion 12.1-8a,.it is necessary to write the transfer function as 

[VL] ,[",oJ' 4iw15]exp - exp - I - -2­
215 _ " . ' v 

and to expand the term in the square root 

and to use the Euler identity 

ef8 = cos (J + i sin (J 

to separate the product x(w) g(w) into real and imaginary 
parts . In any case, if t06 many terms are required in 
Equation (i), the estimation of 15 by least squares is best 
uridertaken by some other experimental arrangement (so 
that the boundary conditions can be revised) than that given 
by Equation (b). Clearly, a true delta function input would 
be mathematically preferable to a triangular input because 
x (w ) would then be I. 

Rather than integrate to ex:> on w in Equation 12.1-8a, 
the integral can be truncated at Wr where Wr is selected so 
that the contribution of Yew,) to the value of the integral 
is negligible. If analytical integration is not feasible in 
Equation 12.1-8a, a numerical quadrature scheme can be 
employed. 

or the mean square error 

1> = }.Itr £2(t) dt (12.3-2)
t f 0 

From Parseval's equality, Equation 12.1-7, we can see 
, that when £(t) is white noise, that is in the frequency 
domain l(w) is a constant, each frequency will be 
weightedequally in the least squares estimation. Weinert 
applied the calculus of variations to minimize 1> in Equa­
tion 12.3-2 and showed that 

Txy(T) = 50'" g('\)rxx(T - ,\) d'\ for T ~O (12.3-3) 

where
 
Txy(T) = C{X (t ) Y(t + :r)}
 

rxx(T - ,\) = C{X (t )X ( t -+ T - '\ )} 

There is no guarantee that the estimate of g(t) found by 
solving Equation 12.3-3 is good in the sense that it has a 
small variance compared to other possible estimates, 
but if the C{£(t )} = 0, the estimate is unbiased. For the 
very special case in which £(t) is "white noise" de­
scribed in Section 12.3-1), the estimate obtained by further 
development of Equation 12.3-3 doe s have minimum vari­
ance among all linear estimates. For many other random 

t N . Weiner, The Extrapolation, Interpolation and Smoothing of 
Stationary Time Series with Engineering Applications, John Wiley, 
New York, 1949. 

f,, 

12.3 ESTIMATION USING STOCHASTIC INPUTS 

This section indicates how stochastic inputs can be
 
used to estimate model parameters in the frequency
 
domain. For a single input and response, we combine
 
Equations 12.1-lb and 12.1-5 to obtain
 

Y(t) = 50'" g('\)x(t - ,\) d'\ + £(t) (12.3-1) 

where £(t) is the random error conceptually added to the
 
response and ,\ is a dummy variable. Because sinusoidal
 
or step inputs may disrupt the process, the possibility
 
exists of using random inputs for x (t ), namely X(t),
 
either deliberately gener ated random inputs with small
 
amplitudes or possibly the actual process inputs. We
 
shall assume that £(t) and X(t) are weakly stationary in
 
the sense defined by Equation 2.2-7, because if we do
 

, not make this assumption, extra terms will be left in the 
equations to be developed below that preclude a simple 
solution for the transfer function. Furthermore, Equation 
12.3-1 is not compatible with dead time or lags in the 
process model; these must be determined separately. 

As a criterion for estimation of the impulse reponse
 
g(t) for afinite length of record of the input and output,
 
we can minimize
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errors, the least squares estimate asymptofically ap­
proaches the minimum variance estimate as the time 
record is extended. , 

Equation 12.3-3 can be obtained in a different fashion 
as follows. Replace t in Equation 12.3-1 by t + T, 

multiply both sides by X(t), and then take the expected 
value of both sides of the resulting equation: 

C{X(t)Y(t + T)} = C{ X(t) fa"; g(A)X(t + T - A) dA} 

+ C{X(t)€(t + Tn (12.3-4) 

If the random input and €(t) are uncorrelated, the second 
term on the right-hand side of Equation 12.3-4 vanishes. 
The operations of expected value and integration in 
time in the first term on . the right-hand side can be 
reversed to obtain 

rxy(T) = L'" g(A)~XX(T - A) dA (12.3-5) 

which is the same as Equation 12.3-3 except for the re­
striction in 12.3-3 on T which is encompassed by Equa­
tion 12.3-5. Therefore, the impulse response in Equation 
12.3-5 is an optimum linear representation of the proc­
ess. (For a nonlinear process, Equation 12.3-5 is still. the 
best-in the mean square sense-linear representation.) 

12.3-1 Power Spectrum 

The power spectrum or power spectral densityfunction, t 
sxx(w), is the Fourier transform of the autocorrelation 
function rxx(T); the crosspower spectrum sxy(w) is the 
Fourier transform -of the crosscorrelation function 
rxyCT). Figure 12.3-1 illustrates the power spectral density 
functions corresponding to Figures 2.1-3 and 2.2-1. A 
reciprocal relation exists between the.time and frequency 
domains through use of the Fourier inversion relation, 
namely . 

(l2.3-6a) 

(12.3-6b) 

and 

SXy(w) = f~", e .,- IW'rxy(T) dr = Syx(w) (l2.3-7a) 

rxAT) = Lf~oo eIWlsxy(w) dw (12.3-7b) 

Sxx(w), being the transform of an even function, always 
has zero phase angle ; it is sxy(w) that contains the phase 
information. Figure 12.3-2 presents some autocorrela­

t If X(t) is a voltage across a device and Y(t) is the resulting 
input current, then rxy(O) is the average value of the power 
delivered. The spectrum of a non periodic function is obtained by 
taking its Fourier transform. 

Dirac delta 
function 

o "'0 
(a) 

'U'WJ~ 
) W o Wo 

(b) 

'»'W'l__ 
o--------'-----=----------;)~w 

Wr 
(c) 

'U(WJ~
 

O~)W 

(d) 

FIGURE 12.3-1 Power spectral densit y function plots (for w2:; 0) 
for the autocorrelation functions shown in Figure 2.2-1 : (a) 
sine wave, (b) sine wave plus random noise, (c) narrow-band 
random noise, and (d) wide-band random noise . (From J. S. 

. Bendat and A. G. Piersol, Measurement and Analysis of Random 
Data, John .Wiley, New York, 1966, p. 24, with permission.) 

tion functions for commonly used process inputs and 
their corresponding power spectral densities . 

The special case in which the power spectral density 
is a constant, the diagram in the fourth row of Figure 
12.3-2, is known as white noise. White noise corresponds 
to an autocorrelation function for a stationary ensemble 
of r (T) = k· B(T) where k is a constant and B(T) is the 
Dirac delta function . Because the average power becomes 
infinite for sxx(w) = constant, that is, 

I f ooaverage power = rxx(O) = -2 sxx(w) dw -+ 00 
7T - 00 

a more useful concept is that of white noise over a 
limited frequency range , or bandwidth limited white noise: 

sxx(w) = k - ~ < w < ~) . ( 2 - - 2 

b=0 w >2 

where b is the bandwidth and w is the frequency. 

Pm
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Typ e of Spectral density functionAutocorrelation function 
input Iz,.{w)'Z,.{T) 

Random telegraph 
e- c h l 

signa l ~ ~· . '. . 
I _M ifH < I .Random binary 4 sin' (wl./2)I. ~ .L:sequence w 

2t""- too 0 I.. r 02 _" ... w0 if H > I . 

Con stan t c' 8(w)c2 -L. .-=--­

--
· 

kk 8(1)White no ise r .-L• • 
8(w + "'0) +Sinusoidal cos ("'oT) ill 8(w - w.)-. .... 

FIGURE 12.3-2 Autocorrelation funct ions and their corre­
sponding power spectral density functions. 

By taking the Fourier transform of Equation 12.3-5, 
we obtain] a simple expression relating the transfer 
function in the frequency domain to the power spectrum 
and crosspower spectrum: 

sxy(w) = g(w)sxx(w) (12.3-8) 

Also, by multiplying Equation 12.3-1 by yet + r) and 
following the steps outlined before, it can be shown that 

(12.3-9) 

However, Equation 12.3-9 will not yield any information 
about the phase of the transfer function which is lost 
when the absolute value ofg(w) is taken; hence the 
equation has limited use. 

With a few additional definitions, we can write an 
equation like (12.3-8) for the mat~x transfer function g(w) 
defined in Equation I I.I -7 for a lumped process (or a 
set of lumped processes) with multiple inputs. See Figure 
12.3-3. We shall let the vector of inputs X(t) contain n 

t The convolution of two functions 11(t) and I .(t) : 

I (t) = r oo 11(>.)f2(t - .\) d>" 

has the Fourier transform 

few) = t oooo e-f"'fj"(t)dt = f '", e- 1wt L"'",!l(>")/2(t - >")d>"dt 

= r oo 11(>") r ", e - IWfj"2(t - >') dt dA 

With t - >. = 'T, the last integral on the right-hand side becomes 

r oo rs» e - Iw h r oo e- twf/ 2('T) dr d>" = fl(W)!2(W) 

where h ew) and ! 2(W) are the Fourier transforms of 11(t) and 
I.(t), respectively. 

FIGURE 12.3-3 Multiple input-output process. 

t.
inputs and the vector of outputs yet) have m outputs. ! ' 
Also, three spectral density matrices must be defined: 

input spectral density matrix 
with slf(w) the power spectral density of input 
i and st(w) the cross-spectral density of input 
i and inputj 

output spectral density matrix 
with sK(w) the power spectral density of output 
i and Sl~(w) the cross-spectral density of output 
i and output j 

input-output spectral density matrix 
with slfY(w) the cross-spectral density of input _I 

i and output i and stY(w) the cross-spectral 
density of input i and outputj 

Then a simple extension of the single variable analysis
 
leads to
 

sY(w) = g*(w)SXY(w) =g*(w)sX(w)gT(",) .{12.3_1O)
 

SXY(w) = SX(w)gT(w) (12.3-11) 

where g*(w) is the complex conjugate of g(w) and T 
indicates transpose. The transfer matri x g(w) is calculated 
from 

(12.3-12) , 

12.3-2 Experimental Design for Random Process Inputs 

Random process inputs in -general are selected so as 
to simplify the solution for the transfer function _(fre­
quency response) in the frequency domain. For the 
special case in which the autocorrelation function of the 
input is rxx(r) = k 8(t), the spectral density is white 
noise, sxx(w) = k, and the transfer function becomes just 

g(w) = ksxy(w) (12.3-13) 

The estimation of the coefficients in the empirical trans­
fer function, the estimate of g(w), would be carried out 
as described in Chapter 6 under nonlinear estimation if 
the data are discrete. 

To create white noise as a physically realizable input 
in a flow process is exceedingly difficult; generation of' 
white noise in a computer simulation is much easier. 
Consequently, it proves easier to use inputs that are not 
random but only pseudorandom yet whose auto­
correlation functions approximate the delta function. 

One pseudorandom sequence with useful properties 
can be defined as follows: 

1. The input assumes values of +a or -a with equal 
probability. 

--,--"-,,,-- -=- - - - - - - - - - - ­

SX(w) = 

sY(w) = 

SXY(w) = 
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T 

(a) 

(b) 

FIGURE 12.3-4 A pseudorandom input with a desirable autocorrelation function. (a) Idealized 
periodic binary signal input for M = 19 and the corresponding autocorrelation function. (b) 
Graphical representation of Equation 12.3-5for the periodic binary input . 

2. The iriput" is periodic with a period T = M tit, 
where M is the number of basit 'intervals for switching 
from +a to -a (bits in a binary code). 

Figure 12.3-4a illustrates a typical input and its auto­
correlation function, which is somewhat akin to a delta 
function in each interval 0 to Tbut is triangular in shape. 
The .input ] can be considered to be an ordered sequence 
of binary elements Co, • •• , CM- l such that there is one 
more -a than +a. Consequently, 

M -l

L CI = -a 
1= 0 

and . 

M-l { ' 0M ,j=L CjC(I+ i ) mo duJoM = -a,j"# 0 
1= 0 

The second sum ensures that the autocorrelation function 
of the input is sufficiently" spiky" and can approximate 
a delta function of strength equal to the area of the 
"spike." The sequence of c/s that determine whether 
the input is +a or - a for the next tit can be calculated 

tN. Zierler, J. Soc . Ind . Appld. Math. 7, 31, 1959. 

from a linear recursion relationship given in Zierler arid 
also in Peterson .t 

Table 12.3-1 lists a FORTRAN program for calculat­
ing pseudorandom inputs as +1and ....:.] for the sequence 
shown Figure 12.3-4. Another possible input .is the 
pseudorandom telegraph input which appears similar to 
the input in Figure 12.3-4 but cycles from + 1 to -1 at 
randomly occurring time intervals prescribed by a 
Poisson . distribution. The ensemble autocorrelation 
function is illustrated in the first row of Figure 12.3-2. 
Another possible input is the random binary sequence 
which again is similar to the input shown in Figure 
12.3-4 except that it cycles from + I to -I at discrete 
intervals tit randomly selected; the autocorrelation 
function and spectral density are in the second row of 
Figure 12.3-2. King and Woodburn§ described how to 
choose the values of the period of the input T, the sampling 
interval, and the basic binary interval tit, i.e. design the 
experiment, so as to optimize the determinant described 
in Section 8.4. 

t W. W. Peterson, Error Correcting Codes, MIT Press and also
 
John Wiley, New York , 1961.
 
§ R. P. King and R. P. Woodburn, Ind. Eng. Chem., a personal
 
communication, 1968.
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TABLE 12.3-1 FORTRAN PROGRAM TO CALCULATE PSEUDO­

RANDOM INPUTS 

PROGRAM RANDOM(INPUT,OUTPUT) 
C $$$ NX IS THE NUMBER OF DIGITS IN THE SERIES 

DIMENSION IA(3000) 
4 READ 100,NX 

100 FORMAT(15) 
IF(NX)2,2,3 

3 PRINT 101,NX 
101	 FORMAT(23H TOTAL NO. OF ELEMENTS =,15/ /) 

IZ = -1 

DO 5 M = 1,NX 
IA(M) = IZ 

5 CONTINUE
 
Y = 0.5*FLOAT(NX)
 
LA = 1
 
IZ = 1
 
A = 1.0
 
B = A*A
 
X = FLOAT(NX)
 
o = AMOD(B,X)
 
ID = (FiXeD + 0.5)
 
IA(ID) = IZ
 
LA=LA+1
 
A = FLOAT(LA)
 
IF(Y - A - 0.001 )6,6,1
 

6 PRINT 102, (IA(M),M = 1,MX)
 
102 FORMAT(10(10X,1515/)/)
 

PUNCH 103. (IA(M),M = 1,NX)
 
103 FORMAT(1515)
 

GO TO 4
 
2 CALL EXIT
 

END
 

Finally, the following question canbe posed: Can the 
transfer function be estimated from the normal plant 
operating records? While in principle such estimation is 
possible , in practice it has not .often proved feasible for 
the following reasons. First, the normal process input 
may not be a stationary random variable. Second, 
because of the nature of the data processing that must 
take place, normal plant operating records usually do 
not prove accurate enough to provide suitable data. The 
introduction of adequate instrumentation can overcome­
this difficulty but may prove expensive. A third problem 
is the long length of operating record required for the 
correlation between the process noise and the deter­
ministic portion of the process input to die out. 

Finally, a more serious drawback is that the process 
input will not only be random but will include controlled 
changes that must be taken into account in the correlation 
analysis. For example, con sider the controlled process in 
Figure 12.3-5. The process input contains a component 
of E(t) by virtue of the connecting link through the con­
troller. Consequently, the term cf{X (t - or)E(t )} in 
Equation 12.3-4 no longer vanishes and must be re­

Y(t)X(t) XI(t) 

FIGURE 12.3-5 A controlled process with a random input. 

tained. Under certain special assumptions about E(t) .
 
it has proved possible to divide the crosscorrelation
 
function Rxy(or) into two parts, one of which is disturb­

ance free.t But how to treat the process data for more
 
realistic E(t) is as yet unresolved. ]
 

12.3-3 Estimatlen of Spectral Densities 

To estimate the transfer function using either Equation 
12.3-8, 12.3-9, 12.3-12, or 12.3-13, it is necessary to have 
adequate estimates of the ensemble average spectral I 
density SXy(w) and perhaps sxx(w). Although the estimates I 
might be determined from sample averages as described .i ! 
in Chapter 2, they are usually calculated from time i 
averages. Time averages make use of a single time record I 

rather than a collection of observationsfromdifferent 
time records; they will be designated by < ) unless the 
meaning is otherwise clear from the text. Time averages 
are a less powerful method of estimating ensemble 
averages than sample averages because the latter involve 
repetitive experiments. We shall be primarily interested 
in the following two time averages , which are random 
variables and hence designated by capital letters , for 
continuous variables: 

1. time autocorrelation function I 
1 (tl . 

Rxx(or) = <X (t) X (t + or) = 1;)0 X(t)X(t + or) dt [ 
,;. /

2. time crosscorrelation function 

\1
1 

1 I'tl	 
. 

Rxy{-r) = <X (t ) Y(t + or) = - X(t) Y(t + or} dt 
tf 0	 .;: 

where t, is the end of the time record. For discrete 
variables, the time averages are : 

1. time autocorrelation function 
, I 

Rxx(or) = ~ 2:
n 

X(tk)X(tk + or) '.	 ,~ i.... 
k = 1 ,:. / 

.,t T. P. Goodman and J. B. Reswick, Trans. Amer. Soc. Mech.
 
Eng. 78, 259. 1956.
 

:1: J . H. Westcott, Proceed. First Int. Congress of Int, Fed. Auto.
 
Control, Vol. 2, ed . by J. F. Coales, Butterworths, London, 1961,
 
p. 779; N. R. Goodman and S. Katz , Math . Camp . 13, 289, 1959~ 

• 



2. time crosscorrelation function 

Rxy(r) = ~ 2:
n 

X(tk ) Y(tk + r) 
k=l 

where n is the number of data samples. 
A real stationary ensemble is termed an ergodic 

ensemble if the time averages equal the corresponding 
ensemble averages with a probability of one. A process 
can be ergodic with respect to certain selected parameters 
or with respect to all of them. It is not enough that the 
expected value of the time average equal the expected 
value of the ensemble average; ergodicity also requires 
that the variance of the time average tends to zero as the 
time interval tf ~ 00. Without the latter qualification we 
cannot state that the expected value ofthe time average 
equals the ensemble expected value with a probability of 
one. The time averages yield estimates which are random 
variables whereas the ensemble averages do not, hence 
the necessity of requiring the variance of the random 
variable to be zero to ensure that the expected values of 
the former averages are indeed equal to the ensemble 
averages with a probability of one. For a stationary 
process (but not necessarily ergodic), it can be shown that 
the expected value of the correlation functions computed 
either for continuous or discrete data is equal to the 
ensemble correlation function: 

C{Rxx(r)} = rxx(r) 

C{Rx y(rn = ,rxy(r) 

meaning that the respective time averages are unbiased 
estimates oftheensenible averages. The computation of 
the variances of Rxx(r) and Rx;(r) is quite difficult 
because fourth-order moments are involved. 

Fourier transformation of the time average estimates 
of the correlation functions gives estimates of the en­
semble spectral densities: 

Sxx(w) =f~<Xl e-lrofRxx(r) dr 

SXy(w) =J~<Xl e-lrofRxy~r) dr 
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But these estimates prove to be biased estimates of the 
ensemble spectral densities. Furthermore, the dispersion 
of the spectral density estimates does not decrease with 
increasing length of the time record (or number of data 
points for discrete data). . 

It then becomes necessary to smooth either the correla­
tion function estimates or the spectral density estimates by 
some appropriate weighting function in order to obtain 
unbiased estimates of the ensemble spectral densities 
with reasonable variance. The expected values of the 
smoothed correlation functions will usually prove to be 
poor estimates of the ensemble correlation functions. 
Nevertheless the corresponding Fourier transforms of the 
smoothed correlation functions, i.e., the spectral den­
sities, will prove to be good estimates of the ensemble 
spectral densities. Figure 12.3-6 illustrates the informa­
tion flow in the data processing. 

To smooth the autocorrelation functions suitably, they 
can be multiplied by a weighting function, termed the 
window lag, in the time domain . Alternately, the spectral 
densities can be multiplied by the Fourier transform of the 
window lag, termed the spectral window; hence, one 
refers to window pairs. Lag windows average the corre­
lation function in the neighborhood of a given time 
giving greater weight to near values and none to remote 
values. Each time serves in turn as a center for the 
window so that the entire time range is covered. Lag 
windows w(r) are suitable even functions of -r, such as 
shown in Figure 12.3-7, subject to the restriction that 
w(O) = 1 and w(r) = 0 for Irl > t.; After multiplica­
tion by the window lag, the modified correlation functions 
are 

Rxx(r) = w(r)RxxH 

R x y(r) = w(r)Rx y(r) 

where R(r) is defined only for JrI ~ tm but R(r) is de­
fined for all -r, As a result, the modified correlation 
functions are defined for all r and have valid Fourier 
transforms: 

Sxx(w) = w(w)Sxx(w) 

SXy(w) = w(w)SXy(w) 

!-------+¥(t)X (t) ~-+---+.-~ 

8xy (W) 

FIGURE 12.3-6 Information flow to calculate the transfer function . 
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Lag windows 

Spectral windows 

o 
0'--""'­ ----'­ ""'--' 

-1 

o 

j :~. 

I 

oI----Ir--~.......~"""""==---- j
wa(w)/1.08 

Tm 

o 

FIGURE 12.3-7 Three frequently used window pairs : 

Bartlett 

wl(r) = I - l!dI if HI :s; 1m ," 1m 
~. 

= 0 if 11.,.11 > 1m 

_ (Sin t wlm) 2( )WlW -/m~ 

2 Hanning
 

w2(r) = !(1 + cos ;:) if H I :s; 1m
\, 

= 0 if IH > 1m 

W2(W) = !-Qo(w) + t Qo(w + t) + QO(w - i) 
sin wlmQOw() = 2tm -

wl
­

m 

3 Hanning
 

W3("') = 0.54 + 0.46 cos ::...2 if HI -s 1m
t; 

= 0 if IITil> 1m 

W3(W) = 0.54Qo(w) + 0.23[ QO(W + ~) + QO(W - E)] 

More important than the specificwindow shape among passed by the window m, or its equivalent, the bandwidth .' 
the windows in Figure 12.3-7,all of which yield estimates b, in the frequenc y domain. The bandwidth of a window 
that are barely distinguishable, is the choice of the factor actually refers to the width of a rectangular window. If the 
that regulates the width of the window in the time window is not rectangular, then some equivalent band­
domain, either tm or the number of data points encom- width, be' is implied such as be = 27T/m. In general, an 

'



empirical approach to the selection of m seems to be the 
most successful. A large bandwidth is initially chosen by 
making m small, and the effect of decreasing the band­
width is observed (usually in the frequency domain) by 
increasing m. Provided that a value of m is reached 
beyond which no additional fine detail is revealed, the 
value of m can be fixed. On the other hand, m may prove 
to be too large in comparison with the number of avail­
able data points in the interval 0 to tf so that the spectrum 
becomes erratic; i.e., the variance of the spectrum 
(which is inversely proportional to the bandwidth) 
becomes unduly large. The choice of a window must rest 
on judgment and the nature of the correlation function 
for unusual correlation functions. If the spectrum has a 
sharp resonant peak, and a broad window is used, the 
peak is spread thinly over a wide frequency range and 
may pass unnoticed. To obtain high accuracy for a 
spectral function having marked changes in amplitude 
over a small frequency range, a narrow window is 
needed, but less smoothing takes place and greater 
variance results for a given length of record. Thus, for a 
given accuracy, a greater length of record is required 
than would be needed if the spectral density had been 
smoother. The minimum frequency that can be computed, 
fmlD = 1/2Tm, depends on the length of the maximum lag, 
T m, used in calculating the correlation functions. 

If continuous data processing equipment or suitable 
continuous recording equipment is available at the test 
site, the data can be processed by analog or hybrid 
computers as continuous data. However, if the experi­
mental dataare-to-be analyzed by a digital computer, 
the data are usually sampled and stored in digital form , 
The smoothed spectral density can be computed from a 
series of 11 equally spaced values ofX and Y in time: 

LN

w(j 6.t)Rxy(j 6.t) exp (-i'A 6.wj M) 
J = - N 

(12.3-14)
I N-f .. 

Rxy(j M) ;;; N + I _ j L X(k M) Y(k M + j M) 
k =O .. 

, j ~ 0 (12.3-15)
N+ f . 

= n + ~. + .L X(k 6.t - j M) Y(k 6.t) 
J k=O 

j<O 
where 

i= v=1 
j = integer multiplier of 6.t used to designate a 

lag , T 

N = number of time intervals between samples; 
N + I = n = number of data samples 

M =	 basic binary interval for switching = sampling 
interval if one sample is taken in each interval ; 
N M = tf where tf is the end of the time 
record 
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w(j 6.t) = lag window 
'A = integer used with the frequency interval to 

denote the frequency 

A corresponding pair of equations can be written for 
Sxx(w) and RXX(T) and Syy(w) and Ryy(T) if the indexes 
are exchanged. 

The accuracy of the estimation of the transfer func­
tion , and by implication the coefficients in the transfer 
function , depends upon the selected values of the maxi­
mum lag T m, the window width tm, the switching interval 
M, and the length of the time record tf' as well as the 
time constant of the lumped process. As a general rule­
of-thumb, correlation functions are not computed for 
lags greater than 5 to 10percent of the total record length . 
For the type of input shown in Figure 12.3-4 and a white 
noise random error (R ..(r) = ag 8(t» , Hughes'] approxi­
mated the mean square error in the impulse response 
function as 

[G( )]2 ag ag
T ::::: a2(M )2qT = aV:..t)3qM (12.3-16) 

where a, M, M, and T are defined in connection with 
Figure 12.3-4, and q is a positive integer representing 
the number of periods of length -T used in the estimate 
of g(w) . Equation 12.3-16 indicates that, all other things 
being equal , increasing a, M, q, and T all decrease the 
dispersion of G(T). Because the dispersion varies in­
versely with M to a large power, the bandwidth of the 
input should be as small as feasible. 

Although the input is constant during each interval 
6.t so that the input can be sampled at any time, the 
output changes continuously during the interval M and 
it does make a difference as to when the output is sampled. 
If we assume that k output samples are taken per interval, 
they should be taken at times equal to 

2n+l6. n = 0, 1,2~t 

where k is the number of samples per interval. Thus, for 
one sample per 6.t, the sample should occur at tM, 
tM, etc., that is in the middle of each successive interval. 

Two practical limitations which exist in the estimation 
of the transfer function will now be considered briefly: 

1. Folding or aliasing of information at higher fre­
quencies into information at lower frequencies. 

2. Process nonlinearities 

If the continuous data are periodic and are sampled at 
intervals of M, no information can be obtained from 
frequencies higher than those with a period of 2M, 
corresponding to a frequency offmax = 2/26.t or W max = 
27Tfmax = 7TIM, termed the turnover, folding, or Nyquist 

t M. I. G. Hughes, Inst, Elec. Eng. 109 (Part B), 77, 1962. 

.::' 
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y Original function y Apparent funct ion 
after sampling 

~ 

l!'r- ; 

FIGURE 12.3-8 Example of folding (dots indicate samples). 

frequency. Higher frequencies are not ignored but are 
"folded" back into the lower frequencies and confused 
with data at the lower frequencies, resulting in incorrect 
estimates of s(w). Figure 12.3-8 demonstrates the concept 
of folding. Functions A and B are sampled at the same 
rate, but the sampling frequency for A is well below 
W max whereas the sampling frequency for B is much 
higher than W max ' Function A is unchanged by the 
sampling, but Function B now appears to be essentially 
the same as A. The phenomenon of wagon wheels turning 
backward in movies at slow speeds is an example of 
aliasing. As the speed of revolution approaches and 
exceeds the frame repetition rate, ·the spokes on the 
wheels appear- to change from rotating at a very low 
speed backward to a slow speed forward. Consequently, 
although as few samples as possible are desired to reduce 
the data processing, the sampling frequency must be at 
least twice and preferably five to ten times the highest 
frequency of interest . If the process exhibits nonlinearities, 
the assumption that € and X he uncorrelated will be 
violated and the estimates of g(w} distorted. In any actual 
experiment, it is desirable, insofar as feasible, to examine 
the output amplitude as the input amplitude is changed 
at some given frequency, or to see if the output frequency 
is the same as the input frequency. Such tests disclose 
any significant nonlinearities present. A step input can 
be used to get a rough idea of the process time constants 
if the process is modeled as a lumped system. From these 
values the frequency range of interest can be selected. A 
record of at least four times the largest time constant of 
the process should suffice to let G(t) settle to its final 
value. 

12.3-4 Precision of Transfer Function Estimates 

Both systematic and random errors can arise and be 
merged into the calculations used to estimate the transfer 
function . Systematic errors include such factors as : 

1. Improper initial conditions. 
2. Periodicity in the input. 
3. Bias in the input . 
4. Improper approximation of a delta function input, 

which is equivalent to bandwidth limitations on the test 
signal. 

5. Interference from other inputs . 
6. Instrument error. 
7. Quantization error. 

Such errors can be kept small by appropriate choice of 
the test input and proper control of the experiment. 
The error in the transfer function due to initial con­
ditions and/or periodicity of the test signal can be made 
of the order of I percent or less by applying the input at 
least one signal period prior to observation and by 
making this period at least five times the dominant time . 
constant of the system. 

The bias error can be shown to be inversely pro­
portional to M. Unfortunately, mean square errors due 
to wide-band noise are proportional to M, so the bias 
error cannot, in general, be made suitably small by 
choosing M large. As a result, a correction must be 
made based on measurement of Rx y( -r) over regions of 
its argument where the transfer function is expected to 
be negligible. In the presence of significant amounts of 
noise, the estimation of the bias would have to be made 
by using several independent values of Rxy(-r). 

The error due to the delta function approximation can 
be shown to be related to the ratio of the input band­
width to the output bandwidth. When this ratio is of the 
order of 14:1, the fractional error introduced is of the 
order of 0.5 percent , Instrument limitations, either 
caused by nonlinearity or distortion of the record at 
high and low frequencies, must be avoided by calibration 
and choice of proper instruments. A sinusoidal input 
passed into the instruments to check bandwidth and 
linearity validates instrument performance. If the process 

. ~ 

t~ 
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record is quantized, the discrete intervals chosen must be 
small enough to make ' the error negligible. Florentin 
et a/.t gave a comprehensive account of the possible 
sources of systematic error ,and the possible methods of 
error reduction. 

