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Preface

Successful process analysis involves both deterministic
and statistical techniques. The estimation of coefficients
in process models, the development of empirical models,
and the design of efficient experiments should be tools as
familiar to the scientist and engineer as are the techniques
of solving equations and using computers. However,
many students and practicing scientists and engineers,
even while employing quite sophisticated mathematical
techniques, treat their process calculations as if the proc-
esses were deterministic. Such an approach can be quite
misleading and, in the design of equipment, results in the
use of large safety or “fudge” factors to accommodate
the reality of uncertainty. While the introduction of
statistical techniques into process calculations may not
always reduce the uncertainty, it can lead to more precise
statements about the uncertainty and hence to better
decision making.

In their discovery and application of the laws of
nature, engineers and scientists are concerned with
activities such as experimentation, operation of proc-
esses, design of equipment, trouble shooting, control,
economic evaluation, and decision making. The concepts
and statistical techniques incorporated in this book have
been selected from the viewpoint of their pertinence to
these activities. This text differs from others that describe
the applications of statistics primarily in the direction of
its emphasis rather than the specific statistical techniques
discussed. The emphasis here is on process model build-
ing and evaluation rather than on statistical theory or the
applications of theory to pseudorealistic experiments.
The term process analysis as used in this text does not
refer to the theory of random walks. Brownian motion,
Markov processes, queuing theory, or similar random
phenomena. Instead it refers to the analysis by statistical
techniques of continuous industrial processes typified by
the chemical, petroleum, and food industries, or of con-
tinuous natural processes such as river flows and bio-
logical growth and decay.

This book is divided into three major parts. Because
the book is designed for the reader who has had minimal
initial contact with the theory or application of statistics,
Part I reviews the necessary background material under-
lying the other two parts. Part I is not a broad exposition
of statistics but simply a description of the terminology

vii

and tools of analysis. Part II treats the topics of how to
build and evaluate empirical models and how to design
experiments effectively. Part III is concerned with the
estimation of model parameters and the identification of
process models that are based on transport phenomena
principles. Certain of the later chapters adopt the view
that a digital, or perhaps hybrid, computer is available
to relieve the analyst of much of the tedious detailed
calculations, permitting him to concentrate on the more
productive role of evaluation and interpretation.

Since the level of the text is aimed at the college junior
or senior engineer, it is assumed that the reader has a firm
grasp of calculus and differential equations, as well as an
elementary acquaintance with simple matrix algebra and
operational transforms. Nevertheless, the appendices
summarize the essential aspects of these latter two topics
inasmuch as many college students seem not to have en-
countered them. Several topics are first introduced with-
out matrix notation and then repeated in matrix notation
because the redundancy has proved pedagogically more
effective than either approach alone.

The objective of the book is to enable the engineer or
scientist to orient his views in the context of what he
knows about deterministic design and analysis so as to
accommodate the concept of randomness in process
variables. Consequently, many topics encountered in
other texts, topics with considerable intrinsic merit, have
been omitted. The choice of topics has been governed
primarily by one question: Is the information or tech-
nique of any practical use in process analysis? Special
attention has been paid, insofar as possible, to discussing
what happens if the assumptions made about the process
model are not fulfilled in practice and to illustrating some
nonideal experimental data encountered in practice.

It is my hope that this book will prove of value to
undergraduates who have the opportunity to take just
one course in statistics as well as to research workers and
engineers who would like to apply statistical techniques
in their work but are unable to labor through numerous
books and technical articles in order to do so.

David M. Himmelblau
Austin, Texas
1969
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PART 1

Statistical Background for
Process Analysis

The purpose of Part I is to describe certain statistical
techniques that are useful in process analysis. These
initial chapters are by no means a comprehensive intro-
duction to statistical analysis. Instead, they are intended
to present primarily those facets of analyzing experi-
mental data that are needed to understand the subsequent
material on the design of experiments and empirical
modelling.
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4 INTRODUCTION

TABLE 1.1-1 CLASSIFICATION OF MODELS BASED ON TRANSPORT PHENOMENA ACCORDING TO

THE DEGREE OF PHYSICAL DETAIL

Extent of Use
by Engineers

Stratum of Physico-

chemical Description Topical Designations

Typical Parameters for Analysis

Treats discrete entities; quantum
mechanics, statistical
mechanics, kinetic theory

Laminar transport phenomena;
statistical theories of
turbulence

Molecular and Fundamental
atomic background

Applicable only to
special cases

Microscopic

‘Laminar and turbulent transport
phenomena; transport in
porous media

Laminar and turbulent transport
phenomena, reactor design

Applicable only to
special cases

Multiple gradient

Used for continuous
flow systems;
“plug flow™

Very widely used

Maximum gradient

Process engineering; unit
operations; classical kinetics
and thermodynamics

Macroscopic

Distribution functions; collision
integrals

Phenomenological coefficients;
coefficients of viscosity, diffusion,
thermal conduction; Soret
coefficient

“Effective™ transport coefficients

Interphase transport coefficients;
kinetic constants

Interphase transport coefficients;
macroscopic kinetic constants;
friction factors

detail drawn into the model; the degree of detail about
a process decreases as we proceed down the table.
Examples of specific models can be found in the tables
and examples in Part IIT,

Table 1.1-2 is an alternate classification of transport
phenomena models made from the viewpoint of the
nature of the equations appearing in the model; hence,
it is oriented toward the solution of models. As a rough

guide, the complexity of solving the-mathematical model
roughly increases as we go down Table 1.1-2. Steady
state means that the accumulation term (time derivative)
in the model is zero. A lumped parameter representation
means that spatial variations are ignored; the various
properties and the state (dependent variables) of the
system can be considered homogeneous throughout the
entire system. A distributed parameter representation, on

TABLE 1.1-2 CLASSIFICATION OF DETERMINISTIC TRANSPORT PHENOMENA MODELS BASED ON

MATHEMATICAL STRUCTURE

Integral Equations
(continuous changes) -

Algebraic Equations
(steady state,
. lumped parameter)

Differential Equations
(continuous changes)

Difference Equations
(finite changes,
stwdyI state) _

|

Partial Differential Equations

Ordinary Differential Equations

One-Dimensional
Difference Equation

| |
Steady State Nonsteady State

I
Steady State

(one-dimensional

| -
Nonsteady State connection of

(distributed (distributed (one distributed (lumped lumped-parameter
parameter) parameter) parameter) parameter) subsystems)
Multidimensional

Difference Equation
(more than one-
dimensional connection
of lumped-parameter
subsystems)

Difference-Differential Equations
(any type of connection of lumped-
or distributed-parameter steady-
or nonsteady-state subsystems)



CHAPTER 1

Introduction

Techniques of process analysis which take into account
the existence of error in the process variables and coeffi-
cients can be implemented separately or in conjunction
with techniques which ignore the error. To make correct
decisions in the face of uncertainty, the analyst must be
able to choose rationally from among alternatives. Hence,
when process error exists, scientific decision making
requires additional skills on the part of the analyst. The
objective of the analysis may be to test a hypothesis, to
develop a suitable relationship among variables, or
perhaps to arbitrate a disputed decision. But no matter
what the objective of experimentation and subsequent
analysis, the tools of analysis to a large extent make use
of the discipline of statistics.

There is no doubt that modern developments in digital
computers have made the analysis of data considerably
less tedious and enhanced the ability of the analyst to
treat complex problems. Recent developments in data
processing, display techniques, and pattern recognition
suggest even more revolutionary things to come. If the
analyst is to take advantage of these events, he must
acquire a dual capability. First, and most obvious, he
must command a sound and versatile background in
engineering and mathematics. Second, he must be per-
ceptive enough to find where the techniques described in
this book can be effectively employed. The latter is by no
means an unimportant attribute.

In this introductory chapter we shall briefly define
some of the terminology to be used, examine how sto-
chastic processes differ from deterministic ones, and
classify the mathematical models used to represent real
processes. This chapter is designed to demonstrate how
real processes intermesh with their more formal repre-
sentations, and to indicate under what circumstances
statistical techniques can be introduced.

1.1 TERMINOLOGY AND CLASSIFICATION OF
MODELS

By process analysis we refer to the application of
scientific methods to the recognition and definition of
problems and to the development of procedures for their
solution. In more detail, this means: (1) mathematical

specification of the problem for the given physical
situation, (2) detailed analysis to obtain mathematical
models, and (3) synthesis and presentation of results to
ensure full comprehension. The process denotes an actual
series of operations or treatments of materials as con-
trasted with the model, which is a mathematical de-
scription of the real process.

Models are used in all fields—biology, physiology,
engineering, chemistry, biochemistry, physics, and
economics. It is probably impossible to include under
one definition all the varied connotations of the word
model, but here we are concerned with mathematical
descriptions of processes that aid in analysis and pre-
diction.

Deterministic models or elements of models are those
in which each variable and parameter can be assigned a
definite fixed number, or a series of fixed numbers, for
any given set of conditions. In contrast, in stochastic or
random models, uncertainty is introduced. The variables
or parameters used to describe the input-output re-
lationships of the process and the structure of the
elements (and the constraints) are not precisely known.
Stochastic variables and models will be examined in more
detail in Section 1.2.

Three very general types of models (and their com-
binations) can be written for a process

1. Transport phenomena models—use of physico-
chemical principles.

2. Population balance models—use of population
balances.

3. Empirical models—use of empirical data fitting.

Examples of transport phenomena models are the
phenomenological equations of change, that is the
continuum equations describing the conservation of
mass, momentum, and energy. Residence time distri-
butions and other age distributions are examples of
population balance models. Finally, examples of typical
empirical models are polynomials used to fit empirical
data. )

Table 1.1-1 classifies transport phenomena models
from the viewpoint of the complexity of the physical



the other hand, takes into account detailed variations in
behavior from point to point throughout the system. All
real systems are, of course, distributed in that there are

. some variations throughout them. Often, however, the
variations are relatively small, so they may be ignored
and the system may then be “lumped.” -

As used in this text, a system is a process or part of a
process selected by the engineer for analysis; subsystems
(or elements) are further subdivisions of the system. The
concept of a system does not necessarily depend upon
the apparatus in which a process takes place nor upon
the nature of the process itself. Instead, the concept is an
arbitrary one used by the engineer to isolate a process,
or a part of a process, for detailed consideration. For
example, a packed distillation column is usually treated
as a system, whereas a plate distillation column is treated
as a system composed of subsystems of individual stages.
There is nothing inviolable about this treatment, because
a packed column can be considered as a staged process
if desired, and a plate column can be considered as a
continuous entity.

If the output y of a subsystem is completely deter-
mined by the input x, the parameters of the subsystem,
and the initial and boundary conditions, in a general
sense we can represent the subsystem symbolically by

y=#x (1.1-1)

The operator 5# fepresents any form of conversion of x
into y. Suppose now two separate inputs are applied
simultaneously to the subsystem so that

y =0 + x3) = H(x;) + H(x) =y, +y; (1.1-2)

Operator & is then, by definition, a linear operator, the
properties of which are described in more detail in
Appendix B. A system is termed linear if its operator S#
is linear, and the model of a linear system, which is
represented by linear equations and boundary conditions,
is called a linear model. Otherwise, the model is non-
linear.

process models can be found in the text by Himmelblau
and Bischoff.t '

1.2 STOCHASTIC VARIABLES AND MODELS

In real life most measurements or experiments result
in values of the measured variables which vary from one
repetition of the experiment to another. These outcomes
are termed random, stochastic, chance, statistical, or
probabilistic, depending upon the-author and his partic-
ular emphasis; the associated variables are termed
random or stochastic variables.

1t D. M. Himmelblau and K. B. Bischoff, Process Analysis and
Simulation, John Wiley, New York, 1967.

Further details on the classification and application of

STOCHASTIC VARIABLES AND MODELS 5

Many reasons exist why observations or measurements
obtained by experiment are random rather than deter-
ministic. In some cases the randomness rests on physical
phenomena, such as the decay of a radioactive species or
the emission of electrons from a thermionic cathode,
processes-which take place on a molecular or atomic
scale but which are measured with macroscopic devices.
In other cases there is insufficient information about the
variable or a lack of techniques to gather the required
information, so only certain manifestations are observed.
Often the observer is just negligent or careless. Under
actual plant conditions, process noise, cycling, signal
noise, and other phenomena interfere with all measure-
ments. Figure 1.2-1 illustrates the record of a feedwater
flow transmitter as the time travel of the pen is speeded
up. The top figure is a typical industrial recorder; in the
middle figure the signal becomes clearer; in the bottom
figure the 60-cycle noise inherent in the apparatus
becomes evident but intrinsic variability still remains.
Finally, uncertainty exists because the process models do
not adequately represent the physical process. In general,
basic indeterminacy in measurements is a phenomenon
the analyst faces in all of his work.

The “true” value of a variable is that value which
would be obtained on measurement if there were no
stochastic feature associated with the measuring. Hence
the true value of a process variable is in one sense a
hypothetical value which is postulated as existing. Tied
in with the concept of a true value is the concept of
error, because an ‘‘error” represents the difference
between the actual measurement and the true value.
Therefore, a random error is an error which represents
the difference between a random variable and its true
value. : :

Random outcomes obtained by experiment thus
incorporate error or uncertainty. This type of error must

. be distinguished from: (1) a large, one of a kind, isolated

error which might be called a “blunder,” and (2) an
error introduced continuously and due, say, to faulty
calibration of an instrument or to a preconceived idea of
the expected data. This latter type of error causes bias
or lack of accuracy and is termed a systematic error.

"Accuracy refers to how close the average value of the

experimental data is to the “true” value; precision refers
to how widely the individual data points are scattered
about their average value. Systematic errors cannot be
treated by the methods presented in this book.}

Thus, experiments can be viewed as having different
outcomes, {;; each experiment can be assigned a function

I For treatment of such errors refer to: W. J. Youden, Techno-
metrics 4, 111, 1962; and W. J. Youden, Physics Today 14, 32,
Sept. 1961. An extended discussion of accuracy and precision
can be found in an article by C. Eisenhart, J. Res. Nat. Bur.
Standards 67C, 161, 1963.
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FIGURE 1.2-1 Field data taken from a differential pressure transmitter on three different time
scales. (From B. D. Stanton, IS4 J., p. 77, Nov. 1964.)

of time, X(z, {), which may be real or complex. The
family (collection) of all possible functions X(z, {) is
commonly termed a stochastic or random process. In
this text, however, a stochastic process will refer to a
physical operating process which demonstrates stochastic
characteristics because it includes a random input,
output, coefficient, initial or boundary conditions, or any
combination thereof. The term ensemble will be given to
the family of functions X(z, {) which are the collection of
all possible time records of experiments. Figure 1.2-2
portrays three sample functions (sample records) from
the ensemble for the same variable observed over a finite
time interval. The graphs may represent repeated runs on
the same apparatus or simultaneous runs on identical
apparatus.

The ensemble itself is a random variable as is a single
time record and as is a group of experiments at one time.
Some stochastic variables can be expressed as explicit
functions whereas others can be defined only by graphical
or tabular data. In what follows we shall suppress the

notation of { in the argument of X and sifnply use X(¢)
to denote both:

1. The ensemble (the collection of time functions).
2. A single function for one experiment in time, in
general.

A subscript number will be used to- distinguish one-
variable (either deterministic or stochastic) from another,
and occasionally to distinguish one time record from
another such as X,(¢f) in Figure 1.2-2. The particular
meaning will be clear from the text. The random variable
at a given time will be denoted by a subscript on ¢,
such as X(#,), or by the absence of (¢) as the argument of
X if the variable is independent of ¢. In many instances
it will be necessary to distinguish between the random
variable itself, X, and the value of the variable by using
lower case letters for the value. Random variables for the
most part will be designated by capital letters taken from
the latter half of the alphabet. However, some well-
accepted symbols for the random variables, such as for
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X3(t) |
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I
Xa(t) }
|
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I u
Xa(t) |
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\/\\;L\
| |
1 t
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(b)

FiGure 1.2-2 Sample random functions from an ensemble showing part of the ensemble X'(¢):
(a) three-dimensional representation and (b) two-dimensional representation.

the estimated variance, will be lower case. Deterministic
variables will in general be lower case except for special
engineering symbols such as the absolute temperature.
The above description, like all other descriptions of a
random variable, gives very little insight as to its nature
or to the kinds of calculations that can be carried out on
stochastic processes. Such insight and analytic knowledge
can only come with further experience.

A stochastic model is nothing more than a mathematical
representation of a stochastic process. Figure 1.2-3
illustrates the information flow for two simple stochastic
models. In Figure 1.2-3b, a random error is added to the
output of the deterministic model of Figure 1.2-3a to give
a random output. In Figure 1.2-3¢, a random input is
introduced into the model to yield a random output. It
would be quite possible for the differential equation(s)
in the model to be stochastic because of a random
coefficient. The process dependent and independent
variables may be either continuous or discrete. Most, but
not all, of the variables associated with continuous
processes are continuous variables such as temperature,
pressure, and composition—variables that can assume

any values within an interval. A discrete variable can take
on only distinct values in an interval.

Stochastic models can be classified in an arrangement
similar to that shown in Table 1.1-2 or Figure 1.2-4.
The terms in Figure 1.2-4 are discussed in Chapters 2
and 12. While the stochastic model may only be an
abstraction of the real process, it presumably represents
the process with reasonable faithfulness for the variable(s)
of interest. As long as the model represents the real
situation sufficiently well so that the conclusions deduced
from mathematical analysis of the model have the desired
precision, the model is adequate. The advantages of
working with the model rather than with the experi-
mental results directly are:

1. Relationships in the model can be precisely stated
and manipulated mathematically; in the actual world
the relationships among the process variables hold. only
approximately.

2. The model concentrates attention on relevant
features of the process while removing from considera-
tion many perplexing and unimportant features not
subject to rigorous analysis.

() Det:(r)r:;zlustlc y(t)
Error €
Deterministic y(t) Deterministic
(t) —> model ‘ Y X(t) — model Y
(b) (c)

FIGURE 1.2-3 Block diagram representation of stochastic models.
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Stochastic model

[
| ' |

Stationary Nonstationary
Ergodic Nonergodic

FiIGURE 1.2-4 Alternate classification of stochastic models.

3. The model can be used to infer what will happen in
the domain in which experimental observations are
lacking.

Assuming that only random errors and not systematic
errors are present in measurements of a process variable,
the analyst is most interested in determining on the basis
of a finite number of measurements: (1) the central
tendency of the observations of a given variable, (2) the
dispersion of the observations about a central value, and
(3) the uncertainty in these estimates. The central value is
usually characterized by the ensemble mean and esti-
mated by the sample mean or by a time average. The
dispersion is characterized by the ensemble variance,

. which can be estimated from a sample variance or a
suitable time average. In the next chapter we shall
consider these descriptive statistics that enable the
experimenter to reduce a mass of information into a
compact form.
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Simulation, John Wiley, New York, 1968.

Papoulis, - A., Probability, Random Variables, and Stochastic
Processes, McGraw-Hill, New York, 1965. ‘

Petersen, E. L., Statistical Analysis and Optimization of Systems,
John Wiley, New York, 1961, Chapters 1-3.

Problems )

1.1 Indicate the appropriate classification of models in
terms of Table 1.1-1 for each of the following cases.
(a) Laminar flow through a circular tube

Ld do by
rdr dr L
where:

r = radial direction

v, = velocity in axial direction
A
_fp = pressure drop

(b) Heat conduction in an infinite cylinder

o « o oT
—_— = - —y —
t r or or
where:
T = temperature
r = radial direction
o = constant

(¢) Heat transfer in a jacketed kettle
qg = UAAT
where:
= heat transfer
U = constant
A = area for heat transfer
AT = temperature difference
1.2 What kind of model (lumped or distributed param-

eter) is represented by the following cases.
(a) Heat transfer with flow

oT or T
PN + uaz = aaz2

+ 0

(b) Mass transfer in tank

de
7 + ac = w(?)

(c) Dispersion in packed tube

d?z dz
2 + a— + bz = w(x)

1.3 Classify each equation in Problem 1.1 (or 1.2) in one
of the categories listed in Table 1.1-2.

1.4 In carrying out measurements on a process variable,
how is it possible to ascertain whether-or not.the
variable is stochastic or deterministic?

1.5 Helgeson and Saget reported the data in Table P1.5
for the heat of vaporization of propane. Does the
average deviation have a bearing on the accuracy or
the precision of the reported data?

+ N. L. Helgeson and B. H. Sage, J. Chem. Eng. Data 12, 47,
1967.



1.6

1.7

1.8

" TaBLE P1.5
Average
Deviation of
Number of Temperature All Points for
Data Points Range . Heat of
Author Used Min Max Vaporization
A 14 100 135 1.12
B 16 103 167 1.43
C 4 100 190 0.98

Explain two ways in which the deterministic process
input x(t) = a cos wt could be made into a stochastic
input,

What is one additional way in which error can be
introduced into a process model besides the methods
illustrated in Figure 1.2-3?

Is the error introduced by a numerical integration
scheme for the solution of a model represented by a
differential equation a stochastic (random) error? Is
the truncation error introduced by the partial differ-

1.9

1.10

PROBLEMS 9

ence approximation to the differential equation in the
process model a stochastic error?

A thermocouple is placed in a tank of water and the
leads attached to a potentiometer. List some of the
random errors that will appear in the observed
voltage.

The following figure represents the relative frequency
distribution of measurements of a presumed random
variable. Can you tell from the graph whether or not
the measurements are biased ? Explain.

@
24
1
= ®
Ss *
= . .
0 @ 3
S 3 ° .
u.§ ° .
0 | | ? [

Average value

1.11 Is a function of a random variable also a random

variable ? Explain.



CHAPTER 2

Probability Distributions and
Sample Statistics

Probability, according to the frequency theory of prob-
ability (see Appendix A), corresponds to the longrun
fraction of a specific outcome from among all possible
outcomes of an experiment. Other semantic relations
between the experiment and the mathematical representa-
tion of the experiment are shown below.

Mathematical

Experiment Representation

Random variable
Sample space

Random outcome

List of experimental
outcomes

All possible outcomes

Asymptotic relative
frequency of an outcome
(“‘in the long run™)

List of asymptotic relative

Population
Probability of an event

Probability (density)

frequencies of each function
outcome

Cumulative sum of relative Probability distribution
frequencies '

What the analyst would like to do is replace a large
mass of experimental data by a few easily grasped
numbers. Under favorable circumstances, he is able to
associate the experimental data with a known mathe-
matical function, a probability function, or density, which
corresponds reasonably well with the relative frequency
of the data. Then he can use the probability function or
density to make various predictions about the random
variable which is the subject of experimentation. Often,
however, only a modest amount of experimental data is
available, and it is of such a nature that the experi-
mentalist can at the best make estimates of the ensemble
mean and perhaps the ensemble variance of the random
variable. ) o

‘We shall describe a few of the most useful probability
density functions in this chapter. In addition we shall
describe some of the characteristics of ensemble averages
such as the mean, variance, covariance, and correlation

10

coefficient, all of which have applications in process
analysis. Then we shall look at the first of the two princi-
pal methods of estimating ensemble averages, namely
(1) sample averages and (2) time averages. Included in
the presentation will be selected sampling distributions
which will be of aid in subsequent discussions of interval
estimation and hypothesis testing. Time averages will be
taken up in Chapter 12.

2.1 PROBABILITY DENSITY FUNCTIONS AND
PROBABILITY DISTRIBUTIONS

To simplify the notation we shall denote the prob-

ability distribution function of X(t) by
P{X(t) < x} = P(x; 1) 2.1-1)

where x is a number. Thus, in Equation 2.1-1 the argu-
ment on the left-hand side reads: “all of the values of the
random variable X'(¢) less than or equal to a deterministic
variable x.” The reason for using the symbol x rather
than some constant k is that in many applications the
limiting quantity will itself be a deterministic variable.
P(x;t) is sometimes termed a first-order probability
distribution function because the probability distribution
involves only one random variable at a time.

We can give a physical interpretation to P(x; ¢) from
a frequency point of view. Suppose we carry out an
experiment by measuring the temperature of a fluid
many times. We secure a number of records comprising
a family of curves of X(¢), some of which are shown in
Figure 2.1-1. From each record at time ¢=t¢;, we note
whether or not X(f;)<x. Let the total number of time
records at 7, for which X(#;) < x be n, and the total
number of records be N. In the limit as N — oo,

Ry,

P =%

Clearly, P(x;t) ranges between 0 and 1. Figure 2.1-2a
illustrates the probability distribution function which
might be observed if the distribution is a function of



PROBABILITY DENSITY FUNCTIONS AND PROBABILITY DISTRIBUTIONS 11

8

8

Temperature, X (t)
8

Time, ¢

Ficure 2.1-1 Repeated measurements of fluid temperature at a fixed point; x;,
Xz, and x3 represent different levels of the random variable X(¢).

time. Figure 2.1-2b illustrates the case in which the
probability distribution is independent of time.

Imagine now that we had examined the experimental
records both at # = ¢, and at another time, ¢ = t,. Then
the joint distribution of the random variables X(#;) and
X (25) can be denoted by

P(x1, Xa5 11, ta) = P{X(t1) < x1; X(t2) < x2} (2.1-2)
where P(x;, x5, t1, t2) is known as the second-order
probability distribution of the variable X(¢), and x;

and x, are two numbers. The qualification ‘“‘second
order” refers to the joint distribution of the same random

<
2
& N
t
X
(a)
-
N
Ay
]
N
< For all ¢
x
(b)

FIGURE 2.1-2 Probability distributions: (a) probability distribu-
tion as a function of time, and (b) probability distribution
independent of time.

variables observed at two different times. From the

frequency viewpoint, P(xy, X5; t1, 15) is the limit as

N — oo of the joint event {X(#;) < x;} and {X(t;) < X}

in a two-dimensional space. If X does not vary with time,
then the functional dependency on ¢ can be omitted.

Corresponding to each probability distribution is a

probability density function defined as follows:

oP(x;t
p(x; 1) = % (2.1-3a)
AP (X1, X251y ta)

e (2.1-3b)

P(X1, Xo5 by, ) =
Note that the lower case p designates the probability
density, whereas the capital P designates the probability
distribution. Figure 2.1-3 illustrates typical process
records and their corresponding first-order probability
density functions. The reason for the term “density”
becomes meaningful if it is observed that in order for
P(x; t) to be dimensionless, the units of p(x; ¢) must be
the reciprocal of the units of x; that is, p(x; t) is the
probability per unit .value of x. (In some texts the
notation p(x; ¢) dx is employed to denote the probability
that x lies in the interval x to x + dx).

Up to this point we have been concerned with the
probability density function and the probability distribu-
tion function for continuous variables. The probability
function (not a density) for a discrete variable X(t) is
P(x,;t) = P{X(¢t) = x,}, and the probability distribution
function is a sum rather than an integral

k
P(x;t) = P{X(t) < X} = ZP(xi; t)
i=1
The relation between the probability density and the

probability distribution for a continuous variable can
also be expressed as

P(x;t) = ﬁcw p(x'; 1) dx’

P(xp;t) — P(x151) = szp(x; t) dx

= P{x; < X(@) < x3}
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x(t)
X (t) = asin Qrwot + W)

(a)
x(t)
X(t)=asin @rwot + 6) + €
0
(b)
x(t)
0

x(t)

o

0//\,\\/\”\/\“ N

didovsas

0
(a)

p(x)
| | -
g Ip(x)=!g""\/"2""2) !
| I
| |
M| ]
p(x)
0 x
b
p(x) ®)
=_1 -2 /242
p(x)—vx_‘[z_fe f20%
0 x
(c)
p(x)
X 3
0 x
(d)

FIGURE 2.1-3 Typical process records (left) and their corresponding (time-independent) prob-
ability densities (right): (a) sine wave (with random initial phase angle W, (b) sine wave plus
random noise, (¢) narrow-band random noise, and (d) wide-band random noise. (From J. S.
Bendat and A. G. Piersol, Measurement and Analysis of Random Data, John Wiley, New York,

1966, pp. 17-18.)

(where the primes are dummy variables). Consequently,
P{X = x,} = 0 since the interval for integration is zero.
In addition, by definition,

f“’ PO 1) dx = 1

Similar relations can be written for the second-order
probability distribution. The relation between the first-
and second-order densities is

Pl ) = [ e ms iy @10

P(xy, t,) is called the marginal probability density function
of X(t,), i.e., the probability density of X(¢,) irrespective
of the values assumed by X(z;).

A joint probability distribution between two different

random variables, say X(¢)-and Y(¢), termed a bivariate
distribution, can be written as

P, ;1) = P{X(t) < x; Y(1) < y}
- ﬁw ﬁwp(x’, Y0 dy dx' (2.1-5)

Figure 2.1-4 illustrates two typical time-independent
bivariate probability density functions.

In later chapters we shall make use of the conditional
probability density. The conditional probability distri-
bution of the random variable Y, assuming the random
variable X is equal to the value x, is defined as

P(y|X=x)=£iri10P(y]x< X < x + Ax)

where the vertical line denotes ““given.” Then, by making
use of the continuous variable analog of Equation A-8 in
Appendix A for the upper and lower bounds,
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p(x,y)
21
8
ir
x
0 1 2 3
H 7z

(a)

(d)

FiGuURE 2.1-4 Tllustrations of two time-invariant bivariate probability density functions: (@) bi-
variate probability density function for continuous variables, and (b) bivariate probability function

for discrete variables.

P(x + Ax, y) — P(x, )
P(x + Ax) — P(x)
oP(x, y)/ox
OP(x)/0x

The corresponding probability density is obtained by
differentiating P(y | X = x) with respect to y:

P(y| X =x)= lim

Ax—+0

p(x, y)

) (2.1-6)

Py X=x)=

To simplify the notation, the conditional probability
density is usually written as

P |¥)=p(y| X =x

Because
() = f P y)dx
and the joint density from Equation 2.1-6 is

p(x,3) = p(y| 0px)

we can write

o) = [ b0 0pe) v

In other words, to remove the condition X = x, we

multiply the conditional density by the density of X and

integrate over all values of X. )

By generalization of Equation 2.1-5, an n-dimensional
probability distribution function can be defined. The
study of n different random variables Xy, X,,..., X, is
equivalent to. the consideration of a single n-dimensional
random vector X = (Xy, Xg,..., X,). The one-dimen-

P(x) = P(x3,.

sional variables X;, X, ..., X, are said to be stochastic-
ally independentt if, for all permissible values of the
variables and all joint distribution functions,

ces Xnyliy e ey b)) = P(xy3 1)+ - P(xy3 8,)
(2.1-7a)

An equivalent relation among the density functions is

p(x1, - o t) =P tn) - pes 1) (2.1-7b)

The analogous expression for independent discrete
variables is an extension of Equation A-6 in Appendix A:

oy Xns tl’ ..

P(Xipy o ooy Xnp) = P{X1(¢) < x5.and - - - and X,(¢) < xp}
= P(xy;) -+ - P(Xnie)
Example 2.1-1 Bivariate Distribution Function

Let p(x, y; t1, t;) = 0 be a bivariate probability density
function for the two random variables X(¢) and Y(¢). Then
P(al < X_<_.a2,b1 < Y_<_.b2)

ag bg
= .L P(x, ¥, ta) dy dx  (a)
23 1

P(—0 < X<x,—0 < Y=<y

= ffw J‘iw p(x', ¥ty t2) dy’ dx”  (b)

and
f_ . f_w plx, y; by, to) dy dx = 1 ©

1 Stochastic independence of two random variables can be inter-
preted as follows. If the value of one variable is fixed, the prob-
ability of obtaining the value of the other variable is not affected.
Continuous processes are notorious for having variables such that
previous values do influence later values.
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Yy
by

h 7

a1 az
FIGURE E2.1-1A

To provide a simple numerical example, suppose that
p(x, y; t1, t2) is independent of time and is equal to

for X=0,Y=0

elsewhere

p(x, p; ty, t2) = e” ¥V
px,y;t1,t2) =0
Then
PG<X<2,0< ¥<4) =J'4F e=% e~V dx dy
s’ o yz
=(e % —e )1 — e %) =0462

Note also that Equation (c) holds true for
e —(x+y) = ° -XT _ p~Yy]® —
fo fo e Y dx dy fo e *[—eV)§ dy =1

The lower limit of —oo can be replaced by zero because of
the definition of p(x, y).

The probability distribution P(x, y) can be interpreted
geometrically in terms of the rectangle of Figure E2.1-1a.
Consider the following sets of events (E) in relation to
Figure E2.1-1a.

Ei = (X <a,Y<by)
Ea=(X<a,Y=<b)
Es=(X<a,Y<bh)
Es=(X<a, Y < by

The event of interest (denoted by the shaded area) can be
written as

E=(a1<XSa2,b1< Ysz)

Now, keeping in mind that the probability P(E) corresponds
to the double integral of the density over the designated
region, from Figure E2.1-1a we conclude that

P(E) =P{a1 < X< ag,bl < Y=< 52}
= [P(E:) — P(E3)] + [P(E2) — P(E)].  (d)

An important concept applied to a random variable
is the idea of stationarity. A stochastic variable is termed
Stationary in the strict sense or strongly stationary if the
probability density functions of all orders are invariant
with respect to a shift in the time origin. In particular,

if a is a constant, either positive or negative,
p(x; 1) = p(x; t + a) = p(x) (2.1-8)

from which we can conclude that the first order of

probability density function of a stationary process is
independent of time. If we examine the second order of
probability density, we can write

P(X1, X5y, 1a) = p(Xy, Xa5 1y + @, b3 + Q)

= p(x1, X33 7) (2.1-9)

where 7 = ¢, — t;. Thus, if the variable X (¢) is stationary
the second order density depends only on the difference
between the times of observation and not on when the
time record was initiated, a very important point.
Stationary random variables are far easier to treat
than nonstationary ones. Nonstationary data, such as
are illustrated in Figure 2.1-5, are obtained during
unsteady-state operating conditions caused by a change
in: (1) the input to a process, (2) a process parameter,
or (3) the environment surrounding the process. Un-
fortunately, no general techniques exist which can be
substituted for the ones used for stationary processes;
each process or class of processes must be treated as a
special case. In Section 3.7-5 we shall discuss tests to
detect whether or not process variables are stationary.

2.2 ENSEMBLE AVERAGES: THE MEAN,
VARIANCE, AND CORRELATION COEFFICIENT

The first type of average we shall consider is the

»'ensemble expectation of a function f[X(t,), X(t2),...,

X (,)] of a random variable X (¢), which is defined as

sy =7 o[ st xe)

0

X P(X1y e ooy Xn3tyy o, t)dx;~~-dx, (2.2-1)
where p is the joint density function and & stands for
expected value. Note that &{f} is not a random variable,
but may be a function of ¢4, ..., ¢,.

Each ensemble average is a function -describing certain
characteristics about the random variable X(¢) such as
its central tendency or dispersion or it is a function from
which these characteristics can be derived. As is the
common practice, we shall not specifically include the
word ensemble in the name of the function each time but
shall imply ensemble by the symbol for the function.

To carry out operations such as differentiation and
integration on the ensemble variable X(¢) calls for some
special definitions for continuity and convergence which
need not be of concern here. However, in order to reduce
the number of algebraic manipulations in subsequent
sections, we shall list here a few simple rules for linear
operators acting on random variables. Mathematical
proofs of these rules can be found in most texts on
statistics or random processes.

If 5 is a linear time invariant operator (described in
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X(t)
0 Time
(a)
X(t)
X(t) ()
0 Time
(c)
X(t)
0 ‘ NS Time
(d)

FiGure 2.1-5 Examples of stationary and nonstationary data: () Stationary
data, (b) time-varying mean value, (¢) time-varying mean square value, and
(d) time-varying mean and mean square value. (From J. S. Bendat and A. G.
Piersol, Measurement arid Analysis of Random Data, John Wiley, New York,

1966, p. 334.)
more detail in Appendix B), X(¢) is a random variable, and
and
dy™ de{Y ™)
E—4 ” = -
¥(1) = #IX(0)] {2} - 24 (2.2-1b)

the procedure of taking an expected value is commutative
with the linear operation

E(Y (1)} = EIXO)] = H[EXE)] (2.2-1a) EXPECTED VALUE OF AN INTEGRAL. If

Examples of linear operators are moments when they
represent expected values, derivatives of the first degree,
definite integrals, and sums. For example:

Y = f " X(0)W(t) dt

and ¢ is a deterministic function
EXPECTED VALUE OF A DERIVATIVE.

Y\ _ ey
at | dt where py» = &{X(t)} as defined in Section 2.2-1.

&) = [ exmny de = [ sy &t @210y
&
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EXPECTED VALUE OF A SUM. If
n
Y= z a;X;
i=1

n n

E(Y} = D ad(X} = D apx,

i=1 i=1

then

(2.2-1d)

2.2-1 Mean

The ensemble mean of a stochastic variable is the
expected value of the variable

wt) = X} = [* e @22

If p(x;t) is independent of time (X is stationary), then
px(t) = pxis a constant. The ensemble mean is a measure
of the central tendency of a random variable. In effect,
it is the deterministic variable used in a process model

when error is ignored.
The expected value of the sum of two random variables

X(t) and Y(¢), namely W(t) = X(¢) + Y(2), is

W)} = 6{X0)} + &{Y (1)}
or

pw(t) = px(t) + px(?) (2.2-3)

The expected value of the product of two independent

random variables, Z(¢)=X(¢) Y (2), is
XY} = SXE{Y ()} (2.2-49)

because p(x, y; t) = p(x; t)p(y; t) by Equation 2.1-7,

ez = [ [ eyt dxdy

Ui) xp(x;t) dx] U: yo(y; ) dy] = pxr(Ope(t)

Example 2.2-1 Ensemble Mean

A special type of Brownian motion with negligible
acceleration describes the movement of a particle hit by a
large number of other particles in a fluid. On a molecular
scale the motion is quite complicated, but on a macroscopic
scale we are interested in determining the expected value of
the motion denoted by the random variable X (¢). If for a
one-dimensional motion the starting location is arbitrarily
assigned a zero value, X(0) = 0, then the one-dimensional
probability density of X(¢) is

1

e—x2/2at a)
vV 2mat (

plx;t) =

where « is a constant. A typical section of path might be as
shown in Figure E2.2-1.

X(t)

LN

FIGURE E2.2-1

The expected value of X(¢) can be calculated using
Equation 2.2-2,

—_ © X —x2/2at
palt) = f‘ © v 2mat ¢ dx ®

The integral can be split into two parts, one from —o to 0
and the other from 0 to oo, that cancel because the integrand
is the product of an odd and an even function. Consequently,

LX)} = px(t) = 0 ©

If, however, we inquire as to the expected value of the
square of X(¢), we find that because the integrand is the
product of two even functions,

E{XP()} = j I ety = ot @
) - A 2qat

The expected value of the square of a random variable is

used to indicate the intensity of the variable; the positive

square root is commonly called the rms value.

Example 2.2-2 Ensemble Mean for a Dynamic Model of a
Stochastic Process

Assume that a process is represented by a first-order
linear differential equation in which the input X(¢) and the
output Y(¢) are stochastic variables:

dy(t)
dt

—— +aY(@) = X@) Y©0) =0

What is the £{Y}?

Solution:

Take the expected value of both sides of the differential
equation and the initial condition, and exchange the opera-
tions of the expected value and differentiation as indicated
by Equation 2.2-1b:

dé{Y ()}
dt

If we let uy(#) = E{Y(¢)} and ux = &{X(¢)} = aconstant,
then we can solve the deterministic ordinary differential
equation

+ ad{Y(t)} = &{X()}y YO0} =0

duy(t
W) | gkt = px prl®) = 0 @
The solution of Equation (a) is
ORI ®)
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Equation (b) is the usual deterministic solution found in  conform to common usage. Figure 2.2-1 illustrates the
texts on differential equations and on process analysis of  autocorrelation functions for the process records shown
deterministic processes. in Figure 2.1-3. The most important uses in model
building of the autocorrelation function are in data
processing and parameter estimation as described in

The ensemble autocorrelation function of a random Chapter 12. . . ) , .

. . The autocorrelation function of a stationary variable is,
variable X(¢), rxx(1, ), characterizes the dependence of . . .

. ot .~ by making use of Equation 2.1-9, solely a function of =,
values of X(¢) at one time with values at another time: . >
the time difference (¢, — #,)

rXX(tl’ t2) = g{X(tl)X(tZ)} rXX(tl, tz) — rXX(T) - éa{X(t + T)X(t)}
= f_w f_: X1X2P(X1, Xa3 1y, bg) dXy dXy  (2.2-5) = rex(—7)

f f X1X2p(Xy1, Xo, 7) dxy dxa  (2.2-6)

2.2-2 Autocorrelation Function

Note that rxx(f1, £,) is not a random variable, and that
we use a lower case Roman (rather than Greek) letter to

Fyx (7}

(=)

rxx (7)

[=)

N N\ o,
T

VA\/\/Q\/VV

(a)

FIGURE2.2-1 Autocorrelation function plots (autocorrelograms) corresponding to
the process records in Figure 2.1-3: (a) sine wave, (b) sine wave plus random noise,
(c) narrow-band random noise, and (d) wide-band random noise. (From J. S. Bendalt
and A. G. Piersol, Measurement and Analysis of Random Data, John Wiley, New
York, 1966, p. 20.)
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The autocorrelation functions ryxx(7) and ryx(—7) are
- even functions of .
A variable is termed stationary in the wide sense (or
weakly stationary) if it meets just two requirements:

EX@} = px (2.2-7a)
EX( + DX} = rxx(7) (2.2-7b)

where py is a constant and ryx depends only ont, — t; =
7. If a random variable that can be represented by the
normal probability distribution is stationary in the wide
sense, it is also stationary in the strict sense because the
normal distribution, as we shall see, is completely speci-
fied by pyx and ryy, but this conclusion is not generally
applicable for other distributions. From a practical
viewpoint, if a process is identified as being weakly
stationary, the higher order ensemble averages are
usually assumed to be stationary also.

Example 2.2-3 Autocorrelation Function

Example 2.2-1 gave the probability density function for a
particle in one-dimensional Brownian motion. To compute
directly the autocorrelation function for the same particle
using Equation 2.2-5, we need the second-order probability
-density function

p(xlg X2, tla t2)
1 1 x3 (x2 — x1)?
= 2 T °XP [_ 2, 292
27t '\/tl(tz — tl) 2a%t; 20 (t2 — 1)

Note that because X(¢;) and X(¢,) are not independent, the
product of the first-order probability densities is not equal
to Equation (a).

However, rather than directly integrate to obtain
rxx(t1, t2) as indicated by Equation 2.2-5, it is alternately
possible to use the property of the Brownian particle that,
although X(#;) and X(¢;) are not independent variables,
changes in position over two nonoverlapping intervals are
independent. Specifically, X(¢;) and [X(z) — X(#,)] are
independent variables. Thus, by Equation 2.2-4,

S{IXINX (1) — X))} = S{X(E)E{X (1) — X (1)} = 0
Also, by Equation 2.2-3, .
XX (1) — X = S{X () X (1)} — E{X3(1,)}
From Equation (c) in Example 2.2-1, we know that
EX2)} = oty

] @

Consequently (for t; > t;),
rxx(ty, t2) = E{X (1) X(t2)} = E(X% ()} = aty (b)

The same result is obtained by direct integration using
Equation 2.2-5.

2.2-3 Variance

Just as the mean characterizes the central value of a

random variable, a single parameter can be used to.

p(x1)
il .
p(xg)
o Ll 2
p(x3)
L TN
Hx

FIGURE 2.2-2 Dispersion of random variables with identical
means.

characterize its dispersion or scatter about the mean. The
classic example of a hunter who shoots all around a duck
and misses with each shot illustrates the significance of
the dispersion of data. By expectation the duck is dead,
but the practical consequence is of little help to the
hunter. Figure 2.2-2 illustrates that while two discrete
random variables may have the same mean, they may
have quite different degrees of dispersion.

The variance of the stochastic variable X(¢) is defined
as

o%(t) = E{[X(1) — px(DFF} = Var {X (1)}
= &{X(1) — 2X(O)px(t) + px(1)}
= E{X*()} — p13(0)

As an example, because the expected value of the
position of the Brownian particle in Example 2.2-1 is
zero, the variance can be computed directly from
E{X3(1)}. .

The variance of a sum of stochastic variables W =
a; X + a,Y + - - - can be determined as follows. Subtract
the expected value of the sum, namely puy = ajpux +
agpy + -+ -, from W =a; X + a, Y +--- and square the

resulting equation to get . -

W — uw)? = [a(X — px) + a(Y — py) +--- P
=a3(X — px)? + ai(Y — py)?® +---
+ 2a;05(X — px)(Y — py) +---
Next, take the variance of both sides
Var{W} = &{(W — uw)?
= a2&{(X — px)B + aB3E{(Y — ) + - -

+ 24;0:6{(X — p)(Y — pp)} +- -+ 7(2.29)°

For the special case in which the crossproduct terms
vanish in Equation 2.2-9 because all the successive pairs
of random variables are independent (see Section 2.2-5),
Equation 2.2-9 reduces to

Var {W} = a2 Var {X} + a2 Var {Y} +--- (2.2-9a)
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Strong
correlation

Insignificant
correlation

Correlogram

Figure 2.2-3 Crosscorrelation function.

The standard deviation is the positive square root of the
variance and will be denoted by ox(z). If the variable
- X(¢) is stationary, the functional dependence on ¢ can
be deleted. The coefficient of variation is a dimensionless
form of the standard deviation which provides informa-
tion on the relative dispersion of X(z):

ox(?)

yx(t) = m

The autocovariance of the stochastic variable X(¢) is the
covariance of the random variables X(#,) and X(¢z,):

oxx(ts, t2) = E{[X(11) — px(t)NX (1) — px(t2)1}  (2.2-10)
For a stationary ensemble,
(2.2-10a)

oxx(7) = rex(7) — p&
2.2-4 Crosscorrelation Function
The crosscorrelation function for two random variables

X(t) and Y(¢) is used to characterize the dependence of
one variable on the other:

ra(ty, 1) = S(X (@) Y1)} = rralea, )
=f ) J " p(e sty t) dedy (2:2-11)

Note that ryy is not a random variable but may be time
dependent. Two random variables are uncorrelated?t if
rxy(t1, t3) = px(t)py(t;) and are termed orthogonal if
rey(ty, t3) = 0. If the ensembles are stationary, by making
use of Equation 2.1-9 we have '

rxy(ty, 1) = rxg(7) = ryg(—7) (2.2-12)
t Two random variables X and Y are uncorrelated if &{XY} =
E{X}€{Y} and are independent if p(x, y) = p(x)p(»). If X and
Y are independent, then they are also uncorrelated (see Section
2.2-1). If &{XY} = 0, X and Y are orthogonal. Uncorrelatedness
is a weaker condition than independence, because if X and Y are
uncorrelated, then in general &{f(X)g(Y} # &{f(X)}€{g(Y)}.
But if Xand Y are independent, &{f(X)g(Y)} = &{f(X)}¢{g(Y)}.

Figure 2.2-3 illustrates figuratively a correlogram for two
random variables X(¢) and Y(¢). rxy(7) does not have a
maximum at v = 0 as does ryx(7), nor is ryy(7) an even
function as is ryx(7). But to calculate rxy(7) and ryx(7),
it is only necessary to carry out the computations for
7 = 0 because of the symmetric properties of these two
functions.

Crosscorrelation functions can be used in process
analysis to: '

1. Help check for statistical independence between two
random variables.

2. Estimate system impulse and frequency responses
without putting a pulse or sinusoidal input into the
process (see Chapter 12).

3. Predict delay errors in stationary processes for
control studies (the crosscorrelation function for linear
processes will peak at a time displacement equal to the
time required for a signal to pass through the process).

4. Estimate amplitudes and Fourier components of
variables corrupted by uncorrelated. noise and/or other
signals. (The noise contribution to ryy(r) vanishes.)

5. Determine transmission paths for an input to a
large linear system. (Separate peaks occur in the cross-
correlogram corresponding to each path.)

Example 2.2-4 Ensemble Mean and Autocorrelation Func-
tion of a Stochastic Variable in a Linear Ordinary Differential
Equation

Many process models, particularly in cambtgl, work, are
expressed as an nth-order ordinary differential equation:

G Y4y YO U)o 4@y Y()=X(@) >0 (a)
where
X(t) = the system input and is a random variable

Y(¢) = the system output and is a random variable
as a consequence of X(¢)
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Equations (i) and (j) for the model are

* drcoc(tl’ t2)

7 + Fogo(ti, t2) = Fogeo(tss t2); Fogeo(f1, t2) = oty
2

Foeo(ts, 0) = 0
and have the solution
Fooolts, tz) = aty[l — e~ tal'] ®)
where t* = V/F.

Equations (m) and (n) are

droc(ts, ¢
* cc;~1+z) + 1oty ta) = rouo(ts, t2)
1
roc(0, 12) = 0
and have the solution
N N t
roolty, 1) = el — e Tfeu —1- 2] (q)
Thus, the autocorrelation function of the tank output can
be determined even if its probability density function is not
known.

2.2-5 Crosscovariance and Correlation Coefficient

The analyst is frequently called upon to determine
qualitatively . and, insofar as possible, quantitatively,
whether an association exists between two variables. He
might inquire, for example, for a particular reactor
whether the increase of pressure increases the yield. If
the joint probability distribution for the two variables is
known, it is possible to calculate a measure of the /inear
association between the two variables, termed . the
ensemble correlation coefficient. No distinction is made
between the variables as to which is independent and
which is dependent.

The crosscovariance function (sometlrnes abbreviated
Covar) for two random variables X(¢) and Y(z) is
defined as

oxy(ti, 1) = E{{X(2,) — I‘x(ﬁ)][.Y(tz) — pyr(52)]}
= [ 7 =m0 = )
p(x, y; 1, t)dxdy (2.2-13)

For a stationary ensemble,

oxy(7) = rxy(7) — pxpey (2.2-13a)

Since the magnitude of the covariance depends upon the
units of X and Y, two standardized (dlmensmnless)
variables can be formed:

and (Z—_ﬂy)

oy

ox(0) oy(0)

where the argument (0) indicates = = 0. The correlation
coefficient for a stationary ensemble is the crosscovariance
of these two standardized variables:

axy(7)

ox0)0r(0) (2:2-14)

PXY(T) =
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y Pxy

FiGURre 2.2-4 Correlation coefficient at its extreme values and
at zero for % = o%.

If X and Y are uncorrelated, their ensemble covariance
and correlation coefficient are zero. If X and Y are
independent, their ensemble covariance and correlation
coefficient are also zero; however, the converse is not
true. That is, if pxy = 0, X and Y are not necessarily
independent (although they may be). For example, two
random variables can each be normally distributed and
uncorrelated but dependent on each other; they must be
distributed by a joint normal distribution to be indepen-
dent. Pairwise independence among sets of many random
variables is not sufficient to indicate independence of the
sets.

The correlation coefficient reduces to one number the
measure of the linear relationship between two variables.
A positive correlation means that oy is positive (the
standard deviation is never negative), while a negative
axy means that large values of one variable are associated
with small values of the other. Figure 2.2-4 illustrates
lines of 0, 1, and — 1 for the correlation coefficient.

Example 2.2-5 Ensemble Correlation Coefficient

The joint probability density function for two random
variables X and Y is given as

pe,y)=x+y for0<X=<1
0<Y=x<1
px, =0 otherwise

Find the ensemble correlation coefficient.

Solution:

Hx = J: J‘: x(x + y)dxdy = %

I
[

py = f: J: y(x + y)dx dy

,;,%2 = Llf X(x + y)dxdy =

= l‘,yz
of = oY =17 — (%)? = 74«
oxy = E{(X — px)(Y — pp)} = S{XY} — pxpy
=3 —{% = —1ir
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since
1,1
exvy = [ [ oonx + dxay = 3
Then
= Oxy = —T“ﬁ = -—i
pxy Ox0y ‘1l4l4‘ 1

The result indicates little correlation between X and Y.

Table 2.2-1 summarizes the ensemble parameters
described so far.

2.2-6 Moments of a Random Variable

Moments of a random variable have an analogy in
mechanics. Recall that the first moment of mass is the
product of mass and the moment arm, and that the
center of mass is the first moment divided by the mass.
Both the ensemble mean and the variance are moments
in which the probability density function is the weighting
function. One is a raw moment and the other a central
moment. Refer to Table 2.2-1 for time-invariant moments
for a single variable through order n. The third central

TABLE 2.2-1 SUMMARY OF ENSEMBLE PARAMETERS
Param-
eter Name of Function Expected Value

px(t)  Mean E{X ()}

#2(t)  Mean square E{X3(t)}

62(t)  Variance S{X(t) — px()}

ox(#)  Standard deviation +Vol(r)

yx(t)  Coefficient of variation:  ox(#)/ux(?)

rxx(7)  Autocorrelation* E{X(t) X ()}

rxy(7)  Crosscorrelation* E{X (1) Y(t)}

oxx(t)  Autocovariance* F{IX(t1) — px(t)]
[X(t2) — px()}

axy(r) Crosscovariance* E{[X(ty) — px(t1))
[Y(t2) — ps(22)1}

pxv(r)  Correlation coefficient* axy(7)/ox(0)oy(0)

* For stationary variables.

moment proves to be a measure of the symmetry of the
distribution of a random variable with respect to the
mean; the fourth central moment characterizes the sharp-
ness of the peak about the mode.

Moments for a pair of (time-independent) random

TABLE 2.2-2 RAW AND CENTRAL MOMENTS FOR A RANDOM TIME-INDEPENDENT VARIABLE

Continuous

Discrete

Moment

Raw Moments

fw xp(x)dx = 1

1

i xPP(x) =1

4o Zeroth moment

J xp(x) dx = px Z xP(x) = px p1 First moment
m i=1 (ensemble mean of X)
f x?p(x) dx = px2 Z xZP(x) = px? u2 Second moment
. i=1
f_ x"p(x) dx = pxn Z XPP(x) = pxn i, nth moment

i=1

Central Moments

f x — px)’p(x) dx = 1 Z i = px)P(x) = 1 Mo Zeroth moment
i=1
f_ (x — px)p(x)dx =0 Z (e — px)P(x) =0 4, First moment
i=1
f (x — px)?*p(x) dx = o% Z (i — ux)?P(x;) = o% My Second moment
) i=1

©

7 6 = o) ax

t=1

> (6= p)"P(0) M,

(ensemble variance of X)

nth moment




variables can be defined as follows for continuous
variables:

sy =f f XX p(xs, xa) dxg dxy  (2.2-15)

Central moments correspond to employing the weighting
function of (x; — py)'(xs — po) instead of xix}. For
example: :

Mi0 = f_ - J_ " xIx3p(oe1, x) dxg dx, = vx, = &{X1}
© o1 = f_ - J_ " x3x3p(%y, Xa) dxs dx, = px, = €{Xs}
P11 = f_ - J_w X1x3P(%1, Xa) dxg dx, = E{X, X5}

My = f_ - J_w (x — px1)t (xo — Fx,)l (%1, X2) dxy dx,
= &{X1 X3} — Px,hx, = H11 — PaolMor

= Oxy

Example 2.2-6 Moments

Show that the second moment about the value x = ¢ is
greater than the second central moment.

Solution:
X — ¢} = (X — px + px — )%}
=&{(X - Ilvx)z}
+ 26X ~ px)(px — o)} + S{(px — )%}
= My + (ux — )*
Note that

EX — px)ix — O} = (ux — B — i) = (ux — )0

since Ay = 0.

2.3 THE NORMAL AND x? PROBABILITY
DISTRIBUTIONS

We shall next consider briefly two probability distri-
butions which are employed in subsequent chapters.
More complete details concerning the characteristics of
these probability distributions can be found in the
references listed at the end of this chapter. The objective
of this section is to delineate the properties of and .basic
assumptions lying behind the normal and chi-square
(x?) distributions so that they can be appropriately
employed in the analysis of experimental data. Tables
2.3-1 and 2.3-2 list other time-invariant discrete and
continuous distributions which are not discussed. Figure
2.3-1 illustrates the probability function and cumulative
probability distribution for the discrete binomial random
variable. Figure 2.3-2 illustrates the probability densities
for several continuous random variables whose charac-
teristics are given in Table 2.3-2.
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FiGure 2.3-1 Binomial distribution: (a) binomial distribution,
and (b) binomial probability function.»

2.3-1 The Normal Probability Distribution

In the eighteenth and early nineteenth centuries,
mathematicians and experimenters in the physical
sciences developed a probability density function that
represented quite well the errors of observation. Their
work yielded the normal (Gaussian) probability density
function for the random variable X, i.e., the familiar
bell-shaped curve shown in Figure 2.3-3. This is generated
by the equation

1 (x — px)?
P8 = 5 P (55
3 (2.3-1)

—00 < X < 00
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TABLE 2.3-1

DISCRETE PROBABILITY FUNCTIONS *

Probability Function

Name P(x) = P{X = x}

Applications and Remarks

Mean
px = &{X}

Variance
0% = Var {X}

Binomial P(x) = (:)0"(1 -~ G-

x=0,1,2,...,n

o) = 8D -no
x=012,...

Poisson

s Xg)

_ n!

AR

(61)%1(0z)%2 - - .(ak)xk

Multinomial Pn(xy, xg, ..

k
n= >x
i=1

B2 2)
(l:l/) x=012,...

D = total number of defectives
in the N total items

Hypergeometric P(x) =

Applications in sampling, inspection plans,
coin tossing, or any experiment in which:

1. There are a fixed number of out-
comes, n.

2. The outcome of each trial must be a
dichotomy, i.e., a ““success” or a ““failure”’;
x = number of successes.

3. All trials have an identical probability
of “success,” 6.

4. The trials are independent of each
other.

Applications in auto traffic, telephone circuits,
computer loading, sampling, and radio-
active decay with short half-lives. Events
must be independent and rare. It can be
used as an approximation to the binomial
function when » is large and P is small,
since the binomial becomes the Poisson
function as n — co with nf constant.

Applications in sampling. A multivariate dis-
crete function can be regarded as a generali-
zation of the binomial function. Up to k
possible outcomes exist, each of which is
mutually exclusive. The probability of the
first event x; is 8, of x5 is 0, etc., and 6, +
0 +-- -+ 0, = 1. Each trial must be inde-
pendent, and the probability of each out-
come must be the same from trial to trial.
Pp(x,, ..., xy) is the probability that on »
trials a success for variable 1 occurs exactly
x; times, for variable 2 exactly x, times, etc.

Applications in the analysis of sampling with-
out replacement, i.e., sampling by attri-
butes. For a finite number N of items which
can be classified either “good” or ‘“bad,”
“success” or “failure,” if samples of a size
n are drawn from N one at a time without
replacing the items withdrawn, then the
probability of obtaining exactly x *failures”
in a sample 7 in P(x).

né

nf

Each variable
= nb,

no(t — 6)

nf

Each variable
= n0,(1 - 0;)

. nDIN— DYN—n)
NN - 1)

* The symbol (z) means the number of combinations of x things taken from a total of n things without regard to order;

() = so==

By direct integration it can be shown that the two param-
eters in Equation 2.3-1 are the mean and variance of X:

1 (zeroth moment)

I

f:o p(x) dx

&{X} = f “ xp(x) dx = py (first moment)

X = = [ 6 = () dx =

(second central moment)

Example 2.3-1 Zeroth Moment of the Normal Probability
Density Function

Show that
7 pwyax =1

Solution:

We want to show that

1 @ (x — px)?
a——-X Ve f_w exp — (—20% ) dx =1 (a)

The calculation can be made relatively brief if we make two
changes which do not affect the value of the integral. These
changes are: .

1. Shift the origin on the x axis for integration from x = 0
to x = uy so that ux = 0.

2. Square both sides of Equation (a); y and z are dummy
variables.
Then

oo (2«
_ 7102 U_‘: exp (_2')%) dy] [f_: exp (—2—?)2;) dz]

1 @ @ y2+22
= sma) [ oo () e
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TABLE 2.3-2 PROBABILITY DENSITY FUNCTIONS FOR A SINGLE CONTINUOUS VARIABLE

Name

Density Function

Apbplications or Remarks

Variance
6% = Var {X}

Mean
px = &{X}

Log-normal

Exponential

Weibull

Gamma

() = \/21— €xp 282

B

a = &{n X}
B? = Var {In X}

p(x) _ (]@) e—xle

P(x) = afxetem0x"

o+ 1

B
px) = TeFD

(Inx — )2 Applies to situations in which several
- ] independent factors influence the out-
come of an event not additively but
according to the magnitude of the fac-
tor. Applications are to particle sizes,
condensation, aerosols, petrology, eco-
nomics, and photographic emulsions. A
variable X has a log-normal distribution
if log X has a normal distribution. The
distribution is similar in form to the
gamma and Weibull distributions.

0<x < )

0< x < w) Applies to constant, instantaneous, failure
rate, i.e., a first-order ordinary differen-
tial equation. x is the random variable
and 6 is a time constant. The distri-
bution is an excellent model for the
failure behavior of many types of com-
plex systems, particularly for those
parts and systems which are so complex
that many deterioration mechanisms
with different failure rates exist.

Applies to life testing such as first failure
among a large number of items (« is
related to the failure rate), corrosion
resistance, return of goods by week
after shipment, and reliability.

Similar applications to the above.

0 < x < w)

o By (05 x < oo)

a> —1

2
82 20+ 528 1)
e‘”(?) €

B0)

a+1
B2

(ﬁ)-u:xpe_,_l) (B)—z/a[p(_z..,_l)

R
+

™

Finally, introducing polar coordinates yields

.5

itself is 1.

e

X
20%

2
)]
X
127 po 7 r2
=2—7T.(0 J;] gexp(—z—;?() drdf =1

If the square of any real quantity equals 1, the quantity

p(x).

|7 wentuy du = 1
Figure 2.3-4 portrays the relationship between p(u) and

(second moment)

The standard normal probability distribution

Pu)=P{U < u} = \/—-lz—-fj e w2y (2.3-4)

By a simple transformation of variables to the stan-
dardized (or ““unit”—for U) random variable U,

Ox

(2.3-2)

we obtain the probability density function called the
standard normal probability density function. Note that
because P(u) = P(x), where u is the upper limit of
integration corresponding to x, p(u) du = p(x) dx; hence,

pu) = L - (2.3-3)

Vo
which is shown in the upper part of Figure 2.3-4. The
moments of the standard normal random variable U are:

fw p)du=1 (zeroth moment)

f N up(u) du = 0 (first moment)

is shown in Figure 2.3-5 and tabulated in Appendix C.
By taking advantage of the symmetry of p(1), we can
compute, for example, from Table C1

PO<U<l}=PU<1} —PU<O
= 0.841 — 0.500 = 0.341

which is equivalent to the area under the curve p(u)
from U equal to O to 1. As another example,

P{—-32 < U< —0.3} =0.999 — 0.618 = 0.381

Reference tables of the standard normal probability
distribution function are not all based on the function
given by Equation 2.3-4. The largest and most com-
prehensive tables T give

1 [ 2
F(u) = —2_f e dy

T

(2.3-52)

+ Nat. Bur. of Standards, Guide to the Tables of the Normal
Probability Integral, Applied Mathematics Series 23, U.S.
Government Printing Office, Washington, D.C., 1952.
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14 (x)
[ I 1 T T ] p
12 /h\ ¢§=0.v10 |
“r - Gamma  a=7.80
p=8.80
10— Log-normal a¢= —0.057
B4=01
Weibull =3.26 _|
3 08— ‘;=0.70
R o6 —
04 |- —
02— ] Kx
A
0 b=z = FiGure 2.3-3 Normal probability density function for various
0 020 0.40 060 0.80 1.00x1.20 140 1.60 1.80 2.00 dispersions. Peak is at (uyx, 1/oxV/2x). Points of inflection are at
1 X.= px + ox.
N L L L L
=050
1.2 X — Solution:
’— Gamma =100  @=2.00
10 t?g;normal a=1—42.20 ﬁ;=g.§; ] 6@{ U} on ( ) A
. eibull a=l =0 = up(u) au
/ /\\ | -
~ ——— _ —-u2/2
® 06— 0 - —vgf_wue du (a)
Ve oS
04 1 — Let u?2/2 =t. Then udu = dt; when u = —oo, t = 0,
/ . '
0z A < | Consequently,
/ = 1 0 o
ol 1L 111 1 L 1 1 1 sy = = etar s [T =0 W
0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 27 L 0
¥ The same conclusion could be reached by noting that u is
f I R B S B :
12 oy =1.00 B
’ =0, =1,
10 f:i:oarmal z= _03435 B‘i:;‘;‘; | Probability density of the standardized random variable U
’ - \ Weibul  @=100 B=100 p(u)
N 0.4
3 08— —
206 _
%
04 - —
02} . 95.46%
= 99.73%
R TR TN N N NN O N B T

00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
x

FiGure 2.3-2 The gamma, log-normal, and Weibull prob-
ability densities. (Parameters are identified in Table 2.3-2.)

while other reference books give

_ 2 ~t2 ~
| G = == fo e~ dt (2.3-5b)
One useful relation is
u 1 1 v ]
P(u =f — —*Zdt=—+f —e Pdr (2.3-6
) - A/ 2 ¢ 2 0 V2r ¢ ( )

as can be intuitively seen from the symmetry of Figure
2.3-5.

Example 2.3-2 Mean and Variance of the Standardized
Normal Variable

Show that the expected value of U is 0 and that the vari-
ance of U is 1.

|
II Probability density of the random variable X
|
| | ' p(x)

|
|
|
|
|

|
|

=

—l——}
My+ Oy iyt 20y Myt 30y

by =30y uy= 20y uy~0dx Uy
FIGURE 2.3-4 Relation between the standardized normal random
variable U and the normal random variable X. The percentages
refer to the area under the curve within the indicated bounds on
the basis of a total area of 100 percent.
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FiGUurRe 2.3-5 Normal (Gaussian) probability distribution
function.

an odd function, e~**2 is an even function, and their
product integrated over a symmetric interval is zero.

Var (U} = j " (4~ 0p(u) du ©
R S S R S T N N W P
= VEJ—«»” e du = \/2_-,,—.[0 e du
= :/%;_TJ': 12 ¢t dt @

Since the gamma function is

T'(n) = [:t'-—l e~tdt = (n — 1)}

and
N Va
1"(5) =73
the integral in Equation (d) is
3\ Va
1‘(5) =7
and _
2 (V7
Var (U} = —= (T) 1

Before we assume that experimental data are repre-
sented by the normal probability distribution, if sufficient
data are available it is desirable to: (1) examine their
relative frequency distribution by tests for goodness of

fit as described in Section 3.7-7, (2) plot the cumulative -

frequencies on normal probability paper t which linearizes
P(x) by use of a special scale, or (3) carry out other
appropriate tests described in Chapter 3. Although the

+ The use of special graph paper which linearizes the normal and
many other distributions is described in the booklet by J. R.
King, “Graphical Data Analysis with Probability Papers,”
available from Team, 104 Belrose Ave., Lowell, Mass., 1965, and
in the article by E. B. Ferrell, Ind. Qual. Control, p. 12, July 1958.
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normal probability distribution truly represents many
collections of experimental data, it is also often ascribed

‘to data, for convenience, when the variables are con-

tinuous but not normally distributed because:

1. The variable can be transformed and the trans-
formed variable will be normally distributed.

2. Sums of random variables, variables not themselves
normally distributed, are approximately normally distri-
buted as the sample size — co.