Let us now turn to the random errors£(t) of observa­
tion. While it is possible to estimate the variances of the 
estimated autocorrelation function, crosscorrelation 
function, power spectral density, and cross-spectral 
density for certain types of random error, these variances 
are of lesser interest than the variance of the estimated 
transfer function itself and the variances of the estimated 
coefficients in the estimated tninsfer function. Wei shall 
assume that random uncorrelated errors are added to the 
deterministic input and output as shown in Figure 
12.3-9 : 

X(t) = x(t ) + £o(t) (12.3-17) 

yet) = yet) + £(t) (12.3-18) 

By multiplying each equation by itself with the argument 
of (t + or), taking the expected value of both sides to get 
the correlation functions, and then taking the Fourier 
transforms, we obtain 

sxx(w) = sx.,,(w) + SfOfO(W) 

Syy(w) = SIIy{W) + see(w) 

SXy(w) = SXIl(W) 

The correlation functions between x and £0, y and e, 
and £ and £0 are assumed to be zero. We also assume that 
the random errors £(t) and £o(t) are stationary so that 
the observed process input X(i) is stationary. The tests 
described in Chapter 3 can be used to verify these 
assumptions. 

The coherence function between the input and output 
yi¥(w), defined as 

v2 ( ) _ Ilsxy(w)112 " o ~yh(w) s 1 (12.3-19)yXY W - • ( ) . ( )
sxx w Syy W , 

is a measure of the linear dependence between X and Y 
in the frequency domain corresponding to the square of 

E(t) 

,,(t)-~-~ 

'-------' 
Y(t) . ' 

Eo(t) X(t) 

FIGURE 12.3-9 Additive measurement errors. 

t J. J. Flo rentin, B. D . Hainsworth, J . B. Reswick, and J. H. 
Wescott, Joint Symp, on Instr. and Comp., Inst. of Chern. Eng., 
London, 1959, p. 18. 
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the correlation coefficient in the time domain. To observe 
the effect 'of the additive errors, the coherence function 
can also be expressed as follows: 

.2 ( ) _ , llsxy{w)II 2 

yXY W - [sxX(W)+SfOfO(W)][SIIII(W)+S,,(w)] 

_ Il sxlI(w)112 '. 

- S (w)s ' (w)[1 + .S..(w) +SfOfO(W) +SfOfO(W)S.. (w)] 
. xx 1111 , " SlIuCW) sxx(w) . , sxxCw)slIiw) 

(12.3-20)
1+ s.. (w) +SfOfO(W) +SfOfO(W)S,,(w) 

SYII(W) sxxCw) sXX(W)SIIy{W) 

For the special case of no error in the input, making use 
of Equation 12.3-9, 

.2 ( ) 1 . (12.3-21)yXY W = • ( )
S.. W

I +-­SIIy{W) 

If see(w) « Syy{w), then 

y2 (w) ,..", I _ s..(w) 
xt ,..", SIIy{W) 

Goodmanj made use of the coherence function to 
obtain the following approximate confidence statement 

r-; 
for the gain and phase angle when G(w) is an unbiased 
estimate of g(w) and sampled data are used: 

-<: 

probability{IIIIG(w)II.- II g(W)II II < sin B 
II g(W)II 

and II~) - !f(W) II < fJ} 

,..", I _ [, 1·-- yh(w) ]k!2 (12.3-22)
- 1 - yi¥(w) cos" fJ 

where fJ is the limiting error (in radians). The number of 
degrees of freedom per spectral calculation-point, k, 
for sampled data is calculated as follows. If N = ttiM 
is defined as the number of sample intervals, and Nm 

is defined as the number of intervals in the maximum 
lag : 

then k sz 2N/Nm for all frequencies 0 < W <wm a x'§ 

At W = 0, k = tdorm • For continuous data, k '= 2bet, 
where be is the equivalent bandwidth of the input and 
window. 

::: N..R. Goodman, Technometrics 3, 245, 1961. 
§ R. B. Blackman and J . W. Tukey, The Measurement 'of Power 
Spectra, Dover, New York, 1959. 
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Because rh(w) is not known, a conservative estimate 
must be substituted; hence the confidence statement will 
be only approximate. Once a first estimate of the coher­
ence function has been made, the approximate number 
of degrees of freedom needed to measure the frequency 
response to the desired accuracy can be calculated from 
Equation 12.3-22. Then g(w) is estimated for the 

i A 
indicated degrees of freedom and rh(w) is reevaluated. 

As an example of the application of Equation 12.3-22, 
consider an experiment in which 

w = 0.100 radian 

Bf'[Sxy(O.IOO)J = 0.01287 

f[Sxy(0.100)] = 0.04822 

Sxx(0.100) = 0.09875 

Syy(0.100) = 0.003153 

Number of data points = 240 

Time of record = I hr 

Window lag time = 10 min 

Maximum time 
lag for correlation = 20 min 

Hence, 
A 
rh(O.IOO) = 0.800 

A 
rxy(O.IOO) = 0.89 

and 

k = 2(60r~12 
10 

For a confidence coefficient of 0.90; 

i - 0.80 ]6
0.90 = 1 - [1 _ 0.80 cos 2 8 

from which 8 = 0.349 radian a~d sin 8 = 0.342. Hence, 
A 

II !IG(w)II - 111 < 0.342 and !I~) - .p(w) II < 20.0° II g(w) II

To ascertain the ma ximum and minimum limits on the 
frequency, note that 6.1 = 2

6400 = t second so that 
fm ax = 1/[2(;t)] = 2 cycles/min or W m ax = 2(217) = 12.56 
radians/min.The minimum frequency is/min = 1/[2(20)J = 

0.025 cycle/min or 0.157 radian/min. 
Jenkins t gave approximate expressions for the vari-

A A A 

ances of rh(w), IIG(w)/I, and .p(w) if large samples are 
taken : . 

A 
Var {YXy(w)} ~ ~k [I + rh(w)J (12.3-23) 

t G. M. Jenkins, Chapter 18 in Time Series Analysis, ed. by M. 
Rosenblatt, John Wiley, New York, 1963. 

A a [1 ]Var {IIG(w)IIJ ~ 2
k 

Ig(wW rh(w) - 1 (12.3-24) 

(12.3-25) 

where 
+N 

ak = t L w~ 
k= -N 

where Wk is the window in the time domain with k =
 
T/6.t, or T = k 6.t, and m = tm/6.t, or tm = m 6.t, re­

placing T and tm• The particular quadrant for the phase
 
angle has to be obtained by independent means. Equation
 

A 
12.3-24 indicates that as rh(w) ~ 0, the Var {!I G(w) !I}
 

A
 
~ co, and as rh(w) ~ 1, the Var {IIG(w) !I}~ O. Jenkins
 
also showed that to a first order of approximation the
 

A A 
Covar {IIG(w)II, .p(w)} = 0, indicating that the gain and 

A 
phase angle can be treated separately. If p( IIG(w) !I), the
 
probability density of the estimated gain , is represented
 
approximately by a x2 probability density with the
 
number of degrees of freedom defined -by
 

4 
v = ---:;---:----_::_ 

ak[ri:(w) - 11 
the confidence limits for a confidence coefficient of 
(I - 2a) for the log [II g(w) !I] are 

Lower Upper 

A A 

log vIG(w)1 10g.vIG(w)!
~-a X: 

where X: and X~-a are, respectively, the lower and upper 
a percentage points of the X2 density. 

For multiple inputs and outputs, the coherency matrix, 
taking into account the correlation which may exist 
between inputs, is 

y2= [{[sX(w)]-lsXY(wWJ*sXY(w)[liY(w)J -l (12.3-26) 

where the * designates conjugate. In the absence of 
error, y2 = I. Each element of y2 can be used in Equa­
tion 12.3-22 at a given frequency. 

Example 12.3-1 Estimation of the Transfer Function by 
Correlation Analysis 

Gallier, Sliepcevich, and Puckett t used a simple lumped 
(well-mixed) tank as a heat exchanger to estimate the process 
transfer function by the correlation technique. Figure 
EI2.3-1a illustrates the experimental arrangement. Both the 

t P. W. Gallier, C. M. Sliepcevich, and T. H. Puckett, Chern. 
Eng. Progress Symp: (Ser, No. 36) 57, 59, 1961. 
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w 

F Tz 

FIGURE E12.3-1a 

heating and cooling fluids were water . The mathematical 
model for this process is t 

I. Hot outside fluid 

Accumulation input output interphase
 
transfer
 

2. Cold inside fluid 

C M dT. = WCp3T3 - WCp,T, + UA(T2 - TJ (a2)
P, dl 

Accumulation inpu t output interphase
 
transfer
 

where 

A = outside area of coolant coils, ft2 
Cp = heat capacity, Btu /(IbWF) r 

F = volumetric flow rate, ft3/min 

t D. M. Himmelblau and K. B. Bischoff, Process Analysis and 
Simulation , John Wiley, New York ,l968, Chapter 2. 

M = mass of coolant inside coils, Ib 
T = temperature, of 
1 = time, min 

U = interphase heat transfer coefficient, Btu/(min)(ft2WF) 

V = volume of fluid in the tank, ft3 
W = mass flow rate of fluid through coils, lb/rnin 
p = density of fluid, Ib/fta · 
Equations (a) can be rearranged as follows: 

dT2 + [F + ~]T2 _ [~]T. = P1CP1FTl (bl)
dt V P2CP2Y P2CP2V P2CP2V 

WC p3TadT. + [W + UA ]T. _ [ UA ]T2 = (b2) 
dt M t;JCp, MCp, MCP4 

The product T. W/M was approximately zero because of the 
small amplitude variations in W, as demonstrated by tests 
on an analog computer, and hence the product was neglected 
in order to linearize Equations (b). For the special case in 
which the heat capacities and densities of the two fluid 
streams were the same, a random input was introduced in 
the form of fluctuations in W while F, Fl , and Ta were held 
constant. The random input was physically generated by 
setting a solenoid valve at a high or low flow rate at time 
intervals of 10 seconds based on a table of random numbers 
depending upon whether the last digit was odd or even, 
respectively. Figure EI2.3-1 b illustrates a record of the 
input function which is essentially a random square wave 
(random binary sequence) with amplitude from +a to -a. 
The input function W(I) can be expressed as 

. +a odd digit} .
W(I - Z ) = d" with (n - 1)lm < 1 < nt m{ -a even igtt . 

where Z is a random variable designating the time interval 
between 1 = 0 and the very first switching time.· All sub­
sequent switching decisions were made at n 6.1 with n an 
integer. 

2.0 gal/min 
Input coolant flow rate, W 

\, 

I I 
-al I 

I I0.0 gal/min I I 

--l !--10 sec =tm 

Output temperature, Tz 

FIGURE E12.3-lb . Input and output record of the tank. 
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The autocorrelation function of the random binary 
sequence (square wave) with a switching period tm (refer to 
Figure 12.3-2) is 

rww(r) =4'{W(t)W(t + r) } 

2(_ {a I - "t:") . for 0 :::; IITII :::; tm 

o i for IH > tm 

The autocorrelation function has a triangular shape similar 
to the diagram in the second row of Figure 12.3-2 except 
that the peak is at a2. As tm approaches zero, rww(-r) 
approaches an impulse function, and the crosscorrelation 
function rWT between the input and output approaches that 
of an impulse response function. The input power spectral 
density is determined by taking the Fourier transform of 
rww(T): 

= a2 rim (I _M) e- I on dr 
• -1m t« 

= 2a2J~m (1 ~ Ilt:ll) cos WT dr 

2 
msm-) 

= a2t __2_ 
. wt 

(c) 
( 

m wtm 

T 
It is necessary that the input contain enough power at 

frequencies of interest so that the response can be measured 
.at those frequencies. Based on the assigned values (with t 
in minutes, temperature in of , and flow in lb/rnin) listed in 
Table E12.3-1, the transfer fun~tion of the linear model was 

..T2 (s) 4.215 
(d)

W(s) = S2 + 13.081$ + 9.413 

and the corresponding impulse response for the model in 
the time domain was . 

g(t) = 0.3646(e - O;76 41 _ e-12.32t) 

Consequently, the time constants for the equipment were 
approximately 1/0.764 = 1.3 and '1/12.32 = 0.08 minute. A 
comparison of the frequency response of the model (omit­
ting the T4W/M term) obtained from the transfer function 
of Equation (d) by placing s = iw and putting g(w) in 
polar forin and the input power spectral density given by 
Equation (c) led to the choice of t« as 10 seconds. The power 
spectral density of the random square wave has a repeating ' 
zero value at (wtm/2) = mr, n = 1,2,3, . . . . Selection of 
tm = 10 makes the first zero occur at 37.7 radians/min where 

TABLE E12.3-1 

v = 0.7671 fe
 
F = 32.0 lb/min
 

Pi = P2 = P = 62.4 ft3
 
C"2 = C"4 = C" = 1.0 Btu/(lb)CF) 

u = 39.7 Btu/(min)eF)(ft2
) 

A = 1.84 ft2 
M = 1.682 Ib 
T1 = 140°F 
T3 = 70°F 

the system response was attenuated by a factor of more 
than 100. 

To process the input-output data on a digital computer, 
the time record was sampled at 1.93 second intervals, 
corresponding to 1 millimeter of record length and to a 
folding frequency of 97.5 radians/min, a frequency well 
above that which could be obtained from the equipment. 
The mean values of T2 and W were evaluated from the 
entire time record and subtracted from the respective 
variables in order to remove bias from the correlation 
functions; +a corresponded .to 1.0 gal/min and - a to 
0.6 gal/min, so that lal = 0.2 gal/min as shown in Figure 
E12.3-1b. 

The estimated crosscorrelation function was calculated 
from the adjusted discretized data by 

R WT(T) = _1_ n~ W.(t)T1+f 
n - m L.. 

1=1 

I n-m ][ In]
. - --" W1(t) - '- " T1 (e)[n-mL.. n -m L.. . 

t=l f= m + l 

where T == T2 , m is the maximum number of time delay 
increments used, 'and n is the total number of discrete data 
points abstracted from the time record. The autocorrelation 
function can be computed similarly. The terms subtracted 
on the right-hand side of Equation (e)w.ere .used.to:.remove 
any possible bias caused by working with fractions of the 
total time record. The time required for the computations 
was approximately proportional to (n - m)m . 

Estimates of the power spectral density were determined 
by representing RWT(T) by straight-line segments between 
the discrete values as described in Section 12;2-2. To test 
the magnitude of the error involved in representing RWT(T) 
by straight-line segments, some simulation studies were 
carried out for assumed autocorrelation functions. At 
frequencies of 0.032 radian/min, the numerical error .was 
in the fourth significant figure; at "I radian/min 'the error 
was in the third significant figure; at 500 radians/min the 
error was in the second significant figure 'in the real part of . 
the spectral density. 

Sums of the terms resulting from analytical integration 
over each increment in the expression for RwrlT) were 
added together to obtain the Fourier transform of RWT(T): 

SWT(W) = 'f f+l wl(T)[aj + (3j(T - TJ] e-l",j t>t dr (f) 
i » -N j 

where 
" 

Wl(t) = the lag window = [1 - (T/t m)2]1; I = 2 
aj = the value of a correlation function at time n /),.t 
(3j = the average slope of the correlation function between 

timej /),.t and U + 1) /),.t, or
 

a,(U + 1) /),.t - aD /),.t))
 
/),.t
 

j = the number of the time increments
 
N = the total number of time intervals in the time
 

record
 

Equation (f) avoids inaccuracies at high frequencies which 
might result if the product a jU D.t) e -I",j M were integrated 
by the trapezoidal nile. 

.i" 

--_._----_ .• . .• ._- _ .._ .. _....•.... _. 
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2.0 

1.0 

Normalized crosscorrelation function 

1800 20 .40 60 80 100 120 140 160 

1.0 

0.8 Normalized autocorrelation function 

Rww(r) 0.6 

Rww(O) 
0.4 

0.2 

0 

0 20 40 60 80 100 120 140 160 180 
r 

FIGURE E12.3-1c Correlation estimates for 3000 lagged products. 

10 

"t­ --. Theoretical spectral density o
 
~930 }

o 3180 Number of data pairs
 
05180
 

1.0 

0.1 L..- ---'	 ....&.... 

0.01	 0.1 

FIGURE E12.3-1d Estimated input power spectral density, Sww (w). 
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After integration, Equation (f) can be placed in a form 
more suitable for digital computation : 

1 { I [ . . N- 1 ]}
SWT(W) = ~	 I N sin wN At + w At (Ii - 1i -1) cos wN At - (11 - 10) + 6 (21i - 1i+1 - 1i-1) cos wj At 

1 { 1 [ - (N-1 ) ]}
+ ~ I - N sin wN At t w At I -N - 1-(N- 1)cos wN At - (/-1 - /0) + J ~1 (21i - Ii+l - 1i-1) cos wj At 

. { 1 [ N - l	 ]}+ ~ (IN cos wN At - 10) - w At (IN - I N- 1) sin wN At + ;S (21i - Ii +l - 1i-1) sin wj At 

+ i{ - (IN cos wN At - 10) - w ~t [ -(l-N - IN -1 ) sin wN At - %(2fj - fj+l - fj -1) sin wj At]} (g) 

wherefj == wU At )· RWTU At). 

300 
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100 
OJ 

"0 6 930
Z o 3180 'c 
C'I o 5770"' E 
OJ 

'E
a;"'
a: 

10 

5 
0 
0.01 100
 
0
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~ 60 e 
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OJ 
"0 

~ 90 
c: 
"' 
l}l

&120 

130 

180':-:- -L ----l ...L
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Freq uency. rad ians per minute
 

F IG UR E E12.3-Ie Estimated crosspower spectral density. 
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0.1 10.0 



Figure EI2.3-1c illustrates typical values of RwT(r). Also, 
contrast the expected value of the autocorrelation function, 
an isosceles triangle at the origin as shown in Figure 12.3-2 
with Rww(r) in Figure EI2.3-1c. As the record length 
increases , the fluctuations to the right of the triangle die out. 
The estimated autocorrelation and crosscorrelation function 
values have been made dimensionless by dividing by the 
value of R( r) at T = O. 

Figure EI2.3-1d compares the input power spectral 
density Sww(w) for increasingly long time records with the 
theoretical density given by Equation (c). Figure EI2.3-1e 
shows the cross power spectral density . The transform 
calculations were truncated at a lag of 180 sampling 
increments. 

Finally, the estimated transfer function was computed by 
division as 

(h) 

OJ 

Theoretical 
930 ' .. 
3180 Number .of 
5770 data pairs 

Sinuso idal input 

A 
D 

o 
+ 

0,001 ':'::-----------'----­ l.­ ---L ----l 
om 

,g 0.1 

e 

] 
'iO 
E o z om 

G(w) = SWT(W) 
Sww(w) 

for various record lengths consisting of 930 to 5770 pairs of 
[Wt(t), Til . Since the largest time constant of the experi­
mental equipment was 1.31 minutes, the maximum time 
delay of (180)(1.93)/60 or 4.4 time constants permitted the 
response to settle to' roughly one percent of its initial value. 
Figure EI2.3-lfcompares the gain for G(w) (the gain has been! 

j 

r 
; 

! 

~ ... 
f 

r 
I 
I 
I 
! 

f 

I. 
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normalized by dividing by the highest value of IG(w)J) 
from Equation (h) with the corresponding quantities deter­
mined : (1) theoretically from the parameters given in Table 
EI2.3-1 and (2) by frequency response experiments on the 
same equipment using a sinusoidal input. Division of 
SWT(W) in Equation (g) by sww(w) , the theoretical input 
spectral density, yielded improved predictions of the gain 
(not shown). Estimates of the gain also improved as the 
record length increased. 

One reason for the departures from the theoretical and 
frequency response curves, in addition to the truncation of 
the time record, was believed to be the correlation of the 
process noise with the input as mentioned in connection 
with Equation 12.3-4. Equation 12.3-8 would become 

sxy(w) = g(w)sxx(w) + sx.(w) 
or 

"() sxy(w) - sx.(w)g w = -""~:-7"'"'~~ 

sxx(w) 

It was not possible to isolate fO(t) so that sx. (w ) could be 
evaluated, but the direction of the correction to improveg(w) 
is downward. The recorded data showed evidence of low 
amplitude, high frequency variations associated with tem­
perature eddies in the fluid in the tank as a source of the 
possible correlation. 

LO 10 100 
Frequency, radians per minute 

FIGURE E12.3-lf Normalized magnitude of the tran sfer function in the frequency domain 
using the estimated input power spectral density (80-percent confidence limits from Equation 
12.3-22 shown by ~). 
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Problems 

12.1	 The frequency response of an electropneumatic 
transducer is measured by feeding a sinusoidal 
voltage into the transducer and recording the output 
pressure produced. The output pressure is measured 
with another transducer (pressure pickup) which 
convert s the pressure signal to a voltage. This voltage 
is recorded on a Sanborn Recorder, thus showing the 
electropneumatic transducer's output pressure. The 
measured data are shown in Table PI2.1. 

A proposed transfer function for the transducer is 

k 
g(s) =-­

. . TS +. 1 

where .,. is the time constant in seconds and k is in 
psia/volt, (Note: an 18-volt change (± 9 volts) from 
the midscale voltage is equivalentto a I-t-psia change.) 
Estimate T. What is the precision of T? 

.__._--- -----~~--~--~-~---~~ 

Input Frequency Magnitude Phase Lag 
(cycles/sec) Ratio (degrees) 

0.01 1.00 o 
0.04 1.00 3 
0.Q7 0.98 6 
0.10 0.97 9 
0.20 0.94 13 
0.40 0.90 23 
0.70 0.84 32 
1.00 0.75 36 
2.00 0.54 55 
4.00 0.34 63 
7.00 0.23 64 

12.2	 A frequency response test of an essentially frictionless 
control valve is conducted by applying a sinusoidal 
pressure input to the valve and recording the change 
in position of the valve stem. The amplitude of the 
input signal is 1.50 psia as in Problem 12.1. Data for 
the frequency response test of the control valve are 
shown in Table PI2.2. 

TABLE P12.2 DATA FOR THE FREQUENCY RESPONSE 
TEST OF THE CONTROL VALVE 

Input Frequency Magnitude Phase Lag 
(cycles/sec) Ratio (degrees) 

0.01 1.0 11 
0.02 1.0 13 
0.04 1.0 ' 15 
0.Q7 0.99 19 
0.10 0.98 27 
0.20 0.94 48 
0.40 0.69 87 
0.70 0.35 131 
1.00 0.17 164 

Determine the two time constants, T1 and T2 , as 
well as k in the transfer function model of-the valve : 

12.3	 The same tank as described in Problem 11.2 was 
tested with a sinusoidal input. The figure to-the 
immediate right of each data column represents 
scale factor adjustments to be added to the data to 
obtain the proper response,t What frequency re­
sponse function represents the data satisfactorily? 
(Refer to Problem 11.2 for additional information.) 

t K. A. Bishop, Ph.D, Dissertation, Univ. of Oklahoma, 1965. 

'-~ -~------' '----------- _....----- . 
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~umber I>ata 

1 18.7 + 66.7 
2 13.1 
3 8.0 
4 3.3 
5 43.1 + 22.6 

6 39.1 
7 35.4 
8 32.0 
9 28.9 

10 26.0 

11 23.3 
12 20.8 
13 18.4 
14 16.2 
15 14.2 

16 12.3 
17 10.5 
18 8.9 
19 7.3 
20 5.9 
21 46.9 - 19.8 
22 45.6 
23 44.4 
24 43.3 
25 42.2 

26 41.2 
27 40.2 
28 39.3 
29 38.4 
30 37.6 ~ 

31-" '36~S--

32 36.1 
33 35.4 
34 34.7 
35 34.1 

36 33.5 
37 32.9 
3.8 32.4 
39 31.9 
40 31.4 
41 30.9 
42 30.4 
43 30.0 
44 29.6 
45 29.2 
46 28.8 
47 28.5 
48 28.1 
49 27.8 
50 27.5 

Number 

51 
52 
53 
54 
55 

56 
57 
58 
59 
60 

61 
62 
63 
64 
65 

66 
67 
68 
69 
70 

71 
72 
73 
74 
75 

76 
77 
78 
79 
80 

81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

91 
92 
93 
94 
95 

96 
97 
98 
99 

100 

I>ata 

27.2 
26.9 
26.6 
26.3 
26.1 

25.8 
25.6 
25.4 
25.1 
24.9 

24.7 
24.5 
24.4 
24.2 
24.0 

23.8 
23.8 
23.5 
23.4 
23.3 

23.1 
23.0 
23.0 
22.9.. 
22.8 

22.8 
22.6 
22.4 
22.3 
22.2 

22.0 
21.9 
21.8 
21.8 
21.7 
21.6 
21.5 
21.5 
21.5 
21.3 

21.4 
21.4 
21.2 
21.3 
21.2 

21.1 
21.0 
21.0 
20.9 
21.0 

12.4	 Compute the finite time autocorrelation function 
and the finite time averaged poweral spectral density 
for the dependent variable in the process model .: 

dY 
dt + aY= X{t) 

if X{t) is periodic and is given by: 

(a)	 X{t) = A cos (wt + .p), where A is a random 
variable. 

(b)	 X(t) = a cos (wt + 4», where 4> is a random 
variable. . 

12.5	 Suppose a process output is the stationary random 
variable Y{t) = a sin (wt + .p). Estimate the ensemble 
autocorrelation function ryy{T) by calculating R y y { T) 
for the period 0 to tf and then let t f -+ 00. 

12.6	 Show that the estimated autocorrelation coefficient 
for the stationary random input 

X{t) = ao + 2:
n 

ak sin (Wkt + .pk) 
k=l 

is 
n 2 

Rxx(-r) = a~ + 2: ~k COS Wk-r 
k=l 

as tf	 becomes large. 

12.7	 The structure of turbulence can be analyzed by calcu­
lating the crosscorrelation function for two fluid 
velocities in a given coordinate direction observed 
at different positions. Assume the velocity fluctuations 
VA{t) and VB{t) at positions A and B are ergodic, the 
estimated crosscorrelation function is RAB{T) = 
<VA{t) VB{t) , and the standardized estimated cross­
correlation function is 

R* = <VA{t) VB{t) 

v<Vl)<V~> 

Let 

i.e., the rms of ratio of the sum and difference of the 
velocities. If <V1) = <V~>, show that 

K2 - 1 
R* = K2 + 1 

Also show that R* is relatively insensitive to the 
changes in the magnitude of VA and VB by letting 
(< Vl»% = (I + S){<Vl) )%, where S" is a perturba­
tion, and showing that R* is computed correctly 
even if <V1> #- <V~). What is the error in R* for a 
20-percent difference in the "V's ? 

j".12$$ a.. 
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APPENDIX A
 

Concepts of Probability
 

The term probability has a wide variety of meanings, 
ranging from "the probability of getting a head on the 
next toss of a penny is t" to "probably our team will win 
the next game." For convenience, theories of probability 
can be roughly classified in one of the following three 
ways: 

l. Frequency theories (objectivistic theories). 
2. Subjective theories (personalistic theories). 
3. Logical theories (axiomatic theories). 

The frequency theories of probability have many 
nuances and refinements that are described in the 
references at the end of this appendix, but a common 
interpretation is:t 

Whenever we say that the probability of an event E 
with respect to an experiment e is equal to P, the con­
crete meaning of this assertion [is]: In a series of rep­
etitions of e, it is practically certain that the frequency 

o of E will be approximately equal to P. 
-..: . 

Briefly, a probability space (n, E, P) consists of a 
physical sample space n (list of all events), a class E of 
subsets of n termed events or outcomes, and a probability 
measure P defined on E. Suppose that an experiment is 
carried out many times, each time determining whether E 
occurs or does not occur. After many experiments (" in 
the long run ") the ratio of the number of times E occurs 
to the sum of number of times E occurs and does not 
occur is P. Presumably the event E can be expressed as 
the value of a random variable. The probability of an 
event E is independent of the beliefs or expectations of the 
experimenter. Formulated in the above fashion, prob­
ability statements have a dual nature. Given a prob­
ability statement, the analyst can roughly predict the 
result of a long series of experiments. Given the results 
of the series of experiments, he can decide what prob­
ability statement to accept for some given decision 
criterion. 

When probability is defined by the frequency theory as 
above, certain natural uses of the word probability 

t H. Cramer, ·Mathematical Methods of Statistics, Princeton 
Univ. Press, Princeton, N.J., 1946, p, 149. 
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cannot be accommodated. For example, statements of 
the type "it is probable that there is no life on Mars" 
cannot be given a frequency interpretation. Also, state­
ments such as "the probability that the next toss of a 
penny will be a head is t" is hard to explain, since only 
one unique experiment takes place with a frequency either 
or 0 or 1. Nevertheless, the frequency theory approach 
to probability serves adequately in engineering and 
science. 

Subjective theories of probability rest on statements 
concerning actual degrees of belief. To interpret the 
statement" it will rain tomorrow" in terms of quantitative 
probabilities, the analyst must ask himself whether he 
would prefer to bet on the occurrence of an event E or 
on the lack of occurrence of E. A person has certain 
degrees of confidence in given postulates, and he modifies 
his beliefs as he gains additional information. It is quite 
plausible that two rational people will arrive at different 
estimates of the probability of an event using subjective 
theories of probability, although as their information 
increases they will tend to reach like estimates. Thus, 
according to the subjective theory of probability, the 
probability that an event has occurred or that an event 
will occur is a measure of one's belief in its occurring. 

The Bayesian approach to estimation makes use of 
prior information. Such prior knowledge can come from 
theoretical considerations, from the results of previous 
experiments, or from assumptions by the experimenter. . 
Typically, a Bayesian approach assumes a prior prob­
ability distribution of an unknown parameter e in some 
parameter space 8. The distribution is updated by using 
Bayes' rule to obtain the posterior probability distri­
bution. 

Consider a set of events or outcomes, AI> A 2 , • • • , An> 
and some other event, B. Bayes' theorem states that the 
probability that event A j will occur, given that event B 
has already occurred, which will be denoted by P{A j IB} , 
is equal to the product of the probability that Al will occur 
regardless of whether B will take place and the prob­
ability that B will occur, given that Ai has already taken 
place, divided by the probability of the occurrence of B: 

P{A IB} = P{B I A\}P{A\} 
\ P{B} 
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Further, if all events comprising the set {AI} are included 
in Al> A 2 , • • • , An' then 

P{B IAj}P{AI}P{AII B} = n	 (A-I) 
2: P{B IAj}P{A j} 

1= 1 

We can interpret these symbols as follows: 
i 

I. P{A I} is a measure of our degree of belief that event 
Al will occur or that hypothesis Al is true prior jo the 
acquisition of additional evidence that may alter the 
measure. P {A t} is denoted the prior probability. 

2. P{A t I B } is a measure of our degree of belief that 
event Al will occur or that hypothesis Al is true, given . 
additional evidence B pertinent to the hypothesis. 
P{AI I B} is termed the posterior probability. 

3. P{B I AI} denotes the likelihood that event B will 
occur, given that event Al or hypothesis Al is true. 
P{B IAI} is a conditional probability, interpreted in the 
Bayesian framework as a likelihood, L(AI IB). 

For continuous variable, Bayes' theorem can be more
 
conveniently expressed in terms of the probability
 
density functions rather than the probabilities them­

selves. Equation A-I can be expressed in terms of a set
 
of observed values of the random variable X, x, and an
 
unknown parameter (s)O as
 

(0 IX - x) - (0 I x) - L(O I x)'p(O) (A.2) 
p ., - - p - 1-"'", L(O I x) 'p(O) dO 

where 

p(O I x) = the posterior probability density function for 
0; it includes knowledge of the possible 
values of 0 gained from the experimental 
data x 

p(O) =	 the prior probability density function for 0 
(before the experiment in which x was 
observed) , 

L(f} I x) = p(x I 0) = the probability density function 
termed the likelihood function of 0 given x 
(described in more detail in Section 3.2-1) 

The denominator in Equation A-2 is a normalizing 
factor chosen so that the integration of the posterior 

distribution is unity , i.e., 1-"'", p(O Ix) dO = I. From 
Section 2.1 we find that 

J~",p(x I O)p(O) dO = p(x) 

If the prior distribution is a uniform distribution, that is 
the prior distribution is a constant, then Equation A-2 
reduces to 

. . .. L(O I x)
p( 0 I x) - -.::----'--'---"­- 1-"'", L(O I x) dO 

If prior knowledge concerning a postulated event or 
hypothesis is poor, the posterior probability is largely or 

entirely determined by the likelihoods, that is, by the 
additional accumulated evidence for which the likelihood 
function acts as a mathematical expression. If prior 
knowledge outweighs recent evidence, however, then the 
posterior probability is determined almost solely by the 
prior probability. 

The third concept of probability treats probability 
axiomatically. According to Keynes,t who first explicitly 
promulgated the use of the axiomatic approach: 

All propositions are true or false, but the knowledge 
we have of them depends on our circumstances; and 
while it is convenient to speak ofpropositions as certain 
or probable, this [statement only] expresses strictly a 
relationship in which they stand to a corpus of knowl­
edge, actual or hypothetical. .. . A proposition is not 
probable because we think it so. 

In other words , the probability of a statement is a real 
number determined on logical grounds only, and the 
degree of belief which a rational person can have about a 
statement, given certain evidence, is also determined on 
logical grounds alone. 

It is not possible in the brief space permitted here to 
illustrate the interaction of these concepts of"probability 
nor the ramifications of them. The interested reader 
should refer to the works of Kyburg, Korner, Lees, or 
Papoulis, listed as references at the end of this appendix, 
for authoritative and detailed nonmathematical dis­
cussions . 

In the application of tests and the design of experi­
ments, certain definitions and rules concerning proba­
bility are needed and are listed below. ' 

I. It follows from the frequency 'theoryof probability 
that 

Os;Ps;1 (A-3) 

2. If the probability of occurrence of one event A 
depends on whether or not event B ,has occurred, the 
two events are termed dependent: if the probability of 
occurrence of event A does not depend on the occurrence 
of B, or the reverse, then the two events are independent. 

3. ADDITION RULE . If Ai, A 2, • •• , An are mutually 
exclusive events , i.e., cannot occur at-thesametimethe 
probability of occurrence of just one of the events is 
equal to the sum of the probabilities of each Ak : 

peAl> or A 2, • • 0' or An) =,L
n 

peAk) (A-4) 
k= i 

Very often we let 

(A-5) 

t J. M. Keynes, A Treatise on Probability, MacMillan, London, 
1921, pp . 3-4. 

.' 
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FIGURE A.1 Mutually exclusive events (sets). 

Also, if each event is equiprobable so that peAk) = q, 

n 
1

Lq=nq=l or q = - = P(A k ) (A-5a)
n 

k=l 

In set theory, mutually exclusive events have no points 
in common. See Figure A.I. The union of the sets which 
represents the. set of all elements that belong to Al or 
A 2 or ... (union is designated by the symbol u) is 
Al U A 2 U···U An and 

P(A I U A 2 u· · .u An) = P(A I ) + P(A 2) .+ ... + P(An) 

(A-4a) 

If the space is completely. divided up into sets, then 
Equation A-5 holds. See Figure A.2. 

FIGURE A.2 A partition of the sample space into n events (sets). 

4. MULTIPLICATION RULE. If A and B are independent 
events, 

P(A and B) = P{A)·P(B) (A-6) 

In set theory the intersection of A. and B is the set of all 
elements that belong to A and B and is designated by the 
symbol fl. Thus, 

peA fl B) = P(A)·P(B) (A-7) 

as illustrated in Figure A.3 by the shaded area. (Keep in 
mind that mutually exclusive does not mean that the 
events (sets) are independent.) 

B 

FIGURE A.3 Intersection of A and B. 

If A and B are dependent events, 

P(A [B) = P(A fl B). (A-8)
PCB) , 

where the symbol P(A IB) means the "probability of 
A given B." As a corollary, 

P(A fl B) = P(B)P(A IB) .(A-8a) 

= P{A)P(B IA) (A-8b) 

Two kinds of probabilities enter Equation A-8a (or 
A-8b): the absolute probability of event B (or A) irrespec­
tive of whether or not A (or B) has occurred, and the 
conditional probability of event -.A (or B) computed on 
the assumption that B (or A) has occurred. It is easy to 
see that Equation A-6 or Equation A-7 is a special case 
of Equation A-8, because if the events are independent, 
P(A IB) = peA). 

For the case of many events, Equation A-6 can be 
expanded to 

PtA, and A2 and··· and An) = P(A I)·P{A 2 ) · .•• ·P(An) 

n 

= n P(Ak ) (A-9) 
k=l 

5. Another useful relationship for 'events which are not 
mutually exclusive is 

P(A) +- ,PCB) - P(A fl B) = P(A u B) (A-lO) 

Example A.l Application of Addition and Multiplication 
Rules 

The toss of two dice, one red and one blue, provides a 
simple illustration which makes the above rules more 
meaningful. When the two dice are tossed, because each 
has six sides and can yield one number (as the up number), 
the events which can occur can be portrayed in a two­
dimensional array termed the "sample space." .For fair 
dice it is possible to predict in advance the sample space; in 
other cases the same information must be obtained by 
experimentation. In Table EA.1, each box represents one 
possible outcome. 

TABLE EA.1 

Upper Face (Outcome) 