3. The error introduced by using statistical tests based
on a normal probability distribution for experimental
data. of another reasonably symmetric distribution is
small.

Example 2.3-3 Graphical Validation of Normality of
Experimental Data}

The data in Table E2.3-3 are the diameters in microns of
two hundred particles from a sample of material on an
oilfield pipeline filter screen. The number of particles falling
within selected cell boundaries gives the frequencies as
grouped data. Grouping of data into cells removes the
erratic behavior of small batches of data while retaining the
predominant characteristics of the data as a whole. Choice
of cell range and the number of cells should not cause the
loss of too much information relating to the data. Cell
bounds are usually chosen so that ten to twenty cells of
equal width result. As so often occurs, the data in this
example have been classified into cells of unequal size because
of the manner in which the particle sizes were collected.
It was desired to obtain some idea of the distribution of the
particle sizes.

The first step in the preparation of the data for plotting
is to arrange the observed classes of the random variable
X in ascending order, as shown in the first column of the
table. The frequency of each class is listed and the cumulative
frequency computed. The values of x are ranked, with the
number 1 assigned to the lowest rank. If a value of x has a
frequency greater than 1, successive ranks are assigned for
each value (i.e., three observations require assignment of
three successive ranks). For each value of x, the average
rank is calculated by

_ > ranks
™M = Sbserved frequency

Finally, the following relation§
_ m
Tn+1

where n = the total sample size, gives the relative dependent
variable for plotting. :

} The data and graphs in this example have been taken from a
paper by C. Lewis, “ Applications of Statistics and Computers,”
Symposium, Mar. 1962, edited by R. E. Streets and R. D. Quillan,
Southwest Research Institute, San Antonio, Texas, 1962.

§ Due to E. J. Gumbel, Statistics of Extremes, Columbia Univ.
Press, New York, 1958.
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TaABLE E2.3-3 PARTICLE SIZE DISTRIBUTION OF TWO HUNDRED PARTICLES OF A SAMPLING

FROM AN OILFIELD PIPELINE FILTER SCREEN

Diameter Number of Cumulated Average Rank m
(microns) Particles Frequency Ranks (m) n+1 Percent
Under 0.30 2 2 1-2 13 14/200 0.75
0.31-0.40 - 33 ' 35 3-35 19 19/200 9.50
0.41-0.50 67 102 36-102 69 69/200 34.50
0.51-1.00 5 107 103-107 105 105/200 52.50
1.01-2.00 63 170 108-170 139 139/200 69.50
2.01-4.00 5 175 171-175 173 173/200 86.50
4.01-6.00 11 186 176-186 181 181/200 90.50
6.01-8.00 1 187 187 187 187/200 93.50
-8.01-10.00 11 198 188-198 193 193/200 96.50
10.01-20.00 1 199 199 199 199/200 99.50

Because a probability distribution plot reads “equal to
or less than,” the upper boundary of each cell should be
plotted. A plot of the data in Table E2.3-3 gave a badly
skewed distribution, as indicated by the extreme curvature
in Figure E2.3-3a. This curve, coupled with the physical
constraint that the diameter measurements must all be
positive and approach zero (there can be no negatively sized
particles), suggested that a log-normal plot be made as
shown in Figure E2.3-3b.

The line in Figure E2.3-3b is essentially straight down to
a diameter of about 0.5 micron, where it makes a sudden
break toward zero diameter. Usually, this indicates the
presence of some physical condition prohibiting values below
(or above) a particular level. In the present instance, how-
ever, such_an interpretation did not appear reasonable
because there was no technical reason why particles smaller
than about 0.3 micron could not exist.

After further inquiry the answer was found to be the

Percent equal to or less than
Percent equal to or less than

0.1y -

0.01 I AT R T
0 5 10 15 20
Particle diameter in microns

FIGURE E2.3-3A Normal probability plot of particle size data of
Table E2.3-3.

limit of resolution of the microscope used for measurement.
Further investigation showed that approximately 5 percent
of the particles picked up by the screen were less than 0.1
micron in diameter, as might be predicted by extending the
heavy line in Figure E2.3-3b to 0.1 micron. Very few of the
particles (less than one per thousand) could be expected to
be larger than about 50 microns.

The multivariate normal probability density, Equation
2.3-7, is nothing more than a generalization of the
univariate density. It is written in matrix notationt
(refer to Appendix B) for compactness:

p(x) = ke 9?2 2.3-7)

1 The balance of Subsection 2.3-1 can be taken up in conjunction
with the matrix notation of Chapter 3, if preferred.

99.9

99

90

50

10

0.1 I ' >
0.1 1 10

Particle diameter in microns

100

FiGgure E2.3-38 Log-normal plot of particle size data of Table

E2.3-3.



where

(detf-YH% 1
@myr2  2mymrf]%

k = positive constant =

termed a normalization factor such that

ff...fkexp(—%)dxldxz...dxn=1

g=x-wWix—p"
p‘T = [I'Lla Bgs e ey f"‘n]
xT = [xl, Xgy .+ 0o xn]

f = COVar {X,X,}

and

011 Oin

= | ' an n X n matrix

On1 Onn

|f] = determinant of f ‘

The p’s and o’s are constants; the p;’s represent the

ensemble means of the respective X’s; the a,,’s represent

the . variance and covariances of (X;X,). (Note that
— 2

oy = of.)

Example 2.3-4 Bivariate Normal Density Function

We shall formulate the bivariate normal probability
density, the case of » = 2 in Equation 2.3-7. The bivariate
density has direct applications to turbulent velocity fields,
mapping, and targets, as well as in empirical model building.

x - = [Cer — H-1), (x2 — pa)l

£ = (011 ‘ 012] detf = |f] = 011012 — 033
021 Oaa (since 012 = 021)
= otof — o,
[ G2  —O1g .
£-1 detf detf with oy, = o
—0Ca1 Ou Og0 = 02
| detf detf
ﬁ — 012
£ €] [[(xs — pa)
g = [(x1 — 1), (g — p2)]
1T 2 ke — 021 0_? (xa — p2)
£l Ifl
— [(: — p2)?03 — 2(%1 — pa)(X2 — pa)orz + (X2 — po)’oi]
ofof — ofy
Now let
= o = 12
P = P12 0103
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SO tha.t O13 = o;o'zp:
o3 c 1

2
2 _ ‘
ofof - alege® AT — /)

2 2 2
0103 — 012

O12 - 01020 = P
oi0f —ofzs  oio3(1 — p?)  owoy(1 — p?)
.03 1

]~ 20 =

Then

[ s s Kl s}
— P

1 exp — (u? - 2Pll1u2 + M%)
@2m)o103V1 — p2 2(1 - p%

q=

p(xl’ xz) =

where

Xy —
oy

U = i= 1, 2, cen

" Tables of the bivariate normal distribution are available.t
For thé important but special case in which X; and X,

are stochastically independent, p = 0 and

1 u? + ug
Plxs, %3) = 7 exp —( =) 2)

2.3-2 The x? Distribution

The ¥? distribution has many theoretical and practical
applications, some of which will be described in Chapter
3.1 These include:

1. Testing the goodness of fit of experimental obsciva-
tions to hypothesized probability distributions.

2. Obtaining confidence limits for the variance and the
standard deviation.

3. Testing the independence of variables. A

4. Deriving the sampling distribution for the stai: “:y
deviation, the covariance, the coefficient of variation =g,

Let X;, Xs,..., X, be a set of v-independent ras.iom
variables, each of which is represented by a nociinal
distribution with the respective parameters (u, %),

(ps, 03), . . ., (1, 03). If we calculate the squares of ilic
standard normal variables, U?,
_ X, — P‘i)2 50
Up = (—m @39

t Nat. Bur. of Standards, Tables of the Bivariate Normal Distri-
bution Function and Related Functions, Applied Mathematics
Series 50, U.S. Government Printing Office, Washington, D.C.,
1959, '
i A good general reference for the use of x? is: A. E. Maxwell,
Analyzing Qualitative Data, John Wiley, New York, 1961.
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and sum the U2’s, we define a new random variable y?
(““chi-square™) as follows:
X¥=Ut+Us+---+ U}
v v
Sur=> (Xi - m)z
i=1 i=1 %

In Equation 2.3-9, v is called the “number of degrees
of freedom” for x2. The distribution of 2 depends only
on » because the U’s are standardized. If the » observa-
tions are independent, then the number of degrees of
freedom is equal to v; however, a degree of freedom is
lost for each constraint placed on the v observations.

The probability density for x*> can be shown to be

(2.3-9)

i

v
5-1

22
ez (0<y®<

(2.3-10)
and is illustrated in Figure 2.3-6. Some special cases of
the x2 density of interest are: (1) the square root of y2 for
v = 2, called the Rayleigh density function, (2) x? for
v = 4, the Maxwell function for molecular speeds, and
(3) V252 for v > 30, which is distributed approximately
as a normal variable with u = v/2v — 1 and ¢% = 1. The
ensemble mean of y? is equal to the number of degrees of
freedom:

1
(%) = T 0g)

v

X = g{z Uf} = Zé"{(Ui 0 =14l 4-e=v
i=1 i=1

because the variance of U, = 1, i.e., &{(U;, — 0)2 = 1.

The variance .of x% can be shown by direct integration to

be .

Var {}%} = 2»

The probability distribution for y? is
P(x3) = P{x* < x3}

- 12 v 22
- @ ), 0T s
Tables of P(x2) are available as well as tables of P(x%/v)
and P{y? > yZ}; Table 2.3-3 is a brief extract from
Tables C2 in Appendix C. An entry is interpreted for v
degrees of freedom as the upper limit in the integral in
Equation 2.3-11. For example, for a P{y? < xZ} = 0.95
or P{y* > xi} = 0.05, x can be read forv = 1 orv = 10
degrees of freedom as 3.841 or 18.307, respectively.

TABLE 2.3-3 DISTRIBUTION OF x?

0.20

0.15

p(x?)

0.10

0.05

FIGURE 2.3-6 The x2 probability density.

2.4 SAMPLE STATISTICS AND THEIR
DISTRIBUTIONS

Usually the probability  distribution for a process
variable is unknown, so the equations in Section 2.2
cannot be directly applied to calculate the ensemble mean,
the ensemble variance, and other ensemble averages.
While the analyst would like to obtain an estimate of the
probability density function for a process variable, this
is difficult; in most instances he must settle for merely
estimates of the ensemble mean, variance, etc. Two
general methods of making an estimate of an ensemble
average will be described in this book. One concerns the
use of a finite random sample of observations or measure-
ments obtained by repeated experiments, as discussed in
this section. The other method concerns the use of a
single time record for ome experiment, as discussed in
Section 12.3. ‘

The term sample statistic or just statistic refers to a
numerical value calculated from a sample of obser-
vations or measurements of a random variable. Thus,
an estimate of a parameter in a probability density

‘function, probability distribution, or process model or

an estimate of an ensemble average obtained from
experimental observations is a statistic. A statistic has a
dual meaning; it refers to both the rule for calculating
the statistic (i.e., a function) and the value of the statistic.
The meaning will be clear from the context. Keep in
mind that statistics are random variables.

In this section we shall describe the sample mean and
sample variance of the random variable X and also their

v = Probability of a value of y? less than shown in table
Degrees Pi® = x3) .
. Freedom 0.01 0.05 0.50 0.90 0.95 0.99 0.999
1 1.57 x 10-* 0.00395 0.455 2.706 3.841 6.635 10.827
10 2.558 3.940 9.342 15.987 18.307 23.209  29.588




probability distributions under specific assumptions
about the distribution for the random variable X itself.
Sample averages will be denoted by a bar superimposed
over the random variable(s) involved, except for the
sample variance and correlation coefficient which use
other notation for historical reasons. Unless otherwise
stated, each finite set of samples is regarded as being
statistically independent of any other set if the experi-
ments used to collect the sample are independent and the
random variables are statistically independent.

2.4-1 The Sample Mean and Variance

The sample mean is generally the most efficient (see
Chapter 3) statistic to use in characterizing the central
value of experimental data; that is, it requires less data
to achieve the same degree of certainty. Let X be a
random variable.f A sample of » total observations
yields one group of n; observations of X denoted by
X, another of n, observations of X denoted by X,, etc.
Then the sample mean is

A—/Z%Z/Yini

where > n; = n. If n; = 1, then the upper limit of the
summation is #. The sample mean is itself a random
variable and, being an estimate of uy, is often designated
fx.

There are two main reasons why an experimenter
makes replicate measurements. One is that the average
of the individual results is more representative than any
single result. The other is that the dispersion of the
individual readings can be evaluated. These objectives
may be thwarted unless considerable care is given to the
data collection process as described in Chapter 8.

The sample variance of the random variable X is a
random variable which is the best single estimate of ¢%.
It is calculated as follows:

1
n—1

(2.4-1)

52 =683 = Z X, — Xpn, (242
i
Observe that in the denominator of Equation 2.4-2 the
term (n — 1) and not n appears, because the expectation
of {1/(n — D} > (X; — X)?n; is 0% whereas the expectation
of (1/n) 3 (X; — X)2n; is {(n — 1)/n}c%. Thus, the latter
calculation gives a biased estimate (see Equation 2.4-9
below). (Heuristically, the argument for using (n — 1)
instead of » is that one of the n degrees of freedom among
the »n data values is eliminated when the sample mean is
computed. One constraint is placed on the data values;

t The argument of time can be omitted from X since the sampling
can be conducted at one time or at different times for a stationary
ensemble. The important point is that the data be collected from
different experiments and not from one experiment at different
times. :
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hence the denominator,y which represents the degrees of
freedom, should be (n — 1).) The sample variance is
often more conveniently calculaied from Equation
2.4-3a or 2.4-3b.

53 = ” 1 7 [Z mX? — 2721’1@)@ + (X-)ZZni]
= i T [Znin - 2X’)?Zni + (1‘_/)22711]

-1 [Z mX¢ = (07 (2.4-32)

= L= (D) - (X7 (2.4-3b)
The sample coefficient of variation is

c=2 (2.4-4)

X

Always be aware that squaring or multiplying first and
subtracting afterwards can lead to serious computational
round-off error. Thus, for the two equal expressions,

n 2
n ( Z xi) n
i=1 =
2,6 = = = (- 9
i=1 i=1
if x; = 9000, x, = 9001, and x; = 2003, the value of the
left-hand relation, using single-precision arithmetic and
8 decimal digits, is 0, and, using single-precision arith-
metic and 27 digits in binary arithmetic (which is equiv-
alent to about 8 decimal digits), is 4.0. On the other
hand, the value of the right-hand side of the expression
by either treatment is correct to 8 decimal digits at
4.6666667

Example 2.4-1 Comparison of Sampie Statistics and Their
Expected Values

Table 2.3-1 gives the binomial probability density which
represents a coin-tossing experiment. Suppose that a coin
is tossed 5 times; let X be the number of heads in 5 tosses.
If the probability of obtaining a head on each toss is § = 1,
the second row of Table E2.4-1 shows the probability of
obtaining 0,1,2, 3,4, or 5 heads, respectively, in a total of
5 tosses. For this special type of experiment, the sample mean
and variance can be compared with ttie ensemble mean and
variance. The experimental data in the third row of the table
represent the sum of the results of several experiments of 5
tosses each carried out by different individuals using the
same coin.

The calculations are:

px = D p()x = 03 + 1G) + 29 + 308
+ 4G%) + 5(GL) = 2.5

= 13 ne = S5O0 + 16 + 200) + 30)
+ 4(5) + 5(1)] = 2.4

>
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TasLe E2.4-1
Values of Random Variable X 0 1 2 3 4 5 Sum
Theoretical probability density
n! 1\ (1\n-=
20 = e (5)76) % # 32 2 b #
Experimental data k
(30 tries) n, = 1 6 10 7 5 1 30

0% = Zp(xt)(xi - px)? = Zpi(xi)xiz - x2 Zpt
= [0%() + 1°G%) + 2°GD) + 3°GY) + 4°G)
+ 5% — (2.5)%] = 1.25
> n(X — X)?
n—1
= &[0 — 2.0%(1) + (1 — 2.4%6) + 2 — 2.4(10)
+ @3 - 2.4)_2(7) + (4 — 2.4)%5) + 5 — 2.9%(1)]
= 1.42

5% =

It can easily be shown by interchange of the operators
& and 3 that

— 1 - 1 n\
£(X) = é"{; > Xn} = 5 2 6km)

z Nipx = Mx

i=1

(2.4-5)

=

and by using Equation 2.2-9a for independent variables
with Var {X;} = o% that

- 1< 1 <
Var {X} = Var {; Z Xini} =3 Z n; Var {X}}

i=1

1
n—2 (nai) =

318

(2.4-6)

The positive square root of Var {X} is termed the stand-
ard error or sample standard deviation. Thus the sample
means themselves are random variables with an expected
value the same as that of X and with an ensemble
standard deviation of ox/V/n. Figure 2.4-1 indicates how
the dispersion is reduced for increasing sample sizes as
called for by Equation 2.4-6.

One important theorem in statistics, the central limit
theorem, states that under fairly general conditions the
sum of n independent random variables tends to the
normal distribution as n-—>co. Thus, the probability
density for sample means computed from nonnormal
random variables will be more symmetric than the under-
lying distribution and have less dispersion, as illustrated
in Figure 2.4-2.

The sample mean can be transformed to a standard
normal variable (which was previously defined by Equa-
tion 2.3-2) as follows:

X — px

T ox/Vn

We next show that the expected value of 5%, as defined
by Equation 2.4-2, is o%. We split (X; — X) into tw
parts: i

(Xi_'r)=(‘Xt_l"X)_(Y_l"X)
and replace (X; — X) in Equation 2.4-2:

(n = D)5y = > [(X — i) — (¥ — )P
=D (X = P =2 > (X — w)(X =~ g
+ Z(z\_’ — )
= D (Xi— pam — 20X = ) + (X - pix)?

= D (X = ) — (X — p)?

U (2.4-7)

(2.4-8)

p(%)

My x

FiGURE 2.4-1 Reduction of dispersion as the sample size in-
creases according to the relation Var {X} = o%/n.
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p(x)

Probability
density of X

Probability
density of X —
/

(a) ‘

My

(¥

FIGURE 2.4-2 Probability densities of sample means showing the reduced dispersion for the X
distribution: (@) distribution of X is normal, and () distribution of X is not normal.

Next we take the expected value of both sides of Equation
2.4-8:

&{n — Dty = 62 (X — wPm — (X — ur)?}
= no% — nVar (X) = no — n%?‘

=o%(mn—1) (2.4-9)
Consequently, the expected value of the sample variance
1s the ensemble variance.

To establish the distribution of s% for » independent
observations from a normally distributed population
with a mean of uy and a variance of ¢% is beyond our
scope here, although it can be obtained from the 2
partition theorem described in several references at the
end of this chapter. All we need here is to note that

n

> (E=E)n

i=1

p(s2)
n=25

2 2
0 aZ 202

FIGURE 2.4-3 Probability density of s%.

has a x2 distribution with (n — 1) degrees of freedom;
i.e., it is equal ¥? if the degrees of freedom are (n — 1).
Consequently, we can write

2

2 __ 2X
Sx—-oxj',

v=n-—1 (2.4-10)
and determine the distribution of s% (and sy) from the
x2 distribution. Figure 2.4-3 shows the probability
density of s%.

The ensemble variance of the sample variance itself is

defined as
Var {s%} = &{(s% — 3%

and can be determined from
2 2 4
Var {2} = Var {a§ L1 = (o3 Var {Xj} = 2% 411)

(Recall that the Var {x%} is 2v.)

For k samples drawn from a normally distributed
population, each having the same variance ¢% but not
(necessarily) the same mean, a pooled estimate, s2, of
a?r is .

2, o

5=

where »; is the number of degrees of freedom associated
with each s?. Thus, by taking a large number of small
samples, it is possible to get s2, an estimate of o%,
based on an effectively larger number of degrees of
freedom than could be obtained by taking one large
sample with the same total number of observations, as
indicated in the following example.

(2.4-12)

Example 2.4-2 Variance Reduction by Pairing of Samples

Suppose a product is formed on two different shifts, 4
and B, or by two different processes, A and B. The product
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may be the same or different in various characteristics. But
in one specific characteristic, the percentage of a chemical
component as determined by titration, the outputs from A4
and B are supposed to be the same—apart from random
normal deviations. In Chapter 3 we shall describe haw to
determine if the outputs from 4 and B are the same. How-
ever, for the moment, we shall assume that they are the
same. Then we can calculate the sample variance using
Equation 2.4-2. )

Now, on the other hand, suppose we carry out the titra-
tions on pairs of outputs, one of which is selected from A4
and the other from B. Let X;, be the result from 4 and X,
be the result from B on the ith titration, as shown in Table
E2.4-2. If for each pair of titrations, X; = (X;, + Xi,)/2,
then the sum of the squares of the deviations is, for the ith
titration pair,

— 2 2
o = X+ 5y~ T - T TP _ 0

where D, = the difference in measurements. Furthermore,
the variance for a pair of measurements is
52 = 1 (—X“ — Xo)® = D
2 -1 2 2
Then the pooled s2 for k sets of measurements is
k

2

sz_t=1wsi_1§VD12 1 sz

P = % = i T 3% i
> v K 2 2K

i

(a)

®)

where K = the total number of degrees of freedom = 3 ;.
If the data in the table were to be (incorrectly) treated as
individual measurements, X = 70.89 and the variance

calculated from Equation 2.4-2 is
1 112.07

2 —
= 19

= 5.89

20
Z (X; — 70.89)% =
i=1

with 19 degrees of freedom. On the other hand, if the data
are (correctly) treated as pairs, from Equation (c)

s 303
Sp = —(E)—(_IF) = 0.152
with 10 degrees of freedom.
TaBLE E2.4-2
A B D = Difference D?

73.2 74.0 0.8 0.64
68.2 68.8 0.6 0.36
70.9 71.2 0.3 0.09
74.3 74.2 -0.1 0.01
70.7 71.8 1.1 1.21
66.6 66.4 -0.2 0.04
69.5 69.8 03 0.09
70.8 71.3 0.5 0.25
68.8 69.3 0.5 0.25
73.3 73.6 0.3 0.09

Total 3.03

We can interpret the results as follows. If for one pair of
observations, we note that

Dl—'D-=(1\’i1_Xl)'—(A,12_X—2)
where D = SP_; Dy/n, then

2 (X, — Xo)?
n—1

S - DY X, — %) +
n—-1 n—1

25 (X — XX, — X)
n-—1

or
53 = sk, + 32212 — 25x,x, ()

Note that the variance of the differences depends on the
correlation (covariance in Equation (c)) between pairs of
observations. Consequently, it is quite desirable to arrange
pairs of observations in the expectation of obtaining high
positive correlations, thus reducing the variance. By choosing
pairs so that the characteristic of interest in each pair is
similar even if the characteristic differs widely from one
pair to another, variation between pairs will not affect the
variance of the mean difference, because the latter depends
only upon differences within pairs.

2.4-2 The ¢ Distribution

The ¢ distribution (or the Student ¢ distribution, so
called because of its publication by W. S. Gosset under
the pen name of “Student”) is employed in making tests
and establishing confidence limits for the mean. These
tests will be described in Chapter 3. The random variable
¢t represents the ratio of two independent random
variables, U, the standardized normal variable, and
Vb

X —

Sxlox — Sx

(2.4-13)

= = e (i/_\/’%) 1

where X is the sample mean and s is the sample standard
deviation. The probability density function for ¢ is

v+ 1
(1) = JE% (1 N 172)‘(7)

(—o0 <t < o0)

(2.4-14)

where v is the number of degrees of freedom associated
with s%. Figure 2.4-4 illustrates p(¢) for various degrees
of freedom, ». Equation 2.4-13 indicates that the sample
standard deviation of X is used in calculating ¢t whereas
to calculate U, the value of oy has to be knawn.

In the limit as v — oo, the ¢ probability density becomes
identical with the standard normal probability density,
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FIGURE 2.4-4 The Student ¢ probability density.

as can be ascertained from Equation 2.4-14 as v becomes
very large.

Figure 2.4-5 illustrates the ¢ probability distribution.
Tables of the ¢ probability distribution exist in practically
all statistical texts and in Appendix C of this text.} The
t distribution gives the probability of ¢ being less than or
equal to a selected value of ¢: )

tx
P(t) = P{t < 1, = f " par

Some tables record for each degree of freedom, », the
probability of obtaining a larger absolute value of ¢ than
that listed in the table. Other tables use the symmetric
property of the ¢ density and record only the probability
of obtaining a larger value of ¢ than that listed in the

995
99

-
n
N
1

95

L1yl

[TTT T 77

70

P(t)
|
1

50

30

TTTT1TT]

RN EENENE

TTT 7

L1
8 10

L1 1
-10-8 -6 -4 -2 0 2 4 6
t

FIGURE 2.4-5 Probability distribution for z.

+ More complete tables can be found in: G. U. Yule and M. G.
Kendall, Introduction to the Theory of Statistics, Griffin, London,
1940, Appendix Table 5; M. Merrington, Biometrika 32, 300,
1941; and R. A. Fisher and F. Yates, Statistical Tables, Oliver
and Boyd, Edinburgh, Scotland, 1938.
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p(t)
95 percent of area
2.5 percent of area 2.5 percent of area
~2.571 0 2571 t

FIGURE 2.4-6 Graphical interpretation of the Student ¢ tables for
v =35,

table. As an example of the entries in Table C3 in which
P(t) = P{t < t4}, the listing forv = 5 is

P(r) 075 090 095 0975 0.99
t 0.727 1.476 2.015 2.571 3.365

The listed values can be interpreted to state that 95
percent of the area under the ¢ probability density curve
lies within the ¢ values of —2.571to +2.571, and 5 percent
of the area (with symmetry) lies outside these values.
Examine Figure 2.4-6.

Example 2.4-3 ¢ Distribution
If P{—-2 <t < ty} = 0.25, what is ¢, forv = 10?

Solution:

From Table C.3 in Appendix C for the ¢ distribution, the
P{t <2)~096; hence P{t > 2}~ 1 — 096 = 0.04. By
symmetry, P{t < —2} = 0.04. The total area from —co up
to r* is P = 0.04 + 0.25 = 0.29, which corresponds to
P{t < ty) = 0.29. By use of symmetry again, P{t > —1.} =
1 — 0.29 = 0.71, and from Table C.3, ¢, = —0.56.

p(t)

=2 [ 0 t

FIGURE E2.4-3

2.4-3 Distribution of the Variance Ratio

A useful distribution developed by R. A. Fisher (the
basis of the descriptor F) for the analysis of variance and
in model building, topics to be discussed in subsequent
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chapters, is the distribution of the variance ratio. If two
samples are taken, one consisting of n; independent
measurements of a normal random variable X; which has
a mean of u, and a variance of o%, and the other sample
consisting of n, independent measurements of the normal
random variable X, which has a mean of p, and a
variance of %, then the random variable F is defined as

si/ot
s3/o%

F(vy, vzj = (2.4-15)

with v; = n; — 1 and v, = n, — 1 degrees of freedom.
The degrees of freedom associated with the numerator
and denominator are those associated with s? and s3,
respectively, and may differ from (n — 1) if the sample
variances are calculated by an equation other than
Equation 2.4-2. If o} = ¢ = o® and Equation 2.4-10 is
used, F can be related to x2:

ﬁ - xim
53 X3/va

F(vy,vp) = (2.4-16)
In the argument of F the degrees of freedom for the
numerator of Equation 2.4-16 are given as the first
number.

Tables of the probability distribution of F, P(F) =
f:* p(F) dF, are in Appendix C; refer to*Table C.4.

The probability density of F is given by

vy + vy )
r(s4-2) )
PIF) = —————= ({2 vgel?) ——————
P(H)P(E) @2 + AT
T\ 2 2
2.4-17)
and is illustrated in Figure 2.4-7.
The ensemble mean and variance of F are
E{F} = —22 vy > 2 (2.4-18)
Vg — 2
203(v, + vy — 2)
Var {F} = 2.4-19
i} vilva — 2)%(vy — 4) ( )
10 T T
v1=10, = oo
08— -~
v1 =10, y2=10
06
&
S04
02—
0 | |
0 10 2.0 3.0 4.0
F .
FIGURE 2.4-7 Probability density of F for various values of v,, vs.

A useful relation is
F(vy, vy) for P{F < F,} = kisequalto

1
Fonv)for PIF< Fy=1—F%

Example 2.4-4 Variance Ratio
Let vi = 10, vo = 4. Then for P{0 < F < Fg} = 0.95,
what is Fy ?

Solution:

If P{0 < F < Fy} = 0.95, then P{F > F,} = 0.05. From
Table C.4 in Appendix C, F(10,4) = 5.96.

It is also true that 1/5.96 = F, for P{F < F,} = 0.05 with
vy = 4 and vy = 10 degrees of freedom.

2.44

A useful feature of experimentation is that experimental
measurements can be used to estimate the ensemble
mean and variance of a variable which cannot be directly
measured. For example, in a material balance, if all
the random variables except one are measured, the
ensemble mean and variance of the remaining variable
can be estimated. We now inquire as to how the engineer
can predict the ensemble mean and variance of an
unmeasured variable from the ensemble mean and
variance of measured variables.

The ensemble mean of a linear function of random
variables is equal to the same linear combination of the
respective means, as indicated by Equation 2.2-1d. Thus,
if Y=aX + b,

&Y} = af{X} + b

The ensemble variance of a linear function of random
variables is given by Equation 2.2-9 or 2.2-9a. For
example, for the single random variable X,

Var{Y} = a? Var {X} (2.4-21)

We shall now illustrate the application of Equations
2.2-1d, 2.2-9a, 2.4-20, and 2.4-21.

‘‘ Propagation of Error”’

(2.4-20)

Example 2.4-5 Controller Error

A process controller as indicated in Figure E2.4-5, senses
the values of two streams, and produces an output signal.
Each of the sensed streams has error; in addition, the
controller introduces error into the output signal. The
functional relationship between y and the x’s is

y = 100 + ayx; + azx;

The units of x; and y are millivolts. The “errors” in the
signals shown below as percentages of the value of the
ensemble means of the signals represent three standard
deviations in the units of x. The expected values of the errors
are zero. For the indicated values, calculate the “error” in
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£ o a1x : domain of interest. A Taylor series for a function of one
variable, f(x), about an interval centered on x = a is
: 4 Controller p——>2
x| agxy df (a) d 2f(a) (x—a)®
| a2 I f)=fl@)++-" (x—a)+ ) +oo (2422)

FIGURE E2.4-5 Linearization is achieved by dropping the second- and

higher-order terms.
y and z, similarly expressed as three standard deviations. The For example, in the function
gain of the controller is unity.

y=e*
Constants “Error”
Signal a Mx (Box) the term e~* is nonlinear; a graph of e~ * appears in
x, 5 00 57, Figure 2.4-8. Now if we are only interested in small
X ) 150 47, values of x, i.e., values of x only slightly removed from
Controller 2%, of mean value x = 0, we may expand e~ * about x = 0 by using Equation

2.4-22:

Solution: 1,
=1 —Xx+4+ =X
Let us assume that X; = x; + €, and X, = xp + €, e + 21 +-

where X; and X, are stochastically independent variables.

Then Y = a1 x; + aie1 + azx, + azes + 100,

The output of the controller is

~1—-x

The general procedure of linearization, then, is to expand

Y} = ai€{x1} + ax8{xz} + 100 any nonlinear functions in a Taylor series about some
= 5(100) + 2(150) + 100 = 900 mv mean or other constant value of the variables and to
) ) . retain only the linear terms.
The variance of the variable Y is For a function of several variables, the truncated
Var {Y} = a? Var {Xi} + a Var {X3} Taylor series can be expressed as
= a? Var {51} + ag Var {62} f(xb Xoy o e v xn) = f(xga xg’ ey x?t)
30; = 0.05(100) or o, =%; of=(3?
. 6 2 6\2 a.f(xl, x25 .. xn) )
30’2 = 004(150) or oz = 3, 03 = (3) + (x, x;)
Var {Y} = 25($)? + 4(%)? = 282 (mv)?
{y} ) ®) §2 (mv) 2.423)
The variance of the controller is where the superscript zeros refer to the reference state
30contr = 0.02(900) oOr Geontr = L& Goontr = (42)? for the expansion.
Then, assuming that the error introduced by the controller
is additive to the error of y 10 l
: f I
Var (Z) = 242 + 3% = 1993 (mvy?
o7 = 4/1093 — 33 08 |
so that 30, = 33 mv. The percent “error” in Z is (£2)(100) True function
= 3.7 percent. Linearized function
] 0.6 — —
]
If the functional relationship between variables is (8

nonlinear, the function must first be linearized in order 04 -]
to apply Equations 2.4-20 and 2.4-21 or 2.2-1d and [—
2.2-9. The mean and variance computed for the linearized

expressions are only approximate and apply only in the 02 ]
vicinity of the state about which the variables in the
function have been linearized. L ] |

The basic technique underlying linearization is the 0.00 1 2 3 4 5 6

expansion of the troublesome function in a Taylor series ®

about a mean or reference value of the variable in the FIGURE 2.4-8 A graph of the function e~ * versus x.
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For example, for a function of two variables x and y
expanded about x, and y,,

£659) = fxer o) + LEE2) ()

¢ Loy _y,
Keep in mind that the partial derivatives are constants
that have been evaluated by introducing x, and y, into
the appropriate expression.

Once the function has been linearized by Equation
2.4-22 or 2.4-23, the mean and variance are (assuming the
random variables are independent so that Equation

2.2-9a applies)

EU(Xy, .., X = (5L, ., X))

N Z [o . )

x [{(X; — xD}] | (2.4-24)
Var {f(Xs, ... X} = > [?Ji(x(l)’T"xg)]zVar (X}

i=1

(2.4-25)

where x? might be the value of the sample mean X;, for

example.
A special case of Equation 2.4-25 occurs when the

original function is of the form
Y=cX{1X§2--- Xin

because then

0\ 2 0\ 2
Var{Y} > (—%) Var{X} +---+ (a;,:) Var {X,}

or, as is more commonly encountered,

a,\2 Ox 2 IXn 2
(;g) g"%(x_g) +...+ag(x_2) (2.4-26)

Example 2.4-6 Mean and Variance of a Nonlinear Function
of a Random Variable

Van der Waals’ equation can be solved explicitly for P as
follows:

P nRT ﬂl
~(V — nb) | &
where

P

n = number of moles

pressure (a random variable)

V = volume (a random variable)
a, b = constants

Assuming n = 1 g-mole,

3
1.347 x 10 atm( cm )2
g-mole
3
- 38.6( cm )
g-mole

for air, T = 300°K, and that the ensemble mean and variance
for ¥ are, respectively, 100 cm® and 1 cm®, find the mean and
variance of P in atm. The ideal gas constant

(cm®)(atm)
(°K)(g-mole)

a

S
|

R = 82.06

Solution:

Since Van der Waals’ equation is nonlinear in V, it
must first be linearized. Expand the function in a Taylor
series, dropping terms of higher order than the first.

nRT n’a nRT n’a
S i R vy Rt ()
- [ nRT 3na VonRT ]
= Vo — nb Ve (Vo — nb)?

nRT n’a
o ST, Rilhes
+ [ Vo —nbye Vg] v

o« + BV

Then apply Equations 2.4-20 and 2.4-21:
&P} = o + BELV)
Var {P} = B2 Var {}}

_ [(82.06)(300)

_ (3)(1.347 x 10
*= [(100 —38.6)

(100)2
(100)(82.06)(300)]
(100 — 38.6)2
= 648 atm
g = [_ (82.06)(300) (2)(1.347)106] atm
“ L (100 — 3816)2 108 cm?®
= —3.84 atm/cm®
&{P} = 264 atm

Var {P} = 14.75 atm?

These results hold for small perturbations about V.

Example 2.4-71f Estimate of Error in a Heat Transfer
Coefficient

Consider a laboratory experiment dealing with the
unsteady-state heating of water in a steam-jacketed open
kettle. The apparent overall heat transfer coefficient is
given by

U, =

we, (dT)
dr

AAT, \ar

+ Adapted from D. A. Ratkowsky, J. Chem. Eng. Ed. 3, 3, 1965.



where
W= weight of water, Ib
C, = heat capacity of water, Btu/(Ib)(°F)

A = area of kettle in contact with water through
which heat transfer can take place, ft2

AT, = apparent temperature difference between steam
and water at any instant, T; — T, °F
(dT/dt) = slope at any instant of the curve of water tem-

perature versus time

We assume that all the listed variables are random variables.
The initial temperature is room temperature.

Find the expected value of U, and its precision at the
condition when AT, = 60°F.

Solution:

From Equation 2.4-26, assuming that the variables are
independent,

T =G @G G G
(U,,) ‘(W) +(c,, ) t\&7) e

We shall consider the measurements and estimated vari-
ance of each term in sequence.

ow: 200 1b of water were measured out in 25-1b batches.
If each batch were weighed within maximum error
limits of +0.301lb, assume that the error represents
three sample standard deviations. Therefore sw, =
0.30/3 = 0.101b.

W=Wi+ W+ -+ Ws

so that by Equation 2.2-9a, if the weighings were
independent,
oy & s = 8s%, = 0.08 1b?

The heat capacity of water is known with sufficiently
great precision that we can assume that there is no
uncertainty in the value of C,; i.e., 63, = 0.

2

a4t As heating continued, expansion of the water took
place, causing the wetted area to increase. However,
the term *‘apparent heat transfer coefficient” implies
that the increase in the area was ignored in favor of
using the wetted area at room temperature. From
measurements of the liquid depth, and a knowledge
of the geometry of the kettle, it was estimated that
A = 8.74 ft? with an uncertainty of 3s, = 0.45 ft2.
Therefore, :

0.45
3
6% x 52 = 0.0225 ft2

= 0.15 ft?

4 =

The temperature of the steam, assumed to be
saturated steam, was determined from the steam
pressure which was measured with a mercury
manometer. Pressure variations were kept within
the error limits of +1 inch Hg, i.e., +0.5 psi.,
about a set value of 5 psig. The steam temperature

aATu,:
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therefore varied between maximum limits of +1.5°F.
Thus,

s —] 1;5
Ty = 3
s2, = 025 CF)?

= 0.5°F

The water temperature was measured by using the
average value of two thermocouples, each thermo-
couple indicating between error limits of +0.5°F.

w = ('i')(wa + Tw:)
2 2 2 0.5\2
o= @k, + k) = D5
= 0.0138 (°F)?
Therefore, since AT, = Ty — T
ofr, ® sir, = 0.25 + 0.01 = 0.26 (°F)?

The derivative of temperature with respect to time
at the particular time ¢ where AT, = 60°F was
determined from the tangent drawn to a plot of
water temperature versus time. After several trials,
taking into account the various possibilities for
drawing a smooth curve through the points and
considering the precision of drawing a tangent to a
curve, a reasonable estimate for the derivative
dT/dt was 3.0°F/min with variance

03710t X S3rja. = 0.048 (°F/min)?

The average value of the apparent overall heat transfer
coefficient, U,, was calculated as

Garjat:

_ (200)(1)(3.0)(60) i
s = T @aae0) = 06 Bu/(ndECE)

-~

and the estimated variance was
0.08 + 0.0225 0.26 +
2002 7 (8.74)2 " (60)

= (68.6)%[2 x 10~ + 2.95 x 10~¢
+ 7.22 x 10~% + 0.00533]

= (4706)(0.00570) = 26.82

0.048]

&% % 53, = (68.6)2 [( G

The estimated standard deviation of U, was
&U“ X Sy, = 5.18

The estimate of oy, is only approximate because the
sample variances themselves were only approximate and the
ensemble variance for U, was estimated from a linearized
relation. Another way to estimate oy, would be to calculate
sy, from repetitive experiments. A reexamination of the error
analysis shows that the largest contribution to the experi-
mental error lies in the term involving dT/dt. The error
in U, could best be reduced by reducing the error in the
temperature-time curve and the evaluation of its slope.

Keep in mind that the error analysis as outlined in this
section encompasses only one phase in the analysis of
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measurement error. As discussed in the introduction to
this chapter, a fixed displacement or bias can contribute
to the overall error and cannot be overcome by repli-
cation. If the engineer wants to estimate, for example,
pressure with a Bourdon gauge, he cannot simply take
ten Bourdon gauges and then average the resulting ten
readings unless the factory or some other source has
recently calibrated each instrument. Without such cali-
brations the instruments from one lot, for example, might
all be biased to read high. Proper calibration, either by
adjustment of the gauge or by application of correction
constants, would help to ensure that the readings are
unbiased. Unfortunately, we do not always work with
instruments that have just been calibrated ; consequently,
we must not forget to consider possible bias.

2.4-5 Sample Correlation Coefficient

~"The sample correlation coefficient, pxy, is an estimate
of the ensemble correlation coefficient, pyy, which is
defined in Equation 2.2-14. The sample covariance is a
random variable defined as

1~ _ >
swr = G 2, = DY~ P @427
and may alternately be computed, noting that

n n
Z(Xi“ X)(Yi_ Y)n, = Z”i/"iYi — nXY
as

n

1S 1<
Sxy =’(7j I:Zln,XLK —"n'i—lnini._lni YI:I (24-273)

Consequently, the sample correlation coefficient is

(=1 < pgy = +1)

- l)z ()5 e

If an empirical model is proposed and a series of
designed experiments carried out to determine the re-
lationship between two variables, and the observations

y

(a)

AT T T T T T T T T T
pxy=08
3 —
‘\>~
@2 I —
Q,
|
—0 |
1 Pxy = | _
|
|
|
0 [ (i
-10 0 1.0
Pxy

FIGURE 2.4-9 Probability density of the sample correlation
coefficient, pxy.

for one or both variables contain error, then the pro-
cedure of regression analysis can be applied as described
in Chapter 4 and 5. On the other hand, if one simply
measures or observes two variables in a random sample,
it is possible to calculate a measure of the linear associa-
tion between the variables, namely the sample correlation
coefficient. No distinction is made between the variables
as to which is the independent and which the dependent
one. If, for some reason, one of the variables, although
random in the population, is sampled only in a limited
range or picked at preselected values, then the sample
correlation coefficient is a distorted estimate of the
ensemble correlation coefficient.f

The distribution of the sample correlation coefficient,
Pxy, Is quite complicated. It is symmetrical only for
pxy = 0 and very skewed if |pxy| is large, unless 7 is
very large (refer to Figure 2.4-9). Fisher described a
transformation of fgyy,

Z* = tanh™! pyy = %1n1+—’:‘“

1 — pxy
where Z* is approximately normally distributed for any
pxy and moderate values of’n.
t Refer to C. Eisenhart, Ann. Math. Stat. 10, 162, 1939; and M.
Ezekiel, Methods of Correlation Analysis, John Wiley, New York,
1941, Chapter 20.

y

®)

FIGURE 2.4-10 Scatter diagrams of hypothetical data with essentially zero correlation.



(a)
FIGURE 2.4-11

The sample correlation coefficient is an estimate of
pxy; tests which are made{ are based on an assumed joint
normal distribution for both X and Y. Nonnormality can
lead to quite biased estimates and hence erroneous
conclusions.

When interpreting sample correlation coefficients, it is
wise to observe certain precautions. As Figure 2.4-10b
shows in a qualitative way, the sample correlation coeffi-
cient can be quite close to zero and yet the variables
X and Y be related rather well by a nonlinear function,
“If the sample correlation coefficients were to be calculated
for the data in Figure 2.4-10b, the coefficient would be
near zero. We can conclude that a nonlinear relation can
exist between two variables which will not be detected
by the analyst who uses only the sample correlation

+ For various tests which can be made for pxy together with
tables and charts, see E. S. Pearson and H. O. Hartley, Biometrica
Tables for Statisticians, Vol. I (2nd ed.), Cambridge Univ. Press,
1958; R. A. Fishér and F. Yates, Statistical Tables for Biological,
Agricultural, and Medical Research (3rd ed.), Oliver and Boyd,
Edinburgh, 1948; and F. N. David, Tables of the Correlation
Coefficients, Biometrika Office, University College, London, 1938.
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y

®)

Scatter diagrams for data with high positive correlation.

coefficient as his measure of the relation. Figure 2.4-11
illustrates the necessity of using homogeneous data to
avoid a spurious correlation which arises when two non-
homogeneous groups of data are combined in calculating
the sample correlation coefficient. Finally, it is essential
to keep in mind that a significant correlation does not
prove that a causal relationship exists between two
variables.

Example 2.4-8 Sample Correlation Coefficient

Eight lots of polymer were taken randomly from a
process and two characteristics measured: (1) sedimentation
rate and (2) crystallinity. What is the sample correlation
coefficient between these two variables ?

Sedimentation rate 15 11 8 8 4 3 1
Crystallinity 8 8 7 5 321

Solution:

The sample correlation coefficient can be calculated from
Equation 2.4-28 as shown in Table E2.4-8.

In general, a value of pxy = 0.937 is “high”; consult the
aforementioned references for appropriate tests.

TABLE E2.4-8
Y,
X, Sedimentation .
Crystallinity Rate Xx-X) (Y,-Y) X-X2 (,-7Y)»2 &XG-XY -7
1 1 —4 -6 16 36 24
2 3 =3 -4 9 16 12
3 4 -2 -3 4 9 6
4 6 -1 -1 1 1 1
5 8 0 1 0 1 0
7 8 2 1 4 1 2
8 11 3 4 9 16 12
8 15 3 8 9 64 24
40 56 0 0 52 144 81
X=35 Y=17
. 2 - -7
Pxy =

81

= Vooam

VI - X2 - YP

937
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Problems

2.1 Accumulate 20 pennies. Predict what type of prob-
ability function you would expect to find for each of
the following experiments, and write its equation
down or draw a sketch. Then take the pennies and
perform the indicated experiments. Compare your
experimental relative frequencies with the predicted
probabilities. .

(a) The distribution of the sizes of the pennies
rounded off to the nearest inch.

(b) The distribution of the sizes of the pennies
rounded off to the nearest 0.5 mm.

(¢) The distribution of the sizes of the pennies
rounded off to the nearest 5% of an inch. Use
a micrometer.

(d) The distribution of heads when each coin is
tossed once; the distribution of tails; the distri-
bution of standing on edge. Are there are other
outcomes ? )

(e¢) The distribution of the years of manufacture on
the coins.

(f) The distribution of the ending (right-hand)
digits of the year of manufacture; the distri-
bution of the first (left-hand) digits.

2.2

2.3

24

2.5

2.6

2.7

Draw a graph of the probability function and the
cu_.lmulative probability function of a discrete random
variable which has the cumulative probability distri-

bution given by
0 x <0
x+1 :
P{X < x}= =
{ x} | x=01,2,...,n
1

X >n

What is P{X = 3}?
Given that the probability distribution function for a
continuous random variable is

0 x<0
P(x) = P{X < x} = ’;‘ O<x<n
1 x>n

plot the probability distribution (versus x) and
determine and plot the relation for the probability
density.

The Rayleigh probability density function is

. |
Py = e p 50

where o2 is a constant. Determine the Rayleigh prob-
ability distribution function, P(r), and plot both
p(r) and P(r) for several values of o2 (P(r) corre-
sponds to the probability that a point on a plane,
whose coordinates are independent normally distribu-
ted random variables, lies within a circle of radius r.)
By analogy with thermodynamics, the “entropy” for
a discrete probability function can be defined as

n

H(m) = = P(x)In P(x)

k=1

where P(x,) = P{X = x.}. Under what circumstances -

is H = 0, and what is the interpretation of your
answer? Under what circumstances does the greatest
uncertainty exist, and what is P(x;) then? What is
H(n) then? Under what circumstances is the entropy
a minimum. What is H(n) then?

The Maxwell probability density is‘

V2
— x% e~ *¥222J(x
063'\/77 ( )
Show that p(x) = 0 and that |7, p(x)dx = 1.
U(x) is the unit step function and « is a constant.

The joint probability of X and Y'is given in the table
below. Show that X and Y are independent.

pix) =

. X
1 2 3 4
0 % % % o
y 1 W% % & 4z
2 4 % Tr %




2.8

29

2.10

211

2.12

2.13

2.14

If the probability density of X is

1 (x — I"x)2
(x) = exp [— ————]
P Vv 2mox 20%
and the probability density of Y is
1 (y — mw)?
() = ex [————]
D = e | 3

what is the probability density of Xand Y, p(x N y) =
p(x, »),if Xand Y are independent random variables ?
(N is defined in Appendix A.)

What is the meaning of “joint probability distri-
bution”? Give an example of both a discrete and a
continuous joint distribution. Draw a picture and
label axes.

Is it possible to integrate and differentiate random
variables ? '

What is the expected value of each of the following
quantities? (Y is a random variable; y is a deter-
ministic variable; a is a constant.)

a2y
(a) el
d%y
(b) p7e

@ S0 = [ 67+ 5 et

n
@ f()=>iv?
- i=1
What is the expected value of the dependent variable
in each of the following differential equations?
(X and Y are random variables; @ and b are constants;
y is deterministic.)

d’y dy
(a) 71;? +GE-—— X(t)
ov  o¥

(b) ta— =Y ~-y)

ot
Find the ensemble mean (expected value) of:

(a) The Rayleigh random variable (see Problem 2.4)

(b) The random variable X which is uniformly
distributed in the interval @ < X < b, and zero
elsewhere.

For which of the following probability densities is
the random variable X stationary in the strict sense?

= o ()]
(@) px) = Vimon exp[ ( 202
(normal random variable)
() px) =e M (Ax;? (Poisson random variable)

2.15

2.16

2.17

2.18
2.19

2.20

PROBLEMS 43

Find the ensemble mean of the dependent variable in
the following process models (capital letters are the
random variables).

(a) Heat transfer

d_zT _ T(x1) = T1o
) dxz - T(XQ) = ng
(b) Mass transfer
C@0,x) =0
oC 22C
= C@t, 0 = C
i @0 o

lim C(t,x) =0

X - o

Find the ensemble mean and variance of the random
variable X which is represented by the rectangular
density

plx) = é for (—% < X< g)

px) =0 elsewhere

If the variance of a random variable X is 0.75, what
is the variance of the following random variables ?

(@) 5Xx
X

by 3

© X+7

X-3
@ (7)
Under what circumstances is §{X}6{Y} = &{XY}?
State in each case whether the random variable X is
a stationary random variable (in the weak sense) or
not and explain why.

@@ X@) =cos(at+ 1) (T is a random variable)
(b) X(t) = Acoswt + Bsinwt

(A and B are random variables)
(c) X(t) =aY + bt (Y is a random variable)
d X=aY + b (Y is a random variable)
Given the random variable Y(¢) below and a corre-
sponding probability density, calculate its autocorre-
lation function.
Variables:

(@ Y@) = Aet (Aisarandom variable; i is the
)
(b) Y(t) = Ay coswt + A, sin wt

(A, A, are independent random variables)
(c) Y=Ax+ b (A is a random variable inde-

pendent of time)

Densities:
@ o) =1 al <3
b
pa) =0 [4] > 3
() pla) = ce* where ¢ is a constant to be
determined
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Determine the autocovariance for the random vari-
ables of Problem 2.20.

Are X and Y independent variables? The boxes give
the values for the joint probability density.

X
1 2 3
1 P 0% ¥
Y 2 ¥ T i
3 | s | s

If X is a random variable with a mean of ux, what are
the &{X}, €(2X}, (X + 1}, £2X + 1}, &{X?}, and
E{X — px}? Note X%} # &{(X)}2. Determine the
corresponding variances, i.e., Var {X}, Var {2.X}, etc.
The joint probability density function for two random
variables X and Y is given by

px, ) =x+y for0< X<
0<Y=x<l1
p(x,») =0 elsewhere

Find the ensemble correlation coefficient between

Xand Y.

Given the indicated joint probability density, calculate

the crosscorrelation function rxy(#1, £;) of the random

variables X and Y.

(@ X and Y are independent random variables
uniformly distributed in the intervals (0, @) and
(0, b), respectively.

(b) X and Y are jointly normal random variables
whose probability density is

p(x,3) = Aexp — (ax® + bxy + cy® + dx + ey)
where
ax? +bxy +cy? +dx +ey =0
A lumped stochastic process can be represented by
the following model:
dy(t)

7 + 2Y(t) = X(r)

Y(©0) =0

where X (¢) is a stationary random input to the process
with &{X(t)} = 2 and re(7) =4 + 2 e~ "' where
T =13 — L. Find:

(@ &(Y(@)

(b) rxy(ts, 11)

(© ry(ts, 1)

The random variables X and Y are independent with
the respective probability densities p(x) = e~* and
p(¥) = e Y with X =0 and Y = 0. Calculate the
crosscovariance and the correlation coefficient of
X and Y. ’

Define correlation in terms of covariance and vari-
ance, and briefly discuss the statement that “inde-
pendent variables are uncorrelated, but not all
uncorrelated variables are independent.”

2.29

2.30

231

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

(a) Give an example in which zero correlation
implies independence.

(b) Give an example in which zero correlation does
not imply independence.

Use a bivariate distribution in both (a) and (b).

If the random variable X is uniformly distributed in

the interval —a to @, p(x) = 1/2a in the interval and

zero elsewhere. What are the zeroth, first, and second

raw and central moments of X ?

What are the zeroth, first, and second raw moments
of X if p(x) is the exponential probability density
p(x) = k e"*? What is k? How can k be evaluated?
Prove that the peak of the standard normal prob-
ability density curve is at ux and the inflection points
at ux + ox.

What are

(a) P{U > 0.4}

(b) P{U > -04}

(©) P{|U| < 0.4}

for the standard normal random variable?

Assume that density of a product is represented by
the normal distribution, and it is known that the u of
the density is 6.4 g/cc and o2 is 1.4 (g/cc)?. What is the
lowest value of the density that can be in the upper
15 percent of all the densities?

If the distribution of the diameters of screw threads
can be represented by the normal distribution, and
the diameter has an ensemble mean of 0.520 inch
and an ensemble standard deviation of 0.008 inch,
determine the percentage of threads with diameters:
(a) between 0.500 and 0.525 inch, (b) greater than
0.550 inch, and (c) equal to 0.520 inch.

What is the probability of the standard normal ran- -
dom variable having a value between: (a) 0 and 1,
(b) —2and 0, (¢) —3 and 3, and (d) 0.5 and 0.52?
Prove that the mean of the standardized normal
variable is 0 and its variance is 1. What is the prob-
ability that a variable (represented by the standard
normal distribution) is exactly 1?

If Y is a standard normal random variable, find:

(@) P{Y > 0.2}

(b) P{02 < Y < 0.3}

(c) P{-04=<7Y<10}

@ P{Y>2}

By integration of the probability density, show that
the variance of U, the standard normal variable, is 1.
By use of normal probability paper, determine if the
following data can be represented by the normal
distribution.

Value of
Number Variable (in)
5 6.00-6.19
18 6.20-6.29
42 6.30-6.39
27 6.40-6.49
8 6.50-6.59
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Select 100 digits at random from the phone book by 2.46 Find the sample mean, variance, and standard devia-
selecting the next to the last digit in 100 telephone tion of the following experimental data.
numbers. Can these data be represented by the normal (a) Background counts prior to detection of a
distribution? radioactive sample; each count is for two
Compute the following probabilities for y2 forv = 10. minutes:
(a) P{? < 10} 12, 15, 10, 18, 14
(b) P{2 > 10}
() P{5<x*<15 (b) Counts recorded for the radioactive sample;
@ P{HE=3) each count is for two minutes:
Show that the variance of x? is 2v where v is the 95, 92, 103, 89, 88, 95, 90, 93, 89, 102
number of degrees of freedom. 2.47 Eight pairs of analyses were carried out on batches of
. . T e
Make. a plot of P{y* <xi = P(x2) as given by acorns to determine their fiber content. The results
Equation 2.3-11 for v = 4. were as shown below.
To illustrate the concepts involved in the distribution
of the sample mean, carry out the following simple Day of Tree Tree
experiment, Use the equation Analysis A7) P(%) Difference (%,)
X\2 X 1 37 37 0
Y=10(1+7)(1——3—) 0<X=<9 ) 35 28 3
3 43 36 ~7
to calculate.40 values of the random variable Y from 4 34 47 13
40 random values of X. (Look at the middle digit in 5 36 48 12
telephone numbers in the telephone book for the X 6 48 57 9
values if a table of random values is not available.) 7 33 28 -5
Make a plot of the relative frequency of Y versus Y 8 33 4 9
to illustrate the distribution of Y values. Locate the
sample mean, and place lines at *sy, +2sy, and Analyze the data first as if there were 16 unpaired
+ 3sy. Then group your data into 10 groups of 4 each analyses, and determine the variance for the sample of
and find Y for each group. Plot the relative frequency 16, Then take into account the fact that pairs of
of Y. Use class limits such as 5.0 to 5.5, etc.; place analyses were carried out, and calculate the sample
lines at +1sy/Vn, +2sy/Vn, and +3sy/Vn on the variance. Which variance is less?
second diagram. 2.48 A new technique has been employed in the manu-
A sample of lightbulbs from Lot 16 fails as follows: facture of a solid-solution organic fluor having a high
efficiency and short resolving time suitable for
Lifetime (hr) Number application in scintillation counters for particle
2000-2999 12 detection. Although the recipe is fairly straight-
3000-3999 64 forward, experience has shown that success is not so
4000-4999 35 much a result of doing the right things as it is a
5000-5999 14 consequence of avoiding the wrong ones. Table P2.48
gives data on the relative sensitivity of various
Find the sample average lifetime for this lot. specimens.
TABLE P2.48
Composition
X3 (grams),
Code Relative Number of X: (grams), X; (grams), Zinc
Number Sensitivity Samples Terphenyl TPBD Stearate
53 29.4 2 207 25 8.3
54 26.9 3 212 .25 7.9
55 26.3 5 220 25 7.2
57 21.2 . 2 210 25 8.0
59 26.3 2 205 25 7.7
60 23.1 3 213 25 8.2
61 26.8 3 200 25 7.8
63 25.4 2 217 25 7.8
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(a) Determine the following for each random
variable X: (1) sample mean of X, (2) sample
variance of X;, and (3) sample standard devia-
tion of Xi.

(b) Determine the following for the variable Z =
X. + X5 + Xs: (1) Z itself, (2) estimated mean
of Z, (3) estimated variance of Z, and (4) esti-
mated standard deviation of Z.

For P = 0.99, determine the Values of ¢ for:

(a) A symmetric interval about ¢ = 0 (two tailed).
(b) A one-sided interval for ¢t = —co to ¢.

What are:

(@) P{t < 3} for v = 4 degrees of freedom?

(b) P{|t] < 2} for v = 30 degrees of freedom?

(c) P{t = 5} for v = 4 degrees of freedom?

(d) P{t > 6.2053} for v = 2 degrees of freedom?

Forv = 5 and {f < ¢4} = 0.10, what is #,?

Given that P{F > F,} = 0.05, compute F, for the
variance ratio distribution with »; = v, = 5 and for
vy = 3 andvz = 10.

If Fy is 7.00 forv; = 6andv, = 5, what is P{F < F,}?
Dalton’s law for a binary is

v, =4

Pr
At three atmospheres, find the mean and variance of
the random variable, the mole fraction, Y, in terms
of the mean and variance of the random variable,
the partial pressure, P4. py is not a random variable.

The saturation (humidity) curve can be calculated
from the relation

Py
He = pr — Ps
where:
H, = molal humidity at saturation
P, = vapor pressure of water
pr = total pressure, not a random variable

Find the mean and variance of H; in terms of the
mean and variance of P;.

The method of Cox (for vapor pressure charts) was
equivalent to representing the vapor pressure of a
substance by the following equation:

b

* — g —
InP a T— 103

where a and b are constants. Express the mean and
variance of P* in terms of the mean and variance of

2.57

2.58

2.59

In; 650 SCF/min

T. If &{T} = 100°C and Var {T} = 1°C?, what are
&{P*} and Var {P*} if a = 9.80 and b = 2800°K -1?

Find the mean (expected value) and variance of the
dependent variable in terms of the mean and variance
of the independent variable(s) in the following
functions: -

@ k = kol + al)
where:

k = thermal conductivity, a random variable
T = temperature, a random variable
(b) k= ay + a1T+ a2T2

© k= k(7 (33)

(d) g=UAAT

where A = area and is a constant, and U and
AT are random variables.

3/2

If the total gas feed to a catalytic cracker of 650
SCF/min is composed of:

&, SCF/min Stream Variance, o?
100 Fresh feed 250
350 Recycle 500
170 Inert -gas 150
30 Instrumental 10
analysis stream
650

and the ensemble variances are as shown above in
appropriate units:

(a) Calculate the ensemble standard deviation of the
flow of each stream (show units).

(b) Calculate the upper and lower limits on the
stream flow in units of SCF/min for each stream
based on 95-percent confidence limits for a
normal variable (for u + 1.960).

(c) Add together all the upper limits; add together
the lower limits; compare the difference in totals
with the corresponding ux + 1.96¢ limits on the
total stream of 650 SCF/min. Which calculation
is a better estimate of the dispersion of the
stream flow?

The same reactor as in Problem 2.58 has a bleed
stream amounting to 10 percent of the 650 SCF/min.
If the ensemble standard deviations were 5 percent of
the flow of the in and out streams, and the bleed
stream was not measured, what would the 95-
percent confidence limits (u + 1.960) be for the bleed
stream in SCF/min? See the diagram.

Bleed: 65 SCF/min
(not measured)

\ Out: 585 SCF/min
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Orifice Valve
: >l
Ap =12 in. Hg Ap =10 in. H,0

Pressure drops have been measured on a laboratory
experiment as shown in the above diagram. The
drop through the piping is estimated to be 2 psia.
The standard deviations (calculated by a student) are:
orifice = 0.2 in Hg, valve = 0.2 in Hy0, and piping =
0.05 psia. Estimate the precision of the overall (pipe
including orifice and valve) pressure drop. Will your
answer percentagewise depend on the system of units
employed ?

Suppose that the ensemble standard deviation for the
mass velocity G, where G is expressed in 1b/(hr)(ft%),
is 50. What is the corresponding ensemble standard
deviation for G when G is expressed in g/(cm)?(sec)?
The Fanning equation for friction loss in turbulent
flow is

_2fV3Lp

A
P 2.0

The symbols and their estimated standard deviations
are (all variables are random variables):

AP = pressure drop due to friction, 1b/ft? (1.0)
f = friction factor (not known)
V = average velocity of fluid, ft/sec (0.5)
L = length of pipe, ft (0.1)
D = 1.D. (inside diameter) of pipe, ft (0.01)
p = density of fluid, 1b/ft® (0.1)
g. = conversion factor (not a random variable)

For a 100-foot pipe, 2.16 inches 1.D., with water

(p = 62.41 1b/ft®) flowing at 10 ft/sec, the measured

Ap is 59.71 psia. Estimate f and the standard devia-

tion of f.

Calculate the average Ib/hr of gas produced by a

catalytic cracking unit and the related standard

deviation, based on the following data:

F = feed rate, 1000 bbl/hr, with o = 10 bbl/hr

G = gas output, 1b/hr, with o to be found

f = feed gravity, 25° API (317 Ib/bbl), with o; =
0.40° APT (0.82 Ib/bbl)

L = liquid output, 750 bbl/hr, with o, = 10 bbl/hr

p = liquid product gravity, 33° API (30 1b/bbl), with
o, = 0.30° API (0.56 1b/bbl)

C = coke yield, 16,000 Ib/hr, with o = 800 lb/hr

F (feed) Catalytic cracking G (gas)

unit

———> L (liquid)

————> C (coke)

2.64
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A plate and frame filter press with 1 ft2 of filter area
is being operated under conditions such that the
filtration equation is

av Ap

At pe(WiA)
where:

= ft3 of filtrate

= time, minutes

pressure drop

= viscosity of fluid

= average specific cake resistance (0 < « < 1)
weight of dry cake solids

filtration area

If

Il

It

ATRTEN - T
|

If p, V, t, and A are measured and p is known to be
2 cp at 70°F (assumed to be an exact value), find the
approximate expression for the mean and variance of
a in terms of the measured variables.

An equation for heat transfer coefficients for steam
condensing inside tubes is

dD. _ 0.032(&) (DEG) o.n(Cp,u)o.4

k DA k
where:

n = viscosity

h = heat transfer coefficient

G = mass velocity per unit area
D. = (4)(mean hydraulic radius)

C, = heat capacity

k = thermal conductivity .

Dy, D, = diameter of tubes 1 and 2, respectively

Rank the dimensionless ratios according to the
relative contributions of each dimensionless ratio to
the total variance of (dD./k) if the standard deviations
o and mean values (u) are: '

G G &)
D1 n k
" 3 100,000 0.77
o 0.5%, 4%, 1%,

(o is expressed as a percent of the mean.) Assume that
o for the constarnt, 0.032, is zero (not really true).
To reduce the variance. contributed by the three
dimensionless ratios, which factor (ratio) would you
initially try to measure or control more carefully?
Which quantity in the factor?
The following diagrams illustrate typical observations
from experiments. For each diagram, estimate
roughly the sample correlation coefficient by in-
spection of the diagram (no calculations are required).
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A series of experiments was carried out to determine
the neutron energy distribution inside a fast reactor.
All the experiments involved nuclear plates which
served as detectors because their small size enabled
them to be placed into the reactor confines without
disturbing the reactivity or neutron spectrum.

Two people, E. A, and J. E., counted the number
of tracks per 0.1 mev in the same plate with the
results shown in the following table. Calculate the
sample correlation coefficient between the individual
observations.

Number of Tracks

Incident Proton (per mev)

Energy Interval E.A. J.E.
0.3-0.4 12 11
0.4-0.5 32 30
0.5-0.6 26 59
0.6-0.7 21 22
0.7-0.8 3 17
0.8-0.9 9 8
0.9-1.0 9 5
1.0-1.1 6 4
1.1-1.2 5 1
1.2-1.3 4 5

In a fluidized bed oxidation process, seven runs were
carried out at 375°C. The conversion of different
naphthalenic feeds to phthalic anhydride (PA) is
shown below. What are the sample correlation
coefficients between the percent conversion and:
(a) the contact time and (b) the air-feed ratio? What
is the sample correlation coefficient between the
contact time and the air-feed ratio? What interpre-
tation can you give your results:

Contact Air-Feed Mole percent

Time Ratio Conversion to
Run (sec) (air/g feed) PA
1 0.69 29 50.5
2 0.66 91 30.9
3 0.45 82 374
4 0.49 99 37.8
5 0.48 148 19.7
6 0.48 165 15.5
7 0.41 133 49.0



CHAPTER 3

Statistical Inference and
Applications

One main purpose of experimentation is to draw in-
ferences about an ensemble from samples of the ensemble.
We can identify three different types of inferences which
find extensive use in process analysis, namely: (1) param-
eter estimation, (2) interval estimation, and (3) hypoth-
esis testing. All of these types will be described in this
chapter and will be applied here and in subsequent
chapters.