Red 
~ 

Blue 
~ 

Upper 1 
Face 

2(Out­
come) 3 

4 

5 

6 

1 2 3 4 5 6 

-
1, 1 1,2 1, 3 1,.~ 1,5 1,6 

-.­
1­

2,1 2,2 2,3 2,4 2,5 2,6 
----I­

3, 1 3,2 3,3 3,4 3,5 3,6 
1­

4,1 4,2 4,3 4,4 4,5 4,6 
------­

5,1 5,2 5,3 5,4 5,5 5,6 
-

6,1 6,2 6,3 6,4 6,5 6,6 

~~~""",,,",",,~-~ __ .,- •. - .. ---__._ ... __ ._._ ..._. - ..• ---.-~-._--~----.-,-----0-•. .. ---.--­. ...,.,...,..:,--;;~_.' ... ----.-.-,--.,-~_ ,--.. ----------.---.--.-.--..---.~--'_.,------.---
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The general procedure to determine the probabilities of 
various events is to: 

1. Set up the sample space of all possible outcomes in a 
table (above) or equation, if possible. 

2. Assign probabilities to each element (~: P = 1). 
3. Obtain the probabilities of an event by adding the 

probabilities assigned to elements of the subset comprising 
the event. ! 

For two fair dice, each outcome in the table is equally 
probable, so that Equation A-5a applies and P = ·i ti. 

Now we can pose and answer some specific questions: 

1. What is the probability of throwing the same number 
on each die , i.e., (I , I) , or (2,2), or (3, 3), etc .? Six elements 
make up the event, each mutually exclusive. Applying 
Equation A-4a yields 

P[(I, 1), or (2,2), or (3,3), or (4, 4), or (5,5), or (6,6)] 

= l6 + n + :l6 + -h + -h + n = t 

2. What is the probability that the sum of two tosses is 
1O?Three elements (on a diagonal), each mutually exclusive, 
comprise the event. The probability of each is :h; so that 
the sum of three 3V S is 1\ according to Equation A-4a : 

P[B + R = 10] = P[(6, 4), or (5, 5), or (4, 6)] =fi 

3. What is the probability that the blue toss is =:; 3 or the 
red toss is =:; 2? These are not mutually exclusive events so 
that one must avoid double counting of overlapping out­
comes . Inspection of the table yields the following events : 

.	 , 

B=:;3 }
(1, 1), (I, 2), (I , 3) R =:; 2 } . ..	 12 
(2, 1), (2, 2), (2, 3) 18 (I, 1), (1,2), , (I, 6)
 

. (2, 1), (2, 2), , (2, 6)
 

(6, 1), (6,2), (6, 3)
 

Enumeration of the duplicated outcomes: 

(1, 1), (I, 2), h. 3)}6 

(2, 1), (2, 2), (2, 3) 

in the counting gives 

P[(B =:; 3), or (R =:; 2)] = 18(n) + 12(ftr) - 6(n) = tt = t 

Direct application of Equation A-I0 gives 

peA) + PCB) - peA fl B) = peA u B) 

4. What is the probability that the blue toss is =:; 3 and 
the red toss is =:; 2? By counting outcomes, only six events 
represent B =:; 3 and R =:; 2: 

(I, 1), (1, 2), (I, 3) 

(2, 1), (2, 2), (2, 3) 

so that PCB =:; 3 and R =:; 2) = 3~6 = t. Because the tosses 
are independent of each other, Equation A-7 applies: 

PCB =:; 3 n R .s 2)	 = PCB =:; 3)·P(R .s 2) 

= G!)m) = t 

5. What is the probability that the sum of the dice is < 4 
given that the blue dice is 1? In this example we are dealing 
with a conditional probability (dependent events) so Equa­
tion A-8 applies: 

P[(B + R < 41 (B	 = I)] = P[(B + ~(~ ~ ~/B = 1)] 

From the table one can count 

PCB = 1) = 6h\) = t 

P[(B + R < 4) fl (B = I)] = 2hL6) = -ls 
so that 

P[(B + R < 4) fl (B = 1)] =Ts = t 
t . 

as might be observed directly. 
6. What is the probability that the first toss of the dice 

yields 4 and the next toss of the dice yields 4? Presumably 
the tosses are independent events so Equation (A-?) applies: 

PCB + R = 4) fl PCB + R = 4) = PCB + R = 4) 

·P(B + R = 4) 

= (-k)(-h) = Th 
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APPENDIXB
 

Mathematical Tools
 

This appendix is designed to provide the reader with a 
summary of certain mathematical principles employed in 
the main body of the text. These principles are usually 
encountered after a study of calculus. This appendix is 
only a summary and is not intended to be of sufficient 
scope or detail to be adequate preparation for those who 
have not encountered these principles before. 

B.1 PROPERTIES AND CHARACTERISTICS OF 
LINEAR EQUATIONS 

A combination of vectors or scalars is said to be linear 
if it can be assembled in the following form : 

(B.I -I) 

The x's in Equation B.l-l may be vectors : 

Xl == all Sl + a12 S2 + . (B.1-2) 

x, == an1 Sl + an2 ,S2 + . (B.l-3) 

or they may ~eJ).~lyI1omials 

Xl = P1(x):'; (B.l-4) 

x, = Pn(x) (B.I-S) 

or other functions. 
The x's are said to be linearly dependent if for some 

set of the CI'S (assuming the CI'S are not all zero) the 
following is true: 

n 

C1X 1 + C2X2 + . .. + CnXn = L CIXI = 0 (B.1-6) 
1=1 

On the other hand, if 

only if the c;'s are all zero, then the x;'s are said to be 
linearly independent. 

Example B.1-1 Linear Independence 

The polynomials 

P1(X) = ZX1 - X2 

P 2(x) = Xl + ZX2 

P 3(x ) = Xl + 4X2 

401 

are linearly dependent over the field of rational numbers 
since 

holds for at least one set of CI'S, namely, C1 = 1, C2 = _ .2-
2 ' 

and C3 = t. On the other hand the vectors 

Xl = Sl + ZS2 + 3S3 

X2 = 3S1 + ZS2 + S3 

are linearly independent since there is no set of CI'S that 
satisfies the following equation: 

C1(Sl + ZS2 + 3S3) + c2(3S1 + ZS2 + S3) = 0 (b) 

This latter can be seen to be true if we write three scalar 
equations in place of Equation (b): 

Sl : Cl + 3C2 = 0 

S2: ZC1 + 2C2 = 0 (c) 

S3: 3C1 + C2 = 0 

There is no nontrivial (c, "# 0) solution to this set of equa­
tions as can be seen by inspection. 

B.2 LINEAR AND NONLINEAR OPERATORS 

Given that dF is an operator, by linear operator we 
mean: 

1. Additivity (superposition): 

dF(f1 +11) = dF(fl) + dF(f2) (B.2-l) 

2. Proportionality : 

dF(kf) = kdF(f) (B.2-2) 

wherej', and/2 are functions. A well-known exampleofa 
linear operator is D2 = d2/dx2; observe that ' 

2Y1 2Y2
2( ) d d

D Y1 + Y2 = dx2 + dx2 

But on the other hand, (d/dx)2 is not .a-Iinear operator 
since 

(dYl) 2 + (dY2)2 =1= (dYl + dy2)2 
dx dx dx dx 

Other typical examples of linear and nonlinear operators 
are listed in Table B.2-!. 
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TABLE B.2-1 EXAMPLES OF LINEAR AND NONLINEAR OPERATORS 

Linear Nonlinear 

du 
2(u) == ­ % (u) == R(x)u2 

dx 

2(u) == ,Q(X)U %(u) == (:)U 
%(U) == J: H(x, S)U(S)U(S + x) ds 

% (u) == P(X) e" 

du anu 
2(u) == A(x) + B(x)u = C(X) dx % (u) == V(u) ax n 

u = a continuous variable in a given interval 
x, y, z = independent variables 

From the above definitions-s-Equations B.2-1 and 
B.2-2-it is easy to interpret a' nonlinear equation or a 
linear equation in a general way as 

£'(f) = ';(x) (B.2-3) 

(for a single independent variable x) in which Equation 
B.2-3 is linear if £'(f) is a linear operator and is nonlinear 
if it is not. The solution of such an equation, if it exists, 
will be a function 

f(x , y) = F(x) (B.2-4) 

involving one or more arbitraryconstants or parameters. i. 
which satisfies Equation B.2-3. 

B.3 LINEAR SYSTEMS 

The ease and accuracy of predicting system outputs 
are significantly dependent upon whether the system is 
linear or nonlinear. We shall call a system linear if the 
operator representing the input-output relation for the 
system is linear. For example, given the responses 

Yl(t) = f[x1(t)] (B.3-1) 

Y2(t) = f[X 2(t)] (B.3-2) 

the following must be true for the system to be linear: 

(B.3-3) 

A linear system also exhibits the property of propor­
tionality or homogeneity : if f[x1(T )] is actually kf[Xl(t)], 
then the response is kY1(t) . The real significance of the 
principle of superposition is that linear transformations 
cannot be applied in an exact manner to nonlinear 
systems. For example, a "square law" device which has 

........ . . __ ' " - . _ • • • • , - ..., _ _ • • • •_--_ .- •. _ _ • ._
 . ~,- ,_ .,- -~-- ---_. 

the input-output relation yet) = [x2(t )] is not a 
system since 

Yl(t) + Y2(t) = [xHt) + x~(t)] i= [Xl(t) + X2(t)]2 

B.4 MATRIX ALGEBRA 

Matrix algebra is widely used whenever large numbers 
of linearly combined variables must be handled . Famili­
arity with some of the notations, methods, limits, and 
applications of matrix theory is essential to the under­
standing of how to solve important classes of linear 
problems and how to simplify complex notation. Matrix 
operations are particularly adaptable to manipulation at 
high speeds on digital computers, so whoever uses these 
techniques is relieved of an immense amount of tedious 
repetitive detail. We shall summarize here the important 
properties of and operations on matrices and then illus­
trate some typical applications. 

A matrix is an array of elements t 

a12 

laua21 a22 
a= :::] 

aml am2 amn 

in a definite order. A square matrix is one in which the 
number of rows and the number of columns are equal. 
For example, an n x n matrix with n =3 is 

a ~ [~ ~ :] a 3 x 3 matrix 

t In texts, matrices are identified by bold-faced letters . 

....,.....- - ~-. _ , • • • , - •• .•••- •• •-_. _ _ ., • _.~• • - . - - - -. -...,. _.-:-._ .. .~ -• • '"c" __• • - .- ----:'"._ _ . ~ 

(B.4-I) 

linear 

(OM) 
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In the identity matrix (given the special notation I), the 
elements on the main diagonal are 1 and the rest of the 
elements are 0: 

o 0]
1 0	 a 3 x 3 (B.4-3) 

identity matrix o 1 

For two matrices to be equal, each and every element in 
the corresponding position in the two matrices must be 
equal. 

The transpose ofa matrix is obtained by interchange of 
rows and columns: 

[au a" a.,]
a12 a22 am2

aT =	 (B.4-4) . . 
aln a2n amn 

For example, if 

(B.4-5)a = G 0 -I] a' ~ [ ~ :]1 4 ' 
-1 4 

A symmetric matrix is one in which a = a": 

012] 
(B.4-6)a = 1 2 3.,[

234 

An adjoint matrix (d) is a transposed matrix of co­
factors. Given the square matrix a ~f order n: 

the elements of the cofactor au are outlined by the 
dashed lines: 

By definition the cofactor A ll of ali in the matrix is 
[( -1)1 +/] times [the determinant obtained by deleting 
the ith row and jth column from the matrix]. Then, 

A u 

.	 A 
.# = adjoint matrix = . 12. (B.4-7) 

[ 
A1n 

For example, 

X 1 Y] 
a = 1 2 1 

[ 
032 

Au = (1)(4 - 3) = 1 

A 12 = (-1)(2 - 0) = -2 

A 13 = (1)(3 - 0) = 3 

etc. 

-(2 - 3y) Y
(1 - 2..) ] 

2x	 -(x - y) 

-3x (2x - 1) 

The inverse of a matrix (a -1) is defined as 

a- 1a = I (B.4-8) 

One way that an inverse may be calculated is 

da-I = __ if det a =I- 0 (B.4-9)
det a 

An illustration is
 
cofactor matrix
 

56 -12 -4] 
[All] = -28 62 -12 

[ o -28 56 

det a = 392 

392 -392 

a-I = -28 ..&.L -12~r[""i 
-LL 

"392 392 

_ 0_ -28 
392 -"392 ~\~ 

-/47 

-.J.L[" -:]
38= =~ 196 

1­
98 -9 7 

If the determinant of a is 0, then a is said to be singular, 
and a-I does not exist . If aT = a-I, a is said to be 
orthogonal. A matrix consisting of a single column is 
called a column vector while a matrix consisting of a 
single row is a row vector: 

[
~] Column	 Row

[1 2 3 4]

3 vector	 vector 

4 

To multiply two matrices together, ab, they must be 
conformable; that is, the number of columns of the first 
matrix a must equal the number of rows of the second 
matrix b (a is the premultiplier and b the postmultiplier). 
Notice that ab does not equal ba except in unusual cases. 
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To multiply the two matrices a and b together, take the 
first element in the first row of a and multiply it into the 
first element of the first column of b. Take the second 
element of the first row of a and multiply it into the 
second element of the first column of b. Continue until 
each element of the first row of a has been multiplied 
into the corresponding element of the first column of b, 
and then sum the products. This sum forms the new 
element Cll of ab = c: .. 

Cll = L alJbil (B.4-IO) 
J=l 

Next, multiply in a similar fashion the first row of a 
into the second column of b, and sum the products; this 
becomes C12' Repeat until the first row of a has been 
multiplied into each column of b. This completes the 
first row of the product c. Then repeat the entire process 
by using the second row of a; multiply it into the first, 
second , etc ., columns of b to form the second row of the 
product c. The sequence of steps is continued until all 
rows of a have been accounted for. We now illustrate 
the method for two 3 by 3 matrices. 

·~ [~ :n b ~ [; ~ ;] 

(0 + 0 + 6) (1 + 0 + 4) (3 + 0 + 2)] 

ab = (0 + 2 + 3) (2 + I + 2) (6 + 0 + 1)
[ 

(0 + 2 + 6) (0 + I + 4) (0 + 0 + 2) 

[: ~:] " 
If a(x) is a matrix or a -vector with elements that are 

functions of x, the derivative of a(x) with respect to x is 
obtained by differentiating,each element of a(x) with 

, respect to x : . 

da(x) d[al'{x)] (B.4-11) 
dx = dx 

Then the integral of a(x) is 

J:~ a(x) dx = [J:~ [ajJ(x)] dX] (B.4-12) 

that is, integrate each element of a(x).
 
The rank of a matrix is the order of the highest non­


zero determinant contained in the matrix.
 

B.4-1 Solution of Algebraic Equations 

One important application of matrix algebra is in the 
solution of sets of simultaneous linear equations. For a 
set of linear equations to have a solution, the rank of 
the matrix of coefficients a and the rank of the augmented 
matrix [a, b], as described below, must be the same. 
With the use of a digital computer, it is possible to 

handle hundreds of sets of simultaneous independent 
equations of the form 

allxl + a12x2 + + al..x.. = bl 

a2lXl + a22X2 + + a2..x..,= b2 
(B.4-13) 

.­
a..lxl + a..2x2 + .. .+ a....x.. = b.. 

in which the al/s are constant coefficients and the x/s are 
unknowns. In compact matrix notation with 

[::: ::: al"l
a2.. 
a= 

a..l a..2 a.... 

X~m b~m
 
Equations B.4-13 become 

ax == b 

which has the solution 

(B.4-15) 
if det a '# O. 

Example B.4-1 Solution of a Set of Simultaneous Indepen­
dent Linear Equations 

Find the solution of 

2Xl + 3X2 + 4X3 + 5X4 = 1 

3Xl + 7X2 + 5X3 + 4X4 = 1 

Xl + 4X2 + 9X3 + 2X4 = 1 

5Xl + 2X2 + 7X3 + X4 = 1 

Solution: 
We know that a and bare 

By use of some suitable iterative method (such methods are 
discussed in detail in books on numerical analysis), the 
inverse of a can be calculated as 

[_OOOOm6 0.050725 - 0.188406 020lMSl 
-0.176812 0.237681 0.002899 -0.072464 

a- l = 
0.013043 -0.091304 0.139130 0.021739 

0.298551 -0.089855 -0.037681 - 0.057971 



and by Equation BA-15 

Xl] [0.065217]
X2 ­ 0.008696 

X= = 
X3 0.082609[ 
X4 ' 0.113043 

B.4-2 Eigenvalues and Eigenvectors 

If a is an n x n matrix and x is a column vector of 
order n, we can generate a new column vector y by 
multiplication : 

ax = y (B.4-16) 

Now we pose the question: Is y in the same direction as 
x? If so, we can think of y as being some scalar Atimes 
x, or 

y=ax=Ax (B.4-17) 

or 

(a - AI)x = 0 (B.4-18) 

For Equation B.4-18 to be true, it is necessary for either 
det (a - AI) to be zero or for x to be zero, but the latter 
is a trivial solution. Hence , 

(all - A) a12 aln 

det (a - AI) = a21 (a22 ,­ A) a2n 

anI 
-:.: .

On; (ann - A) 

=0 (B.4-19) 

(a - AI) is called the characteristic matrix of a, the 
det (a - AI) is called the characteristic (or secular) 
function of a, and Equation B.4-19is termed the charac­
teristic equation of a which can be expanded as a charac­
teristic polynomial P(A): 

det (a - AI) = peA) 

= An + P1An- 1 + .. .+ Pn-lA + Pn = 0 

(B.4-20) 

The scalar multiplier A we sought is one of the n roots 
(real or complex) of Equation B.4-20; each of these roots 
is called an eigenvalue (or characteristic value or latent 
root) of a and , in general , can be obtained by iterative 
methods. 

If Al is an eigenvalue of a, then for this value of A 
Equation B.4-19 is satisfied, and has a nontrivial solution. 
Momentarily, let us assume that Equation B.4-19 does 
not have multiple roots so that there are n distinct A's. 
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Associated with each one of these At's is a column vector 
XI that satisfies the equation 

(a - .\I)xl = 0 (B.4-21) 

These vectors are called eigenvectors or principal axes of 
the matrix a. The elements in the columns of x, are thus 
directly proportional to each other. If XI is regarded as 
a vector in n-dimensional space, only its direction is 
uniquely determined, not its length. 

For multiple roots, only one eigenvector is found for 
each distinct root. 

Example B.4-2 Eigenvalues and Eigenvectors 

Let 

Then 

P(A) = [1 - A 2] = A2 _ 2A _ 3= 0 (a)
2 1 - A 

Equation (a) has the roots (the eigenvalues) Al ;= -1 and 
A2 = 3. Usually the roots are not integers- as used in this 
example for illustrative purposes-e-but can be obtained by 
numerical methods (such as Newton's method) for non­
linear equations as described in texts on numerical analysis. 
For the root 1 = - 1, we can find an eigenvector which 
satisfies the equation (a - (-I)I)xl = 0; that is, 

1 - 2( -1) 2] [X ]
[ 1 - (-1) X: = 0 

(b) 

which yields 

2Xl + 2X2 = .0 
(c)

2xl + 2x2 = 0 

or 

(d) 

The second eigenvalue gives 

[
1 - 3 2] [Xl] = 0 (e)

2 1 - 3 X2 

or 

(f) 

From Equations (d) and (f) the eigenvectors associated with 
the eigenvalues - 1 and 3 are those values .of Xl and X2 

that satisfy Equations (d) and (f) ; one (of many) pair of 
eigenvectors is 

(g) 

respectively. Any scalar multiple of each of the vectors in 
Equation (g) is equally suitable. 

-
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Example 8.4-3 Eigenvectors 

If 

'\1 = '\2 = I; ,\a = '\4 = 6. For the eigenvalue I, we find 

4Xl = 2X2 + 0 + 0 = 0 

2Xl + X2 + 0 + 0 = 0 

o + 0 + 4xa - 2X4 = 0 

o + 0 - 2xa + X4 = 0 
which yields 

2Xl + X2 = 0 

2xa - X4 = 0 
or 

For ,\ = 6, it can be shown that an eigenvectoris 

B.4-3 Normalization 

The norm of a real vector is defined as 

Norm = (XTx)y.~Ji X~ (BA-22) 
1=1 

Normalization of a vector x is the process of dividing 
every component of x by the length of the vector (to 
yield a unit vector) . For example, 

Vector x = [1,2, -3,0] 

Norm x = vl2 + 22 + (-3)2 + 02 = V14 

Normalized vector}x = [_l_,~ , -3 , 0] 
(unit vector) V14 VI4 VI4 

An orthonormal vector is a normalized orthogonal vector 
(orthogonal unit vector) as described below, and can be 
constructed by the Gram Schmidt process or other 
techniques given in the references at the end of the 
Appendix. 

Example 8.4-4 Normalized Vector 

The eigenvectors from Example B.4-2 [ _~] and [;], are 

normalized as follows: 

Norm = v'P + (-1)2 = v'2 

Norm = v'P + 12 = v'2 

Normalized vectors are 

and li:] 
The normalized eigenvectors from Example BA-3 are 

1 
- v'S 0 

2 

v'S 
0 

2 

v'S 
0 

1 

v'S , and 
0 

0 
1 

v'5 
0 

2 
- v'S 

0 
2 

v'S 
0 

-1' ­

v'S 

B.44 Transformation to Canonical Form t 
A quadratic form is defined as 

.n n 

q = LLalJxjxJ = xTax (B.4-23) 
1=1J=1 

To avoid confusion in connection with terms such as 
alJXlxJ and aJlxJxl (i.e., a12Xlx2 and a21x2x1), which 
contain the same independent variables and would be 
ordinarily combined, we shall agree to eliminate . any 
ambiguity by replacing each member of every pair of 
coefficients by their mean: 

By this rule, the expansion of xTaxyields a symmetric 
matrix (a + aT)J2, the symmetry property retaining 
definite advantages as will appear below. To illustrate 
the rule, if . 

(B.4-24a) 

by agreement q is also in full expansion: 

q = x~ - 2X1X2 - 2X2Xl + xf + !x1xa + -!-X3X1 

(B.4-24b) 

t N.V. Yefinov, QuadraticForms andMatrices, Academic Press, 
New York, 1964. 

---------- .. ~~--,._ -------._.~--~--
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In matrix notation, Equation B.4-24b is 

-2 

1 

o 
where a is called the symmetric bilinearform. 

Of particular interest in interpreting empirical models 
is a method of reducing the general quadratic form, 
which may contain crossproduct terms, to the so-called 
canonical form which does not contain crossproduct 
terms . For example, if 

2 2 T[29 12]x q1 = 29x1 + 24x1X2 + 5X2 = X 12 
5

by a suitable transformation introducing a special 
matrix b as follows 

x = by (B.4-25) 

-2]
5 y 

and the canonical form of ql is evolved as 

q1 = yTbTaby = A1Y~ + A2 Y~ + ... + A,.y~ 

or specifically Itexe 

q1 = -l_~ -~][~~ I~][ _ '~ ' -~]y = yT[~ ~]y 
=y~+y~ 

To effect such a transformation, the major question is: 
How, in general, can one obtain the appropriate matrix 

,. [ 1 -2]
for the transformation, such as b = _ 2 5 above 'I 

A number of methods exist to reduce a quadratic form 
to equivalent forms (see the references-at the end of this 
appendix), but the method described belo~ is fairly 
simple and quite effective. It is known as reduction by 
orthogonal transformation, and it employs a unitary 
matrix' V for the matrix b above, i.e., x = Vi, where the 
vector x represents the old coordinates and i represents 
the new coordinates. 

Certain new nomenclature and properties of matrices 
that are needed are : 

DEFINITION I . A n x n real unitary matrix is one with 
the property VTV = VVT = In. 

DEFINITION 2. A real unitary matrix is an orthogonal 
matrix, i.e., VT = V- 1• 
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PROPERTY I, If a is a real symmetric matrix, there 
always exists an orthogonal matrix V such that VTaV is 
a diagonal matrix whose diagonal elements are the 
eigenvalues (characteristic roots) of a: 

A1 OJ 
(B.4-2)WaU ~ 0 A,. . . A" 

[ 

PROPERTY 2. The eigenvectors associated with distinct 
eigenvalues of a real symmetric matrix are orthogonal. 

The matrix V can be obtained by finding the eigen­
values of a and then forming the set of normalized 
(orthonormal) eigenvectors associated with the eigen­
values. The set of orthonormal vectors form the unitary 
matrix V . (In passing it should be noted that not every 
square matrix can be diagonalized by a nonsingular 
transformation such as Equation B.4-26; only Hermitian 
matrices can be.) Finally, the orthogonal transformation 
can be accomplished: 

q = xTax = (Vy)Ta(Vy) = yT(UTaV)y = A1 Y~ + A2Y~ + ... 

(B.4-27) 

Example B.4-5 Unitary Matrix 

By using the' normalized vectors from Example B.4-4 for 
A1 = 3 and A2 = - I, 

U = ­[~ ~J 
V2 v i 

Then, by multiplication, 

--11v i 

~2J 

In the other case, with A1 = 1, A2 = 1, A3 = 6, and A4 = 6, 

1 

V5 
0 

1 

V5 
0 

U= 

2 

V5 
0 

1 

V5 
0 

0
, , 

1 

V5 
0 

2 

V5 

0 
2 

V5 
0 

1 

V5 

-- .-. HI 
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and it can be shown that, with a from Example B.4-3, 

[::::], lP'aU = o 0 6 0 

000 6 

A geometric interpretation of an orthogonal trans­
formation is that of rigid rotation of Cartesian axes 
about the origin. Consider two sets of coordinates (see 
Figure BA-l) : 

and 

os; OX2' OXa 

Let Ulj be the cosine of the angle between OXI and OXj. 

FIGURE B.4-1 

The following equations give the relation between the 
two coordinate systems: 

Xl = U11Xl +Ui2X2 + U13X3 

X2 = U2lXl + U22X2 '+ U23X3 (B.4-27) 

X3 = U3 l Xl +. U32X ii +. U33X3 

or 

:II: = Ui 

Note that U11' U12, and U13 (the first row) are the cosines 
of the angles OXI makes with OX1> OX2' and OX3' 

respectively, while U11, U21> and U:n (the first column) are 
the angles that OXI makes with Ox. , Ox2, and OX3' 

respectively. 
One can show that U is an orthogonal matrix 

(U -1 = UT) since 

j = (1,2,3) (B.4-28a) 

and since 

(i # j) (BA-28b) 

Also one can solve for i in terms ofx and thus relate the 
new coordinates to the old ones : 

(BA-29) 

Example B.4-6 Transformation to Canonical Form 

Reduce q = 7Xl - 4XlX2 + 2XlX3 + 10~ - 4X2X3 + 7x~ 

to canonical form. 

Solution:
 
Set up q in matrix notation:
 

10q ~ .'ox ~ [x, x, x.{-; 
-2 

-2
 

Next, find the eigenvalues of a from det (a -AI) = 0:
 

7 - A -2
 

det -2 10 - A -21 J=0
 
[ 

-2 7 - A 

or 

(7 - A)[(1O - A)(7 - A) - (-2)( -2)] + 2[( -2)(7 - A) + 2] 

+ 1[4 - (10- A)] = A3 - 24A2 + 180A - 432 = 0 (a) 

The eigenvalues which satisfy Equation (a) are 6, 6, and 12. 
Consequently, the canonical form of q is 

q = xTax = i7(lP'aU)i = AIX~ + , A2~ .+ , "~~ 
(b) 

= 6x~ + 6x~+ 12~ 

where the ,X l' S are the new axes. 
To relate the new coordinate system to the old coordinate 

system, use Equation B.4-29: 

i = lP'x 

The matrix U is obtained as follows. For A = 6, the eigen­
. vectors are obtained as described in Section B.4-2. First 

introduce A = 6 into (a - AI) = 0: 

and then choose two sets (because of the repeated eigen­
values) of XI that satisfy Equation (c), i.e., satisfy Ul - 2U2 + 
U3 = 0, and also form orthogonal vectors . As the orthogonal 
pair, select, say, 

and 

For A = 12, select x's that satisfy 

- 5Ul - 2U2 + U3 = 0 

or, for example, 



MATHEMATICAL TOOLS 409 

Next, the three vectors are normalized which leads to the 
following result for U: 

1 1 1 

V3 '\1'2 V6 

U= 
1 

V3 
0 

2 

V6 

1 1 1 

'\1'3 '\1'2 V6 

It is not difficult to show that 

as follows: 

UTaU = 

The relation between the new and old coordinates then is 

i =' 

1 1 1 

V3 Y3 va 
1 

V2 
o 1 

-Y2 

121 

V6 V6 V6 

(d)x 

B.4-5 Solution of Nonlinear Sets of Equations 

The solution of a single nonlinear algebraic or tran­
scendental equation, or sets of nonlinear equations, is 
a much more formidable task than the solution of one 
or more linear equations. In steady-state processes, one 
or more material and energy balances can be nonlinear, 

in which case iterative techniques are required to evaluate 
the unknowns. Unfortunately, it is neither possible to 
determine in advance if the set of equations has a unique 
solution nor to assure that the iterative method will find 
the solution if it exists. But in working with equations 
based on real physical processes, this handicap may not 
prove to be of much practical significance. 

One basic technique to solve sets ofnonlinear equations 
is to linearize them by a Taylor series expansion, guess 
a set of values for the solution, solve the approximate 
linear problem, and improve the guesses by iteration. 
Such a procedure is' known as the Newton-Raphson 
technique. t 

D.S SOLUTIONS OF SINGLE ORDINARY
 
DIFFERENTIAL EQUATIONS
 

Many problems in unsteady-state heat, mass, and 
momentum transfer reduce to the solution of one or 
more ordinary differential equations. The engineer is 
usually interested in carrying out the integration of these 
equations in a formal analytical fashion, if possible. 
Sometimes the forms of the analytical solutions are rather 
complex and the determination of input-output numbers 
is tedious or even impractical. In such instances, it may 
be faster to solve the equation(s) by graphical or numeri­
cal methods with or without the assistance of an analog 
or digital computer. On the other hand, the generality 
of a formal solution has many desirable features. 

The order of a differential equation is the order of the 
+ d 2y/dx2highest derivative; that is, d3yJdx3 = 3x is of 

, order 3. The general solution of any ordinary differential 
'equationcontain.s as many arbitrary constants as the 
order of the differential equation; consequently, we need 
as many initial or boundary conditions as there are 
constants. The general solution of an nth-order differen­
tial equation essentially consists of a relation between the 
independent and dependent variables (involving also n 
arbitrary constants) which, when introduced into the 
differential equation, satisfies it. . 

The degree of a differential equation is the highest 
power to which the highest-order derivative is raised. As a 
consequence of this definition, all equations of higher 
degree than 1 are nonlinear. 

In the limited space here, we can only list solutions 
for a few ordinary differential equations which are widely 
used in process analysis. Murphyj and Kamke§ listed 
solutions for more than 2000 ordinary differential 

t L. Lapidus, Digital Computers/or Chemical Engineers, McGraw­

Hill, New York, 1962, p. 288; K. S. Kunz, Numerical Analysis,
 
McGraw-Hill, New York, 1957, p. 10.·
 
i G. M. Murphy, Ordinary Differential Equations, D. Van
 
Nostrand, New York, 1960. .
 
§ E. Kamke, Differential Equations, Edward Bros., Ann Arbor,
 
Mich~, .1945.
 

1 1 1 

V3 yfj V3 

1 

V2 
0 

1 

V2 

1 2 1 

V6 V6 V6 

1 I 1 

'\1'3 v2 V6 
1 

V3 
0 

;2 

V6 
1 1 r 

V3 V2 V6 

10 

-2 

-:]
-2[-:
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equations and outlined the general solution techniques; 
other references which cover many special cases will be 
found at the end of this appendix. 

B.S-l Single Second- and Higher-Order Linear Equations 

Second- and higher-order linear equations are en­