3.1 INTRODUCTION

If an engineer wants to make the best estimate he can
of one or more parameters of a probability distribu-
tion or a proposed process model, the problem is termed
one of parameter estimation. By parameters we mean
those coeflicients that identify or describe the probability
distribution of a random variable, such as the ensemble
mean and variance in the normal probability distribution,
or the coefficients in an empirical process model. Esti-
mation of a single value for a parameter is termed point
estimation. For example, consider a probability density
function of known mathematical form of one random
variable X, p(x, 6), which contains one parameter 6
which is unknown. A random sample (x, X, . .., X,) is
taken of the random variable. An estimate is made of the
value of 6, based on the collected experimental data, by
calculating a statistic, say the sample mean X. We say
that X = iy, where the superscript caret () means
estimator of the superscripted variable.

A second type of estimation, interval estimation, is
concerned with the estimation of the interval that will
include the ensemble parameter for a specified prob-
ability. Clearly, the parameter estimate is only one
useful statistic; the interval estimate is even more
informative. "

Interval estimation is closely related to Aypothesis
testing. In hypothesis testing, one or more mathematical
functions are proposed as representing some feature of
experimental data. The functions may be similar in form
and differ only in parameter values, or they may differ in
form as well. Hypotheses are stated, a criterion of some
sort is constructed, data are gathered, the analysis is
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carried out, and a decision is reached. For example,
given p(x, 6) and some criterion, after collecting a sample
(x1, X2, ..., X,) containing n observations, we wish to
accept or reject the hypothesis that: 6 has some value
6,, or that 6 is greater than 6,, or even that p(x, 6) has:
the assumed mathematical form. In Chapters 4 and 5,
hypothesis testing in connection with empirical process
models will be described.

To obtain “good” estimates, it is necessary that they,
in so far as possible, be: (1) unbiased, (2) consistent,
(3) efficient, and (4) sufficient.

UNBIASED. An estimate & of a parameter 8 is said to be
unbiased if its expected value, &{8}, is equal to the
ensemble value 6. For example, the most commonly
used estimate of the ensemble mean is X, the sample
average, which is an unbiased estimate of ug. On the
other hand, it was shown in Section 2.4 that if the sample
variance is defined as

o1
X

> (X = Xy
instead of
1 —
2 _ — 2n.
sX"(n_l)Z(A,l X)”t
s% is a biased estimate of o%.

CONSISTENT. An estimator is said to be consistent if
the estimate tends to approach the ensemble value more
and more closely as the sample size is increased; that is,
the &{(f — )2} approaches zero as the sample size n or
the record time ¢; approaches infinity. More precisely, the
probability that the estimates converge to the true value
must approach one as the sample size approaches infinity :-

P61 asn—ow

EFFICIENT. In a few unimportant (to us) cases, incon-
sistent estimates exist, but more often several consistent
estimates of a given parameter exist. The question arises
as to which estimate should be used. By comparing the
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variances of the estimates, you can select the most
efficient estimate in the sense that it has the smallest
variance.t For example, the mean and the median of »
observations of a normally distributed random variable
have an expected value of u and variances of ¢%/n and
(03/n)(w/2), respectively. Thus, the variance of the mean
is less than the variance of the median, and the former is
more efficient. The criteria of unbiasedness and minimum
variance cannot be considered separately, because a
slightly biased estimate with a small variance may be
preferable to an unbiased estimate with a large variance.

SUFFICIENT. If 8 is a sufficient estimate of 6, there is no
other estimate of 6 that can be made from a sample of a
population which will furnish additional information
about 8. Fisher} showed that the amount of measurable
information contained in an estimate is the reciprocal of
its variance; hence the definition of sufficient is equiv-
alent to the requirement for minimum variance. A
sufficient estimate is necessarily most efficient and also,
consequently, consistent. If we assume that a sufficient
estimate exists, the method of maximum likelihood,
described in the next section, will lead to this estimate.
X and s% prove to be sufficient estimates of uy and % for
a normal distribution.

We now turn to methods of estimating parameters.

3.2 PARAMETER ESTIMATION TECHNIQUES

Quite a number of techniques exist by which param-
eters can .be estimated, not all of which can be applied
effectively to any given problem. We shall describe here
only three techniques.

1. The method of maximum likelihood (used in
Chapters 4, 5, 8, and 9).

2. The method of moments (used in Chapter 9).

3. Bayes’ estimates (used in Chapters 8 and 9).

The method of least squares will be discussed in Chapters
4, 5, and subsequent chapters.

3.2-1 Method of Maximum Likelihood

A well-known and desirable estimation procedure
(when it can be carried out) is that of maximum likeli-
hood§ introduced by R. A. Fisher which leads asymp-
totically to estimates with the greatest efficiency but not
necessarily unbiased. A desirable feature of the maximum
likelihood method is that, under certain conditions (which
are not too rigorous), the estimated parameters are nor-
mally distributed for large samples. In this section we

1 M. G. Kendall and A. Stuart, The Advanced Theory of Statistics,
Vol. 2, Charles Griffin, London, 1961.

1 R. A. Fisher, Proceed. Camb. Phil. Soc., 22, 700, 1925.

§ R. A. Fisher, Contributions to Mathematical Statistics, John
Wiley, New York, 1950.

shall apply the method of maximum likelihood to esti-
mate the parameters in probability density functions. In
Chapters 4 and 5 we shall apply the method to estimate
coeflicients in a linear empirical process model.

Suppose that p(x; 0;, 05,...) is a probability density
function of known form for the random variable X, a
function which contains one or more parameters 6,, 8,,
. ... Also, suppose that we do not know what the values
of 6;,6,,... are. How can the most suitable values of
6., 0,, ... be estimated ? One way is to collect a random
sample of values of the random variable X, {x, x,, .. ., X,},
and select the values of 6,, 0,,..., now regarded as
random variables, that maximize the likelihood function
L(6y, 6y, ... | X1, X, ..., %), a function described in
Appendix A in connection with Bayes’ theorem. Such
estimators, 8,, #,. . ., are known as maximum likelihood
estimators. In effect, the method selects those values of
8,1, 0,,... that are at least as likely to generate the
observed sample as any other set of values of the param-
eters if the probability density of the random variable
X were to be extensively simulated through use of the
probability density p(x | 6,, 65 ...).]| In making a maxi-
mum likelihood estimate, we assume that the form of
the probability density is connect (only the 6’s need be
determined) and that all possible values of 6; are equally
likely before experimentation.

The likelihood function for the parameters given one
observation is just the probability density in which the
observation is regarded as a fixed number and the
parameters as the variables:

L(0y, 0, ... I X1) = p(xy; 01, 0,,...)

where the lower case x’s and the number subscripts
designate the value of the respective observation that is
inserted into the probability density function. The
likelihood function for the parameters based on several
observations is the product of the individual functions if
the observations are independent:

L(6,, 0, . . s Xn)

=] [0 00 1 %)
i=1

=P('xl;019 025' . )p(x2; 017 027‘ . ) ) 'p(xn;al, 927' . )
(3.2-1)

| X1, Xy .

In choosing as estimates of 6; the values that maximize
L for the given values (xy, X5, . . ., X,), it turns out that it

|| The expression p(x| 6, 05,...) was termed a conditional
probability density function in Section 2.1. The solid vertical
line is read as “given.” If the values of 6 are fixed, then p(x | 6)
designates the probability density of the random variable X given
the value of 6. On the other hand, p(f | x) designates that an
observation of x is on hand and can be regarded as given (fixed),
and that 6 is a variable which is a function of the observed value
of X.



is more convenient to work with the In L than with L
itself’:

InL=Inp(xy;604,0,...)+Inp(xg;0,,05,...)+ -

— Z In p(xi; 0, 6 . .) (3.2-2)

The In L can be maximized with respect to the vector 6
by equating to zero the partial derivatives of In L with
respect to each of the parameters:

o 3 Inp(x; 0y, 6a,...)
i=1

olnL
20, 20, =0
z 2-3
61nL_ i=21 In p(x;; 04, 02,~--)—0 3 )
86, 3@2 -

Solution of Equations 3.2-3 yields the desired estimates
8., 0,,....(Often iterative rather than analytical methods
must be employed to obtain 8.) By carrying out this
operation, under fairly unrestrictive conditions, it can be
shown that as » approaches infinity the maximum
likelihood estimates have the desirable asymptotic prop-
erties:

1) lim €6} = 6,
(2) [Vn(@; — )] is normally distributed

and for the case of two parameters:
0ln p 1
3 11m Var {0,}] = [(9@{ }] _—
( ) [ { t}] (1 — pgléz)

where pg, g, 15 the coefficient of correlation of the two 8%s.
Extension of (3) to more than two parameters requires
the use of matrix notation and will not be shown here.

Maximum likelihood estimates are not necessarily
unbiased; for example, the maximum likelihood estimate
of the variance of a normal random variable is biased as
demonstrated in Example 3.2-1. Maximum likelihood
estimates, however, are efficient and, hence, consistent
estimates. Furthermore, where a sufficient estimate can
be obtained, the maximum likelihood method will
obtain it. Finally, if § is a maximum likelihood estimator
of 6, then f(9) is a maximum likelihood estimator of
f(8), a function of 6. -

Example 3.2-1 Maximum Likelihood Estimation of the
Parameters in the Normal Probability Density Function

Find the maximum likelihood estimates of 6; and 0, in the
normal probability density function

— 6,\2
p(x; 0, 0;) = ——exp — [—% (x 7 1) ]
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Solution:
First, form the likelihood function for the sample
{x1, X2, . . ., x,} of measurements of the random variable X"

L0y, 0z | x1,...,x)) =L = I_"_Ip(x,-; 0y, 65)
o~ (7]
(@

and, for convenience, take the logarithm of both sides of
Equation (a)

InL = —nln (6,7 27) — %z (x‘ = 91)2 (b

=1 02

1
T VI

Next, obtain the maximum likelihood estimates by equating
the partial derivatives of In L to zero:

lnL 1<

Tl DI ©
elmL 1 1< .

—302 =0= n02+032(x,—01)

=~ |- 922<xt—01)2] @

Consequently, the maximum likelihood estimates of 6, and
0, are

b, = Ei(xi _ 2)2]1/: [n; lsg{]l/z

Thus, 8, and 8, are asymptotically (as n— o) efficient
estimates of ux and ox; U, is a biased estimator because

&b, = é*’{[" ; ! s§] y} # ox

However, @1 is an unbiased estimator because 5’{91) =
&{X} = ux. Note that 8, and 8, are independent estimates.

3.2-2 Method of Moments

One of the oldest methods of estimating parameters,
that developed by Karl Pearson, is termed the method of
moments. As applied to a probability density function
involving »n parameters (04, 6,,..., 6,), the technigue
calls for calculating the first » moments of the random

variable X:

- 0

(discrete)
or

., 6,) dx (continuous)

p= [ o6,
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and equating these to the sample moments obtained
from experimental data. Then the n values of §, can be
calculated (perhaps with some difficulty). The method of
moments does not always yield efficient estimates as does
the maximum likelihood method, but it always yields
consistent estimates.

As an example of the application of the method of
moments, Table 2.3-1 indicates that the first moment of
the binomial random variable is nf, and we showed in
Section 2.3 that the first moment of the normal random
variable is uy while the second central moment is o2.
On equating the sample moments to the corresponding
moments of X, we find as estimates of 6, uy, and o% the
following:

nd = 2nXi_ ¢ or 6= —n)f (binomial)

2.
. Z mX; v
= =X normal
“x z n, ( )
g2 = 2K — X)ny
- o n;

More often the estimates are obtained with considerably
greater difficulty.

Example 3.2-2 Method of Moments

In an experiment, observations come from one of two
populations, but it is not known either before or after an
observation has been made which population has been
sampled. The probability density function for the two
populations (4 and B) are known to be of the following
forms:

e~ Ww-o?2 (—© < y < )

pa(y) = Vom

pa(y) = "W (_a <y < o)

V2

Let w be the probability that an observation drawn at

random comes from population A. Then the probability

density function for Y;(( = 1,...,n)is
P(y) = wpa(y) + (1 — W)pe(y), (-0 < y; < ©)

From the sample of n observations, estimates of «, 8, and
w are required.

Solution:
The method of maximum likelihood would require that

I_I p(y;;a, Ba w)
i=1

be maximized with respect to the three parameters, but the
resulting equations are transcendental and virtually intract-
able. Fortunately, in this problem the method of moments

can provide estimates. With the use of the definition of the
expected value, it can be shown that
&Y} = woe + (1 — w)B @)
(Y% =l + o) + (1 — o)1 + B> (b)
(Y% = w@a + o®) + (1 — w)(38 + ) ©
(Note that with three parameters, three moments are
required.)
Let the sample moments be calculated as follows:

> Y, E(Yc—l/ll)2 Z(Yl—al)a
= - g = ————— az = ——————

a
n n n

Then equate the sample moments to their expectations to
yield the equations
we—-—pf)=a -8 ()
w(l —w)e -2 =a —1 (e)
w(l — w)(1 — 2w)(e —~ B)° = as ®
Recall that &(Y) — (F{Y)?} = &{Y? — (F{Y})? From
Equation (d)
_a -8B
w = «— B ®
By substituting Equation (d) in Equations (e) and (f) and
letting u = a; — B, v = « — a;, Equations (e) and (f) are
reduced to

uw = ag — 1 (b)
u(@ — u) = as (i)

The solutions of Equations (h) and (i) lead to the estimates

6=+ g s + VEF Ka =1 )

- 1 T
B =a; + Z(Tz———_l) [as \/aa + 4(a: 1)%] (k)
whereupon the estimate of w, & may be obtained from

Equation (g). Asymptotic variances of the estimates may be
calculated if required.

3.2-3 Bayes’ Estimates

The modern Bayesian approach to estimation rests on
the use of a priori information; that is, known or assumed.
distributions of the parameters to be estimated are
employed. While the classical approach to estimation
and the Bayesian approach differ to some extent, they
do have several common features. Both postulate or
involve:

1. Existence of parameter states (values).

2. Possibility of experimentation to shed light on the
parameter states.

3. Sampling to yield information on the random
variable(s).

4. Optimal decision rules (optimal in terms of the
consequences of decisions which result from the rules).



The major difference between the approaches is that
the classical statistician makes a decision on the basis of
a sample that depends on the parameter state and the
type of experiment. In contrast, the Bayesian advocate
begins his analysis of the problem by specifying a prior
probability density function for the parameter state
based on past experience and all other available. infor-
mation. The parameter itself is regarded as a random
variable. He then uses a risk (or loss) function related
to the worth of the experimental information, together
with Bayes’ theorem (Equation A-2 in Appendix A), to
reach a decision.

If no risk function is known, the posterior distribution
itself in Bayes’ theorem can be maximized. As sample
information becomes available, the analyst again uses
his prior probability density function, plus Bayes’
theorem, to obtain a posterior probability density
function describing his new state of knowledge about the
parameter. The posterior probability density function
serves as a basis for any decisions and also as a prior
probability density function for further analysis.

To be specific, we shzll assume that:

1. Several observations are taken of the random
variable X, designated by a vector X.

2. Some general functional relationship, X = £(9, €),
exists between X and the set (vector) of parameters to be
estimated which is designated by 0, where € is a vector of
unobservable random errors.

3. The analytical form of the joint probability density
function p (0, €) is known. :

A Bayesian estimate 8 of 8 is made as follows. Either
Bayes’ theorem, Equation A-2 in Appendix A, is used to
ascertain the posterior density p(8 | x)

_ p(x|0)p(6)
p(x)

where p(x|0) = L(8 | x), or occasionally it is more
convenient to use Equation 2.1-6:

PO | %) (3.2-4)

p@|x) =2&:2

(%) (3.2-5)

In either case, the first step is to write the probability
density for p(x), which can be done, at least in principle,
from the information provided by the known density
function p(8,€) and the known functional relation
between X and @ and e. If Equation 3.2-4 is used to
obtain the posterior density, the second step is to
evaluate p(x | 8). This conditional density can also be
obtained from the known relations in assumptions (2)
and (3) above. The third step is to obtain p(6) from
p(0, €) by integration over all values of €. If Equation
3.2-5 is used, the probability density p(8, x) must be
obtained from the known relations in assumptions (2)
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and (3), but the analytical treatment in general is difficult
or impossible.

The final step in both routes, once the posterior dessity
p(0 | x) containing all the knowledge about 8 from the
measurements is written, is to optimize p(0 | x) in some
sense. For the special case in which the probability
P{6 = 6} is maximized, one maximizes p(0 | x) itself
with respect to 8 to obtain the value of 8 at the peak of
the curve of the density (the mode). When the prior
density p(0) is uniform, this estimate is identical to the
maximum likelihood estimate. Many other methods of
optimization can be carried out but they are beyond our
scope here. Examples of Bayes estimates appear in
Chapters 8 and 9.

3.3 INTERVAL ESTIMATION

In the previous two sections, we described certain ways
to obtain point estimates of parameters and some of the
criteria for assessing the merit of the estimators. An even
more meaningful statement than the point estimate can
be made in terms of a confidence interval estimate. The
confidence interval is calculated from the observations in
a sample; it includes the fixed value of the ensemble
parameter within (or on one of) the interval limits,
termed confidence limits, for a specified degree of assur-
ance, called the confidence coefficient. Johnson and Leone
quote a revealing analogy between the confidence
interval and horseshoe tossing.t

A confidence interval and statements concerning it are

somewhat like the game of horseshoe tossing. The

stake is the parameter in question. (It never moves,
regardless of some sportsmen’s misconceptions.) The

horseshoe is the confidence interval. If out of 100

tosses of the horseshoe one rings the stake 90 times

on the average, he has 90 percent assurance (or
confidence) of ringing the stake. The confidence
interval, just like the horseshoe, is the variable. The
parameter, just like the stake, is the constant. At any
one’ toss (or one interval estimation) the stake (or

parameter) is either enclosed or not. We make a

probability statement about the variable quantities

represented by the positions of the “arms” of the
horseshoe.

To make an interval estimate, the general procedure is:

1. Write a probability statement in mathematical
symbols involving the ensemble parameter of interest.

2. Rearrange the argument of the statement so that
the ensemble parameter is bounded by statistics that
can be calculated from a sample.

As an example, let us consider interval estimation for
the unknown ensemble mean, uy, of the normal random

1 N. L. Johnson and F. C. Leone, Statistical and Experimental
Design, Vol. I, John Wiley, New York, 1964, p. 188.
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FIGURE 3.3-1

variable X through use of the sample mean X and the
sample variance s3. In Section 2.4-2 which described the
t distribution, it was noted that t = (X — uy)/sy was a
random variable with a known probability density as
given by Equation 2.4-14. It follows that probability
statements can be made concerning the value of ¢ prior
to collecting the sample, such as

P{t <t} = P{X—s_’“—x < t,} =y 3.3-1)
X

Pit>t}=1—y
and

P{tﬁ<t5ty}=P{t,,<X;'“XSt,}
X

= P(t) - P) =y — B (3.3-2)

where the subscript y identifies the upper limit and 3 the
lower on the integral f:; p(t) dt. If in Equation 3.3-2 the
indices y and B8 are symmetric about ¢ = 0, the interval
about ¢ is symmetric—examine Figure 3.3-1. For Figure
3.3-1c, in order to make the area under the probability
distribution function outside the interval equal to
(¢/2 + ¢/2) = &, we let y = B = /2. Thus

P{tg <X tl_g} =1—-—a (3.33)
2 Sz 2

After the sample has been collected, the values X and
sz are regarded as fixed numbers; the probability state-
ments no longer apply inasmuch as (X — py)/sg either
is in the interval (P = 1) or is not (P = 0), although
which statement is correct is not known. However, the
interval itself is a random variable. If the sampling were
repeated many times with X and sy calculated for each
sample, one would expect (X — uy)/sx to fall within the
defined interval for about the fraction of samples
indicated on the right-hand side of the probability state-
ments. It is in this framework that we speak of an interval,
itself a random variable, which includes px the ensemble
parameter, for a certain degree of uncertainty. Such a
statement is a confidence statement, and the associated
interval is the confidence interval, while the degree of

Symmetric and asymmetric bounds about z = 0.

trust associated with the confidence statement is the
confidence coefficient.

The symmetric confidence interval for the ensemble
mean can be identified by rearranging the argument of P
in Equation 3.3-3 as follows, using the equality:

“(H—%) =1
(tl_% is the positive value of ¢).

(—t1-9sx < X — px < (t1-Ysx

X+ t-Ssx > px 2 X — 1 S5y

or
(3.3-9)

The confidence coefficient for the interval given by
Equation 3.3-4is 1 — .

A similar interval can be developed for the ensemble
mean from the distribution of the random variable

X - 1, _Zsg < px < X+ t-Ssg

U=

given by Equation 2.4-7 if ox is known:
X—— Ul—%aj{' < Hx < 7"' Ul_go}?

(3.3-5)

To obtain the confidence interval for the ensemble
variance, o2, of the random variable X, we make use of
the x? probability distribution and write

P{xi < x* < x3} = P{x3 — P{x3)

2
Xg

FiGure 3.3-2 Graphical representation of the probability
statement (Equation 3.3-6) for the x2 distribution.

(3.3-6)

p(x2)

Area = P(x}) - P(x})

0 x2



Figure 3.3-2 is a graphical representation of how the
probabilities in Equation 3.3-6 can be interpreted as
areas under the y? probability density.

Substitution of ¥ from Equation 2.4-10 into the argu-
ment of Equation 3.3-6 gives as the argument

and rearrangement yields the confidence interval for o%:

1 % 1
b Rl iy
Xs  Sxv Xy

s%v . _ S3v
= < 0% < =
X2~
If
o [44
B = —2' and Y= 1 - E
2 2
<ot < 2 (3.3-7)

for a confidence coefficient of (I — «).

Other ensemble averages can be treated similarly if
the distribution of their sample estimates is known. Even
if the distribution of the sample statistic is unknown, a
confidence interval can be specified for any random
variable X with a finite variance o% through use of the
Chebyshev inequality. This states that the probability is
at least [1 — (1/A%)] of obtaining a standardized variable
of value equal to or less than a number A.

Let f(X) be a nonnegative function of the random
variable X. We show first that if &£{f(X)} exists, then for
every positive constant c,

P{f(X) 2 ¢} < @ (3.3-8)

Let £ be the set of x such that fX) > ¢ and £* be the
remaining x. Then,

sy = |7 oo ax

= [s@pwds + [ s ax 339)

Because each integral in the sum on the right-hand side
of Equation 3.3-9 is nonnegative,

SO0} = [ f0p) dx
By definition f(X) = ¢ for some ¢; hence
ELF(X) = ¢ L p(x) dx = cP{f(X) = ¢ (3.3-10)

from which Equation 3.3-8 can be obtained.
Chebyshev’s inequality follows if we let
JX) = (X — px)?
h>1

— h252
C—ho‘x,
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because then

E(X — px)?} 1
PUX — po)? = ho3y < S — 1) hzo{") b=
and
1
P{|X — px| = hog} < 7 " (3.3-11)

As an example of the application of Equation.3.3-11 for
h = 2, at least [1 — ($)?] = 2 of the occurrences of the
random variable X should lie within +205 of ugz no
matter what the distribution of X,

We now illustrate the calculation of the confidence
interval for the ensemble mean and variance.

Example 3.3-1 Confidence Interval for the Ensemble Mean
and Variance

From the following eight volumetric titration analyses,
find the confidence interval for the ensemble mean and
variance of the normal random variable X.

Values of X in cc

76.48 76.25
76.43 76.48
77.20 76.48
76.45 76.60
Solution:
X=13 X, = 76.546
- )2
§% = 2= X) = 0.5543 =0.0790cc? v=n—-1=7
n—1 7
- R
SX= S—X = A/Q:@-= 0.099 cC
n 8

Using Table C.3 in Appendix C, for a 95-percent confidence
coefficient (1 — « = 0.95; «/2 = 0.025) and for a symmetric
interval, we find #5975 = 2.36.

The symmetric confidence interval by Equation 3.3-4 is

76.55 — 0.099(2.36) < ux < 76.55 + 0.099(2.36)

or
76.31 < px < 76.79

The interpretation of the confidence interval is: the prob-
ability is 0.95 that the interval between 76.31 and 76.79
contains the ensemble mean.
The confidence interval for « = 0.05 for ¢% from Equation
3.3-7is
s3v < o2 @

Xf_g Xe
(0.0790)(7) 2 (0.0790)(7)
T < g% bbbl b

16.013 1.690

0.03452 < 6% < 0.3262

Example 3.3-2 Process Flow Error

Examine the subsystem illustrated in the block diagram
of Figure E3.3-2. The “errors” on the inputs and output,
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AtalbAfhr
—> CctcibC/hr
BXbibBjhr >
—_——

FIGURE E3.3-2

indicated as plus or minus, as commonly encountered are
interpreted to mean the limits of the confidence interval for
a confidence coefficient (1 — o). pa, us, and uc are the
ensemble values of the flow rates. Unobservable measure-
ment errors in A and B exist, €4 and €5, which are normal
random variables with a mean of zero and variances of
o2, and o2, respectively. A random sample of A4 is taken
and, independently, a random sample of B, from which the
following sample statistics are calculated:

Sample
Standard
Sample Mean Deviation Number
Material (Ib/hr) (1b/hr) in Sample
A 10 0.20 5
B 5 0.10 5

The problem is to find the confidence interval for uc for a
confidence coefficient of (1 — «) = 0.95 from the given
information about 4 and B.

Solution:
By a material balance (on the expected values)
Ma + ps = po

sothatthe C = 4 + B = 10 4+ 5 = 15 Ib/hr. Also, because
the variables are independent, the variance of C is (using
Equation 2.2-9a) :

Var {C} = Var {4} + Var {B}
or (using Equation 2.4-10)
¥ X
The Var {C} can be estimated by
2 = 4(0.20)? -; 4(0.10)%

The confidence interval for uc (using Equation 3.3-4) is
(with h-g = 2.306)

= 0.025 ve = 8

15 — (2.31)(0.025)'2 < pe < 15 + (2.31)(0.025)12
14.64 < pe < 15.36

3.4 HYPOTHESIS TESTING

Testing is related to interval estimation but has a
different viewpoint. In hypothesis testing, one tests a
hypothesis H, against one or more alternate hypotheses
H,, H,, ... that are spelled out or implied. For example,
the hypothesis H, might be that u = 16; two alternate
hypotheses might be Hy:p > 16, and Hy: p < 16, Or

the hypothesis to be tested might be that there is no
improvement in a process output, with the alternate
hypothesis implied that there is an improvement.

Suppose that we know the probability density function
p(8) for an estimate & (which is an unbiased estimate of 6).
We assume that the representation of the random variable
8 by p(d) is correct and that the ensemble value of 8 is,
say, 6,, and we ask the following question: If we pre-
sume as true the hypothesis that 6§ = 6,, by how much
must § differ from 6, before we reject the hypothesis
because it seems to be wrong? Figure 3.4-1 helps to
answer the question. If the hypothesis 0 = 6, is true,
&{8}y = 6, as is shown in the figure. The probability that
the value of 8 would be equal to or less than 0925 is

0o

P < 0 = | * p(d)db =% (3.4-1)
and because of symmetry
PO > 6,0y = L T ohd =% (342
1-=
2

2

To reach a decision concerning the hypothesis, we
select a value of «, which is termed the level of significance
for the test, before collecting the sample; « is usually
arbitrarily selected to be small enough so that the user
regards it quite improbable that § will exceed the selected
value of 91_% or be less than Bg. For example, « might

be 0.05 or 0.01. Then the sample is collected and & is
calculated. If 8 is larger than 91-% or smaller than (9%,

the hypothesis is rejected. Otherwise, it is accepted. The
range of values of & for which the hypothesis is rejected
is called the region of rejection; the range of # for which
the hypothesis is accepted is called the region of acceptance.

The test described above is a two-sided test. A one-
sided test can be based on either § being greater than
some 6, _,, with the hypothesis § = 6, being rejected if
8 is indeed greater than 6, _,, or on & being less than 6,.
Rejecting the hypothesis does not mean discarding it
offhand, but it instead calls for a careful examination of
the experimental procedure and data to ascertain if any-

0 Region of | Region of ; Region of
rejection | acceptance | rejection
]
FIGURE 3.4-1 Regions of rejection and acceptance for a sym-

metric hypothesis test.




_ p(x)
Dispersion of X
about the assumed
ensemble mean i,

Region of
acceptance

a: Probability of
rejection of the
hypothesis u = p,
when true
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Dispersion of X about
the true ensemble
mean u, + ¢

B: Probability of failure
to reject when the
hypothesis . = u is false

(1 = B): Probability of
rejection when the
hypothesis u = u, is false

)

FiGure 3.4-2 Error of the second kind.

thing went wrong with the experiment. Investigation into

the causes of defects in the method of procedure can be

most rewarding. .
The simplest structure for testing is to imagine that a
dichotomy of states exist for the random variable:

1. Hy: x is the true state of the random variable (the
null hypothesis).

2. H,: x is not the true state of the variable (the
alternate hypothesis).

For example, two values of a parameter can represent
a probability density. We hypothesize under H, that the
probability density of a random variable is p(x; 6,) and
under the alternate hypothesis that the probability
density is p(x; 6,). Or, as another example, hypothesis
H, is that the ensemble mean of a process variable has
not changed after a process modification, while H, is
that the process mean has changed. Tests which involve
several alternative hypotheses simultaneously are also
available, but their description is beyond our scope here.

In hypothesis testing, a decision is made as follows.
Based on the assumption that the null hypothesis is true,
if the statistic calculated from the random experimental
sample falls outside the region of acceptance, the null
hypothesis is rejected and H, is accepted. Otherwise, H,
is accepted and H, rejected.

Two types of errors can be distinguished in testing a
hypothesis:

AN ERROR OF THE FIRST KIND (TYPE 1 ERROR), This
error is caused by rejecting the hypothesis when it is
true.

AN ERROR OF THE SECOND KIND-(TYPE 2 ERROR). This
error is caused by not rejecting the hypothesis when it is
false.

Clearly, the Type 1 error exists because « is selected to
be some nonzero value. When the hypothesis is true and

« = 0.05, for example, in 5 percent of the tests the
hypothesis will be rejected when it is true.

Figure 3.4-2 illustrates the Type 2 error as applied to
the ensemble mean. In this illustration we set up the
hypothesis that & = u,. But to demonstrate the Type 2
error, also assume that the true value of u is really equal
to p = py + 8, as shown in Figure 3.4-2. A value of «
is selected, which fixes the region of rejection indicated
by the heavily shaded areas. In this case the hypothesis
p = p, is false, yet there is a probability, 8, that the
sample mean will fall within the region of acceptance.
If the hypothesis p = p, is true, as assumed, the two-
sided test indicated in Figure 3.4-2 will lead to the correct
decision in 100(1 — «) percent of the tests and to the
wrong decision (rejection) of 100(«) percent of the tests,
as explained previously. However, if the hypothesis is
actually false, then the probability of X falling in the
region of rejection can be calculated if the value of & is
known or assumed.

The probability 8 is the probability of not detecting a
difference when it exists. Figure 3.4-3 shows typical plots
of B versus the difference d as a function of the sample
size; these curves are termed operating characteristic
curves (OC curves). The probability (1 — 8) is termed
the power of the test to discriminate, and it represents
the probability of making a correct decision when the
hypothesis is actually wrong. As & increases, (1 — )
increases and 8 decreases.

From the description of the two kinds of errors, it will
be observed that an attempt to decrease one kind of error
will result in an increase in the other type of error. The
only way to reduce both types of errors simultaneously is
to increase the sample size which, in practice, may prove
to be expensive. Perhaps one type of error may have
less serious consequences than the other, in which case
some suitable decision can be reached concerning the
selection of values for o and the number of observations
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to be taken. The best practice takes into account the in-
struments, process design, and costs so as to make an
economic decision for « and B.

The concepts of the power and operating characteristic
of a test apply equally well to tests for ensemble variances,
as described in Section 3.6, and to other parameters as
they do to tests for the ensemble mean.

Example 3.4-1 Hypothesis Test for the Mean

Suppose that a process variable X, which is a random
variable, is known to have an ensemble mean of ux = 6.80.
A sample is taken of the variable, and it is found for a
sample size of n = 9 that X = 6.50 and s% = 0.25(sx = 0.50).
We test the hypothesis H, that the random variable has the
same ensemble mean as in the past, namely ux = 6.80. The
alternate hypothesis H, is that u # 6.80. If o, the significance
level, is selected as 0.05, the region of acceptance for a
symmetrical two-sided f-test is as follows:

Accept Hy if | X — ux| < t1-Lsx. Otherwise, reject H, and

accept H;.

Here

_ Sx _ 0.50 _
Sy = VAl a 0.167
and th-% for n — 1 = 8 degrees of freedom and « = 0.05
is 2.306.
0.30 = |6.50 — 6.80| < (2.306)(0.167) = 0.39

Hence the hypothesis H, is accepted. Figure E3.4-1 illus-
trates the regions of acceptance and rejection.

p(%)

Region of
acceptance

on of Region of
ctlon\ : i/ rejection
719 *

641 \ ux= 680
X =650

FIGURE E3.4-1

Example 3.4-2 Power of a Test for the Mean

In this example we assume that the hypothesis H, (that
u = po = 6.80, as described in Example 3.4-1) is correct.
Then, if in reality u > po (for a one-sided test) or p # po
(for a two-sided test), we can calculate the power of the
t-test used in Example 3.4-1 to discriminate. The power of

the test is
Y — Mo
1- =P{———_ >H %= }
B sx/Vn p T
(two-sided symmetric test)
X — Ho }
1-8=P — >l b =
B Sx/'\/n 1 Ha

(one-sided test)
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If we write
7—#0=X—M1+M1—#og
Sx/'\/; Sx/'\/;l- Ux/'\/—n- Sx
=t + My

where A = (u; — po)/(ox/V'n), we find that the power
depends on a combination of the ¢ distribution about y;,
the y? distribution, the distance between the means, and v.
Approximate relationst for the power in terms of the
standard normal random variable are

(1 - ﬂ) ~ P{Ul < Ill} + P{Uz < uz} (two-sided test)
A -p=PU=

where

(one-sided test)

tg - A
w=——
Vs (%))
2+ A
Ug = 2:
vVI1IF (1%/2v)
ty + A
U= ————
VT + (Z_/2v)
and where U or U, is an approximate standard normal
random variable.
If ux = 6.80, and we assume that ox = 0.40, « = 0.05,

andv = n — 1 = 8, the power of the two-sided test against
a mean of u; = 7.10 is calculated as follows:

\ = 7.10 — 6.80 030
0.40/v9  0.133
fz = —2.306 from Table C.3 in Appendix C.

2

2.25

Vi + (1%2/2v) = V1 + [(-2.306)%/(8)2] = 1.15

—2.306 — 2.25
u = ? = —3.96
—2.306 + 2.25
U = — 115 = —0.0488
1 - B) = (0) + (1.000 — 0.519) = 0.481
8 ~ 0.519

The same operating characteristic of the test (for n = 9),
B, can be read from Figure 3.4-3a for

_ o = pa| _ 030 _
d= ox 040 0.75

but to fewer significant figures. If ox were not known but
had to be estimated by sx, then too large a value for ox
would underestimate |wo — pi|/ox and overestimate B,
while the contrary would be true if ox were underestimated.

Example 3.4-3 Determination of Sample Size

Suppose that the experimenter wants to determine how
big a sample to take in order to raise the power of the test
used in Example 3.4-1 from 0.481 to, say, (1 — ) = 0.80.

1 A. Hald, Statistical ‘Theory with Engineering Applications.
John Wiley, New York, 1952, p. 392.
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Values of (1 — B) could be calculated for a series of values
of the sample size n and given values of ox and «, and the
n selected which gave (1 — B) close to 0.80. Figure 3.4-3 can
also be used to compute B, and the value of n can be read
directly for a calculated d. Based on the data of Example
34-2,
0.30
=" =0,

d 0.40 75.9
and for (1 — B) = 0.80, 8 = 0.20, Figure 3.4-3a gives
n =~ 16, :

a = 0,05

3.4-1 Sequential Testing

It is quite possible in practice, long before the nth
observation calculated in Example 3.4-3 is reached, to
ascertain whether or not H, should be accepted or
rejected by a sequential testing plan. In sequential testing,
a test is executed after each additional observation is
collected, starting after the first, until the hypothesis is
accepted or rejected. After each test, one of the following
decisions is made:

1. Accept the hypothesis Hy,.
2. Reject the hypothesis H,,.
3. Make one more observation.

Thus, instead of having two regions, a region of rejection
and a region of acceptance, we have a third region as
well, one of no decision except to require further experi-
mentation. (Examine Figure 3.4-4.) Upper and lower
limits are determined for a test statistic whose nature
depends upon the test being carried out. As soon as the

M=
x5

n
f

0 | | |
0 1 27 3 4
Observation number, n

FIGURE 3.4-4 Sequential test chart to detect a difference in
ensemble means for gasoline knock rating, « = 8 = 0.05,
w1 = 55, ug = 65, and of =~ 9.5.

value of the test statistic falls below the lower limit, H,
is accepted; or, as soon as it exceeds the upper limit, H,
is rejected. After one of these events occurs, the sampling
and testing are terminated. Otherwise, an additional
observation is taken.

To illustrate one type of test that can be employed, we

- shall describe the probability ratio test devised by Wald.

This test is based upon an assumed sequence of indepen-
dent observations of the random variable X from a
normally distributed population with known variance
but unknown mean. The null hypothesis is that 4y = p,,
and the alternate hypothesis is that py = p,. Under
these assumptions the likelihood function of the obser-
vations defined by Equation 3.2-1 will be one of the
following:

l n
L; = (V2nax)~" exp [_2—0§Z X - #1)2]
=1
or
_ 1 <=
Ls = (VErox) ™" exp [~ 502 > (X — "]
i=1

The test involves the calculation of the ratio (L,/L,)
after each observation Xi,..., X,. When the ratio
exceeds an upper limit, /,, the hypothesis that puy = u,
is accepted. If the ratio falls below a lower limit, /,, the
hypothesis that py = py is accepted. If the ratio lies
within these bands

11<l—"‘-’<1u

L (3.4-3)

one more observation is made. The lower and upper
bands are selected so that the power is « when py = py
and 1 — B when py = pe. Wald showed that

1-8

I, ~

w R

L~

l—«

and that the probability is 1 that the sequential test will
terminate with a choice of one of the hypotheses.

Introduction of L,, L, and the approximations for the
upper and lower limits into Equation 3.4-3 yields

%‘ < exp [—ﬁi {(Xy — po)® — (X, — #1)2}]
1-8

o

<

or
In (lLioc) < —%Z [(X; — p2)® — (Xi — )]

<ln'(1;B)




which reduces to

In + np < X;
M2 — H1 Il —o H Z

2 —
% _In (1 ,3) + np
He — [y o

(3.4-4)

where @ = (u; + p2)/2. Thus, in a test for one of two
ensemble means, the sum of the observations up through
the nth observation can be bounded if ¢% is known and
values of pg and p, and « and B are chosen. Figure
3.4-4 shows how the bounds on >? , X; increase as n
increases, as indicated by the terms s@ in Equation 3.4-4.
The data in the figure are for knockmeter readings of
gasoline with pu, = 55 and p, = 65 for two different
octane numbers; « = B = 0.05; and o% estimated from
earlier tests by s% = 9.5 with 20 degrees of freedom.
Inequality 3.4-4 is then approximately
n
60n — 2.80 < X; < 60n + 2.80
i=1
If the ensemble mean, py, is known, and a sequential
test is to be carried for two alternate hypotheses with
respect to the standard deviation '

Hy: ox =0y

Hy,: ox = oy

HYPOTHESIS TESTS FOR MEANS 61

the likelihood functions can be formed as before by
placing p, = p; = px and replacing the standard
deviations with o; and o, respectively. The analogous
equation to Equation 3.4-4 is

2
210 (;E2) + 00 (B) &
< > (X — )
ol o} e
_ 2
?.ln(l ’3)+nln(5§)
< « o3
11
o2 o

(3.4-5)
If 1y is unknown, substitute

i(X’ — px)? i(Xi - X)?

and replace n by (n — 1) in the upper and lower bounds
of Equation 3.4-5.

Many other sequential tests can be carried out, as
described in the references at the end of this chapter.

3.5 HYPOTHESIS TESTS FOR MEANS

Table 3.5-1 summarizes certain tests which enable the
analyst to tell if the ensemble mean of a new product or
a variable: (1) is different from, (2) exceeds, or (3) is less

TABLE 3.5-1 TESTS FOR COMPARING THE MEAN OF A NEW PRODUCT OR A VARIABLE WITH A STANDARD *
Test to Be Made Ist
Knowledge of the Standard Deviation (If the inequality is satisfied)
Hypothesis of a New Product or Variable the hypothesis is accepted) Remarks
o unknown; s
s from sample used | X — po] > tl_%(—x_) Two-sided #-test
B # po - n
o known | X — pol > Ul_z(g—xz) Two-sided U-test
2
Vn
o unknown; s
s from sample used (X — o) > tl_a(—x_) One-sided #-test
H > Mo \/n
o known (X — o) > Ul_a(%/x—_—) One-sided U-test
R
o unknown; s
s from sample used (o — X) > tl_a(—x_) One-sided #-test
® < Wo v

o known

(po — X) > Ul_a(:a/’i_) One-sided U-test

n

* Adapted from M. G. Natrella, Experimental Statistics, Nat. Bur. of Standards, Handbook 91, U.S. Dept. of Commerce,

Washington, D.C., 1963.

t In each case look up ¢ or U for the selected significance level «; ¢ is for the n — 1 degrees of freedom. The tests

presume an underlying normal population.
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than the ensemble mean of a standard product or vari-
able. The hypothesis selected presumes we know the
value of the standard ensemble mean, u,, from past
experience or otherwise. (In the tables which follow, the
subscript zero will refer to the standard mean while the
absence of a subscript zero will refer to the mean being
tested.) After each test is made, as indicated in the third
column of the tables, a decision can be reached as follows:

1. If the inequality proves to be true, that is if the
calculated difference exceeds the right-hand side of the
inequality, the hypothesis is accepted.

2. If the inequality does not prove to be true, that is
if the calculated difference does not exceed the right-
hand side of the inequality, then the hypothesis is
rejected, and there is little likelihood that the hypothesis
is correct.

NBS Handbook 917 provides detailed charts to simplify
the calculation of the operating characteristics of each
test and also provides tables to establish the sample
size required to detect a difference for each test.

The decision rules shown in Table 3.5-1 are now
illustrated by an example.

Example 3.5-1 Hypothesis Test for the Mean

Ten different resistance thermometers are calibrated
against a standard whose reading is 1000 mv. After receipt
by a laboratory, the ten thermometers read:

986 1002
1005 996
991 998
994 = 1002
983 983

Can these deviations be regarded as being caused by the
normal variation of the random variable, the reading in
mv, or has some factor (perhaps during shipment or manu-
facture) affected their performance?

Solution:

We shall test the hypothesis that the ensemble mean of
the readings of the ten thermometers, p, has changed from
po = 1000 by selecting as H, the first hypothesis in Table
3.5-1, namely w # po. The test to be made, since oy is
unknown, is

— ? Sx
| X — po| > ¢ -5(—_)
of > - Vn
If we choose o = 0.05, so that «/2 = 0.025, and ¢, _
2.26, we can calculate

&
2

x=2%_ 9940
n
72
g=2E - m_ g,

n—1

+ M. G. Natrella, Experimental Statistics, Nat. Bur. of Standards
Handbook 91, U.S. Dept. of Commerce, Washington, D.C.,
1963.

v=n—1=9
IX— [.Lol = 6.0
« Sx _ 64.9\ % _ _
tl_é( \/ﬁ) - 2.26( : 0) = 2.26(2.55) = 5.76

We observe that 6 > 5.76, and conclude for a significance
level of o = 0.05 (but not for ¢ = 0.01) that the hypothesis
H, should be accepted.

Table 3.5-2 summarizes tests which can be carried
out with respect to the ensemble means of two products
(or variables), both of which are sampled. Of interest is
to test whether the:

1. Averages of two products (or variables) differ,
without caring which is larger.

2. Average of product (or variable) A exceeds that of
product (or variable) B.

Again there exist subclasses of the tests, depending
upon the extent of the information available about the
standard deviation of the variable being measured.
Again, too, if the difference calculated is greater than the
right-hand side of the inequality, then the hypothesis is
accepted ; otherwise it is rejected. Operating characteristic
curves and tables to determine the sample size can be
found in NBS Handbook 91 for each test.

To illustrate the general procedure of developing a
hypothesis test to compare two means, we shall outline
how the first test listed in Table 3.5-2 is established. The
other tests can be developed in a similar manner.

Assume that we have samples of normal random
variables 4 and B as follows, with the ensemble means
and variances as indicated.

A B
Sample '
values Ky Xags o o5 Xy, Xz, Xp,, ...,XBM
Ensemble
mean Ba JI
Ensemble
variance % o3

Sample statistics can be calculated as follows:

—A=%ZXA;
)?B=%;XB,
1 <
Si:”A—li:zl(XA—XA)Z
1 2
s§=n3_1;(XB—XB)2

VA=nA—'1

vg =hg — 1




TABLE 3.5-2 TESTS FOR COMPARING THE MEANS OF TWO PRODUCTS OR VARIABLES *
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Knowiedge of the
Standard Deviation of

Test to Be Made Ist
(If the inequality is satisfied the

Hypothesis A and B hypothesis is accepted.) Remarks
< - ng + ng\% ng — 1)s2 + (ng — 1)s31%
o4 & op both unknown | X4 — X5 > fl—gsp(ﬁ) Sp = [( . P _‘: nB(_Bz n]
vV =~n4 + Nz — 2
o o 2 2\ %
o4 # op both unknown Xa— Xg|l =1t 4 + 55) " t’ = value of ¢, _2 for v degrees of
n 1{7:) 2
ta # WB 4 freedom
y = (s3/n4 + s3/ns)? _
(s3/n4) + (53/np)?
na + 1 ng + 1
- o 2 g2\ %
o4 and oy both known | X4 — Xa| > Ul_E(&4 + U—B) *
2\ny 1(F:)
- = % — 2 _ 211
o4 =~ op both unknown (X4 — Xp) > tl_as,,(m) ’ Sp = [(nA Dsi + (s 1)&] *
R np ny + R — 2
v==n4+ng— 2
v v sa | sh
o4 # op both unknown (X4 — Xp) > t’(— + —) t’ = value of #; -, for v degrees of
fa > Mg s Mg freedom
, - Gh/na & sijna?
T (53/na)? | (si/ns)?
ny + 1 ng + 1
- - 2 2\ %
o4 and oz both known (X4 — Xp) = Ul_l,(o—" + 0—8) :
. Ny g

* Adapted from NBS Handbook 91.

T n4 and sy observations are made to obtain samples 4 and B. ¢ is for ny + np — 2 degrees of freedom. s, and otheér pooled values of
s are discussed in Section 2.4-1. The tests presume an underlying normal population.

The two sample means, X, and X3, are normally
distributed with parameters (u,, 03/n,) and (ug, 03/ng),
respectively. Also, the difference between the two means
D =X, — Xz is normally distributed about & =
ta — pp With the variance
of

o4
Var {.D} = Z + a

(3.5-1)
If 52 does not differ significantly from s3, we set up the
test hypotheses

pa=ps  and  of X o} = o?
If these hypotheses are true, then we know that X, —
Xz = D is normally distributed about 8§ = g, — up =0
with the variance

Var {D} = oz(i + l) (3.52)

ng Ap

By using Equation 2.4-12, we can compute the
following estimate of o2:
52 v,82 + vgsi

=== = forv =v, +vg=n4+n,—2
? VA+VB

Also
2 YA — YB
Sp 5, 1 + 1

ng ng

has a r-distribution with v = n, + ny — 2 degrees
freedom. A significant value of 7 is interpreted to mean
that pu, # pp.

Example 3.5-2 Comparison of Two Means

Two different grades of gasolines were used to find the
number of miles per gallon obtained under highway travel.
Each grade (90 octane and 94 octane) was used in five
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identical automobiles traveling over the same route with the
following results:

94 Octane 90 Octane
Sample mean (miles/gal) 22.7 21.3
Sample standard deviation 0.45 0.55

(miles/gal)

For a significance level of « = 0.05, are the grades differ-
ent? If so, is the 94-octane gasoline significantly better than
the 90-octane gasoline?

Solution:

First, we test the hypothesis that pes # peo. We assume
that 094 =~ 0g; @ method of checking this assumption will

be given in Section 3.6.

5+5)’/z

| Xoa — Xoo| > f1—%sp(T

(5 + 5
25
o [4(0.45)2 + 4(0.55)2
P 5+5—2
f;-& = 2.306

v=5+5-2=28
| Xos — Xoo| = 22.7 — 21.3 = 1.4
(2.306)(0.50)(0.632) = 0.73

Y,
) = 0.632

e
] = (0.252)"% = 0.50

Since 1.4 > (.73, the hypothesis is accepted and pgs # fgo.
Next, we test the hypothesis that pes > peo, assuming still
that Og4 = Ogo.

ngy + nso)y2

(Xoa — Xs0) 3 tl—lzsp(
NgqaNgo
(A_,M - /\790) =14

5+5
(5)5)

Again the hypothesis is accepted.

tl_asp( )1/~ = (1.860)(0.50)(0.632) = 0.59

All the tests outlined so far are based on certain
assumed characteristics of the random variable involved.
In practice, of course, some or all of these assumptions
may not hold true. Aberrations are more serious for
some tests than for others. Those tests that are relatively
insensitive to changes from the assumed characteristics
are termed robust. Because several assumptions are
involved in each test, robustness is interpreted in terms
of the separate effects of deviations from normality,
independence, equal variance, and randomness.

The underlying assumptions for the t-tests are: (1) the
random variables being measured are normally distrib-
uted, and (2) the samples are random ones. Decisions
made on the basis of the z-test (and other tests) depend,

sometimes critically, on the degree of approximation of
the experimental conditions to the assumed ones.

The effect of nonnormality on the Student z-test has
been studied and illustrated by many investigators. As
a rough rule-of-thumb, the classical application of the
t-test to a comparison of means is relatively unaffected
by aberration of the underlying random variable from
normality. '

Walsht examined the influence of nonrandomness of
the sample on the Student #-test for large numbers of
observations. It was found that even a slight deviation
from the supposed randomness led to substantial
changes in the significance level and confidence coeffi-
cient. Modified tests which were not sensitive to the
requirement of a random sample are described in his
report. Alternates to the ¢-test will be discussed in Section
3.7.

3.6 HYPOTHESIS TESTS FOR VARIABILITY

The objective of this section is to summarize certain
tests that enable the analyst to reach a decision concerning
the variability of a product or variable. Corresponding to
the previous section, we can test whether the ensemble
variance of a new product or variable: (1) is different
from, (2) exceeds, or (3) is less than a standard ensemble
variance of a random variable with the aid of the yx?
distribution originally described in Section 2.3-2. For
two products or variables, designated 4 and B, we can
test whether the ensemble variance of A4 differs from that
of B or exceeds that of B with the aid of the variance
ratio (F) distribution originally described in Section
2.4-3. In Table 3.6-1, the subscript zero will refer to the
standard variance while the absence of a subscript will
refer to the variance being tested. The tests are based
upon the assumption that the observations are taken
randomly of a normal random variable. The decision is
based on the test shown in the second column of Table
3.6-1. Refer to NBS Handbook 91 for operating charac-
teristic curves and tables for sample size determination.

To illustrate how the tests are formulated, consider the
F-test in the fourth row of Table 3.6-1. We shall hypothe-
size that o2 = o3, i.e., (¢%/0d) = 1, and use the sample
variance ratio to test if o%/oZ is greater than or less than
unity. If the hypothesis is true, then the region of accept-
ance for equal tail areas is defined through the prob-
ability statement

52
P{Fvé(vl, vy) < S_lg < F1—£‘2£(V1, v2)} =1—-«

Because Fg(’ﬁ, vy) = 1/(F1_g(v1, vy)) < 1 always, the left-
hand inequality in the probability statement is always
satisfied, and we need only test to determine if s%/s%
< F,_&,

2

1 J. E. Walsh, RAND Corp. Rept. P-129, Aug. 8, 1950.



Example 3.6-1 Hypothesis Test for Variability

Twin pilot plant units have been designed and put into
operation on a given process. The output for the first ten
material balances obtained on each of the two units are
listed below (basis is 100 1b):

Unit A (Ib)  Unit B (Ib)
97.8 97.2
98.9 100.5
101.2 98.2
98.8 98.3
102.0 97.5
99.0 99.9
99.1 97.9
100.8 96.8
100.9 97.4
100.5 97.2
X 999 98.1
2 1.69 1.44

Is the variability (variance) of the material balance signifi-
cantly different between the two units ?
Solution:

The hypothesis Hy is that 0% = oZ. The degrees of freedom
for each unit are 9. We form the variance ratio
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Fo.65(9,9) = 4.03; hence the hypothesis is accepted and
there is no significant difference in variability between the
two units.

Example 3.6-2 Combined Tests for the Variance and Mean

In a catalytic reactor the distribution of yields from
catalyst 4 and catalyst B gave the following data:

Catalyst 4 Catalyst B

X, = 1.219 Xz = 1.179

s2.= 0.028 sz = 0.0193
s, = 0.456 sz = 0.439

ny = 16 ng = 15

As a first hypothesis we shall assume: 02 = o3. Based on the
test in row four of Table 3.6-1, we can calculate the variance
ratio:
52 0.2080
—=——=1.08
sz 0.1930
From Appendix C, Table C.4 for « = 0.05 and for
vy ={(ny— 1) =15 and vy = (ny — 1) = 14, the value of
Fl_g(IS, 14) = 2.95. Thus the hypothesis is accepted and
we decide that o2 does not differ significantly from o32.
Once this fact has been established, we can pool the
sample variances:

55 1.69 L17
2 144 2 (na — 1)s§ + (e — 1)s3 _ 15(0.208) + 14(0.193)
2 = =
to test the hypothesis as indicated in the fourth row of (na—1) + (s = 1) 15+ 14
Table 3.6-1. From Table C.4 in Appendix C for « = 0.05, = 0.201
TABLE 3.6-1 COMPARISON OF TWO PRODUCTS OR VARIABLES WITH REGARD TO THEIR VARIABILITY *
Hypothesis Test to Be Made Is Decision Remarks
o? = o s? ZV <oj < st v=n-1 If within range, Two-sided x? test
Xl‘% g hypothesis is accepted
Y If test inequality is true, One-sided x? test
o? > o2 0% > 52 — v=mn-—1 hypothesis is accepted
Xa
o? < o} 52 > 0§ v=n-—1 If test inequality is true, One-sided y? test
1-a hypothesis is accepted :
. , 1 2 V1= 1 If within range, Two-sided F ratio test.
0% = o5t Fr_eltts — 1), 0ia = D] < 52 hypothesis is accepted Note that 1/F;-g js
* always less than unity;
< F g — 1D, — D] va=np—1 hence only the upper limit
need be compared
53 vy =n, — 1 If inequality is accepted, One-sided F ratio test
o > o3t 2 > Fioglvi,va] vo =ng — 1 hypothesis is accepted
B

* Adapted from NBS Handbook 91.
+ The alternate hypothesis is 0% # oZ.
I The alternate hypothesis is ¢5 = o2.
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We know that the difference between the sample means is
D = 1.219 — 1.179 = 0.040

and, from Equation 3.5-2, that
1

Ny

1
Var {D} ~ s,z,( + n_) = 0.201(% + &) = 0.026
B,

Also, once we know that ¢2 ~ o2, a test can be made as
described in Table 3.5-2 based on the hypothesis us # ps.

- o 2 ny + np\%
|XA — XBI > tl_gSp( Py ) V=FHy+ ng — 2
0.040 3 (2.045)(0.201) 3_1* =29
X > (2. (0. [(16)(15)] vy =

0.040 = 0.145

Since 0.040 < 0.145, the hypothesis u, # pz is rejected, and
we conclude that uy = pp.

The F-test is applied to two variances. A commonly
used test to detect differences among two or more
variances is Bartlett’s test. M. S. Bartlett devised a test
to determine the homogeneity of two or more variances
by comparing the logarithm of the average variance with
the sum of the logarithms of the separate variances. The
formulas necessary for the use of this test are based on the
hypothesis Hy: 02 = ¢ =---= 02 = o2 and the pre-
sumption that the variables measured are normally
distributed. The same critical limits hold as in the F-
test except that there are n samples. If the test hypothesis
is correct, a pooled s2

> v 87 _ (Z 1 )i(”‘ — D2 (3.6-1)
_=1P£ — n)i=1

(where p; = number of replicates in a sample) has an
52 distribution with a mean of o? and » degrees of free-
dom, where v = >7_, v,. Bartlett showed that

_ 1< 57
A= —ZZpiln(F)

(3.6-2)

where

1 Zﬂ 1 1
m-DV\&p S,
i=1 i§1p'

has an approximate x? distribution with (z — 1) degrees
of freedom. For large values of p,, ¢ >~ 1.
For the special case where all the p;’s are equal so that

2P = np;,

n

1 1
2 ~ Z pp, 2 _ = 2
X cnpl(lns = E In si)

i=1

(3.6-3)

where ¢ = {1 + [(n + 1)/3np,]}. If the value of x? calcu-
lated by Equation 3.6-2 or 3.6-3 exceeds the value of 3 _,
for (k — 1) degrees of freedom, the test hypothesis that

o7 = 0%--. is rejected. Certain application restrictions

and supplementations to Bartlett’s test are described in
Hald,{ of which the most important and critical is that
the observations must be normally distributed.

Example 3.6-3 Test for Nonconstant o?

Ten replicate measurements were made for corrosion loss,
Y, at four different values of alloy concentration, X.
Results are shown in Table E3.6-3 and Figure E3.6-3.

TABLE E3.6-3 RESULTS OF CORROSION EXPERIMENTS

i X Di Y, Y, Y, Y, Y,

1 1.28 10 6.34 6.36 6.41 6.42 6.80
2 1.30 10 5.95 6.04 6.11 6.31 6.36
3 1.40 10 5.23 5.27 5.32 5.39 5.40
4 1.48 10 4.55 4.65 468 4.68 4.72
i Y, Y, Y, Y, Y, Y &

1 6.85 6.91 6.91 7.02 7.12 6.71 0.091
2 6.52 6.60 6.62 6.64 6.71 6.39 0.076
3 5.52 5.52 5.53 5.60 5.78 5.46 0.020
4 4.73 4.78 4.78 484 486 472 0.009

A test can be made to ascertain if the variances at the
different values of X; are the same (homogeneity of variance)
or not by using Bartlett’s test. If A exceeds the value of x?
determined from the tables in Appendix C for a given «,
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FiGUure E3.6-3 Results of corrosion experiments on alloys. -

t A. Hald, Statistical Theory with Engineering Applications, John
Wiley, New York, 1952, pp. 290-298.



then the hypothesis H, that the variances are the same is
rejected. Here n = 4, p; = 10, 3 p; = 40.

L 1 /4 1
e=1+ 3(n—1) & Z =1+T3)(E‘Tﬁ)
~1
~ 0.049

n 4
A=_1;"il“(s_12) Z (0049)
~ 153

For o = 0.05, with (n — 1) = 3 degrees of freedom, y?
from the appendix tables is 7.81; thus the hypothesis of
equal variances for the X;’s is rejected. Figure E3.6-3
illustrates how the dispersion varies as a function of x.

In many experiments the analyst is justified in assum-
ing that the random variables being observed are nor-
mally distributed; he can carry out suitable tests, some of
which are described in Section 3.7, for normality. But
suppose that the random variables being observed are not
normally distributed. What can be said then in regard to
the application of the F-tests? The F-test and especially
Bartlett’s test for comparison of variances are quite
sensitive to nonnormality; they must be modified or
different tests employed if the normality assumption is
violated.

Another method of attack on the problem of non-
normality of the measured random variable is to use a
transformation of variables to render the data more
nearly normal and to reduce the differences between
individual variances of groups of data. Transformations
may be viewed as scale changes imposed on the original
variables to adjust them to a more favorable orientation.
For example, a logarithmic transformation changes the
very skewed probability density illustrated in Figure
3.6-1a to the considerably more normal appearing density
in Figure 3.6-15. However, one must be careful not to

50 I
40 — —

30— -

p(x)

20— |

10 — —

(a)
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inadvertently create new difficulties when attempting to
resolve existing problems by transformations.

Example 3.6-4 Transformation of a Probability Density

Rose and Englisht investigated the distribution of the
breaking strengths of identical paper sacks containing
identical amounts of material dropped under controlled
conditions. A representative relative frequency distribution
of 200 sacks is illustrated in Figure E3.6-4a versus the drop

30

T T T 1 T T
—
§ 25— Material: silica sand 1
5 r Mean particle size: 150 u
o Sack size: 10 x 6.3 cm
~ 20 — Batch size: 200 sacks —
s
S5l
5 15 -
£
=
10— -
e
[=4
g -
2
2 5
0 —T—I—l:r—l [ L—.

0 20 40 60 100 120 160

N= drop number
(a)
FiGure E3.6-4A Distribution of the strengths of identical sacks.

(From H. E. Rose and J. E. English, Chem. Eng., Sept. 1966,
p. 165, with permission.)
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FiGure E3.6-48  Data of Figure E3.6-4a plotted on a logarithmic-
normal basis. (From H. E. Rose and J. E. English, Chem. Eng.,
Sept. 1966, p. 165, with permission.)
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FIGURE 3.6-1 A logarithmic transformation.
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number, i.e., the number of drops from a specified height
that a sack will withstand before failure. The same data are
plotted as the logarithm of the drop number in Figure
E3.6-4b.

Rose and English were able to associate, by means of
appropriate statistical tests, the logarithmic-normal distri-
bution with the drop number-relative frequency distribution.
Then they investigated theoretically why such a probability
distribution should be expected. Also, once the underlying
distribution was verified, only two parameters, the mean
and the standard deviation, were needed to characterize
nearly 2000 tests with different sack fillings.

If data are easy and inexpensive to collect, the simplest
method of normalization is to average groups of data
and make tests on the group averages. The central limit
theorem mentioned in Section 2.4-1, which states that
the distribution of a sum of n random (not necessarily
normal) variables tends to approach the normal distri-
bution as the sample size becomes large, provides the
rationale for such treatment.

Sample variances, if obtained from a population with
the same o2, can be pooled to improve the estimate of o2.
However, if the sample variances are based on a non-
homogeneous population, the pooled s2 is not a valid
estimate of o2; confidence intervals and tests of signif-
icance based on the pooled s2 are then distorted.

One final matter should be mentioned. Since the pres-
entations of information in the form of confidence
limits and as hypothesis tests make use of the same basic
parameters, we might ask which presentation is more
meaningful? One can conclude that if the confidence
interval does not include the sample mean, the null
hypothesis is rejected—the same conclusion as is ob-
tained from a hypothesis test. However, the use of
confidence interval statements can be more meaningful
because they give the analyst a picture of the degree of
uncertainty in the parameters rather than simply a yes
or no answer as is obtained from hypothesis testing.

3.7 NONPARAMETRIC (DISTRIBUTION-FREE)
TESTS

All the tests presented up to this point have ex-
plicitly involved the assumption that the random
variables of interest were represented by a known
probability. distribution, usually the normal distribution.
Such tests are known as parametric tests. Other types of
tests exist, including rank correlation and sign tests,
which do not require such assumptions and are known
as nonmparametric tests or Ziistribution-j”ree tests. (The
distribution-free characteristic really applies only to the

T H. E. Rose and J. E. English, The Chemical Engineer, Sept.
1966, p. 165.

significance level of the test and only for samples of
continuous variables. In many nonparametric tests,
probability statements do depend on the probability
distribution of the random variable.) Nonparametric
methods can be used in tests of hypotheses, to find
interval and even point estimates of parameters, and so
forth. For example, a nonparametric estimate of the
ensemble mean is the median of a random sample (the
middle value for n odd and the average of the two middie
values for n even); a nonparametric estimate of the stand-
ard deviation is the range (the absolute value of the
difference between the highest and lowest values in the
sample). Neither of these statistics is particularly efficient
as compared with the sample mean and sample standard
deviation, respectively, that we described previously.

We shall consider only a few nonparametric tests,
mainly those that can be substituted for the parametric
tests of means and variances, described in Sections 3.4
and 3.5, and also those that are useful in establishing the
stationarity, randomness, and normality of random
variables. Most texts on statistics include a chapter
describing various types of nonparametric tests; Savage t
prepared an excellent bibliography showing applications
of the tests.

3.7-1 Sign Test for Median Difference in Paired
Observations

The simplest nonparametric test which can be used in
lieu of the t-test is the sign test for paired observations.
Suppose that n pairs of measurements are taken of a
random variable, one of each pair under condition A
and the other under condition B. If zero differences are
impossible, the differences 4; — B; can be either positive
or negative; the positive outcome is distributed as a
binomial variable with & = . (Zero differences obtained
on calculation have been treated in many ways, none of
which is completely satisfactory. But if the proportion of
zero differences is low, say less than 5 percent, the pairs
of zero observations can either be omitted from con-
sideration or divided equally between the plus and minus
categories.) Because the sign test is based on the binomial
distribution, the binomial events must be independent
(refer to Table 2.3-1); that is, the sign difference for one
pair of measurements must have no influence on the sign
difference for any other pair of measurements, and the
sample must be random. Also the outcomes must be
continuous.

For every A; — B; difference, the P{4; > B} =
P{A4; < B} = % if &{4; — B;} = 0. The sign test simply
tests the hypothesis that the parameter ¢ in the binomial
density has the value %, which in terms of the experiment
tests the null hypothesis that the population of 4 — B

1 I. R. Savage, Bibliography of Nonparametric Statistics, Harvard
Univ. Press, Cambridge, Mass., 1962.



differences has a median of zero. Let r be the number of
occurrences of the less frequent sign and n — r be the
number of occurrences of the more frequent sign after
the zero differences have been divided up. Then the
cumulative probability of obtaining r or fewer signs if
the null hypothesis (H,: there is no difference in the
effects of 4 and B) is true is

P- Z (ar

For a two-sided symmetric test, one rejects the null
hypothesis if

(3.7-1)

or P>1-<2

P < 3

[NST

If a one-sided test is used and the alternate hypothesis
is that the median difference is less than zero, the null
hypothesis is rejected if P < «; the opposite alternative
hypothesis calls for rejection of the null hypothesis if
P > 1 — o. As applied to a normally distributed differ-
ence, the one-sided sign test has an asymptotic efficiency
relative to the t-test of 2/7 = 0.637.

Example 3.7-1 Sign Test

Table E3.7-1 lists ten pairs of measurements of the
percentage of sulfur dioxide in the exit gas of a smoke
stack for two degrees of fuel pulverization, 4 and B. We
shall test the assumption that the two degrees of pulveriza-
tion produce the same amount of the pollutant sulfur
dioxide. .

Six pluses and two minuses are found. If the zero
differences are distributed equally between plus and minus,
we have r = 3 and (n — r) = 7. Then, making use of a
table of probabilities of the binomial variable, we calculate

P{ir <3} =P{r=0} + P{r =1} + P{r = 2} + P{r = 3}
= 0.001 + 0.010 + 0.044 + 0.117 = 0.172

If o had been selected as 0.05, /2 = 0.025, and because

0.172 > 0.025, the null hypothesis would be accepted.