countered in many process mpdels. A linear equation of 
order n has the form ' 

dy+ a1(t) dt + ao(t)y = x(t) (B.5-1) 

If x(t) = 0, Equation B.5-1 is called a homogeneous 
equation (all the terms are of the first degree in y and its 
derivatives). Sometimes Equation B.5-l is known as the 
complete equation or, with x(t) = 0, as the reduced 
equation . 

Solutions of the .reduced equation are known as 
complementary functions; a particular solution of Equa­
tion B.5-! is known as the particular integral, yv(t). A 
general solution to the complete equation consists of the 
sum of n linearly independent homogeneous solutions 
plus a particular integral: 

y = L
n 

ClYI + y v(t) (B.5-2) 
1= 1 

To evaluate__the arbitrary constants, we need to be given 
Y and its derivatives (n sp,c;c.ifications) at t = 0 (the 
Cauchy problem), or y at n values of t (the LaGrange. 
problem), or some combination ofy and its derivatives. 

A particularly important equation is the second-order 
equation with constant coefficients 

, 

d 2 d (B.5-3)dt; + a J: + by = f(t) 

or, in operator notation, 

(D2+ aD + b)y = f(t) 

We make use of the roots of the auxiliary equation 

2 
2 -a ± va - 4b 

r + ar + b = 0, r= 2 

to establish three categories of solutions shown in Table 
B.5-!. The particular integrals can be obtained by: (1) 
the method of undetermined coefficients, (2) the method 
of variation of parameters, or (3) operator methods, the 
details of which can be found in texts on differential 
equations. 

Example B.S-l Solution of a Linear Second-Order Equation 

In determining the thermal conductivity of a metal from 
the electrical conduction and temperature drop-in-a rod, ·the 
resulting differential equation was evolved: 

k d2T = (h)(2D)T _ Q 
dx2 A 

where 

T = temperature 
x = distance from center 
A = cross-section of rod 
D = diameter of rod 
Q = energy generated/volume of rod, 

TABLE B5.I SOLUTIONS OF LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS 

WITH CO"!STANT COEFFICIENTS 

Case Solution 

1. Homogeneous equations, 
Real roots (rh r2) 

a2 - 4b > 0 

Real (equal) roots (r1 = rz = r) 

a2 - 4b = 0 

{ 
r1 = 

Complex roots 
r2 = 

ex 

ex 

+ {11} 
. 

- {11 

Y = 

= 

ea l(c1 cos {1t + C2 sin (1t) 
A eatsin (1(t + 8) 

II. Nonhomogeneous equations 
As above Y = Yc + Yv(t) 

(Yc shown above in I) 

-. ~-----:-."_ . _ -_ . _-



The boundary conditions are 

T = To at x = 0 

dT = 0 at x = 0 
dx 

What is the relation between T and x? 

Solution: 
Place the equation in the form 

d 2T Q 
dx2 - m2T = -I = -q (a) 

where 

m2 = (h)(27TD) 
Ak 

The solution of the homogeneous equation"is 

+ B emx T = A e- mx (b) 

while a particular solution is (by inspection) 

T-.!L (c)' p - m2 

so that the general solution is 

A e- mx + B emx T = + .!L (d) 
m2 

Introducing the boundary conditions and evaluating A 
and B result in 

mx mx q ) e- + e q
T= To -- +- (e)( 2 2m " 2 m

The techniques described above can be extended to 
nth-order linear differential equations with constant 
coefficients. Such equations often arise when first-order 
effects occur in series. The auxiliary equation becomes a 
polynomial of the nth order and has n roots. If none of 
the roots is equal , the complementary function is 

(B.5-4) 

For' multiple roots, independent solutions of the form 
Y = f(t) e't can be employed under certain conditions. 

Methods of solution using Laplace transforms will be 
discussed later. . 

B.5-2 Special Linear Equations withVariable Coefficients 

Several forms of linear equations with variable (in the 
independent variable) coefficients occur so frequently 
that they have been given special names; their solutions 
(although expressed in terms of converging infinite series) 
have become stand ard tabulated functions, such as 
Bessel functions and Legendre functions. Besselfunctions 
have appeared with great frequency in chemical engineer­
ing models because the processes being examined fre­
quently occur in cylindrical vessels or tubes. 

Many equations arise that may not appear to be Bessel 
equations until ajudicious change of variable is made. We 
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shall show here only a generalized Bessel equation that is 
quite widely used:t 

2y
t2 d + tea + bt') dy 

dt 2 " dt 

+ [c + ht 2S - b(1 - a - r)t' + b2t21]y = 0 (B.5-5) 

B.5-3 Nonlinear Equations 

Only a small number of the nonlinear differential 
equations that are developed in process analysis can be 
solved by exact analytic methods. Much time and effort 
have been devoted to finding means of obtaining approxi­
mate solutions to nonlinear equations. A third method of 
attack is to use digital- or analog-computer solutions 
which are the usual tools of the engineer in treating 
nonlinear ordinary differential equations. 

Refer to the references at the end of this appendix for 
particular techniques . 

B.6 SOLUTION OF SETS OF LINEAR ORDINARY 
DIFFERENTIAL EQUATIONS WITH CONSTANT 
COEFFICIENTS 

A multitude of diverse processes from every field can 
be described by a set of ordinary differential equations of 
the following form: 

~1 = fl(Y1>Y2' . . ', Yn, t) 

(B.6-1) 

~; = fn(Yl' Y2" . . , Yn, t) 

or, in matrix notation, 

dy
dt = fey , t) (B:6-la) 

Such equations have solutions of the form 

Yl = F1(1) 

(B.6-2) 

or 
y = F(t) (B.6-2a) 

if certain initial conditions are met and if certain other 
conditions (which are unimportant to us) are satisfied. 
The problem of finding the solution ofthe set of Equations 
B.6-1, given the initial conditions, is called the Cauchy 
integration problem. At the other extreme," given the 

t For solutions, see H. S. Mickley, T. K. Sherwood , and C. E. 
Reed, Applied Mathematics in Chemical Engineering, McGraw-" 
Hill, NewYork, 1957, p. 174. 
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values of F
I 

at various t's, the problem is called. the 
Lagrange integration problem: If the set of EquatIOnS 
B.6-1 does 'not include an explicit dependence on t, then 
the set can be called an autonomous system. . 

To state a general solution of the form of Equat~ons 
B.6-2 is merely an exercise in. the handling of notatIOn; 

• C' • n set of to find a specific closed-form solution lor a give . 
Equations B.6-1 may prove to be most difficult. . 

In another form , a set ofdifferential equations can exist 

as a single equation of nth order: 

dy nd"y - (d__Y , d2y , .. . , -
1 
, t ) (B.6-3)

dtn - g y'dt dt 2 dt n- 1 

This can be transformed to the canonical form by use of 
the following transformations: 

y = Z1 

dy dZ1 
dt = dt = Z2 (B.6-4) 

dy":? dZn - 1
 

.,,>, dtn -1 = ----ett"" = znJ
 

" ,The equivalent system of differential equations is 

dZ1tli = Z2 

dZ2tli = Za 

(B.6-5) 

dZn ­dZ1 = Zn ,~ , 

dz; ' " . ] 
- = G[zt> Z2, " ., Zn, t 
dt 

Thus an nth order differential equation can alw~ys be 
reduced to a system of differential equations equIvalent 
to Equations B.6-1. (The converse is not true-that a 
system such as Equations B.6-1 can always be trans­
formed into a single nth-order equation.) 

Example B.6-1 Reduction of Higher-Order Equations to 

First-Order Equations 

Let us put 
ii + 31i - 4u + v + v + 3v = 0 (a) 

ii + 31i - v + 3zi + v = 0 (b) 

in the form of Equation B.6-4. Let 

Xl = U, X2 = Ii, Xa = v , X 4 = v, Xs = ii 

Then, 

and Equations (a) and (b) become 

X2 + Xs - 4X1 + 3X2 + 3xa + X4 = 0 

or 

In matrix notation: 

Xl 0 0 0 0 Xl 

X2 2 -3 -2 -2 0 X2 

Xa 0 0 0 0 xa 

X4 0 0 0 0 1 X4 

X S 2 0 -1 1 0 Xs 

Before discussing techniques of solution of sets of 
simultaneous differential equations, a few remarks are in 
order about the difference between initial-value problems 
and boundary-value problems. 

1. Initial-value problem : The values of the dependent 
variables and their derivatives at t = 0 are given; that is, 
Y1(0) =]10, dY2/dt = 0, etc. 

2. Boundary-value problem : The values of the 
dependent variables at the ends of an interval, distance , 
or perhaps time are specified; that is, Y1 = YlO at t = 0 ; 
Yt = Ylf at t = tf· 

The solution of boundary-value problems is more 
complicated than initial-value problems, except when the 
exact solution to the differential equation is known and 
the boundary conditions are simply used to evaluate the 
arbitrary constants in the solution. 

Given the set of Equations B.6-1 and the initial con­
ditions , it should be possible even in the worst cases to 
start at the initial conditions and numerically construct 
the curves representing y versus t.Some error may 
accumulate, of course, but at least an approximate set of 
curves may be established. On the other hand, if the 
problem is stated in terms of boundary conditions, then 
even an approximate construction of the curve at t = 0 
is awkward because to know the value of Y at another t 
is not very useful. 

Sets of linear simultaneous differential equations with 
constant coefficients can be treated by first reducing them 
to matrix notation and then using matrix or numerical 
methods to effect a solut ion. Computer programs are 
available to carry out the detailed steps . A-set ofequations 
of the form 

Yl = allYl + a12Y2' + + a1nYn 

Y2 = a21Y1 + 'a22Y2 + + a2nYn (B.6-6) , 



reduces to the homogeneous form 

• dy 
y = dt = ay (B.6-7) 

As long as a is continuous for t ~ O,Equation B.6-7 
has a unique solution for the initial conditions y(O) = Yo. 
Recalling that for · the scalar case 

dy
dt = ay y(O) = Yo 

has a solution of the form y = (eat)yo, we look for an 
analogous solution of Equation B.6-7 in the form 

(B.6-8) 

To do this we need to make use of the matrix exponential 
function which is defined as 

a"t"
eat=l+at+···+-+ ·· · (B.6-9) · 

n! 

analogous to the scalar expansion 

x2 

e" = I + x + 2! + . . . 

It can be demonstrated by substitution and subsequent 
differentiation that Equation B.6-8 is the solution of 
Equation B.6-7 : 

dy_d(t)
dt - dt e" Yo 

d( I · I )=dt l+at+2!a2t2+3!a3t3+ ... Yo 
~ . .'_.-. '. . - ­

2= (a + a2t + d! a t 2 -p ;. .)Yo 

I 2 · 2' )= a(I + at + 2! a t + .. . Yo 

= a(eat)yo = ay 

Next consider an inhomogeneous .set of equations 
where x(t) is the forcing function (or set of inputs) for 
the set of equations 

dy .
 
dt + ay = x(t) (B.6-1O)
 

As with a single scalar differential equation, an inte­
grating factor e"(t -to) can be introduced such that 

[eBa-to)] ~; + [eB<t'-to)]ay = [e"<t -to)}x(t) 

Then 

!!... [ea(t-to>y] = [e"(t- to)] dy + [d eB<t-to>]y
dt dt . dt 

= [e"(t-to)] dy + a e"<t-to)y
dt . 

= [e"<t-!o)]x(t) (B.6-11) 
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Each side of Equation B.6-Il may now be integrated 
from to to t, using the condition that at t = to, Y = Yo: 

or 

eB<t-!o)y - Iyo = ft [eBw-to)]x(t') dt' (B.6-12)
Jto 

Premuitiplying both sides of Equation B.6-12 by e-a<t-!o) 
yields 

y = e-a(t-to)yo + e-a<t-to) fl [e"w -to)]x(t') dt' (B.6-13)
Jto 

For the special case ofy = 0 at t = 0, Equation B.6-13 
becomes 

y = e:" I: e"t'x(t') dt' 

= I: e"<t'-tlx(t') dt' (B.6-14) 

To obtain closed-form scalar solutions of Equation 
B.6-7 explicitly is somewhat lengthy. A number of 
procedures are available of which we show one. 

If the n x n matrix a in its canonical form is non­
singular and has n distinct eigenvectors (latent vectors) 
h. , h2, . . . , h", let h be the square matrix formed by the 
column vectors h, . 

(B.6-15) 

Then 

(at)2]= I + at + -2- + ... Yo[ 

Since hI = h, we know that 

I = h(l)h - 1 

a - M = 0 or a = AI 

a = h(M)h- 1 

a2 = (h(M)h-1)(h(M)h- 1) = h(AI)2h - 1 

etc. 

Finally, 

y = [h(I)h- 1 + h(AI)h-lt + h(AI)2h- 1 ~ + . . ']Yo 
. 2 

= [h(I + Alt + (AI)2 ~2 + . . .)h-1]yo 

(B.6-16) 

b 4$ 



,. 
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In the above, all n roots are distinct:
 

(The eigenvalues AI, A2 , ••• may be real or complex.) 
No w we can identify from the above that 

(B.6-17) 
so that 

[ ~h l l :h21 
e"1 = h .. 

::: ~ ] 
h- 1 

. (B.6-18) 

o 0 eh• 1 

and if h - l yo is defined to be equal to b : 

(B.6-19) 

If the roots Aj are complex, as long as they occur in con­
jugate pairs, Equat ion B.6-19can be arranged to contain 
only real numbers including sines and cosines. 

" . 
Example B.6-2 Matrix Solution of Sets of Differential 
Equations 

Solve y - 3y + 2y = e: ' with init ial conditions y = 0 
and y = 1 at t = O. 

Solut ion: 
Let 

Yl = y, Y2 = y, 
Then 

h = Y2 Y, .0 = 0 

Y2 = - 2Y1 + 3Y2 + Y3 Y2,O = '1 

Y3 = - Y3 Y3 .0 = 1 
or 

y= [-: ~]y
3 

o 0-1 

The determinant (a - AI) is 

(0 - ,\) o 
- 2 (3 - ,\) 1 . = (- 1 - ,\)(A - 2)('\ - 1) 

o 0 ( -1 - ,\) 
=0 

and the eigenvalues of A are ,\ = 1, 2, and - 1, respectively. 
The latent vectors are found from 

-2 2[-' } ~O so h, ~ [] 

0 0 -2 

[-2 
'0 h, -2 }~O ~ [~] 

0 0 - 3 

4[ -~ }~O '0 ~ ~ [-] 

0 

This means 

[12 -;]2 andh ~ [; h-
1 = i -; 6 

0 
-;] 

-6

0 

and 

,\I = h- 1ab = 2[~ 
0 

-;]0 

Finally, the solution is 

y(t ) = b eh1th- 1yo 

or 
21 e 

Y1] [ -te+1+ te + i -. I..] 
Y2 = -tel + te2t - ie-I 

[ Y3 e- I ..... 

If the matrix a has one or more roots that are not 
distinct , Equation B.6-18 can be formally generalized to 
include this situation by making each 'exponent 'of e a 
matrix instead of a scalar : 

ATt ~ ATt 

in which ATis a q x q matri x (where q is.the multiplicity): . 

AT 0 0 0 

0 AT I 0 0 

AT= (B.6-20) 

0 0 0 AT 

0 0 0 0 AT 



If each root is distinct, AT reduces to ATI. It can be shown 
from the properties of matrices that 

1 t tq-1/(q - I)! 

o t q 
-

2/(q - 2)! 
(B.6-21) 

000 

Examination of Equations B.6-18 and B.6-21 shows that 
the solution of Equation B.6-8 will now consist of linear 
combinations of products of polynomials with ex­
ponentials. 

Example B.6-3 Case of Multiple Eigenvalues 

Solve 

Yl = Y2 - Y3 with Yl(O) = 

Y2 = 2Y2 + Y3 with Y2(O) = 1 

Y3 = 4Yl - 2Y2 + 5Y3 with Y3(0) = -2 

Solution: 

a = [: -;]_~
 
The det (a - AI) = (2 - A)2(3 - A) = 0; the eigenvalues 
are 2, 2, and 3. 

The eigenvector hI, corresponding to A = 2, is found from 
(a - 2I)h1 = 0: 

1[-: _: -;]h1 = 0 h= [:]so 

Since there is a repeated root, we need to find a second 
vector, not an eigenvector, from the equation 

(a - .2I)h2 = ,hI 

so 

From (a - 3I)h3 = 0, we find 

Then 

h = r: 0 

3 

2 :J 
h- 1 = [-~ 

0 

-2 
-;] 

AI = h- 1ah = 

[: 
2 

0 :] 
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The solution is 

y(t) = eatYo = h e Ath - 1 yo 

or 

If the equations are not homogeneous but the non­
homogeneous terms themselves satisfy homogeneous 
equations, they can be reduced to a homogeneous set by 
introducing extra equations satisfied by the non­
homogeneous parts. Consider a set of equations of the 
form 

y = by + f(x) (B.6-22) 

Suppose (x) can be written as a linear combination cz 
of m functions z which satisfy the differential equation 
Z = dz, If we replace Equation B.6-22 by the two sets 

y = by + cz 

and 

z = dz 

Equation B.6-22 can be written in the so-called irreducible 
form 

(B.6-23) 

the same form as Equation B.6-7, or 

[y*] = [a][y*] (B.6-23a) 

where 

y* = [tJ y* = [~] 
and 

a = [~J 

Example B.6-4 Solution of Simultaneous Equations 

Solve the simultaneous equations: 

Yl = 3Yl- + Y2 + e2t + sin t + 3 

Y2 =' - Yl + 2Y2 + te" - 2 sin t - 2 

(a) 

(b) . 

Solution: 
Let 

z3=sint; Zs = -1 

-'-,-.;'..~--

~. 
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Other selections might be adopted. Then 

Zl - 4z1 + 4z1 = 0 or Z2 = 4z2 - 4z1 

za + Za = 0 or i 4 = - Za 

Zs = 0 

In matrix notation, 

i 1 0 0 0 0 Zl 

Z2 -4 4 0 0 0 Z2 

za 0 0 0 0 Za 

, 
-' .~ - !. 

40;­-

i 4 

is 

0 

0 

0 

0 

0 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

Z4 

Zs 

-4 4 0 0 0 

d= 0 0 0 1 0 

0 0 - 1 0 0 

0 0 0 0 0 

1 1 0 
c = [- ~ - 00 2 -~] 

and 

3	 11 - 2 1 1 0 3:h Y1 
I 

- 1 21 0	 - 2 0 -2Y2 Y2 

- --"1I - --- - - - --- ­
0	 0 1 0 r 0 0 0i 1 Zl 

I 
0	 01-4 4 0 0 0i 2 Z2 

.:.: .. 
0	 0' 0 0 0 1 0i a ZaI 

0	 0' 0 0 - 1 --0 0i 4 Z4I 

0	 O! 0 0 O' 0 0 Zsis 

B.i SOLUTION OF SINGLE PARTIAL 
DIFFERENTIAL EQUATIONS 

Differential equations that contain deri vat ives of more 
than one independent variable are classified as partial 
differential equations. We have already seen the wide 
variety of problems that are described in term s of such 
equations . The definitions of order, degree, and linearity 
retain the same meanin g for partial differential equations 
as for ordinary differential equations. 

Although the integration of ordinary differential 
equations gives rise to arbitrary constants ,of integration, 
the general solution of a partial differential equation 
involves n arbitrary function s for the nt.h-order case. 
Except for first-order equations and a few othe r special 
cases, it is seldom possible or necessary to seeks a general 
solution ; instead the 'engineer must seek a particular 
solution for the specific conditions of the problem. 

A large number of problems in transport phenomena 
and mathematical physics can be described by one of the 
following partial differential equations : 

1. Laplace's equation 

2. Poisson's equation 

3. Diffusion equation 

4. Wave equation 

5.	 Damped-wave equation
 
(telegraph equation)
 

6. Helmholtz's equation 

In the above list, h, c, and 'Yare constants. 

One conventional method for the solution of these 
equat ions is by separation of variables. A solution of the 
form eP = U1(u1)U2(u2)Ua(u3) is used which permits the 
partial differential equation to be separated into three 
ordinary differential equations, each of which has a U 
solution . The initial and boundary conditions for a -given 
problem are used to evaluate the arbitrary constants so 
that a unique solution can be obtained . Refer to the 
references at the end of this appendix for a discussion 
of particular techniques to carry out the sepa ration of 
variables solution. 

B.8 LAPLACE TRANSFORMS 

In this section we shall describe the use of operational 
mathematics to solve linear ordinary and partial differen­
tial equations and, ' in particular, the use of Laplace 
transforms. 

The Laplace transf orm !(s) of a function f(t) is 
defined by 

.P[f(t) ] = !(s ) = Io'" e- s!j(t) dt (B.8-I) 

1[!(s)]The inverse Laplace transform is denoted by 'p ­
so that 

f(t ) = 'p- 1 [/(s)] ' (B.8-2) 

The following properties of the Laplace transform are of 
intere st to us. 

1.	 Linearity . If
 

! 1(S) = .P[/1(1)]
 
and 

! 2(S) = .P[/2(t )] 
then 

.P[ed1(t) + c2f2(1)] = C1.P[/1(t )] + C2.P[/2(t )] 

= ed 1(s ) + e2!2(s) (B.8-3) 

i 

I 
I 
I 
I
 
I 
'I 
i 
i 
J 

I
 
I
 

" 

,I
, 

,~~ 

-- ----------~~~~-
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. 2. Transform of a derivative. 

z[~~)] = L[f'(t») = sl(s) - 1(0) (B.8-4) 

where f(O) = value of f(t) as t ~ o. 
3. Transform of an integral. 

(B.8-5) 

4.	 Complex translation. If
 

!(s) = 2[1(t)]
 
then 

I(s - a) = ..P[ea'l"(t)] (B.8-6) 

That is, multiplying f(t) by eat results in substituting 
(s - a) for s in its transform. 

5. Derivative ofa transform. 

d{::) = Z[(-t)nl(t)) (B.8-7) 

6. lim !(s) = 0 as s ---+ 00 (B.8-8) 

7. Integration of a transform. 

f' lex) dx = z[!~t)] . (B.8-9) 

That is, division of f( t) by t corresponds to integration 
of the transform of f(t) from s to 00. 

8. Transform of a step function. If U(t) is a unit step 
function: 

Vet) = 0 t < 0 (B.8-IO) 

--.-=1 t>O 

and if U(t - 'T) is a unit step function starting at t = 'T 

(see Figure B.8-I): 

U(t - 7) = 0	 t < 7 (B.8-II) 

= 1 t > 'T. 

then 

1
9'[U(t)] = ­
. s 

e-S~ 

2[U(t - 7)] = ­
s 

~[f(t - 7)] = e-~s!(s) if f(t - 7) = 0 

for 0 < t < 'T 

~[f(t - 1")U(t)] = e-ts!(s) 

BothU U(t)
1 

I~ 

~ U(t-r) 

~ 

~ :; ~ t0 
T 

FIGURE B.8-! Unit step functions Utt) and U(t - T). 

8(%) 

___......L....__~% 

o 
FIGURE B.8-2 Unit impulse function. 

9.. _Transform of a unit impulse function. If a(t) is the 
unit impulse function (Dirac delta function) shown in 
Figure B.8-2 . 

x =1= 0 

(B.8-12) 

10. Transform of the convolution of two functions. The 
integral 

is called the convolution of the functions jjand jj : 

11.	 Initial and final values. 

Initial value: lim s!(s) = Iimf(t) 
s-+ 00 t-+o 

Final value: lim s!(s) = lim f( t) 
8-+0	 •. t-+ OJ 

Example B.8..1 Laplace Transforms 

Find the Laplace transforms of the following functions 

1. f(t) = U(t) = {~ ::~} 
2. /(t)	 = eat 

3. /(t) = cos at 

Solution: 

8t 1. 2'[U(t)] = fo"' e- 8t( 1) dt = - Be- ] : 

. 1 1 
=--[-1]=-	 "'3""'>0 

s s 

- 00 100
2.	 2[eat] = e - steat dt = e(a- s)t dt 

.. 0 0 

= _1_. [e(a-s)t];	 = _1_ (-1) = _1_ 
' a-s	 a-s s-a 
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transforms, some of which are used in the examples3. 2 [cos at] = fo'" e- st cos at dt 
below and others in the main body of the text. 

= ~ [e(ta-.lt + e< -la-Ilt] '" 
2 (ia - s) (:;--~i:-a---s-:") 0 

I[ I i l ] S 

= 2: S - ia + S + ia = S2 + a2 

Example B.8-2 Laplace Transforms of Derivatives 

Find the Laplace transform of f'(t) and r(t). 
Solution: 

2[f'(t)] = 2[d/(t)] = f.'" d/(t) e- Btdt 
dt 0 dt 

Integrating by parts , let 

dv = f'(t) dt 

2[f'(t)] = [e-S~(t)]Q" + S r e-'IJ(t) dt 

= -/(0) + sJ(s) 

Next, 

2[f'(t)] = fo'" r(t) e- st dt 

= [e- slJ'(t)]Q" + s fo'" f'(t) e - · t dt 

= s2j'(s) - s/(O) - 1'(0) 

Evaluation of the inverse of Laplace transforms of 
functions (a topic of considerable importance) may be 
exceedingly difficult to accomplish. In determining a 
functionf(t) from a functionj'(s), as a practical matter we 
usually first seek a table of Laplace transforms and try 
to match the transform of interest with one in the table. 
If this is successful, the inverse is immediately found. 
Other ways to evaluate 2 - 1 are by: 

I. The Heaviside expansion theorem. 
2. Partial fractions. 
3. The methods of poles and residues. 
4. The convolution integral. 
5. Numerical calculation.] 

In view of the large detailed tables of transforms avail­
able today.] if one is unsuccessful in finding the proper 
transform, methods I to 4 will no doubt involve extensive 
complex manipulations. Table B.8-1 is a brief list of 

t 'See H. L. Salzer, J . Math . Phys. 36, 89, 1958, for a convenient 
set of tables to aid in numerical calculations. ' 
t A. Erdelyi et al., Tables of Integral Transforms, McGraw-Hill, 
New York, 1954. 

Example B.8-3 Solution of an Ordinary Differential 
Equation 

Solve y"(t) + k 2y(t) = 0 by Laplacetransforms for the 
initial conditions Y(O) = Cl and y'(O) = C2. 

Solution: 
First take the Laplace transform of both sides of the 

given equation with the help of Table B.S-I: 

L{y'(t) + Py(t)} = 0
 

S2y(S) - sy(O) - y'(O) + Py(s) = 0
 

Next introduce the initial conditions 

S2y(S) - SCI - (;2 + k 2y(s) = 0 

and solve for y(s) 

• SCI + C2 SCI . C2 

y(s) = S2 + k2 = S2 + k2 + S2 + P 

Finally, take the inverse transform of each side, again 
with the help of Table B.S-I: 

y(t) = Cl cos (kt) + ~ sin (kt) 

Example B.8~4 Solution by Transformation of a Partial 
Differential Equation into an Ordinary Differential Equation 

Solve the diffusion equation in a semi-infinite media : 

OC = ~ 02 C ' 

ot ox2 

for the following boundary conditions: 

(I) C = 0, t = 0, x ~ 0 

(2) ~(:C) = constant = k, t> 0, x=O 
uX %=0 

(3) C = 0, t ~ 0, x -+ CXJ 

Solution: 
Take Laplace transforms of both sides of the equation 

with respect to the variable t. (In doing this, we assume it is 
permissibleto interchange the order of differentiation with 
respect to x and the taking of the Laplace transform.) 

2c(x,
"( ) ( ) a» d s)

SC x, s - C x, 0 = :u dx 2 (a) 

Equation (a) is an ordinary differential equation which has 
the solution (with c(x, 0) = 0) 

c(x, s) = Al e(~)x + A 2e-( V~) x (b) 

Note that the transformed boundary conditions become 

(2') .fL'[ ~(Oc(x, t») ] = ~ (dc(x, s») = .fL'(k) = ~ 
. dx x=o dx x = o s 

(3') 2[c(x, t)] = c(x, s) = 0 
x ... 00 x,- oo 
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TABLE B.8-1 SELECTED LAPLACE TRANSFORMS 

Function f(t) Transform /(s) = fo" e-BIJ(t) dt 

s 

t"-l 

(n - I)! s" 

1 1 
(7Tt) Yz sYz 

(n - I)! (s - a)" 

1 
a:f. b

(s - a)(s - b) 

1 
s(1 + as)(1 + bs) 

1 . 
- smat 
a 

COS at 

1 . h- sm at 
a 

cosh at 

erfc(2~t) 

1 
\,

(P)v;r exp - 4t 

f(t) 

/(t - b)U(t - b) 

/(s) 

e -bB/(s) 

/'(t) 

j<")(t) 

t"/(t) 

8(t) 

s"/(s) -

s/(s) - /(0) 

S" -l/(O) - S"- 2/,(0) - . . -f " "' ~ )(O) 

( - 1)"f<")(s) 

U(t) 
s 



420 APPENDIX B 

By making use of condition (3'), Al = 0; then 

Now 

so that 

Finally 

v k , (~) Yz -(v':i)xc(x, s) = -- - ' e !!d (e) 
s~ s 

The inverse Laplace transform of Equation (e) is 

k - 1 [ 1 -ev':i) X]c(x, t) = -- 2 -e !!d 
~y. sy. 

= _~ [2(!'-) Y. exp (_~) _ x eric ( x )] 
~Y. 7T 4~t v~ 2v~t 

(f) 
By changing boundary condition (2) to 

C = co, t> 0, ,x = 0 

we would have 

2[c(x, t)] = c(x, s) = «[col = ~, x = 0 
s 

so that 

(g) 

Then 

Co -(v'1)x
c(x, s) = -e f$ (h) 

s 

and 

C(x, t) = co2-1Ge-(v'~)X) 

= Co eric ( - 2:~t) (i) 

This sample problem can also be solved by use of multiple 
Laplace transforms.t 

B.9 GENERALIZED FUNCTIONS 

The engineer is often called upon to deal with system 
responses to sudden step changes in input or to "pulse" 
types of input. Such inputs can be represented by dis­
continuous types of functions as illustrated in Figures 
B.9-1, B.9-2, and B.9-3. In this section we shall consider 
certain properties of these so-called " generalized 
functions" which are useful in process analysis and the 
solution of mathematical models. 

t T. A. Estrin and T. J. Higgins, Quart. Appl. Math. 9,153,1951. 

"J! .;;, 
-:;: 

Uit - T) 
1 
,I 
I' 

II
' I 

I 

T I 
FIGURE B.9-1 Representation of a unit step function. 

A unit step function is defined by 

O, tU(t - T) = < T} (B.9-l){ 1, t > T 

and its graph appears as in Figure B.9-1. Thus, U(t - T) 
is continuous (a constant) for t < T and t > T and has 
a unit jump discontinuity at t = T . Combinations of step 
functions with other functions can be used to represent 
certain kinds of discontinuous behavior as shown in
 
Figure B.9-2.
 

The second type of generalized function mentioned
 
above is called the unit impulse function or the Dirac delta
 II
function (Figure B.9-3) and is defined by 

j 
8(t - T) = 0, t =1= T I
f~<Xl 8(t - T) dt = 1 (B.9-2) 

This is the mathematical idealization of what might be ~ 
described as a sudden "jolt" in input to the system. The 
delta function assumes that the "jolt" occurs in zero 
time which is, of course, physically not strictly possible. 
The limiting case is convenient mathematically, however, 

. and closely approximates many physical situations. 

a [UrI) ­

a 1--------. 

urt - T)) 

T 

T 

FIGURE B.9-2 Examples of functions constructed by combina­

tions ofthe step function and ordinary functions.
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6(1-T) 

T 

FIGURE B.9-3 The unit impulse function. 

Of the general class of generalized functions, we shall 
only be concerned with the unit step function Utt .,.... T) 
and the unit impulse function a(t - T). The unit impulse 
function can be taken to be the derivative of the step 
function 

d
aCt - T) = - V(t - T) (B.9-3) 

dt 

heuristically verified by comparing Figures B.9-1 and 
B.9-3. 

B.10 USE OF LAGRANGIAN MULTIPLIERS TO 
DETERMINE AN OPTIMUM 

A convenient way to find the extremum (not on a 
boundary) of a funct ion subject to equality constraints 
is to use Lagrangian multipliers. In calculating the 
minimum (or maximum) of a function of several inde­
pendent variables, f(x1, X2, . . •, x n) , we know that the 
solution of 

(B.10-1)of . 
-=0
oX2 , 

etc. 

yields values of Xl which are at the extremum. Suppose, 
however, that the values of Xl are joined by some equality 
relationships (constraints) which can be . expressed in 
general as 

'Y1(X1, X2," " x n) = 0 
(B.1O-2)

'Y2(X1' X2, .. . , x n) = 0 

etc. 

For example, suppose that the sum of the mole fractions 
in a mixture equals unity. Attempting to solve each one 
of the Equations B.IO-2 for a single Xl so that it can be 
eliminated by substitution into Equation B.10-1 does not 
usually prove fruitful. Instead, we proceed as follows. 

At an extremum the total derivative off(xh X2, ' .. , x n ) 

vanishes even if the variables Xl' X2, "" x, are not 
independent : 

df = 0 = of dX1 + of dX2 + .. .+ of dx; (B.I0-3)
OX1 . OX2 . ox" 