Table C.5t1 in Appendix C gives the number of pluses for

rejection for various critical regions. In using the table, the
zero differences are discarded. Thus, » = 8, r = 2, and the

T Taken from W. J. Dixon and F. J. Massey, Introduction to
Statistical Analysis, McGraw-Hill, New York, 1951.
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critical r from the table for «/2 = 0.025 is zero. Since
2 > 0, the hypothesis is accepted.

3.7-2 Mann-Whitney U*-Test

The Mann-Whitney U¥*-test is the most powerful
alternate to the f-test among the nonparametric tests.
The general procedure, first recommended by Wilcoxon
and others, was refined and formalized in tables by Mann
and Whitney] to test whether or not two populations are
identical. Suppose we take a sample of n observations
(designated as x’s) and a sample of m observations
(designated as y’s) of the presumably same continuous
ensemble. Next the m + n observations are arranged in
a list in order of increasing value irrespective of the
sample. Each ordered observation is replaced with an x
or y, depending upon the sample from which it came.
The result is a pattern of n x’s and m »’s intermixed. If
the m + n observations were all different, there would be
(m + n)! distinguishable patterns. However, for each
truly distinguishable pattern, there are n! permutations
of x’s with each other which do not change the pattern
and, similarly, m! permutations of y’s. Therefore, there
are

m+n!  (m+n\
“minl ( m )
distinguishable patterns.

If two samples are drawn from the same ensemble,
each of the patterns is equally likely; but if they come
from different ensembles, one would expect to find
patterns in which the x’s cluster at one end of the list
and the y’s at the other. Let the test statistic U* be the
number of times a y precedes an x. U* is the number of
y’s preceding the smallest x plus the number of y’s
preceding the next larger x, including all the y’s counted
in the first batch, and so on until the number of y’s
preceding the last x in the list is counted and included
in the sum. The probability of U* occurring when the

null hypothesis is true is just that fraction of the (m’;: n)

total possible patterns in which the U*’s are as big as or
bigger than that obtained in the experiment. (The null

hypothesis, Hy, is that each of the (mr: n) patterns is

i H. B. Mann and D. R. Whitney, Ann. Marth. Stat. 18, 50, 1947.

TaBLE E3.7-1 PERCENT SULFUR DIOXIDE
Sample Number
Pulverization 1 2 3 5 6 7 8 9 10
A 24 27 20 19 22 23 23 21 24 26
B 26 26 20 18 20 20 24 21 21 25

A—-B - + 0

+ 4+ - 0 + +
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equally likely; hence, in effect, the two samples were
drawn randomly and independently from the same
population). The test will be significant at the significance
level « when P{U* < U}} = «. In the case of ties, one
recommended procedure is to give each member of the
tied group the average of the ranks of the tied members
when tallied consecutively. If the rank sum, i.e., sum of
the values assigned the ranks, is not an integer, it
should be rounded off to the nearest integer; other pro-
cedures are described in the references at the end of this
chapter.

To carry out the test, we need to let x;, a member of the
smaller sample, be the ith x (in order of increasing value)
and also be counted as the rth entry in the list when both
the x’s and »’s are counted. Let u; be the number of p’s
preceding x;. T, will be the rank sum of the x ranks
(T is the Wilcoxon Tt critical values for which are
given in many statistics books). U*, the Mann-Whitney
statistic, is related to T, as follows:

T, = zn:"i = zn:(i*' u)
i=1 i=1

- n(’“zr 1) + iui - n(’”zr 1) +U* (372)

i=1

where » is the number in the smaller sample. T, the
sum of the y ranks, can also be related to U*. The
sum of all ranks is simply the number of ranks times
the average rank or (m + m)[(m + n + 1)/2]. T, is
(m + n[m+n+ )2 —T,or

m(m + 1)

_U*
> U

T, = mn + (3.7-3)

Consequently, the statistic U* does not have to be
enumerated by calculating > u; (which can be quite
tedious) but can be evaluated from Equation 3.7-2 or
3.7-3.

The number of yp’s which either precede or follow an
x is m, the sample size. Because there are n x’s, the
number of y’s either preceding or following all the x’s is
equal to mn. Consequently, mn — U* is the number of
times a y follows an x, and is also the number of times
an x precedes a y. Most tables, such as Table C.6 in
Appendix C, list only the smaller of U* or U*' = mn —
U*. In Table C.6, m is the smaller sample and n is the
larger sample. For large samples outside the table values,
U* has a mean of &{U*} = mn/2 and a variance of

mn(m + n + 1)

Var {U*} = 7

1 F. Wilcoxon, Some Rapid Approximate Statistical Procedures,
American Cyanamid Co., New York, 1949.

and an (approximate) standard normal variable is

gr_mn_1
z-——21 2 3791
V' Var {U*}

The asymptotic efficiency of the Mann-Whitney test is
3/= or 0.955 relative to the ¢-test when both tests are
applied to a normal population with homogeneous
variances. The superiority of the t-test is thus slight; if
the data depart from normality, the Mann-Whitney test
may be more powerful. Computational details are now
illustrated by an example.

Example 3.7-2 Mann-Whitney Test

Let a supplier of a catalyst provide two samples to try
out, 4 and B. The gain in yield for each sample is tabulated
in increasing order of gain, and a second list is prepared
(not shown) of the merger of both samples in increasing
order of gain.

A B

Gain, 7, Rank Gain, %, Rank
—-14 1 —-0.3 5
—1.2 2% 0.5 8
-1.2 21 0.7 9
-1.0 4 0.8 10
—-0.2 6 0.9 11
0.2 7 1.5 12
Rank sum 23 2.4 E
Rank sum 68

In the first list the rank of each gain, as determined from the
second list, is placed in the second column of the table, the
ranks going from 1 to 13.

One way to compute U* is to replace the observations in
the second list by 4 or B, depending upon which sample the
observations came from:

AAAABAABBBBBRB (@)

The number of times a B precedes an A4 is 2. A value of U*
as small as or smaller than this could be obtained from the
following arrangements:

AAAAAABBBBBBB U*=0

AAAAABABBBBBB U* =1 ®)

AAAAABBABBBBB U*¥ =2

AAAABAABBBBBB Us =2
6+ 7

In total there are ( ): 1716 possible patterns.

6
Hence the significance level for a one-sided test of the
hypothesis that A either equals or exceeds B would be at
1755 In other words, the probability of U* being equal to

1 Subtraction of ¥ corrects for continuity.



or less than 2 is 0.0023. Consequently, if one has in mind a
significance level of 0.05 as being appropriate, the hypoth-
esis that the catalysts have the same effect is rejected. For
a two-sided test, there are four mirror images of the above
patterns with U*’s of 40, 40, 41, and 42, respectively. Hence
the significance level for a two-sided test would be at .

Rather than count the patterns as above, the value of U*
can be ascertained with much less difficulty from Equations
3.7-2 and 3.7-3. Then the corresponding significance level
can be obtained from Table C.6 in Appendix C, or from the
normal approximate, Equation 3.7-4.

EqQuaATION 3.7-2:

_se+D_

= * =
T.=23 U 23 3

2

EQuATION 3.7-3:

_ 77 + 1)

T, =68 U* 5

+ (7)6) — 68 =2

From Table C.6 for m =7, n =6, and U* = 2, the
significance level « can be read as 0.002. Note that when
n = 8 and m = 8, the normal approximation is quite good.

3.7-3 Siegel-Tukey Test for Dispersion

This testt is a nonparametric test which can be used
as an alternate to the F-test to test the null hypothesis
that the dispersions of the underlying populations of
two independent samples are the same (against the
alternate hypothesis that they are not). To carry out the
test, list the value of each measurement in ascending
order, with the most negative values at the head of the
list and the most positive values at the bottom. Identify
each value as belonging to sample 4 or B. Assign rank 1 to
the smallest value, rank 2 to the largest value, rank 3 to
the next largest value, rank 4 to the second smallest
value, rank 5 to the third smallest value, rank 6 to the
third largest value, and so forth, assigning ranks after
the first in sequential pairs in rotation from the head to
the foot of the list. Ties are resolved as was explained
in Section 3.7-2.

Finally the ranks of sample 4 and of sample B are
summed, and the approximate standard normal variable
Z is calculated (more exact tables can be used in lieu
of Z):

R_nl(n1+n2+1) —.I_
z- 2 2 (22 ) 679
A/nl(nl + 1y + Dny ny > 10
12

where n; and n, are the sample sizes, n, < n,, and R, =
rank sum of the sample associated with r,. Equation

t S. Siegel and J. W. Tukey, J. Amer. Stat. Assn. 55, 429, 1960.
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3.7-5 is sufficiently accurate for engineering purposes,
even for small samples of size less than ten.

Example 3.7-3 Nonparametric Test for Dispersion
We rank the data from Example 3.7-2 as shown below:

Value Sample Rank
—-1.4 A 1
—-1.2 A 45
—-1.2 A 4%
-1.0 A 8
-0.3 B 9
-0.2 A 12
0.2 A 13
0.5 B 11
0.7 B 10
0.8 B 7
0.9 B 6
1.5 B 3
2.4 B 2

The sum of ranks of 4 = 33; the sum of ranks of B = 47.
Sample A is smaller so that

R1=33
ny = 6
ny = 7
|33 _6(6+2____ZL1_)I __;
Z = = 0.496

A/6(6 + 7+ D)7
12

From Table C.1 of the standard normal variable in Appen-
dix C, for « = 0.05, z = 1.96; consequently we accept the
null hypothesis (by a two-sided test) that the dispersions of
A and B are the same.

3.7-4 Tests for Stationarity

Two nonparametric tests are described in this sub-
section which can be used to ascertain whether or not
data from a single time record are stationary. If station-
arity can be demonstrated for a single time record, then
the ensemble can be assumed stationary for most practi-
cal purposes. Furthermore, weak stationarity, as defined
in Section 2.2-3, is actually what will be tested. The
rationale of extending the umbrella of stationarity to
other parameters than the ensemble mean and auto-
correlation functions is rigorous for a normally distrib-
uted random variable and is observed to be effectively
true for most other distributions encountered in practice.
The length of the time record to be tested must be long
enough, of course, to encompass a trend (nonstationarity)
if one exists. A record that is too short will reveal nothing
of a long-term trend, for example. Both run tests and
trend-inversion tests can be used to test for stationarity.

A run is just a sequence of observations that are
preceded and followed by a different observation (or by
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no observation at all). Thus, if the symbol + is assigned
to a value of a variable above the sample median and a
symbol — to a value below the sample median in the
following sequence
5164275987
——t——t—+++
21211 3

six runs can be detected. Like events may cluster, as
indicated by an unusually small number of runs, patterns
in the runs, runs of unexpected length, and other run
statistics which can be used to test for randomness of
pattern arrangement against the alternate hypothesis
of sequential dependency. By judicious definition of the
two types of events (designated + and — above), a run
test can be employed not only to test for a trend in a
sequentially sampled random variable but for many
other characteristics which need not concern us here.
Run tests are deficient in two respects—most are weak
(have low power) and inefficient.

WALD-WOLFOWITZ TOTAL NUMBER OF RUNS TEST. The
Wald-Wolfowitz test is not very powerful nor efficient
but can be used to determine if observations of a random
variable are independent (if they are, there is no trend).
A series of observations is taken and their sample
median determined. Each observation is assigned a + or
— according to whether its value is above or below the
median. If the pattern arrangement of +’s and —’s is
such that the +’s and —’s are random and independent
(the null hypothesis), there is no clustering. A brief table
for the test statistic U*, the number of runs, is in
Appendix C (Table C.7). Also, the mean and variance of
the random variable U+ are

2n1n2
ny + Ny

M’U+ = + 1 (3.7"6)

o2+ — 2nyny[2niny — (ny + ny)l

v (ny + ng)?(ny + ny — 1)

where n, is the number of +’s and n, is the number of

—’s, and n, + n, = the total number of observations.

Consequently, for large samples the approximate stand-
ard normal variable

(3.7-7)

|[U* — pot| — 3
Oyt

Z= (3.7-8)

can be used. A two-sided test for a given « is usually
employed.

SUM OF SQUARED LENGTH TEST. Inasmuch as the
Wald-Wolfowitz test does not directly take into account
the length of the runms, considerable information is
ignored. Ramachandran and Ranganathant suggested a

1 G. Ramachandran and J. Ranganathan, J. Madras Univ. Sect.
B8 23, 76, 1953.

more powerful test. A run consists of a sequence of like
signs; for example, in the arrangement given earlier,
there were three runs of length 1, two runs of length 2,
and one run of length 3. The test statistic, N, is the sum
of the squares of the run lengths, or

N =
J

where j is the length of the run and n; is the number of
runs of length j. For the pattern just given, N = 3(1%) +
2(2%) + 1(3?) = 20.

Table C.8 in Appendix C lists P{N > N,} < o for
values of n equal to half the number of values in the time
record, n < 15. For the example, n = 5 and « = 0.05,
so that N, = 38; hence the hypothesis that the sample
does not have a trend is accepted.

(3.7-9)

INVERSIONS AS A TEST FOR LINEAR TREND. If a series of
n measurements is arranged in the order taken, and a
designated number is followed by a smaller number, an
inversion is said to exist. Thus, in the sequence

351426

there are six inversions: 3 is followed by two smaller
numbers, 1 and 2; 5 is followed by three smaller numbers,
1, 4, and 2; and 4 is followed by one smaller number, 2.
If the order of the numbers in the sequence is random,
then each of the n! permutations of the » numbers is
equally probable; the a priori probability of obtaining a
random sequence with exactly 7* inversions is simply the
number of permutations containing exactly /* inversions
divided by n!, the total number of possible permutations.
The number of times a number is followed by a larger
number in the sequence is the compliment of /* and is
designated as T*. A third measure which can be used is
S* = T'* — [*, Mann}] tabulated exact T* probabilities
for 3 < n < 10, and Kendall§ listed probabilities for S*,
I'* has a mean and variance of

n(n — 1)

Mrx = 4 (3.7‘10)
3 2 _ .
o _ 2n® + 3n® — 5n (3.7-11)

O = 72
and as n becomes large the approximate standard normal
variate can be used
I* — g

Vo
(To correct for continuity, positive numerators should be
decreased by 1 and negative numerators increased by %.)
If ties exist and are assigned the midrank, use the S*
tables instead of the T* or I'* tables.

Z = (3.7-12)

1 H. B. Mann, Econometrica 13, 245, 1945.
§ M. G. Kendall, Rank Correlation Methods (2nd ed.), Hafner,
New York, 1955.



The assumptions behind the S* or I'* test are that the
observations have been taken independently and at
random on a continueusly distributed variable. When
used as a test of randomness and compared with tests
for a regression coefficient (discussed in Chapters 4 and
5), the I'* has an asymptotic relative efficiency of (3/7)" =
0.98; hence it is equal to or superior to most other non-
parametric tests for trend. The null hypothesis is that the
observations are independent observations of a variable
X when no trend exists; a two-sided test is used.

To ascertain whether or not a single time record
represents stationary data, the time record is divided up
so that n representative increments of equal time are
obtained. High-frequency data can be in contiguous
intervals, but low-frequency data require some interval
between the selected portions of the record. The simplest
procedure is to compute the mean and mean square for
each of the » intervals and to arrange the results in
sequence:

CXD, X, L XD

CXD, CXD, ..., X%
where the presuperscript denotes the portion of the time
record and { > denotes time average. Each of the two
series of values can be tested for trend as described
earlier.

One assumes that if the mean square (or variance) of
the random variable X is stationary, then the auto-
correlation function of X is also stationary. (The ensemble
mean square of X(¢) is nothing more than the ensemble
autocorrelation function at = = 0, r,,(0).) The basis for
this assumption is that it would be most unusual for a
nonstationary variable to have a time-varying auto-
correlation function for = > 0 and not have ryx(0) vary-
ing also. Use of the mean square saves a tremendous
amount of computation. But if the assumption is not
valid, then Bendat and Piersol{ suggested the following
procedure which detects trends in the power spectrum
and, hence, in the autocorrelation function:

1. Filter the sample record into ¢ contiguous narrow
bandwidth frequency intervals.

2. Divide each interval into »n equal time intervals as
before.

3. Compute a mean square value for each time interval
within each frequency interval, giving a total of cn time
averages:

6D O NC) OWIRC) Cf
<21X2>’ <22X2>’ A <2nX2>

<c1X2>, <02X2>, C <ch2>

+J. S. Bendat and A. G. Piersol, Measurement and Analysis of
Random Data, John Wiley, New York, 1966, p. 222.
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4. Test the time sequence in each frequency interval
for trends; ¢ tests will be required (plus one for the mean,
as before). Rejection by any one test constitutes re-
jection of the null hypothesis of stationarity for a signif-
icance level (Type I error) of &' =1 — (1 — &), if «
is the significance level which would be accepted for a
single nonparametric test.

Example 3.7-4 Tests for Stationarity

A time record of yield has been chopped up into ten
segments, and the time average yield (in percent) of each
segment is arranged sequentially below:

Period Time Average
1 36.5
2 43.0
3 44.5
4 389
5 38.1
6 32.6
7 38.7
8 41.7
9 41.1

10 36.8

Test at a significance level of « = 0.05 for stationarity both
by the Wald-Wolfowitz test and the inversion test.

Solution:

WALD-woLFOWITZ TEST. By inspection of the sequence,
the median value of the ten values is (38.7 + 38.9)/2 = 38.8.
A plus is assigned to a value above 38.8 and a minus to a
value below, yielding the following sequence:

SRR e I

There are five runs in total, and n; = n, = 5. For « = 0.05,
from Table C.7 in Appendix C, U&= 2 and U%" =9;
hence the hypothesis that the data do not have a trend is
accepted.

INVERSION TEST. We calculate the I'* statistic, the number
of times a number is followed by a smaller number.

Value Number of Inversions

36.5 1
43.0
44.5
38.9
38.1
32.6
38.7
41.7
41.1
36.8

Total

N
UllO‘—‘NHON-h\l\l
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From Table C.9 in Appendix C for « = 0.05 and n = 10,
I*__g = 11 and Iz = 33; hence the null hypothesis is
2 .

accepted again.

To determine stationarity, the sequence of mean square
values would also have to be formed and tested. For the
given time record the null hypothesis was accepted by both
tests; hence the mean square values are not tabulated.

3.7-5 Tests for Randomness

The nonparametric tests described above in connection
with stationarity also in effect test for randomness,
except for possible periodic components. If the segments
of the time record pass the stationarity test, then periodic
components which are not detected by visual inspection
of the time record or by the test for stationarity are best
detected by visual inspection of the time average power
spectral density or autocorrelation function (defined in
Section 12.3-3). Because a sine wave will have an auto-
correlation function which will persist over all values of
7, as opposed to random data for which r(rxx) — 0 as
T — o0 (for py = 0), the time average autocorrelation
function can be plotted and examined. In this connection,
refer back to the autocorrelograms in Figure 2.2-1. A
periodic component in the data will show up as a peak
in the power spectral density function, especially when
the amplitude of the periodic component becomes
larger than the associated noise.

3.7-6 Tests for Goodness of Fit and Independence

Tests to ascertain whether or not experimental data are
represented by a normal (or other distribution) are of
some importance, and the y? test is one of the best known.
The test is only approximate and sometimes misleading
because of the many discongruities between the theoreti-
cal requirements and the actual practice in execution. The
test applies to enumerated data, i.e., counted outcomes;
consequently, continuous records must be converted to
digital form before applying the test. We shall now
illustrate the application of the y2 test to two important
problems: (1) testing for goodness of fit, and (2) testing
for independence between random variables.

TESTING GOODNESS OF FIT. To represent a random
variable by a chosen probability distribution, the analyst
must ask: Is the postulated probability density represen-
tative of the observed relative frequency distribution ?

In Table 2.3-1 the mean and variance of the multi-
nomial distribution for mutually exclusive events are
listed as

&{X;} = nb,
Var {X;} = n0i(1 — 6)

where 6; is the parameter in the multinomial corre-
sponding to the multinomial variable, X,; 6, is the

O<i<k

probability that event i will occur x; times in n trials
where the Y x; = n. An approximate standard normal
variable can be formed for each random variable as
follows:

X{ — n0,
Vnb(1 = 6)

which will be approximately normally distributed for
large values of nf(1 — 6) with a mean of zero and a
variance of 1. Furthermore the variable

Zzz (X, — nb)*

m9 (1 - 6)
also can be formed and w1ll be approximately distributed
by the y2 distribution with k& degrees freedom if the X;’s
are independent of each other. It turns out for certain
reasons, too detailed to go into here, that the random

variable .
- X; — nei)z
2
N Z no,

is more properly used and is better represented by the
x2 distribution with v degrees of freedom.

If the parameters of the probability density of the
random variable are not known so that estimates §,
must be made of 6,, then

Z(X- ——ng)

where the number of degrees of freedom is reduced by g
linear constraints, one for each estimate. One restriction
on Equation 3.7-15 is that nf must be greater than 5; if
not, groups must be combined.

Equation 3.7-15 can be reformulated in slightly differ-
ent notation to give

2 _ N — nf)?
X Z n¥

i=1

(3.7-13)

Zi=

v=k—1 (3714

v=k—1-—g (3.7-15)

(3.7-16)

where n; = observed number of occurrences of X;, and
= theoretical number of occurrences of X; calculated
on the basis of the postulated probability density.

The goodness of fit is determined by calculating %2 in
Equation 3.7-16 and comparing this value with the one
selected from the tables of x? for a selected significance
level, say « = 0.05. A one-sided test can be used. If the
calculated value of ¥? exceeds the preselected value of
x2_., one rejects the null hypothesis that the two distri-
butions are the same, i.e., that the experimental relative
frequency distribution is represented by the postulated
probability density. (Also, if the value of x? is less than
x2, the empirical relative frequency distribution and
probability density do not agree.) The y? test for goodness
of fit should be used with some caution and supple-
mented by other tests because it is essentially an approxi-



mate test. However, it certainly is a convenient test. A
more exact analysis can be made by direct use of the
multinomial distribution probabilities, if needed. For a
very large number of occurrences, refer to Hodges and
Lehmann.t

Example 3.7-5 2 Test

Rubber from a reclaiming plant is classified as grade 4,
B, C, or D. Previous experience has shown that the distri-
bution of product has been: 4, 53.4 percent; B, 26.6 percent;
C, 13.3 percent; and D, 6.7 percent. Last week’s run was:

Grade Batches
A 340
B 130
C 100
D 30

Has there been a change in the distribution of products?

Solution:

The procedure is to tabulate the observed frequencies n;
and compute the theoretical frequencies n}¥ based on a
total equal to the sum of the observed frequencies.

Observed Theoretical (ny — n})?
Grade n; n¥ ) n¥
A 340 320 490
B 130 160 298
C 100 80 400
D 30 40 198
Sum 600 600 14.4

The number of degrees of freedom isv=4k—1— g =
4 —1=3 (g =0 since the n¥’s are computed from a
known probability density). From Table C.2 in Appendix C,
x2 for v = 3 and, for example, a probability equal to 0.95
is 7.81. Certainly 14.4 exceeds 7.81; in fact, for P = 0.99,
X3-- = 11.34. A change in the process is suspected.

Example 3.7-6 Generation of Random Digits

A proposed method of generation of random digits is
used 250 times to yield the following data. Does the tech-
nique actually produce random digits ?

Number of
Occurrences

27
18
23
31
21
23
28
25
22
32

\ooo\lo\ux-huwﬂo|og'
2.

1 J. L. Hodges and E. L. Lehmann, J. Stat. Soc. B16, 261, 1954.
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Solution:

Presumably, if the observed digits are random, each will
occur with a probability of 0.1, or the number of theoretical
occurrences (out of 250) would be 25. We compute

S —n¥)? (27 =252 (18 — 25)2 (32 — 25)2
Nl N rop 822
= Ih 25 25 25

=172
and the number of degrees of freedomvis(k — 1) = (10 — 1)
= 9, Forv = 9, from Table C.2 in Appendix C, we find for
o = 0.10 that ¥?_, = 14.68, a value clearly greater than 7.2;
hence we can accept the hypothesis that the digits are
random.

Example 3.7-7 Testing Proposed Distributions

Failure of certain components of a missile were tabulated
by Connor,} as shown in columns 1 and 2 of Table E3.7-7.
Two proposed probability densities were compared to the
observed relative frequency distribution in order to:
(1) summarize the data by a simple function with one or two
coefficients which contained all the known information, and
(2) gain insight into the underlying causes of failure. The
estimated mean of the experimental data was introduced as
the single parameter into the Poisson density (refer to
Table 2.3-1), the probability of each event (number of
failures) was calculated, and each probability was then
multiplied by the total number of failures, 473, to obtain
the predicted distribution listed in column 3 of Table
E3.7-7.

TaBLE E3.7-7
Number of Negative
Failures Observed Poisson Binomial
0 331 317 333
1 104 127 100
2 27 25 29
3 8 3 8
4 1 1 2
5 2 0 1
Total 473 473 473
Y — n¥)?
Z M Calculated: 17.2 0.31
i M X2.00 from 9.21 6.63
Table C.2:

We compare 17.2 with the value of x3_, = 9.21 from
Table C.2 in Appendix C (for « = 0.0l andv =k — 1 —
g=4—1—1 =2 degrees of freedom) and do not find a
good fit. Note that the classes of size less than 5 must be
combined so that k = 4. However, the same test for the
negative binomial density

[ — 1
px) = (r * i )0'(1 -0 i=12...
r = positive integer
0<0<1

1 W. S. Connor, Ind. Eng. Chem. 52 (2), T4A, 1960; 52 (4), T1A,
1960.
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indicates a suitable fit. The negative binomial density has
two coefficients which must be estimated, r and 8, so that
v =4 — 1 — 2 = 1. Both the Poisson and negative binomial
distributions have the same mean, r, but the variance of
the Poisson distribution is #0 and that of the negative
binomial distribution (n8/0) = n; that is, the latter is
dispersed more extensively, as required here. The rationale
and implications of the agreement with the negative binomial
density are discussed in the original article by Connor.

A second technique for goodness of fit, which will just
be mentioned here, is the Kolmogorov-Simirnov test.
This test inquires as to whether the cumulative relative
frequency distribution of a variable (obtained by samp-
ling) is represented by a probability distribution. If a
random variable is presumed to have a probability
distribution Py(x), and S(x) is the observed empirical
cumulative relative frequency distribution, the distri-
bution of D = max [Py(x) — S(x)| is knownt and can
be employed in tests of goodness of fit.

TESTING INDEPENDENCE OF VARIABLES. Suppose # pairs
of experimental measurements are taken for two
supposedly independent (in a statistical sense) variables.
If the n data pairs are classified according to either
quantitative or qualitative ranges of the two variables,
the y? test can be used to test the hypothesized inde-
pendence of the two variables. The null hypothesis is
that the variables are independent.

TaBLE 3.7-1 TWO-WAY CLASSIFICATION *
Classifications of ;
Variable ¥ fl‘
Row
Sums:
L
Y1 Y2 Yo J;{
Classifi- X1 S fi2 Sip fi.
cations Xo far faz Sop fa.
of Vari- :
able X Xm fml f;nz fmp fm.
i Column
J Sums:
> | 1 fa f n
i=1

* The dot indicates summation over the variable replaced by the
dot.

T Refer to F. J. Massey, “ The Kolmogorov-Simirnov Test for
Goodness of Fit,” J. Amer. Stat. Assn. 46, 68, 1951; L. H. Miller,
“Table of Percentage Points for the Kolmogorov Statistics,”
J. Amer. Stat. Assn. 51, 111, 1956; and J. Rosenblatt, Ann. Math.
Stat. 33, 513, 1962.

Consider the classification made in the Table 3.7-1 in
which the number of outcomes is tabulated in each cell;
i.e., iy = number of occurrences for the pair x; and y;,
a range or class of X and Y. Let the probability of
obtaining the count f;; be denoted by 6,;; its estimate is
then 8,;. We can form

Z Z (ﬁj - nﬁ,,) ~
i=1j7=1 n@,,
The left-hand side of Equation 3.7-17 is approximately
distributed as y2.

If p(x)p(¥)) = p(xi, 1), so that the random variables X
and Y are independent and, consequently, 6,6; = 6,
then we can estimate 6, and 6; by

=mp—1 (3.7-17)

n
~ i
= n
so that

(3.7-18)

If Equation 3.7-18 is introduced into Equation 3.7-17, we
obtain

(3.7-19

which is approximately represented by the y? distribution
with v degrees of freedom. In this development there are
(m + p — 1) constraints introduced in finding f;, and
f.;so that

v=mp~(m+p—-1)=mp—m—p-+1

Another way to look at the degrees of freedom for
Equation 3.7-19 is to observe from the table that each
marginal total must sum to » = mp, so that the degrees
of freedom are reduced by one in each case to

m-—Dp—-—D=mp—m—-p+1

A third way to find v is to note that m parameters have
been estimated for the §;,, but since >™, 9, =1, only
(m — 1) of these estimates are independent. Similarly, in
estimating 6;, only (p — 1) degrees of freedom remain.
Hence

(mp—1)—(m—-=1)—-(p-D=m-Dp-1

degrees of freedom remain, as above.

If %2 calculated by Equation 3.7-19 proves to be greater
than that found from the table of x? for a preselected
significant level, then the variables are not independent.



At least five predicted counts are needed per cell; other-
wise the cells must be combined.

Example 3.7-8 Test of Independence

Eighty-seven rockets yield data on range and deflection
as shown in the following table. For a confidence coefficient
of 0.95, we test the hypothesis that the two measurements
of range and deflection are independent.

Deflection (mils)

Range (yd) —250to —50 —50to +50 50t0200 Total
0-1200 5 9 7 21
1200-1800 7 5 9 21
1800-2700 8 21 16 45
Total 20 35 32 87
Solution:

The minimum predicted frequency is greater than 5. The
degrees of freedom are 4.

52 92 72
X = 87[((21)(20) tenes T e
72 52
teney T eney T ) - 1]
87(0.232) = 20.2

We find that x3.¢5 = 9.488 from Table C.2 in Appendix C
for « = 0.05. The variables are not independent.

3.8 DETECTION AND ELIMINATION OF
OUTLIERS

Even carefully planned and executed experiments can
yield inhomogeneous data. Changed conditions during an
experiment may remain undetected so that anomalous
measurements, often termed “blunders,” “wild” values,
or outliers, are made. Or, aberrant measurements may
be due to errors in the operation of recording devices,
which if known would cause the recorded values to be
rejected. Or, key-punch errors, inverted digits, or
misplaced decimal points may contaminate otherwise
valid data. On the other hand, the outlier may be simply
one of the extreme values in a probability distribution for
a random variable which occur quite naturally but
infrequently and should not be rejected.

When the analyst knows that an abnormal error or
blunder has been made, he does not hesitate to discard
such an observation. When he does not have enough
practical grounds to either accept or reject an extreme
observation, he must resort to some kind of statistical
judgment. He would like to answer the question:
“What is the probability that the observed differences
are due solely to random sampling errors?” in such a
way that there is little doubt that certain observations
will be rejected.
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The approach to the problem of analyzing outlying
observations depends upon the objective at hand. If the
analyst is solely interested in determining whether an
observation is an outlier in order, perhaps, to investigate
the condition or conditions that may have led to this
extreme observation, then the test for such an outlying
observation is.an end in itself. If, on the other hand, he
is interested in deleting the outliers in order to obtain a
more accurate estimate of some population parameter,
say the population mean, then he is interested not only
in a test for an outlying observation but also in the
estimation of the parameter subsequent to the outlier
test. Thus, he would also consider the possible bias of the
estimate and its variance, taking proper account of the
use of the outlier test. If the sample data, subsequent to
an outlier test, are to be used to test hypotheses about a
population parameter, then he is interested not only in
a criterion for an outlier but also in the power of sub-
sequent tests of hypotheses.

Tests for outliers generally have one of the following
objectives:

1. To prune the observations prior to analysis (re-
jection of outliers).

2. To ascertain that outliers are present, indicating a
need for reexamination of the data generation.

3. To pinpoint observations that may be of special
interest just because they are extremes.

We shall be concerned with the first type of test.

The classical method of handling the problem of
detecting a point outlier is to assume that the sample
observations are of a normally distributed random
variable, to devise an appropriate outlier test statistic
sensitive to the kind of wildness envisioned, to derive the
distribution of this test statistic under the null hypothesis
that all observations come from the same normal popu-
lation, and then to reject the hypothesis if the calculated
test statistic for it is unlikely to have occurred in random
sampling. The usual test statistic is based on the idea that
the analyst can look at the sample results of an experi-
ment and note that he has a discordant observation. The
test statistic, referred to as the extreme deviate statistic,
involves the difference between the extreme value and
the sample mean value and either the ensemble standard
deviation or an estimate of it obtained from the sample
at hand and/or from an independent sample. The theory
and practice of the rejection of outliers are not firmly
resolved and, to quote Gumbel: ¥

The rejection of outliers on a purely statistical basis is
and remains a dangerous procedure. Its very existence
may be proof that the underlying population is, in
reality, not what is was assumed to be.

1 E. J. Gumbel, Technometrics 2, 165, 1960.
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We shall follow Anscombet in the use of test rules.
Given a sample of observations Xy, X;, ..., X, (n = 3),
which is assumed to be a random sample of a normal
random variable X with the parameters uy and o%, we

compute
Yi-:Xi—X— i=1,2,...,n

where X = >7_; Xi/n. If asingle X, is omitted, the sample
average of the remaining observations is

SEHox-Lo a1 s
v v
j=1
7#i
If several observations are omitted, X;, X5, ..., X, the
sample average is
1\—,_(Y1+Y2+'+ YT) (3.8'2)

n-—r

If the subscript M is used to designate the observation
which has the greatest residual, Y, = X, — X, Ans-
combe suggests the following rule (for the case in which
o% is unknown). For a given c, reject Xy if | Y| > csx.
Otherwise, do not reject X,. For large samples, if X}, is
rejected, the reduced sample is treated as a new sample
that can be subjected to further analysis. Each time, uy
is estimated from the observations retained after deleting
Xy. The ¢ can change with sample size, and Anscombe
gives ¢ implicitly in terms of ¢:

1

r[ncz(v + vy — 1)]'/z

(vo+v—-1) ~
W + vg — 1) e (3.8-3)

1-=

and explicitly by the following approximate relation in
terms of the F distribution:

€R (E)/(l + [GF, _iFl—_‘i)/(v o)l

where v = n — | and v, is any other additional degrees
of freedom which accompany the estimate of o¢% other
than from the sample of size n. (The positive square
root is taken for c.)

The test is carried out, using Equation 3.8-4, as
follows. Multiply the allowable fractional increase in
o% if no rejection is to take place (the “premium”) by
v/n. Denote this product by ¢, and find the corresponding
upper percentage point of the variance ratio, F;_,, for
3 and v + v, — 1 degrees of freedom. Calculate ¢ from
Equation 3.8-4 and carry out the test for X,. The
“premium” depends on how much one fears spurious
observations, but some small fractional increase in ¢%
should be acceptable, say 0.02. As an example, if n = 4,
v =13, and (v/n) = 0.75, for a “premium” of 0.02,

)%O&M

1 F. J. Anscombe, Technometrics 2, 123, 1960.

q = (0.02)(0.75) = 0.05. We look up F; _¢.¢5 for 3 and 3
degrees of freedom, respectively. Fy_, = 9.28. Then

31;'0.95
I+ [BFo.e5 — 1/(3)]

Xy would be rejected if | ¥y| > 0.831sy.
Outliers in regression analysis will be treated in
Chapters 4 and 5.

%
c=mﬁw( ) ~ 0.831

Example 3.8-1 Test of an Qutlier

In the series

X1 Xa X3 X4 Xs
23.2 234 235 241 255

ascertain whether or not x5 is an outlier to be deleted from
the sample.

Solution:

Compute X = 23.9 and then Y; = X, — X =255 —
239 =1.6; sx = 0.77. For « =0.05, v =4, and n = 5,
from Equation 3.8-3 we compute by trial and error that

5¢2(3 %
—(;1)67 = 2.776°
3(:- %)

and ¢ = 1.49. The test is
|1.6] > (1.49)(0.77) = 1.05

and observation X is retained.

3.9 PROCESS CONTROL CHARTS

Hypothesis testing can be applied in a quite simple and
yet practical way to assist in process quality control.
Control charts are a graphical means of analysis which
have proved easy to maintain and use under plant
operating conditions. Figure 3.9-1 illustrates a typical
process control chart based on the sample mean. The
general procedure in preparing a control chart is: (1) to
collect a sample, (2) to compute an appropriate statistic
such as the sample mean, the range, or the cumulative
sum, and (3) to plot the statistic on a chart as a function
of sample sequence or time.

Superimposed on the chart in some manner are the

Upper control limit

<l

T T T T L1
Time (or sample number)

FIGURE 3.9-1 A typical process quality control chart.



rules for making a decision as to whether the process
variable is “in control” or not. Figure 3.9-1 illustrates an
upper control limit and a lower control limit. As long as
the statistic being plotted falls within these two bounds,
the process is deemed to be in control. The decision
rules used to fix the lines can be based on an assumed
distribution for the observed random variable, usually
the normal distribution, or they can be based on a
nonparametric analysis as discussed in Section 3.7.

If the statistic being plotted exceeds a control limit,
the decision is reached that the process is “not in
(statistical) control”’; the breaking out indicates abnormal
performance. Even the accumulation of an undue num-
ber of points on one side of the central line can be inter-
preted as a shift of some type in the process. Control
charts can be used to provide.

1. Both a signal that a change has occurred in the
process and an estimate of the amount of change re-
quired for corrective action.

2. Solely a signal that a change has occurred in the
process so that the operator can be made aware that the
process needs his attention.

3. Estimates of the times in the past during which
changes in the process have occurred and thus assist in
assigning causes for the changes.

4. Measures of the quality of output for classification
by period.

Because of the way control limits are placed in practice
and because of the lack of information about the prob-
ability distribution of the random variable being
measured, exact probability statements of the type used
in Sections 3.3 and 3.4 are usually avoided. Control
charts are especially valuable when used as simple
graphical aids ‘to let the process operator, who is un-
trained in statistical techniques, get a mental picture of
the process history and interpret whether or not the
quality of the product is at a satisfactory level.

The use of process control charts in the process

TaBLE 3.9-1
CHANGE IN A PROCESS *
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industries has not been as fruitful as, for example, in
the automotive parts industry because the goal in the
former is often not to control an output variable, such
as the yield, to within a given range but to maximize the
variable. Improvement is synonymous with optimization.
In traditional applications the goal is to produce a
product with increased uniformity. A second difficulty in
applying process control charts in the process industries
is that the assignment of the causes of an *“out of control”
process is never obvious except for aberrant values which
may be caused by improper feed of raw materials,
improper setting of control variables, equipment failure,
failure to follow the proper operating instructions, etc.
In any case, such causes are usually corrected before
their effects are detected on control charts. But a shift
in level and/or cyclical fluctuations in a process are
difficult to ascribe to assignable causes, some of which
may be unobservable variables or in the surrounding
environmental conditions.

Several kinds of control charts will be briefly described
in this section, each of them based on the plotting of a
different statistic:

1. Shewhart control charts (X, R, and s charts).

2. Geometric moving average (exponentially weighted
moving average) charts.

3. Cumulative sum charts.

4. Multivariate control charts.

Many other types of charts are equally useful, and these
are described in the references at the end of this chapter.
Table 3.9-1 characterizes the relative effectiveness of four
types of control charts in detecting various changes in
the process.

Designing a process control chart, that is establishing
the central line and control limits, requires some thought
and investigation into the process itself. We shall assume
that the process and sampling points are clearly defined,
lag and dead times have been taken into account, and a
suitable sampling method and sampling interval have

RELATIVE EFFECTIVENESS OF CONTROL CHARTS IN DETECTING A

Control Chart

Standard  Cumulative

Mean Range Deviation Sum
Cause of Change X (R) (s) (CS)
Gross error (blunder) 1 2 — 3
Shift in average 2 — 3 1
Shift in variability — 1 — —
Slow fluctuation (trend) 2 — — 1
Rapid fluctuation (cycle) — 1 2 —

* 1 = most useful, 2 = next best, 3 = least useful, and — = not appropriate.
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been selected. Then the sampling procedure itself must
be investigated so that the precision of the data to be
used is known (and is at an acceptably low level). Large
samples make for more sensitive tests, but the time
element may be such that the sample can consist only of
a single reading, say from a gas chromatograph. The
economics of sampling, cost of off-specification material,
cost of taking a corrective action, etc., are vital con-
siderations in designing a control chart but factors
beyond our scope here.

3.9-1 Shewhart Control Charts

The Shewhart control chart for X was one of the initial
tools of statistical quality control.f A sample of a
presumed normal random variable (Burr } indicates that
the effect of nonnormality is slight and provides tables
of compensating coefficients, if required) with a mean of
nx and a variance of o% is taken, X is computed, and
then X is plotted as illustrated in Figure 3.9-1. For a
selected value of «, often set at 0.0027 so that 1 — o =
0.9973, upper and lower control limits are calculated,
using oy or its estimated value, and placed on the chart
about the known or estimated value of py. When a
sample average falls outside the control limits, one
concludes that the process is “out of control.” One
important decision which must be made is what value of
a to choose; the narrower the band of control limits, the
more frequent the “out of control” signals will be when
unwarranted. Another important decision is what sample

1 W. A. Shewhart, Economic Control of Quality of Manufactured
Product, D. Van Nostrand, Princeton, N.J., 1931,
1 1. W. Burr, Ind. Qual. Control 23, 563, 1967.

Gas
consumption

1000
995 .

9.0~ *% et et 2as ® o

size, n, to use. A common value of n is 5. A second
statistic which usually accompanies the X plot is R, the
range of X in the sample. The arithmetic mean of the
ranges, R, can be used as an estimate of the sample
dispersion, and the arithmetic mean of the X’s, X, can
be used to estimate py.

The range is a somewhat more convenient measure of
dispersion to calculate than the standard deviation. The
advantage of plotting the range as well as X on control
charts is that abnormal variations are more easily
detected. The range is a rough measure of the “rate of
change” of the variable being observed. A point out of
control on the range chart, when the mean is still within
the control limits, sounds the alarm well in advance of a
change in the mean.

If there is no damage or cost when one of the two
control limits is exceeded, but if the opposite is true if
the other control limit is exceeded, the mean of the
process can be shifted so that the important limit is
farther from the mean and the other limit is ignored. If
one of the limits turns out to be greater than the physical
limit of the process, for example, a value in percent less
than 0 or greater than 100, the control limit is usually
made to coincide with the physical limit.

Figure 3.9-2 illustrates a process control chart in
which X and R are plotted together. The 7:30 a.m.
range is out of control, indicating that the decrease in
yield is at a too rapid rate and leading to an out of
control condition on X by 8:30 a.m. If the reason for
the change is known, such as a previous control valve or
temperature adjustment, then no action is required. But
if the cause is unknown, deciding from the chart what

Upper control limit

85 o e e -

98.0 |-
975

Lower control limit

97.0
10}

R Example of
08 leading
06
04}~

021~

Upper control limit

ool Irllhtlllrllﬂlrrlhru

T
79111 357 911 7
a.m p.m. a.m.
Time

FIGURE 3.9-2 X and R control charts (lower control limit on range is not shown).




variable to adjust and how much action is required is
not always easy.

If the average range R is employed to estimate the
variance of the statistic being plotted, which in turn is
used to establish the control limits, special tables have
been prepared, such as Table 3.9-2 (for « = 0.0027),
that tabulate the proper constant 4, by which to multiply
R in order to calculate the upper and lower (symmetric)
control limits. 4, is an appropriate constant based on the
distribution of (X — X)/R. When the subgroup size # is
5, A, = 0.577; the control limits are then set at X + 4, R.
The null hypothesis for the test being applied on the
control chart is that the expected value of X is a specified
value, po.
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Unfortunately, X and A4,R are not very accurate
estimates of ux and 3og unless the number of successive
samples used to obtain these estimates is quite large, at
least 25. Thus, when only a small number of subgroups
has been collected, X + 4,R may differ greatly from
px + 3oz. One consequence of this difference is that
more than 0.27 percent of the future values of X may
fall outside of X + AR, even when the process is in
control. Table 3.9-3 indicates the probability, assuming
the process is in control, that a randomly selected X will
fall outside the limits X + 0.577R based on m samples,
each of size n = 5.

Table 3.9-4 gives values of 4, for a sample of n = §
for various significance levels, «, for an increasing

TABLE 3.9-2 FACTORS FOR COMPUTING CONTROL CHART LINES * (¢ = 0.0027)

Chart for Averages

Chart for Standard Deviations

Chart for Ranges

Factors for Control Factors for

Factors for Control

Factors for Factors for Control

Sample .y . . : X .
Size Limits Central Line Limits Central Line Limits
n A Ao A1 Az Co I/Cz Bl Bz B3 B4 dz l/dz D1 Dz D3 D4
2 2.121 3.760 3.760 1.880 0.5642 1.7725 0 1.843 0 3.267 1.128 0.8862 0 3.686 0 3.267
3 1.732 3.070 2.394 1.023 0.7236 1.3820 O 1.858 0 2.568 1.693 0.5908 0 4358 0 2575
4 1.500 2.914 1.880 0.729 0.7979 1.2533 0 1.808 0 2.266 2.059 0.4857 0 4.698 0 2.282
5 1.342 2.884 1.596 0.577 0.8407 1.1894 0 1.756 0 2.089 2.326 0.4299 0 4918 0 2.115
6 1.225 2.899 1.410 0.483 0.8686 1.1512 0.026 1.711 0.030 1.970 2.534 0.3946 0 5.078 0 2.004
7 1.134 2,935 1.277 0.419 0.8882 1.1259 0.105 1.672 0.118 1.882 2.704 0.3698 0.205 5.203 0.076 1.924
8 1.061 2.980 1.175 0.373 0.9027 1.1078 0.167 1.638 0.185 1.815 2.847 0.3512 0.387 5.307 0.136 1.864
9 1.000 3.030 1.094 0.337 0.9139 1.0942 0.219 1.609 0.239 1.761 2.970 0.3367 0.546 5.394 0.184 1.816
10 0.949 3.085 1.028 0.308 0.9227 1.0837 0.262 1.584 0.284 1.716 3.078 0.3249 0.687 5.469 0.223 1.777
11 0.905 3.136 0.973 0.285 '0.9300 1.0753 0.299 1.561 0.321 1.679 3.173 0.3152 0.812 5.534 0.256 1.744
12 0.866 3.189 0.925 0.266 0.9359 1.0684 0.331 1.541 0.354 1.646 3.258 0.3069 0.924 5.592 0.284 1.716
13 0.832 3.242 0.884 0.249 0.9410 1.0627 0.359 1.523 0.382 1.618 3.336 0.2998 1.026 5.646 0.308 1.692
14 0.802 3.295 0.848 0.235 0.9453 1.0579 0.384 1.507 0.406 1.594 3.407 0.2935 1.121 5.693 0.329 1.671
15 0.775 3.347 0.816 0.223 0.9490 1.0537 0.406 1.492 0.428 1.572 3.472 0.2880 1.207 5.737 0.348 1.652
16 0.750 3.398 0.788 0.212 0.9523 1.0501 0.427 1.478 0.448 1.552 3.532 0.2831 1.285 5.779 0.364 1.636
17 0.723 3.448 0.762 0.203 0.9551 1.0470 0.445 1.465 0.466 1.534 3.588 0.2787 1.359 5.817 0.379 1.621
18 0.707 3.497 0.738 0.194 0.9576 1.0442 0.461 1.454 0.482 1.518 3.640 0.2747 1.426 5.854 0.392 1.608
19 0.688 3.545 0.717 0.187 0.9599 1.0418 0.477 1.443 0.497 1.503 3.689 0.2711 1.490 5.888 0.404 1.596
20 0.671 3.592 0.697 0.180 0.9619 1.0396 0.491 1.433 0.510 1.490 3.735 0.2677 1.548 5.922 0.414 1.586
21 0.655 3.639 0.679 0.173 0.9638 1.0376 0.504 1.424 1.523 1.477 3.778 0.2647 1.606 5.950 0.425 1.575
22 0.640 3.684 0.662 0.167 0.9655 1.0358 0.516 1.415 0.534 1.466 3.819 0.2618 1.659 5.979 0.434 1.566
23 0.626 3.729 0.647 0.162 0.9670 1.0342 0.527 1.407 0.545 1.455 3.858 0.2592 1.710 6.006 0.443 1.557
24 0.612 3.773 0.632 0.157 0.9684 1.0327 0.538 1.399 0.555 1.445 3.895 0.2567 1.759 6.031 0.452 1.548
25 0.600 3.816 0.619 0.153 0.9696 1.0313 0.548 1.392 0.565 1.435 3.931 0.2544 1.804 6.058 0.459 1.541

3 3
>25 —= — .000 .000 .
v o 1.0000 1.0000 ’r» T b by

* Use explained in Table 3.9-5. The relation 4, = 3Vn d; holds. Adapted with permission of the American Society for Testing

Materials from ASTM Manual on Quality Control of Materials, Philadelphia, Jan. 1951, p. 115.
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TABLE 3.9-3 EFFECT OF NUMBER OF TABLE 3.9-4 VALUE OF A3 FOR VARIOUS SIGNIFICANCE LEVELS
SAMPLES ON FRACTION OF X VALUES (SAMPLE SIZE = 5)
FALLING OUTSIDE CONTROL LIMITS (SAMPLE
SIZE = 5)
o
m 0.001 0.0027  0.01 0.025 0.05

Probability of an X Falling

m Outside Control Limits :
1 2.27 1.74 1.21 0.911 0.720
5 © 0 0.0120 2 1.19 1.00 0.781 0.637 0.532
10 0.0067 3 0960  0.834  0.673 0562 0477
15 0.0051 4 0.864 0.760 0.624  0.527 0.451
20 0.0044 5 0.811 0.720 0.596 0.507 0.436
25 0.0040 6 0.779 0.695 0.579 0.495 0.426
50 0.0033 7 0.756 0.677 0.564 0.485 0418
100 0.0030 8 0.738 0.662 0.556  0.477 0412
0 0.0027 9 0.729 0.655 0.551 0.474 0.410
10 0.719 0.647 0.545 0470  0.407
number of samples; methods of calculating these values 15 0.687  0.621 0527 0455 0.396
are described by Hillier.t 20 0.672 0.609 0.518 0.449  0.391
Since the value of A, decreases as the number of sub- 25 0.663 0.602 0513 0445 0.387
groups used for calculating X and R increases, one can >0 0.649 0.590 0.505 0439 0383
? 100 0.640 0.583 0.500 0.434  0.379
1 F. S. Hillier, Stanford Univ. Tech. Rept. 63, Sept. 4, 1962; © 0.633 0.577 0.495 0.431 0.377
Stanford Univ. Tech. Rept. 83, Oct. 4, 1965.
TABLE 3.9-5 CALCULATION OF UPPER AND LOWER CONTROL LIMITS
Sample Statistic Lower Control* Upper Control
Controlled Central Line Limit (LCL) Limit (UCL) Sample size

| px and ox Specified J

Mean X hx px — A ux + A n
Range R d0x Dyox Dyox Small, preferably
X 10 or fewer
n n n
Standard O'XCZA/m GxB1A/n 1 GXBzA/n 1 n

deviation sx

l #x and ox Unknown

Mean X X X — A:R X + AR Small, preferably
10 or fewer
Mean X X X - ExAlA/n i X+ SxAl,/n — 1 25 or fewer,.
n n constant size
Mean X X 7o 3 74 3= Sample sizes =25,
Vi 7 may vary slightly
Sum S S S — AR S + AoR Small, preferably
~ ~ 10 or fewer
Range R R D3R D.R Small, preferably
10 or fewer
Standard Sx Bssx Bisx 25 or fewer,
deviation sx constant size
Standard Sx §x — 35x 5y + o Sample sizes > 25,
V2h V27 may vary slightly

deviation sx

* 7 is the average sample size for variable sample sizes.



have tighter control limits, and certainly more up-to-
date ones, by computing new control limits after addi-
tional samples are obtained. But it is undesirable, both
from the standpoint of the effort involved and the
psychological impact on the workers affected by the
control charts, to revise the control limits too frequently.
When control limits are revised, an X may at one time
lie inside the control limits and :later on outside them.
Because the control limits are established for a process
in control, any values of X and its related R should be
deleted from the calculations if they prove subsequently
to be outside the revised control limits; one should use
the number of subgroups “in control,” not the total
number of subgroups, for the value of m when finding
the value of 4, from Table 3.9-4,

Other types of control charts besides the X and R
charts can be prepared. Table 3.9-5 summarizes some of
these and their related control limits. The various con-
stants are tabulated in Table 3.9-2 (for « = 0.0027). In
Table 3.9-5 the sum of the kth sample is S, = >7%, X,
and the notation §x stands for the arithmetic mean of the
standard deviations of the samples:

5 :nlsl +n252+"'+nké‘k
x n1+n2+"'+nk;

Control charts also can be based on runs of specific
length above or below the central line or on the number
of runs in a given series of samples. Nonparametric tests,
such as were described in Section 3.7, are the bases of
the decisions to be made.

Example 3.9-1 Establishing X and R Chart Contrel Limits

Table E3.9-1 lists the sample means for the percentage
yields from a continuous reactor. Determine the central line
and upper and lower control limits for an X and an R chart

TABLE E3.9-2 DATA FOR THE X CHART
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TaABLE E3.9-1
Sample Range Sample Range
Sample Mean X R Sample Mean X R
1 64.97 9.8 14 66.60 0.6
2 64.60 9.8 15 66.12 6.3
3 64.12 8.4 16 63.22 7.5
4 68.52 3.9 17 62.85 6.7
5 68.35 7.6 18 62.37 4.9
6 67.87 8.7 19 61.97 6.7
7 64.97 0.1 20 61.60 9.9
8 64.60 9.7 21 61.12 6.9
9 64.12 7.7 22 65.72 0.1
10 63.22 7.5 23 65.35 8.3
11 62.85 1.2 24 64.87 5.2
12 62.37 9.8 25 61.97 3.2
13 66.97 6.4

from Table 3.9-2. Each value of X and R in the table has
been prepared from three analyses.

Solution:

_}: X = 1611.29 Z R, = 156.9

X = 64.452 R = 6.28

The control limits for the mean are: upper, 64.452 +
1.023(6.28); and lower, 64.452 — 1.023(6.28). The value of
A, = 1.023 was taken from Table 3.9-2 for » = 3. The
control limits for the range are:

D3R = (0)(6.28) = 0
D4R = 2.575(6.28) = 16.17

Example 3.9-2 Initiation of Control Charts

This example illustrates the initiation of X and R control
charts for the data of Example 3.9-1, except that we assume
for the purposes of illustration that the sample size is 5 in

Sample LCL, UCL,
Number X R D¢ R m Ao* X - AR X + AR
1 68.2 7
2 66.2 3
3 72.4 6
4 67.8 2
5 67.0 8 68.32 5.20 5 0.720 64.6 72.1
Revised 67.30 5.00 4 0.760 63.5 71.1
6 66.8 4 63.5 71.1
7 67.0 4 63.5 71.1
8 65.8 7 63.5 71.1
9 62.6 8 63.5 71.1
10 69.0 4 63.5 71.1
11 67.6 8 63.5 71.1
12 66.0 9 67.14 10 0.647 63.8 70.8

5.60

* Values taken from Table 3.9-4; the value from Table 3.9-2 would be 0.577.
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order to make use of Table 3.9-4. To quickly obtain informa-
tion for the X chart, it might be decided to initiate use of the
chart as soon as possible by setting control limits based on
the first five initial samples. It was decided to use the usual
value of ¢ = 0.0027. Table E3.9-2 lists the values of 4, and
the control limits after five samples.

Notice that the value of X for the third sample exceeded
the upper control limit after the limit had been established
based on the first five samples; consequently the sample
was excluded from all subsequent calculations of X and of
the control limits. This exclusion resulted in a revised X
and control limits based on four samples. Similarly, when
X for the ninth sample fell below the lower control limit,
the sample was excluded from subsequent calculations.
Investigation of the process conditions for the third and
ninth subgroup revealed that the process was susceptible to
temporary shifts in the true process average. Corrective
action removed the causes of these shifts. At the end of ten
valid samples, the control limits were recalculated as
indicated on the last line of Table E3.9-2.

Example 3.9-3 Corrective Action Based on Control Charts

This example is taken from Breunigt and illustrates the
usefulness of control charts in pointing out undesirable
process conditions with subsequent detection of the proper
corrective action. For some time management had suspected
that an unsatisfactory situation existed in the production of
Vitamin A in certain multiple vitamin products. But until
the dramatic evidence of control charts was available, little
corrective action had been taken. Because the determination
of Vitamin A in the control laboratory was one of the few
instances where duplicate determinations were routinely
made, an estimate of laboratory variability was available.
Although there may be some question as to the propriety
of judging lot-to-lot variation against laboratory precision
alone, this was the best available -estimate of within-lot
variation. When X charts based upon laboratory variability
were prepared, the sample means were found to fluctuate
so widely that very few were in control as evidenced by
Figure E3.9-3a¢ for Product H and Figure E3.9-3¢ for
Product M. An investigation was made into the raw material-
handling procedures as a first step.

Vitamin A, supplied in the form of acetate or palmitate
salts, is quite susceptible to atmospheric oxidation so that
an excess amount is normally included in the formulation.
Geometric configuration of the side chain of the Vitamin
A molecule engenders cis and trans isomers. Originally the
trans isomer predominates, but in time it is partially
converted by oxidation to the cis isomer until an equilibrium
mixture is reached consisting of approximately 66 percent
trans and 33 percent cis. Although there appears to be some
recent evidence to the contrary, the assumption has long
been made that there is relatively little physiological
difference in response to the two isomers. The analytical
determination of Vitamin A was based upon an ultra-violet
extinction procedure which assumed that only the trans
isomer was present.

T H. L. Breunig, Ind. Qual. Control 21, (2), 79, 1964.

The investigation revealed that Vitamin A palmitate, for
instance, was purchased in bulk form in 50-kilogram con-
tainers as a semisolid; an assay was made upon arrival. It
was purchased from several sources, including brokers who
may have pooled batches from still other sources. The
potency specification was that it contain ““ 70 percent activity
by the U.V. assay. Based upon the original determined
activity, Vitamin A was introduced into the manufacturing

 process at the appropriate potency level.

The 50-kilogram containers were stored in a cold room.
Requisitions were filled by removing the drum from the
chill room, warming, dipping out the proper amount to fill
the order, and returning the container to the cold room.
Obviously, as this procedure was repeated several times,
oxidation was taking place. Furthermore, those drums which
contained an insufficient amount of material for filling
requisitions were stored until several had accumulated and
the contents were then mixed together. Thus, constantly
shifting isomer ratios were experienced which showed up in
the high variability of the finished product assay values on
the control charts. There also appeared to be evidence of
additional potency loss that was not explained by the
cis-trans isomerization.

The first attack upon the problem included consultation
by the purchasing department with certain reliable suppliers
who agreed to provide Vitamin A as “prepackaged”
material at no extra cost. A scheme was worked out whereby
all manufacturing requisitions could be filled by com-
binations of three standard package sizes‘which were sealed
under nitrogen in the plant of the supplier and not opened
until needed, although one package of each shipment was
checked for identity. This procedure led to a strong de-
pendence upon “vendor certification” of potency. At first
the revised packaging appeared to give satisfactory results,
but, as is noted in Figures E3.9-36 and ¢ for Product H,
variation of the sources of material was not the sole diffi-
culty. Purchase of the material was being made on a
‘100 percent trans®’ level, but obviously some shifting to
cis was still taking place.

The next step in the attempt to attain quality control was
directed to the problem of the cis-trans isomer ratio. The
suppliers agreed to provide an equilibrium mixture of 66
percent trans- 33 percent cis in their prepackaged material.
The arrow in Figure E3.9-3¢ for Product H indicates when
the first lots containing ““preisomerized” Vitamin A were
received for analysis. At this time a significant upward shift
in Vitamin A content occurred, so new control had to be
established as shown in Figure E3.9-3d and f for Product H
and Product M, respectively. The process control charts,
after the corrective action described above was taken,
indicated far more uniform control of the Vitamin A
content of two typical vitamin products. Not only were -
nearly all the lot means in control but so also were the
within-lot and between-lot ranges.

3.9-2 Acceptance Control Charts

A discussion of sampling plans is beyond our scope
here. In acceptance sampling some characteristic of the




PROCESS CONTROL CHARTS

Product H (Label Claim 600 u)
After prepackaging

Prior to process study
1251 (4
725 |- (@) -
E ' 675
S N ———— —— f¥—/\—— 675 X —_ 661
X N oA ———— X 664.5 650 |— A A
650 = . 654 < v 639
625 |— 5= - - —1 617
600 — 600 -
51—
— o= L ______
50 R 5
RS- ——ayf—5—1r—=5-1 Bley o 1 1],
0 t ) T T—1 5.5 UJ lelee, .19 B el
[ T 11 [T TT 1] FTrTr T T T T
123456789 101112131415 12 345678 9101112131415
“Preisomerization” begun Process after study
(c) ’ L (d
Preisomerization begun 725 - i)_ ______________ 7086
700 700 = r\ ~ i
675 -, A 664.7
61 X v \ /.,
X 650 SIET T —M—— — 6608
639
625 — 625 —
————————————————— 612
600 [— 600 |—
e 41
R R 25_‘ |‘.||. o .l.......‘. tH ¢ 135
719111113]15]17]1921]23 7 01357911131517192123252729
24681012141618202224262830 4 6 8 101214 16 18 20 22 24 26 28 30
Product M (Label Claim 10,000 u)
Prior to process study Process after study

(e) 12,000 (— ()
11,500 11,500 [~

N e Y I 1) o 12315
L f\‘\ / s AN AN~ 11766
% s ————N\——————— afrei 5= VT YV AN/

10000 £ ————— \-7*«;4— —~{ 10078 oo T T T T T T T .6

9,500 — 9,500 |~
1500 -

1000 [~ P 1013
R W~=————""——————— ] 523 500 f : + 310
0 == 4 = 4 180 0 T, of o n'”o.!n' |
T T T T 1|3|5|7|9I11I13I15|17I19|21I23|25I27I29
123 45678 9101112131415 2 4 6 8 10121416 1820 22 24 26 28 30

Ficure E3.9-3 Charts at several stages of investigation into two products.
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a: the producer’s risk

-

| B: the tonsumer’s risk

o

Probability of acceptance of lot

Fraction defective
FIGURE 3.9-3 Operating characteristic curve for a sampling plan.

product is measured, a random sample of size n is
selected according to some sampling plan, the sample
mean and standard deviation are computed, and a
significance test is carried out for a null hypothesis.
Associated with the null hypothesis are alternate hy-
potheses and errors of the first and second kind. The
consumer who buys the product sets a limit below which
the product is unsatisfactory for his use, and he is the
one who determines the alternate hypothesis. Figure
3.9-3 illustrates the operating characteristic curve of a
typical sampling plan. For the producer, the null hy-
pothesis H, is that the product is acceptable, and even-if
he makes an acceptable product, 100« percent of it will
be deemed unacceptable because the process sample
statistic is stochastic in nature. In this sense, « is termed
the producer’s risk, and the related level of the process
fraction defective is termed the acceptable quality level
(AQL). If the producer makes some 1008 percent de-
fective product, which is not detected as being defective
because of the stochastic nature of the sample statistic,
the probability 8 is called the consumer’s risk, and the
alternate hypothesis, H,, establishes a rejectable quality
level (RQL).

In designing an acceptance control chart, the accept-
able process level (APL) is based on « and the rejectable
process level (RPL) is based on B. As long as the product
statistic being monitored lies between the APL and the
RPL, the process is deemed to be in control. Note that
the control limits depend on «, B, and n. Freundt gave
some examples of acceptance control charts.

3.9-3 Geometric Moving Average Control Chart

.The geometric moving average control chart,{ also
known as the exponentially weighted moving average
control chart, and the cumulative sum chart (to be
described in Section 3.9-4), proves to be of most use
where the specifications must be tight so that a sensitive
control scheme is needed. These techniques combine
information from past samples with that from the current

+ R. A. Freund, Ind. Qual. Control 14, 13, Oct. 1957.
I S. W. Roberts, Technometrics 1, 239, 1959.

one and, in effect, make use of more information than
do the Shewhart charts with the result that they have the
ability to detect a smaller shift in the process level. Of
course, the disadvantage is that the old information
submerges possible small shifts in the process level
signalled only by the new information. The geometric
(exponentially) weighted moving average chart gives
more weight to recent measurements than to old ones by
computing a weighted linear combination of a sample
statistic such as X. The most recent value is assigned a
weight of w, with 0 < w < 1, and the older weighted
statistic is assigned a weight of 1 — w. Thus, if:

it

Z¥ = weighted average of the sample statistic after
sample k&
Z,. = value of the kth sample statistic

k = current measurement; (k — 1) = next most
recent measurement, etc.; 0 < i < k

= central line on the control chart

Z¥ =27
ZF = wZ, + (1 — wZi
Z¥ =wZy + (1 — w)Z¥

ZF = w[z (- w)"Z,c_,] + (0 — wrzZE (39-1)

i=0

If w = 1, all the weight is placed on the current data, and
a Shewhart type chart is obtained. If w = 0, no weight is
given to the current data, so in effect no current sample
need be taken! -

It can be shown that the expected value of Z}¥, if
Z, =X, is

EZE) = po

and the variance of Zj¥ is

w
2—w

Var {Z#) = o3l — (I — w)¥]

As k becomes large,

w
2—w

Var {Z}} = o}

Control limits can be drawn on a typical chart at appro-
priate distances from Z. The exponentially weighted
moving average chart is compared with other control
charts in Figure 3.9-7.

3.9-4 Cumulative Sum Control Charts

Cumulative sum control charts, as the name indicates
make use of cumulative sums of a random variable or a




function of a random variable starting from a given
reference time. For example, the statistic summed may

be:

1. The variable itself.

2. The difference between the measured value of the
variable and its expected value.

3. The difference between the measured value of the
variable and a target value.

4. Successive differences between values of a variable
or absolute differences.

5. The sample mean.

6. The range.

Table 3.9-6 lists relations for calculating the statistic
for typical cumulative sum charts; each sum is based on
a sample of size n.

TABLE 3.9-6 COMPUTATIONAL RELATIONS FOR CUMULATIVE
SUM CHARTS

Cumulative Sum

D (X
i=1
Absolute value of a deviation n
from its expected absolute ; [[Xi— X|-&{|X:— X|}]
value i1

Type of Chart

Deviation from reference
(target) value, A

n
Successive differences Z (D); Di=(X;—X;-1)

- i=1

Absolute value of successive n
differences from the 5 [| Dy — & Dy}

expected absolute value i=1

Range of two successive .
pairs of observations > [Ri — {R}]
Aed
from the expected value i=1 .

The major advantage of the cumulative sum charts,
as contrasted with the Shewhart charts, is that they are
more sensitive to moderate deviations in the process
statistic of interest from its expected value; they
“damp out” random noise while “amplifying” true
process changes. True, the Shewhart charts can be made
more sensitive by using, in addition to the control limits
given in Table 3.9-5 (for one statistic), one or more of the
following criteria:t

1. “Warning™ lines within the control limits and
““action” lines at the usual control limits.
2. Runs of the statistic, such as three consecutive

1 G. P. Moore, Biometrica 45, 89, 1958; E. S. Page, Biometrica
42, 243, 1955; and H. Weiler, J. Amer. Stat. Assn. 48, 816, 1953
and 49, 298, 1954.