Also, since 'FI(X1> X2; . . . , x n) = 0, 

0'1"1 0'1"1 0'1"1 
- dX1 + - dX2 + . . .+ - = 0
OX1 OX2 . OXn 

0'1"2 0'1"2 . 0'1"2 ' 4)
-dx1 + -dX2 + . .. + - = 0 (B.Io­
OX1 OX2 OX" 

O'Yp d o'Y p d o'Y p 0 - Xl + -- X2 + . ..+- = 
OX1 OX2 OX" . 

If Equations B.1O-4 are multiplied, respectively by A1> 
A2' . .. , Ap , and the resulting products added to Equation 
B.10-3, we obtain 

Of 0'1"1 \ 0'1"2 \ o'Y p ) d-+A1-+1\2-+" '+l\p- Xl( OX1 OX1 OX1 OX1 

+ ( Of +A1 0'Y1+ A2 0'1"2+ .. . +ApO'Y p) dX2+'" =0 
OX2 OX2 OX2 OX2 

(B.I0-5) 

If Xl' X 2' . . • are considered to be the independent 
variables, and X m, ••• , x, (a total of p variables) are those 
eliminated as independent variables because of the p 
constraining equations, and .if the Jacobian of the 
derivatives of '1"1' '1"2' . . . , 'I"p with respect to the Xm to 
x" designated x's does not vanish : 

0'1"1 0'1"1 
OXm OX" 

0'1"2 
J( Xm, • •• , Xn) = OXm 

O'Y p o'l"p 
OXm OXn 

we can fix the ,\'s such that at the extremum 

of + Al 0'1"1 + A2 0'1"2 + . . .) = p
( OXm OXm OXm 

(B.10-6) 

of + Al 0'1"1 + A2 0'1"2 + ... ) = 0( OX" OX" OX" 

Because of Equations B.1O-6, Equation B.IO-5 reduces 
to a truncated expression in which each of the x / s are 
truly independent. Consequently, each of the terms in the 
parentheses must vanish, or 

of + Al 0'1"1 + A2 0'1"2 + . ..+ Ap o'Y p = 0 
OX1 OX1 OX1 OX1 (B.1O-7) 

of + Al 0'1"1 + A2 0'1"2 + .. .+ A o'Y p = 0
 
OX2 .oX2 OX2 " POX2
 

etc. 
If we simultaneously solve Equations B.10-7 together 
with Equations B.1O-4 and B.1O-6, we can find the values 
of the x' s at the extremum and also the ,\'s. If J( x m, . •• , x n) 

= 0, it may prove feasible to interchange the role of some 

b 

. : -. ~ . 
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of the independent variables with those in J(xm, ••• , xn) , 

but if not, the method fails. 

Example B.10-1 Extremum of a Constrained Function 

Find the maximum and minimum distances from the 
origin to the surface Sx2 + 6xy + Sy2 = 8. 

Solution : 
The distances (function to be optimized), as shown in 

Figure EBI0.l, are 

d = f(x, y) = .yx 2 + y2 (a) 

while the constraining equation is 

'Y(x, y) = Sx 2 + 6xy + Sy2 - 8 = 0 (b) 

It is just as satisfactory, and easier, to find the extremum of 

f(x,y) = r + y2 (a') 

as for Equation (a) itself. 

'FIGURE EBI0.1 

Equations 8.10-6 and 8.10-7 are 

ofo'Y 
- + A- = 0 or 2x +A(lOx + 6y) = 0 (c)ox ox 

of + A o'Y = 0 or 2y +~ A(6x + lOy) = 0 (d) 
oy oy 

Equations (b), (c), and (d) are solved' 'together. Multi­
plying Equation (c) by y and Equation (d) by x and then 
subtracting, we obtain 

or 
y = ±x (e) 

Introduction of Equation (e) into Equation (b) gives 

x2 = t 
(£) 

x2 = 2 

Consequently, 

f(x, y) = x 2 + y 2 = t + t = I; d = I(min) 

f(x, y) = x 2 + y2 = 2 + 2 = 4; d = 2(max) 

It is now possible to state a general rule for the use 
of Lagrangian multipliers. To determine the extreme 
values of a function 

I(Xl' X2' .• • , x n) 

whose variables are subjected to P.constraining relations: 

i = 1,2, . . . ,p (B .IO~8) 

form the function 

(B.1O-9) 

and determine the parameters ~I and the values of Xl> X2' 

••• , X n from the n equations: 

of - = 0 j = 1, 2, .. . , n (B.1O-1O)
ox} 

and the p Equations B.I0-8. 
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APPENDIX C
 

Tables
 

T ABLE C.l THE NORMAL PROBABILITY DISTRIBUTION 

u P(u) 
== P(u) = r 1P {U :5 u} ---= e- (u')2 /2 du' 

• - V 21T0) ~ 
0 u in table u 

u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 . 0.5675 0.5714 0.5753 
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 ., 0.8106 . 0.8133 
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 . 0.8770 0.8790 0.8810 0.8830 
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 
1.5 OA).332 -0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.94 18 0.9429 0.9441 
1.6 0.9452 0.9463 -:. 0.9474 0.9484 0.9495 . 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 0.9641 0.9649 . 0.9656 0.9664 0.9671 0·9678 0.9686 0.9693 0.9699 0.9706 
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 

2.0 0.9772 0.9778 " 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 0~98 21 0.9826 ,0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 0.9861 0.9864 0 .9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0;9951 0.9952 
2.6 0.9953 0.9955 0.99~6 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 

,
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.997 1 0.9972 0.9973 0.9974 
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 ' 0.9986 

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 .-- - 0.9997 0.9998 

Even Percent age Points of the No rmal Dis tribution 

P (u) 0.75 0.90 0.95 0.975 0.99 0.995 0.999 0.9995 0.99995 0.999995 
a = 2[1 - P (u)] 0.50 0.20 0.10 0.05 0.02 0.01 0.002 0.001 0.0001 0.00001 
u 0.674 1.282 1.645 1.960 2.326 2.576 3.090 3.291 3.891 4.417 

423 
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TABLE C.2 THE X DISTRIBUTION * 

f2P{X2 s X~ } == P(rl.) = o· p(XZ)dX2 

ffX ')~ 

~
 
X2 

0.20 

0.0642 
0.466 
1.005 
1.649 
2.343 

3.070 
3.822 
4.594 
5.380 
6.179 · 

6.989
 
. 7.807
 
8.634
 
9.467
 

10.307
 

11.152
 
12.002
 
12.857
 
13.716
 
14.578
 

15.445
 
16.314
 
17.187
 
18.062
 
18.940
 

19.820
 
20.703
 
21.588
 
22.475
 
23.364
 

0.25 

0.101 
0.575 
1.213 
1.923 
2.675 

3.455 
4.255 
5.071 
5.899 
6.737 

7.584 
8.438 
9.299 

10.165 
11.037 

11.912 
12.792 
13.675 
14.562 
15.452 

16.344 
17.240 
18.137 
19.037 
19.939 

20.843 
21.749 
22.657 
23.567 
24.478 

0.30 

0.148 
0.713 
1.424 
2.195 
3.000 

3.828 
4.671 
5.527 
6.393 
7.267 

8.148 
9.034 
9.926 

10.821 
11.721 

12.624 
13.531 
14.440 
15.352 
16.266 

· 1 7~ 1 82
 

18.101 
19.021 
19.943 
20.867 

21.792 
22.719 
23.647 
24.577 
25.508 

0.50 

0.455 
1.386 
2.366 
3.357 
4.351 

5.348 
6.346 
7.344 
8.343 
9.342 

10.341 
11.340 
12.340 
13.339 
14.339 

15.338 
16.338 
17.338 
18.338 
19.337 

20.337 
21.337 
22.337 
23.337 
24.337 

25.336 
26.336 
27.336 
28.336 
29.336 

"(continued ) 

- ...; 

P(x~) 

d.f. 

1
 
2
 
3
 
4
 
5
 

6
 
7
 
8
 
9
 

10
 

11
 
12
 
13
 
14
 
15
 

16
 
17
 
18
 
19
 
20
 

,21
 
22
 
23
 
24
 
25
 

26
 
27
 
28
 
29
 
30
 

0.005 

0.04392 

0.010 
0.072 
0.207
 

. 0.412
 

0.676
 
0.989
 
1.344
 
1.735
 
2.156
 

2.603
 
3.074
 
3.565
 
4.075
 

-4.601
 

5.142
 
5.697
 
6.265
 
6.844
 
7.434
 

8.034
 
8.643
 
9.260
 
9.886
 

10.520 

11.160 
11.808 
12.461 
13.121 
13.787 

' 

.
 

0.01 

0.03157 

0.0201 
0.115 
0.297 
0.544 

0.872 
1.239 
1.646 
2.088 
2.558 

3.053 
3.571 
4.107 
4.660 
5.229 

~' 

5.812 
6.408 
7.615 
7.633 ··
8.260 

8.897 
9.542 

10.196 
10.856 
11.524 

12.198 
12.879 
13.565 
14.256 
14.953 

0 

0.02 

0.03628 

0.0404 
0.185 
0.429 
0.752 

1.134 
1.564 
2.032 
2.532 
3.059 

3.609 
4.178 
4.765 
5.368 
5.985 

. . 

6.614 
7;255 
7;906 
8.567 
9.237 

9.915 
10.600 
11.293 
lL992 
12.697 

13.409 
14.125 
14.847 
15.574 
16.306 

0.025 

0.03982 

0.051 
0.216 
0.484 
0.831 

1.237 
1.690 
2.180 ..
2.700 
3.247 

3.816 
4.404 
5.009 
5.629 
6.262 

6.908 
7.564 
8.231 
8.906 
9.591 

10.283 
10.982 
11.689 
12.400 
13.120 

13.844 
14.573 
15.308 
16.047 
16.791 

X~ 

0.05 

0.00393 
0.103 
0.352 
0.711 
1.145 

1.635 
2.167 
2.733 
3.325 
3.940 

4.575 
5.226 
5.892 
6.571 
7.261 

7.962 
8.672 
9.390 

lQ.117 
10.851 

11.591 
12.338 
13.091 
13.848 
14.611 

15.379 
16.151 
16.928 
17.708 
18.493 

0.10 

0.0158 
0.211 
0.584 
1.064 
1.610 

2.204 
2.833 
3.490 
4.168 
4.865 

5.578 
6.304 
7.042 
7.790 
8.547 

9.312 
10.085 
10.865 
11.651 
12.443 

13.240 
14.041 
14.848 
15.659 
16.473 

17.292 
18.114 
18.939 
19.768 
20.599 

..
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TABLE C.2 (continued) 

P(x~) 

a.r, 0.70 0.75 0.80 0.90 0.95 0.975 0.98 0.99 0.995 0.999 

1 1.074 1.323 1.642 2.706 3.841 5.024 5.412 6.635 7.879 10.827 
2 2.408 2.772 3.219 4.605 5.991 7.378 7.824 9.210 10.597 13.815 
3 3.665 4.108 4.642 6.251 7.815 9.348 9.837 11.345 12.838 16.268 
4 4.878 5.385 5.989 7.779 9.488 11.143 11.668 13.277 14.860 18.465 
5 6.044 6.626 7.289 9.236 11.070 12.833 13.388 15.086 16.750 20.517 

6 7.231 7.841 8.558 10.645 12.592 14.449 15.033 16.812 18.548 22.457 
7 8.383 9.037 9.803 12:017 14.067 16.013 16.622 18.475 20.278 24.322 

, 8 9.524 10.219 11.030 13.362 15.507 17.535 18.168 20.090 21.955 26.125 
9 10.656 11.389 12.242 14.684 16.919 19.023 19.679 21.666 23.589 27.877 

10 11.781 12.549 13.442 15.987 18.307 20.483 21.161 23.209 25.188 29.588 

11 12.899 13.701 14.631 17.275 19.575 21.920 22.618 24.725 26.757 31.264 
12 14.011 14.845 15.812 18.549 21.026 23.337 24.054 26.217 28.299 32.909 
13 15.119 15.984 16.985 19.812 22.362 24.736 25.472 27.688 29.819 ' 34.528 
14 16.222 17.117 18.151 21.064 23.685 26.119 26.873 29.141 31.319 36.123 .....•- . ".. .,- ­~ 

15 17.322 18.24~ 19.313 22.307 24.996 27.488 28.259 30.578 32.801 37.697 

16 18.418 19.369 20.465 23.542 36.296 28.845 29.633 32.000 34.267 39.252 
17 19.511 20.489 .. 21:615 24.769 27.587 30.191 30.995 33.409 35.719 40.790 
18 20.601 21.605 '2 2.760 25.989 28.869 31.526 32.346 34.805 37.156 42.312 
19 21.689 22.718 23.900 27.204 30.144 32.852 33.687 36.191 38.582 43.820 
20 22.775 23.828 25.038 28.412 31.410 34.170 35.020 37.566 39.997 45.315 

\ 

21 23.858 24.935 " 26.171 29.615 32.671 35.479 36.343 38.932 41.401 46.797 
22 24.939 26.039 27.301 30.813 33.924 36.781 37.659 40.289 42.796 48.268 
23 26.018 27.141 28.429 32.007 35.172 38.076 38.968 41.638 44.181 49.728 
24 27.096 28.241 29 .553 33.196 36.145 39.364 40.270 42.980 45.559 51.179 
25 28.172 29.339 30.675 34.382 37.652 40.647 41.566 44.314; 46.928 52.620 

26 29.246 30.435 31.795 35.563 38.885 41.923 42.856 45.642 48.290 54.052 
27 30.319 31.528 32.912 36.741 40.113 43.194 44.140 46.963 49.645 .. 55.476 

. 28 31.391 32.621 34.027 37.916 41.337 44.461 45.419 48.278 50.993 56.893 
29 32.461 33.711 35.139 39.087 42.557 45.722 46.693 49.588 52.336 58.302 
30 33.530 34.800 36.250 40.256 43.773 46.979 47.962 50.892 53.672 59.703 

* Adapted from Table IV of R. A. Fisher and F. Yates, Statistical Tables f or Biological, Agricultural and Medical Research, Oliver & 
Boyd, Ltd" Edinburgh and London, 1953, by permission of the authors and publishers. 

d.f. = degrees of freedom = v. For 30 < v < 100, linear interpolat ion where necessary will give four significant figures. For v > 100, 
take x~.• = !-(t. + v'Zv - 1)2. 

--:-:----,-----'------ - :-- ~ . _ , . ,.._ , _.. _ ,-_ .,-, , .. 
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TABLE C.3 THE I-DISTRIBUTION 

P{I ~ I.} == P(t.) = _00 pet) dt r 
P(t.J 

0 t. 

P(/*) 
d.f. 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.975 0.99 0.995 0.9995 

1 0.158 0.325 0.510 0.727 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.619 
2 0.142 0.289 0.445 0.617 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.598 
3 0.137 0.277 0.424 0.584 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 12.941 
4 0.134 0.271 0.414. 0.569 0.741 0.941 1.190 1.533 2.132 2.776 3.757 4.604 8.610 
5 0.132 0.267 0.408 0.559 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 6.859 

6 0.131 0.265 0.404 0.553 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.959 
7 0.130 0.263 0.402 0.549 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 5.405 
8 0.130 0.262 0.399 0.546 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 5.041 
9 0.129 0.261 0.398 0.543 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.781 

10 0.129 0.260 0.397 0.542 0.700 0.879 1.093 1.372 1.812 2.228 2.764" "3.169 '4.578 

11 0.129 0.260 0.396 0.540 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.437 
12 0.128 0.259 0.395 0.539 0.695 0.873 1.083 1.356 .1.782 2.179 2.681 3.055 4.318 
13 0.128 0.359 0.394 0.538 0.694 0.870 1.079 .1.350 1.771 2.160 2.650 3.012 4.221 
14 0.128 0.258 0.393 0.537 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 4.140 
15 0.128 0.258 0.393 0.536 0.691 0.866 1.974 1.341 1.753 2.131 2.602 2.947 4.073 

... 

16 0.128 0.258 Q~~92 0.535 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.291 4.015 
17 0.128 0.257 0:392 0.534 0.689 '0.863- }.069 1.333 1.740 2.110 2.567 2.898 3.965 
18 0.127 0.257 Q.392. 0.534 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.922 
19 0.127 0.257 0.391 0.533 0.688 0.861 1.066 1.328 1.729 2.093 2.539 ..,2.861 3.883 
20 0.127 '0.257 0.391 0.533 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.850 

21 0.127 0.257 0..257 . 0.532 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.819 
22 0.127 0..256 0.3,90 0~532 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.792 
23 0.127 0.256 0.390 0.532 0.68~ 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.767 
24 0.127 0.256 0.390 0.531 0.685 0.857 '1.059 1.318 1.711 2.064 2.492 ~.797 ~3.745 

25 0.127 0.256 0.390 0.531 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.725 

26 0.127 0.256 0.390 :0.531 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.707 
27 0.127 0.256 0.389 0.531 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.690 
28 0.127 0.256 0.389 0.530 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.674 
29 0.127 0.256 0.389 0.530 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.659 
30 0.127 0.256 0.389 0.530 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.646 

40 0.126 0.255 0.388 0.529 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.551 
60 0.126 0.254 0.387 0.527. 0.679 Q.848 1.046 1.296 1.671 2.000 2.390 2.660 3.460 

120 0.126 0.254 0.386 0.526 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 3.373 
00 0.126 0.253: 0.385 0.524 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.291 

* Adapted from Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, Oliver & 
Boyd, Ltd., Edinburgh and London, 1963, by permission of the authors and publishers. 
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T ABLE C.4a (continued ) 

>< 10 12 15 20 24 30 40 60 120 00 

1 2.0419 2.0674 2.0931 2.1190 2.1321 2.1452 2.1584 2.1716 2. 1848 2.1981 
2 1.3450 1.3610 1.3771 1.3933 1.4014 1.4096 1.4178 1.4261 1.4344 1:4427 
3 1.1833 1.1972 1.2111 1.2252 1.2322 1.2393 . 1.2464 1.2536 1.2608 1.2680 
4 1.1126 1.1255 1.1386 1.1517 1.1583 1.1649 1.1716 1.1782 1.1849 1.1916 

5 1.0730 ' 1.0855 1.0980 1.1106 1.1170 1.1234 1.1297 1.1361 1.1426 1.1490 
6 1.0478 1.0600 1.0722 1.0845 1.0907 1.0969 1.1031 1.1093 1.1156 1.1219 
7 1.0304 1.0423 1.0543 1.0664 1.0724 1.0785 1.0846 1.0908 1.0969 1.1031 
8 1.0175 1.0293 1.0412 1.0531 1.0591 1.0651 1.0711 1.0771 1.0832 1.0893 
9 1.0077 1.0194 1.0311 1.0429 1.0489 1.0548 1.0608 1.0667 1.0727 1.0788 

10 1.0000 1.0116 1.0232 1.0349 1.0408 1.0467 1.0526 1.0585 1.0645 1.0705 
11 0.99373 1.0052 1.0168 1.0284 1.0343 1.0401 1.0460 1.0519 1.0578 1.0637 
12 0.98 856 1.0000 1.0115 1.0231 1.0289 1.0347 1.0405 1.0464 1.0523 1.0582 
13 0.98421 0.99560 ,1.0071 1.0186 1.0243 1.0301 1.0360 1.0418 1.0476 1.0535 
14 0.98051 0.99186 1.0033 1.0147 1.0205 1.0263 1.0321 1.0379 1.0437 1.0495 

15 0.9773 2 0.98863 1.0000 1.0114 1.0172 1.0229 1.0287 1.0345 1.0403 1.0461 
-~, ~ 

16 0.97454 0.98582 0.99716 1.0086 1.014,3 1.0200 1.0258 1.0315 1.0373 1.0431 
17 0.97209 0.98 334 0.99466 . . 1.0060 1.0117 1.0174 1.0232 1.0289 1.0347 1.0405 
18 0.96993 0.98116 0.99245 1.0038 1.0095 1.0152 1.0209 1.0267 '.. ·1.0324 .. · '1.0382 
19 0.96800 0.97920 :0.99047 1.0018 1.0075 1.0132 1.0189 1.0246 1.0304 1.0361 

1.0000 . 

21 0.96470 0.97587 0.98710 0.99838 1.0040 1.0097 1.0154 1.0211 1.0268 1.0326 
22 ' 0.963 28 0.97444 0.98565 0.99692 1.0026 1.0082 1.0 139 1.0196 1.0253 1.0311 
23 0.96199 0.97313 0.98433 0.99558 1.0012 1.0069 1.0126 1.0183 1.0240 . 1.0297 
24 0.96081 0.97194 0.98312 0.99436 1.0000 1.0057 1.0113 1.0170 1.0227 1.0284 

20 0.96626 0.97746 0.98870 1.0057 1.0114 1.0171 1.0228 1.0285 1.0343 

25 0.95972 0.97084 0.98201 0.99324 0.99887 1.0045 1.0102 1.0159 1.0215 1.0273 
26 0.95872 0.96983 0.98099 0.99220 0.99783 1.0035 1.0091 1.0148 1.0205 1.0262 
27 0.95779 0.96889 0.98004 0.99125 0.99687 1.0025 1.0082 1.0138 1.0195 1.0252 
28 0.95694 0.9680 2 0.97917 0.99036 0.99598 1.0016 1.0073 1.0129 1.0186 1.0243 
29 0.95614 0.96722 0.97835 0.98954 0.99515 1.0008 1.0064 1.0121 1.0177 1.0234 

30 0.95540 0.96647 0.97759 0.98877 0.99438 1.0000 1.0056 1.0113 1.0170 1.0226 
40 0.95003 0.96104 0.97211 0.98323 0.98880 0.99440 1.0000 1.0056 1.0113 1.0169 
60 0.94471 0.95566 0.96667 0.97773 0.98328 0.98884 0.99441 1.0000 1.0056 1.0112 

120 0.93943 0.9503 2 0.96128 0.97228 0.97780 0.98333 0.98887 0.99443 1.0000 1.0056 
00 0.93418 0.94503 0.95593 0.96687 0.97236 0.97787 0.98339 0.98891 0.99445 1.0000 

* Reproduced by permission of E. S. Pearson from "Tables of Percentage Points of the Inverted Beta (F) Distribution," Biometr ika 
33, 73- 88, 1943, by Maxine Merrington and Cather ine M. Thompson. 

Where necessary, interpol ation should be carried out using the reciprocals of the degrees of freedom. The function 120/v is convenient 
for this purpose, Vi = numerator, V2 = denom inator. 





TABLES 431 

TABLE C.4b (cont inued) 

\ 10 12 15 20 24 30 40 60 120 CX) 

1 9.3202 9.4064 9.4934 9.5813 9.6255 9.6698 9.7144 9.7591 9.8041 9.8492 
2 3.3770 3.3934 3.4098 3.4263 3.4345 3.4428 3.4511 3.4594 3.4677 3.4761 
3 2.4447 2.4500 2.4552 2.4602 2.4626 2.4650 2.4674 2.4697 2.4720 2.4742 
4 2.0820 2.0826 2.0829 2.0828 · 2.0827 2.0825 2.0821 2.0817 2.0812 2.0806 

5 1.8899 1.8877 1.8851 1.8820 1.8802 1.8784 1.8763 1.8742 1.8719 1.8694 
6 1.7708 1.7668 1.7621 1.7569 1.7540 1.7510 1.7477 1.7443 1.7407 1.7368 
7 1.6898 1.6843 1.6781 1.6712 1.6675 1.6635 1.6593 1.6548 1.6502 1.6452 
8 1.6310 1.6244 1.6170 1.6088 1.6043 1.5996 1.5945 1.5892 1.5836 1.5777 
9 1.5863 1.5788 1.5705 1.5611 1.5560 1.5506 1.5450 1.5389 1.5325 1.5257 

10 1.5513 1.5430 1.5338 1.5235 1.5179 1.5119 1.5056 1.4990 1.4919 1.4843 
11 1.5230 1.5140 1.5041 1.4930 1.4869 1.4805 1.4737 1.4664 1.4587 1.4504 
12 1.4996 1.4902 1.4796 1.4678 1.4613 1.4544 1.4471 1.4393 1.4310 1.4221 
13 1.4801 1.4701 1.4590 1.4465 1.4397 1.4324 1.4247 1.4164 1.4075 1.3980 
14 1.4634 1.4530 1.4414 1.4284 1.4212 1.4136 1.4055 1.3967 1.3874 1.3772 

.. L4"491 15 -- - 1.4383 1.4263 1.4127 1.4052 _1.3973 1.3888 . 1.3796 1.3698 1.3591 
16 1.4366 1.4255 ~ ' 1.4130 1.3990 1.3913 1.3830 1.3742 1.3646 1.3543 1.3432 
17 1.4256 1.4142 1.4014 1.3869 1.3790 1.3704 1.3613 1.3514 1.3406 1.3290 
18 1.4159 1.4042 - 1.3911 1.3762 1.3680 1.3592 1.3497 1.3395 1.3284 1.3162 
19 1.4073 1.3953 1.3819 1.3666 1.3582 1.3492 1.3394 1.3289 1.3174 1.3048 

20 1.3995 1.3873 1.3736 1.3580 1.3494 1.3401 1.3301 1.3193 1.3074 1.2943 
21 1.3925 1.3801 -.,.3661 1.3502 1.3414 1.3319 1.3217 1.3105 1.2983 1.2848 
22 1.3861 1.3735 1.3593 1.3431 1.3341 1.3245 1.3140 1.3025 1.2900 1.2761 
23 1.3803 1.3675 1.3531 1.3366 1.3275 1.3176 1.3069 1.2952 1.2824 1.2681 
25 1.3750 1.3621 1.3474 1.3307 1.3214 1.3113 1.3004 1.2885 1.2754 1.2607 

25 1.3701 1.3570 1.34~2 1.3252 1.3158 1.3056 1.2945 1.2823 1.2698 1.2538 
26 1.3656 1.3524 1.3374 1.3202 1.3106 1.3002 1.2889 1.2765 1.2628 1.2474 
27 1.3615 1.3481 1.3329 1.3155 1.3058 1.2953 1.2838 1.2712 1.2572 1.2414 
28 1.3576 1.3441 1.3288 1.3112 1.3013 1.2906 1.2790 1.2662 1.2519 · . '1.2358 

'29 1.3541 1.3404 1.3249 1.3071 1.2971 1.2863 1.2745 1.2615 1.2470 1.2306 

30 1.3507 1.3369 1.3213 1.3033 1.2933 1.2823 1.2703 1.2571 1.2424 1.2256 
40 1.3266 1.3119 1.2952 1.2758 1.2649 1.2529 1.2397 1.2249 1.2080 1.1883 
60 1.3026 1.2870 1.2691 1.2481 1.2361 1.2229 1.2081 1.1912 1.1715 1.1474 

120 1.2787 1.2621 1.2428 1.2200 1.2068 1.1921 1.1752 1.1555 1.1314 1.0987 
CX) 1.2549 1.2371 1.~163 1.1914 1.1767 1.1600 1.1404 1.1164 1.0838 1.0000 

• Reproduced by permission of E. S. Pearson from " Tables of Percentage Points of the Inverted Beta (F) Distribution," Biometrika 
33, 73-8 8, 1943, by Maxine Merrington and Catherine M. Thompson. 

Where necessary, interpolation should be carried out using the reciprocals of the degrees of freedom. The function 120lv is convenient 
for this purpose. Vi = numerator, V2 = denominator. 
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TABLES 433 

, 
. 

TABLE C.4c (continued)
Ii 

I
I 

~ 10 12 15 20 24 30 40 60 120 00 

1 60.195 60.705 61.220 61.740 62.002 62.265 62.529 62.794 63.061 63.328 
2 9.3916 9.4081 9.4247 9.4413 9.4496 9.4539 9.4663 9.4746 9.4829 9.4913 
3 5.2304 5.2156 5.2003 5.1845 5.1764 5.1681 5.1597 5.1512 5.1425 5.1337 
4 3.9199 3.8955 3.8689 3.8443 3.8310 3.8174 3.8036 3.7896 3.7753 3.7607 

5 3.2974 3.2682 3.2380 3.2067 3.1905 3.1741 3.1573 3.1402 3.1228 3.1050 
6 2.9369 2.9047 2.8712 2.8363 2.8183 2.8000 2.7812 2.7620 2.7423 2.7222 
7 2.7025 2.6681 2.6322 2.5947 2.5753 2.5555 2.5351 2.5142 2.4928 2.4708 
8 2.5380 2.5020 2.4642 2.4246 2.4041 2.3830 2.3614 2.3391 2.3162 2.2926 
9 2.4163 2.3789 2.3396 2.2983 2.2768 2.2547 2.2320 2.2085 2.1843 2.1592 

10 2.3226 2.2841 2.2435 2.2007 2.1784 2.1554 2.1317 2.1072 2.0818 2.0554 
11 2.2482 2.2087 2.1671 2.1230 2.1000 2.0762 · 2.0516 2.0261 1.9997 1.9721 
12 2.1878 2.1474 2.1049 2.0597 2.0360 2.0115 1.9861 1.9597 1.9323 1.9036 
13 2.1376 2.0966 ' 2.0532 2.0070 1.9827 1.9576 1.9315 1.9043 1.8759 1 .8462 
14 2.0954 ·· .. 2.0537 2.0095 1.9625 1.9377 1.9119 1.8852 1.8572 1.8280 1.7973 

15 2.0593 2.0171 ~, 1.9722 1.9243 1.8990 1.8728 1.8454 1.8168 1.7867 1.7551 
16 2.0281 1.9854 1.9399 1.8913 1.8656 1.8388 1.8108 1.7816 1.7507 1.7182 
17 2.0009 1.9577 1.9117 1.8624 1.8362 1.8090 1.7805 1.7506 1.7191 1.6856 
18 1.9770 1.9333 1.8868 1.8368 1.8103 1.7827 1.7537 1.7232 1.6910 1.6567 
19 1.9557 1.9117 { 1.8647 1.8142 1.7873 1.7592 1.7298 1.6988 1.6659 1.6308 

20 1.9367 1.8924 1.8449 1.7938 1.7667 1.7382 1.7083 1.6768 1.6433 1.6074 
21 1.9197 1.8750 1.8272 1.7756 1.7481 1.7193 1.6890 1.6569 1.6228 1.5862r 
22 1.9043 1.8593 1.8111 1.7590 1.7312 1.7021 1.6714 1.6389 1.6042 1.5668!, 
23 1.8903 1.8450 1.7964 1.7439 1.7159 1.6864 1.6554 1.6224 1.5871 1.5490

I 24 1.8775 1.8319 1.7831 1.7302 1.7019 1.6721 1.6407 1.6073 1.5715 1.5327 

25 1.8658 1.8200 1.7708 1.7175 1.6890 1.6589 1.6272 1.5934 1.5570 1.5176 
26 1.8550 1.8090 1.7596 1.7059 1.6771 1.6468 1.6147 1.5805 . 1.5437 1.5036 
27 1.8451 1.7989 1.7492 1.6951 1.6662 1.6356 1.6032 1.5686 1.5313 1.4906 

. 28 1.8359 1.7895 1.7395 1.6852 1.6560 1.6252 1.5925 1.5575 1.5198 1.4784 
29 1.8274 1.7808 1.7306 1.6759 1.6465 1.6155 1.5825 1.5472 1.5090 1.4670 

30 1.8195 1.7727 1.7223 1.6673 1.6377 1.6065 1.5732 1.5376 1.4989 1.4564 
40 1.7627 1.7146 1.6624 1.6052 1.5741 1.5411 1.5056 1.4672 1.4248 1.3769 
60 1.7070 1.6574 1.6034 1.5435 1.5107 1.4755 1.4373 1.3952 1 .3476 1.2915 

120 i.6524 1.6012 1.5450 1.4821 1.4472 1.4094 1.3676 1.3203 1.2646 1.1926 
00 1.5987 1.5458 1.4871 1.4206 1.3832 1.3419 1.2951 1.2400 1.1686 1.0000 

I 
* Reproduced by permission of E. S. Pearson from "Tables of Percentage Points of the Inverted Beta (F) Distribution," Biometrika 
33, 73-88, 1943, by Maxine Merrington and Catherine M. Thompson. 

Where necessary, interpolation should be carried out using the reciprocals of the degrees of freedom. The function 120{vis convenient . 
for this purpose. Vi = numerator, V2 = denominator. 
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TABLES 435 

TABLE C.4d (continued) 

V\l
 10 12 15 20 24 30 40 60 120 00 

1 
2 
3 
4 

241.88 
19.396 
8.7855 
5.9644 

243.91 
19.413 
8.7446 
5.9117 

245.95 
19.429 
8.7029 
5.8578 

248.01 
19.446 
8.6602 
5.8025 

249.05 
19.454 
8.6385 
5.7744 

250.09 
19.462 
8.6166 
5.7459 

251.14 
19.471 
8.5944 
5.7170 

252.20 
19.479 
8.5720 
5.6878 

253.25 
19.487 
8.5494 
5.6581 

254.32 
19.496 
8.5265 
5.6281 

5 
6 
7 
8 
9 

4.7351 
4.0600 
3.6365 
3.3472 
3.1373 

4.6777 
3.9999 
3.5747 
3.2840 
3.0729 

4.6188 
3.9381 
3.5108 
3.2184 
3.0061 

4.5581 
3.8742 
3.4445 
3.1503 
2.9365 

4.5272 
3.8415 
3.4105 
.3.1152 
2.9005 

4.4957 
3.8082 
3.3758 
3.0794 
2.8637 

4.4638 
3.7743 
3.3404 
3.0428 
2.8259 

4.4314 
3.7398 
3.3043 
3.0053 
2.7872 

4.3984 
3.7047 
3.2674 
2.9669 
2.7475 

4.3650 
3.6688 
3.2298 
2.9276 
2.7067 

10 
11 
12 
13 
14 

2.9782 
2.8536 
2.7534 
2.6710 
2.6021 

2.9130 
2.7876 
2.6866 
2.6037 

- 2.5342 

2.8450 
2.7186 
2.6169 
2.5331 
2.4630 

2.7740 
2.6464 
2.5436 
2.4589 
2.3879 

2.7372 
2.6090 
2.5055 
2.4202 
2.3487 

2.6996 
2.5705 
2.4663 
2.3803 
2.3082 

2.6609 
2.5309 
2.4259 
2.3392 
2.2664 

2.6211 
2.4901 
2.3842 
2.2966 
2.2230 

2.5801 
2.4480 
2.3410 
2.2524 
2.1778 

2.5379 
2.4045 
2.2962 
2.2064 
2.1307 

15 
16 
17 
18 
19 

. 2.5437 . 
2.4935 
2.4499 
2.4117 
2.3779 

-2.4753 
2.4247 
2.3807 
2.3421 
2.3080 

. 

7·4035 
2~'3522 

2.3071 .. 
2.26~.6 

'2.2341 

2.3275 
2.2756 
2.2304 
2.1906 
2.1555 

2.2878 
2.2354· 
2.1898 
2.1497 
2.1141 

2.2468 
2.1938 
'2.1477 
2.1071 
2.0712 

2.2043 
2.1507 
2.1040 
2.0629 
2.0264 

2.1601 
2.1058 
2.0584 
2.0166 
1.9796 

2.1141 
2.0589 
2.0107 
1.9681­
1.9302 

2.0658 
2.0096. 
1.9604 
1.9168 
1.8780 

20 
21 
22 
23 " 
24 

2.3479 
2.3210 
2.2967 
2.2747 
2.2547 

2.2776 
2.2504 
2.2258 
2.2036 
2.1834 

2.. 2033 
2~\l757 

2.1508 
2.1282 
2.1077 

2.i242 
2.0960 
2.0707 
2.0476 
2.0267 

2.0825 
2.0540 
2.0283 
2."0050 
1.9838 

2.0391 
2.0102 
1.9842 
1.9605 
1.9390 

1.9938 
1.9645 
1.9380 
1.9139 
1.8920 

1.9464 
1.9165 
1.8895 
1.8649 
1.8424 

1.8963 
1~8657 

1.8380 
1.8128 
1.7897 

1.8432 
1.8117 
1.7831 
1.7570 
1.7331 

25 
26 
2'­
28 
29 

2.2365 
2.2197 
2.2043 
2.1900 
2.1768 

2.1649 
2.1479 
2.1323 
2.1179 
2.1045 

. 

2.0889 
2.0716 
2.0558 
2.0411 
2.0275 

2.0075 
1.9898 
1.9736 
1.9586 
1.9446 

1.9643 
1.9464, 
1.9299 
1.9147 
1.9005 

1.9192 
1.9010 
1.8842 
1.8687 
1.8543 

1.8718 
1.8533 
1.8361 
1.8203 
1.8055 

1.8217 
1.8027 
1.7851 
1.7689 
1.7537 

1.7684 
1.7488 
1.7307 
1.7138 
1.6981 

1.7110 
1.6906 
1.6717 
1.6541 
1.6377 

30 
40 
60 

120 
00 

2.1646 
2.0772 
1.9926 
1.9105 
1.8307 

2.0921 
2.0035 
1.9174 
1.8337 
1.7522 

2.0148 
1.9245 
1.8364 
1.7505 
1.66.64 

1.9317 
1.8389 
1.7480 
1.6587 
1.5705 

1.8874 
1.7929 
1.7001 
1.6084 
1.5173 

1.8409 
1.7444 
1.6491 
1.5543 
1.4591 

1.7918 
1.6928 
1.5943 
1.4952 
1.3940 

1.7396 
1.6373 
1.5343 
1.4290 
1.3180 

1.6835 
1.5766 
1.4673 
1.3519 
1.2214 

1.6223 
1.5089 
1.389.3 
1.2539 
1.0000 

* Reproduced by permission of E. S. Pearson from "Tables of Percentage Points of the Inverted Beta (F) Distribution," Biometrika 
33, 73-88, 1943, by Maxine Merrington and Catherine M. Thompson. 

Where necessary, interpolation should be carried out using the reciprocals of the degrees of freedom. The function 120/v is convenient 
for this purpose. Vl = "numerator, V2 = denominator. 
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TABLES 437 

-

TABLE CAe (continu ed) 

'\ 10 12 15 20 24 30 40 60 120 00 

1 968.63 976.71 984.87 993.10 997.25 1001.4 1005.6 1009.8 1014.0 1018.3 
2 39.398 39.415 390431 39.448 39.456 39.465 39.473 39.481 39.490 39.498 
3 14.419 14.337 14.253 14.167 14.124 14.081 14.037 13.992 13.947 13.902 
4 8.8439 8.7512 8.6565 8.5599 8.5109 8.4613 8.4111 8.3604 8.3092 8.2573 

5 6.6192 6.5246 6.4277 6.3285 6.2780 6.2269 6.1751 6.1225 6.0693 6.0153 
6 5.4613 5.3662 5.2687 5.1684 5.1172 5.0652 5.0125 4.9589 4.9045 4.8491 
7 4.7611 4.6658 4.5678 4.4667 4.4150 4.3624 4.3089 4.2544 4.1989 4.1423 
8 4.2951 4.1997 4.1012 3.9995 3.9472 3.8940 3.8398 3.7844 3.7279 3.6702 
9 3.9639 3.8682 3.7694 3.6669 3.6142 3.5604 3.5055 3.4493 3.3918 3.3329 

10 3.7168 3.6209 3.5217 3.4186 3.3654 3.3110 3.2554 3.1984 3.1399 3.0798 
11 3.5257 3.4296 3.3299 3.2261 3.1725 3.1176 3.0613 3.0035 2.9441 2.8828 
12 3.3736 3.2773 3.1772 3.0728 3.0187 2.9633 2.9063 2.8478 2.7874 2.7249 
13 3.2497 3.1532 3.0527 2.9477 2.8932 2.8373 2.7797 2.7204 2.6590 2.5955 
14 3.1469 .3.0501 2.9493 2.8437 2.7888 2.7324 2.6742 2.6142 2.5519 2.4872 

15 '3.0602 .. '2.9633 2.8621 2.7559 2.7006 2.6437 2.5850 2.5242 2.4611 2.3953 
16 2.9862 2.8890 ''.2.7875 2.6808 2.6252 2.5678 2.5085 2.4471 2.3831 2.3163 
17 2.9222 2.8249 2.723Q . 2.6158 2.5598 2.5021 2.4422 2.3801 2.3153 2.2474 
18 2.8664 2.7689 2.6667 2.5590 2.5027 2.4445 2.3842 2.3214 2.2558 ' .2.1869 
19 2.8173 2.7196 2.6171 2.5089 2.4523 2.3937 2.3329 2.2695 2.2032 2.1333 

20 2.7737 2.6758 2.5731 2.4645 2.4076 2.3486 2.2873 2.2234 2.1562 2.0853 
21 2.7348 2.6368 2..5338 2.4247 2.3675 2.3082 2.2465 2.1819 2.1141 2.0422 

. 22 2.6998 2.6017 2.4984 2.3890 2.3315 2.2718 2.2097 2.1446 2.0760 2.0032 
23 2.6682 2.5699 2.4665 2.3567 2.2989 2.2389 2.1763 2.1107 2.0415 1.9677 