PROCESS CONTROL CHARTS 87

points outside control lines placed at + o or seven con-
secutive points on one side of the central line.

These alternate decision rules make use of some of the
extra information retained in a control chart beyond that
provided by the current sample. Cumulative sum charts
also take into account more than the current sample;
consequently, substantially more information can be
tied into the decision rules.

Not only is there a difference in the type of visual
record which appears on a cumulative sum chart, but
the criteria for taking action are different. Control
limits for a cumulative sum chart evolve from the
distribution of the statistic being plotted; however, the
control limits are not drawn on the chart but are provided
through use of a special template or overlay mask. What
is of interest in the cumulative sum chart is not the
absolute value of the sum but the slope of the curve
comprised of successive (recent) points. Each type of chart
requires a different template to indicate the degree of
slope.

Figure 3.9-4 illustrates a typical template together with
the rules for its construction and use based on the distri-
bution of the statistics being plotted, assuming the
random variable was normal. After each point is plotted,
the reference point P on the mask is placed over this
most recent point. The observer then looks to see
whether a previously plotted point appears (or disappears
if the mask is not transparent) beneath the mask when
the mask is correctly positioned for a given decision
rule. (Note the analogy with the Wald sequential test of
Section 3.4-1.) When such an event occurs, the process
is said to be “out of control.” For ¥-shaped- masks, it is
suggested that the visual impact of a change is optimal
when one horizontal step is about equal to a 2o vertical
step.f

Since a V-shaped mask can be designed by establishing
just two parameters, 6, the half-angle of the V, and d,
the lead length of the V, as indicated in Figure 3.9-4,
the question naturally arises as to what interpretation can
be given to suitable combinations of § and d in terms of
the power of the decision rules. To answer this question,
we must first discuss the topic of average run length.
The average run length (ARL) refers to the number of
samples collected before an action signal occurs. ARL is
a measure of how frequently one must interfere with a
process if one follows the appropriate decision rules
based on a selected «. Because the average run length is
a random variable whose distribution depends on the
criteria selected for “in control,” in a rough way it is a
measure of the relative efficiency of a control scheme.

To examine in a fair fashion the relative performance
of a Shewhart chart and a cumulative sum chart, suppose
we choose the decision rules for each such that they have

1 E. S. Page, Technometrics 3, 1, 1961.
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FIGURE 3.9-4 Template for cumulative sum control chart. (Rules taken from N. L. Johnson
and F. C. Leone, Ind. Qual. Control 18 (12), 15; 19 (1), 29; 19 (2), 22, 1962.)

exactly the same average run lengths, ARL;, when the
process is in control. A certain step change is next made
in the process level, anywhere from say 0 to 3 standard
deviations from the original level, and the average run
lengths, ARLy;, are subsequently calculated between the
initiation of the change in process level and the detection
of the change.

For the Shewhart chart, the average run length can be

calculated from the following relations:f

1 P. L. Goldsmith and H. Whitfield, Technometrics 3, 1, 1961;

ARLI = é
1
ARLy = T—f

and W. D. Ewan, Technometrics 5, 1, 1963.




for a process change of ko from the target, where 8 =
probability of a point falling inside the control limits
when the process level is off the target (u # p,). Unfor-
tunately, there is no analytical way to calculate ARL;
and ARL;; for cumulative sum charts so that the com-
parisons here have been taken from the results of Gold-
smith and Whitfield who evaluated the two ARL’s by
Monte Carlo simulation on a digital computer.{ Figure
3.9-5 compares the ARLy,’s for four different ARL;’s as
a function of k. One observes that the Shewhart charts
in general are less efficient than the cumulative sum
charts, especially for large values of the parameter ARL,,
i.e., small values of «.

t P .L. Goldsmith and H. Whitfield, Technometrics 3, 1, 1961.
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To return now to the question of the design of V-
shaped masks, one can specify how long an ARL; to
have while in control and how short an ARLy to have
to detect a given size process change. One would like to
specify ARL; to be as long as feasible and ARLy; to be
as short as feasible. (The method of design described
by Johnson and Leone and outlined in Figure 3.9-4 is
based solely on the distribution of the statistic Z, the
cumulative deviation from a target value, and assumes
that the measured variable is a normally distributed
random variable.) The charts in Figure 3.9-6 show the
average run length ARLy after a process change was
introduced of k units of standard deviation. Using the
charts to obtain d and 0 (defined in Figure 3.9-4), it is
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FIGURE 3.9-5 Average run lengths (ARLy;) after a process change was introduced of k units of
the standard deviation until the process change was detected for four different significance levels
(ARL; = 1/a), based on a normal independent variable with a variance of 2.
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FIGURE 3.9-6 Design of ¥ masks using average run lengths.

assumed that the plotting interval on the horizontal axis
for the process statistic is equal to 2o on the vertical axis,
resulting in a 45° angle for the mean path of the process
statistic if the process mean shifts 2o. If the plotting
interval on the horizontal axis is some other multiple,
ga, on the vertical axis, then the values of tan & given for
the chart must be multiplied by 2/q.

One can either pick a d and 6, assume a k, and evaluate
ARLy; from Figure 3.9-6 and ARL; from the following
empirical relation for ARL,; in terms of d and 8

log:o (log;o ARLy) = —0.5244 + 0.03984 + 1.1687 tan 6
+1.2641 (tan 6)(logyo d)

or proceed in the reverse order. Suppose, for example we

want ARL, to be 200 and ARLy; to be 8 for a shift of
one standard deviation in the process mean (k = 1).
From the equation we obtain

0.886 = 0.03984 + 1.1687 tan 6 + 1.2641 tan (6)(logyo d)
=y

From Figure 3.9-6 we find for ARL; = 8andk = 1

d tané &

1 0.61 0.751

2 0.47 0.807

5 0.30 0.813
8 0.24 0.872

e e




PROCESS CONTROL CHARTS 91

Average run length, ARL

AR

| [

RN

LI 1

1 2 3
Displacement of current mean by k standard deviations

1500 T T

XVI
| XIV

I
=]
TTTTTT T

=N
(& X =]
I

Average run length, ARL
E-
S

o
FTTTTT

~
]

l [

Curve d [Tan 6 —
—

X1v 8 0.25 -
XV 8 0.30 —
XVI 8 0.35 -

Lreg ol 1

|

LI

0 1

Displacement of current mean by k standard deviations

FIGURE 3.9-6 (continued)

so that d ~ 8 and tan 6 ~ 0.24 is approximately the
desired design.

Roberts{ compared several types of control charts,
using one or more tests in connection with each chart.
The simulated observations were taken from a table of
normal random variates having an expected value of
zero and a variance of 1. After 100 numbers had been
selected, a constant of 1 was added to all the numbers
commencing with the 10Ist so as to represent a lo
shift in the process mean between the 100th and 101st
observation. Table 3.9-7 lists the equations used in

T S. W. Roberts, Technometrics 8, 411, 1966.

plotting the charts and the tests employed. Figures
3.9-7a-d show that the number of subsequent samples
until corrective action was called for was 19 for most of
the tests.

Below Figure 3.9-7a are tabulated the data for a run
sum test based on where X falls. A run is a sequence of
values of X falling within specified limits or being above
or below a limit. A run terminates when a value of X
falls on the opposite side of the central line. The run
sum is the sum of the scores assigned the plotted values
of X. A two-sided runs test is illustrated underneath
Figure 3.9-7a in which the following values are assigned
to each point above w,
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Band Value Assigned and a similar series of values are assigned for values of

po < Xi < po + o 0 X below u,. The process is deemed out of control when
- the cumulated score reaches a selected value.

Fo + ox < Xy < po + 20z ! To compare the relative effectiveness of each of the

to + 20x < X < po + 3og 2 methods listed in Table 3.9-7, Table 3.9-8 lists the ex-

po+30g < X; <0 3 pected value of the number of samples required after a
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FIGURE E3.9-7 (a) Standard X control chart, () moving average chart, (¢) geometric moving
average chart, and (d) cumulative sum chart. (From S. W. Roberts, Technometrics 8, 412, 1966.)
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Type of Chart

Calculation of Plotted Point

Test Used for Corrective Action

_ _ 1 n
Shewhart X X = ;Z Xy

Shewhart X plus

X, plus run count above or below

X > po £ 3ox

Xi: > po + 3ox plus two-sided runs

runs test : central line test*
. - X 4+ X X -
Moving average X6 == ity + t Aot A X)) > po = A’{X fork =9
k vk
k = min {i, 9} - Aoz
X)) > + ——=fork <9
Ap = 3.0 @ > po + =7

Geometric moving

average
2
* — =
= He W=
A, = 3.0
Cumulative sum Si = (X — po) + Si—1
So = 9,i= 0,...,n

ZF A w_\*
+
T > Mo = raf(z — W)

2 for i large

Point falls outside arms of
V-shaped mask

* Process deemed out of control if one or more of the following occurs: (1) X; > uo + 3ox; (2) X; and either

X,_10r X;_qfall between 2ox and related 3o control levels; (3) X;_7, Xi_s, ..

change in the process variable value has occurred from
Mo to po + kox (where k is a constant) until the shift in
p would be detected. The entries in the table are based on
essentially the same sensitivity for each test in calling
for corrective action in the absence of a shift in the
process mean. Except for small values of k the tests
roughly prove to be equally effective.

TABLE 3.9-8

k
Test or Chart 0 05 10 20 3.0
Shewhart X supplemented by
the two-sided runs test 740 79 19 44 19
Runs sum test 740 50 12 38 24

Moving average for £k = 8 740 40 10 4.6 3.3
Shewhart X supplemented by

moving average for k= 8 740 50 11 3.7 19
Geometric moving average

with w = 0.25 740 40 10 3.5 22
Shewhart X supplemented by

geometric moving average

with w = 0.25 740 S50 12 33 1.7
Cumulative sum of 5 740 34 10 43 29

3.9-5 Control Charts for Several Variables

If two or more variables are observed and a sample
statistic for each variable is plotted on individual control
charts, the process may be termed as being out of control
as soon as one chart shows an out of control condition.

., X; all fall on the same side of po.

But such a decision rule is improper if the variables have
a joint distribution. Suppose that two variables have a
joint normal distribution and that « is selected as 0.05.
If charts plotting the variable itself are separately main-
tained, the probability that both of the variables will
fall within the control limits at the same time would be
(0.95)(0.95) = 0.9025; hence the true Type I error is more
nearly 0.10 instead of 0.05. The true control region is an
ellipse, with all points on the perimeter having equal
probability of occurring, rather than being a square or
a rectangle. If the variables are correlated, the region is
an ellipse rotated so that the major axes are no longer
aligned with the coordinates x; — x,. Figure 4.3-3
illustrates such a region.

To obtain one common statistic calculated from values
of many variables that can be plotted on a control chart,
Jacksont suggested that the statistic 72 be used, where
T? is Hotelling’s T2.} T2 is simply the locus of the ellipse
of the confidence region and, for two jointly distributed
normal random variables X and 7Y, is given in terms of
the sample size n, the sample means, and the sample
variances as follows:

S [(Xi -X)? (Y, -7Y)
P osksi — s3y 5% 53
_ 2SXY(Xi - 2X3( Yi — Y)] (3.9_2)
SxSy

t J. E. Jackson, Technometrics 1, 359, 1959.

1 H. Hotelling, ‘“Multivariate Quality Control” in Techniques of
Statistical Analysis, ed. by C. Eisenhart, M. W. Hastay, and
W. A. Wallis, McGraw-Hill, New York, 1947, pp. 11-84.
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All values of T? greater than that given by Equation
3.9-2 represent an out of control condition. 72 can be
related to the F distribution
_ 2(n = 1)F,
T on-=-2
where F, has 2 and n — 2 degrees of freedom.

For p variables, T? is best expressed in matrix notation
(refer to Appendix B)

7% = Xs™1XT

T2 (3.9-3)

(3.9-4)
where

X=1[X,— X, X; — Xo, ..
and the sample covariance matrix is

i XP - Xp]

2
S¥, Sx1xz

2
Sx,xX,  SX,
s =

K
T¢ is distributed as pvF,/(v — p + 1) where F, has p
and (v — p + 1) degrees of freedom with » being the
number of degrees of freedom in estimating the sample
variances and usually equal ton — 1.
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Problems

3.1

3.2

33

34

35

3.6

The logarithmic series probability function for a

random variable X is
— >

xIn(1 — 6)
x=12,...,0
0<6x<1

P(xy, 0) = P{X = x3} =

Given that a sample of experimental observations of
size n has been collected, find the maximum likelihood
estimate of 6.

Consider the joint normal probability density for the
random variables X and Y with the common param-

eter w:
1 1 — p\2 — p\2?
ool 4 22
271'O‘Xo'y 2 Cx Oy

Find the maximum likelihood estimates of u, o%
and o% for n independent observations of which ny
are made on the X variable (only) and ny are made
on the Y variable (only).
Find the maximum likelihood estimate of the param-
eter A in the Poisson probability function
e M\*

x!

plx,y) =

P(x, A =

Compute the first and second moments of the ex-
ponential distribution (listed in Table 2.3-2) and
equate them to the first and second sample moments
obtained from an experiment to estimate 6. Do both
moments give the same estimate of §? Which would
be the best estimate to use?

Can a confidence interval for a random variable
which is not a normal random variable be estimated ?
Explain.

Based on the following grades:

Student
Number Grade
1 95
2 92
3 920
4 86
5 86
6 80
7 75
8 72
9 64
10 60

find the values of X and s2. If we assume that the
grades have been taken from a normally distributed
population, determine the cut-off points for the
grades of A, B, C, D, and F based on the following
rules:

(a) The A’s should equal the D’s plus the F’s.

(b) The B’s should equal the C’s.

3.7

3.8

3.9

3.10

3.11

PROBLEMS 95

Measurement of the density of 20 samples of fertilizer
gave a mean CaO content of 8.24 percent and a
standard deviation of 0.42 percent (percent of 100
percent). What are the two-sided symmetric con-
fidence limits for a confidence coefficient of (1 — «)
equal to (a) 0.95 and (b) 0.99 for (1) the ensemble
mean and (2) the ensemble variance? From (2)
calculate the confidence limits on the ensemble
standard deviation.

Given that the sample standard deviation for the
total pressure in a vapor-liquid equilibria experi-
ment is 2.50 atm, find (a) the 95-percent and (b) the
99-percent confidence limits for (1) the ensemble
standard deviation and (2) the ensemble variance.
Eight individual values of the pressure were measured.

The velocity of a space missile after its fuel is gone is

my + m,,)

v = vgln(
my

where:

v, = exhaust velocity of the gases, a random variable
m, = rocket weight after burning, a random variable
propellant weight, a random variable

my

Find the sample variance of v in terms of the sample
variances of vy, m,, and my.

Assume that a considerable number of fluid velocity
measurements made in the laboratory give a sample
mean of 4.60 ft/sec and a sample variance of 0.6
ft?/sec. Suppose the next velocity measurement
made has a value of:

(a) 7.60 ft/sec.

(b) 5.60 ft/sec.

What conclusions would you draw in each case?
The Deil Co., a cleaning-agent manufacturer, has a
slogan “Dial for Deil.” It claims that Deil is at least
90 percent effective in cleaning boiler scale or “your
money back.” The government has taken the com-
pany to court citing false advertising. As proof, the
company cites a sample of 10 random applications in
which an average of 81 percent of the boiler scale was
removed. The government says 81 percent does not
equal 90 percent. The company says that the test is
only a statistical sample, and the true effectiveness
may easily be 90 percent. Who is correct and why?
The data were as follows.

Number Removed
1 93
2 60
3 71
4 92
5 100
6 920
7 91
8 82
9 75

10 50
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3.12 Data for the cooling of superheated steam without
condensation have been correlated by
.8
hD _ 0.021(29)°
k I
TABLE P3.12
Value of One Sample
Sample Standard
Symbol Physical Quantity Mean Deviation*
h Heat transfer coefficient,
Btu/(hr)(ft*>)(°F)
D Tube diameter, ft 0.20 3
k Thermal conductivity
Btu/(hr)(ft)(°F) 0.0441 2
G Mass velocity,
1b/(hr)(ft?) 20,000 5
I Viscosity, 1b/(hr)(ft) 0.109 1

* Expressed as a percent of sample mean.

313

3.14

Find the sample mean of the heat transfer coefficient
based on the calculated values given in Table P3.12.
Find the sample standard deviation for A, and

-express it as a percent of the sample mean for A.

Assume that the variables are random normal vari-
ables and that 10 measurements were made in
obtaining each standard deviation. Estimate the
confidence interval for the ensemble mean heat trans-
fer. coefficient and for the ensemble standard devia-
tion of the heat transfer coefficient.

Five thermocouples are calibrated against a standard
whose reading is 250°C. It was found that

X = 248.5°C
5% = 70(°C)?

Assume that the hypothesis is x = po = 250.0°C
and estimate the power of the z-test to discriminate
for « = 0.05 if ux = 248.5°C.

Pressure gauges are being manufactured to sell for
$1.25 wholesale. A sample of 20 gauges out of 200 is
characterized as follows when connected to a standard
gauge at 30 psia:

X =29.1
Sy = 1.2

Using a symmetric two-tailed test with « = 0.05,
answer the following questions:

(a) What is the region-of rejection?

(b) What is the region of acceptance?

(c) What is the power of the test toward an en-
semble mean 90 percent of the standard of 30
psia (i.e., toward an ensemble mean of 27 psia)?

(d) Would you pass or reject this sample?

3.15

3.16

3.17

3.18

3.19

3.20

3.21

Prepare an operating characteristic (OC) curve and a
power curve based on the following information
about the random variable X:

Hx = 30.0
Ox = 2.4
n = 64.0

Plot B and (1 — B) versus selected values of possible
w’s above and below 30.0 for « = 0.01.

Can the power of a test ever be bigger than the

fraction «, the significance level ?

Classify the following results of hypothesis testing as

to: (1) error of the “first kind,” (2) error of the

“second kind,” (3) neither, and (4) both. The hypoth-

esis being tested is designated as H,.

(a) H, is true, and the test indicates Hy, should be
accepted.

(b) H, is true, and the test indicates Hy should be
rejected.

(c) H, is false, and the test indicates Hj, should be
accepted.

(d) H, is false, and the test indicates H, should be
rejected.

A manufacturer claimed his mixer could mix more

viscous materials than any rival’s mixer. In a test of

stalling speed on nine viscous materials, the sample
mean viscosity for stall was 1600 poise with a sample
standard deviation of 400 poise. Determine whether
or not to reject the following hypotheses H; based on

o = 0.05.

(a) The true ensemble stalling speed of the mixer is
at 1700 poise (H,:p = 1700 poise versus the
alternate hypothesis Hi,: p # 1700 poise).

(b) The true stalling speed is 1900 poise (Ha,:
p = 1900 poise versus the alternate hypothesis
H,,: o # 1900).

(c) The true stalling speed is greater than 1400 poise
(H.,: w > 1400 poise versus the alternate
hypothesis Hy,: u < 1400 poise).

A new design has been devised to improve the length

of time a circular-type aspirin pill die can be used

before it has to be replaced. The old die in 10 trials
gave an average life of 4.4 months with a standard

deviation of 0.05 month. The proposed die in 6

trials had an average life of 5.5 months with a standard

deviation of 0.9 months. Has the die been improved?

(Use o = 0.05 as the significance level.)

Two chemical solutions are measured for their index

of refraction with the following results:

A B
Index of refraction 1.104 1.154
Standard deviation 0.011 0.017

Number in sample 5 4
Do they have the same index of refraction? (Use
a = 0.05.)
In a test of six samples of oil, the sample mean for the
specific viscosity was 0.7750 cp, with a sample stand-
ard deviation of 1.45 x 10-2 cp. The specifications
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3.23

3.24

3.25

call for a mean (ensemble mean) of 0.8000 cp. Is the
oil on specification or not? What confidence coeffi-
cient should be selected ? If the oil was supposed to
be at least 0.8000 cp., would this change your
answer?

A liquid-liquid batch extractor removes component 4
from a solution of 4 and B by use of a solvent. For
a long time the mass fraction 4 in the extract has
been w, = 0.30 with a standard deviation of 0.02. By
rearrangement of the baffles in the extractor, it is
believed that the value of w4 can be increased. Formu-
late a test which tells after nine samples have been
run whether or not the baffling is effective at the 0.05
level of significance. (Hint: Determine the hypothesis
first.)

Suppose that indeed the rearrangement of baffles
does improve the value of w, to 0.45. Under the
decision rule formulated, what is the probability of
deciding that no change has taken place even though
the new set-up differs from the old one ? (Assume for
simplicity that the standard deviation remains the
same.) If w = 0.35, would your answer change?

One hundred crude oil samples are taken from a
pipeline and found to have a mean sulfur content of
1.60 wt. percent with standard deviation of 0.12 wt.
percent. If u is the ensemble mean sulfur content of
the crude oil (based on past experience), test the
hypothesis that p = 1.70 wt. percent against the
hypothesis that u # 1.70 wt. percent for two signif-
icance levels: (a) « = 0.05 and (b) « = 0.01.

Also test the hypothesis that # = 1.70 wt. percent
against the alternate hypothesis that u < 1.70 wt.
percent, using the same significance levels.

A sample of 16 centrifugal pumps purchased from
manufacturer A4 lasted an average of 150 days before
breaking down; the standard deviation for break-
down was 25 days. Another batch of 10 centrifugal
pumps purchased from manufacturer B lasted an
average of 120 days before breaking down; their
standard deviation was 12 days. For « = 0.05:

(a) Find the confidence interval for the ensemble '

mean lifetime of the pumps from manufacturer
A. What assumption have you made about the
distribution of the random variable, the lifetime ?

(b) State whether or not the pumps from manu-
facturer A are better than, the same as, or
poorer than those from manufacturer B. Show
the calculations for your choice.

Gas from two different sources is analyzed and yields
the following methane content (mole percent):

Source 1 Source 2
64.0 69.0
65.0 69.0
75.0 " 61.5
67.0 67.5
64.5 64.0
74.0

75.0

3.26

3.27

3.28

3.29

3.30
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Is there a significant difference in the methane
content from the two sources?

From the following data, determine if there is a
significant difference in pressure gauge performance
(readings are in mm as a deviation from 760).

Trial Gauge 1 Gauge 2
1 4.4 3.2
2 —14 7.1
3 3.2 6.4
4 0.2 2.7
5 -5.0 3.1
6 0.3 0.6
7 1.2 2.6
8 2.2 2.2
9 1.3 2.2

What is the 95-percent confidence interval for the
ensemble standard deviation for gauge ¥ and gauge
2, respectively ?

A gas chromatographic apparatus has analyzed the
concentration of methane gas with a variance of 0.24
during the last two months. Another person uses it
for 25 samples and the variance is 0.326. Is0.326 signif-
icantly larger than 0.24, i.e., is the new operator
doing something wrong? Use o = 0.05. Use an F-
test. Also compute the confidence limits for o2.

Four temperature controllers are monitoring the
temperature in a stream. Each of them is from a
different manufacturer. Past experience over the last
four years has shown the following number of main-
tenance jobs on each instrument:

Manufacturer identification 1 2 3 4
Number of repairs 46 33 38 49

Your company is now about to purchase six more
temperature controllers. Your assistant says that
obviously the ones from manufacturer No. 2 are the
ones to get. Do you believe that the instrument from
manufacturer No. 2 is clearly the best?

Apply Bartlett’s test to the data of Dorsey and Rosa
below who measured the ratio of the electromagnetic
to the electrostatic unit of electricity. During the
observations they assembled, disassembled, and
cleaned their apparatus many times.

Group of Number of
Data Observations Variances x 108
1 11 1.5636
2 8 1.1250
3 6 3.7666
4 24 4.1721
5 15 4.2666

Are the variances homogeneous ?

Seven samples of two different solid-state circuits
have been tested for maximum current output and the
following data observed (in amps):
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3.33

3.34
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Circuit 4 Circuit B
0.18 0.21
0.24 0.29
0.18 0.14
0.17 0.19
1.03 0.46
0.14 0.08
0.09 0.14

Based on the sign test, do circuits 4 and B differ in
average performance? Is the current output of circuit
A higher than that of B?

Apply the sign test to the data of Problem 2.47.
Two shifts have submitted plant data for the yields
of wax:

I II
40 47
27 42
39 41
46 34
32 45
46 52
40 49
44 35
48 43

44

Do the shifts differ in performance as determined by
the Mann-Whitney test?

Apply the Mann-Whitney test to the data of Problem
3.25.

The following data represent precipitation for various
months and runoff at a gauging station.

Precipitation Runoff
Month (mm) (mm)
1 350 0.0
2 370 29.6
3 461 15.2
4 306 66.5
5 313 23
6 455 0.5
7 471 102
8 250 12
9 546 6.1
10 274 6.2

(a) Determine whether or not these records repre-
sent stationary random variables.

(b) Would you reject the runoff value in the seventh
month as being an extreme value?

(c) Is there a linear trend in either time record (with
runoff 102 deleted)?

Vibration tests were carried out in the laboratory,
and the output of the accelerometer was recorded on
a portable tape recorder. The tape output was

3.36

processed in an analog computer to yield: (1) the mean
square values of the accelerometer signal, and (2) the
power spectral density of the signal. There was some
question as to whether or not the data were station-
ary. Consequently, the continuous mean square sig-
nal was sampled at one-half second intervals, and
the amplitude of the signal (from the bottom of the
chart) at each sampling time was measured on the
chart paper. The following table lists the results of
one such sampling sequence.

Amplitude
Time (chart
(sec) divisions)
6.5 7
7.0 6
7.5 10
8.0 3
8.5 15
9.0 8
9.5 5
10.0 7
10.5 13
11.0 3
11.5 26
12.0 9
12.5 5
13.0 12
13.5 10
14.0 4
14.5 12
15.0 2
15.5 4
16.0 5
16.5 11
17.0 7
17.5 7
18.0 8
18.5 12
19.0 4
19.5 6
20.0 3
20.5 11
21.0 10

The sampling time was chosen so as to provide at
least five smoothing time values (¢, values used in
calculating the mean sequence) in the interval between
samples. Hence the listed data are believed to be
statistically independent.

Is the random variable being measured stationary ?

Does it contain a periodic component and, if so,
how will this affect your answer ?
A digital record of the output of an instrument
monitoring hydrocarbons downtown in a large city
shows an unusually high series of values from 4:30 to
5:30 p.m. Are these possibly extreme values in the
data record caused by some defect in the instrument
so that they should be rejected ? Explain.
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Hydrocarbon
Time (p.m.) (ppm)
1:30 123
2:00 179
2:30 146
3:00 190
3:30 141
4:00 206
4:30 407
5:00 564
5:30 530
6:00 273
6:30 199
7:00 142
7:30 171

Biological oxygen demand, BOD (in mg/liter), in a
river has been measured at a junction of two small
rivers. Various domestic and industrial discharges
upstream on each river affect the measured values of
BOD, but sampling errors have also been noted in the
past. Should Sample No. 63-4 be discarded? How
about Sample No. 63-9? Explain. The samples were
taken in sequence at two-hour intervals.

Sample Number BOD
63.2 6.5
63.3 5.8
63-4 16.7
63-5 6.4
63-6 7.0
63-7 6.3
63-8 7.0
63-9 9.2
63-10 6.7
63-11 6.7

Nitrogen removal by a biological process from a
waste water stream is calculated at periodic intervals
at station 16-A. At the end of each reporting period,
a report must be made of the average nitrogen
removed. The concentrations of NHs, nitrates, and
nitrites, in total expressed as moles of Ny/liter,
recorded for the last period were:

0.0127 0.0176
0.0163 0.0170
0.0159 0.0147
0.0243 0.0168

Should the value of 0.243 be discarded as an extreme
value? Explain.

Can the following data be represented by the normal
distribution?

Number of
accidents 3 19 16 10 11
Time of day 7-8 89 9-10 10-11 11-12
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3.40 Do the following repeated pressure measurements

341

342

3.43

under the same conditions indicate that measurements
from the apparatus can be represented by the normal
distribution ?

Range of Measurement

Frequency (deviation, psia)
2 —0.4to —-0.5
4 . —0.3to —04
9 —0.2to —0.3
22 —0.1to —0.2
27 0.0to —0.1
11 0.0to 0.1
7 0.l1to 02
3 02to 0.3
1 03to 04

The following data were determined from screening
galena. The mesh categories given are for successively
smaller wire spacings. Apply the 2 test to establish
whether or not the data are normally distributed.

Number of Particles

Mesh Retained on Screen
34 10
4-6 40
6-8 81
8-10 115

10-14 160

14-20 148

20-28 132

28-35 81

35-48 62

48-65 41

65-100 36

100-150 22
150-200 19
200 53

From the observed data for 120 tosses of a die,
decide whether or not it is a fair die.

Face which fell up 1 2 3 4 5 6
Observed frequency 25 17 15 23 24 16

A cylindrical mixing vessel was packed in three
segregated layers with red, white, and blue balls,
about 20 mesh in size, to ascertain the completeness
of mixing. The initial quantities of balls were: blue,
50 percent; red, 30 percent; and white, 20 percent.
After 23 revolutions of the mixer, the following
distribution prevailed at the 12 sampling points in the
mixer (12 samples were taken to provide uniform
sampling). Was the set of balls well mixed at that
time?

Each sample had only 2 degrees of freedom because
each sample was fixed at 30 balls and the white balls
were determined by difference. The total degrees of
freedom were 24.
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Number of Particles by
Color Distribution

Sample Position Red White Blue
1 3 9 18
2 11 1 18
3 10 5 15
4 10 5 15
5 11 5 14
6 6 4 20
7 17 2 11
8 16 4 10
9 13 6 11

10 8 10 12
11 7 7 16
12 8 2 20

For the same run, the following information is of
interest:

Revolutions of mixer 2 5 11 23 35 55
x? 330 300 90 46 21 30

A recent article used various equations from litera-
ture to predict theoretical vapor compositions for
carbon tetrachloride vapor-liquid equilibria. The
theoretical predicted mole fractions, y;, were com-
pared with the experimental mole fractions, y., by
means of the y? test as follows:

2 _ 20—y

X Yt

In one series of runs at 760 mm, % at the 1-percent
probability level, i.e., P{x* > y%.,} = 0.01, was:

Equation Number X2
1 1.04
2 0.57
3 39.21
4 57.03

What can you conclude from these experiments?

The following data on the strength of test bars of a
new polymer have been collected and placed into
intervals for convenience in calculation.

Molecular Weight

1 x 10% 5 x 10*
to to

Yield (Ib) 0-10* 5 x 10% 1 x 108
0-100 3 5 6
100-150 8 7 9
150-200 6 6 5
> 200 8 7 10

At the 5-percent level of significance, determine if
the two variables, yield and molecular weight, are
independent. -

In a series of leaching tests on uranium ores (U.S.A.E.
Document MITG-A63, Mar. 1949), a balance of
radioactivity was calculated from data on flow rates
and activities and is given in Table P3.46. Measure-

3.47

3.48

TABLE P3.46 BALANCE OF RADIOACTIVITY IN CYCLIC
LEACHING, PLANT SOLUTIONS, NOVEMBER 22

Beta-Activity Product, Counts

Sample From In Out pH
Agitator 1 12,780 1,100 38
Thickener A 1,100 1,440 4.0
Agitator 2 130 23,780 1.3
Agitator 21 23,780 22,980 14
Thickener B 27,520 15,510 1.9
Thickener C 3,610 5,200 2.5
Thickener D 750 930 2.8
Thickener E 60 130 34

ments of flow rates were subject to large errors
because of fluctuations and the short periods covered,
but a reasonably good overall balance was reached.
Are the “in” and ‘““out” measurements independent
of where the sample was taken?

In another series of tests, the counts for a uranium
solution have been tabulated by shift and date. Are
the shift and date data independent as was anticipated
in advance? Data are counts in 10 minutes. ‘

Shift Shift Shift
Date A B C

21 64 37 90
22 191 320 330
23 154 240 250
24 105 220 180
25 94 72 66
26 57 85 140

Data have been collected every hour for calcium
gluconate to substantiate a label claim of 1.000 gram.
Prepare an X chart and an R chart for the process.
Indicate the upper and lower control limits on both
charts. Initially, use samples of five and adjust the
control limits as additional samples are taken into
account.

Sample Number Assay (X)
1 0.968
2 0.952
3 0.945
4 0.958
5 0.965
6 0.955
7 0.956
8 0.958
9 0.965

10 0.954
11 0.968
12 0.979
13 0.971
14 } 0.947
15 0.968

Sum 14.409




3.49 A series of 30 individual sequential measurements of
the random variable X was taken as tabulated in
Table P3.49. Prepare a Shewhart chart for X, based
on confidence limits at X + 30, and a cumulative
sum chart for X.

Establish when the first of the 30 points, if any,
goes out of control. Indicate which of the remaining
points are out of control. Estimate the standard
deviation from only those points in control; the first
12 points may be used initially. Estimate X for the
Shewhart chart from the same points. Delete any
points out of control and recompute the parameters.

TABLE P3.49 SET OF CONSECUTIVE MEASUREMENTS

(2) (3) €] )

1) Individual Target Deviation Cumulative

Point Result, or Mean, from Deviation
Number X h Target, D >D
1 16 10 6 6
2 7 10 - =3 3
3 6 10 -4 -1
4 14 10 4 3
5 1 10 -9 -6
6 18 10 8 2
7 10 10 0 2
8 10 10 0 2
9 6 10 -4 -2
10 15 10 5 3
11 13 10 3 6
12 8 10 -2 4
13 20 10 10 14
14 12 10 2 16
15 9 10 -1 15
16 12 10 2 17
17 6 10 —4 13
18 18 10 8 21
19 14 10 4 25
20 15 10 5 30
21 16 10 6 36
22 9 10 -1 35
23 6 10 -4 31
24 12 10 2 33
25 10 10 0 33
26 17 10 7 40
27 13 10 3 43
28 9 10 -1 42
29 19 10 9 51
30 12 10 2 53

3.50 A portion of an ammonia plant consists of a gas

purification unit, an NHj synthesis unit, and an air
oxidation unit as shown in Figure P3.50. On Friday
you are assigned the job of setting up statistical
controls on the N, stream concentration from the gas
purifier. The last 60 analyses are listed in Table
P3.50a. One analysis is made each four hours (twice
a shift). On Monday morning you are to report if a
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FIGURE P3.50

process control chart can be successfully employed
to control the N, concentration and, if so, to recom-
mend an appropriate type of Chart(s). Saturday’s,
Sunday’s, and Monday’s production data are shown
in Table 3.50b. Is the N, stream in or out of control
on Monday morning?

TaBLE P3.50a

Sample  Percent Sample Percent

Number N, Number N,
1 24.5 31 28.3
2 24.2 32 27.3
3 28.3 33 25.8
4 29.8 34 26.0
5 26.4 35 27.5
6 29.0 36 25.2
7 27.0 37 25.8
8 27.0 38 25.5
9 22.4 39 22.8
10 25.3 40 21.7
11 30.9 41 24.7
12 28.6 42 25.6
13 28.0 43 26.5
14 28.2 44 24.6
15 26.4 45 22.0
16 234 46 22.7
17 25.1 47 22.0
18 25.0 48 21.0
19 23.3 49 20.7
20 23.0 50 19.6
21 23.2 51 20.6
22 24.9 52 20.0
23 25.2 53 21.2
24 24.4 54 214
25 24.1 55 29.6
26 24.0 56 29.4
27 26.6 57 29.0
28 22.1 58 29.0
29 23.2 59 28.5
30 23.1 60 Saturday 8 a.m. 28.7
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TABLE P3.50b N, STREAM ANALYSIS

Day Shift Time Percent Ny
Saturday 1 12 noon 27.6
Saturday 2 4 p.m. 25.6
Saturday 2 8 p.m, 29.6
Sunday 3 12 midnight 30.7
Sunday 3 4 a.m, 30.0
Sunday 1 8 a.m, 30.6
Sunday 1 12 noon 31.7
Sunday 2 4 p.m. 29.6
Sunday 2 8 p.m. 30.6
Monday 3 12 midnight 28.1
Monday 3 4 a.m. 26.5
Monday 1 8 a.m. 27.5




PART II

Development and Analysis
of Empirical Models

Three general categories of models were listed in Chapter
1: (1) models based on transport phenomena principles,
(2) models based on balances on entities, and (3) empirical
models. Because many processes cannot be satisfactorily
represented by the first two types of models due to a lack
of understanding about the process or because of the
complexity of the process, empirical models act as
appropriate substitutes. A typical example is the fitting
of a polynomial or similar function to experimental data
in order to predict the process response as a function of
one or more independent variables. Of course, empirical
models used to represent a process have limited value
when the engineer wants to verify a theory or to make
predictions beyond the range of the variables for which
empirical data were collected during the model evolution.

How empirical models can be developed and inter-
preted is the subject of Part II of this text. Statistical
techniques provide a guide to data collection and model
building, the two interrelated activities underlying the
description, explanation, and prediction of process
phenomena.






CHAPTER 4

Linear Models With One
Independent Variable

If the important variables for a process are known or
sought but the process model is unknown, an empirical
approach to model building is required. The development
of empirical models to represent a continuous process
involves postulation of a model, experimentation to
collect empirical data, “fitting” of the model, i.e.,
estimation of the model coefficients, and evaluation of
results. The strategy of empirical model building is
described in detail in Chapter 8. In this chapter we shall
be concerned with just one phase of model building,
namely the estimation of the coefficients in a linear
model, and certain related matters such as the estimation
of confidence regions and the application of hypothesis
tests. By starting the discussion of coefficient estimation
with a linear model which incorporates two coefficients
and just one independent variable, y = « + Bx, it is
possible to defer the use of matrix notation until Chapter
5 and to provide illustrations in two dimensions of
certain significant points which cannot easily be illus-
trated graphically for a more complex model. 1t also is
feasible for the reader to follow through the examples
with hand calculations; for models with many variables,
computations on a digital computer are almost essential.

In discussing linear models, the word linear has mean-
ing as applied to the independent variables of the model
and also as applied to the parameters (coefficients) in the
model. We shall be concerned with the latter connota-
tion; that is, a linear model in this chapter is one having
a linear combination of the parameters. By independent
variables we mean those variables which are under the
control of the experimenter. It is not necessary for the
independent variables to be functionally independent in a
mathematical sense nor that they be orthogonal (as
described in Chapter 8). For example, a typical linear
model is

1 = Bo + BuXy + BaXa + -+ B,

where 7 is the dependent variable (the response), and x;’s
are the independent variables, and the 8’s are the model
parameters (coefficients). The independent variables
themselves may be nonlinear as in the following model,

n = Bo + Prxy + Poxi 4+ + Bpxd
which is an equation linear in the parameters.
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Additional examples are:
1. Linear in 8, nonlinear in x:
1 = Bo + B1X1 + BaXa + Pax1Xe + Balnx;
2. Linear in x, nonlinear in §:
7 = Bo + BiPox1 + PiXs + Poxs
3. Nonlinear in x and :

n = ef1*1 4 eP2¥2
1= Vpo + Bixy + Boxs

A general form for a linear model in the sense used
here is

7 = Bofo(x1, X2, .. .) + Bufa(x1, Xy 0. .) +-+-

in which the functions f are of known form. Clearly, the
response is linear with respect to the parameters if the
first partial derivatives of the response with respect to
each of the parameters are not functions of the param-
eters.

Because one of the most difficult aspects of model
building is to select an appropriate initial form for the
model, we shall first consider ways to select a suitable
model of one independent variable. Then we shall
describe how to estimate the parameters in the (linear)
model n = o + Bx.

41 HOW TO SELECT A FUNCTIONAL
RELATIONSHIP

Given a set of data involving one independent and
one dependent variable, how can a functional relation-
ship between them be identified ? Certainly no universal
guides exist. If the experimental data, when plotted on
arithmetic coordinate paper, do not approximate a
straight line, y = a + bx where y is the measured
dependent variable, but do seem to approximate a
smooth curve, the shape of the curve and/or an under-
standing of the nature of the experiment may suggest the
equation of a curve that will fit the points most closely.
A helpful way of verifying the appropriateness of a
particular equation for a set of data is to transform the
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TABLE 4.1-1 TRANSFORMATIONS TO LINEAR FORM FOR A FUNCTION OF ONE VARIABLE

Coordinates for Straight Line

Equation x-axis y-axis Straight-Line Equation Remarks
Use of reciprocals of logarithms:
) ! + Bx x ! ! o« + Bx Asymptotes: x —= y=0
-_= -_— -_—= . = — =
y y y B
7)) = + 1 -—a—i—é Asymptotes: x = 0,y = «
y=a x x y y x Y. : y
x x x —a 1
3 —=a+ Bx X - - =a+ Bx Asymptotes: x = yy = =
©) 5 B 5 5 B 5 i
(o0r = 57)
Yo ar Bx
1l « 1 1 1 o
- == - - =8+ =
or 5 % + B p 5 5 B P
- x X — x
(3a) y=- -:C/Sx +y X f—_—y—l e yl = (a + Bx1) Asymptotes: x = —ea/f,y =
o : B+
where (x1, ¥;) is any point on B ]
the experimental curve + . (a + Bx1)x Same curve as (3) shifted up

@ y = ax? log x logy
(4a) y=ax* +y log x log(y — )
(4b) y = y10ex? log x log (log y — logy)
&) y = of” x log y
(equivalent forms
y = wy"z"

y = 10%: + ﬁlx,
¥ = o10)*1%)

or down by a distance of y

If B is +, curve has parabolic
shape and passes through
origin and (1, ). f B is —,
curve has hyperbolic shape,
passes through (1, ), and is
asymptotic to x- and y-axes

First approximate y by the
equation y = (1yz — ¥3)
(¥1 + ya — 2ys), whereys =
axf + y, x3 = Vxixs, and
(x1, y1) and (xz, y2) are ex-
perimental points

After taking logarithms of the
original equation, follow
method (4a)

Passes through the point (0, &)

logy = loga + Blogx

log(y — y) =loga
+ Blog x

log(logy — logy)
= loga + Blogx

logy = loge + xlogf

data to a linear form so that a straight-line plot, y' =
a’ + b'x’, is obtained. Table 4.1-1 summarizes a few
suggested methods of- straight-line transformation. A
collection of graphs (Figure 4.1-1) illustrates the effect of
changing the coefficients for many of the equations pre-
sented in the table. For numerical examples and a more
detailed explanation of the methods of transformation,
refer to the references at the end of this chapter. (Special
graph paper is available to facilitate logarithmic, re-
ciprocal, square root, etc., transformations from the
Codex Book Co., Norwood, Mass.)

If a straight line is achieved through some such type

of transformation, the parameters of the nonlinear model
can be estimated from the modified linear model. How-
ever, a problem arises if the unobservable error, ¢, is
added to the dependent variable as

Y=y+e

because after the transformation, some complex function
of the error results rather than e being added to the trans-
formed variable. For example, if the model is Equation
(4) in Table 4.1-1, the observed dependent variable is

Y=oaxf+ ¢ 4.1-1)



Clearly Equation 4.1-1 is not the same as

log Y =loge + Blogx + ¢ (4.1-2)

because the logarithm of the right-hand side of Equation
4.1-1 is not equal to the right-hand side of Equation
4.1-2. In some instances, Equation 4.1-1 may represent
the actual situation, in which case nonlinear estimation of
o and B is required. In other instances, Equation 4.1-2
is more correct, depending upon the details of experi-
mentation. This matter is discussed again in Section 6.5
after we treat nonlinear models. For the purposes of this
chapter, we shall assume that function of interest is
linear in the parameters.

Example 4.1-1 Determination of Functional Form

The data in the first two columns below represent a
series of dependent variable measurements (Y) for corre-
sponding (coded) values of the independent variable (x).
Find a suitable functional form to represent the dependence
of Yon x.

Solution:
Several differences and ratios can be computed, some of
which are shown in Table E4.1-1.

TasBLE E4.1-1

x Y log Y AY A2Y x/Y A(x/Y)
1 62.1 1.79246 0.01610

2 87.2 1.93962 25.1 0.02293 0.00683
3 1095 2.03941 223 —2.8 0.02739 0.00446
4 1273 2:10483 17.8 —-4.5 0.03142 0.00403
5 1347 212937 74 —-104 0.03712 0.00570
6 1362 2.13386 1.5 —5.9 0.04405 0.00693
7 1349 213001 -—-1.3 —2.8 0.05189 0.00784

Next we test several possible models; 7 is the expected
value of Y at the given x.

MODEL 7 = « + Bx: Not satisfactory because A Y/Ax is
not constant.

MobpEL 7 = «f*: Transform to logn = loga + (log B)x.
Not satisfactory because A log Y/Ax is not constant.

MODEL 7 = eax?: Transform to logn = log« + Blog x.
Not satisfactory because A log Y/A log x is not constant.

MoODEL 7 = a + fx + yx?: Not satisfactory because
A?Y/Ax? is not constant.

MopeLn = x/(e + Bx): The model is the same as (x/) =
« + Bx. Since A(x/Y) is roughly constant, this model would
fit the data better than any of the previous models but it is
not necessarily the best possible model.

4.2 LEAST SQUARES PARAMETER ESTIMATION

Once the functional form for an empirical model has
been chosen, process data can be collected by a suitably
designed experiment (discussed in Chapter 8) and the
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parameters in the model can be estimated. The procedure
of estimation to be used in this chapter is called linear
estimation or regression analysis.t The analyst wants
to obtain the “best” estimates in some sense of the
parameters in the model, and often the criterion of
“best” depends upon the character of the model. We
shall first mention estimation of the parameters of a
linear (in the parameters) model when the probability
density function and its parameters are known, and then
we shall describe estimation when the probability density
function is unknown.

Optimal estimation is difficult to carry out except in
certain special cases. If we want to calculate the param-
eters in a model in a given relation ¥ = f(X) where
both X and Y are random variables and the joint prob-
ability density p(x, y) is known, the most acceptable
criterion of best is the mean square estimate:

Minimize

sy - 10F = [ 7 1 = 1@Fp(x ) dx dy
(4.2-1)

The function f(X) that minimizes the expectation in
Equation 4.2-1 is the conditional expected value of Y,
given X, ie., f(X) = &{Y| X}, as can be shown by
introducing the relation p(x, y) = p(y | x)p(x) into the
right-hand side of Equation 4.2-1 so that

Min &{[Y — f(X)}
= Min [ f : [y —fPp(y | x)] f: p(x)dx

The first integral is the second moment of the conditional
density p(y | x) which will be a minimum for every x if
fx) = f‘fm y(y | x) dy = €{Y | x}. The function f(x) =
&{Y | x} is the regression curve.

For the special case in which f(X) = 8, + B.X, we
can calculate the two constants 8, and $;, which mini-
mize the function in Equation 4.2-1, if we know p(x, y):

Min €{[Y — (B, + B X))}
~Min [ " (- - BoPpn ) dxdy (422)
By differentiation of &{[Y — (B, + B1X)]*} with respect
to B, and equation of the result to zero, we get
E{=2[Y — Bo — 1 X]} = O

or

E(Y} = fo + B6(X)

py = Bo + Buix (4.2-3)

t The latter is used because the first published investigations
dealt with the regression of inherited factors.
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FIGURE 4.1-1 Graphs of Equations (1) through (5), Table 4.1-1.

LINEAR MODELS WITH ONE INDEPENDENT VARIABLE

=10

Equation (1)

12

12

-
-
N

-

0

Equation (2)

12

2

12

10—

Equation (3)

10

12



LEAST SQUARES PARAMETER ESTIMATION 109

ul I — 7
, y = ax’ 12 A —
A, y=4x°8 y 10 —
B. y = 4x°%3 8 B —
C. y=4x"038 6 I
D. y=4x"05 :_ c :
0 ' | l
0 2 4 6 8 10 12 14
y = of* _
Ay =202)* ]
B. y=2(0.3)* -
C. y=208)"* -
D. y = 2(0.95)* .
E. y=2(1.02* N
F. y=2(1.04)* ]|
G. y=2(13)* _

Equation (5)

FIGURE 4.1-1 (cont.)

Introduction of B, from Equation 4.2-3 into Equation
4.2-2, differentiation with respect to B,, and equation of
the result to zero yield

GEUY — py) — Bi(X — w3 _
By

(Y — py)(X — px)} = BiS{(X — px)?}

or

_ oxv
ﬁl_o,%

(4.2-4)

Once B; is determined, 8, can be determined from Equa-
tion 4.2-3. )

Now suppose that the probability density p(x, y) is
not known. Instead we plan to collect some experimental
data and, on the basis of the data, obtain the best esti-
mates for the parameters in a linear model. Whether

only the dependent variable in the model or whether
both the independent and dependent variables are random
variables makes a vast difference in the computational
details and degree of difficulty of obtaining the parameter
estimates. Section 4.5 discusses estimation when both the
independent and dependent variables are random vari-
ables, as illustrated in Figure 4.2-15.

We shall start with the easiest case, namely that only
the dependent variable is a random variable, as shown in
Figure 4.2-1a. Specifically the model is of the form

Yi=B0 + Bi(xi — %) + & (4.2-5)

where 7, is the sample average of the measured replicate
values of the dependent variable Y obtained at a given
value of x, x;; and ¢; is the unobservable random error
representing the difference (¥; — &{Y; | x}) = ¢ which
has a known distribution (usually the normal distribution)
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p(x y)

y
e
7

e
A Locus of expected values ~
of Y; , namely, n; = o + B1(xi = )

/4alues chosen by
the experimenter

FIGURE 4.2-1a Representation of a linear model for the case in
which the dependent variable alone is a random variable.

p(x,5)

FIGURE 4.2-1b Representation of a linear model when both
variables are random variables.

with an expected valueé of zero and a variance of oZ,. The
unobservable errors in the observations used to compute
Y, are presumed to have an expected value of zero and
to be independent of x, e, or previous errors. We shall
assume initially that ¢2, is a constant, independent of x
(in Section 4.3), and subsequently that o2, varies with x
(in Section 4.4). Another way to describe the same model
is to say that

E{Yi| x} = m = Bo + Bulxi — %) (4.2-6)

which states that the expected value of Y;, at a specified
x;, is equal to By + Bi(x; — X).

Thus, the four basic assumptions underlying the esti-
mation procedure are:

1. The expected value of Y;, given x;, is a linear (in
the parameters) function.

2. The values of x selected for experimentation are not
random variables. :

3. The variance of ¢, o, equals the variance of Y,
0%, and may be a constant or vary with x.

4. The observations of Y are mutually independent,
which is the same as saying that the errors ¢; are statistic-
ally independent.

Based on these assumptions only, the method of least
squares yields unbiased estimators, b, and b,,1 of 8, and
B. which have, according to Markov’s theorem, the
smallest variances among the group of all possible
unbiased linear estimators. Least squares is the descriptive
term for the procedure which obtains the estimates b,
and b; by minimizing the sum of the squares of the
deviations between the observed values, Y,, and the
expected values of Y, ;:

n
Minimize Z (7, — n)?
i=1
From one viewpoint, least squares is nothing more
than a method of solving an overdetermined set of
equations in the parameter space of B, and B, if each:
data pair is regarded as being an equation. For example,

16.08 — B, + 1.808, = 0
16.32 — B, +2.108, = 0
16.77 — By + 2.408, = 0

The difference between the sum of the squares of the
left-hand sides of the equations and zero is minimized to
get the best estimates of the 8’s.

Figure 4.2-2 illustrates the estimated regression line
Y = by + by(x — %), the true model 5y = B, + By(x — %),
and the notation employed so far. ¥;; designates one
(the jth) observation or measurement, I < j < p;, of the
dependent variable Y at x;, and Y; is the sample mean of
the observations at x;, | < i < n.

To estimate a confidence region for the variables B,
and B, and to apply statistical tests, a fifth assumption is
required, namely:

5. The conditional distribution of ¥;, given x, is
normal about ; = &{Y; | x;}.

In practice, experimental data may not fulfill the five
requirements. Some of the common departures from the
assumptions are: '

1. The range of variation of the independent variable
x is so small that the variation in the dependent variable
is of the order of magnitude of the error in measurement
of the dependent variable. As an extreme example,
repetition of the same value of x 100 times will provide
only one value of Y; for estimation, not 100 values.
Because the number of data points must be at the very
least equal to the number of model parameters to be
estimated, variation of the independent variable within
a narrow range represents ineffective experimentation.

T Although the estimates of B and 8;, /§0 = bo and ﬁl = b,, are
themselves random variables, we shall use lower case Roman
letters to designate the estimates because of custom.

+ W. E. Smith, Technometrics 8, 675, 1966.
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FIGURE 4.2-2 Relationships among the experimental observations, mean of obser-
vations, and estimated and theoretical linear models.

For a model containing several independent variables,
the investigator will find that if he holds certain of the
important process independent variables essentially
constant, regression analysis will lead to the conclusion
that they are not significant variables. Furthermore,
independent variables that are not controlled but are
simply observed are likely to behave as random variables.
The essence of experimentation is, insofar as possible,
to make definite changes in the experimental conditions
(the independent variables) and to let the dependent
variable be the random variable.

2. The errors in the observations of the dependent
variable are not independent. Process measurements
taken in time can incorporate serial correlation of errors,
a correlation which perhaps changes with time. Because
every production process is affected by independent
variables not subject to control by the experimenter,
such as aging of the plant, scaling in a heat exchanger,
uncontrollable change in raw materials, meteorological
changes, and personnel changes, assumption four above
may prove unrealistic. Sometimes these noncontrollable
variables are termed latent variables.

Consequently, a passive collection of unplanned data
from a process must be analyzed with considerable
judgment. The best experimental technique is to make
deliberate changes in all the controllable variables, as
described in Chapter 8. The investigator, before carrying
out the least squares estimation, should make sure
insofar as possible that he has information on the
interval of variation of x relative to the possible overall
range of variation, the magnitude of the errors in the
independent and dependent variable(s), and the details
of possible extraneous factors. Techniques to assist in
overcoming deficiencies in the underlying assumptions
in the estimation procedure are discussed in Sections
4.5, 4.6, and 5.4. Proper methods of experimental design
to avoid the defects in the first place are described in
Chapter 8.

4.3 ESTIMATION WITH CONSTANT ERROR
VARIANCE

We shall write the empirical model whose coefficients
are to be estimated as

n = Bo + Bu(x — %) (43-1)

instead of as

n = Bo + Bix 4.3-2)

because, first, the estimates b, and b, of B, and B, can
be obtained without solving coupled simultaneous sets
of equations, as is the case if the linear model is expressed
in the form of Equation 4.3-2, and, second, the estimates
of B, and B, are stochastically independent whereas
the estimates of By and B; are not. Models with several
independent variables yield better conditioned matrices
if the form of Equation 4.3-1 is used (refer to Chapter
5). We seek estimates for 8, and B, which are unbiased
and have minimum variance. We assume that o%, =
oZ, = constant.

4.3-1 Least Squares Estimates

Legendre’s method of least squares was to minimize
the sum of the squares of the deviations in the y direction
in Figure 4.2-2. Gauss’s and Laplace’s development, on
the other hand, minimized the sum of the squares of the
weighted deviations (described in Section 4.4). In this
section we shall minimize

¢=i(l—’i—m)"‘i

= zpi[Yi — Bo — Bulx — DI (4.3-3)

where p; is the number of replicate measurement of the
dependent variable for a given x;, by equating the partial
derivatives of ¢ with respect to B, and with respect to
B: equal to zero. (It is not difficult to show that this
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procedure yields a minimum rather than a maximum for
¢ by examining the second partial derivatives of ¢.)

% =0 = a{tgl plY, = Bo — Bulxi — )?)]2}
9B o

]

""2 1 }_,t - o~ P11 i X
;p[ Bo — Bu(x — )] s

6&;5 0= a{tg1pi[z — Bo — Balxi — f)]z}
B1 7

~2 > pl¥s = fo — Buli — D(x; — %)

Collecting terms, we obtain the normal equations in
which the model parameters 8, and 8; have been replaced
by their estimates:

> p¥i=by D pit b > pln — 9
i=1 i=1 i=1 (43-5a)
D (T = ) = by D pilxi — B) + by > piv = 92
i=1 i=1 i=1
(4.3-5b)
Note that
Zpi(xi -X)=0
i=1

Hence, as mentioned earlier, Equation 4.3-5a can be
solved for b, separately from Equation 4.3-5b, and
Equation 4.3-5b can be solved separately for b,:

> piYs _
Bo = by = =L =7 (4.3-6)
Z Di
i=1
‘_Zl Di }_,Z(xi — X)
B.=b, == (4.3-7)

i=1

4,3-2 Maximum Likelihood Estimates

Exactly the same estimates of 8, and 8, can be obtained
by the method of maximum likelihood, if assumption
five of Section 4.2 is added to the other assumptions at
the beginning. We form the likelihood function de-
scribed in Section 3.2-1 based on the probability density
function

1 1
X35 Bos B1, 0%) = ———ex [—— Y — g)? ,]
p(y | x; Bo, Bus o%) Vomas P 503, (Y =)

L(BO7 /31; 02!71 ly: x) =L
n 1 1 B ;
= o 55 ULy — M) P 3=
H\/:zwy‘“p[ 20Y¢(Y mp| (4.3-8)

In Equation 4.3-8 the parameters are the variables, and
the values of Y and x are given. Then

InL= —nln \/2_7-7—gln027'

3 pdTi— o+ i — P

Z
20%,

To obtain the maximum likelihood estimates, we place

dInL _3InL _3lnL _

Bo - B A

and obtain three equations:

DY~ [Bo + Bux — DHpd1 = 0 (43-92)

i=1

D UT = [Bo + B — DYplx — DY =0 (439)

> pdYe = [Bo + Bulxe — D — 183, =0 (4.2:90)

of which the first two are the same as Equations 4.3-5a
and 4.3-5b, respectively, and yield Equations 4.3-6 and
4.3-7 for b, and b,. Equation 4.3-9c yields a biased
estimate of 0%,

o 1S o .
&% = 2 pAT: — [bo + by(x, — D]

zn:l’i(yi - Yi)z
i=1

= | =

as we shall see.

4.3-3 Expected Values and Variances of Estimators and
Analysis of Variance

The probability distribution functions for b, and b,
can be obtained either from the addition theorem for the
normal distribution or from the partition theorem for the
x® distribution. However, we shall omit the details,
which can be found in books on statistics. Because b,
and b, are linear combinations of ¥;, we can conclude
that they will each have approximately normal distri-
butions. We are interested first in finding the expected
value and variance of b, and b,, because these will be
needed to carry out appropriate analyses used in model
building.



The expected values of b, and b, are, respectively
(each sum is from i = 1 to n and 3 pi(x; — %) = 0),

Zpi)_,i - Zpiéa{yi}

6tbo} = & 2. Di 2D
_ 2. pi8{Bo + Bulx; — X) + &}
2. Py
_ Zpiﬁo _
2 Po

_ 2 Di ?i(xi — X) _ 2 pi(x — X)& Yz}
$iba} = é"{ 2 pilx; — %) } B 2. pilx; — X)?

— 2 pi(xi — X)[Bo + Bulxi — X)] -8
2. pi(x; — X)? !

Consequently, the estimates b, and b, are unbiased. A
similar analysis gives the variances of b, and b,, re-
spectively (0%, is a constant here), as

Var {bo} = &{(bo — Bo)*}

ZPiYi _ G p) Var{)—’i}
Var 2D } B Cp)?
_ Gp)ey _ % .
= CrP "3 (*43-10)

y o 2 p:Yix — %)
Var {b;} = &{(b, — B1)?} = Var S 0 — 7 F

. T (4.3-11)
- 2 pi(x — X)? '

A model which is a line through the. origin, » = Bx,
can be treated as a special case of the general develop-
ment outlined above. The estimate of the slope can be
shown to be

N i piYix
B=b=21—— (4.3-7a)
igl pi(x:)?
and the variance of the estimated slope can be shown to be
0'2‘»
Var {§} = —+— (4.3-11a)
2 piy?

All that remains is to find an unbiased estimate of
0%, which can be obtained with the aid of the following
theorem (the y2 partition theorem):

If the sum of squares of # variables, W,, W,, ...,
W,, is partitioned into k& sums of .squares, S;, Sy,
e ooy Si, With vy, vy, ..., v, degrees of freedom, re-
spectively, then

X2=ZW,;2=S1+S2+"'+S)¢

i=1
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Also, the necessary and sufficient conditions that
S1, Sa, ..., S, are stochastically independent and
each distributed as y2 with vy, vy, ..., v, degrees of
freedom, respectively, are that

vit+ve+oty=n

The proof of the theorem can be found in several
references at the end of this chapter.

The partitioning of interest is carried out as follows.
If both sides of the identity

Yy —m) =Yy, - )+ (Y- YD)+ (Yi—n)
=Y, - )+ (¥ - 1)
+ (bo ~ Bo) + (by — B)(x; — X)

are squared and summed over i and j, the crossproduct
terms are easily shown to be zero, either because of the
constraints imposed by the least square minimization,
Equations 4.3-4, or because the sum on j vanishes. For
example, the crossproduct term

n o p;

D> (- D)(Ti- Ty =0

i=1j=1

because of the initial summation on j,
P
> Xy =T =0
i=1
Crossproduct terms such as
> (Y= Py = B — Dpi = 0
i=1

because of the second of Equations 4.3-4. After dropping
the crossproduct terms, the following is obtained for the
sum of squares:

n

25: (Y — m:)?

i=1j=1
Total sum of squares
between the experimental
data poiats and the
expected value of Y
given x

n P n
= ZZ (Y, — Y)* + Zpi(?i - ¥)?
i=1j=1 i=1
Sum of squares of devia-

tions within data sets;
“error sum of squares””

Sum of squares of deviations
about empirical regression
line; “residual sum of squares™

+ (bo — Bo)? iPi + (by — Bv)? zn:pi(xi — x)?

Sum of squares for de-
viation between bo
and Bo

Sum of squares for
deviation between
b1 and B1

(4.3-12)
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The interpretation of each of the sums of squares in
Equation 4.3-12 can be carried out best by examining
Figure 4.2-2. The first term on the right-hand side of the
equality sign is a measure of the experimental error
obtained in each of the separate experiments conducted
at the various values of x; the second term is a measure
of the success of the linear model in fitting the experi-
mental data. The left-hand side of Equation 4.3-12 is a
sum of squares analogous to Equation 2.3-9 with
21 p; degrees of freedom and is distributed as o% x>
Each term on the right-hand side of Equation 4.3-12
can be shown to be distributed as o%,x? with (G2, p; — n),
(n — 2), 1, and 1 degree of freedom, respectively.

The error sum of squares has n constraints imposed,
one for each Y, that is calculated. The residual sum of
squares has two constraints imposed on the n data
points, one for each of Equations 4.3-3, leaving two
degrees of freedom to be divided among the remaining
two sums of squares, or one each since each has a single
variable b, and b,, respectively. It can also be con-
cluded that b, is a random variable distributed normally
about B, b, is a random variable distributed normally
about B;, and b, is stochastically independent of b;.

If we estimate 0%, from the second term on the right-
hand side of Equation 4.3-12, which represents the sum
of the squares of the residuals

1
n—2

§7 =

Zpi( Y, - 1) (4.3-13)

it is easy- to show that &{s?} is an unbiased estimate of
6%,, If the model is correct, when we recall from Section
2.3-2 that &2 (for d.f. = n)} = n:

€ {,‘11—2 ipi( Y, - ”i)z}

1
n—2

&{o%x® (for d.f. = n — 2)}

gA
= n"_"- 5 60¢ (for df. = n — 2)} = o},

(Note that the maximum likelihood estimate of o
proved to be a biased estimate of ¢%,.) If the linear model
is not correct, then the expected value of s? is not o%,
i.e., sZ is a biased estimate of o%,.

The expected value of

n o Pi _
2 2 Y =1y
2 =1=1 j=1

52 - 4.3-149)
iglpi —n

is also an unbiased estimate of ¢%,; hence s? can also be
used to estimate o%;; s7 is a measure of the dispersion

caused by experimental error, in contrast with the lack
of fit represented by Equation 4.3-13. Consequently,
before reaching any decisions about the model, the
analyst should test the hypothesis that the linear model
n = Bo + Bi(x — X) represents the experimental data
satisfactorily by forming the variance ratio (sZ/s2).
(Refer to Section 3.6.) If

s2

Sg > F, l1-a
where F,_, is taken from the appropriate table for a
selected value of «, the hypothesis that the linear model
is adequate is rejected. Another model should be selected.

If the calculated variance ratio is less than F,_,, the
hypothesis that the linear model is an adequate fit is
accepted (is a plausible model but not necessarily the
correct one). In this case the variances s? and s2, since
they both estimate 0%, can be pooled as follows to get a
better estimate of ¢%, with (37_; p; — 2) degrees of
freedom. In the pooling, each variance is weighted by its
respective number of degrees of freedom, as indicated
earlier by Equation 2.4-12:

n Pi — n, — ~
2 2 (Y, = Y)?+ > p(Y,— 1)
— i=1 Jj=1 i=1

Grgre >

n Py A
2 2 (Y — 1)
=i=1 j=1

> D -2
i=1

(4.3-15)

Of course, if replicate values of Y;; at values of x; are
not available, then 0%, must be estimated solely from sZ,
with the result that s%, is inflated if the model is an im-
proper one. Without replicate data the F test for the
hypothesis of linearity cannot be carried out, but the
data can be plotted and examined visually. A test for
the hypothesis that 8; = 0 can be carried out, as will be
described shortly. .

Table 4.3-1 summarizes the various sums of squares
and their respective degrees of freedom which are used
in what is termed the analysis of variance, an analysis
based on the partition theorem for y? and the variance
ratio (F) test. The sums of squares divided by their
respective degrees of freedom are termed the mean
squares. Each variance in Table 4.3-1 can be used as
an estimator of ¢%, but because Var {b,} and Var {b,} are
usuailly not known, the pooled s%, is used as the estimator
of ¢%,. Estimated variances of b, and b, can, in turn, be
obtained from s%, if the latter is substituted for o%, in
Equations 4.3-10 and 4.3-11.

When carrying out calculations by hand, the following
identities may be useful:
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TABLE 4.3-1 PARTITION OF VARIATION ABOUT THE MODEL 3 = By + Bi(x — X)
) Degrees of
Source of Variation Sum of Squares Freedom Mean Squares
1. Deviation of b, from B, (bo — Bo)? Z P 1 53 = Var {bo} ZPi
i=1 i=1
2. Deviation of b, from B8, (b — B1)? 2 px; — %)? 1 53 = Var {b,} > pi(x, — %)?
i=1 i=1
L 1 <~ o .
3. About the regression line Zp,( Y, — Y)? n—2 s2 = i z pY, — Y)?
i=1 i=1
: S S - mp
n i iR 1y~ I

4. Within sets Z (Y, — Y)? ZP’ —n 2 = =1 jzl

(error of experiment) i=1j=1 t=1 > pi—n

i=1
n Py %‘
Total about the expected (Y, — )2 Di
values of ¥, ; ,Z ' i
n , , i . (Y, - Y) instead of (Y — 7;), where ¥ = 3 Y,,/3 pi.
Z!’i( Y- Y) b z pi(x; — X) The term (Y;; — Y) can be split up as follows:

n _\2 (Yz; - 7) =
anim - Ty = ip-y‘z - (2,77)
- : L7 x over i and j, and
i=1 i=1 t=z1 Pi
_ 2 pl — DY — DI
2. pilx; — %)?