24 2.6396 2.5412 2.4374 2.3273 2.2693 2.2090 2.1460 2.0799 2.0099 1.9353 

25 2.6135 2.5149 2.411,0 2.3005 2.2422 2.1816 2.1183 2.0517 1.9811 1.9055 
26 2.5895 2.4909 2.3867 2.2759 2.2174 2.1565 2.0928 2.0257 1.9545 1.8781 
27 2.5676 2.4688 2.3644 2.2533 2.1946 2.1334 2.0693 2.0018 1.9299 1.8527 
28 2.5473 2.4484 2.3438 2.3224 2.1735 2.1121 2.0477 1.9796 1.9072 1.8291 
29 2.5286 2.4295 2.3248 2.2131 2.1540 2.0923 2.0276 1.9591 1.8861 1.8072 

30 2.511 2 2.4120 2.3072 2.1952 2.1359 2.0739 2.0089 1.9400 1.8664 1.7867 
40 2.3882 2.2882 2.1819 2.0677 2.0069 1.9429 1.8752 1.8028 .7242 1.6371 
60 2.2702 2.1692 2.0613 1.9445 1.8817 1.8152 1.7440 1.6668 1.5810 1.4822 

120 2.1570 2.0548 1.9450 1.8249 1.7597 1.6899 1.6141 1.5299 1.4327 1.3104 
00 2.0483 1.9447 1.8326 1.7085 1.6402 1.5660 1.4835 1.3883 1.2684 1.0000 

• Reproduced by permission of E. S. Pearson from " Tables of Percentage Points of the Inverted Beta (F) Distr ibution ," Biometrika 
33, 73- 88, 1943, by Maxine Merr ington and Catherine M. Thompson. 

Where necessary, interpolation should be carried out using the reciprocals of the degrees of freedom. The function 120lv is convenient 
for this purpose. VI = numerator, V2 = denominator. 

= 
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TABLE C.4r THE F -DlSTRIBUTION·-P(F.) = 0.99 

P(F ~ F.) == P(F.) = 0 p(F) dFr
 
~FJ~ :

\.	 
F. F 

2 3 4 5 6 7 8 9 

1 4052.2 4999.5 5403.3 5624.6 5763.7 5859.0 5928.3 5981.6 6022.5 
2 98.503 99.000 99.166 99.249 99.299 99.332 99.356 99.374 99.388 
3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345 
4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659 

5 16.268 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158 
6 13.745 10.925 9.7795 9.1483 8.7459 8.4661 8.2600 8.1016 7.9761 
7 12.246 9.5466 8.4513 7.8467 7.4604 7.1914 6.9928 6.8401 6.7188 
8 11.259 8.6491 7.5910 7.0060 6.6318 6.4707 6.1776 6.0289 5.9106 
9 10.561 8.0215 6.9919 . 6.4221 6.0569 5.8018 5.6129 5.4671 5.3511 

10 10.044 7.5594 6.5523 5.9943 5.6363 5.3858 5.2001 5.0567 4.9424
 
11 9.6460 7.2057 6.2167 5.6683 5.3160 5.0692 4.8861 4.7445 4.6315
 
12 9.3302 6.9266 5.9526 5.4119 5.0643 4.8206 4.6395 4.4994 4.3875
 
13 9.0738 6.7010 5.7394 5.2053 4.8616 4.6204 4.4410 4.3021 4.1911
 
14 8.8616 ; 6.5149 5.5639 5.0354 4.6950 4.4558 4.3779 4.1399 4.0297
 

.	 15-- ··· ·. 8.6831 6.3589 5.4170 4.8932 4.5556 4.3183 4.1415 4.0045 3.8948
 
16 8.5310 :{t.2262 5.2922 4.7726 4.4374 4.2016 4.0259 3.8896 3.7804
 
17 8.3997 6.1121 . 5.1850 4.6690" .4.3359 4.1015 3.9267' 3.7910 3.6822
 
18 8.2854 . 6.0129 ' . 5.0919 4.5790 4.2479 4.0146 3.8406 3.7054 3.5971
 
19 8.1850 , 5.9259 5.0103 4.5003 4.1708 3.9386 3.7653 3.6305 3.5225
 

20 8.0960 5.8489 4.9382 4.4307 4.1027 3.8714 3.6987 3.5644 3.4567
 
21 8.0166 4.7804 4.8740 4.3688 4.0421 3.8117 3.6396 3.5056 3.3981
 
22 7.9454 5.7190 4.8166 4.3134 3.9880 3.7583 3.5867 3.4530 3.3458
 
23 7.8811 5.6637 4.7649 4.2635 3.9392 3.7102 3.5390 3.4057 3.2986
 
24 7.8229 5.6136 4.7181 _,4.2184 3.8951 3.6667 3.4959 3.3629 3.2560 .
 

25 7.7698 5.5680 4.6755 4.1774 3.8550 3.6272 3.4568 3.3239 3.2172 
26 7.7213 5.5263 4.6366 4.1400 3.8183 3.5911 3.4210 3.2884 3.1818 
27 7.6767 5.4881 4.6009 4.1056 3.7848 3.5580 3.3882 3.255.8 3.1494 
28 7.6356 5.4529 4.5681 4.0740 3.7539 3.5276 3.3581 3.2259 3.1195 
29 7.5976 5.4205 4.5378 4.0449 3.7254 3.4995 3.3302 3.1982 3.0920 ,. 
30 7.5625 5.3904 4.5097 4.0179 3.6990 3.4735 3.3045 3.1726 3.0665 

I,
40 7.3141 5.1785 4.3126 3.8283 3.5138 3.2910 . 3.1238 2.9930 2.8876 

~.. • 60 7.0771 4.9774 4.1259 3.6491 3.3389 3.1187 2.9530 2.8233 2.7185 
120 6.8510 4.7865 3.9493 3.4796 3.1735 2.9559 2.7918 ·2.6629 2.5586 

00 6.6349 4.6052 3.7816 3.3192 3.0173 2.8020 2.6393 2.5113 2.4073 

(continued) 
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TABLE C.4f (continued) 

~'
 10 12 15 20 24 30 40 60 120 00 

1 6055.8 6106.3 6157.3 6208.7 6234.6 6260.7 6268.8 6313.0 6339.4 6366.0 
2 99.399 99.416 99.432 99.449 99.458 99.466 99.474 99.483 99.491 99.501 
3 27.229 27.052 26.872 26.690 26.598 26.505 26.411 26.316 26.221 26.125 
4 14.546 14.374 14.198 14.020 13.929 13.838 13.745 13.652 13.558 13.463 

5 10.051 , 9.8883 9.7222 9.5527 9.4665 9.3793 9.2912 9.2020 . 9.1118 9.0204 
6 7.8741 7.7183 7.5590 7.3958 7.3127 7.2285 7.1432 7.0568 6.9690 6.8801 
7 6.6201 6.6591 6.3143 6.1554 . 6.0743 5.9921 5.9084 5.8236 5.7372 5.6495 
8 5.8143 5.6668 5.5151 5.3591 5.2793 5.1981 5.1156 5.0316 4.9460 4.8588 
9 5.2565 5.1114 4.9621 4.8080 4.7290 4.6486 4.5667 4.4831 4.3978 4.3105 

10 4.8492 4:7059 4.5582 4.4054 4.3269 4.2469 4;1653 4.0819 3.9965 3.9090 
11 4.5393 4.3974 4.2509 4.0990 4.0209 3.9411 3.8596 3.7761 3.6904 3.6025 
12 4.2961 4.1553 4.0096 3.8584 3.7805 3.7008 3.6192 3.5355 3.4494 3.3608 
13 4.1003 3.9603 3.8154 3.6646 3.5868 3~5070 3.4253 3.3413 3.2548 3.1654 
14 3.9394 3.8001 3.6557 3.5052 3.4274 3.3476 3.2656 3.1813 3.0942 3.0040 

15 3.8049 3.6662 ., .3.5222 3.3719 3.2940 3.2141 3.1319 3.0471 2.9595 2.8684 
16 3.6909 3.5527 ' 3.4089 3.2588 3.1808 3.1007 3.0182 2.9330 2.8447 2.7528 
17 3.5931 3.4552 3.3117 3.1615 3.0835 3.0032 2.9205 2.8348 2.7459 2.6530 
18 3.5082 3.3706 3.2273 3.0771 2.9990 2.9185 2.8354 2.7493 2.6597 ,2.5660 -, 

19 3.4338 3.2965 3.1533 3.0031 2.9249 2.8442 2.7608 2.6742 2.5839 2.4893 

20 3.3682 3.2311 ·. 3.0880 2.9377 2.8594 2.7785 2.6947 2.6077 2.5168 2.4212 
21 3.3098 3.1729 '\3.0299 2.8796 2.8011 2.7200 2.6359 2.5484 2.4568 2.3603 
22 3.2576 3.1209 2.9780 2.8274 2:7488 2.6675 2.5831 2.4951 2.4029 2.3055 
23 D106 2.0740 2.9311 2.7805 2.7017 2.6202 2.5355 2.4471 2.3542 2.2559 
24 3.1681 3.0316 2.8887 2.7380 2.6591 2.5773 2.4923 2.4035 2.3099 2.2107 

25 3.1294 2.9931 2.8502 2.6993 2.6203 2.5383 2.4530 2.3637 2.2695 2.1694 
26 3.0941 2.9579 2.8150 2.6640 2.5848 2.5026 2.4170 2.3273 2.2325 2.1315 
27 3.0618 2.9256 2.7827 2.6316 2.5522 2.4699 2.3840 2.2938 2.1984 2.0965 
28 3.0320 2.8959 2.7530 2.6017 2.5223 2.4397 2.3535 2.2629 2.1670 2.0642 '4 

29 3.0045 2.8685 2.7256 2.5742 2.4946 2.4118 2.3253 2.2344 2.1378 2.0342 

30 2.9791 2.8431 2.7002 2.5487 2.4689 2.3860 2.2992 2.2079 2.1107 2.0062 
40 2.8005 2.6648 2.5216 2.3689 2.2880 2.2034 2.1142 2.0194 1.9172 1.8047 
60 2.6318 2.4961 2.3523 2.1978 2.1154 2.0285 1.9360 1.8363 1.7263 1.6006 

120 2.4721 2.3363 2.1915 2.0346 1.9500 1.8600 1.7628 1.6557 1.5330 1.3805 
00 2.3209 2.1848 2.0385 1.8783 1.7908 1.6964 1.5923 1.4730 1.3246 1.0000 

* Reproduced by permission of E. S. Pearson from "Tables of Percentage Points of the Inverted Beta (F) Distribution," Biometrika 
33, 73-88, 1943, by Maxine Merr ington and Catherine M. Thompson. 

Where necessary, interpolation should be carried out using the reciprocals of the degrees of freedom . The function 120/vis convenient 
for this purpose. Vl = numerator; V2 = denominator. 
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TABLE C.5 CRITICAL VALUES OF r FOR THE SIGN TEST·
 
(a = confidence level)
 

a for Two-Sided Test a for Two-Sided Test 

0.01 0.05 ' 0.10 0.25 0.01 0.05 0.10 0.25 

a for One-Sided Test a for One-Sided Test 

n 0.005 0.025 0.05 0.125 n 0.005 0.025 0.05' 0.125 

1 46 13 15 16 18
 
2 47 14 16 17 19
 
3 0 48 14 16 17 19
 
4 0 49 15 17 18 19
 
5 0 0 50 15 17 18 20
 

6 0 0 1 51 15 18 19 20
 
7 0 0 I 52 16 18 19 21
 
8 0 0 1 1 53 16 18 20 21
 
9 0 1 1 2 54 17 19 20 22
 

10 0 I 1 2 55 17 19 20 22
 

11 0 1 2 3 56 17 20 21 23
 
12 1 2 2 3 57 18 20 21 23
 
13 1 2 3 3 58 18 21 22 24
 
14 1 2 3 4 59 19 21 22 24
 
15 2 3 3 4 ' 60 19 21 23 25
 

16 2 3 4 5 61 20 22 23 25
 
17 2 4 4 -5 62 20 22 24 25
 
18 3 4 5 6 63 20 23 24 26
 
19 3 4 5 6 64 21 23 24 26
 
20 3 5 5 6 65 21 24 25 27
 

21 4 5 6 7 66 22 24 25 27
 
22 4 5 6 7 67 22 25 26 28
 
23 4 6 7 8 68 22 25 26 28
 
24 5 6 7 8 69 23 25 27 29
 
25 5 7; ' 7 9 70 23 26 27 29
 

26 6 7 8 9 71 24 26 28 30
 
27 6 7 8 10 72 24 27 28 30
 
28 6 8 9 10 73 25 27 28 31
 
29 7 8 9 10 74 25 28 29 31
 
30 7 9 10 11 75 25 28 29 32
 

31 7 9 10 11 76 26 ' 28 30 32
 
32 8 9 10 12 77 26 29 30 32
 
33 8 10 11 12 78 27 29 31 33
 
34 9 10 11 13 79 27 30 31 33
 
35 9 11 12 13 80 28 30 32 34 ,
 
36 9 11 12 14 81 28 31 32 34
 
37 io 12 13 14 82 28 31 33 35
 
38 10 12 13 14 83 29 32 33 35
 
39 11 12 13 15 84 29 32 33 36
 
40 11 13 14 15 8,5 30 32 34 36
 
41 11 13 14 16 86 30 33 34 37
 
42 12 14 15 16 87 31 33 35 37
 
43 12 14 15 17 88 31 34 35 38
 
44 13 15 16 17 89 31 34 36 38
 
45 13 15 16 18 90t 32 35 36 39
 

• Adapted with permission from W. J. Dixonand F. J. Massey, Jr., Introduct ion to Statistical Analysis (2nd. ed.),
 
McGraw-Hili, New York, 1957.
 

t For values of n larger than 90, approximate values of r may be found by taking the nearest integer less than
 
(n - 1)/2 - k v'n+T, where k is 1.2879, 0.9800, 0.8224, 0.5752 for the 1, 5, 10, 25 percent values, respectively.
 

''-'''.....--~............""-"------~----~------ .
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TABLE C.6 M ANN AND WHITNEY TFST 

(Probability of Obtaining a U· not Larger than that Tabulated in Comparing Samples of nand m) 

m=3 m = 4 

~ 1 2 3 

0 
1 
2 

0.250 
0.500 
0.750 

0.100 
0.200 
0.400 

0.050 
0.100 
0.200 

3 0.600 0.350 

4 
5 

0.500 
0.650 

I ~ 1 2 3 4 

0 0.200 0.067 0.028 0.014 
1 0.400 0.133 0.057 0.029 
2 0.600 0.267 0.114 0.057 

3 0.400 0.200 0.100 
4 0.600 0.314 0.171 

5 0.429 0.243 
6 0.571 0.343 

7 03 .44 
8 0.557 

m = 5 m=6 

~ 1 2 3 
-­

0.018 
0.036 
0.071 
0.1,25 

-
0.196 
0.286 

-

-­

4 
-­

0.008 
0.016 
0.032 
0.056 
-­

0.095 
_0.143 
-­

5 
-­

0.004 
0.008 
0.016 
0.028 
-­

0.048 
0.075 
-­

0 
1 
2 
3 

0.167 
0.333 

c,0.500 
0.667 

0.047 
0.095 
0.190 
0.286 
-­

0.4 29 
0.571 
-­

4 
5 

6 0.393 0.206 0.111 
7 0.500 0.278 0.155 
8 0.607 0.365 0.210 

9 
10 

-­-­
0.452 
0.548 

\ 

0.274 
0.345 
-­

11 , 0.421 
12 0.500 
13 0.579 

I ~ 1 2 3 
-­

0.01 2 
0.0 24 
0.048 
0.083 
-­

0.131 
0.190 
0.274 
-­

4 
-­

0.005 
0.010 
0.019 
0.033 
-­

0.057 
0.086 
0.129 
-­

5 
-­

0.00 2 
0.004 
0.009 
0.0 15 
-­

0.026 
0.041 
0.063 
-­

6 
-­

0.001 
0.002 
0.004 
0.008 
-­

0.013 
0.021 
0.032 
-­

0 
1 
2 
3 

0.143 
0.286 ­
0.4 28 
0.57 1 

0.036 
0.071 
0.143 
0.214 
-­

0.321 
0.4 29 
0.571 
-­

4 
5 
6 

7 0.357 0.176 0.089 0.047 
8 0.45 2 0.238 0.123 0.066 
9 

-­
0.548 
-­

0.305 
-­

0.381 
0.457 
0.545 

0.165 
-­

0.214 
0.268 
0.331 

0.090 
-­

0.120 
0.155 
0.197 

10 
11 
12 

13 
14 
15 

-­

-­

- -

- - -­

0. 396 
0.465 
0.535 
-­

-­

0.2 42 
0.294 
0.350 
-­

0.409 
0.469 
0.531 

16 ­
17 
18 

(continued ) 
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TABLE C.6 (continued) 
m = 7 

<; 1 2 3 4 5 6 7 

0 0.125 0.Q28 0.008 0.003 0.001 0.001 0.000 
1 0.250 0.056 0.017 0.006 0.003 0.00 1 0.001 
2 0.375 0.111 0.033 0.012 0.005 0.002 0.001 
3 0.500 0.167 0.058 0.021 0.009 0.004 0.002 

4 0.625 0.250 0.092 0.036 0.015 0.007 0.003 

5 0.333 0.133 0.055 0.024 0.011 0.006 
6 0.444 0.192 0.082 0.037 0.017 0.009 
7 0.556 0.258 0.115 0.053 0.026 0.013 

8 0.333 0.158 0.074 0 .037 0.019 
9 0.417 0.206 0.101 0.051 0.027 

10 0.500 0.264 0.134 0.069 0.036 
11 0.583 0.324 0.172 0.090 0.049 

12 0.394 0.216 0.117 0.064 
13 0.464 0.265 0.147 0.082 
14 

,~ - - - . 
0.538 0.319 0.183 0.104 

15 0.378 0.223 0.130 
1 6 

.-p­
00.438 0.267 0.159 

17 
.. 

0.500 0.314 0.191 
18 0.562 . 0.365 0.228 

19 0.418 0.267 
20 0.473 0.310 
21 0.527 0.355 

22 0.402 

23 \ 0.451 

24 0.500 

25 0.549 

(continued) 
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TABLE C.6 (continued) 
m=8 

~ 1 2 3 4 5 6 7 8 t normal 

0 0.111 0.022 0.006 0.002 0.001 0.000 0.000 0.000 3.308 0.001 
1 0.222 0.044 0.012 0.004 0.002 0.001 0.000 0.000 3.203 0.001 
2 0.333 0.089 0.024 0.008 0.003 0.001 0.00 1 0.000 3.098 0.001 
3 0.444 0.133 0.04 2 0.014 0.005 0.002 0.001 0.001 2.993 0.001 
4 0.556 0.200 0.067 0.024 0.009 0.004 0.002 0.001 2.888 0.002 

5 0.267 0.097 0.036 0.015 0.006 0.003 0.001 2.783 0.003 
6 0.356 0.139 0.055 0.023 0.010 0.005 0.002 2.678 0.004 
7 0.444 0.188 0.077 0.033 0.015 0.007 0.003 2.573 0.005 
8 0.556 0.248 0.107 0.047 0.021 0.010 0.005 2.468 0.007 

9 0.315 0.141 0.064 0.030 0.014 0.007 2.363 0.009 
10 0.387 0.184 0.085 0.041 0.020 0.010 2.258 0.0 12 
11 0.461 0.230 0.111 0.054 0.027 0.014 2.153 0.016 
12 0.539 0.285 0.142 0.071 0.036 0.019 2.048 0.020 

13 0.341 0.177 0.091 0.047 0.025 1.943 0.026 
14 0.404 0.217 0.114 0.060 0.032 1.838 0.033 
15 0.467 0.262 0.141 0.076 0.041 1.733 0.041 
16 0.533 0.311 0.172 0.D95 0.052 1.628 0.052 

17 ..­ 0.362 0.207 0.116 0.065 1.523 0.064 
18 " 0.416 0.245 0.140 0.080 1.418 0.D78 
19 .0.472 0.286 0.168 0.097 1.313 0.094 
20 0.528 0.331 0.198 0.117 1.208 0.113 

21 " 0.377 0.232 0.139 1.102 0.135 
22 0.426 0.268 0.164 0.998 0.159 
23 0.475 0.306 0.191 0.893 0.185 
24 0.525 0.347 0.221 0.788 0.215 

25 0.389 0.253 0.683 0.247 
26 - 0.433 0.287 0.578 0.282 
27 0.478 0.323 . 0.47 3 0.318 
28 0.522 0.360 0.368 0.356 

29 0.399 0.263 0.396 
30 0.439 0.158 0.437 
31 0.480 0.052 0.481 
32 I 

0.520 

Reprod uced by permission of the publisher from H. B. Mann and D. R. Whitney, Annals Math . St at. 18, 52-54 , 1947. 

'. 
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TABLE C.7 CRITICALVALUES FORTHE RUNDISTRIBUTION 

( t t nl + n2 )Values of U~ such that Prob { U ~ Ua } = ce, for the case of nl = n2 = --2­

1 - «: 0.01 0.025 0.05 0.95 0.975 0.99 

n/2 o : 0.99 0.975 0.95 0.05 0.025 0.01 

5 2 2 3 8 9 9 
6 2 3 3 10 10 11 

. 7 3 3 4 11 12 12 
8 4 4 5 12 13 13 
9 4 5 6 13 14 15 

10 5 6 6 15 15 16 
11 6 7 7 16 16 17 
12 7 7 8 17 18 18 
13 7 8 9 18 19 20 
14 8 9 10 19 20 21 
15 9 10 11 20 21 22 
16 10 11 11 22 22 23 
18 11 12 13 24 25 26 
20 13 14 15 26 27 28 
25 17 18 19 32 33 34 
30 21 22 24 37 39 40 
35 . ....;,: 25 27 28 43 44 46 
40 30 31 \ 33 48 50 51 
45 34 36 37 54 55 57 
50 ··38 40 42 59 61 63 
55 43 45 46 65 66 68 
60 47 49 51 70 72 74 
65 52 54 56 75 77 79 
70 56 58 60 81 83 85 
75 61 63 65 86 88 90 
80 65 68 70 91 93 96 
85 70 72 74 97 99 101 
90 74 77 79 102 104 107 
95 79 82 · 84 107 109 112 

100 84 86 88 113 115 117 

~ 

Reproduced fro m J. S. Bendat and A. G. Piersol, Measure ment and Analysis of Random 
Data, John Wiley, New York, 1966, with permission. 

1: ''­
, .J 
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TABLE C.S CRITICAL VALUES FOR THE SUM OF 

SQUARED LENGTHS TEST FOR EQUAL SAMPLE SIZE, n: 
P{N ~ Na}:S a 

a 

n 0.10 0.05 0.025 0.01 

3 18 18 18 18 
4 26 32 32 32 
5 34 38 42 50 
6 38 44 50 58 
7 46 52 60 68 
8 54 60 68 80 
9 62 70 78 90 

10 68 78 86 100 
11 76 86 96 108 
12 84 94 104 118 
13 92 102 112 128 
14 98 110 122 136 
15 106 118 130 146 

TABLE C.9 CRITICAL VALUES FOR THE REVERSE ARRANGEMENT
 

DISTRIBUTION
 

(Values of T* such that Prob {T* > Ta} = a where n = total 
number of measurements) 

a 

n 0.99 0.976 0.95 ·0.05 0.025 0.01 

10 9 11 13 31 33 35 
12 16 18 21 44 47 49 
14 \ 24 27 .30 60 63 66 
16 \, 34 38 41 78 81 85 
18 45 50 54 98 102 107 
20 59 64 69 120 125 130 
30 152 162 171 263 272 282 
40 290 305 319 460 474 489 
50 473 495 514. 710 729 751 
60 702 731 756 1013 1038 1067 
70 977 1014 1045 1369 1400 1437 
80 1299 1344 1382 1777 1815 1860 
90 1668 1721 1766 2238 2283 2336 

100 2083 2145 2198 2751 2804 2866 

Reproduced from J. S. Bendat and A. G. Piersol, Measurement and 
Analysis ofRandom Data;'John Wiley,New York, 1966,with permission. 



446 APPENDIX C 

'TABLE C.lO ... DURBIN-WATSON STATISTIC FOR SERIAL CORRELATION-THE DISTRIBUTION OF 

n2: (Et -Et _ 1)2 
D= 2 

n 

2: EF 
1 

Values of DL and Du from Durbin and Watson 
Sample Probabi lity 

K = I K=2 K=3 K = 4 K=5Size in Upper 
n Taitt DL Du DL Du DL Du DL Du DL Du 

0.01 0.81 1.07 0.70 1.25 0.59 1.46 0,49 1.70 0.39 1.96 
15 0.Q25 0.95 1.23 0.83 1,40 0.71 1.61 0.59 1.84 0,48 2.09 

0.05 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21 

0.01 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74 
20 0.025 1.08 1.28 0.99 1.41 0.89 1.55 0.79 · 1.70 0.70 1.87 

0.05 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99 

0.01 1.05 1.21 0.98 1.30 0.90 1.41 ·0.83 1.52 0.75 1.65 
25 0.025 1.18 1.34 . 1.10 1.43 1.02 1.54 0.94 1.65 0.86 1.77 

0.05 1.29 1,45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89 

0.01 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61 
30 0.025 1.25 1.38 1.18 1,46 1.12 1.54 1.05 1.63 0.98 1.73 

0.05 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83 

om 1.25 1.34 1.20 1,40 1.15 1,46 1.10 1.52 1.05 1.58 
40 0.025 1.35 1,45 1.30 1.51 1.25 1.57 1.20 1.63 1.15 1.69 

0.05 1,44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79 

0.01 . 1.32 1,40 1.28 .) ,45 1.24 1.49 1.20 1.54 1.16 1.59 
50 0.Q25 . . . 1,42 1.50 1.38 1.54 1.34 1.59 1.30 1.64 1.26 1.69 

0.05 1.50 · 1.59 1.46 1.63 1.42 ' 1.67 1.38 1.72 1.34 1.77 

0.01 1.38 1.45 1.35 1,48 1.32 1.52 1.28 1.56 1.25 1.60 
60 0.025 1,47 1.54 1.44 1.57 1,40 1.61 1.37 1.65 1.33 1.69 

0.05 1.55 1.62 1.51 1.65 1,48 1.69 1.44 1.73 1.41 1.77 

0.01 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62 
80 0.025 1.54 1.59 1.53 1.62 1.49 1.65 1.47 1.67 1.44 1.70 

0.05 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77 

om 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65 
100 0.025 1.59 1.63 1.57 · 1.65 1.55 1.67 1.53 1.70 1.51 1.72 

0.05 1.65 1.69 1.63 1.72 1.61 1.74 1.59 

... From C. F. Christ, Economic M odels and Methods, John Wiley, 1966, with permission, based on J. Durbin 
and G. S. Watson, Biometrika 37, 409, 1950; 38, 159, 1951. 
t The probability shown in the second column is the area in the upper tail. K is the number of independent vari­
ab les in addi tion to the constant term. 

" CP. t: , I-. 

1.76 1.57 1.78 
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T ABLE C .ll CRITERIA FOR RFJ ECTION OF OUTLYING OBSERVATIONS· 

Number of 
Observations, 

1 - a 

Statistic n 0.70 0.80 0.90 0.95 0.98 0.99 0.995. 

3 0.684 0.781 0.886 0.941 0.976 0.988 0.994 
4 0.471 0.560 0.679 0.765 0.846 0.889 0.926 

'10 5 0.373 0.451 0.557 0.642 0.729 0.780 0.821 
6 0.318 0.386 0.482 0.560 0.644 0.698 0.740 
7 0.281 0.344 0.434 0.507 0.586 0.637 0.680 

8 0.318 0.385 0.479 0.554 0.631 0.683 0.725 
9 0.288 0.352 0.441 0.512 0.587 0.635 0.677 '11 

10 0.265 0.325 0.409 0.477 0.551 0.597 0.639 

11 0.391 0.442 0.517 0.576 0.638 0.679 0.713 
' 21 12 0.370 0.419 0.490 0.546 0.605 0.642 0.675 

13 0.351 0.399 0.467 0.521 0.578 0.615 0.649 

14 0.370 0.421 0.492 0.546 0.602 0.641 0.674 
15 0.353 0.402 0.472 0.525 0.579 0.616 0.647 
16. 0.338 0.386 0.454 0.507 0.559 0.595 0.624 
17 0.325 0.373 . 0.438 0.490 0.542 0.577 0.605 

·18 0.314 0.361 0.424 0.475 0.527 0.561 0.589 
' 2 2 19 0.304 0.350 0.412 0.462 0.514 0.547 0.575 

20 0.295 0.340 0.401 0.450 0.502 0.535 0.562 
21 0.287 0.331 0.391 0.440 0.491 0.524 0.551 
22 \ 0.280 0.323 0.382 0.430 0.481 0.514 0.541 
23 0.274 0.316 0.374 0.421 0.472 0.505 0.532 
24 0.268 0.310 0.367 0.413 0.464 0.497 0.524 
25 0.262 0.304 0.360 0.406 0.457 0.489 0.516 

.. Adapted by permission from W. J. Dixon and F. J. Massey, Jr., Introduction to S tatistical Analysis (2nd. 
ed.), McGraw-Hili, New York, 1957. 
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APPENDIXD
 

Notation
 

GENERAL CONVENTIONS	 b** 

1. Vectors and matrices are boldface. b*
2. Random variables are capital letters, primarily 

from the end of the alphabet, plus certain other com­ b*
monly accepted symbols such as t and s. b*

3. Laplace transforms are indicated by both an overlay
 
¥ and (s).
 

4. Fourier transforms are indicated by both an over­
lay and (w).¥ 

5. Greek letters represent expected values. 
6. Square brackets are used for matrices ; large vertical 

parallel lines are used for determinants. 
7. Operators are script letters. 

a deterministic constant in general e 

ali element in the matrix a e 

a' the matrix xTwx 
eA area 
eAAli element of the matrix A 

A~ . scaled element in the matrix A ciO) 
All identical to J(X< l)TWX< 'I elf 

ARL	 average run length elf 

e* 
b	 estimated parameter in a linear (in the c 

parameters) model, random variable 
deterministic constant in general c 
bandwidth (range of frequency) 

Cp
equivalent bandwidth, 2'11'/m Covar 
element of the matrix b C 
estimated intercept in a linear (in the
 
parameters) model 7J =fJO+fJ1(X-X),
 
random variable .
 
estimated intercept in model 7J =
 
fi~ + fi1X 
element of b,
 
element of the matrix b<nl
 

b	 matrix of estimated model param­
eters d(s) 
vector of parameters specifying the d.f. 
coordinates of a vertex of a simplex D 
p x p submatrix of b's 
matrix of coefficients defined in 
connection with Equation 8.2-4 
matrix of coefficients defined in 
connection with Equation 8.2-4 

449 

coordinates of an expansion or con­
traction vertex in a simplex 
submatrix ofb1 with one element 
deleted 
coordinates of a vertex in a simplex 
selected matrix of b for a Taylor 
series expansion of a model in 
Section 8.4 
vector of estimated parameters at 
the nth stage in calculations 
column vector of the elements 
(M\nl .. . M:J;l) at the nth stage in 
calculations 

concentration, deterministic variable 
sample coefficient of variation; see 
Equation 2.4-4 
constant 
concentration of component A 
initial concentration of component A 
element in the matrix c = (XTWX)-l 
element of the matrix c 
dimensionless concentration 
coordinates of the. centroid of a 
simplex 
the matrix (XTWX)-l 
submatrix of c 
Covariance 
discrimination criterion for models in 
Section 8.5-3 
coefficients, random variables 
concentration, random variable 
heat capacity 
test statistic given by Equation 7.3-1 
element of the matrix C 
identical to (A< l)-l 

polynomial in denominator of g(s) 
degrees of freedom 
Durbin-Watson statistic in the test for 
serial correlation 
difference, random variable 
ratio of Kv/Kv.max in Section 8.5-3 
difference, random variable 
kth derivative operator 

•. .L4L
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jj 

!i) 

D 

E 

£f 
tff 
E 

I 
I(xj) 

,	 fmax 

Imln 

r 

f(lX, Y, t) ; 
F
 
F
 

get)
 
get)
 

g(w) 

g(z) 

g(s) 
G(t) 

G(s) 

G 
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dispersion coefficient in axial direc­
tion; subscripts Land R refer to 
axial and radial direction, respectively 
approximation for the kth ordinary 
derivative 
diffusion coefficient 
diagonal matrix used in Equation 
6.2-20 composed of the elements on 
the main diagonal of A 

defined in connection with Equation 
8.5-4 
activation energy 
event 
the ith residual (lj - Yj), also 
[Yj - (1]j)] for anonlinear model 
residual for a suspected outlier 
expectation 
matrix of residuals 

function in general'
 
. relative frequency function
 
folding or Nyquist frequency
 
tTm 

Covar {XjXJ} , the covariance matrix 
of Equation 2.3-6 
nonlinear function of lX, y, t 

flow rate of fluid 
the Fisher .F used in the variance 
ratio test, random variable 
the Fisher F for the significance level 
ex and for m.-degrees of freedom in .. 
the numerator and n degrees of free­
dom in the denominator in the 
variance ratio 
Fourier transform 
inverse Fourier transform 

general function of time 
.deterministic impulse response or 
weighting function 
the ith general function 
deterministic transfer function 
(.P[g(t))) 

. deterministic transfer function (fre­
quency response) in frequency do­
main 
z-transform of impulse response (i.e. 
ofg[td) 
transfer matrix
 
empirical impulse response (weight­

ing function)
 
stochastic transfer function, Laplace­

transform of G(t)
 
the matrix xTwY
 

h 

/(r:s) 

/* 
J( )
 
I
 

J(1 ,2) 

J " 
, J (o>, J(yi0» 

k 

I 
L
 
L
 
L(~ I Yn) 

interphase heat transfer, a constant; 
hold -up, a constant 
element from a Hessian matrix ..
(ZJ + Za)/Zo in Section 11.3 
step length in an iterative least 
squares procedure 
Hessian matrix 
known matrix in Equation 9.1-6 . 
matrix defined in connection with 
Equation 9.4-9 
solution of Equation 9.5-10 at the 
nth stage of calculation 
null hypothesis 
alternate hypotheses 
general linear operator 

~ . 
integrals of experimental data in 
Section 10.4 . 
Kullback criterion for model dis­
crimination in Section 8.5 
number of inversions 
imaginary part 
identity matrix 

Kullback criterion for model dis­
crimination in Section 8.5 
Bessel functions in Tables 10.2-2 and 
10.4-2 
successive integrations in Section 11.3 
information matrix defined in con­
nection with Equation 9.6-9 
Jacobian matrix defined in a Taylor 
series expansion in Section 9.5 

constant in general , chemical reaction 
rate constant 
preexponential factor, constant 
normalizing constant in a prob­
ability density in Sections 8.4 and 9.4 
constant in general 
discrimination criterion for different 
models in Section 8.5 
matrix defined in connection with 
Equation 9.4-19 

lower bound on parameter b, or 
variable X j 

a matrix of lower bounds 
likelihood function in general 
length of a piece of equipment 
likelihood function of the elements of 
the matrix ~ given the n x 1 vector 
of observations, Y 
Laplace transform 
inverse Laplace transform . 



m 

m 

m 

M 

M 

n 

n(s) 
N 

N 
N 
N 

P 

PI 

p(x) 
p(x, t) 

P(XI I X3) 
Pn<r~ IYn) 

the number of binary intervals en­
compassed by the spectral window 
amount of tracer injected in Chapter 
10 
number of parameters in nonlinear 
models 
function defined in connection with 
Equation 10.3-1 
deterministic first raw time moment 
in Chapter 10 
deterministic second central time 
moment in Chapter 10 
number of basic intervals in switching 
the input in Section 12.3 
finite time continuous data average 
of X(t) 
calculated (experimental) estimate of 
ml 

calculated (experimental) estimate of 
mf 
ith central moment 
central moment; i and j indicate the 
respective orders 
matrix defined in connection with 
Equation 8.5-9 
covariance matrix defined in Section 
9.4 

total number of observations or data 
sets 
number of pulses present in a sample 
number of tithes a value of X(t) ~ x 
in a group of time.records 
polynomial in numerator of g(s) 
number of'{time intervals between 
samples in Section 12.3 
total number of time records 

\

total number of pulses 
sum of squared run lengths in 
Equation 3.7-9 

partial pressure of a component 
denoted by a subscript 
number of replicate measurements of 
the dependent variable for a given X I 

probability density of X in general 
the first-order probability density 
function of X(t) 
probability density of Xl given X3 

probability density for the elements 
of the matrix .~ given the n x 1 
vector of observations of Y, Yn, i.e., 
the density after n observations 
the second-order probability density 
function of X(t) 

P 
P 

P(x) 

peE) 
P(x; t) 

P(X I ; t) 

p (n ) 
r 

P{A IB} 

q
 
q
 

q 

' r 
r 

rl 
rlj 

r* 
rxx(tl> t2) 
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probability in general 
dimensionless parameter termed the 
Peclet number in Chapter 10; sub­
scripts designate axial (L) and radial 
(R) directions 
probability distribution function of 
Xin general 
probability of event E 
the first-order probability distri­
bution function P {X(t) ~ x} or the 
probability that the random variable 
X(t) is less than or equal to the 
value of a deterministic variable x 
marginal probability distribution 
function of X(ti) 
the first-order probability function 
for a discrete variable X(tk ) 

the second-order probability distri­
bution function defined by Equation 
2.1-2 
orthogonal polynomial term defined 
by Equation 5.1-21 
probability of model r being the 
correct model after n experiments 
have been carried out 
probability of A given B 

volumetric flow rate in Chapter 10 
number of independent variables in 
an empirical model 
(x - u)Tr-l(x - u) in Equation 2.3-6 

radius 
magnitude (modulus) of a complex 
number in Chapter 12 
reaction rate,_deterministic variable 
Dixon criterion in the test of outliers 
dimensionless radial coordinate 
ensemble autocorrelation function for 
the nonstationary random variable 
X(t) 
ensemble autocorrelation function for 
the stationary random variable X(t) 
ensemble crosscorrelation function 
for the nonstationary random vari­
ables X(t l ) and Y(t2 ) 

ensemble crosscorrelation function 
for the stationary random variables 
X(t) and yet) 
ideal gas constant 
range for a random variable 
reaction rate random variable 
finite time or empirical continuous 
variable estimate of the ensemble 
autocorrelation function 

' j 

. ]J1 3 
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&I( ) 

s 

s 

Sj 

SXY 

sxx(w) 
sxy(w) 