Il

Zpi(xi - f)(}_,i )

Another analysis of variance can be

what different from the previous one, by expanding

n
Z pix; — X) Y
i=1

degrees of freed
constraint impos
carried out, some-

TABLE 4.3-2 PARTITION OF VARIATION ABOUT THE MEAN Y

Yy -+ X -+ (-7)

As before, both sides of this expression can be summed

the partitioning and distribution of the

sums of the squares are analogous to that described
earlier. Table 4.3-2 summarizes the results. The sum of
squares in the second and third rows of the table are
exactly the same as listed in Table 4.3-1. The sum of
squares in the fourth row has associated with it the total

om (3 p;) less 1, the 1 being for the
ed in calculating Y. As a consequence,

the sum of squares in the first row can have only one
degree of freedom associated with it.

Degrees of
Source of Variation Sum of Squares Freedom Mean Squares
1. Deviation between values on the regression z p( ¥, — Y)? 1 53 = sz( Y, - T2
line and the mean (due to regression) i=1 i=1
o o 3 (¥ - Py
2. Deviation about the regression line Zp,-(Y,- - Y)? n—2 =1
. L. - p n—2
(deviation from regression) i=1
n Pi 12
o L _ n Z Z(Y”—-Yz)
3. Deviation within sets (residual error) Z (Y; — V)2 pi—n se=tmist
' i=1j=1 i=1 >p—n
i=1
nop n
4. Total >0 (Y= 7P pi— 1
i=1j=1 =1
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We can first test the hypothesis concerning linearity
of the model by forming the variance ratio s2/s? and
employing the F-test, as explained before. If the variance
ratio is not significant, the hypothesis concerning the linear
form of the model is accepted. Next, we can test the
hypothesis that B, = 0 by forming the variance ratio
§3/5%,. If the value of s3/s%, is greater than the value of
F,_, from the tables for a selected «, the hypothesis
that B, = 0 is rejected. Figure 4.3-1 illustrates the
situation (@) in which the experimental data are fitted by
the estimated regression line significantly better than by
a line of zero slope, as opposed to the situation ()
where a line of zero slope fits as well. The hypothesis
that 8, = 0 or B, is any other value could also be tested
through use of a s-test based on Equation 4.3-20 below.

Another form for the analysis of variance that is quite
useful is to split (¥;; — 0) as follows:

Yy -0 =Y, - )+ (Y~ )+ (¥, - 0)

Again, each side of the equation is summed over-i and j.
The following partition for the sums of squares results:

S (Y, -0y = Zni(yu -y
=1

i=14=1

n

i=174
n n

+ > p(¥i— T2 + > p(¥, - O
i=1 i=1

The first two terms on the right-hand side of the equality
sign are thé same as those in rows 3 and 2 of Table 4.3-2,
respectively. The last term, which represents the devia-
tions of the predicted values of Y about the axis at zero,

y Estimated
regression line

x
(a)
4 Estimated
regression line
° L]
I —=2=p penkad —Y-Hp:p1=0
x
(b)
FiGURE 4.3-1 Experimental data for the test of the hypothesis

B1 = 0: (a) hypothesis rejected, and (b) hypothesis accepted.

can itself be partitioned as follows if the estimate re-
gression equation is introduced for Y;:

D pli— 0P =83 > p+ B D pulxi — B
i=1 i=1

i=1
=D (-0 + > (- Ty,
i=1 i=1

Each of the two terms on the right-hand side of the
last equality can be interpreted as sums of squares related
to whether only B, or both 8, and B, are included in the
model. Suppose that only 8, were included in the model
and B, were deleted so that the model was Y; = 8, + «-
Then the least squares estimate of 8, would be b, = Y,

and
ipt?tz = il’ibg = 7?2 jpt
t=1 1=1 i=1

Note the correspondence of this sum of squares with the
first term in the partitioned sum of squares, 3. (¥ — 0)%p,.
Consequently, we conclude that the second term

B il — 2P = by D pFilx — )
i=1 i=1

n

Z(Yt — Y)%p,

i=1

represents the contribution to the sum of squares effected
by adding b, to a model Y; = B, + ¢, one that already
contains an intercept. Table 4.3-3 summarizes this third
partitioning of the sum of squares. Variance ratio tests
can be carried out to determine if 8; and B, can be de-
leted from the model by forming the variance ratios
s3/s%, and si/s%,. If a ratio exceeds the value of F;_,,
the corresponding parameter makes a significant contri-
bution to the model.

Example 4.3-1 Estimation and Analysis of Simulated Data
for a Linear Model .

As an example in which the model is known, we assume
that p = B + Bix with 85 = 10 and 8; = 0.2. “Observed”
values or Y are simulated by adding to % errors from a table
of normal random deviates with a mean of zero and a
variance of 1,1 as shown in Table E4.3-1a.

We want: (1) to compute the estimates b} and b; of £}
and B,, respectively, from the “observed” values of Y;
(2) to determine the confidence intervals for By, B1, and 9
(the latter as a function of x), respectively; (3) to plot the
estimated regression line, the confidence limits about the

1 Taken from M. G. Natrella, Experiméntal Statistics, NBS
Handbook 91, Supt. Documents, Washington, D.C., 1963.
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TABLE 4.3-3 PARTITION OF VARIATION ABOUT ZERO

Degrees of
Source of Variation Sum of Squares Freedom Mean Squares
L .
1. Due to regression: b, Y2 Z D 1 s2=Y2 > p
i=1 i=1
b, after allowance for b, by z pYi(x, — %) 1 §2=0b; Z 0 Y — %)
i=1 i=1
» o S (Y- P
2. Deviation from Z (Y, — Y2 n—2 P =l —
regression =3 n—2
n o B —
L o LIN! _ d > 2.(Y; — V)
3. Deviation within sets (Yy; — Y)? z pi—n 52 = Lﬁii~
(residual error) i=1j=1 i=1 Sp—n
i=1
n Py n
4. Total (Y,; — 0)? Di
i=1j=1 i=zl
TABLE E4.3-1a - > Yip  (79.425)(2)
b =Y = 5 = 10 = 15.89
Error “Observed ™ S p YA P 5 2187.3)
Data Set X € n Y by = pi XX, — X — =/ — 0.1873
" Spla— B2 2010000
1 10.00 0.05 12.00 12.05 Y = 15.89 + 0.1873(x — 30) = 10.26 + 0.1873x
2 10.00 —0.52 12.00 11.48 ) n
3 20.00 —1.41 14.00 12.59 §2 = S L (T 0 \2
= Y. — Yy
4 20.00 182 14.00 15.82 -2 ,ZI e
5 30.00 1.35 16.00 17.35 n 5
6 30.00 042  16.00 16.42 { n (_z P ",-)
7 40.00  -176  18.00 16.24 = (n — 2) PNAGEE S
8 40.00 —-0.96 18.00 17.04 i=1 1_21 Pi
9 50.00 0.56 20.00 20.56 ) i 2
10 50.00 -0.72 20.00 19.28 [z pilx; — 3 7,)]
i=1

line, and the sample means, Y, at each x;; and (4) to
prepare an analysis of variance.

Solution:
Let the significance level be « = 0.05. The calculations

will be carried out in detail so that the separate steps can be

followed. (See Table E4.3-16.)

TABLE E4.3-16
Pi
3w _
x; p Y=1=L . x—% Y(x—%) (x—%? Y?
10 2 11.765 —-20 —235.3 400 138.41
20 2 14.215 —-10 —142.2 100 201.78
30 2  16.885 0 0 0 285.10
40 2 16.640 10 166.4 100 276.89
50 2 19.920 20 398.4 400 396.80
Totall0  79.425 187.3 1000 1298.98

él pi(x; — %)

[2(79.425)  [2(187.3)1]
%{[2(1298'98)— 10 2(1000) J}

1(5.02) = 1.67
n o p _
z 2 (Yy— Y
_ i=14=1

= = 1(6.95) = 1.39

Z by —n

i=1
Note that excessive roundoff error can seriously distort
the numerical results unless all significant figures are re-
tained in the calculations. For example, if the values of ¥,
are rounded to the fourth significant figure instead of to the
fifth, the sum of the squares of the deviations is affected in
the third significant figure.

The variance ratio sZ/s?2 = 1.20 can be formed and the
F-test utilized to see if the two mean squares are significantly
different. Since for « = 0.05, from Table C.4 in Appendix C,
F(3,5) = 5.41, we conclude that the mean squares are not
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significantly different and that the linear modelnp = 8, ... B1x
adequately represents the simulated data. Next, the mean
squares are pooled by using Equation 4.3-15:

2 _ 302 +6.95

S

From Equation 4.3-10 with the pooled 5%, used as the
estimate of 0%, the estimated variance of b, is

= 1.50

S_
Var {bo} = Y'=%?_ow
igl Di
From Equation 4.3-11
52
Var {by) = —2 130 o5 107
tgl pilxi — B2 2000
Also, if ¥ = b} + byx, from Equation 4.3-18 we calculate
(30)2] _
Var {bo} =1 50[ 2000] = 0.825

4.3-4 Confidence Interval and Confidence Region

Because the estimated regression line Y = b, +
b,(x — X) is linear in the estimated coefficients, and
because b, and b, are independent random variables so
that the covariance terms vanish,

Var { ¥} = Var {bo} + (x; — %) Var {b,}
1 (x; — X)?

S e
2, Di 2, pilx; — X)?
i=1 1=1

Il

(4.3-16)

Note that the minimum variance is at X.

A single new observation of Y, Y7, at x; will be distrib-
uted about 7; with a variance of o3 independently of
Y, so that if the deviation of Y# from the predicted
regression line Y; is (¥# — ¥;), the variance of the
deviation is

of = Var {¥} — 1} = Var {¥j§} + Var{¥}}

= of,[1 + LI

n
Z pPi
=1

i=

(e — X)?

igl pi(x — X)?

(4.3-17)

If the model had been originally formulated simply as
n = By + Pyx, then the estimated regression line would
have been Y = by + byx = (b — b1%) + byx, so that

o = by — b;%. The variance of b0 is equal to Var {bo} +
X2 Var {b,} or

1 X2

n + n o
2 2 p(xi— X)
i=1 i=1

Var {by} = o3, (4.3-18)

and the Var {b,} remains the same as given by Equation
4.3-11.

To obtain the confidence interval for B,, since b, is
distributed normally about B,, we can form the di-
mensionless Student ¢:

_bo— B _ C oy - 3.
r= Sm/(ipt)% v Zp, 2 (43-19)

which has a #-distribution with (3 p; — 2) degrees of
freedom. The pooled estimate, s§, from Equation
4.3-15 would be presumably used since the pooled
estimate is a better estimate of o%, than is either s? or s?
alone. If replicate values of Y are not available to calcu-
late sZ, then s, replaces 5%, in the relations below and the
degrees of freedom are those associated with s2, namely
(n — 2). sy, is called the standard error of estimate. The
confidence interval for 8, is

bo — t1-25p, < Bo < by + t1-38, (4.3-20)
Similarly for B, :

R
B

75 V=Zpi_‘2

(4.3-21)
by — 1125, < By < by + 1128,  (4.322)

The 100(1 — o) percent confidence interval for the
expected value of Y; given x;, v, is determined similarly:

_ Y- _ N
t= T s Z pi—2 (4323
(Y —tigs9) < < (P + ty_259)  (4.324)

where 53 is obtained by using Equation 4.3-16 with s%
replacing o%,. Finally, if one additional value of x; were
selected, say x}*, the confidence interval for the expected
value of the additional observation Y} would be (using
Equation 4.3-17)

Y, - ti-zsp < f < Y, + ti-zsp  (4.3-25)
To obtain the confidence interval for Y,, the mean of m
observations at an additional x, replace the first number,
1, in the square brackets in Equation 4.3-17 with I/m
because the variance of Y, is o%,/m.

The interpretation of all these confidence intervals is
the same as that given in Section 3.3, namely that with
100(1 — «) percent confidence, the interval calculated
includes By, 8, or 7, as the case may be, if the assumptions
of Section 4.2 are met. The confidence limits for 7%
given by Equation 4.3-24 can be plotted on a chart
together with the experimental data, as shown in Figure
4.3-2. Note that while the estimated regression line is
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FIGURE 4.3-2 Estimated regression line ¥ = by + by(x — %)
with confidence interval for 7.

straight, the loci of the confidence limits are curved with
a minimum separation occurring at X.

Many additional confidence questions can be asked
that we do not have the space to discuss, such as what is
the confidence interval expected if another experimenter
were to repeat the experiment at the same values of x;
or, if the experiment were to be repeated at another set
of values of x;, how would the results differ. Further
details can be found in the references at the end of the
chapter.

So far in discussing the confidence interval for B,, B;,
or u, we have been concerned with a single parameter.
Thus, the confidence interval for 8, is concerned with the
interval that includes the intercept for models with the
same slope; the confidence interval for B, is concerned
with the interval that includes the slope for models with
the same intercept. However, if we inquire as to what
Model (line) could have been the source of the experi-
mental data, taking into account the slope and intercept
simultaneously, it is necessary to make an estimate of a
joint confidence region for B, and B,. The rectangular
region outlined by the two estimated individual con-
fidence intervals and the ellipse defining the jointly
estimated confidence region may contain quite different
values of the B’s. Refer to Figure 4.3-3.

We can estimate a joint confidence region for 8, and
B; in the linear model 5 = B, + Bi(x — X) as follows.
We have already said that (b, — Bo)* >r- p; is distrib-
uted as o%,y® with 1 degree of freedom and that
by — B1)? 221 pi(xi — X)? is also distributed as o%,x?
with 1 degree of freedom. Because these terms are
independent, their sum is likewise distributed as o% x>
but with 2 degrees of freedom:

(bo — 130)2 ZPi + (by — /31)2 Zpi(xi - X%)? = U%ixz
- ve2 (4.3-26)

Equation 4.3-26 could have included the crossproduct
term 2(by — Bo)(by — Bu) D21 (x; — X) but inasmuch as
>r. (x; — X¥) = 0 for Model 4.3-1, this term has been
omitted in Equations 4.3-26 through 4.3-28.

The expected value of the left-hand side of Equation
4.3-26 is 0%, E{x*(d.f. = 2)} = 20%,, so the expected value

ESTIMATION WITH CONSTANT ERROR VARIANCE 119

of one-half of the left-hand side is equal to o%,. As before,
we can form a variance ratio which has an F-distribution

360~ 80 3 5+ 6~ B 3 i — 9]

2
Sy,

=F

(4.3-27)

in which the numerator has 2 and the denominator has
GCr.ipi — 2) degrees of freedom, respectively, if a
pooled estimate of o%, is used. Because P{F < F;_,} =
1 — « designates a critical level, we can rewrite Equation
4,3-27 as

(bo — Bo)? Zp.i + (by — B1)? zpi(xl — X)? =213 F;_,
i=1 =1

v = (2, Sh- 2) (4.3-28)

which represents an ellipse in parameter space, i.e., in
the coordinates (B,, B;), for a given 100(1 — «) percent
joint confidence region. Equation 4.3-28 delineates the
locus of the boundary of an area (that is itself a random
variable) that includes the parameters B, and B; with
100(1 - «) percent confidence. Note that the contour has
been given for Model 4.3-1. If Model 4.3-2 were the one
of interest instead, we know that By = B, — B;X, and
the critical confidence contour in (B, 8;) space could be
computed from the critical contour in (B,, 8;) space as
given by Equation 4.3-28.

Figure 4.3-3 illustrates a confidence region for the
model = By + B1x in which both points A and B are
within the individual confidence limits but B lies outside
of the joint confidence region for « = 0.05. The principal -
axes of the ellipse are at an angle to the coordinate axes
Bo and B, because the estimates b and b, are correlated.
Figure E4.3-1b in Example 4.3-1 illustrates an elliptical
contour in (B,, B;) space that is not rotated.

Figure 4.3-3 illustrates only one contour, that for
o = 0.05. We can break ¢, the sum of squares, into two

Bo
Confidence

= interval for 51_’!

L e A S — — —— _|_.__
I l

| .
| Confidence
bo 1 | interval for 86

| |
]

———+ — _Contour for joint
| confidence region

| |
b1

b

FIGURE 4.3-3 Individual confidence intervals versus joint
confidence region for the model » = By + Bix.
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B6
¢ for a = 0.50
¢ fora =025
¢ for a = 0.10
by f————— ¢ for a = 0.05

b A1

FIGURE 4.3-4 Sums of squares contours for various significance
levels for the model = B, + Bix.

parts that provide information about the character of
the sum of squares surface (all sums are from i = 1 to n):

b= > (Fi—m)pi= > (Y= 2+ > (B —m)p,
= o + (b0 — B0? D pi+ (b — B)* D pxi — 9P

= bmin + 253 F1-0 = bmimn + 2 n‘ﬁiinz F_,

2

= ¢min[1 + n—2 Fl—a] (43-28&)

In the above we have assumed that the model is correct
so that 5%, can be replaced by s2. Figure 4.3-4 illustrates
several contours for various values of «; ¢, is at the
center and the values of ¢ increase as « becomes smaller.
The contours are just projections onto the 8, — 8; plane
of the quadratic surface designated ¢.

4.3-5 The Estimated Regression Equation in Reverse

Before illustrating with examples the calculations
described up to this point, we shall turn to one final
topic. Once an estimated regression equation has been
determined, how can a value of x, a nonstochastic
variable, be predicted from an observed value of Y?
This is the so-called inverse estimation problem. If we
introduce into the estimated regression equation ¥ =
by + bi(x — X) a new observed value Y* (or the mean
of several observations at the same x;) and solve for x,
we obtain
Y =b 5 (4.3-29)

by
where X is a random variable because Y*, b,, and b, are
random variables. Taking the expected value of both
sides of Equation 4.3-29, we get

X(r*) =

iy = 1Py 5 (4.3-30)

B

or
77—30_/81(#;_3?)=0

Finally, if we form
Z=Y*— by — by(uf — D)
the expected value of Z is
&Z} = — Bo — Bu(uf — X)
and the variance of Z is
Var{Z} = Var {Y*} + Var {b,} + (u¥ — X)? Var {b,}

Haldt or Brownleei shows that a f-variate can be
formed: ’

r_Z—-O__ Y* — by — bi(uf — %)
= = %
Sz * __ F)2
s nl1+ nl + n(#x x)
2. Di 2. plx; — X)?
1=1 i=1

4.3-31)

v=§—:p,—2

where s is an estimate of \/}71—,,. Consequently, the
confidence interval for u¥ proves to be

* _
x+L_ﬂ_h%§Hyklya
3

ba m” Sp) b
[X(Y*)—f]z]‘/z <z Yi=bo s
Shn—»F| SEREIT T Theg,

<[5 +55) 2+ EUD=L - asa)

e I A

m 2.pil by > pilx; — X)?
where

t?_zs?
—
by 2 pi(xi — X*
Krutchkoff § called attention to Eisenhart’s suggestion ||

to write the inverse of model 4.3-2 as:

b, = by — =23

_ 1 _B
TR A
or, withn = Y + ¢, )
X=y+8Y+¢ 4.3-33)
where
yo B
1
1
S ==
B
€ = ——
B1

t A. Hald, Statistical Theory with Engineering Applications,
John Wiley, New York, 1952, p. 550.

1 K. A. Brownlee, Statistical Theory and Methodology in Science
and Engineering, John Wiley, New York, 1960, Chapter 11.

§ R. G. Krutchkoff, Technometrics 9, 425, 1967.

| C. Eisenhart, Ann. Math. Stat. 10, 162, 1939.



The least squares estimates of y and 8 are

3 ptn - (- )

d=8-t
i;l’i()’i“Y)z
c=9=x%—4dY
and thus
t=c+ dY* (4.3-34)

where £ is the estimate of x given a measurement of Y,
Y*. Krutchkoff concluded that Eisenhart’s inverse
approach is a more satisfactory method of estimating x
given a Y*.

Example 4.3-1 (continued)

The confidence interval for B; is calculated from Equation
4.3-18 and the equation for b; analogous to Inequality 4.3-20
(¢ = 2.306 for the pooled variance with 3 + 5 = 8 degrees
of freedom) is

10.26 — (2.306)(0.825)" < B; < 10.26 + (2.306)(0.825)%

8.16 < B < 12.36
Similarly, from Inequality 4.3-20 the confidence interval for
Bo is
14.99 < B, < 16.77

The confidence interval for 8, from Inequality 4.3-22 is
0.1874 — 2.306(7.5 x 10-%% < B, < 0.1874
+ 2.306(7.5 x 10~%)%
0.124 < By < 0.251
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FIGURE E4.3-1A The model, the estimated regression line, and
the values of ¥;.

We can calculate selected values of the confidence limits to
be used in plotting. At:

Note that the true values of 8; and B (which we know here) x = ;g ii(l)i N }(5)3 i n < }4213:: + }(5)3
fall within the confidence interval. Finally, the confidence X =AU Ol =109 = < 1401 + L
interval for 7 is, from Inequality 4.3-24 x =30: 15.88 — 0.89 <7 < 1588 + 0.89
x =40: 17.76 — 1.09 <5 < 17.76 + 1.09
¥ — 23065y < n < ¥ + 2.306s3 x =50: 19.63 — 1.55 <7 < 19.63 + 1.55
B
8.0 85 9.0 9.5 100 105 110 115
0,40'1|I‘Tl]lllllIIIIIIII|IIIII[I!II|IIII|
0.30 r
£ ~\\\ ———————
0.20 - T —
Model
10— _
0.0 a=Bo+B1(x—%)
——n=8+px
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Bo

FiGURE E4.3-1B  Contours for

95-percent joint confidence region.
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to test to determine if a straight line is a suitably fitting
model for the data by means of an F-test. However, a
graph can be prepared of the data and inspected for the
appropriateness of the linéar model, as illustrated by Figure
E4.3-2.

The preliminary calculations (not all are needed for any
given calculational scheme; all sums are from.i = 1 to 16
since n = 16 and p; = 1) are:

45.05

x-=§—’:=——1—6— = 2.8156
i
zx? = 140.454
o S Y, 3776 _
V== S =236
2
G X0 _ 126844

n
Zx,n = 1.707 x 10*

Z (x; — %2 = Zx? _ (Z;z)z

Z Y2 = 985,740

ZYi(xi—f)=Zst¢"fZY¢

11,707 — 2.8156(3776) = 1075

N2
@ = 891,136

Z(K— 7)2=Z Kz—(z—:‘)z=94,6o4

Next the estimated parameters can be calculated:

bo=2X = ¥ - 236
n
by = 13.506
by = 20 =D 1075 _ g,

S(x — %2 13.61

1 - -
5§ = — > (% - 7

1 {Z 7 -y BTG x)]Z}

n—2 2 (i — %)?
1075)?
= {94’604 - (13 61) }
= 687
Sy, = 262
o _ Sh_ 687 _
$3o = PT: =428
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Sp, = 6.41
Spry = 21.1
52, = 5%, _ 687 _
> — %2 13.61
The estimated regression line proves to be
¥ = 236 + 79.02(x — 2.816)
= 13.51 + 79.02x

50.4

while the confidence intervals for 85, Bo, B1, and n, based on
11-% = to.915 = 2.145 for 14 degrees of freedom, are:
[13.51 — 2.14521.1)] < Bg < [13.51 + 2.145(21.1)]
—31.63 < By < 58.65

[236 - 2.145(%/6—‘1_36)] <Bo < [236 + 2.145(%)]

222 < B, < 250

26.2 26.2
79.02 — 2.145( _)] <B < [79.02 ¥ 2.145( _)]
[ V13.61 A V13.61

63.78 < B, < 94.26
[¥ —2.145(sp)] < 9 < [V + 2.145(s9)]

where

o= on e+ S
A TN EXT

Figure E4.3-2 shows the estimated regression equation,
the locus of the confidence limits for a significance level of
« = 0.05, and the experimental data. Although many of the
individual experimental data points fall outside the 95-
percent confidence limits, remember that the confidence
limits are for the mean of a sample of Y at a given value of
x, and in this example we do not have any replicate measure-
ments. From Equation 4.3-25, we can calculate the con-

TABLE E4.3-2b

Data Point 7, tsg, 7, - )
1 103.59 +/— 29.14 8.40
2 121.76 +/— 26.12 —6.76
3 162.85 +/— 19.90 —10.85
4 178.66 +/— 17.88 20.33
5 207.10 +/— 15.11 —46.10
6 174.70 +/— 18.36 34.29
7 229.23 +/— 14.11 1.76
8 253.73 +/— 14.46 —22.73
9 265.58 +/— 15.16 —32.58

10 257.68 +/— 14.66 1.31
11 254,52 +/— 14.49 32.47
12 25847 +/— 14.70 —18.47
13 27743 +/— 16.16 - 3.56
14 309.83 +/— 20.00 1.16
15 344.60 +/— 25.21 47.39
16 376.21 +/— 30.46 —19.21
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Ficure E4.3-2 Estimated regression line, confidence limits, and
data.

fidence limits about ¥, for one additional measurement of ¥
at, say, x; = 3.00:

_ 1 (3.00 — 2.8156)2]‘/2 _
‘.S‘D = 262[1 + 16 + —1361_— = 27.03
Yi + to.0755p = 250.6 + (2.145)(27.03)
= 250.6 + 58.0

As shown in the figure, this interval encompasses a much
larger span than do the dashed lines. )

Although no replicate values are available so that s2 can
be calculated and used in a test of the appropriateness of
the model, the linear form actually used appears to be
suitable from visual examination of the figure. A test of
the hypothesis that B; = 0 can be made based on the
analysis of variance in Table E4.3-2c. The variance ratio is

TaBLE E4.3-2¢

Sum of Degree of Mean
Source of Variation Squares Freedom Square
Due to regression:
bo: Y23 p; 891,136 1 891,136
by, after allowing for
bo: S p(¥; — Ti)? 84,988 1 84,988
Deviation about the ‘
empirical regression
line: 5 (Y, — ¥)? 9,616 14 687
Total 985,740 16

84,988/687 = 123; clearly the hypothesis that B, = 0 is
rejected.

Example 4.3-3 Correlation of Engineering Data by Di-
mensional Analysis

Rowet presented an interesting example of the dangers of
the blind usage of the results of least squares estimation in
the correlation of engineering data. Fluidized beds, in
general, cannot be represented by transport phenomena
models; consequently, empirical models are a natural
approach to obtain functional relationships between the
dimensionless groups of variables (and coefficients) which
are involved in heat transfer, mass transfer, and momentum
transfer in the bed. Rowe simulated 45 sets of experimental
data by selecting from a table of random variables values of
d, the particle diameter; v, the air velocity; AT, the tem-
perature difference between the wall and the bed; and A,
the interphase heat-transfer coefficient for a hypothetical
bed 12 inches in diameter. These variables, together with
certain physical properties: w (air viscosity), p (air density),
k (thermal conductivity of air), ¢, (air heat capacity), ¢
(air bubble surface tension), 8 (coefficient of expansion), and
g (acceleration of gravity), were combined in suitable
dimensionless groups.

The following are typical comments on the treatment of
the simulated data feigning the report of an engineer
working with real experimental data.

NUSSELT NUMBER-REYNOLDS NUMBER CORRELATION: The
first attempt at a correlation was to plot the Nusselt number,
Nu = hd/k, against the Reynolds number, Re = vdp/u, as
shown in Figure E4.3-3a where the line log (Nu) = log (0.13)
+ 0.79 log (Re) has been drawn through the data. The
correlation is not very good, although the index found for
Re is near to the value 0.8 which often occurs in empirical
heat transfer/fluid-flow correlations. The dashed lines
represent the locus of the confidence limits for « = 0.05.
There seem to be some “rogue” points suggesting that the
apparatus was not always working properly.

STANTON NUMBER-REYNOLDS NUMBER CORRELATION: It has
been argued that in a fluidized bed there is considerable dis-
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(a) Reynolds number, Re

FiGURE E4.3-3A

T P. M. Rowe, Trans. Inst. Chem. Eng. (London) 41, CE 70,
Mar. 1963.
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sipation of momentum, and it has been suggested that there
may be a relationship between energy loss and heat transfer.
Consequently, by analogy with the relationship between
friction and heat transfer in pipes (the well-known j-
factors), the Stanton number, St = h/c,vp, was calculated
and is plotted against the Reynolds number in Figure
E4.3-3b. This correlation is an improvement on the previous
one; the rough rule, St = 2.0 Re~!!2 is a guide in design
but subject to a rather large error.

WEBER NUMBER-STANTON NUMBER CORRELATION: The
Reynolds number may not be the best parameter to describe
a fluidized bed from a heat transfer point of view, and
alternative groups were considered. Bubbles are highly
characteristic of gas-fluidized beds and are known to affect
heat transfer. The bubbles have surface energy associated
with them; consequently, it was reasoned that a Weber
number, We = v? dp/o, might characterize the bed. Fluidized
beds do not have a surface tension in the usual sense, but an
arbitrary value was used simply to examine the concept.
Figure E4.3-3c is a plot of the Stanton number against the
Weber number. The correlation is still not good but appears
promising, especially as the law may be written St = 0.2
We ™%, which is simple and suggests a theoretical basis for
the law.

NUSSELT NUMBER-GRASHOF NUMBER CORRELATION: Most
fluidized particles exhibit an “‘up the middle and down the

IOON T T ] ] T

Stanton number, St

0.1 R | [ A T 1
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(c) Weber number, We

FiGURE E4.3-3c
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sides” pattern of movement strongly suggestive of con-
vective circulation; on this basis a Grashof number was
calculated as Gr = d3p?gB AT/u?. Figure E4.3-3d is a plot
of the Nusselt number against the Grashof number. This
plot was modified slightly by multiplying the Nusselt number
by the ratio of particle to bed diameter, Nu (d/D), as in
Figure E4.3-3¢, which seems to yield a moderately good
correlation. The relationship Nu (d/D) = 0.26 Gr%82 is
proposed as a basis for design. It is seen to hold approxi-
mately over five orders of magnitude of each parameter,
and precise relations of such wide application are hard to
obtain.

Of course, all the ascribed relationships are fictitious. There
are two principal reasons for the apparent reasonableness
of the linear relations (on log-log paper) developed. The first
is the use of log-log paper for plotting data; the second is the
inclusion of the same variable on each axis. A logarithmic
plot distorts the data because the more or less uniform
distribution of random points found on an arithmetic basis
appears as a concentration of data in the upper right-hand
corner, as illustrated in Fig. E4.3-3a.
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observed Y;;’s are still assumed to be normally distrib-
uted about %; = B, + Bi(x; — ¥) but with variance
a¥,[f(x)P, so that

Yy—n
U, =24 _ 1
Y op f(x)

is normally distributed with parameters (0, 1). Recall that

If we call w; = (1/f(x;))? the weight, and multiply y? by

0%, we obtain
np;
o¥x® = z Z wi(Yy; — m)?

i=1j =1

(4.4-1)

The sum of squares on the right-hand side of Equation
4.4-1 can be partitioned as in Section 4.3 by an identical
procedure except that w; must be included in each sum.
The least squares procedure gives:

1. Estimated regression equatién Y = by + by(x — ).

2. WDy
2 =5
ig Wipi
_ i_Zl wip; Y,
3 by =Y = F—
- 2. Wipy
151

2
Var {bo} = 52
i=21 WiDi

b

2
Ul—’i

6. Var {b;} =

M=

wipi(e — X)?

i=1

An analysis of variance can be carried out which corre-
sponds to Tables 4.3-1 and 4.3-2. The variance ratio
s2/s2 can be formed exactly as in Section 4.3 and an F-
test carried out. If the ratio s2/s2 is not significant, the
pooled variance is

n

pi _ n . N
2. 2 w(Yy; — Y)?+ > wip(Y; — Y))?
2 i=17=1 i=1
(_ZPi—n) +(n—2)
i=1

Sl—’i =
which corresponds to Equation 4.3-15.

(4.4-2)

The estimated response Y is normally distributed
about y = By + Bi(x — X) and, as before,

Var {¥} = Var {bo} + (x — %)? Var {b,}

Let us now consider two interesting and practical
special cases which contrast the use of weights with the
assumption of unity (no) weights. Let the linear model be
a line through the origin with slope of 8:

&Y | x} = Px

We examine the estimate of 8, b, for three cases:

M Var{Y | x} = o¥x; a weight of)lc

(1) Var{Y;|x} = o%x?;  a weight of %

(I Var{Y, | x} = o%; a weight of 1

Then the corresponding estimates of 8 and the variances
of b become (all sums are from i = 1 to n):

— Z Pi )71 . a%{
b = 2. PiX; Var {bg = 2. DiX;
st
by = : Var {b;} = <=
1 S {b} So
iX; Yz 02
bm Zzppi z Var {by;} = —Z P?;ixiz

In each case a different slope will be obtained. Use of
weights should be based on physical grounds, i.e., infor-
mation about the variability of ¢%, obtained from the
experiment or elsewhere.

For example, if replicate values of Y are taken at each .
x; as in Example 3.6-3, then estimates of ”gﬁ can be ob-
tained at each x; by using Equation 2.4-2. Least squares
can be applied to estimate the required functional de-
pendence of Var {Y} on x. Or, estimation of the functional
dependence can be made from analysis of known instru-
mental errors in the measuring instruments.

Example 4.4-1 Weighted Linear Regression

Example 4.3-1 is repeated in part with the revised premise
that three types of weighting are to be compared:

1. Weight = 1 for each Y.

2. Weight = 1/x; for each ¥,.

3. Weight = 1/x? for each ¥,.
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Solution:
TasLE E4.4-1
Results for Weights of
1 1
Quantity 1 x x2
n
z WipiXs 300 10 0.456
i=ml
n
Z wip: 10 0.456 2.928x10-2
i=1
n
2 Wipx
F==2— 30.0 21.9 15.6
> wip
i=1
z wip, ¥ 158.8 6.526 0.3806
n
Z thtyt
=22 15.88 14.31 12.99
2 Wb
i=1
n
2 wp,
by = ¥ =% 15.88 14.31 12.99
> wipy
i=1
X3 . (X{ - .f)
10 —-20 —11.9 —5.6
20 —10 -19 4.4
30 0 8.1 14.4
40 10 18.1 24.4
50 20 28.1 34.4
Z wipix, — %) Y, 374.62 15.868 0.592
i=1
n
Z wipi(x — %)? 2000 81.022 2.874
i=1
iZ wipi(x— %) Y,
by="0— — 0.1874  0.1959  0.2057
421 w,pf(x‘—)?)z
Var {bo} 0.1674  0.1132  0.0548
Var {b;} 8.3x10"¢ 6.4x10-* 5.6x10-*
Var {b4} 0.921 0.421 0.193

Figure E4.4-1 illustrates the locus of the three estimated
regression equations and the respective confidence intervals
for .

2 1 | T I
21— _{
Locus of upper —
20— confidence limits // -
///
19 / _
/ // Estimated
/f = regression

18— ., lines _|

17 r ]
y 16 — ]

15 Locus of lower -

confidence limits
14— -
13— _ -
Values of Y;e
12 / Weights i ]
ei — 1
p i W
11 e -
10 | | | | |
0 10 20 30 40 50 60

FIGURE E4.4-1

4.5 ESTIMATION WITH BOTH INDEPENDENT
AND DEPENDENT VARIABLES STOCHASTIC

If both the independent and dependent variables are
random and normally distributed, the estimation of
coefficients in a linear (in the coefficients) model and the
designation of suitable tests and confidence intervals
become quite difficult. In spite of the attention that this
important problem has attracted, completely satisfactory
techniques are yet to be devised. Several different methods
of attack, beyond the scope of this text, have been pro-
posed, the references for which can be found at the end
of the chapter. -

To provide a contrast with the empirical model in
which the dependent variable only is stochastic and also
to illustrate some of the difficulties involved in estimation,
one of the many methods of estimation, that of maximum
likelihood, is described here. The technique is not pre-
sented because it is more widely applicable or better
than other techniques—the best treatment when both
variables are stochastic is far from being resolved.

We can only treat the case of a simple linear model
with one dependent variable, Y, and one independent
variable, X, with X and Y jointly distributed by a normal
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distribution according to the density given in Example
2.3-4. Nevertheless, this simple model will indicate one
approach to estimation without the introduction of
obscuring mathematical details. We assume that the
model is

n = Bo + Pulps — ) (4.5-1)
where
= &{Y}
B = & {X3}

fi = some appropriate average of the p,;’s
Bo, By = intercept and slope, respectively, of the model
graph

Both %; and p; are nonrandom variables, and we define
the errors U; and V; and their variances as

(Yi—m) =V, Var {V}} = o2
X;— ) =U; Var {U} = o2
Covar {U;V} = p,,0.0,

We want to estimate B, and B; (and carry out hypothesis
tests) through use of the method of maximum likelihood.
The likelihood function is formed for n sets of obser-
vations, each containing p; replicates exactly as described
in Section 4.3. As usual, errors from one pair of obser-
vations to the next are assumed independent.
We write

T — ]Cém)

2770'qu\/] - P%v

1 AN Yy — m)\?
P [".2(1 = meZl {( o )
i=1j=
P Y, - "h’)(Xii - I"'i) 4 (Xij - /J‘i)z ]
Puv o, oy oy

(4.5-2)

To save space we do not show the logarithm of the likeli-
hood function but only list the results after summation
over the index j of the minimization of In L with Equa-
tion 4.5-1 substituted for »; in Equation 4.5-2:

Partial differentiation with respect to B, yields

n

Doaf(T—m) (X - )] =0 @5)

i=1

Partial differentiation with respect to B, yields
> p{[(F =m0 = 222 (% b= 1} = 0 45
i=1 *

Partial differentiation with respect to p; yields

i v | I
- (B)

(¥, — ) — P22 (X — ) (4.5-5)

The combination of Equations 4.5-3 and 4.5-4 yields,
after some manipulation,

n -—
2. Pity X -
i = i=:.l — 1=:l =X (4.5-6)
2 D 2D
i=1 i=1
n n oy
Z Dy 2 2 Y —
bo = =2 ==t _y (4.5-7)
Z Di 2 D
i=1 i=1

However, the equation for B, proves to be of quadratic
form, indicating a more difficult computation than re-
quired for simple estimation with error in only one
variable:

D pl(T% - 7) - Bu(X — DT, — T)]

i=1

b - (o)
PuvTy Ty Pyy 7 %
= X, — X) (458
[Uu]ﬁ_(f’uvav (1 )( )
1 oy
To solve Equation 4.5-8 for B, we need to have the
values for or estimates of o,, o,, and p,,. As long as the
experiment can be designed to collect replicate data with
identified (Y;, X;) pairs, estimates of o, o,, and p,, can
be made as follows for each pair:

i —
2 (X — X)?
i=1

2 2
82, =53, = =1
1
Py —
3 (v, -y
R T
1

Py — —
S Xy - XY, — T
pi— 1

(ﬁuvsusv)i =1

Homogeneity of variance can be tested as described in
Chapter 3, and pooled estimates can be formed by sum-
ming over the index i, if warranted. If estimates of o,
a,, and p,, cannot be made from the experimental data,
certain assumptions can be presumed concerning these
values or their ratios, and B8, can again be estimated.
Discussion ‘of the confidence intervals for 8, and B; is
beyond our scope here; the interested reader is referred
to the references at the end of the chapter. Extension of
the method of maximum likelihood to multivariate
problems is possible in principle but results in sets of
nonlinear equations, which are often difficult to solve
for the desired parameter estimates. Satisfactory, gener-
ally applicable techniques of estimation for Model 4.3-1
when both variables are stochastic have yet to be devised.
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4.6 ESTIMATION WHEN MEASUREMENT
ERRORS ARE NOT INDEPENDENT

As mentioned in Section 4.2, in many instances the
errors ¢ in the model

171=i90+i91(xz"f)+€t

are not independent as was assumed in Sections 4.3, 4.4,
and 4.5. Over a period of ‘time, earlier process yields,
temperatures, or flow rates may affect later observations;
hence the Y; and, in effect, the ¢ are not statistically
independent. A typical example is the sampling at
intervals of the concentration of a reaction product from
a well-mixed tank. We examine two common examples
of the lack of independence in this section.

4.6-1 Cumulative Data

One characteristic feature of certain special experi-
ments is the use of the same batch of materials for the
entire series of measurements, for example, a series of
measurements of the volumetric displacement of the
same fluid made as a function of pressure or a com-
ponent repeatedly sampled in time in a reaction vessel.
If the unobservable error in the first observation is
designated as ¢, the error in the second observation e;
includes €, plus a random component introduced aside
from e, or €5, = €; + €,. The error in the third observa-
tion is €5 = €; + €5 + €3, and so forth. Mandel, whose
analysis we follow,} distinguished between the usually
assumed type of independent measuring error in the
dependent variable and a “cumulative” or interval error
in which each new observation includes the errors of the
previous observations. Cumulative errors, arising because
of fluctuations as a function of time in the process itself
due to small changes in operating conditions (tempera-
ture, pressure, humidity, etc.), are not independent—
only the differences in measurement from one period to
the next are independent. Thus, if we consider the simplest
case, a model without an intercept, two models are:

1. Model A—independent error:
Yi = ﬂx,- + €;
2. Model B—cumulative data:

Y, — Yo =B(x; — x;21) + ¢
j=12,...,0;,%x =0

i(Yj— j—1)=ﬁi(xj_xj—l)+i€j
=Bxi+zi€j

1 J. Mandel, J. Amer. Stat. Assn. 52, 552, 1957. Also refer to
J. L. Jaech, J. Amer. Stat. Assn. 59, 863, 1964.

i=1,2..,n (461

Y;

I

(4.6-2)

in which ¢ are independent random variables with
&{e;} = 0and Var {¢} = o?, a constant. The ¢; are also ran-
dom independent variables because they represent differ-
encessuch ase; — €5 = (e; + €5 + €3) — (€, + €3) = €.
We assume that &{e;} = 0 and Var{e;} = o3(x; — x;-1);
i.e., the variance of ¢, can be a function of the test interval.
Figure 4.6-1 illustrates the simulation of Equations 4.6-1
and 4.6-2 for B = 3, with ¢; and ¢, being normal random
deviates and o? = ¢ = 1. Note how the experimental
points tend to stay on one side of the regression line of
best fit for Model B. Although the proposed Model B
may be applied only in certain types of experiments, it
has been found to resolve the observed trends about the
regression line in these cases quite well.

The line of best fit for Model 4 from Equation 4.3-7a
as applied to Model 4 is

n

2 xY;
by = /§A = i=},

i=

(4.6-3)

xt
1
and the variance of b, is given by Equation 4.3-11a as

2
Var (b} = & (4.6-4)
xf

M=

1

The best unbiased linear estimate of the slope of Model B
is obtained by minimizing the weighted sum of squares:

i (xf_—lx“_)[‘ Y, = ¥;-1) = B ~ X,

i=1

as described in Section 4.4, which gives

n
Z (YJ - ¥, 1—1)
by = Bp = j——_=n1
2, (x; = x;-1)

i=1
If the test interval is uninterrupted by a gap, Equation
4.6-5 in terms of the cumulative data is nothing more

than

(4.6-5)

Y,
bB—‘—‘Z

(4.6-6)

The interpretation of Equation 4.6-6 is that the best
estimate of the slope of Model B is made by taking the
last value of the dependent variable and dividing it by
the last value of the independent variable! Although the
intermediate results might seem useless, they are not
because: (1) they help decide if the model is really linear,
and (2) they are needed to reduce the variance of the
estimator of the slope which is

. of (4.6-7)
121 x; — x;-1)

If o2 is not known, the Var {63} can be estimated by

Var {bg} =

O

R
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Fitting experimental data when errors are not independent:

(a) comparison of independent and cumulative data; » = 50; and () comparison
of independent and cumulative data; n = 10. (From J. Mandel, J. 4mer. Stat.
Assn. 52, 552, 1957.)

VarA{b B = (n

)

n

: Z (% _l X;-1)

2 (x5 —x-0)fi=1

Jj=1

X [(Y; — Y;_0)bslx; — x;-1%] (4.6-8)

For the special case in which each increment (x; — x;-1)
= 1, Equation 4.6-6 becomes

bg =

=<

and Equation 4.6-7 becomes

Var {bg} =

=18,

If the experiment is best represented by Model B but,
through ignorance or otherwise, is treated as being
represented by Model 4, Mandel showed that for the
casein whichx; = 1, Xy = 2,..., X, = &, 1.e., nointerval
gap and unit changes in x,

% xY;
b = i=1 ' "9
¥ e
= 6\ 22 +2n+1
= -_— U 0
Var ) (5 mioanrns ¢610
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where the overlay tilde (~) indicates an estimate in-
correctly calculated.

Consider the ratio of the variance of the incorrect
estimate to the variance of the correct estimate:

Var {§} (g) 2n% + 2n + 1
Var{bs} \5/(n+ D)2n + 1)

5
As n —> oo, the ratio — 1.2; hence the estimate 4 is only
slightly less efficient than the correct estimate by How-
ever, if the variance of & also is calculated as if the data
were represented by Model 4 when in fact Model B
applies, it can be shown that the expected value of the
incorrectly calculated variance is

~ 3n + 2)of
E{Var {b}} = 5n(n + D2n + 1)

Then we can form the ratio

ENVar(h} 3n+2)

Var{bg}  S(n+ D2n + 1) (4.6-11)

As n becomes large the ratio becomes quite small,
indicating that the standard error of the slope is drastic-
ally underestimated. For example, for n = 10, the square
root of the right-hand side of Equation 4.6-11 is only
0.175. Hence, application of the equations in section 4.3
to Model B data will result in considerable overesti-
mation of the precision of the estimate of the slope,
although the estimate of the slope itself will be quite
good, because

2 (4.6-12)

Note that the ratio of the expected values of § and by,
respectively, is unity (for Ax; = 1):

P ELILLS ]

Mandel also examined the behavior of the residuals in
Models 4 and B. He demonstrated, as indicated in
Figure 4.6-1, that for large n the data represented by
Model A tend to be scattered at random above and
below the regression line, whereas data represented by
Model B tend to remain on one side of the line for long
sequences. This trait will assist in discriminating between
the models (if a large number of observations can be
made at different x’s).

Example 4.6-1 Estimation for Cumulative Data

This example illustrates the analysis of cumulative data
for a chemical reaction. Samples were periodically removed
and analyzed during an experiment, yielding the following
data:t

Time (min) Log (fraction of sucrose remaining x 10)

0 1.000
10 0.954
20 0.895
30 0.843
40 0.791
50 0.735
60 0.685
70 _ 0.628
80 0.581

Analysis of the data by the conventional relations given
in Section 4.3 gave, for the model y = B + Bux,

Estimate Standard Error
b 1.0024 0.00170
b —0.005303 0.0000357
Square root of
sum of squares
of residuals 0.00276

Consequently, the estimated confidence interval for B, was

—0.005387 < B, < ~0.005219 for a significance level of

« = 0.05 and ¢ = 2.365. However, the correct analysis

using a cumulative error model should have been:

Estimate Standard Error
by 1.00 0
by —0.005238 0.000166
Square root of
sum of squares
of residuals 0.00469

The intercept has zero error since it is simply the first
measured value. The correctly estimated confidence interval
is —0.00563 < B, < —0.00485, illustrating how the pre-
cision determined by the wrong method of analysis appears
to be much greater than it should be.

4.6-2 Correlated Residuals

It is well known that data collected at a sequential
series of values of time are liable to have correlated error

residuals. It is then natural to ask how good the least

squares estimation procedure of Section 4.3 or 4.4 is.
This problem was investigated by Grenander} and
Rosenblatt§ for time series; they concluded that if

significant correlations actually exist, the estimates of __ .

the variances of the parameters in the least square
solution will be biased and inefficient. '

1 J. Mandel, Technometrics 6, 225, 1964,

I U. Grenander, Ann. Math. Stat. 25, 253, 1954.

§ M. Rosenblatt, Probability and Statistics, John Wiley, New
York, 1960, p. 246. ’
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We have the space here only to outline the suggestions
of Woldt concerning one appropriate estimation pro-
cedure for the coefficients and their variances in simple
linear models with correlated residual errors. We shall

defer to Section 5.4 the consideration of models with -

several independent variables. For methods of identifi-
cation and estimation of the parameters in time series,
that is, empirical models that are explicitly functions of
time, consult other references.}

To ascertain whether or not a sequential series of
values are indeed correlated, a test for serial correlation
should be carried out. The Durbin-Watson test§ for
serial correlation of €’s was designed to apply to inde-
pendent variables which are exogenous, that is the ¢’s are
statistically independent of the x’s. Hence the test is not
strictly applicable if, as in a time series, some of the
x’s are lagged. The test is quite straightforward—all that
need be done is to compute the statistic D for a series of
n observations.

2 (B — E,_y)?
t=2

2 E?

t=1

where E, denotes the residual (¥;— Y,) at ¢, and (E,— E,_,)
is the successive first difference.

Figure 4.6-2 illustrates the distribution of D and the
regions of acceptance and rejection for serial correlation.
Table C.10 in Appendix C lists the values of the upper,
D,, and lower, D,, bounds for the test. If D calculated
in Equation 4.6-13 is.less than D, or exceeds (4 — D)),
then serial correlation is presumed to exist. If D falls
within D, and (4 — D,), the opposite is true. In the
regions marked by a questionmark the test is inconclusive.

D= (4.6-13)

p(D)
Region of Region of Region of-
rejection 5 acceptance 5 rejection
RN
Posit-ivt/
serial .
correlation Negative
serial
0 correlation
Dy Dy 2 (4-Dy) (4-Dp 4 D

FIGURE 4.6-2 Distribution of D used in testing for serial corre-
lation (the null hypothesis is that there is no serial correlation).

+ H. Wold, Bull. Inst. Int. Stat. 32 (2), 1960; H. Wold, in Proceed.
4th Berkeley Symp. Math. Stat. Prob. 1, 719, 1961.

I G. E. P. Box, G. M. Jenkins, and D. W, Bacon, “Models for
Forecasting Seasonal and Nonseasonal Time Series” in Spectral
Analysis of Time Series, ed. by D. P. Harris, John Wiley, New
York, 1967; G. E. P. Box and G. M. Jenkins, Time Series Analysis,
Forecasting, and Control, Holden-Day, San Francisco, 1969.

§ J. Durbin and G. S. Watson, Biometrika 38, 159, 1951.

Example 4.6-2 Durbin-Watson Test for Serial Correlation

The following data represent the flow rates through a
water-driven turbine as a function of the gate opening in
inches:

Gate Opening Flow Rate
(in) (ft3/sec)
1.1 8.92
2.3 15.51
2.9 20.08
2.5 16.38
3.5 19.53
4.0 22.12
4.7 24.60
5.0 25.35
5.1 25.01
4.5 23.03
5.5 29.47
6.0 32.97
6.3 35.05
6.5 36.58
6.7 38.30
6.9 40.06

1. Assume that a linear model with uncorrelated re-
siduals, n = B4 + Bix, represents the data. Find bj and by,
find the estimates of 8, and 8;, and calculate the 16 residuals.
Examine the residuals.

2. Apply the Durbin-Watson test for serial correlation.
Are the residuals correlated ?

Solution:
The estimated regression equation from least squares is

¥ = 2.792 + 5.0101x

An F-test of the significance of B, indicates that it is a
significant component of the model.
The residuals are:

0.616
1.193
2.756
1.061
—0.799
—-0.714
—1.742
—2.495
—3.336
—2.310
—0.880
0.113
0.690
1.218
1.936
2.694

Clearly the residuals are not randomly distributed about
zero as they should be. (The analysis of residuals is discussed
in Section 7.1.)
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From Equation 4.6-13, the statistic D is

_ 2
(B - B 4709

@ ~5rid - 0%

From Table C.10 in Appendix C, for a two-sided test with
« = 005, /2 =0.025 and K=1, we find D; = 0.97.
Consequently, the hypothesis- that the unobservable errors
are uncorrelated is rejected. The residuals are positively
correlated.

The first model to be examined is

Yt = th + € (4.6'14)

where ¢ represents the index for time. We let x;, Xs, . . ., X,
be n consecutive values of the independent variable and
Yy, Y,, ..., Y, be the observed values of the dependent
variable. Although the residuals may be correlated with
each other, the residuals each have an expected value of
zero and are assumed to be not correlated with x,:

S} =0
E{xe} =0

The least square estimator b of the coefficient B is
obtained as described in Section 4.3:

x Y,
(4.6-15)

The deviation of b from § can be written by introducing
Equation 4.6-14 for Y, in Equation 4.6-15:

If we take terms with the same lag in time, the square
of the deviation can be written as
n n-1
2, xfed + 2 2:1 XX pp1€€001 F oot 2X1 X606,

(b-p== (ti x?)z

=1

We are interested in obtaining the expected value of
(b — B)?, but since the values of €, €,, . . . are unknown,
we must replace terms such as &{>7F-1 xX; , 1€.€,. 1} With
an estimate Y- xx; ., EE,,, where

Et = Yt b bx,

and thus obtain an estimate for the variance of b. Also,
because the correlation x,x; , y€€; ., drops off as the lag
in time between two terms increases, in the approxima-
tion for the variance of b we shall delete all terms after
t + k as being negligible. Consequently,

~
Var {4}
n n—1 n-k
‘Zl xPEE+2 2:1 XXp 1 BBy - +2 ¢Z1 b5 S )
= - - n 2 -
~ 59
‘ t=1

(4.6-16)

A similar but more complicated treatment of the
model :

Y, =Bo + Bux: + e (4.6-17)
can be carried out with the results listed below:
2 (xx— XY,
by ==+ — (4.6-18)
2 (e — x)?
t=1
by =Y — bx (4.6-19)
X = I S X
= .
t=1
7 = l Yt
n
t=1
Co 2%Cy

Var (b} ~ = + B Var{b} (4.6-20) .

n ¢—i1 (x — x)?

C.
Varfh) o ——2—— (4.6-21)
3, & - o]
i=1
where
n n-1 n—i
Co= D E2+2D EE+ - +2) EFy
t=1 t=1 t=1
n k n-7
Ci= D (n—DE+ Z > (4 — DEE,.,
t=1 j=1t=1
k n—-1 )
+ Z Z(xt+j — X)EE, .,
j=1t=1
n k n-Jj
C, = Z (x, — X)E? + 2 Z (x; — X)X 45 — DEE, 15
t=1 j=1t=1
Also
C,

Covar {by, by} & — %Var{b} (4.6-22)

n t:ZI (x; — X)?

In addition to Equations 4.6-14 and 4.6-17, many
other models have been proposed in which the error
residuals are not independent, but we do not have the
space to describe them here. Methods of detecting and
treating various other types of models with correlated
residuals and for estimating the degree of bias introduced




by ignoring the correlation when it exists can be found
in the references at the end of the chapter.

4.7 DETECTION AND REMOVAL OF OUTLIERS

In Section 3.8 we examined the problem of outliers or
extreme points and described some tests for detecting
outliers in a sample. Even carefully prepared experiments
may yield inhomogeneous data because uncontrolled
experimental conditions may change, the experimenter
may make a mistake when taking or recording an obser-
vation, and so forth. If the experimenter does not detect
those “wildshots,” blunders,” outliers, or other
anomalous observations, they will be incorporated with
the valid observations used to estimate the regression
line; they may cause substantial displacements in the
estimated parameters and especially in the estimates of
the variances of the estimated parameters which are
strongly influenced by extreme values. In such circum-
stances the experimentalist would like to delete the
outliers. On the other hand, he does not want to suppress
any observations that deviate considerably from a
preconceived (linear here) trend because the deviations
may contain valid information, such as that the linear
model is wrong.

One difficulty in rejecting outliers in connection with
linear regression analysis (in contrast with the methods
of Section 3.8) is that a pattern has been imposed on the
data; that is, a functional relationship has been assumed.
Consequently, we are forced to examine over again what
an outlier means. In Section 3.8 the outlier conceptually
was an observation isolated from the others which could
be tested for through its numerical value. However, in
regression analysis, the numerical value, the location of
the value, and the character of the model have to be
taken into consideration. Although the pattern of
observations is characterized by a linear model, this is a
man-made restriction and the process variable is under
no obligation to meet such a constraint. If an observa-
tion were out of line and the adjacent observations showed
a similar tendency, though perhaps to a lesser degree, we
would be much more likely to regard the observation as
representing real departure from the assumed model
than as an outlier. On the other hand, an observation
standing out from its nearest neighbors would much
more likely be regarded as an outlier. To qualify as an
outlier, then, an observation should significantly disrupt
the correctly assumed trend in the (linear) model.

Although statistical technigues might appear to offer
objective guides for rejection of outliers, personal
opinions and prejudices do enter into the choice of
methods used in data analysis. Probably no criterion is
better than the judgment exercised by an experienced
experimenter who is thoroughly familiar with his
measurement techniques. ’
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One way to reach a decision on a supposed outlier
through use of statistical tools is to examine the residuals.
If residuals (¥; — ¥;) are calculated including the outlier,
then every residual is affected. Also, the residuals may be
correlated even without outliers. Hence, the use of
residuals as a basis for rejection of outliers has some
disadvantages. Nevertheless, suppose we wish to test
whether a single observation deviates far enough from
the value predicted by the estimated regression line to
cause us to classify the observation as an outlier. We
assume that the model has been shown to be an appro-
priate one. The residuals are supposed to be normally
distributed with zero ensemble mean and an ensemble
variance of o3, If we calculate } ’

£ — B

Sy,
where E* is the residual for the suspected outlier, E* is
the mean of all the other residuals, and sy, is based on
Equation 4.3-15 with the suspected observation deleted,
the values tabulated in Table 4.7-1 based on the distri-
bution of ¥ can be used as critical values to accept or
reject the observation. If ¥ exceeds the value listed in the
table, the hypothesis H,: E* does not correspond to an
outlier, is rejected.

-V (4.7-1)

TABLE 4.7-1 CRITICAL VALUES OF V
USED TO DETERMINE WHETHER OR NOT
TO REJECT AN OUTLIER

Sample Significance Level o
Size for One-Sided Test
n 0.05 0.01
3 123 314
4 7.17 16.27
5 5.05 9.00
6 4.34 6.85
7 3.98 5.88
8 3.77 5.33
9 3.63 ..4.98
10 3.54 4.75
15 3.34 4.22
20 3.28 4.02
25 3.26 3.94

This table is abridged, with permission, from F. S.‘Acton,
Analysis of Straight Line Data, John Wiley, New York, 1959,
p. 261.

Unfortunately, if there is more than one anomalous
observation, the V criterion will notin general detect the
anomalous values, especially when there are less than 30
residuals to be analyzed. If more than one extreme value
is suspect, one of the Dixon criteria can be employed.§
These statistics characterize the deviation of one or

I W. R. Thompson, Ann. Math. Stat. 6, 214, 1962.
§ W. J. Dixon, Biometrics 9, 74, 1953.
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TABLE 4.7-2

Compute r;;

Number of Residuals

If E, is Suspect

If E; is Suspect

3<n=<17 rip:
8<n=<10 rn:(E,,-
11 <n=<13 rai.
14 <n<25 Fao!

(En - En—l)/(En - El) (E2 -
n-1)/(En — E2)
(En - En—2)/(En - E2)
(En - En—z)/(En - Ea)

E)/(E, — Ey)

(E; — E))/(E,-y — Ey)
(Es — E)(En-1 — Eb)
(Es — E1)(En-2 — E1)

several elements from neighboring terms in the series.
We assume that all the residuals except the outliers are
from a normal population with unknown mean and
variance; we arrange them in order from highest to
lowest so that E; < E; <--- < E,. The null hypothesis
is that E, (or E,) is not an outlier. Choose «, the signif-
icance level, and compute the statistic indicated as
shown in Table 4.7-2.

For a two-sided test (the outlier can be too large as
well as too little), look up r,_g from Table C.11 in
Appendix C; if ry; is greater than r, _g, reject the suspect
observation; otherwise retain it. A one-sided test can be
made by ascertaining whether r;; > r;_,.

The Dixon criteria are optimal for small displacements

and are independent of the number of errors, whereas
the other criterion, that given by Equation 4.7-1, is
optimal when there is only one anomalous value and is
independent of the size of the residual. Additional
references for analogous tests can be found at the end of
Chapter 3.
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Problems

4.1 State for each of the equations below whether it is
linear or nonlinear in the parameters (x is the inde-
pendent variable):

(@) y = PBo+ Bix1 + Poxo
1
® =5 A
(€) v = e Pox+hy
(d) lny = /30 + ,le
1 B
(e) ; =B + >
) ¥ = Boxfixi>

4.2 Transform each of the nonlinear models in Problem
4.1 to one linear in the parameters.

4.3 In which of the following models can the parameters
be estimated by linear estimation techniques?

(a) y =Bo + Bix + Bax?
(b) y =Bixs + Baxe

(©) xy=pBx+ 8

(@ y=@)Inx + B
(e) y=efr”

4.4 Under what circumstances can equations, nonlinear
in the parameters, by fit by linear regression?

4.5 Determine the best functional relation to fit the
following data:

(a) x Y
1 5
2 7
3 9
4 11
(b) X Y
2 948
5 879
8 81.3
11 74.9
14 68.7
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©) X Y
2 0.0245
4 0.0370
8 0.0570
16 0.0855
32 0.1295
64 0.2000
128 0.3035
(d) x Y
0 8290
20 8253
40 8215
60 8176
80 8136
100 8093

4.6 Can the parameter o« in the model y = (x; + x2)/(cc + x3)
be estimated by a linear regression computer routine.
Explain. Will fitting the transformed model:

(@ y=k(x; + x2 — x3), where k = 2)12

or

(b)i:a( ! )+ =2

X; + Xg X1 + X2

accomplish your objective ? Explain.

4.7 From the values of x and Y given, determine the
functional form of a suitable linear relation between
Y and x. Do not evaluate the coefficients; just ascer-
tain the form of the function Y = f(x).

X Y

0 0

0.1 1.333
0.2 1.143
0.3 0.923
04 0.762
0.5 0.645
0.6 0.558
0.7 0.491
0.8 0.438
0.9 0.396
1.0 0.360

4.8 A rate model for a batch reactor is

(-
(1 +x)p

1 - x x
L+ KT + Keli)r

kK4

r =

where k, K4, and K,, are coefficients, x is the inde-
pendent variable, and p is another independent
variable. It is proposed to write the model as

= 1 —xp
B1 + Box
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4.15

4.16

4.17

4.18

sum of the squares of the deviations between the
grand mean Y and the predicted values of Y, ¥?

You are asked to fit a line = 6.2 + Bx to some ex-
perimental data. Derive the equations which will
enable you to estimate:

(a) B, the slope.

(b) o3, the variance.

(¢c) The confidence interval for 7.

Given a model
7 = Picos wx + Basinwx + B3

with a period
ro2
w
given the fact that the graph of the model extends
over an integral number of periods, and given pairs of
(Y, x) data points:
(a) Derive the normal equations.
(b) Set up the simplest expressions possible to
estimate B1, B2, and Bs.
(¢) Find the sum of the squares of the residuals

> (%= Ty

(d) State the number of degrees of freedom for (c).
(e) Find the variances of 8; and B..

In the case of a periodic function such as the above,
the amplitude of the wave is (87 + B2)%; the “in-
tensity” is (8% + B2). Explain how you might test
whether (8% + B3) is significantly different from zero.
In other words, is the wave a reality? List all the
assumptions required.

The following data represent bursting strengths of
aluminum foil :

Disk Thickness (in) Bursting Pressure (psia)

0.001 1
0.002 5
0.003 15
0.0045 21
0.005 22
0.008 47
0.010 57

(a) Estimate 8, and B, in the linear model 7 =
Bo + Bix.
(b) Estimate the variance of Bo; B1; Y.
(c) Find if the parameters 8, and f; are significantly
different from zero.
Note: Use the ¢ = 0.05 significance level if
needed in any of the above.

Derive an equation to estimate B in terms of the
observed data pairs (Y, x) for a model of the form
n = « + Bx, where « is a known constant. Does it
make any difference if the x values are calculated
about the mean of the independent variable, or about
some arbitrary origin or about x = 0?

4.19

4.20

4.21
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The following data have been collected:

X Y
10 1.0
20 1.26
30 1.86
40 3.31
50 7.08

Which of the following three models best represents
the relationship between Y and x?

n = etz+Bx
: 7 = e®tB1xtBax
7 = ax?

(Do not find the values of the estimated parameters.)

Take the following series of values and fit a model of
the formn = Bx; repeat withn = « + Bx. Determine
the confidence intervals on 7y and B for the first model,
and for 1, «, and B for the second. Prepare an analysis
of variance. Which estimated regression equation gives
the best fit?

x: 9877643312
Y: 7978736122

Make a graph of each estimated regression equation,
plot the given points, and put on each side of ¥
lines showing the locus of the confidence limits for
n at a S-percent significance level. Plot the joint
confidence region for P = 0.95 in parameter space of
o versus B.

Given the following equilibrium data for the distri-
bution of SO; in hexane, determine a suitable linear
(in the parameters) empirical model to represent the
data.

X, Y,
Pressure (psia) Weight Fractien Hexane

200 0.846
400 0.573
600 0.401
800 0.288

1000 0.209

1200 0.153

1400 0.111

1600 0.078

4.22 To date there have been no really successful generalized

correlations of pressure drop for finned tubes with
gas flows. The standard errors of estimate for most
friction factor correlations are of the order of +40
percent of the predicted value, a quantity excessive
for engineering use. Therefore, the pressure drop data
below are presented for individual tubes- without
attempting to correlate all the data into a single
generalized equation. Estimate o« and «; in the model

¥/
o — = opv*L
n

where o Ap/n is regarded as the random variable,
v (ft/min) is regarded as a deterministic variable,
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What are the best estimates of k& and po? Does your
Po agree with 29.9 in Hg at sea level (z = 0)? What
is the joint confidence region for k and pe?

The precision of measurement of the data for
o Ap/n given in Problem 4.22 is roughly proportional
to the value of ». Estimate «p, and «; in the model

_ of Problem 4.22 by using an appropriate weighted

least squares technique. What difference does the

revised procedure have on the confidence interval for

o Ap/natv = 1200?

An experimenter attempts to fit a model of the form

Y = Bx + € in which the ensemble standard devia-

tion of Y 'is proportional to Yitself. Obtain a weighted

least squares estimate of 8 by minimizing Equation

4.3-3 in the chapter.

The following data are to be treated in three different

ways:

(a) Yis the random variable and x is a deterministic
variable. Obtain the estimated regression equa-
tion for the model Y = By + Bix + ¢, and
estimate the confidence interval for » at x = 62.

(b) Yis the random variable and x is a deterministic
variable. Predict X for a measured Y of 150
for the model listed in (a). Can you estimate a
confidence interval for X'?

(c) Both X and Y are random variables. Estimate
the model parameters in ¥ = B, + B1X. Can
you estimate the confidence interval for Y at a
given value of X; for X at a given value of Y?

Xorx Y
60 110
60 135
60 120
62 120
62 140
62 130
62 135
64 150
64 145
70 170
70 185
70 160

The following extract is from the J. Chem. Educ. 42,
609, 1965. Comment on the extract. Is the author
correct or not?

Currently, a common linear regression analysis
in physical organic chemistry is that of the re-
gression of logk on ¢ to obtain a Hammett
equation, log k = logk® + po, where log k° is
the regression intercept and p is the regression
slope. This equation is useful in several ways;
one of these is the estimation of new k-values
from the corresponding o-values, if available. It
has been stated in the literature that not the
above equation but, instead, the equation for
the regression of ¢ on log k should be used for
the estimation of new o-values from experimental

4.34

4.35

4.36
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k-values. This proposal is questionable for two
reasons. First, for many reaction series of m-
and p-substituted benzene derivatives, it is
obvious that there is a linear functional re-
lationship between log k as the dependent vari-
able and o as the independent variable. Second,
even though there are uncertainties in o-values,
they are generally less than the uncertainties in
experimental k-values. For these reasons, the
equation for the regression of logk on o is
equally applicable to the estimation of new
k-values from known o-values and of new o-
values from experimental k-values.

A first-order homogeneous reaction of N,Os in a
lumped tank is to be modelled by

y4
In= = k(t — ¢
2=kt ~ 10

where p = partial pressure of the NyOs, po = partial
pressure at ¢ = fo, 1o is the reference time, and k is a
constant whose value is to be estimated. Use the data
of Daniels and Johnsont to estimate k, taking into
account that the p values were obtained continuously
from the same tank (£ was reported to be in the
range of 0.0096 to 0.0078 min~1).
Estimate the variance of £.

Time (min) Prgos (mm Hg)

0 308.2

20 254.4

30 235.5

40 218.2

50 202.2

60 186.8

100 137.2
140 101.4
200 - - 63.6

The following data have been obtained from a batch
reaction used to make ethylene glycol (E.G.) from
ethylene oxide (E.O.) with a 9-percent ethylene oxide
feed:

Effluent Composition

Holding Time E.O. E.G.
31.2 1.27 9.53
25.0 1.52 9.23
18.7 1.93 8.85
12.5 2.62 8.03

6.25 4.07 6.38
3.12 5.62 4.50

Explain how you would determine the best linear

relationship between the E.O. and E.G. compositions,
the independent and dependent variables, respectively.
State all assumptions.
Apply the Dubin-Watson test for serial correlation
to the data of Examples 4.3-1 and 4.3-2. Would you
change the estimation procedure in these examples?
If so, in what way?

1 J. Amer. Chem. Soc. 43, 53, 1921.
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CHAPTER 5

Linear Models With Several
Independent Variables

In this chapter we are interested in exactly the same
estimation problem as in Chapter 4, but the problem is
complicated by the use of a model with several inde-
pendent variables. Given that » sets of experimental data
have been collected, hopefully based on a plan such as
described in Chapter 8, how can the best estimates of
the parameters in a proposed process model be obtained ?
How can the confidence intervals of the parameters be
formed, and how can hypothesis tests similar to those
described in Chapter 4 be executed ? One additional factor
of interest, arising because of the large number of
computations involved, is how to carry out the com-
putations on a digital computer. The generic term often
applied to the estimation procedure described here is
multiple regression.

5.1 ESTIMATION OF PARAMETERS

We are interested in estimating the parameters in the
model
Y | x} =79 = Bo + Pr(xy — X1) + Balxz — %)
+-eet ng(xq - iq) (5-1‘1)
or its equivalent
Y= B0+ Bi(xy — X1) + Balxz — %) + -+ BolXg — %) + ¢
(5.1-1a)
where € is the unobservable error which causes Y to
differ from %. An alternate form of the same model is
7 = Bo + Bix1 + Baxz + -+ + Bo¥Xq (5.1-2)
All the assumptions listed in Section 4.2 still are in effect.
The estimated regression equation corresponding to
Equation 5.1-1 will be written as an extension of the
corresponding equation of Section 4.3:
Y= bo + bi(x; — X)) + bolxe — Xg) + -+ -+ b(x, — %)

The x’s now may be different variables such as flow rate,
pressure (p) and concentration (c), or they may be
products of variables such as p2, pc, and pc2

5.1-1 Least Squares Estimation

Exactly the same least squares procedures as described
in Sections 4.3 and 4.4 can be carried out to obtain

143

estimates of the parameters in Equation 5.1-1. We
minimize the weighted sum of the squares (in “ordinary”
least squares the weights are all unity) of the deviations
between the observations of Y, Y, and the corresponding
expected values of Y3, #;:

Minimize ¢ = z wl(Vi — m)? = Z w2 (5.1-3)
i=1 i=1

with respect to the coefficients By, Bi, Bs, ..., Bg. In
Equation 5.1-3 the weights may be proportional to
(%), which ensures that the points with the largest
variances will have the least influence in determining the
best fitting line through the data, or some other scheme
of weighting may be employed. The subscripts to be
employed are:

i
0

IA

Index of data sets (matrix rows) i<n

Index of coefficients (matrix columns) <k<gq

To minimize ¢, we take the partial derivatives of ¢
with respect to each ; and equate the resulting expressions
to zero (the extremum can be shown to be a minimum):

:_[i =0= "‘ZZ Wi[Yi — Bo — Bilx — X1)
C = Balxia — X5) — -+ = Bylxig = X)]

:—gl =0= —ZZ Wi[)—,i ~ Bo — P10 — X1)
— Ba(Xig — Xg) — -+ - = Byl = FW X1 — X1)

s—/;i =0= —2;%[2‘ = Bo — Bulxa — X1)
— Balxig — X2) —- -+ — Bq(xiq - x—a)](xiq — %)
(5.1-4)

By rewriting Equations 5.1-4 we obtain the set of
simultaneous normal equations, Equations S5.1-5, equiv-
alent to Equations 4.3-5:
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+ b,y(0)

bo(i Wi) + b,(0)

i=1

ook b0) = > wT,
i=1

b‘()(())\ + b, [Z Wi — X)X — -’?1)] + bz[z wy(Xi2 — Xo)(i — 3?1)] +e

i=1 i=1

i=1

+ bq[z Wi(xiq — Xg)(Xiy — 551)] = Z w, Yi(xy — X,
i=1

i=1

be(0) + b, [z WXy — X)) (Xiz — fz)] + b, [Z wi(Xig — Xo)(Xi2 — fz)] +-

i=1

+ bq[z Wi(Xig — Xg)(Xi2 — fz)] = Z w; Yi(Xig — X3)
i=1 i=1
{

b  +by [Z W — %)t — f.,)] + bz[z Wil — %2)(xiq = x.,)] o

i=1 i=1

Note that inasmuch as

n

Z wi(Xy — %) =0

i=1

the first equation in 5.1-5 yields

(5.1-6)

The term normal equations has a geometric interpre-
tation as follows. If the observations Y, are interpreted
as the components of a vector of observations Y with a
base at the origin in observation space, as illustrated in
Figure 5.1-1a, we want to select the values of b, (which
exist in parameter space) that yield values of ¥; that
minimizes . The components of ¥; can similarly be
interpreted as forming a vector in observation space, %,
and the various choices of b’s form a plane of estimates
of 7. We want the estimate of n, ¥, which yields the
shortest distance between the head of the vector Y and
the surface of estimates of 5. The normal equations are
those that determine the &’s such that the vector (Y — Y)
passes through the head of Y and is perpendicular
(normal) to the surface comprised of all the possible
values of the estimates of 5. This perpendicular vector is
the one that ensures that ¢ is a minimum.

Figure 5.1-1d illustrates geometrically the unobservable
error vector € which is the difference between the vector
7 and the vector of observations Y. There is a given
probability that the head of the vector » will be found in

+ bq[z WiXig — Xg)(xiq — fq):l = Z w; }_,i(xiq — Xg)
= = (5.1-5)

some sphere of radius e about the head of Y. The vector
Y has components b; and b, in the directions x; and x,,
respectively. Because a normal projection is used to
project Y onto Y through least squares, the vector €
projects as the smallest possible circle on the x; — x,
plane. Further projection on the x; and x, axes results
in confidence intervals for 8, and B,, respectively. When
the correlation between x, and x, is large, that is the
cosine of the angle between x; and x, approaches 1, the
projection of the circle on the x axes is longer than if
x, and x, are orthogonal, i.e., perpendicular, when the
projections have shortest length. Orthogonality of two
variables, x; and x;, means that

z xu'xik = 0 ifk §éj T

i=1

We now outline the estimation procedure in matrix
notation{ inasmuch as the display of Equations 5.1-5
clearly calls for some compact way of presenting the
same results. Let the n experimental data sets and the
q + 1 parameters be represented as follows:

Y Y,
Y - Yolannx1 ¥=|Y2|annx1
N matrix matrix

Y. Y,

t Readers -unfamiliar with matrix notation should first refer to
Appendix B.



Bo
B = f3’1 ag x 1 matrix
B,
1 (x11 — %1) (x12 — Xa) (X1 — %)
I (xa1 — %) (Xo2 — %2) (%2q — %)
x = . .
I (X1 — %) (Xng — X2) (Xng — Xy)

an n x (q + 1) matrix

In the first column the 1’s are dummy variables which are
needed only if Model 5.1-1 is to have an intercept and yet
be represented in matrix form as n = xP with the corre-
sponding estimated regression equation Y = xb. Each
X; vector is

X = [1(x — %) - (X — %)]

It would be equally possible to represent the model as
n = B, + XB with the corresponding regression equation

,Third observation
KJ Vector interpretation

- / .
First observation

(a)

(c)

FIGURE 5.1-1

Surface of
< estimates of 7
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¥ = Y + %b where % is identical to x except that the first
column of dummy 1’s is deleted.

The weights have the same interpretation as in Section
4.4 and are

w, 0 .- 0
0 Wy +o¢ 0 .
w = ann x n matrix
0 0 cee oW,
while the residuals are represented by £, = (¥, — ¥,) or
E,
E = an n x 1 matrix

E,

The sum of the squares of the unobservable errors is

é = Z wie? = eTwe (5.1-7)
i=1

B2

/ Estimate of 82
b

Estimate of ﬂl\ﬂ'

B1 b1
(b)

(@)

Interpretation of the vector of residuals as a normal to the surface of

estimates of n: (a) observation space (three observatiPns), (b) parameter space (two
parameters), (c) normal vector E in observation space (Y is the best estimate of n; Y is a
poorer estimate of 7), and (d) experimental observation space (two independent vari-

ables).
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Becausee = Y —n =Y — xf,

¢ = (Y - xB)"w(Y — xB) (5.1-7a)
which can be minimized with respect to all the B,’s by
taking 9¢/0p and equating the resulting matrix to a zero
matrix :f

%
eo _ || _ 2ty - xpymey — xp)
%" | o P

B,

= —2x"w(Y — xB) =0 (5.1-8)
(Recall that Y and x act as constants in the differentiation. )
Equation 5.1-8 with the estimate b replacing 8 becomes
(5.1-9)
which is exactly the same as Equations 5.1-5. This can be
demonstrated by expansion of Equation 5.1-9 into
elements and subsequent multiplication. The solution of
matrix Equation 5.1-9 for b is
b = (xTwx) " (x’wY) = ¢G, xTwx) # 0 (5.1-10)
where, to simplify the notation, we shall let
Twx)"!'=a"l=c¢ and 'wY) =G.
The matrix xTwx is symmetric, as can be seen from the

terms in Equation 5.1-5; hence the matrix ¢ is also
symmetric so that ¢ = c.

xTwY = xTwxb

5.1-2 Maximum Likelihood Estimation

Minimizing the sum of the squares of ¢ gives rise to
the same estimate of B as does minimizing the variance
of an arbitrary linear function of the elements of P.
It should be noted that the procedure above is inde-
pendent of any severe restrictions on the distribution of
the unobservable errors €, but it can be demonstrated
that if the errors are assumed to be normally distributed,
the maximum likelihood estimate also yields Equation
5.1-9. If the multivariate normal probability density
function, Equation 2.3-6, represents the distribution of the
set of unobservable errors in Model 5.1-1a,

p©) = kexp (~3em1e)

where ¢, = (Y; — =) is the error matrix }

(5.1-11)

T We make use of the following property in differentiating a
matrix. If

h = gTaq
dh = 2(dq")(aq)
which can be verified by decomposition into matrix elements and
appropriate manipulation of the elements.
1 Note that € is not the same as the matrix E = (Y — Y),
identified previously.

then

and k is a normalization factor defined in Section 2.3,
then a likelihood function can be written after the
observations are made similar to Equation 4.3-8 in which
the Y and x matrices are regarded as given and the B
matrix (and perhaps f) is the variable. The natural
logarithm of the likelihood function is

InL(, f|y,x) = InL = nlnk — 3[(Y — xB)"f-(Y — xB)]

(5.1-11a)
where
0% O12 O1n
2
f = Covar{e) = ey = | 7 7 Tan
Op1 Op2 """ 0'12;

Assuming that &{e;} =0, that Var {¢;} =é°{(ei.—0)(ei —0)}=
&{el} = o2, and also that Var {e;¢,} = 0, we can reduce
the covariance matrix f to

a2 0 0
‘- 0 o 0
0 0 o2

We can then identify
1
-1 __ - —
f-1 = = I=w

Finally, if all the elements on the main diagonal of f are
equal and equal to ¢%, a constant, f reduces to

f=o3l (5.1-12)

To save space we shall use w in many of the following
equations instead of (1/0%)I. For later use, note that
e"we = ee"w”. If the elements in :he matrix f are not
simplified as shown but retained, the type of estimate
obtained is known as a Markov estimate.

Maximization of InLZ in Equation 5.1-11a with
f = oI can be accomplished by differentiation of In L
with respect to 8§ and o%,, yielding the normal Equations
5.1-9 and a biased estimate for ¢, just as in Section 4.3.
Minimization of (Y — xB)"(¢2) XY — xB) maximizes
In L; compare with Equation 5.1-7a. As a matter of
interest, if all the elements in the matrix f are retained,
minimization of (Y — xB)f-(Y — xB) leads to the
Markov estimate

b = (xT{1x)~"}(x‘{"1Y)
with .
Var {b} = (xf~1x)-1

but the elements of f must be evaluated by replicate
experimentation or some other method to carry out the
calculations. A discussion of estimation schemes in
which the elements of f are estimated along with the
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In matrix notation using Equation 5.1-10,
bo )7 1
b1 )7 2
= [(xTwx) ~xTw]
b, Y,
and the sensitivity of b, for Y, is
a,
Y,
where [(xTwx)~xTw],; is the element in the kth row and
ith column of (xTwx) ~'xTw.

To illustrate a sensitivity calculation, we use the data
of Example 4.3-2 for the tenth set of data and b;:

Opmin (Ym) _ 2(259)(0.03) _ 6.1 x 108

(5}3) = [(xwa)‘lew]m(%) (5.1-19)

Y10 \$mm (14)(687)
ab, (E) (%10 — %) (259)
9T, \ b1 /) > (x — )2 \79.02
_ (3.09 — 2.816) ( 259 )
= T asen  \719.02
= 6.58 x 10-2

In other words, a 10-percent change in Y; will produce
a 6.1 x 10~ 2-percent change in ¢, and a 0.658-
percent change in b,. Both of these sensitivities are quite
low, which is all to the good in model building.

5.1-5 Computational Problems

We shall now briefly mention some of the practical
problems which arise in the machine computation of
parameter estimates and allied calculations discussed
above. The most elusive difficulties are the following:

1. Loss of significant digits in subtracting approxi-
mately equal numbers. As has been observed in the
numerical examples in Chapter 4, many of the terms
which are subtracted from each other are nearly equal.

b1+ ba=1

FIGURE 5.1-2

Two numbers with five significant digits, each of which
agrees in the first two digits, retain only three significant
digits on subtraction. One partial aid in overcoming loss
of significant digits is use of double-precision arithmetic.

2. Roundoff error. Freundt and Smiley} demon-
strated the magnitude of rounding error in computations
by floating-point arithmetic. The use of double-precision
arithmetic and more careful attention to the significance
of individual variables at the intermediate calculation
stages are prescribed as antidotes for rounding error.§

3. Matrix a becomes ill conditioned. The least squares
solution may be very sensitive to small perturbations in
the elements of a. For example, as an extreme case,
consider Equation 5.1-9, ab = G. Suppose that

11 1
a=[1 1] and G=[O],

then the det a = 0, a is singular and a plot of the two
equations represented by ab = G, Figure 5.1-2a, shows
that they are two parallel lines with a slope of —1. Now
suppose because of numerical or experimental error the

matriX a iS
1 1 + €

where e is a small perturbation. a is no longer singular,
although close to it, and is termed an ill-conditioned
matrix. The two corresponding equations, illustrated in
Figure 5.1-2b, now intersect at a point whose value
becomes more uncertain the smaller the value of e,
As € —0, the lines again become parallel.

Matrix a can become ill conditioned by improper
selection of experimental values of the independent

t R. J. Freund, Amer. Stat., 17 Dec. 1963, p. 13.

I K. W. Smiley, Amer. Stat., 18 Oct. 1964, p. 26.

§ Also see: M. J. Gaber, Comm. ACM 7, 721, 1964; and R. H.
Wampler, J.\Res Nat. Bur. Standards 73B (in press), who evaluated
twenty different computer programs.

b1+ by=1

] I |
S (N L i
-1 o[ by £\
i

T b+ (1 +6€be=0

Graph of the equations yielding ill-conditioned matrices.



variable. For example, suppose that the model is 3 =
Bo + Bix, and three observations are taken at x = 19.9,
20.0, and 20.1 units. Then

1 19.9 3 60.0
—_ = T = .
x=]1 200 a = [x'x] [60.0 1200.02]
1 20.1

and the deta = (3)(1200.02) — (60)(60) = 3600.06 —
3600.00 = 0.06. Suppose that the numbers to the right
of the decimal points in the matrix x are the last signif-
icant figures. Then it is clear that rounding of the
elements to be subtracted at four digits will give deta = 0,
that rounding at five digits will also give deta = 0, and
that six digits are needed to obtain 0.06. However, if the
model is written as » = By + Bi(x — X):

1 —0.1 -
{1 o0 — [x"x] =
X a =[x [0 0.02]
0 01

the det a still is equal to 0.06 but the calculation (3)(0.02)
— (0)(0) = 0.06 indicates a is well conditioned. Also, the
contours of the sum of the squares surface are much more
circular. Use of orthogonal experimental designs, as
described in Chapter 8, and use of Model 5.1-1 rather
than Model 5.1-2 are recommended methods of avoiding
having to work with an ill-conditioned a matrix.

Example 5.1-1 Estimation with Orthogonal Variables

Data obtained from experiments based on the experi-
mental set-up shown in Figure 8.1-1 (known as a two-level
factorial experiment) are:

Temperature, 7 (°F) Pressure, p (atm) Yield, Y (%,)

160 1 4
160 1 5
160 7 10
160 7 11
200 1 24
200 1 26
200 7 35
200 7 38

(The yield is the dependent variable.) Estimate the coefficients
in a linear model of the form

7 = Bo + Bix1 + Baxz

Solution: ‘
The values of the independent variables can be coded so
that the calculations are easier to follow. Let
p—4

T-180 o _
20 ° TPT T3
The coded data are as shown in Table E5.1-1.

Notice that x; = 0, X2 = 0, and that the independent
variables are orthogonal because > xox; = 2 XoXz =

x1=T=
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TaBLE ES.1-1
Calculation of Error
within Sets

Xo X1 Xa Y,;=yield Y, A=(Yu— Y) A?
1 -1 -1 4 4.5 -0.5 0.25
1 -1 -1 5 +0.5 0.25
1 -1 1 10 10.5 -0.5 0.25
1 -1 1 11 +0.5 0.25
1 1 -1 24 25 —-1.0 1.00
1 1 -1 26 1.0 1.00
1 1 1 35 36.5 —-1.5 2.25
1 1 1 38 1.5 2.25

Sum = 7.50

> x1x2 = 0. The column under x, contains the dummy
variable 1 in order for the model to include an intercept. All
the weights will be unity.

Based on the coded variables, the matrices used in the
estimation were (the number of digits retained has been
truncated at four from the eight actually used):

8.000 0.000 0.000
0.000 8.000 0.000
0.000 0.000 8.000

a=(x"x) =

0.125 0.000 0.000
0.000 0.125 0.000
0.000 0.000 0.125

c=(x"x)"! =

153.0
92.99
35.00

G = xTY) =

The estimated regression coefficients were computed to be

bo 19.125
b= ]b| = x™x)"(xTY) = |11.625
b, 4.375

Consequently, the estimated regression equations were:

Coded: ¥ = 19.125 4 11.625x; + 4.375x,

Uncoded: ¥ = —-91.333 + 0.581257 + 1.4588p

Orthogonal designs for the independent variables simplify
the detailed calculations and are more efficient than non-
orthogonal designs because they obtain more information
for a given amount of experimentation. This matter will be
discussed in more detail in Chapter 8.

Figure ES5.1-1 illustrates the contours of the estimated
regression equation in observation space. In this example
52 = (7.50/4) = 1.875 and 52 = (15.12/1) = 15.12. The var-
iance ratio (15.12/1.875) = 8.06 is greater than Fj g5(1,4) =
7.71; hence the model can be improved by one of the
methods discussed in Chapters 7 and 8.
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Example 5.1-2 Harmonic Analysis

The solution of certain types of differential equations and
the approximation of most periodic responses can be ex-
pressed by an empirical model which is linear in the coeffi-

cients but not in the independent variables:

m = ap + @ cos x + By sinx + oy cos 2x
+ Basin2x + -+ apcos mx + Businmx  (a)

The scale of x should be chosen so that the fundamental
period is 27 on the x-scale, in which case the parameters
a;and B; for j = 1,2, ..., m depend on the choice of origin
on the x-scale. However, the amplitude, (¢? + A%, of the
Jjth harmonic is invariant under translation of axis. If the
terms corresponding to the jth harmonic are written as

a; cos jx + B;sinjx = p;sin (jx + 6) (b)
where
pi = (o + D%, 0; = tan'lg—j
7

it is evident that the amplitude, p;, is not altered by an
arbitrary choice of origin. However, the phase angle, §;, does
depend on the location of the origin. In harmonic analysis
it is customary to estimate and/or test hypotheses on the
amplitudes of the various harmonics rather than on the
parameters «; and ;. With this exception, the development
of harmonic analysis follows the usual linear regression
analysis.

Suppose we consider a special type of harmonic analysis
in which the n observations are taken at values of x which
are equally spaced over one cycle of the periodic function.
It will be seen that the calculations in this important case
are particularly simple because of the orthogonality of the
data for all parameters.

The values of the independent variable may, without loss
of generality, be taken as x; = tr, with the data sets at
t=0,1,2,...,n — 1, and r = 27/n. (The letter ¢ is used
here because of the predominance of applications in which
time is the independent variable. The value of » might be
24, for example, if the period was one day.) Thus for each
observation:

m
Y, = oo + Z (o; cos jtr + B;sinjtr) + &,
i=1

t=0,1,2,...,n—1 (c)

(Note that the number of observations must be n > 2m + 1
for determinacy.)
In the normal equations the following typical sums
vanish because of orthogonality:
n-1
Z cosjtrsinjtr =0
t=0

n-1

n-1
Z €0s jtr cos ktr = Z sin jtr sin ktr = 0,
t=0 t=0

Lhk=12....mj#k

but the squared functions do not:

n—-1 n—-1

. .9 n
Z cos? jtr = z sin? jtr = 3
t=0 t=0

Consequently, the normal equations are

n-1
t=0

n-1

n

5 = Y, cos jtr (d)
t=0

n n-1

iﬁj= Y;sinjir j=12...,m
t=0

and the least squares estimates of the model parameters are

R N
[lo=060—;lZYt=Y

2 .
ajzajz;lz YtCOSjtl‘ (C)

b; = 3, = ’—212 Y, sin jtr

The usual assumptions on the €’s give the variances of

2
o2
2 Y;
Ogy = 7 (fl)
202
2 Yi
0%, = of, = — (f2)



where af—,‘ is the variance of €, An unbiased estimate of af—,{
is given by s which can be calculated by using Equation
5.1-15 or

Y? — nai - iz’él (@? + b?)

s 150
= (n —2m — 1) ®

The variances of the estimated parameters can themselves
be estimated by s2,, s2,, and s, when s%i is substituted for
o9, in the right-hand sides of Equations (f).

Under the assumption that the €’s are normal, Table
E5.1-2a gives an analysis of variance for testing that the
amplitudes of the harmonics differ from zero. Under the
normality assumptions on the ¢’s, the jth harmonic ampli-
tude may be tested by an F-test, using the variance ratio
in(a? + b,?)/szl-,i. For example, if the variance ratio for the
first harmonic alone is significant, then the empirical data
represent a sine wave. The hypothesis that each of the
amplitudes of the harmonics is zero can be tested in turn.
Also, once the estimated coefficients have been evaluated,
p; and 8; can be calculated.

TABLE E5.1-2a ANALYSIS OF VARIANCE FOR HARMONIC
ANALYSIS :

Source of v=Degree Sum of Mean

Variation of Freedom  Squares Square
First harmonic 2 n@2+b3)  in(a+ b))
Second harmonic 2 In(a3+b3)  in(az+ bl)
mth harmonic 2 In(a2 +b2) in(a2 +b2)
Residual n—2m—1 (Difference) 5%,
Total n—1 > YZ—na?

As an example of estimation of the parameters in har-
monic analysis, the following data, taken from the periodic
output for a steady-state process, were fitted by Equation (c)
with m=4:

x (time) Y (volts)
0 0.972
/6 —0.653
7/3 —0.353
/2 2.063
27/3 3.803
57/6 2.798
T -0.977
Tm/6 —-4.391
4m/3 —4.709
37m/2 —2.165
5m/3 2.324
117/6 1.048
27 0.814

Here n = 12 (27 initiates a new cycle).
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From Equations (e) the nine estimated parameters were:

a, = —0.0153 by = 2.0768
a, = 0.9334 b, = —2.8978
a: = 0.0391 bs; = 0.0027
az = 0.0625 b, = —0.0377
a, = 0.0030

and the estimated variance from Equation 5.1-15 was
s2 = 3.249 x 10-3, Replicate data from earlier runs indi-
cated that s2 = 1.12 x 10~® with 4 degrees of freedom;
F, _.(3,4) = 6.59 from Table C.4 in Appendix C; hence the
model was deemed adequate. The pooled variance was
s% =203 x 1073,

The mean squares corresponding to Table E5.1-2a are
shown in Table ES5.1-2b. Additional harmonics could be
added to the model, and possibly some of them would prove
to be significant. '

TasBLE ES5.1-2b

Variance Ratio

L 23 /2
Mean Square 4 (@ + bpisy,

First harmonic 15.552 Significant*
Second harmonic 25.197 Significant*
Third harmonic 11,73 Significant*
Fourth harmonic 4.29 x 10-3 Not significant

* Fo.es(2, 7y = 4.74

5.1-6 Estimation Using Orthogonal Polynomials

In using polynomials as empirical models, the a
matrix can become quite ill conditioned. For example,
when the number of coefficients reaches nine, a computer
program using about eight significant figures will not
give meaningful results. Consequently, in lieu of fitting
fairly high-order polynomials to data, it is more effective
to fit orthogonal polynomials (or to use a computer
program involving orthogonal transformations).” The
resulting orthogonal polynomial can, if desired, be
transformed into an ordinary polynomial after the curve-
fitting process is completed.

If the experimental data are equally spaced with
respect to the independent variable xT and arranged as
a series of pairs which can be arbitrarily numbered
©, Yy), (I, Yy), (2,Y,),...,(n, Y,), a model can be
formed from a combination of orthogonal functions:

Yq(x) = :BOPO,n(x) + Iglpl,n(x) +-e IBqPq,n(x) + €
(5.1-20)

T W. E. Milne, Numerical Calculus, Princeton Univ. Press, 1954.
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and the sum of the squares of the unobservable errors in
Equation 5.1-3 minimized to obtain the estimated pa-
rameters b,. The orthogonal functions are themselves
polynomials P, ,(x), such as

Pon(x) =1

X
Pl,n(x) = 1 - 2’;

— X x(x —1)
P2n(x)~—1—6ﬁ+6n(n——1)
Pou(x) = 1 = 127 + 3ox(x D ¥ = Dix ~2)

- 1) nn — D(n — 2)

and in general

Ppa() = Z( Y

where the notation x® (or n*) means x(x — 1)(x — 2)- - -
(x — k + 1), m is the degree of the polynomial, and x
takes on integer values from 0 to n. These polynomials
have the very useful orthogonal property that

(m + R x®

(m — k)! (k1)? n® (5.1-21)

n
Z Py o(X)Pyn(x) = 0, ifqgs#m
x=0
S n+m+ Dm + )™
> Pauy = CERE DI g —m
x=0

Because of the orthogonality property, all the off-
diagonal terms in the equation equivalent to Equation
5.1-5 vanish, and each coefficient can be determined
independently from the others by

3 Y(@Ppu(x)

— m=20,1,2,..
3 P2

g (5.1-22)

In addition to the advantage of not having to solve a
system of equations for the parameters, the use of orthog-
onal polynomials has another advantage. If one has
already obtained the mth degree polynomial, a fit to an
(m + 1)st degree polynomial requires only one new
coefficient, b,,,,, be determined; all other coeflicients
remain the same.

If the experimental data are not equally spaced with
respect to the independent variable, the simple polyno-
mials P, ,(x) are no longer applicable. Suitable polyno-
mials do exist, but in addition to depending on m and n,
they also depend on the particular spacing of the un-
equally spaced points. Thus, every individual, unequally
spaced, curve-fitting problem will lead to a regression
equation that is a linear combination of its own' special

orthogonal polynomials. Let us fit a polynomial by the
weighted least squares method to the data represented
by the nonequally spaced points (x;, ¥3), (X3, Y3),. ..,
(x4, Y,) using nonzero (positive) weights w(x,), k =
1, 2,..., n. The approximating function is to be

V(%) = boPo(x) + biPy(%) + -+ - + b Py(%) (5.1-23)
The general orthogonality condition will be

n

Z WP )P (x) =0  ifi#jforij=012,....q

k=1

These polynomials may be found recursively as follows.
Let:

P_(x)=0
) =
P = (& — @)Po®)
o) = (x — a)Py(x) — BPol)
Pis) = (5 = c9P) = BP9
Pyai(0) =' (¢ — a5 D)PA(X) — B,Py1(9)

The o’s and B’s are constants to be determined so that the
general orthogonality relationships are satisfied. It can
be shownt that if «;,, and B, are calculated as follows:

W(X) X [P ()]

W) [P (i) PP

k

®y41 =

& B
1A= .‘-I‘M
ot

(xlc)[P (x)?
W(xk)[P 1)

&
u[\/]: TMS

P; . ,(x) will be orthogonal in the sense desired to both
Pj(x) and P;_(x).

Example 5.1-3 Orthogonal Polynomials

A waste-treatment pond was not reducing organic com-
pounds adequately to meet the existing standards. A new
bacterial culture has been introduced into the pond. The
data in Table £5.1-3a have been taken as a function of x,
the time in hours; Y is the voltage reading in the pond
effluent stream monitoring device. It is desired to fit the 41
data points to an orthogonal polynomial and to terminate
the fitting when the sum of the squares for the last term
becomes insignificant at the S-percent significance level.

1 G. E. Forsythe, J. Soc. Ind. Appld. Math. 5, 14, 1957.



TasLE ES5.1-3a

X Y X Y
0 14.534 210 15.386
10 15.144 220 14.716
20 15.831 230 14.029
30 16.435 240 13.293
40 17.034 250 12.590
50 17.567 260 11.871
60 18.050 270 11.168
70 18.440 280 10.393
80 18.764 290 9.640
90 19.028 300 8.998
100 19.193 310 8.311
110 19.248 320 7.625
120 19.226 330 6.949
130 19.100 340 6.301
140 18.880 350 5.619
150 18.578 360 5.021
160 18.187 370 4.389
170 17.748 380 3.823
180 17.243 390 3.109
190 16.644 400 2.603
200 16.072

Solution

Because the intervals for x are equally spaced, we can use
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5.1-20. The results for the first few polynomials and for
several coefficients are:

Polynomials Coefficients
Py =1 bo = 13.337
2X b1 = —0391
Pr=1-7 by = —0.019
bs = 0.892 x 10-2
P2_1_6_x+6_x("__—1) bs = 0.801 x 10-3
41 41\ 40 bs = —0.999 x 10-°
etc. bs = 0.365 x 1076
S Y1) by = 0.343 x 1077
bo =% =¥ bs = —0.122 x 10-7
> (1)? by = —0.519 x 10~°
x=0
5, xf1-3)
=P 41
b1 =
03
x=0 41
etc.

Table ES.1-3b lists the sum of the squares removed from
S8, (Y; — 0)? as each additional term is added to the
model. The interpretation of each sum of squares in terms
of the F-test is the same as that described in Section 4.3,
and it is discussed again in Section 5.3.

As can be seen in Table E5.1-3b, significance is established

Equation 5.1-22 to estimate the coefficients in Equation for each of the zeroth through seventh degree terms added.

TaBLE ES.1-3b

Sum of Mean Variance

Term Degree of

Added Freedom, v Squares Square Ratio*
Total
S(Y, — 02 41 8449.79
Removed 1 7293.49 7293.49
Residual 40 1156.30 28.907
Removed 1 880.6600 880.6600 124.60
Residual 39 275.6453 7.678
Removed 1 236.2725 236.2725 228.04
Residual 38 39.3728 1.0361
Removed 1 38.1157 38.1157 1121.71
Residual 37 1.2571 0.03398
Removed 1 0.1545 0.01595 5.23
Residual 36 1.0976 0.03049
Removed 1 1.0356 1.0356 60.21
Residual 35 0.0620 0.01720
Removed 1 0.0394 0.0394 59.27
Residual 34 0.0226 0.0006647
Removed 1 0.0077 0.0077 17.05
Residual 33 0.0149 0.0004515
Removed 1 0.0013 0.0013 3.06
Residual 32 0.0136 0.000425
Removed 1 0.00001 0.00001 0.20
Residual 31 0.0136 0.000438

* Fo.05(1, v) ranges from 4.09 to 4.16.

~
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Thus we start the estimated regression equation with an
intercept and terminate with Pg(x) to get Equation 5.1-23.

To express ¥ as a polynomial in x, we need to introduce
each P,(x) into the estimated regression equation. After
some considerable algebraic manipulations, we find:

P=14.521+0.06587x—0.3311 x 10~ %x2 — 0.6112 x 10~ %3
—0.2283 x 10~ "x*+0.1758 x 10~°x% —0.5225 x 101248
+0.7245 x 10~ 15x7 —0.3920 x 10~ 18x8

5.2 CONFIDENCE INTERVALS AND
HYPOTHESIS TESTS

We now turn to consideration of: (1) estimating con-
fidence intervals for the model parameters, (2) estimating
a joint confidence region for the parameters, and (3)
executing hypothesis tests correspond to those in Section
4.3.

5.2-1 Confidence Intervals and Region

A confidence interval can be estimated for each individ-
ual parameter B, in the vector B through use of the ¢
distribution. The standard error of the estimate for b,
comes from the estimates of elements on the main
diagonal of Equation 5.1-14:

— A — 2
So, = 86, = V53Cu

The confidence interval for 8, for a significance level «
is formed exactly as in Section 4.3:

(b — ti-gs7,V ) < B < (b + t1-257,V Ce)s
v=n—-g—1 (52-1)
Because b, = ¥,

So, = V/5%Co0 = A/ 55

bo ;00 Z Wi
(recall that ¢ is just the inverse of the number of data
sets if the weights are unity) and the confidence interval
for the intercept is

(b() + 1 _gsbo) < BO < (bo + t]___gsbo) (5.2'2)

For Model 5.1-2 where
q
I% = Bo - Z ngfk
k=1
the variance of by is

q
Var {by} = Var {bg} + z %2 Var {b,)

k=1

The confidence limits for B, for a selected significance
level « are given by Equation 5.2-2 with s;, substituted
for s,, and b, substituted for b,.

We saw in Section 4.3 that the variance of ¥; in the
regression equation Y; = b, + b,(x; — X) was

Var {¥;} = Var {by} + (x; — %)? Var {b3}

Similarly, the variance of the matrix ¥ for Model 5.1-1
is, using Equation 5.1-14,
Var {?} = Var {xb} = x Var {b}x*
= o} xcx” (5.2-3)
For a single data set

Var (¥} = [1 (xi1 — 1) - - (¥ig — )}

1
Coo ' Coq _
Xi1 — X: 2
x ( il ‘ 1) aY‘
Cq0 Cqq )
(xig — %)
= X,cX{ 03,

(The elements in the first row and column of ¢ are all
zero except for cyq.)

The confidence interval for »; for a given significance
level « employs the estimated standard error sy, =

sy Vxex?.
(¥ - fi-gs9,) <y < (¥ + 1,-55¢,)
v=m-—-q-1 (524

If we want to use the empirical model to predict, two
types of predictions can be made: point predictions and
interval predictions. The acid test of the predictive
ability of a model, of course, is to compare the pre-
diction with the corresponding experimental data. In
predicting, we presume that the assumptions underlying
the random variable being predicted do not change (or,
if they change in some fashion, take the change into
account). The (point) predicted value, Y2, for one
additional observation or one additional time period is
based on the relation

*
Y, = Mner + €nia

so that &{Y¥, .} = n,+1 as long as &fe,,,} = 0. If we
use the best estimate of 7,.;, ¥,.;, the variance of
Yk, is (with afi = agnu = a%)

0'12/:.“ = Var{Y},} = Var{Yn+1} + Var{e1}
= 03X +16X0 41 + 0F, = 0}, (Xn110X0 41 + 1)

(If m replicate observations are taken for x, , 4, Var {e,, 1}
= ¢} /m.) The confidence interval for 7, ., can be formed
by using Equation 5.2-4 but replacing sy, with sy, =
s?i\/xnﬂcxﬁ“ + 1 as in Section 4.3.

A joint confidence region for the 8’s for a given signif-
icance level o can be formed exactly as described in
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FIGURE 5.2-1 Approximate 95-percent confidence region in
parameter space for a linear model.

Section 4.3; in matrix notation the equivalent of Equa-
tion 4.3-28 is

(B = b)x™wx(B — b) = s3(q + DF1_.

where F, _, is the upper F value for (¢ + 1) and n —
(g + 1) degrees of freedom, respectively. Figure 5.2-1
illustrates the confidence region for a linear (in the
parameters) model of the effect of a magnetic field on the
vaporization of water. A confidence region that is long
and attenuated, such as that of Figure 5.2-1, implies that
the parameter values have been poorly estimated; a
small, spherical-shaped region is more desirable. The
long, narrow shape of the region results primarily from
a high degree of correlation among the various parameter
estimates. One practical implication of this high correla-
tion is that if a wrong value of one parameter is in-
advertently estimated, this value will be balanced in the
fitting procedure by a compensating wrong value of
another parameter to give an overall fit for the model
which will be nearly as good as that obtained using the

(5.2-5)

B1
4% 105

3x10°—l
/

2x 105

Tx10° | /(bo, by, bg)

L gy

", /

/
%)))/

B2

FIGURE 5.2-2 Erroneous confidence region based on individual
confidence limits,

best estimates of the parameters. This matter is discusscd
in Chapter 8 as related to the design of experiments.
Figure 5.2-2 portrays the volume in parameter spacs:
blocked out by the individual confidence intervai
Compare Figure 5.2-2 with the correct joint confider:: -
region of Figure 5.2-1. The sum of the squares surfa::
analogous to Equation 4.3-28a is

m
n—m

¢1—a = ¢mln[1 + F].—a]
5.2-2 Hypothesis Tests

The hypothesis tests summarized here are the analogs
of those developed in Section 4.3.

1. To test the hypothesis that all the 8; = =---:
B, = 0, form the variance ratio
53 _ b'G/q
53, 5

(5.2-0
If the variance ratio is greater than F;_,(q,n —gq — 1) for
a significance level «, then the hypothesis is rejected.

2. Another hypothesis that can be tested is that ceriaiis
of the 8’s are zero. Split the §’s into two groups, labelcd
I and II, and test the hypothesis that all the §'s in grouvp
IT are zero (without assuming anything about those in
group I). A variance ratio is formed in which the numcr-
tor represents the mean square for group II:

b'G)a+1m — (B"G):
Ya+m — Vi
5%,

G.27

If the variance ratio is greater than
Fi_olasm — »), (n — g — D],

the hypothesis is rejected. This test helps to ascertain
certain variables should be included or excluded frou: 4
model. Note, however, that if the hypothesis is acceptc
that By = 0 and the coefficients are deleted from i
model, bias will exist in the estimate of the nonzes::
coefficients as explained in connection with Equatic
5.1-17.
3. To test the hypothesis that 8, has a specified valu-.
¥, compute
p= e B
. SY,\/ckk
If ¢ is greater than #,_g¢ for (n — g — 1) degrees of
freedom, the hypothesis that 8, = B is rejected.
4. To test the hypothesis that B = p*, where B* js ..
matrix of specified values of B, form the variance ratie

b - I-”"‘)TXTX(b2 - B+ 1)

Sy,

(5251

(5.2-9)

If the variance ratio is greater than F; _,(q¢ + L,n — g — 1}
for a confidence level of «, the hypothesis is rejected.
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We can test that the underlying structure and assump-
tions of the model are the same in the prediction period
as in the sample period using H,, the null hypothesis
(no difference). If the hypothesis is accepted, the esti-
mated equation satisfactorily applies both to the original
data collected and to the new data. If H, is rejected,
either the characteristics of the random variable Y
changed or the model was not adequate to encompass the
new data. Either (or both) explanations are plausible. To
carry out the test, the proper statistic to use is the ¢
statistic computed for Y, ,.

In multiple regression the F-test for the hypothesis
that @ = O is not exactly the same as the r-test (i.e., 2)
for B = 0, as pointed out in Example 4.3-1. Conse-
quently, different conclusions can sometimes be reached,
depending upon which test is used. Consider a model
similar to Model 5.1-1a:

i=1,...,n

q .
Y, - Y=j§=;lgj(xu—ff)+€i B, >0
(5.2-10)

The independent variables x;; can each be scaled so that
Z(x”——,-)2=n j=1".",q
i=1

From Equation 2.4-32, the sample correlation coefficient
among the x’s is

1 ignl (x;; — X)) — X))

n—1 Sse S

A

Pix =

so that

n

Z (g — X))o — X)) = npye

i=1

(5.2-11)

Equation 5.2-6 gives the variance ratio to be used in
the F-test with g replacing ¢ + 1 degrees of freedom,
because in Equation 5.2-10 Y is not counted as a
parameter:

83 _ b'Glq

2 2
Sy, 5%,

We shall assume next that w = I; hence G, defined in
connection with Equation 5.1-10, is G = x7Y. Then

s3  b'(xX"Y)  b'(x"xb) _ bTab

5%, ey, g5k g5t

The elements in Equation 5.2-11 can be written as a;;, =
np;, so that

(5.2-12)

Introduction of Equation 5.2-8 for the &’s in Equation
5.2-12 yields a relation between (s3/s3,) and #;:

q a q
52 n Z i —
ST? = é Z Cj]'tjz + Z ijtjthijckk (5.2'13)
Y j=1 i=1je=1 .

If the independent variables are all uncorrelated, g, =0,
¢;; = aj;* = 1/n, and Equation 5.2-13 reduces to

q
2
sa—Ith
2z i
SO

(If ¢ = 1, Equation 5.2-14 is the same as the relation
given in Example 4.3-1.) With three or more residual
degrees of freedom, the significance level of F(g,n—q—1)
is lower than the significance level of F(l,n — g — 1)
which corresponds to the significance level of ¢. Thus,
the possibility exists that some or all of the coefficients
may prove to be nonsignificant by z-tests whereas the
variance ratio is significant by one of the F-tests. The
explanation is that a significant variance ratio does not
indicate the significance of any given coefficient but
merely the existence of at least one linear combination
of coefficients that is significantly different from zero. If
the independent variables are highly correlated and
s >0, the variance ratio can become quite large
relative to the ¢’s.

(5.2-14)

Example 5.2-1 Estimation Without Replication or Prope
Experimental Design )

A major problem which constantly faces engineers is that
of corrosion. By use of electrical resistance probes, the
corrosion rate in a suction header of two furnace feed pumps
in a thermal cracking plant was measured. The probes
themselves were made from 5 percent Cr—% percent Mo
40-mil diameter wire. Along with the corrosion rate, readings
were taken of the: (1) sulfur content of the oil, (2) tempera- -
ture at the probe, (3) temperatures in the two cracking coils,
and (4) rate of flow of the charge. See Table E5.2-1a. It was
estimated that the wire diameter could be measured to
within 4 microinches.

Based on the corrosion data provided, estimate the param-
eters in a linear model including all five variables listed
in the table. Determine whether or not each variable might
be deleted from the model by testing whether or not its
associated coefficient might be equal to zero. Do the data
meet the assumptions for estimation as described in Section
4.27

Solution:

Because no replicate data are available, it is impossible to
obtain an estimate of the experimental error with which to
test the hypothesis that a proper model is a linear one. The
range of temperatures is quite narrow. Hence the tempera-
tures may prove to have little influence on the corrosion
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TABLE E5.2-1a

157

Y X4 X5

5 percent Cr—~ X1 Xz X3 Temperature Temperature

4 percent Mo Total Sulfur Flow Rate Temperature in Cracking in Cracking

Corrosion Rate in Feed at Probe of Probe Coil 1 Coil 2

Day (in./yr) Stock (bbl/day) (F°) (°F) (°F)
1 0.117 0.041 16.9 753 922 885
2 0.107 0.041 17.0 748 925 885
3 0.088 0.040 17.1 749 925 886
4 0.077 0.041 16.6 747 925 887
5 0.091 0.042 17.0 745 934 895
6 0.040 0.008 17.5 743 940 905
7 0.048 0.007 35.0 762 936 904
8 0.022 0.008 34.5 760 935 895
9 0.077 0.041 33.8 752 928 887
i0 0.121 0.041 33.6 752 928 887
11 0.143 0.044 33.2 749 930 887

rate; if included they may cause the matrix a = xTx to be
ill conditioned. Another defect in the data provided is that
only two levels of sulfur and flow rate are available. Suppose,
nevertheless, that a modeln = B, + Bix; + Baxa + Baxs +
Baxs + Bsxs is proposed as the model to fit the data, with
the x’s designated as in Table E5.2-1a. A computer routine
for regression analysis was used with the results indicated in
Table E5.2-1b (the numbers have been truncated to save
space). The point estimates of the f’s, the individual con-
fidence intervals for the 8’s, and the confidence intervals for
the #’s (for w, = 1) which are tabulated in Table E5.2-1c
indicate the unsatisfactory nature of the experiment with

TasLE E5.2-1b

respect to reaching a decision on the terms to include in the
suggested model.

If we successively form the variance ratio described in
Section 5.2-2, page 155, to see if each one of the B’s could be
equal to zero, we find the results shown in Table E5.2-1d.
(The notation SS refers to the difference in the sum of the
squares with B, = 0 and with B¢ # 0; “x, removed”
means that the hypothesis being tested is that 8, = 0.)
Because fora = 0.05, F;_,[1, (n — g — 1)] = Fy.4s[l1, 5] =
6.61, each hypothesis that B; = 0 in turn can be accepted.
We see that no matter how sophisticated the treatment of
the data, one cannot make a silk purse out of a sow’s ear!

1.10 x 100 354 x 107! 2.72 x 10® 8.26 x 10®° 1.02 x 10* 9.80 x 10°
3.54 x 1071 138 x 1072 8.35 x 10* 2.65 x 10* 3.28 x 10° 3.14 x 102
272 x 102 835 x 10° 7.52 x 10®° 2.04 x 10° 253 x 10° 2.42 x 108
71826 x 100 265 x 10°  2.04 x 10° 6.20 x 10° 7.68 x 10° 7.36 x 10°
1.02 x 10* 328 x 10> 253 x 10° 7.68 x 10° 9.51 x 10° 9.11 x 10°
9.80 x 10° 3.14 x 10> 242 x 10° 7.36 x 10° 9.11 x 10° 8.73 x 108
541 x 10* -9.88 x 10° 1.69 x 10* —3.10 x 10* —4.65 x 10 1.38 x 10*
—9.88 x 10° 3.08 x 10° —1.89 x 10° 4.87 x 10° 4.49 x 10° 2.22 x 10°
1.69 x 10 —-1.89 x 10° . 8.00 x 10-® —1.12 x 10-2 —1.82 x 10~2 9.35 x 10-3
€= | —3.10 x 10° 487 x 10° —1.12 x 102 2.06 x 10-2 270 x 102 —1.06 x 10-2
—4.65 x 10 449 x 10° —1.82 x 10-2 2.70 x 10-2 6.38 x 1072 —3.68 x 102
1.38 x 10! 2.22 x 10° 9.35 x 107% —1.06 x 102 —3.68 x 102 3.14 x 107
9.31 x 107? 0.6751
3.49 x 102 2.3064
G- 2,27 x 10* b 0.0012
6.99 x 107 —0.0007
8.64 x 10% —0.0021
8.28 x 10% 0.0020.
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TaBLE E5.2-1¢

Confidence Intervals on the 8’s; Pairs of Confidence Limits

Bo'= 0.675 +/— 15.562
B = 2306 +/— 3.714
Ba= 0001 +/— 0.005
Bs = —0.000 +/— 0.009 .
Bs = —0.002 +/— 0.016
Bs = 0.002 +/— 0.011

Confidence Intervals on the 7,’s; Pairs of Confidence Limits
Are:
Percent Deviation Between
Predicted and Experimental

Values
71 = 0.098 +/— 0.040 15.9
72 = 0.095 +/— 0.027 10.8
7 = 0.094 +/— 0.024 - 14
72 = 0.099 +/— 0.029 -29.4
75 = 0.100 +/— 0.062 -10.7
76 = 0.031 +/— 0.060 20.3
77 = 0.044 +/— 0.059 7.3
78 = 0.031 +/— 0.061 C—422
7e = 0.110 +/— 0.035 —43.8
%10 = 0.109 +/— 0.028 9.7
711 = 0.114 +/— 0.039 19.8

Whether or not the experimental data meet the assump-
tions of Section 4.2 is difficult to tell without additional
information. For example, the temperatures may represent
random variables instead of fixed levels of temperature. If
the temperatures are omitted from the role of variables,
and if small variations in the sulfur content and flow rate
are ignored as well, then in effect replicate values of the
corrosion rate exist and can be used as a measure of the
experimental error, which is evidently quite large. Finally,
because measurements are made serially in time on the
same wire, the data may fall into the category discussed in
Section 4.6 for nonindependent errors. To sum up, this
example illustrates the difficulty of extracting information
from an experiment which has been completed without prior
attention to setting up an efficient statistical design. Similar
problems arise in the analysis of historical data.

TaBLE E5.2-1d

5.3 ANALYSIS OF VARIANCE

An analysis of variance can be carried out on the
model with several independent variables that is a direct
extension of the analysis previously described in Section
4.3. Table 5.3-1, based on Model 5.1-1, corresponds to
Table 4.3-2 of simple linear regression. The sum of the
squares of the residuals between Y; and ¥;, as well as
the sum of the squares of the deviations between the ¥,
and the grand mean Y, is computed. The table corre-
sponding to Table 4.3-1 is not shown, although it can
easily be written as an extension of the two-parameter
case. In matrix notation the reduction in the sum of the
“squares due to B, or >r_, wy(¥, — 0)% is

Z w; 72 = ¥™w¥ = (xb)"w(xb)

= = bT(xTwx)b = bT(x*wY) = b7G
We can give a geometric interpretation to Y, (¥; — 0)? in
terms of Figure 5.1-1. The square of the length ¥ is just
split up into the sum of squares of its components in the
x-plane.

The number of degrees of freedom (n —g — 1)
shown in Table 5.3-1 in row two equals the number of
independent measurements that are available for esti-
mating the parameters; it consists of the total number of
sets of data less the number of constraints which are
established by the least squares method. For example,
with eight data points (values of Y; and x;), we have
eight total degrees of freedom. Fitting an equation with
three parameters, including the intercept as one param-
eter, introduces three constraints (three degrees of
freedom “absorbed”) and leaves five degrees of freedom
as the “residual” degrees of freedom.

Additional valuable information about a modet can be
obtained by computing the sum of squares (SS} eorre-

. sponding to removing one or more variable from a model

initially containing all the variables. The SS between the
predicted values from the regression equation and the
mean, (Yi — Y)?, is thereby reduced; the SS removed
from 3 (¥; — Y)? can be tested by an Fitest, as will be
explained shortly, to evaluate the significance of ome or a
group of the independent variables in the model.

v = Degree -
Source of Variation of Freedom SS Mean Square Variance Ratio
xo removed (intercept) 1 8.416 x 10-6 8.416 x 10-¢ 1.243 x 102
x; removed - 1 1.724 x 103 1.724 x 10-3 2.547 x 10°
x5 removed 1 1.850 x 10-* 1.850 x 10-% 2.733 x 10~
x5 removed 1 2.246 x 10~5 2.246 x 10-° 3.319 x 10-2
x4 removed 1 7.281 x 10-° 7.281 x 10-8 1.075 x 10-t
x5 removed 1 1.328 x 10-% 1.328 x 10-*% 1.962 x 1071
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Degrees of

Sum of Squares

Source of Variation Freedom (v) (SS) Mean Square
Due to regression q Z wi(P, — Y)? 2= _Z_l‘(y’—_y)z
i=1 q
. . . e . ﬂ_\ _ . )—, _ ~
Deylatlon a'lb(.)ut the empirical regression n—g—1 w( T, — P 2 = > w(Y — Y
line (deviations from regression) n—q-1
i=1
i v _ V2
Subtotal n—1 wi( ¥, — T)2 = M%
i=1
no Py _
n n o opy _ Z Z (YU - Yt)2
Deviations within sets (residual error) Z pi—n (Y, — 7)? P LY -t S—
i=1 t=1j=1 ; p—n

Suppose we assign to one parameter in Model 5.1-1—
the last term for convenience in notation but the results
are valid for any term—a value ¢, perhaps zero. The
model can then be written

q-1
n = £t — %) = Bo+ D Bulvc — B) (53-1)

k=1
In the following discussion the weights will be suppressed
to save space. To obtain the estimated coefficients in the
regression equation, one could minimize the sum of the

squares:
boor = > [¥i = (1 — 06 — Z)P°

to obtain the estimates b* of B. The estimates, of course,
would not be the same as the b obtained without assign-
ment of the value for B,. The sum of the squares of the
residuals and the normal equations for the case in which
B, = ¢ can be expressed as follows. Let us partition
Model 5.1-1, q = xB, into two parts:

n= [x*xq][s*] = XB* + x,B,

where the last term represents the term (x, — X,)£. Then
the normal equations and the reduction in the sum of
the squares “due to f”° would be:

q

One Parameter

Assigned Full Model
Normal x*x*)b* = x*'Y  (xTx)b = xTY
equations
Reduction in b* x*TY bTxTY

sum of squares

“due to B

>(¥ -0y

We now want to relate the parameters b* and b to
each other, find how to evaluate the components of

(x*"x*)~1 in terms of the components of (x7x)~?, and
find the difference in the sum of the squares (b"x7Y —
b*"x*"Y). We first state the important relationships and
then indicate how they can be obtained.

RELATION BETWEEN b* AND b. If b; is a regression
coefficient in Model 5.1-1 and if b} is the corresponding
regression coefficient in the reduced model in which
the parameter B, is assigned the value £, the b’s are
related by
Cik (bk — g)

b} = b — = (5.3-2)
Cr
RELATION BETWEEN THE COMPONENTS OF (X'X)™! AND
(x*"x*)~1. The relation between the components of the
(g — 1) by (g — 1) matrix ¢* = (x*"x*)~! in terms of
the original ¢ by ¢ matrix ¢ = (xTx)~! when the param-
eter B, = £ is
_ CkiCis
Creie

ck = ¢y (5.3-3)

REDUCTION IN SUM OF SQUARES. If ¢, is the sum of
squares for the original model and ¢}¥., is the sum of
squares for the model with 8, = £, then the difference in
the sum of squares > (¥; — Y)? is obtained from

(€ — b)?

Crk

di1 = ¢ + (5:3-4)

We now describe how Equations 5.3-2 through 5.3-4
can be derived. First, we write the normal equations in
summation notation (omitting the equation for the intercept
bo = Y which is the same for either model) for the full
model:

n n q
D G = 5Fi= D > G — £y — Eby
i=1 1=1 =1
k=1,...,9 (535)
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Multiplication of Equation 5.3-16 from the right by ¢
with m=1,...,4 — 1 in turn and summation over all
values of / give the desired expression:

CamCar
Cqq

Chm = Cin kkm=1,...,g —1 (53-3a)
Finally, in order to evaluate the sum of squares, we write,
using Equations 5.3-5,
q

bo = Z Y2 - > b i XTxhsb;  (5.3-17)
i=1 7=1

k=1

Similarly, for the model with B, = ¢, using Equations 5.3-6,

n q-1
i1 = D YP - 2657V — > b
i=1 k=1

x [Z {X"Xbsb — {xTx},cqf} + £(xTx)g (5.3-18)
J=1

After the coefficients b} are eliminated with the aid of
Equations 5.3-2a,

$i=1 — $o = ¢ - &) (5.3-4a)

Coq

Omitting one term from the model amounts to letting
¢ = 0. Thus, from Equations 5.3-4 if B, is omitted from
the model

2
ASS = b

Crc

(5.3-19)

The quantity ASS is often termed the sum of the squares
for x, adjusted for all the other variables or the sum of
the squares given the other variables. The ASS for any
group of p variables adjusted for all the others is com-
puted by

ASS = blc; b, (5.3-20)

where b, is a single-column vector (matrix) composed of
the selected groups of b,’s only, and ¢, is the matrix of
the related (c;;) elements.

For example, suppose we want to measure the com-
bined effect of x,, x,, and x, removed from a model based
on X, X3, X, Xa, ..., X Each x is associated with a
corresponding b. Then

€11 Cip €| T b
Ta—1h
ble; b, = [b1bobs]| car Caz Cau b,
Cs1 Caa Cys b,

In general, removing a term from a model by letting
Bx = 0 as computed by Equation 5.3-19 will nor yield
the same ASS as is computed by removing the corre-
sponding term from the model after several other param-
eters have been removed first. It is only when the
(x, — X;)’s form an orthogonal set that the ASS will
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agree. Consequently, the sum of the ASS computed
from applying successively Equation 5.3-19 to each
parameter cannot be expected to equal the total
Sr_, w(¥; — 0)2for the full model unless the independent
variables are orthogonal.

To sum up the discussion so far, an F-test can be
applied to test the significance of a variable (or a group
of variables) in the full model by computing the variance
ratio (s2/s%,), where s2 is computed as follows:

ASS v s?
A single x; (Bifcxr) 1 bifcue
> To—1 bic; 'b,
A group of p x’s byc, b, P o

If the variance ratio exceeds the value of F;_, from
Table C.4 in Appendix C for the selected significance
level, then the variable (or group of variables) makes a
significant contribution to the full model.

Because the independent variables x; may be correlated,
the results of the t-test and the F-test may be misleading
if interpreted in terms of a physical variable affecting the
dependent variable in the model. The apparent significant
contribution to a model of a single variable x, may be
really due to the facts that Y is influenced by x, and
that x, and x, are highly correlated; x, may not even
be measured.

To prepare a table for the analysis of variance in
which several variables are successively removed from
the model, we can proceed as follows:

1. Remove the first variable and calculate ASS by
using Equation 5.3-19.

2. Remove the first and second variables and calculate
the combined ASS by using Equation 5.3-20. Subtract
from this combined ASS the ASS calculated in step 1 to
give the net ASS of removing the second variable.

3. Remove the first, second, and third variables,
calculate ASS by using Equation 5.3-20, subtract the
ASS for the first two variables, and so forth.

Each additional variable removed will provide a new
combined ASS from which the previous ASS can be
subtracted to yield the residual effect of removing the
additional variable. The total of all the ASS for each stage
calculated in this way will equal the sum of the squares

n_ wi(¥; — Y)2 listed in the first row of Table 5.3-1.
Keep in mind that if the x’s are not orthogonal, the order
of removal of the variables is important inasmuch as

different ASS; will be obtained depending upon the

sequence of removal.

Table 5.3-2 summarizes the splitting of the
Sr . w(¥, — Y)? into parts, the associated degrees of
freedom, and the variances which can each be used in an
F-test of the variance ratio s2/s3. The fourth, fifth, and
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Contrast p2 ; for the variables in Example 5.1-1 with
those in Example 5.2-1 (such as the variable x,):

Example 5.1-1

1
~ (8.00)(0.125)

Example 5.2-1
(7.52 x 10%)(8.00 x 1073) —

The results substantiate the conclusion that x, does
contribute to the model in Example 5.1-1 but not to the
model of Example 5.2-1.

1 0

1 0.98

Example 5.3-1 Analysis of Variance

To illustrate the difficulty of interpreting the analysis of
variance when the independent variables are not orthogonal,
we use the data of Gorman and Tomant who simulated
experimental data with the model

}’1:1+Xu+xiz+€t

I I I T I
L ' 29,28  _|
1.0 §_§.3_.§
7
7
05— // 29,38
' : s 21°18
Ve s
/ 7
J 7
x2 00 s s -
/ Ve
v Ve
Ve /s
o5l 1008 7 |
—01-18
Ve
s
—~14 -18 = =
-10H :—%‘ZOEG— Pm =P,y 0.90 —
| | - | | |
-10 =05 0.0 05 10
@ ™

FiGure ES5.3-1a Simulated data for the model Y, =1 +
X1 + Xiz + € (values of the response are underlined). (From
Gorman and Toman, Technometrics 8(1), 598, Feb. 1966.)

t J. W. Gorman and R. J. Toman, Technometrics 8, 27, 1966.
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where € was a normal random deviate with &{e} = 0 and
Var {¢} = 1. Four sets of simulated observations were
generated at the points

X1: -1 -1 1 1
Xg: —1 —"% %’ 1

The responses, Y;, are shown in Figure E5.3-1a. Note that
)‘C‘l = x‘z = 0.

Four models were selected and the coefficients estimated
to give the corresponding estimated regression equations:

Yir = 0.94 + 0.85x; + 1.55x,
}A’H = 0.94 + 3.01x1

7 = 0.94 + 2.57x,
Yy = 0.94

The coefficients, except b, = Y, differ among the first three
equations because the b’s in the equations with only one
independent variable are biased estimates of the respective
B’s.

Table E5.3-1a is an analysis of variance which indicates
that the first three models are better than Model IV, but it
is impossible to discriminate among Models I, I, and III.

The error sum of squares was

o 429+ 171 + 069 + 243
° 43)

which is less than 02 = 1. However, for « = 0.05, the values
of F; _, for (13, 12), (14, 12), and (15, 12) degrees of freedom
from Table C.4 in Appendix C are: 2.66, 2.63, and 2.62,
respectively. Consequently, each model is deemed appro-
priate except Model IV (since 5.15 > 2.62). An F-test or
t-test for the hypothesis that each coefficient in Models I,
II, and III is zero is rejected. Removing x; or x. from the
full model yields the following variance ratios:

= 0.76

Estimated 2

.S
Sz Szyt S;t FO.95 (1, 12)

Remove (12.48 —-10.07

) 0.76 3.17 4.67
X1 1

Remove (1 1.23—-10.07

) 0.76 1.53 4.67
Xg 1

The F-tests indicate that a significant reduction in the sum
of the squares of the residuals is not obtained when x; or
X5 is removed from the full model.

If the effect of both x; and x; is desired in the regression
equation, then the full model should be retained. If only
Y is of interest, then an abbreviated model, I or II, will be

Degrees Sum of Squares Estimated Multiple
of Freedom of the Residuals Estimated Correlation Coefficient
Model Q) (bmin) Mean Square 5]
Model III (x; and x.) 13 10.07 0.775 0.87
Model II (x;) 14 12.48 0.89 0.84
Model I (x5) 14 11.23 0.80 0.85
Model IV (intercept only) 15 77.28 5.15 —
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FIGURE ES.3-1b  Comparison of Var ¥ for Pir = by + bgxe and
Pur = by + byxy + baxo. (From Gorman and Toman, Techno-
metrics 8(1), 598, Feb. 1966.)
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FIGURE ES5.3-1c  Expected value of bias for ¥ = by + byx, when
the true equation is 7 =1 + x; + x5. (From Gorman and
Toman, Technometrics 8(1), 598, Feb. 1966.)
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satisfactory. However, some danger exists in such simplifi-
cation, as demonstrated by Figure E5.3-1b, because the
variance of Y as predicted by Model II, for example, as
contrasted with that predicted by Model III is misleading.
For example, if ¥ and its variance are to be predicted for
x; = —1, x3 = 1, Figure E5.3-1b shows that Var { Py}
0.12 whereas Var { i} = 2.3. Hence the variance of ¥is sub-
stantially underestimated by Model II. Model II also yields
biased estimates of ¥. Figure E5.3-1c shows that the bias
at x; = —1, xo = 1 is about 2.2, and even in the vicinity
of the experimental data the expected value of the bias is
from O to 0.4.

Of course, the example ““data’’ above have been simulated.
What is important is that the variables in the experimental
space be as orthogonal to each other as possible.

Example 5.3-2 Analysis of Variance

Further analysis of Example 5.2-1 is carried out in this
example. The analysis of variance corresponding to Table
5.3-1 is shown in Table E5.3-2a. Because F;_.(5, 5) = 5.05,
the hypothesis that § = 0 would have to be accepted, as
concluded in connection with Example 5.2-1.

An analysis of variance corresponding to Table 5.3-2
consists of removing successive groups of variables. As an
example, two different groups are selected for removal from
the full model: (1) x3, x4, and x5, and (2) x5, X4, X3, X2, and
x1. When x3 is removed first followed by x4, the sum of the
squares for x;, ASS = 7.281 x 108, obtained in Example
5.2-1 does not agree with 5.615 x 105 listed in Table
E5.3-2b. A similar lack of agreement is observed for
x5(1.38 x 10~* versus 6.051 x 10-5). The sum of squares
for removing x3, x4, and x5 all at once, ASS = 1.391 x 10-%,
does not prove to be significant by an F-test. The analysis
does indicate that x, may be a significant variable.