si 
s~ 

S~l 

S 
S* 
Sxx(w) 

SS 

t 

t* 
tf 

-to 
T 
T 
T 
Tx,TlI 

T* 

u 
u 
U 

U(t) 
U(x) 

APPENDIX D 

finite time or empirical continuous 
variable estimate of the ensemble 
crosscorrelation function 
real part 

distance in Euclidean space in Section 
9.2 
complex parameter in the Laplace 
transform 
sample standard deviation 
standard error of estimate for the 
estimated parameter bk 

root of des) in Chapter 11 
sample crosscovariance 
power spectral density function 
crosspower spectral density function 
sample variance 
error mean square in regression 
analysis 
pooled sample variance 
.residual mean square in regression 
analysis 
estimated variance of VI (in re­
gression analysis) 
sum in general 
S* = T* - 1* 
finite time power or empirical spectral 
density, random variable 
finite time or empirical crosspower 
spectral density, random variable 
sum of squares 

time 
the Student-tused in the r-test, 
random variable 
relative temperature CC or OF) 
dimensionless time 
time at the end of a time record 
initial time 
period of input in Section 12.3 
temperature, absolute temperature 
Wilcoxon T, the rank sum 
Wilcoxon T for x or y 
number of times a larger number is 
followed by a smaller number in a 
sequence 
transformation operator 

upper bound for a parameter hi or a 
variable x, 
sensitivity coefficient matrix 
matrix of upper b0U11ds 
standardized normal random variable 
defined in Equation 2.3-2 
unit step function 
unit step function 

U* 

u 

V*j 
Vlj 

V 
V 

V 

v:en)
T8 

Var 

WI 

w(r) 
w(w) 
W 

W(t) 
w~n+l) 

x 

x(t) 
X T • I Q 

x(S) 
x(z) 
x(w) 

x 

x(t) 

x* 

the number of y's preceding an x in
 
a ranked list, the Mann-Whitney
 
statistic
 
the Wald-Wolfowitz statistic for the
 
total number of runs in a time record
 
unitary matrix
 

velocity of flow
 
parameter used in exploration of the
 
surface of eP in parameter space
 
value of Vj at the minimum eP
 
element in V
 
volume of process equipment
 
Thompson statistic In the test of
 
outliers
 
matrix in Wilks' test among esti­

mated regression equations
 
summation defined .in connection
 
with Equation 8.4-11
 
variance
 

weight 
lag window 
spectral window 
matrix of weights 
a random variable in general 
compact notation for x~n+l)M-l. 

(x~n + 1»)T in Section 8.5 

general deterministic independent 
variable 
ith independent variable 
additional value of -x (in regression 
analysis) 
deterministic process or model input 
element of XT,I; r denotes the model 
number, i the experimental run num­
ber, and q the independent variable 
number 
Laplace transform of x(t) 
z-transforrn of x(tk ) 

process or model input in the fre­
quency domain 
a vector of deterministic variables, of 
independent deterministic variables 
vector composed of all the indepen­
dent variables in a model evaluated 
on the ith run 
matrix of deterministic process or 

z:... model inputs 
" ",.

the matrix x at an extremum .~ 

the alias matrix defined in Equation 
5.1-17 
submatrix of x (one column is 
deleted) 

. , . 

_-1 



X(n) 

X(n)rJ 

Xli' Xr.1xes) 
X 
X 

X(t) 

x 
X* 

Xr •IJ 

x(n)
rJ.k 

Xes) 
X 

x(n) 

Xr 

Y 

yet) 

y(tl) 

yeO) 

YrJ 

matrix of elements of the independent 
variables for the nth experiment in 
Section 8.5 Yr 
matrix of elements of the indepen­ yew) 
dent variables in the jth equation in 
the rth model on the nth experiment yes) 
in Section 8.5 y(z) 
vector of elements (Xr.11 •. . Xr.lq)T y 
Laplace transform of x(t) Yr 
difference between x and x, Yp 
general stochastic variable or sto­
chastic independent variable 
general stochastic variable that is 
explicitly a function of time; a sub­ yeO) 
script on t designates X(t) at a Yo 
particular time y* 
the ith stochastic variable that is a 
function of time, occasionally the y(n) 

ith time record 
sample mean 
additional value of X, a random 
variable (in regression analysis) 
jth-order derivative of X in Section 
9.6 
notation for 01Ji(Xb b)/o{JJ; the super­
script n denotes the stage of the 
calculations or the experimental run 
number 
notation for 01Jr(b, Xr.I)/O{Ji in Section 
8;4 
compact notation for [oYrlMn>, x~,»/
 
O{Jrk] in Section 8.5
 
Laplace transform of X(t)
 

a vector of'.random variables Xl> X 2 ,
 

. . . , a matrix of partial derivatives 
evaluated from the most recent data Y 
in which the\rows represent success­
ive experimental runs Y(t l) 
matrix of elements of xl)n); the super­ yet)
script denotes the nth stage or cycle 
of calculations ' 

Yn*+ l 
matrix of elements of Xr~~ k with Yes)
i = 1, .. . • n in Section 8.5 Y(w)
matrix of elements of Xr•li Ylx 
general deterministic dependent vari­ y* 
able 
general deterministic dependent vari­ y(n) 

able which is explicitly a function of 
time f r(n) 

model response for a discrete time 
initial condition for Y 
response of the jth equation in the y 

rth model in Section 8.5 
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defined in connection with Equation 
11.2-7 
response of model r 
process or model output in the fre­
quency domain 
Laplace transform of yet) 
z-transform of y(tk ) 

matrix of model responses 
matrix of elements YrJ 
particular solution of a matrix differ­
ential equation 
matrix of model responses (for 
discrete times) 
matrix of initial conditions for y 
initial condition for y 
defined in connection with Equation 
9.5-5 
matrix of model responses on the nth 
cycle of calculation 
defined in Section 11.4 
Laplace transform of yet) 

, general stochastic dependent variable 
ith observation of Y 
observation for jth equation in 
Section 8.5 . 
kth-order derivative of Y with re­
spect to time in Section 9.6, otherwise 
the observation at tk 

jth observation of Yat XI 

new observation of Y or of Yj 

ith observation for model r in 
Section 8;4 
sample average of observed Y's at XI 

predicted value of YI at Xl 

f at an extremum (for a response 
surface) 
sample mean of Yh grand mean of y­
in a regression model 
discrete observation at t, 
general stochasticdependent variable 
that is explicitly a function of time 
one additional observation of Y 
Laplace transform of yet) 
Fourier transform of yet) 
value of Y given the value of X 

new observed value of Y (in re­
gression analysis) 
value of the nth response in Section 
8.5 
predicted reponse for model rafter 
n data points have been collected in 
Section 8.5 
matrix of observations (dependent 
variables) 

h 
L ,L i 
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z* 
z~ 
Z 

Greek 
IX 

IX 

ex 
ex*' . 

f3 

f3 

Y 
yet) 
Yc 
Ye . 

Yr 
Yx(t) 

y2(W) 
yh(w) 
rex) 
r 

r 
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matrix of values of Y predicted from 
the estimated regression equation 
matrix of' : observations at tl in 
Section 9.4 
matrix of observations at tl 

parameter in the a-transform 
axial coordinate 
integral iri orthogonal product 
method 
.dimensionless axial coordinate 
random variable in general 
z-transform operator 
integral in orthogonal product 
method, random variable 
Z" ~. tanh - 1 PXY 

scaled element in the matrix Z 
identical to [(X< l)TWE< lJ 

a parameter in a probability distri­
bution in general 
significance level = 1 - confidence 
coefficient 
parameter in a model 
coefficient. 
matrix of coefficients 
column vector of parameters given by 
Equation 9.3-10 

parameter in a probability distribu­
tion in general 
operating characteristic of a test = 
1 - power of a.test 
parameter in anempirical model 
element ofthe matrix ~ 

intercept in a linear (in the param­
eters) empirical model 
matrix of model parameters 
submatrix of f3 with one element 
deleted 

constant 
blunder in Section 4.7 
contraction .coefficient 
expansion coefficient 
reflection coefficient 
ensemble coefficient of variation of 
the stochastic variable X(t) 
coherency matrix 
coherence function 
gamma function 
covariance matrix among models in 
Chapter 8 
covariance .matrix .among observa­
tions 

~(n), ~, ~l ' ~r 

sss 

£
 

£*
I 

"Iri 

'I i 

8 

II 

e 

K 

,\ 

,\ 
,\ 

A 

a difference 
delta function 
Dirac delta function: 0kl = 0 if 
k =1= I; 0kl = I if k = I 
difference, as ~X = XI+l - XI or 
~bj = f3j - b, 
criteria for discrimination among 
models in Sections 8.4 and 8.5; the 
superscript n denotes the stage of 
calculations 
difference in the sum of squares 

stochastic unobservable error, error 
in general 
equation error defined in Equation 
9.6-2 
unobservable error for rth model on 
ith experimental run in Section 804 
unobservable error for the jth equa­
tion in the rth model for the nth 
experiment 
matrix of unobservable errors 
matrix of unobservable errors de­
fined in connection with Equation 
9.4-9 
column vector of unobservable errors 
(at ti for discrete times) 

outcome ofan experiment 

dependent variable in empirical 
model, the expected value of Y 
model response evaluated with the 
vector of independent variables used 
in the ith experiment 
ensemble response from rth model on 
ith experimental run in Section 8.4 
matrix of dependent variables for a 
model 
matrix of model responses at tlin 
Section 9.4 

parameter in a probability distri­
bution in general 
vector of parameters in a probability 
distribution 
matrix defined in connection with 
Equation 9.4-9 

constant 

eigenvalue of a matrix 
Lagrangian multiplier 
parameter in the Marquardt least 
squares method, a parameter in 
general 
random variable for Bartlett's test 
(Equation 3.6-2) 

J. 4 4? 



, raw moment; n indicates order 
expected value of X 
expected value of X(/) 
joint moment of two random vari­
ables; iand i indicate the respective 
orders 

, expected value of X* 

v	 degrees of freedom in general 

known value for a model parameter 
scale factor = (All) - % 

multiple product n 
II	 matrix defined by Equation 9.4-6a 

density in Chapter 10 P 
ensemble correlation coefficient for PXY 
the stationary random variables X(/)
 
and yet)
 
sample correlation coefficient
 PXY 
estimated multiple correlation coeffi­P" 
cient 
partial correlation coefficient between 
variables I and 2 eliminating variable 
3 
estimated partial correlation coeffi­
cient between Y and XJ eliminating 
the effect of all the other variables 

P12 ·3 

o	 ensemble standard deviation of the 
random variable X 
ensemble standard deviation of the 
random variable X(/) 
ensemble covariance for XI and XJ 
in general "' ' 
ensemble autocovariance function of 
the nonstationary random variable 
X(t) \ 
ensemble autocovariance function of 
the stationary random variable X(t) 
element of the covariance matrix r in 
Section 8.4 , 
ensemble crosscovariance function 
for the nonstationary random vari­
ables X(t) and Y(/) 
ensemble crosscovariance function 
for the stationary random variables 
X(t) and yet) 
ensemble cospectrum function for the 
stationary random variables X(t) 
and Y(t) 
element of the inverse of the matrix r 
ensemble variance of the random 
variable X 

ai(t)	 ensemble variance of the random 
variable X(t) 

~ 
~(s) 
</>* , </>** 

OVERLAYS 

SUPERSCRIPT 

(n) 

NOTATION 455 ' 

ensemble variance of 'ft (in regression 
analysis) 
compact notation for Ey + W~"+l) 

covariance matrix for multiresponse 
modelsin Section 8.5 

"difference in two times 
maximum lag in correlation 

covariance matrix of et ', 
sum of squares of deviations (or 
integral as in Equation 9.2-1) 
value of.</> at vertex i of a simplex 
lowest value of </> at a simplex vertex 
sum of squares for a model with q 
parameters 
highest value of </> at a simplex vertex 
sum of squares of residuals, the 
minimum </> 
average value of </> 
Laplace transform of </>(t) 
values of </> at vertices of a simplex in
 
Section 6.2-1
 

chi-square, random variable
 
chi-square for a significance level of IX
 

approximate chi-square random vari­

able
 

phase angle
 
functions in general
 
matrix of functions in general
 

frequency in general 
element of the matrix n 
frequency in cycles/time 
Nyquist frequency in radians 
covariance matrix for the model 
parameters, ~ ; subscripts designate a 
covariance matrix for other param­
eters 
covariance matrix defined in Equa­
tion 9.4-16 

estimated 
Fourier or Laplace transform 
sample average 
in canonical coordinates 
incorrectly estimated, approximate 

intermediate estimate (0 = initial 
guess); also indicates order of deriva­
tive (1 = first derivative); also indi­
cates in Section 8.4 the sequence 
number of the data set . 

u 



V-I 

.
 
; 
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* 

T 
VI! = [Vlil- 1 

OTHER 

[x] 
Il fll 

differs in some way from the usual 
definition of the parameter or vari­
able 
transpose of a matrix 
inverse element of a matrix V 
inverse of matrix V 

determinant of the matrix x 
norm , i.e., the square root of the 
sum of the squares of the components 
of the vector f; also the absolute value 

v 
f 
n 
u 

< > 

gradient of a function or matrix 
contour integral 
intersection 
union 
finite time average for continuous 
random variables 
sampled data finite time average for 
random variables 
symbol for given, as Y I x 

_.~ 
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for partial differential equation models , 
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response surface methods, 230 
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two-dimensional models, 234 

Experimentation checklist, 231 
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process optimization, 252 

Exponentially moving average control 
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Factor, definition of, 234 
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types, 234, 235, 237, 240 

F-distribution, 35 
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F-test, 65 (see Analysis of variance) 
Filtering, 295 
First-order model, 234 
Fitting of a function (see Regression) 
Fitting of a model (see Parameter 

estimation) 
Folding, 385 
Forward mult iple regression, 212 
Fourier transform, 374 
Fractional representation, 239 
Freedom, degree of (see Degrees offreedom) 
Frequency, cumulative, 10 

relative, 10 
Frequency domain, estimation in, 374 
Frequency response, 332, 334, 355, 374 
Functional relation, selection of, 105 

Gain, 321, 332 
Gamma distribution, 25 
Gamma function , 27 
Gaussian probability dens-.y, 23, 25 
Gauss-Seidell method, 18C 190 
Generalized functions, 4:.\·, 
Geometric moving aven\1 , ~ontrol chart, 86 
Geometry of least squares, linear model, 

144, 145 
nonlinear model, 177 

Goodness of fit tests, 74 
Gradient method, 253 

Half-replicate, 239
 
Harmonic analysis, 150
 
Hessian matrix, 254
 
Hill climbing, 252
 
Hotelling's T2, 93
 
Hypergeometric probability function, 24
 
Hypothesis, alternative, 56
 

null , 57
 
Hypothesis testing, 49, 56, i1 6, 155
 
Hypothesis tests, for means , 61
 

for variability; 64
 
in regression, 154
 

Identification of best empirical models, 208 
Ill-conditioned matrices, {fl·g 
Impulse input, 377 
Impulse response, 332 
Independence, stochastic. ", 
Independence of variablca. xests, 76 
Independent variable, K 
Initial estimates of parameters, 187 
Initial value problem, 412 
Integration of experiment.. ' data , 307 
Interaction, 194,235, 240 
Interaction between variac' s, 236 
Intercept, 109 

estimate of, 113 
Interpolation, 295 
Interval estimation, 49, 53 
Inversions test, 72 
Interative methods of estimation, 178, 187 

Jacobian matrix, 315 
Joint confidence region , ; 

Kalman-Bucy method, 309 

Lagrange multipliers, 321 
Laplace transforms, 416 
Laplace transform space, estimation in, 361 
Latent variables, 111 
Law of large numbers, 3;' 
Least squares, assumptions, 110 

for differential equations, 299 
for transfer functions, 357 
geometric presentation for linear models, 

145 
geometric presentation for nonlinear 

models,177 
parametric estimation, 107, 143, 177,300 
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Level of significance, 56
 
Likelihood, maximum, 50
 
Likelihood function, 50, 112, 146
 
Limit confidence, 53, 154
 

control,80
 
Linear equations, 401
 
Linear function, 401
 

mean of, 16
 
variance of, 18
 

Linear model, 105, 143
 
Linear operator, 5,401
 
Linear system, 5, 402
 
Linearity of regression equations, test for,
 

114
 
Linearization of a function, 37, 265
 
Logarithmic normal probability density,
 

25,28
 
Lumped parameter models , 4
 

Mann-Whitney test, 69
 
tables, 440
 

Marquardt's method, 193
 
Marginal probability density , 12
 

r Matrix, matrices, 402
 
adjoint, 403
 

I-

conformable, 403
 

I derivative, 404
 

I
I. 

I	 determinant of, 403
 
differentiation of, 146
 
Hessian, 254
 
identity, 403
 
ill-conditioned, 148
 
integral, 404
 
inverse, 403
 
Jacobian, 315
 
multiplication, 404
 
normal equations.Ice
 
of independent variables, 145, 176, 23"5 ­

orthogonal, 403
 
rank of, 404
 
singular, 403
 
square, 402
 
symmetric, 403
 
transformation, orthogonal, 407
 
transpose, 403
 
unitary, 407
 
variance-covariance, 29,146,166,264,309
 
vector , 403
 

Maximum likelihood, estimation, 50, 112,
 
129, 146
 

estimation in difference equations, 367
 
estimation in differential equations, 307
 

Mean , 1~
 

confidence limits, 54
 
ensemble, 16
 
hypothesis test , 61
 
of a funct ion (see Expected value)
 
of standardized normal variable, 26
 
sample, 31
 
variance of sample mean, 32
 

Means, comparison of, 61
 
distribution of, 63
 

Mean square (see Second raw moment)
 
Mean square in analysis of variance (see
 

Analysis of variance) 

Method of, least squares (seeLeast squares) 
maximum likelihood (see Maximum 

likelihood) 
moments , 51
 

Model building, 230, 231, 234, 239
 
Model discrimination, 275
 
Model residue, 318
 
Models, 3, 237
 

boundary value, 296
 
comparison of, 216, 218
 
deterministic, 3, 7
 
differential equations, ordinary, 295
 
differential equations, partial, 332
 
dimension, 234
 
dispersion , 339, 345
 
distributed parameter, 4
 
empirical , 3, 105, 143
 
initial value, 296
 
linear, 105, 143, 145
 
lumped parameter, 4
 
nonlinear, 105, 176
 
order of, 234
 
population balance, 3
 
random, 3
 
screening, 214
 
steady state, 4
 
stochastic, 7, 8
 
transfer function, 354
 
transport phenomena, 3, 4
 

Moments, 22
 
central,22
 
method of, 51
 
normal distribution, 24
 
raw, 22
 

Multinomial probability function , 24
 
Multiple correlation coefficient, 162
 
Multiple regression, 143
 

analysis of variance in, 158
 
estimation, 143
 

Multiresponse models, estimation with,
 
166,271,278
 

Multivariate normal probability density
 
function, 28
 

Negative binomial distribution, 75
 
Newton-Raphson method, 186, 190
 
Nonlinear estimation, confidence contours
 

and regions, 197
 
geometric presentation, 177
 
linearization, 186, 191, 197
 
parameter space, 176, 187
 
practical difficulties, 187, 193
 
starting values, 187
 
steepest descent, 191
 
subject to constraints, 201
 

Nonlinear model, 105
 
Nonlinear operator, 5
 
Nonlinear system, 5
 
Nonparametric tests, 68 (see specific test)
 
Nonstationary, 15 ­
Norm, 406
 
Normal equations, 112, 144
 
Normality of data, validation of, 27
 
Normalization, 406
 
Normal plot of residuals, 212
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Normal probability density, 23
 
Normal probability distribution, 23
 

bivariate, 29
 
fitting data to, 27
 
mean , 24, 26
 
multidimensional, 28
 
standardized distribution, 25
 
table , 423
 
variance, 24, 26
 

Null effect, 193, 196
 
Null hypothesis, 57
 
Number of degrees of freedom (see
 

Degrees of freedom)
 
Numerical error, 31
 
Nyquist frequency, 385
 

Observations, 7, 30, 111
 
Operating characteristic, 57
 
Operating characteristic curves, 57, 58
 
Optimal estimation, 107
 
Optimization, 178,202,253, 257,260
 
Optimum operating conditions, 252
 
Order of model, 234
 
Orthogonal, designs, 234
 

matrix, 403
 
polynomials regression, 151
 
variables, 19, 144, 234
 

Orthogonal product metho d of estimation, 
361
 

Orthonormal vector, 406
 
Outcome, experimental, 10
 

random, 10
 
Outliers , definition, 77
 

rejection of, 78, 135
 
table for rejection , 446
 

Outlying observations (see Outliers) 

Paired observations, 33
 
Parameter, estimation, 49, 105, 143, 176,
 

295
 
estimation, least squares , 107
 
estimation, sequential, 265
 
estimation for z-transforn: 365
 
estimation in differential equations, 300,
 

320, 343
 
estimation in frequency domain, 376
 
estimation in Laplace transform space,
 

360
 
estimation in transfer functions, 357
 

Parameter interaction, 193
 
Parameters, confidence inter val for (see
 

Confidence limits)
 
Parameter space, 145
 
Partial correlation coefficient 213
 
Partial differential equations, as models,
 

332
 
estimation using moment" _B9
 
experimental design, 334
 
experimental inputs, 331
 
inputs to, 330 .
 
moments, 339
 
responses, 332
 
solutions, 330, 416
 

Partial fractions, 357
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Partition of sum of squares, 113
 
in analysis of variance, 115
 
in regression analys is, 113
 

Partition theorem for the X2 distribution, 
113 

Phase angle , 332 
Planning of experiments (see Experimental 

design)
 
Point estimation, 49
 
Poisson distribution, 16
 
Polynomial, fitting of, 151
 
Pooled variance, 33, 114
 
Population, 10
 
Population balance models , 3
 
Positive correlation (see Correlation
 

coefficient) 
Posterior density, 53 
Power of a test , 57 
Power spectrum (power spectral density), 

379
 
Precision ,S
 
Predicted equation, 143
 

. Predicted variables, III 
Prediction , 295 
Principal axes, 245 
Prior probability density , 53 
Probability, 10, 396, 397 

bivariate distribution, 12, 13 
conditional, 12 
definition, 396 
densi ty, 10 (see Specific type of density) 
distribution, 10, 11 (see Specific type 

of distribution)
 
first-order distribution , 11, 14
 
function, 11, 24
 
interpretation of, 10
 
marginal density function , 12
 .... .paper, normal, 28 
second-order distribution , 11, 14 

Process,3 . 
Process analysis, 3 
Process control charts (see Control charts) 

process models (see models) 
process optimization, 252 

Prqcess records, 12 
,Producers' risk, 86 
Propagation of error, 36
 

linear relations; 36
 
nonlinear relations, 38
 

Pseudorandom inputs, 381 

Quadratic form , 406 
Quality control charts (see Control charts) 
Quasilinearization, 315 

Radial dispersion , 346 
Random, error, 5 

input, 378 
input, binary, 381 
model s, 3 
numbers, 75 
outcome, 10 
sample, 30 
variable,S, 10 

Randomization, 237 

Randomness, test of, 74
 
Random normal deviates, 116
 
Range, 80
 
Ranked data, 69
 
Rectangular distribution (uniform
 

distribution), 75
 
Reflection, 181
 
Region, acceptance, 56
 

confidence , 118
 
critical, 56
 
rejection , 56
 

Regression , analys is, 115
 
assumptions, 110
 
both independent and dependent
 

variables stochastic, 128, 167 
computational problems, 148 
computer programs, 169 
donfidence region, 154, 197 
constant error variance, III 
correlated residuals, 132, 164 
cumulative data, 130 
equation, 107, 176 
error variance not constant, 126 
estimates of parameters, 112, 143, 177 
hypothesis tests, 116, 155 
linear , 107, 143 
multiple, 143 
multivariate, 166 
nonindependent errors in variables, 130 
nonlinear, 176 and following 
one independent variable , 107 
orthogonal polynomials, 151 
several independent variables, 143 
subject to constraints, 201 
weighted, 127 
with variance proportion to independent 

variable, 126 
Regress ion coefficient,confidence region ,118 

estimation, 112 \ 
mean square, 115 
variance of, 113 

Regress ion equation in reverse, 120 
Rejectable quality level, 86 
Rejection, of hypothesis, 56 

region of, 56, 133 
Relative frequency, 10 
Repeated experiments, 30, 31 
Repetitive integration of experimental 

data,307 . 
Replication, 233, 239 
Residual degrees of freedom , 158 
Residual sum of squares, 113 
Residuals, analysis of, 208 

correlation among , 132; 212
 
definition of, 208
 
outlyers, 209
 
trend,210
 

Response, definition of, 105,231 
Response surface methods, 230, 245 
Robust, 64 
Rotatable designs, 236, 237 
Rotation of axes, 248 ' 
Round-off error, 31, 148 
Runs, tests, 69 

test , table, 443 . 

S2 (see Variance) 
s2-distribution, mean, 33 

variance, 33 
Sample, average , 10, 30 31 

correlation coefficient , 40 
mean.31 
random, 30 
size, determination, 59 
standard deviation, 32 
statistic, 30 
variance , 31 

Sample funct ions, 6 
Sample space, 10 
Sampling, sequential testing, 60 
Scaling, 193 I 

I 
Scatter diagrams, 40 . i 
Screening models , 214 !
Search methods, 178
 
Sensitivity in regression , 147
 
Sequential estimation for diffel'Clltial
 

equations, 308
 
Sequent ial experimental design, 230, 263,
 

274,280
 
optimization by, 255, 265
 
tests, 233, 238, 244
 

Sequential testing, 60 
Shewhart control chart. 80 
Shifts in level of control chart, 85 
Siegel-Tukey test, 71 
Significance level, 56 
Significance tests , PO Wl ' of, 57 
Sign test, 68 

table, 439 
Simplex designs, 259 
Simplex method, 181 
Size of experiment, effe t on precision, 57 
Slope (see Estimation r.; parameters) 
Slope, estimate of,l l.i 
Spectral density, 379 

estimation of, 382 
Spectral window, 383 
Standard deviation, dU"lition of, 19 

ensemble, 19
 
estimation of, 31
 
sample , 32
 

Standard error of estimate, 32 
Standardized, normal r.: obability 

distribu tion , 25 
Starting values for estimation , 187 
State, 296 
Stationarity, 14 

in the strict sense, H 15
 
in the wide sense, 18
 
tests for , 71
 
weakly, 18
 

Stat ionary point , 254 
Statistic , definition , 30 
Steady-state models , 4 
Steepest descent, 191, 3li4 
Stepwise regression , 212 
Step response, 332 
Stochastic (see Random) 

inputs , 378 
models, 3, 7, 8 

Stochastic process, 6 
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Stochastic variable, 5 (see Random)
 
Straight-line regression (see Regression)
 
Student's t (see t-distribution)
 
Sufficient estimate, 50
 
Sum of squared length test, 72
 
Sum of squares, adjusted for the other
 

variables, 161
 
about mean, 115
 
about regression line, 113
 
due to regression, 115
 
of errors, 113
 
surface, 120
 

System,S
 
linear, 5
 
nonlinear,S
 

Systematic error,S 

t (Student's t), confidence limits for, 54
 
distribution, 34
 
probability density, 34
 
table, 426
 
tests using, 59,61, 118, 155, 198
 

T2 (Hotelling's T2), 93
 
1 Test, characteristics, 49
 
!' for goodness of fit, 74
 , 

for independence of variables, 76
 ~ 
for randomness , 74
 
for stationarity, 71
 
hypothesis (see Hypothesis test)
 
t (see t)
 
u (see u)
 
unbiased, 147
 

i variance ratio , 65
 I
 

_I 

Testing, hypothesis , 49
 
Testing, sequential , 60
 
Time average, 10
 
Transfer function, 354, 374, 386
 
Transfer matrix , 357
 
Transformation, of a probability
 

density, 67
 
to linear form, 1O(j, 200
 

Translation of axes, 248
 
Transport phenomena models, 3, 4
 
Trend,210
 
Trend, elimination of, 210
 
Triangular design, 235
 
Two-way classification, 76
 
Type 1, type 2 errors, 57
 

u-distribution (see Normal distribution)
 
Unbiased estimate, 49, 113, 114
 
Uncorrelated, 19
 
Unit impulse function, 420
 
Units, effect of scaling (see Scaling)
 
Unit step function, 420
 
Unplanned data , 111
 

Variable, continuous, 7
 
dependent , 105
 
discontinuous , 7
 
discrete, 7
 
independent, 105
 
random ,S
 
standardized (see u- or t-distribution)
 
stochastic, 5
 

Variability, hypothesis tests for, 64
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Variance, analysis of (see analysis of 
variance) 

Variance, confidence limits of ensemble, 55
 
control chart (see Control charts)
 
definition, 18
 
distribution of sample , 33
 
ensemble, 18
 
of a function , 37
 
ofa sum, 18
 
of the standardized normal variable, 26
 
pooled,33
 
sample, 31
 
test for equality of, 65
 

Variance rat io, 35
 
confidence limits for, 65
 
distribution of, 36
 
tables, 427
 
tests of significance, 65 (see Analysis
 

of variance)
 
Variance reduction , 33
 
Variation, coefficient of, 19
 

Wald-Wolfowitz test, 72
 
Weibull probability density function, 25
 
Weight, 126
 
Weighted least squares, 127
 
Weighting function , 355
 
White noise, 379
 
Wiener-Kalman method, 309
 
Wilcoxson, T., 70
 
Window lag, 383
 

z-transform , definition, 365
 
estimation for, 365
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