5.4 ESTIMATION WHEN ERRORS ARE NOT
INDEPENDENT

Ordinary least squares estimation will fail to yield
satisfactory (in the sense of Section 3.1) point and
interval estimates for the model parameters if the
unobservable but hypothesized errors are not inde-
pendent. This section continues the presentation of
Section 4.6, but it is directed toward consideration of a

Degrees of Freedom Sum of Squares Variance
Source of Variation ) (SS) Mean Square . Ratio
Due to regression
Z w(Y, — Y)2 5 1.031 x 10-2 2.062 x 10-2 3.05
Deviation from regression
> w(¥ - Ty 5 3.383 x 10-3 6.767 x 10+
Total 10 1.370 x 10-2
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TaBLE ES5.3-2b

Degrees of Mean Variance

Source of Variation Freedom (v) SS (109%) Square Ratio
X3 removed 1 2.246 2.246 3.319
x4 removed after

removing xs 1 5.615 5.615 8.297
xs removed qftér removing

x3 and x4 1 6.051 6.051 8.941
Total removed: xg, x4,

and xs 3 13.91 4.637 6.852

Mean
Degrees of Square Variance

Source of Variation Freedom (v) SS (10%) (10%) Ratio
x5 removed 1 1.32 1.32 0.196
x4 removed after

removing xs 1 0.026 0.026 0.003
xs removed after

removing x, and x5 1 0.036 0.036 0.005
x; removed after removing

X3, X4, and x5 1 2.83 2.83 0.418
x;, removed after removing

X2, X3, X4, and x5 1 98.6 98.6 14.6
Intercept removed after

removing all the x’s 1 787 787 116

model with several independent variables. Major
assumption No. 4 of Section 4.2 is now voided; we
assume instead that the €’s in Model 5.1-2 are serially

- correlated, that is, &{e€;, 1} # 0, but still that

et =0 .
E{xnet = E{xpe} == Fxue} =0 (5.4-1)
Here, as in Section 4.6, the subscript ¢ designates a
sequence of sets of data in time, f = 1,2,...,n from a
stationary process. :

To determine whether or not the estimation procedures
of this section are required, a test for serial correlation
should be executed such as the Durbin-Watson test
described in Section 4.6. If the test shows little or no
serial correlation, the usual least squares procedure
should be satisfactory. In matrix notation, the residuals
are E = (Y — ¥). '

If serial correlation is established (with values of ¥
being calculated by the best regression equation), we
can extend the technique described for the. model of
Section 4.6 which contained a single independent
variable to the case of several independent variables. The
estimates of the s in Model 5.1-2 can be written as
follows in a different form than in Section 5.1:

q n
2 Ape 2 (o — %)Y,
_K=1 t=1

= X (5.4-2)

b4

where A is the determinant of the g x g matrix having a
typical element 7, (x;; — X)(x; — X;), i.e., an element
of the matrix (x7x) in which the column of 1’s is omitted
from the design matrix x, and A;; is a minor of A. Also,
bo =Y — by%y — - — b %,

As in Section 4.6, we can form the differences by
introducing Y; into Equation 5.4-2:

q n
2 Bpa 2 (ue — Xie
1 t=1

(by — Bp) == X (5.4-3)

o= == > (be—BI%  (544)
where —
€= n

If we take terms with the same time lag, we can write
expressions for the expected values of (b, — 8,)%
(b, — BYbs — By), (bo — Bo)?, and so forth, the details of
which can be found in Lyttkenst. We shall write here

T E. Lyttkens, “Standard Errors of Regression Coefficients in the
Case of Autocorrelated Residuals,” in Proceed. Symposium Time
Series Analysis, ed. by M. Rosenblatt, John Wiley, New York,
1963, p. 49.
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just the final expression which gives an approximate
estimate of the covariance of (b,, b):

q q ,
2 2 Ay Agcyy

Covar {b,, b} ~ Wle (5.4-5)
where.
¢ = g(0) + gi,(1) + gi(—1) + g,(2)
+ g (—2) + - + gi(ko) + gi(—ko)
gu(k) =

(Xt — X)(X¢4k,5 — XDEE 41
t=1 .

gi(—k) = gu(k)

' ko, = truncation index for the data

E =Y, —by—bixy — - —bxy =Y, — T,
Equation 5.4-5 provides an estimate to use in establishing
a joint confidence region and in hypothesis testing.
Many other models exist in which the €’s are not inde-

pendent but we do not have the space to describe them;
references are given at the end of Chapter 4.

I

5.5 ESTIMATION FOR MULTIRESPONSE MODELS

Often a process will have more than one dependent
variable or response, as illustrated in Figure 5.5-1. Each
output can be represented as a linear combination of the
inputs. For example, the model of Figure 5.5-1 might be
represented as:

Y, = BiixiXg + BiaXaXs + BraXaXs + €

Yy = Bay €™t + PagXe + Pasxs + €
Certain features of estimation for multiresponse
models are different than those for the single response
models. The remarks in this section will apply to both
linear and nonlinear models, so the general form for the
model can be written as

m = (Y, | x} = fi(B, %)
N2 = E{Y, | x} = f2(B, )

T = éa{Yv ' X} = ﬁ)(p’ X)
where the index v designates the last equation. In general,
there is no universal choice of a “best” criterion to use
in estimating . .
Inasmuch as maximum likelihood estimates of param-
eters have been demonstrated to have desirable prop-

Inputs Outputs
X —> —>Y;
x2 ———> Process —> Y,
X3 —>

FIGURE 5.5-1 A multiresponse process.

erties in several earlier sections, it is natural to investigate
the maximum likelihood estimates for multiresponse
process models.

Consider a model in which the observations Y are
related to the responses as follows:

Yii=nyu + ey

Yoi = na, + €3
(5.5-1)

i=1,2,..,n
Y, = Noi + €ui

(The first index refers to the model number and the
index i refers to the experimental data set number.) If
we assume that the errors e,; are each normally distrib-
uted and independent with zero expected value and
fixed variances o,,, which may be different for each
model, and the covariances between models are o, a
probability density function can be written identical to
Equation 5.1-11 for the observations for one response:

P % Boon) = Ko [3ef -] (552

where k& has been given in connection with Equation
2.3-6 and e, has been earlier defined as
le — M1
€ = :
K—n — Mrn
If for all the responses the observations Y,; and Yj;
are statistically independent, then the joint probability
density function of all the n x v observations is analogous
to Equation 5.1-11 (keep in mind that the covariances
o,s between models are not necessarily zero):
€
elr-1*
GU
(5.5-3)
where £* is the normalizing constant not needed for
what follows, and I is the covariance matrix between
models

p(yl’--~9Y1)|x1 p’r)zk*exp —%[6{ e

011 012 O1y

O12 022 O2y
T =

O1p Oayp Oy

After taking the data, we consider the observations as
fixed and the parameters B as variables. Thus the likeli-
hood function is

L(p | y15 s yv; X, r)
1 v . n
= k* CXP{—QZ Zl o [Z (Yri - 7)ri)( Ysi - nsi)]}

(5.5-4)
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where o™ is the element of I'"*. We have replaced the
matrix notation in the exponent of Equation 5.5-3 with
the equivalent summations. Because fhe double sum-
mation over r and s gives a positive quantity, minimiza-
tion of it with respect to B is desired.

To minimize the double sum over r and s, estimates of
the elements of I' are needed, say, from replicate ex-
periments for each model:

s%:: &M = p — 1
2. (Y, = X)?
s2 =6, =12
T T p _1
P — —
'21 (Yy;, — Y)Yy — Y2)
S1g = 815 =5 P —1
z (Yrj - Yr)(Ysj - _s)
Sps = Gy = 152
rs rs p _1

where Y, = 3?_; Y,i/p.

‘When the errors associated with the observations of
the different dependent variables do not have equal
variances, but o, can be assumed to be zero for all
r # s, we need only minimize

o= D > WYy — 7 (5.5-5)
r=1i=1
where
e oy OF

This is equivalent to minimizing the weighted trace of

ele;, .- €le,

¢ = (5.5-6)

ele, --- €le,

where €fe, = 37 (Yy; — 7. Y — 715). When o, = 0,
there is no correlation among the various observations
Y,; to Y,; on one experiment. Each o7 is the variance for
the fit of model r and is estimated by s2. Certain useful
information results from minimizing Equation 5.5-5 in
addition to the parameter estimates. One obtains:

1. Values of sZ, the estimated parameter variances.
2. Values of the residuals between the observed and
estimated values of the dependent variable.

Finally, if the variances for each o2 are all the same,
minimization of ¢, is the same as minimization of the
trace of the matrix 5.5-6. It has been suggested that,
when the elements of I' are known to be nonzero but
cannot be estimated, the determinant of ¢ be minimized.}

1 G. E. P. Box and N. R. Draper, Biometrika 52, 355, 1965.

In general, one of the above criteria should be employed,
depending upon the experimenter’s knowledge or lack of
knowledge about the unobservable errors among the
model responses.

Other criteria which have been used to secure estimates
of the parameters in multiresponse models are:

1. Maximize the square of the smallest correlation
coefficient.
2. Maximize the square of the largest correlation

coefficients.
3. Maximize the sum of the squared correlation

coefficients.
4. Maximize the square of the product of the corre-

lation coefficients.

Criterion No. 3 gives the best average multiple corre-
lation coefficient. The equation for the square of the
estimated multiple correlation coefficient is

lwi(Yi - ﬁ)z

2%
[ ]
_
I
Mzl M=

Wi(ﬁ - 7)2

1

-
fl

and the sum of the squared estimated multiple corre-
lation coefficients is just

v
bo= D B
r=1

To obtain estimates of the coefficients 3, in linear models,
i, can be differentiated with respect to each of the coeffi-
cients, the resulting expressions equated to zero and
solved simultaneously. Although the algebra is tedious,
the procedure is straightforward. Coefficients in non-
linear models can be estimated by the iterative optimiza-
tion techniques described in Chapter 6.

To determine whether a multiresponse model ade-
quately represents the experimental data, the variance
ratio

(5.5-7)

‘ﬁmin/ (nz _ m)

Se

can be formed and tested, where m is the total number of
coefficients determined. Also, the residuals should be
randomly distributed without correlation and outliers
as explained in Chapter 7.

5.6 ESTIMATION WHEN BOTH INDEPENDENT
AND DEPENDENT VARIABLES ARE STOCHASTIC

How to estimate the parameters in an empirical model
when some independent variables as well as dependent
variables are random variables is a problem of common
occurrence, and has been considered briefly for a model
with one independent variable in Section 4.5.

One approach to estimation when more than one of
the variables are random variables is termed the recursive
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method.t We ask the question: If there are many random
variables, in which direction should the sum of the
squares be minimized? Recall from Figure 4.2-2 that
with a single dependent random variable, only one di-
rection can be selected, namely that of Y itself. No com-
pletely satisfactory answer can be given to the question
for the multivariate model. However, in the recursive
structure the covariance matrix of the errors for any one
set of data is diagonal, and the matrix of the coefficients
of the jointly random variables has nothing but zeros
to one side of the diagonal.
Examine the following structure:

q
Y, = Z)’mxk + €

k=1

Baryr + Yo = z YorXk T €2

Ba1y1 + Ba2ys + Y3 = z YarXx T €3

q
Buyr + By +---+ Y, = Z YuXe + ¢ (5.6-1)

k=1

where the Y’s are observable random variables, the x’s
are predetermined deterministic variables, the B8’s and
v’s are coefficients to be estimated and the €’s are inde-
pendent unobservable random variables with &{¢} = 0
and with constant finite variances and covariances.

The parameters 8 and y can be consistently estimated
in recurrent steps by least squares as follows. In the first
equation, Y; is the only random variable, and y,4, 10,

.., Y14 are estimated by minimizing the sum of the
squares in the Y, direction. Then, with ¥, in the second
equation predetermined by the first equation, i.e.,
y.= Y, and Y, acting as the random dependent vari-
able, the parameters B33, ya1, Y23, - - -» Y24 Can be esti-
mated by minimizing the sum of the squares in the Y,
direction. Repetition for each of the / random variables
yields estimates in the last equation of all the parameters.
How satisfactory the usual statistical inferences are
based on the sum of the squares from the last equation
is not well known.

The references at the end of this chapter discuss some
techniques which have been used in economics to treat
cases where certain of the independent variables are
stochastic variables.

It is also of interest to discuss the consequences of
estimating model parameters for a model such as
Equation 5.1-2 by the method of least squares, even
though direct application of the method gives estimates

1 R. H. Strotz and H. O. A. Wold, Econometrica 28, 417, 1960.

with undesirable statistical characteristics. Kerridge {
considered the model

Yi=B + X+ ¢

in which the Y, Xj, X,,..., X, are jointly normally
distributed. If the coefficients in Model 5.6-2 were
estimated by the usual least squares procedure and if
one more observation were made, Kerridge developed
an expression for the error of prediction

(5.6-2)

X

An+1 = (Yn+1 - Yn+1)’
where Y, ., is the correct predicted value of Y for the
(n + Dth set of X’s and ?’Ml is the predicted value of
Y obtained by assuming the X’s are not random variables.
We omit here the details of the development of the
probability distribution of A,.; and simply write the
final result:

X 1/2 2 2 1/2
AL, = Ua(l n 1) (X——”-‘;“L X“) (5.6-3)
n Xn-aq

where U is the standardized normal random variable
and the subscripts on y? indicate the associated number
of degrees of freedom. ‘

For practical purposes the mean square error may be
of greater interest than the value of A, ., itself:

1 n—2
i = 14 3) (=)

Thus, if # is large and the number of independent. vari-
ables g is small, the variance of ¥, is

Var{Yn“} = 0'3' + Val‘{?nu}

where the Var {f’n+1} can be computed from the equa-
tions in Section 5.2. However, if n is small, say 10, and
q is large, say 5, then the variance of A,.; becomes
large:

63,., = o2(1.1)(3) = 2.93¢2

In fact, when (n — g) = 2, the variance o3, ,, is infinite.
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Sources of Digital Computer Programs

ALSQ—A FORTRAN IV subroutine to solve the linear least
squares problem, written by G. W. Stewart, III, Union
Carbide Corp., Oak Ridge, Tenn. This program uses a
modification of the algorithm by:

Businger, P. and Golub, G. H. “Linear Least Squares
Solutions by Householder Transformations,” Num. Math. 7,
269-276, 1965.

BOJRCK-GOLUB—A FORTRAN V program to solve the
linear least squares problem, written by Roy H. Wampler,
National Bureau of Standards, using the Bjorck-Golub
algorithm described in:

Bjorck, A., “Solving Linear Least Squares Problems by
Gram-Schmidt Orthogonalization,” BIT 7, 1-21, 1967.

Bjorck, A., ““Iterative Refinement of Linear Least Squares
Solutions, 1,”” BIT 7, 257-278, 1967.

Bjorck, A. and G. H. Golub, “ALGOL Programming,
Contribution No. 22: Iterative Refinement of Linear Least
Square Solutions by Householder Transformation,” BIT
7, 322-337, 1967.

Bjorck, A., “Iterative Refinement of Linear Least Squares
Solutions, I1,” BIT 8, 8-30, 1968.

BMDO2R, Stepwise Regression—One of the Biomedical Com-
puter programs, written in FORTRAN and listed in:

Dixon, W. J. (ed.), BMD Biomedical Computer Programs,
Health Sciences Computing Facility, Univ. of Calif., Los
Angeles, 1964. Revised 1965 and 1967.

BMDO3R, Multiple Regression with Case Combinations—One
of the Biomedical Computer Programs, written in FOR-
TRAN.

BMDOSR, Polynomial Regression—One of the Biomedical
Computer Programs, written in FORTRAN.

LINFIT—A program which fits a linear function to collected
data via least squares. Optional constraints may be applied
to the fitting coefficients to make them nonnegative, add to
a constant, etc. This is one of eighteen statistical routines
written by J. R. Miller. This library of routines exists in the
Project MAC 7094. See:

Milier, J. R., On-Line Analysis for Social Scientists, MAC-
TR-40, Project MAC, Mass. Inst. of Tech., Cambridge,
Mass., 1967.

LINFIT-A—Another program written in BASIC for linear least
squares fitting and computing correlations developed at
Dartmouth College, Hanover, N." H., and available in the
C-E-I-R Multi-Access Computer Services Library programs
documentation, MAC 71-7-1, 1967: Addendum, MAC
71-7-1, A 12-368, 1968.

LSCF—A least squares polynomial curve-fitting subroutine
written in BASIC developed at Dartmouth College, Hanover,
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N.H. and available in the C-E-I-R Multi-Access Computer
Services Library.

LSFITW—A least squares curve-fitting program written in
BASIC. Adapted by J. B. Shumaker, National Bureau of
Standards, from the ORTHO algorithm by P. J. Walsh.
This is available in the C-E-I-R Multi-Access Computer
Services Library. See:

Walsh, P. J., “Algorithm 127, ORTHO,” Communications
of the ACM 5, 511-513, 1962.

LSTSQ—A FORTRAN IV subroutine which solves for X the
overdetermined system AX = B of m linear equations in n
unknowns for p right-hand sides. It was written by P.
Businger, Computation Center, University of Texas, using
the Businger-Golub algorithm.

MATH-PACK, ORTHLS, Orthogonal Polynomial Least-
Squares Curve Fitting—Written in FORTRAN V, one of
the Univac 1108 MATH-PACK programs.

Univac 1108 Multi-Processgr System, MATH-PACK
Programmers Reference, UP-7542, Univac Division of
Sperry Rand Corporation, 1967.

MPR3, Stepwise Multiple Regression with Variable Transfor-
mations—A FORTRAN II program written by M. A.
Efroymson, Esso Research and Engineering Co., Madison,
N.J., using the Efroymson algorithm. This is available in the
SHARE library: 7090-G2 3145MPR3. See:

Efroymson, M. A., “Multiple Regression Analysis” in
Mathematical Methods for Digital Computers, Vol. 1,
ed. by A. Ralstmand and H. S. Wilf, John Wiley, New York,
1960.

OMNITAB—A general-purpose computer program for statistical
and numerical analysis. OMNITAB allows the user to
communicate with a computer in an efficient manner by
means of simple English sentences. It was developed at the
National Bureau of Standards and is available in an ASA
FORTRAN version. See:

Hilsenrath, J., Ziegler, G., Messina, C. G., Walsh, P. J.,
and Herbold, R., OMNITAB, A Computer Program for
Statistical and Numerical Analysis, Nat. Bur. of Standards
Handbook 101, U.S. Government Printing Office, Washing-
ton, D.C., 1966. Reissued Jan. 1968, with corrections.

ORTHO—A program written by P. J. Walsh, formerly with the
National Bureau of Standards, which uses a Gram-Schmidt
orthonormalization process for least squares curve fitting.
ORTHO has been written as an ALGOL procedure and a
FORTRAN program (see OMNITAB), and a BASIC
program (see LSFITWA).

POLRG, Polynomial Regression—One of the programs of the
IBM System 360 Scientific Subroutine Package written in
FORTRAN 1V. See:

IBM Application Program, System/360 Scientific Subroutine
Package (360A-CM-03X) Version III, Application De-
scription, H20-0166-5, 1968.

IBM Application Program, System/360 Scientific Subroutine
Package (360A-CM-03X) Version III, Programmer’s Manual,
H20-0205-3, 1968.

STAT-PACK, GLH, General Linear Hypotheses—One of the
Univac 1108 STAT-PACK programs, written in FORTRAN
V. See:

Univac 1108 Multi-Processor System, STAT-PACK Pro-
grammers Reference, UP-7502, Univac Division of Sperry
Rand Corporation, 1967.



170 LINEAR MODELS WITH SEVERAL INDEPENDENT VARIABLES

STAT-PACK, REBSOM, Back Solution Multiple Regression—
One of the Univac 1108 STAT-PACK programs, written in
FORTRAN V.

STAT-PACK, RESTEM, Stepwise Multiple Regression—One of
the Univac 1108 STAT-PACK programs, written in FOR-
TRAN V.

STAT20x%*—A program written in BASIC for stepwise multiple
linear regression, developed at Dartmouth College, Hanover,
N.H., and available in the C-E-I-R Multi-Access Computer
Services Library. (See LINFIT above.)

STAT21xxx—A program written in BASIC for multiple linear
regression with detailed output, developed at Dartmouth
College, Hanover, N.H., and available in the C-E-I-R
Multi-Access Computer Services Library. (See LINFIT
above.)

Problems

5.1 The data in Table P5.1 were collected from different
wells. Can you apply the least square methods of
Section 5.1 to the data to estimate the parameters in
a linear model ? To estimate confidence limits of the

parameters ?
TABLE P5.1
Total
. Dissolved Hardness
Well Depth  Specific Solids as CaCO;
Number (ft) Gravity (ppm) (ppm)
E-71 225 43.1 2320 1030
E-73 220 55.5 2320 1140
1-2 203 34.8 2660 1280
1-22 150 78.8 3060 1140
1-24 136 77.4 4460 1640
1-29 140 20.6 2160 673
1-46 210 315 2540 868

5.2 Obtain the least squares estimates of B; and B; in the
model Y = B; + e %2* + e. Point out some of the
difficulties. Let the weights be unity.

5.3 Given the model
Y—_—'ﬂo +/31x1 +B2X2 + €

and using expanded notation, obtain the matrix a,
invert the a matrix, and calculate the ¢ matrix. Find
the Var {b;}, Var {b2}, and Var {bo} in the expanded
notation.

5.4 Given that a matrix Y is distributed by a multi-
variate normal distribution with the parameters
(xPB, Is?), show that the least squares estimates of 3
are equivalent to the maximum likelihood estimates
of B, and show that 6% = E2?/n is the maximum
likelihood estimate of o2. Note:

E? = Z (Y: — ¥)? = (Y — xb)T(Y — xb)

5.5 Show that the expected value of ¢ (the sum of the
squares of the residuals given by Equation 5.1-15)
is equal to (n — g — 1)0%,. One useful relation is

&{Q} = o? Trace [M] + n"Mn

where Q is the quadratic form Y'MY, M is an
n x nmatrix, = 6{Y}, and Var {Y} = ¢°L

5.6 Show that the least squares estimates of Bo, B, and
ﬁz in the model n= ﬁo + ,31(x1 - X-]_) + Bz(xl e .fz)
are the same as would be obtained from the model
1 = Bo + Bux1 + Paxz, in which B = Bo — 1%y — fa¥s.

5.7 To test whether a line passes through a given point
(Yo, xo), show that the deviation A = b; + byxo — Yy
has a variance

1 (xO et .72)2

T3 - o

The model for the line is ¥ = 8; + Box + €; n =
the number of data sets; 67 = Var {e}.

5.8 A student is asked to estimate the coefficient in a
model

n

Var {A} = o%[

Y = ﬁlxl + Bzxz + € (a)

from given experimental data. He suggests that first
he should use the model Y = Bix; + € to estimate
B1 and then use the model X; = Bsx; + € to estimate
B5. Then either model (a) (Y — bjx;) = Baxs + € or
(b) Y = Bu(xz — box1) + € will yield the correct
estimate of By in model (a); i.e., either bs or by will
be b,. Is the student correct? Explain.

5.9 Consider the following model:
1 = Bo + Bixs + BaXe + Baxs

If the design matrix (matrix of x’s) is arranged as
follows (xo = 1):

Y X1 X2 X3
Y -1 —1 =2
Y. 1 -1 -1
Ys -1 0 -2
Y, 1 0 -1
Ys 1 1 -2
Ys 1 1 —1
Y, -1 1 1
Ys 1 1 2

the least square estimates of the B’s given by the
normal equations can be expressed as linear functions
of the eight observations, Y.
Show, for example, that
bo =02193(Y; + Yo+ Y5 +---+ Yg)
— 0.0288(— Y1 + Yo — Ya + -+ Yp)
—01042(— Y; — Yo + -+ Yp)
+ 0.0814(—2Y1 - Yz b 2Y2 '—"‘+ 2Y3)
Consolidate the equations for bg, by, b2, and b; in
terms of each Y; and confirm the entries in Table

P5.9. Each column represents the multipliers of the
observations Y; for the expression b; = >_; a;Y,.




5.10

TABLE P5.9
bo by by bs

Y, 0.1895 —-0.1275 —0.1792 —-0.0163
Y, 0.2133 0.1514 —-0.3192 0.0618
Ys 0.0853 —0.1633 0.0684 —0.0847
Y, 0.1091 0.1156 —0.0716 —0.0066
Ys -0.0765 0.0831 0.2444 —-0.1597
Ys 0.0049 0.0798 0.1760 —0.0750
Y, 0.2253 -—-0.2090 0.1108 0.1010
Ys 0.2491 0.0699 —0.0292 0.1791

Show that the Var {b,} is simply

8
Var {b;} = of—,i(z a?j)

i=1

8
Covar {b;b.} = U% (Z aijaik)

i=1

Suppose that the observation of Y3 is biased by
10 percent. How much of a change (in percent) will
there be in the estimate of B,? Determine the two
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Execute a regression analysis and an analysis of
variance as follows:
(a) Code the x variables as

T — 190
10

(b) Find x"x and x7Y.
(c) From these, compute b, the estimate of B, in
the linear model

1 = o + Bux:

(d) Write the estimated regression equation, both
in coded (x) and uncoded form; i.e.,

Y = 1;0 + 1;1T
Y = bo -+ blxl
(¢) Tabulate the analysis of variance for o = 0.05
for both the coded and uncoded models.
(f) Plot the experimental data on a graph of Y

versus T together with the regression line.
(g) Plot the joint confidence region for B, and B;.

most important observations insofar as their contri-  >-11 The data in Table P5.11 have been taken from T.
butions to the variance of b;. Which observation Kunungi, T. Tamura, and T Naito, Chem. Eng.
contributes the most to the variance of ¥? Prog. 57, 43, 1961. Assume a linear model
Temperature-yield data for a batch chemical reaction Y=oa+ Bix; + Baxz + Baxs + €
have been collected as follows: . g
o . and determine the best estimates of « and the B’s, in
Temperature (°C) Yield (percent) other words, compute a and the b;’s; the confidence
200 6 limits on « and B;; find the multiple correlation coeffi-
210 7 cient; carry out an analysis of variance; determine if
220 8 any of the variables can be dropped from the model;
230 11 and, finally, give the confidence interval at selected
240 18 values of the independent variables for y = &{Y | x}.
TaBLE P5.11
Conversion of Reactor Ratio of H
n-heptane to Temperature to n-heptane Contact Time
Acetylene (percent) O (mole ratio) (sec)
Y, X X2 X3
49.0 1300 7.5 0.012
50.2 1300 9.0 0.012
50.5 1300 11.0 0.0115
48.5 1300 13.5 0.013
47.5 1300 17.0 0.0135
44.5 1300 23.0 0.012
28.0 1200 5.3 0.040
31.5 1200 1.5 0.038
34.5 1200 11.0 0.032
350 1200 13.5 0.026
38.0 1200 17.0 0.034
38.5 1200 23.0 0.041
15.0 1100 5.3 0.084
17.0 1100 7.5 0.098
20.5 1100 11.0 0.092
29.5 1100 17.0 0.086
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The analysis of labor costs involved in the fabri-
cation of heat exchangers can be used to predict the
costs of a new exchanger of the same class. Let the
cost be expressed as a linear equation

C=ﬁo+B]_N+BgA

where B, B1, and B; are constants, N = number of
tubes, and A = shellssurface area. Estimate the
constants Bo, B1, and B, from the data below.

Eliminate B, from the model by calculating the
mean of all the C’s C, and estimate B; and B% in
the model

C=C+BiUN-N)+ B4 - A

where N and A are the means of N and A4, re-
spectively.

Predict the cost of a 350 psia working pressure
exchanger with 240 16-foot long tubes and a shell
1I.D. of 1 foot, 6 inches. Can you estimate what are
reasonable cost limits, in dollars, at this pressure?
What assumptions must be made about the variables
C, A, and N?

TABLE P5.12 DATA FOR MILD-STEEL

FLOATING-HEAD EXCHANGERS (0-500
WORKING PRESSURE)
Labor Cost Area Number of

(&) (4) Tubes (N)
310 120 550
300 130 600
275 108 520
250 110 420
220 84 400
200 920 300
190 80 230
150 55 120
140 64 190
100 50 100

The phase-transition boundaries, in general, and
liquidus and solidus curves, in particular, of the
alloy phase (temperature versus composition) dia-
gram are generally determined by various metallo-
graphic methods. The liquidus and solidus curves
define the temperatures at which a cooling melt (of
given solute concentration) begins to freeze and
completes freezing, respectively. Because a pure metal
contains no solute, most of the sources of the un-
observable errors in the temperatures are avoided,
and it is possible to say that the melting temperature
(Ty) at ¢, = ¢, = 0 is a known value. Similarly, the
temperature at the eutectic point (73,) where the
concentration is ¢, or ¢, is known.

5.14

5.15

5.16

With these two boundary conditions specified,
determine the best polynomial models for the liquidus
curve (¢; = fi(7T)) and solidus curve (¢; = fi(T)) from
the following data.

T(°C) s Yo <, Yo
900 0 0
850 1.0 6.25
800 2.0 13.00
750 3.0 20.25
700 4.0 28.00
650 5.0 36.25
600 6.0 45.00 .

Will the inclusion of an additional independent
variable in a model, even though it is shown not to
be significant by an F-test, always improve the model
(in the sense that the sum of the squares of the

residuals = 3 (¥, — ¥))? will be reduced) or at least

not make it worse? Explain.
A total of 142 datum points was collected for the

purpose of determining a standard octane curve.t-

In addition to a standard curve, it was necessary to

determine the precision of the derived curve in terms

of the single sets of data used and to estimate the

limits of predictability of the derived curve for

evaluation of yields of a new catalyst preparation.
The results of the statistical calculations are:

Model:f= o + ,Blt]_ + /th%
f = octane number
t = temperature, °C

-

Estimated coefficients: &= 3.13
El = 0.258
B2 = 0.001

Sum of squares of residuals: 9.439
Degrees of freedom: 8

Are ﬁl, 32, and & significant (i.e., differ from zero)?

In an empirical correlation, the friction factor fis to
be made a function of the Re = Duvp/u and the tube
roughness &:

Inf=p8o+pBiInRe + BIné (a)

The friction factor itself is computed from the
mechanical energy balance in which the “lost energy”’
is related to the friction factor or, in terms of measured
quantities,
Ap = 2fpLv?
D

where

Ap = pressure drop
p = fluid density
L = tube length
v = fluid velocity
D = tube diameter
p = fluid viscosity

T M. Greyson and J. Cheasley, Petrol. Ref. 38 (8), 135, 1959.

ST S
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5.18

Is it possible to estimate a joint confidence region for
the three parameters, Bo, Bi, and B, in Equation (a)?
Note that both f (the dependent variable) and Re
(an independent variable) contain some of the same
measured quantities.

Levenspiel, Weinstein, and Lit employed the method
of least squares to estimate the parameters in a
dimensionless correlation using the data of Sieder
and Tate.f Their results were

Nu = 0.973 RCO‘288 Pr0_243(&)0-142

W

where

Nu == Nusselt number for heat transfer
Pr = Prandtl number
Re = Reynolds number

viscosity of fluids ¢ and w

=
I

Sixty-seven data sets were used and the variance of
the residuals s? = 5 (¥; — ¥)2/(67 — 4) = 0.0026;
> Y? = 108.9004. The elements of the ¢ matrix for
the model log Nu = B, + B; log Re + B;log Pr +
Bs log (ua/w) were, omitting the first row and
column,

0.1455 0.1749 0.0134
0.1749 0.2627 0.0179
0.0134 0.0179 0.0126

What are the confidence limits on the estimated
coefficients ? :

By a theoretical analysis of heat transfer, the
expression for the heat transfer coefficient in the
form of a dimensionless group is

0.142
Nu = 0.402 Re% Pr¥ ("—‘l)

M2

Can the experimental equation be correct? Explain.
The following expression for the efficiency of a
fractionating column was given as

E= 10.84A"°~28h°v241(%)°’024 G001

( o )0.044( M )0.13706_0.028
F'LVG PLDL

Comment on the appropriateness of each variable.
Can any of the variables or groups of variables be
eliminated? The data used to obtain the above
expression were based on seven different articles in the
literature.

1 O. Levenspiel, N. J. Weinstein, and J. C. R. Li, Ind. Eng.
Chem. 48, 324, 1956.
I E. Sieder and G. E. Tate, Ind. Eng. Chem. 28, 1429, 1936.

5.19

5.20
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Notation Range

= liquid viscosity, poise
pr = liquid density, g/cc

D, = liquid diffusivity, cm?/sec
o = interfacial tension, dynes/cm
« = relative volatility, dimensionless 1.6-20.8
A = fraction free area, dimensionless  0.041-0.125
% = reflux ratio, dimensionless 0.83-70
h = height, in. 0.25-5
G = gas velocity based on column
crossection, 1b/(hr)(ft?) 100-2000
o
70-609
(P«L Va)
( P ) 27.7-520
PLDL

An analysis of variance has been prepared based on
some unreplicated experimental data for two models:

Model I: Y = ﬁo + le + ﬂzxz + €

Model II: Y = Bix + Box? + €
Model I d.f. SS
Due to regression 2 99,354
Departure from origin 1 103
Deviation about regression line 33 863
Total 36 100,390
Model 1I d.f. S
Due to regression 2 21,621
Deviation about regression line | 33 863
Total 35 22,484

Is Model II (a line through the origin) as good as
model as Model I (the one with an intercept)?

Based on the listed experimental data:

(a) For the model y = Boxo + Bix1, find b, and b,
and prepare an analysis of variance.

(b) For the model 7 = Boxo + Bix:1 + Buox?, find
bo, b1, and b, and prepare an analysis of variance.
Do you find a difference in removing bo, by, b2
versus by, by, by versus by, by, bo?

Xo X1
- 6.47] 1 T
5.6 ( 1
6.0 1
7.5
6.5
8.3
7.7
11.7
10.3
17.6
18.0

| 18.4 ]

L L i D A W W N KN = e

T e T o T QN S G U U Y

1
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5.21 Hydrocyclones are used extensively in the mineral

industry and the pulp and paper industry for opera-
tions such as classification, thickening, and de-
watering. This wide acceptance has been achieved
because the hydrocyclone is efficient and has no
moving parts.

Preliminary experiments were done with a small
glass hydrocyclone, using a water medium to which
various quantities of sugar had been added to increase
the medium density. These experiments indicated that
the variables influencing the throughput of the
hydrocyclone, Q, were: the pressure drop across it,
P, and the density, p, and viscosity, p, of the medium.
In addition, it seemed reasonable to believe that the
geometry of the hydrocyclone, as represented by a
characteristic diameter, D, influenced the throughput:

Q = f(P,p,u, D)

With the assumption of a simple power relationship
between the variables, the following equation was
obtained:

Q = KP°pbucD? @

‘When the appropriate mass, length, and time units

were substituted in Equation (a), the following re-
lationship was obtained:

(L3T-Y) < (ML 1T~ 3)%(ML-3)(ML-'T-'yL¢

5.22

Equating the indicates of the three basic dimensions,
M, L, and T, on both sides of this equation yielded:
d—1 d-3

—_— bh=—=

2 2

’

a= c=2-d

or

Q = Kp@-12 P(d -3)/2 l-"(z -3) pé (b)

which give

_ KI"2 ( Pp)°'5 D\d
0 = s ()
When KD? was equated to a new constant K; (for a
given hydrocyclone) and Equation (b) was rearranged:
0.5\ g —
e _ g, ((Pp) ) ©
® v/

The coefficients K; and 4 in Equation (c) were
estimated from the data in Table P5.21. K proved
to be 3970 and d proved to be 1.904. A straight line
was obtained on a log-log plot which matched the
data well. Comment on this experiment and the sub-
sequent statistical analysis. Would the model be an
improvement over Q = K,P™?

If the two variables X; and X, are distributed by a
bivariate normal distribution with means yx, and p,
and the variance-covariance matrix

[0‘11 012]
O21 O3z

TABLE P5.21 EXPERIMENTAL RESULTS USED TO CALCULATE THE PARAMETERS

Qp/p AND (Pp)*®/p

p 2 P (0] @) Qp 404
(g/ml) (poise) (psig) (nl/min) ® B
1.199 0.0846 2 3550 18.4 5.03

4 5030 25.9 7.13
6 6150 31.8 8.72
8 7110 36.6 10.1
10 7910 41.0 11.2
11 8230 429 11.7
1.164 0.0498 - 4 5070 43.4 11.9
6 6130 53.2 14.3
8 6940 61.2 16.2
10 7680 68.5 18.0
1.122 0.0288 4 5060 73.5 19.7
6 6060 90.1 23.6
8 6970 104 27.2
10 7620 116 29.7
11 8040 122 31.3
1.000 0.0127 4 5000 157 39.4
6 6060 193 47.7
8 6760 223 53.2
10 7470 249 ~ 58.8
12 8180 273 64.4
0.989 -  0.0054 4 4540 369 83.1
6 5480 451 100
8 6240 520 114
10 6850 583 125
12 7540 638 138
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means for the respective sections identified by the
numeral. Since the point for the TV section falls on
the regression line for the entire group, the achieve-
ment of this group is equal to the average of all
students taking the course, relative abilities being

find the maximum likelihood estimates for wi, pa,
011, O22, and 015 = 01,

Fit a second-degree polynomial to the following data
in which the dependent variable is known to be
correlated in time.

considered.

Time, ¢ Adhesiveness, Y Comment on the use of least squares to obtain the
’ 1 estimated regression curve.
2 9
3 14 74 N i . I
4 16
5 10 L
@ _
6 1 7 aM
7 14 (36)
8 14 o 72| _
=
9 26 ] °
lo 40 Enl 6-D —
11 41 3 37)
12 59 T Regression, Y on x
13 74 'g 70— Regression coefficient, T
14 91 E
15 105 E 69— _
2
]
Discuss the data itself, carry out appropriate tests, [
and interpret your results. £ 68— 7
An experiment was performed in 1959 in a first course 4-TV
in the mechanics of materials. A TV section of 125 67 (— (125) I?M ]
students was subdivided into five sections of 25 each 7 PY
in four separate rooms (two sections of 25 each in 6 2-D -
| @8 T

one larger room with two TV sets). Some 225 other
students were taught in the conventional way by
different experienced instructors who used con-
ventional methods. A common final examination was
given.

The results of this experiment are given as a graph
in Figure P5.24. The plotted points represent the

6
|
<I_l\l2.4

25
Grade point average

26

FiGURe P5.24 Plotted points are section averages; numbers
identify sections; letters identify instructors; numbers of students

are in parentheses. (From J. Eng. Ed. 52, 316, 1962.)




CHAPTER 6

Nonlinear Models

As explained in the introduction to Chapter 4, the term
“nonlinear” as applied to models in this part of the
text means the model is nonlinear in the parameters
(coefficients) to be estimated (and more than likely is
also nonlinear in the independent variables). Not only
is the estimation of the parameters in nonlinear models
more difficult than in linear models, for reasons to be
explained shortly, but confidence intervals for the param-
eters, hypothesis tests, and all the matters described in
Chapters 4 and 5 are considerably more difficult to calcu-
late and interpret. Often we shall rely on approximate
rather than exact methods.

Before discussing the details of fitting empirical data
by nonlinear models, we need to outline the notation
and assumptions which form the basis of the nonlinear
estimation methods. Then we shall describe several
techniques which have been effectively employed to
estimate model parameters. At the same time, we shall
indicate what the difficulties are in carrying out these
techniques. Next will come a discussion of the error
involved in the estimated parameters and, finally, a
summary of methods of estimation when the variables or
parameters in the model are constrained in some way.

6.1 INTRODUCTION

Suppose we have a random observable dependent
variable, the response, either Y; or Y;, i=1,...,n,
depending on whether or not several replicates are taken,
and several nonrandom independent (controllable)
variables x,,k = 1,2,...,9. (We shall use Y; rather
than Y, in this chapter because very often, in experi-
mentation with nonlinear models, replicate experiments
are not made.) Both Y; and x, are presumed to be
continuous variables, i.e., real numbers in some finite or
perhaps infinite range. Let B;, j=1,...,m, be the
parameters in the model
'ﬂxq:ﬁla ﬁ2a-":'gm) (61'1)

1 = (X1, Xg, . .
or, in matrix notation,

n = n(x; B) (6.1-2)
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where
X11 X1z X1q Bi
Xg1  Xog Xagq B2
X = ) @ = .
Xn1 Xn2 an ﬁm

and n > m. Each observed Y, for a given set of X’s
denoted by x; = [ x5, X9, . - -, Xig), 18 related to the ex-
pected value of ¥;, &{Y; | x;} = m;, by

Yi=m+ea i=01L2..,n (613

where e represents some type of unobservable “error.”

Two general types of errors can be considered. One
is error in the measurement of the experimental dependent
variable; the other is the error in the form of the model.
If model error and measurement error are both present
in an experiment, ¢ must represent the combination of
both effects. We assume that e, the vector of errors, is
represented by a probability density function of known -
form involving a set of unknown parameters 6. As in
Sections 4.3 and 5.1, for a given Y and x, the estimates
B and 8 can be regarded as the variables and we can write
a likelihood function L:

LB, 6 | Y, x)

If the estimation problem is set up in this way, we can
see that the information to be obtained about B and 6
depends on x, that is, on how the experiment is designed.
Certainly, if the variables selected for x are not chosen
according to some effective scheme, the estimates of B
and 6 may not be very precise.

To obtain the estimates of B and 0, we shall assume
that the values of Y; in the vector Y are random observa-
tions from the distribution of Y; about #;, and that ¥;
can be interpreted as indicated in Equation 6.1-3. The
expected value of ¢; for a particular set of x’s will be zero
and the variance of ¢ will be ¢Z = of. When Equation
6.1-3 is stated explicitly as

(6.1-4)

. Bn) + €

Equation 6.1-5 is called the regression equation.

Y = n(xl:v L] xq; ﬁls .. (6.1"5)

A different nonlinear model can be proposed whichis of
great practical significance, although we shall not make



use of it because of its complexity, namely a model in
which Y and X are jointly distributed random variables:

Y =nqXy,..., X:Bi.. . Bu) + € (6.1-6)

In Equation 6.1-6 the X, are observed values of random
variables, while in Equation 6.1-5 the x, are fixed
numbers.

As in linear estimation, we would like to obtain both
the estimates b of the parameters @ in the nonlinear
model of Equation 6.1-2 as well as the estimates 6 of
the parameters 0 in the probability density for €, because
the values of 6 can provide estimates of the dispersion
of the values b about the true values B. However, it
proves far easier to obtain b than to obtain 8, and we
shall restrict our attention to the former. A wide choice
of numerical estimation techniques are available, some
of which are “better” in certain senses than others.

The maximum likelihood technique to estimate  and
0, that is the procedure to obtain the values of b and ]
which make Equation 6.1-4 a maximum, has been
described in Sections 4.3 and 5.1, but it has two handicaps,
First, it depends upon knowing some functional form
for the likelihood Equation 6.1-4. Second, in general, the
procedure cannot be carried out analytically for non-
linear models. While it is always wise, if possible, to
explore the nature of the likelihood function in the
vicinity of the maximum, as a practical matter one most
often assumes that the following basic premises of
Section 4.2 hold true (whether they do or not in a real
experiment):

1. The error €; is normally distributed.

2. The variance of Y; given x; is constant (or possibly
some function of x;).

Because the least squares estimation technique is the
easiest to execute, we shall use it here in preference to

Y3

Surface of

Y1

(a)

FIGURE 6.2-1

estimates of 5
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the maximum likelihood method. Also, many of the
desirable properties of the least squares estimates
(consistent, efficient, unbiased, and minimum variance)
are independent of the normality assumption for the
linear model and approximately so for the nonlinear
model. If the probability density of € has a single param-
eter o2, the likelihood function has the same contours
as the function expressing the sum of the squares of the
deviations between the observed values Y and the pre-
dicted ones. Thus, the estimation technique to be used
will be the same as that used in Chapters 4 and 5, namely
the method of least squares.

6.2 NONLINEAR ESTIMATION BY LEAST SQUARES

Recall that in Chapters 4 and 5 we minimized the
sum of squares function, ¢, to obtain the desired param-
eter estimates. Exactly the same technique will be used
here. We want to

n
Minimize ¢ = Z WY — nx, B2 (6.2-1)

i=1
where w; represents appropriate weights, perhaps unity,
and Y, is the single observation made at x;. Figure 6.2-1
illustrates the geometric interpretation of the method of
least squares as applied to a nonlinear model. As in
Figure 5.1-1, we look for the shortest vector from the
point P in observation space to the curved surface, which
is the locus of predictions of Y for a given set of estimated
parameters, b, and b,. In parameter space the contours
of the sum of squares, ¢, will not be elliptical but might
appear as shown in the right-hand side of Figure 6.2-1.
Posed in the form of Equation 6.2-1, the nonlinear
estimation problem appears as simply an optimization
problem in parameter space in which the Y’s and x’s are
given numbers and the f’s are the variables. Many of

B2 d’min
Contours of
constant
o)
bol-—
|
b B

Geometric interpretation of least squares for a nonlinear model: (a) observation

space (three observations), and (b) parameter space (two parameters).
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the tools of deterministic nonlinear optimization can be
successfully brought to bear on this problem. From the
user’s viewpoint, these optimization techniques fall into
two broad classes: (1) derivative-free methods and (2)
derivative methods. If in the search for a minimum of ¢,
the partial derivatives of ¢ (with respect to B,) must be
calculated, then we shall classify the method as a
derivative-type method; otherwise, the method will be
termed a derivative-free method of estimation.

Whilc the advantages of not having to compute
analytical derivatives of the function ¢ can be overrated,
inasmuch as numerical derivatives can be substituted
for the analytical ones, the calculation and evaluation
of numerical derivatives take a substantial amount of
computer time. Moreover, near the minimum of ¢ the

error in the derivatives rises; hence, termination of the.

iterative procedure leads to oscillation.
We shall describe five of the more effective optimiza-
tion techniques, namely:

1. Derivative-free methods:
(a) Simplex method.
(b) Direct search method.
2. Derivative methods:
(a) Gauss-Seidel.
(b) Gradient methods.
(¢) Marquardt’s method.

All of the effective procedures are iterative ones which
are best executed on a digital or hybrid computer.
Wilde and Beightlert and Beveridge and Schechteri
describe a number of other nonlinear optimization
methods.

The reason why iterative methods of optimization are
required and why the direct application of classical
calculus fails to yield estimates of the parameters in a
nonlinear model can be demonstrated by the following
model:

_ Bix
=3 s 6.2-2)
or
_ Bix
Y= s + € (6.2-3)

The unweighted sum of the squares of the unobservable
errors, e, is

¢’=i(Y1 - 7]i)2

=2 2312x+ﬁ BIZ(HW (6:2-4)

T D. J. Wilde and C. S. Beightler, Foundations of Optimization,
Prentice-Hall, Englewood Cliffs, N.J., 1967.

1 G. Beveridge and R. S. Schechter, Optimization—Theory and
Practice, McGraw-Hill, New York (1970).

By partially differentiating Equation 6.2-4, first with
respect to B; and then with respect to 8,, and by equating
each of the partial derivatives to zero, we obtain a pair of
normal equations incorporating the estimates b, and b,:

NIRE R S :
blZ(xi+b2)2 ;xi+b2_0 6.2-5)

X7 n x Y _
b, Z (e + by)® ; G+ b 0 (6.2-6)

Note that Equations 6.2-5 and 6.2-6 are themselves
nonlinear equations, so that we have converted the
original optimization problem into a root-finding prob-
lem of a degree of difficulty equal to or greater than the
optimization problem. Because finding the roots of a
set of nonlinear equations involves some type of iterative
technique, it seems to be equally (and perhaps more)
feasible to minimize ¢ by directly using an iterative
procedure to minimize the original objective function,
Equation 6.2-4. We shall now describe two derivative-
free methods of minimization which have proved to be
remarkably flexible, easy to use, and relatively trouble
free.

6.2-1 Direct Search Methods

The direct search method proposed by Hooke and
Jeevest has some distinct advantages in nonlinear
estimation from the viewpoint of the user. No derivatives
need be calculated and an acceleration phase is built
directly into the logical scheme. The disadvantage of
direct search methods is that they are slow in com-
parison with the derivative or simplex methods, especially
as the number of parameters becomes large.

The direct search algorithm operates in the following
manner. Initial values (guesses), b‘?, for all the 8’s}
must be provided, as well as an initial incremental change
for each parameter, AH{”. ¢ is first evaluated at the
initial point, b®. Each b{® of the set b® is changed in
turn by +Ab6® and, if ¢ is improved, b + AB® is
adopted as a new estimate of j8;, 5. If ¢ is not improved,
b — AB® is tested. If no improvement is experienced
for either +Ab®, b = bi®. This process is continued
for all the B,’s to complete an “exploratory move.” The
new estimated parameters define a vector in parameter
space that represents a successful direction to reduce ¢.
A series of accelerating steps, or ‘‘pattern moves,” is
made along this vector as long as ¢ is reduced. The
magnitude of the pattern move in each coordinate
direction is proportional to the number of prior success-
ful moves in that direction. If ¢ is not improved by one

T R. Hooke and T. A. Jeeves, J. Assn. Compt. Mach. 8, 212,
1961.

1 All the intermediate estimates of the model parameters will be
designated as b¢’; it is the terminal vector of estimated param-
eters which is the best estimate of .



of these pattern moves, a new exploratory move is made
in order to define a new successful direction. If an
exploratory move fails to give a new successful direction,
the Ab,’s are reduced gradually until either a new success-
ful direction can be defined or each Ab; becomes smaller
than some predetermined tolerance. Failure to improve
¢ for a very small Ab; indicates that a local optimum has
been reached. ,

Two basic tests have been employed to determine
when the search should terminate. One test is made on
the fractional change in the individual estimated param-
eters, Ab;, i.e., on the step sizes. Minimum desirable
values of the fractional change in the variables are read
into the computer program, and the test is conducted
after each exploratory search failure. Another test occurs
after each exploratory search or pattern move; the
change in the value of ¢ is compared to a specified
fraction read into the computer program. If the value of
¢ has not decreased from the value on the previous move
by an amount greater than the specified fraction, an
exploratory search or pattern move is considered a
failure. The calculations terminate when both tests are
satisfied on a specified number of cycles.

It is very easy to add simple constraints to the search
routine. For example, if one wishes to restrict the b;’s to
positive numbers only, as required in certain categories
of engineering problems in which the b,s represent
physical quantities which cannot be negative, one can
readily build into the computer program the constraint

I < b <y
where ‘
I

Uj

lower bound of the search for b;
upper bound of the search for b;

I

Il

and choose'l,- = 0 and u; to be some very large number.

Example 6.2-1

A comparison can be made between estimation by direct
search and linear estimation for nonlinear models if the
models can be linearized by suitable transformations and
then treated by linear analysis. Such a comparison is made
in this example; some of the typical problems encountered
in iterative nonlinear estimation are pointed out. Eleven
sets of simulated data were prepared for the model

Direct Search Technique in Estimation

n = axfixBe

or
logn = loga + Bilog x; + B log x»

by arbitrarily selecting « = 1.0, 8; = 3.0, and B, = 0.5.
The values of » were then perturbed by normal random
deviates with variances of 10 and 100, and also by uniform
deviations of +0.1 percent, +1 percent; and +10 percent
with random sign allocation.

The simulated data were fit using three criteria, Equations
(a), (b), and (c) below, respectively. The results appear in
Table E6.2-1 for two initial starting vectors.

NONLINEAR ESTIMATION BY LEAST SQUARES m

n

Minimize Z (Y, — m)? @
i=1
n, — 2
Minimize Z (u) (b)
i=1 K

n
Minimize Z (log Y, — log )2
= ©)

The third criterion, Equation (¢), is the criterion used in
least squares linear estimation. In all of the searches the
initial fractional step size for each Ab, was arbitrarily set at
0.30, Past experience with the direct search technique
indicated that Ab; = 0.30 was a reasonable compromise
between a large initial step size, which might have to be
reduced substantially before ¢ would be reduced, and too
small a step size, which would cause innumerable, time-
consuming, small steps. The criterion for stopping the
search was a change of less than 0.01 percent in the value of
each of the estimated parameters. In using a variance of
100 to calculate the simulated Y; values, a negative value
was obtained for one Y; which precluded calculation by
criterion (c) for this one case.

The estimated parameters by direct search using criterion
(c), can be seen to give essentially the same values as the
linearized technique for this simple problem, although they
require, in general, more time to compute. Since the three
criteria are not identical, the comparisons made in the
table also demonstrate the effect of changing the criterion
itself. If the unobservable error, ¢, is added to In 7, then linear
least squares gives the desired estimates of the parameters.
However, if the proper model is ¥ =7 + ¢, then the
estimated parameters can be quite different from those
obtained from the modelIn ¥ = In» + ¢, particularly as
the error increases.

Figure E6.2-1 illustrates the progress of one search. Note
that although the sum of the squares of the residuals steadily
decreases, the values of the estimated parameters do not
change monotonically. Other initial guesses for the param-
eters than those listed in Table E6.2-1 were tested and
yielded essentially the same final answers for both the
estimated parameters and the sum of the squares of re-
siduals. However, the choice of the initial estimates of the
parameters is by no means as simple as it seems. Unsuitable
choices for the initial guesses can introduce scaling diffi-
culties. By selecting starting guesses for «, B;, and B, which
led to the extremely small initial predicted values of Y, it
was observed that the search program would not operate.
For example, if the initial guesses were chosen to be —S§,
—5, and —35, respectively, then a comparison between the
first few initial simulated and predicted values of Y revealed
the following (for the data without error):

Y Calculated from

Y Simulated the Model using Percent
Data aO=pP=pP=—5 Deviation
0.48000 x 102 —0.2584 x 10-8 —0.1857 x 103
0.61094 x 108 —0.19622 x 1077 —0.3113 x 10*
0.12626 x 10* —0.34845 x 10-¢ —0.3623 x 1012
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TABLE E6.2-1 RESULTS OF NONLINEAR ESTIMATION BY DIRECT SEARCH USING SIMULATED
DATA FOR THE MODEL 7 = ax§ix52

Direct Search—Initial
Guesses I:

a = 0.05 Degree of Error Introduced into ¥

b =40
b = 0.7 None +0.1%, +1%, +10%, Var{Y}=10 Var {Y}=100
a 0.999 0.988 0.886 273 1.232 5.543
by 3.000 3.004 3.047 3.516 2.907 2.229
b, 0.500 0.502 0.521 0.714 0.485 0.397
Minimum of Equation (a) 48x10-3 2.15 214.3 2.1x10° 760.9 7.8x10°
Number of exploratory

searches 418 370 310 161 468 489
a 0.999 0.996 0.930 0.628 0.716 19.704
by 3.000 3.001 3.026 3.159 3.107 1.701
ba 0.500 0.501 0.518 0.629 0.608 0.244
Minimum of Equation (b) 1.7x10-7 7.7x10-¢ 9.4x10-% 7.2x10-2 4.5%x10-2 1.99
Number of exploratory

searches 143 150 167 215 280 231
a 1.002 0.996 0.931 0.651 0.699
b, 2.999 3.001 3.025 3.142 3.115
bs 0.500 0.501 0.517 0.617 0.610
Minimum of Equation (¢) 3.2%x10-7 7.7x10-¢ 9.4x10~% 7.7x10-2 4.4x10°2
Number of exploratory

searches 142 170 157 120 105
Linear regression analysis
a 1.000 0.996 0.931 0.652 0.695
by 3.000 3.001 3.026 3.143 3.118
b, 0.500 0.501 0.618 0.618 0.612
Direct Search—Initial

" Guesses II:
a=35.0 Degree of Error Introduced into Y

b, = 5.0
by = 5.0 None +0.1%, +19%, +10%, Var{Y}=10 Var {Y}=100
a 0.998 0.973 0.889 0.276 1.231 5.640
by 3.000 3.011 3.046 3.513 2.908 2.222
b, 0.500 0.503 . 0521 0.712 0.485 0.394
Minimum of Equation (a) 3.5%x10-2 442 214 2.1x108 761 7.78 x 10°
Number of exploratory .

searches 149 123 221 183 169 73
a 1.001 0.997 0.930 ) 0.625 0.717 19.55
by 2.999 3.000 3.026 3.162 3.106 1.704
by 0.499 0.500 0.518 0.630 0.607 0.247
Minimum of Equation (b) 4.1x10-6 7.8x10- 9.4x10-% 7.2x10-2 4.5x10"2 1.99
Number of exploratory

searches 105 70 127 114 80 94
a 0.999 0.995 0.931 0.651 0.694
b, 3.000 3.001 3.026 3.143 3.118
bs 0.500 0.501 0.517 0.618 0.612
Minimum of Equation (c) 9.2x10°8 7.7x10-8 9.5x10"* 7.7x10-2 44x1072
Number of exploratory

searches 125 127 926 100 109

oAb 1y S LT i s s

e Py bt o —————,
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200 250 300
Number of exploratory searches completed

Progress of direct search for initial guesses a® = 0.050, 5,” = 4.000, and

b§> = 0.700 for criterion (a). Error is uniform + 1 percent.

No successful exploratory or pattern search moves were
possible in such circumstances, because the effect of any
change in the parameters was well beyond the significant
figures in the simulated values of Y.

Although this example is somewhat specialized, it does
bring out many of the typical problems encountered in
nonlinear estimation, including:

1. How to choose initial guesses for the parameters.

2. How to choose a suitable step size for minimization.

3. How the model, and thus the criterion for optimization,
should be written.

6.2-2 Flexible Geometric Simplex Method

A second derivative-free method of minimization of a
nonlinear objective function is by use of regular patterns
of search involving simplexes. . These techniques have
proved very successful in finding an extremum of an
unconstrained objective function, as well as a constrained
extremum, and are especially effective as the number of
model parameters increases. For two parameters, a
regular simplex is an equilateral triangle (three points);

for three parameters, the design is a regular tetrahedron
(four points). See Figure 6.2-2.

In the search for a minimum of the sum of the squares
of the deviations, ¢, trial values of the model parameters
can be selected at points in parameter space located at the
vertices of the simplex, as originally suggested by Spend-
ley, Hext, and Himswortht in connection with experi-
mental designs. The sum of the squares of the deviations
is evaluated at each of the vertices of the simplex; a
projection is made from the point yielding the highest
value of the objective function, point 4 in Figure 6.2-2,
through the centroid of the simplex. Point A4 is deleted
and a new simplex, termed a reflection, is formed com-
posed of the remaining old points and one new point, B,
located along the projected line at the proper distance
from the centroid. Continuation of this procedure, always
deleting the vertex that yields the highest value of the ob-
jective function, plus rules for reducing the size of the sim-
plex and rules to prevent cycling in the vicinity of the

1 N. Spendley, G. R. Hext, and F. R. Himsworth, Technometrics
4, 441, 1962.
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TABLE 6.2-1
Coordinates
Vertex by, ba, bn-1,4 by
1 0 0 cee 0 0
Ty T e T T
3 T T oo T T
m T T Ceee Ty T
m+ 1 T T T Ty
where

711=m—a\/§[\/m+1+n—1]

a —
=1V —
T m\/i[ m+1—1]

length of the path between two vertices

Q
Il

in Figure 6.2-2 has the followmg coordinates for the
three vertices:

Vertex by, ba
1 0 0
0965  0.259
3 0.259 0.965

We shall let
¢, = max {¢;} with the corresponding b;-,

¢ = miin'{qﬁi} with the co;responding b,

and let ¢ be the centroid of all the points of the simplex
with i # u, i.e., omitting the worst point. The procedure
consists of sequentially replacing vertex b, with a new
vertex according to the following scheme.

1. First, reflection of the simplex is carried out to ob-
tain a vertex designated by b* with coordinates given by

b* = (1 + y)e — v,b, (6.2-8)
where v, is the so-called reflection coefficient, a positive
constant determined by the user that may be unity. Let
#(b*) = ¢*. After b, is reflected, one of three outcomes
can exist:

(@) If ¢, < ¢* < ¢,, replace b, by b*. The resulting
simplex is used as a new starting simplex in step 1.
(b) If ¢* < ¢,, expand b* to b** by the relation
b** = y.b* + (1 — y.)e (6.2-9)
where v, is the expansion coefficient (say a value
of 2). If ¢** < ¢, replace b, by ¢** and start
step 1 again. If ¢** > ¢,, the expansion has
failed; replace b, by b* and start step 1 again.
(© If ¢* > ¢, for all i # u, that is, replacing b, by
b* leaves b* as the point that gives the maximum
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¢, then define a new b, which is either the old
b, or is b*, whichever gives the lower value of .
Afterwards a contraction is carried out, denoted
by b**, and computed as follows:

b*¥* = y.b, + (1 — yc)e (6.2-10)
where y, is the contraction coefficient, 0 < y, < 1
(usually ). Replace b, by b** and start step 1
again, unless the vertex obtained by contraction
is worse than the max of {¢(b,), #(b*)}, that is,
¢** > min {¢,, $*}, in which case replace all the
b; by 4(b; + b,) and go back to step 1.

2. The search is terminated when

[2. (¢ — 4)?
—— <€
m

where e is an arbitrarily chosen small number and § is
the average value of ¢.
Figure 6.2-4 is a flow chart of the program logic.

Example 6.2-2 Flexible Simplex Method

To illustrate the flexible simplex method, the data of
Example 4.3-2 were fitted by the linear model p = 8 + Bix.
The starting vector was b5® = 1, b = 1, at which the sum
of the square of the deviations, ¢®, was 9.55 x 10°. Figure
E6.2-2 illustrates the progress of the search for 85 successive
reflections, expansions, and contractions (which took 1.76
seconds on a CDC 6600 computer), at which stage the search
terminated giving by = 13.506, b, = 79.021, and ¢min =
9.616 x 10° compared with 13.51, 79.02, and 9.617 x 10°,
respectively, from Example 4.3-2. Starting at other starting
vectors yielded identical results.

Example 6.2-3 Nonlinear Estimation of a Stream Flow
Model

A model proposed to predict excess stream flow above a
normal level of flow was

_éfo’g"[ - e"”[ (5]
-l -2
WI:;CH (- e

Q = predicted excess channel flow rate above the normal
channel flow rate, the dependent variable
Q* = ioput flow rate, a known value
t = time, an independent variable

= model parameters characterizing hold up, by passing,
and stagnancy, to be estimated

7 = mean residence time for the channel, a known value
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Start

!

Calculate the initial b; and ¢;,
i=1,2, .. n+1,of the starting simplex

{

Calculate b, and
b; and ¢

Y

Calculate b* = (1 + v)¢ - v,b,

Calculate ¢*

¥

Is p* < p? No—-)l Isd*> ¢, i F u? I——Yes l1°
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FIGURE 6.2-4 Information flow chart for flexible simplex method.
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Predicted flow -

1.0}
09 ® Observed data
&% m = 6.65 B
s n=14.67
< 08— f=0719 y
[3) =
E 07l a = 0440 N
z .
206 i
& 05— _
S
GCE-‘ 04— Mean normal flow =580 cfs ]
5 03 @* = 3220 cfs |
0.2 |
0.1 -
0 | | | ! | | | | | | |
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Time from release at Austin, hours
FIGURE E6.2-3 Predicted and experimental excess flow rates at Smithville, Texas.
TaBLE E6.2-3a The model was fitted, using the fiexible simplex method, to
Stage data provided by the Lower Colorado River Authority for
Number * é m n f o tl_le Colorado River below Austin, Texas: Tl.le data con-
sisted of stream flow measurements at Smithville, Texas, a
1 4 2.443 2.035 1.077- 0.898 1.013 town about 45 miles downstream from Austin. The data
B 0.470 1.077 4.035 0.898 1.013 were for water released at Austin on August 4, 1966,
¢ 2.460 1.131 1119 0.155 1.080 which gave a crest at Smithville about one day later. Figure
D 2.768 1152 1143 0.730 1.979 E6.2-3 compares the data and estimated Q/Q*. Table
E 0.107 2.000  4.000 0.040 2.000 E6.2-3a illustrates the path of the search in parameter space.
5 4 0.675 1.888 3.895 0.577 1.203 The search was terminated when- the “volume” of the
B 0.471 1.077  4.035 0.898 1.013 simplex was reduced below 10-7 (after approximately 8
C 0.496 2.410 5.423 0.895 1.220 seconds of central processing time on a CDC 6600 computer).
D 0.977 1.969 3.973 0.266  0.574 Several starting vectors were used, all of which yielded
E 0.489 1.814 4460 0.652 0.613 essentially the same values of the estimated parameters.
10 4 0480 1.555  5.53 0.970  0.966 The lowest value of ¢ obtained was 0.0216 for V\{hiCh m =
B 0.470 1.077 4403  0.898 1.013 6.13,n = 15.08,f = 0.705and o« = 0.448. Interaction among
c 0:432 1:875 4:924 0:832 1:027 tl:x;f parameters (refer to Section 6.3) accounts for these
D 0470 1489 4.630 0751 0466  differences. , el ed. usi
E 0.413 1.675 4.647  0.731 0.853 Thc? parameters in the': same model were estlmat‘e , using
the direct search technique, in about the same time. The
20 4 0.241 2.354  6.467  0.867  0.366 results are given in Table E6.2-3b. The estimates for m
B 0.250 2.202 6.177 0.579 0.385 and n are somewhat different from those in Table E6.2-3a
c 0.225 2.546  6.625 0.836  0.359 because the direct search program, using the same percentage
D 0.249 2393 6243 0778  0.489 change in the coefficients, terminated earlier than did the
E 0.314 1.953 5972 0916 0.391
50 4 0.143 3.731 8.587 0.727 0.472 TaBLE E6.2-3b
B 0.169 3470 8.047 0.730 0.439
C 0.147 3.670  8.481 0.729 - 0.472 Exploratory
D 0.167 3.228 7.822 0.788 0.384 Search
E 0.126  4.167 9.458 0.713  0.500 Number @ m n o f
184 4 0.0219 6.651 14.672 0.719  0.440
B 0.0219 6.653 14.676 0719  0.440 0 1.067  2.000  4.000 0.040 2.000
C  0.0219 6653 14.675 0719  0.440 5 0434 4400  7.600 0.028 0.800
D 0.0219 6.651 14672 0719  0.440 10 0.048  3.200 3640  0.280 0.800
E 00219 6.651 14.671 0719  0.440 20 0.026  3.136 2383 0399 0716
50 0.026  3.133 2392 0.398 0.717

* A, B, C, D, and E, refer to the simplex vertices.
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simplex search (at a ¢ of 0.026 versus a ¢ of 0.0219 for the
simplex method).

6.2-3 Linearization of the Model

We now consider the first of the derivative-type
methods of minimizing the sum of the squares of the
deviations, that is, methods that require the numerical
or analytical computation of first (and for some methods
second) derivatives. Among the many varieties of
derivative-type methods, we have the space to describe
just those two most widely used:

1. Linearization of the process model itself.
2. Linearization of the criterion, that is, linearization
of the function ¢.

Wilde and Beightlert described a number of additional
methods.

The first technique to be described here has been called
by many names including the Newton-Raphson method,
the Gauss-Newton method, and the Gauss-Seidel
method, though Gauss deserves the lion’s share of the
credit. The method is very simple in concept: linearize
the model in a truncated Taylor series in order to make
use of linear analysis, and attain the desired minimum
of the sum of the squares of the deviations by an iterative
sequence of calculations. Initial guesses are made for the
parameters; cyclically, new estimates are obtained by a
method which has its foundations in the Newton-
Raphson algorithm. The calculations are repeated until
a criterion for convergence is met.

We begin by expanding 7 in a truncated Taylor series
(refer to Section 2.4-4) about b'®, the initial guess for B.
Weights are included as in Chapter 5. The initial guess
for B; is designated b{?. If

n
b= > w(¥i =)’ (62-11)
i=1

where 7, refers to the model with the vector for the ith
data set introduced, x;, by minimizing ¢ we can find an
improved estimate of B;. (If n were truly a linear func-
tion, only one step would be needed to reach the mini-
mum of ¢.) We expand  as follows:

) (8 — b +

. o+ () (B = )

(6.2-12)

(3B

T Z (57,24

where AD® = B, — b{®, the subscript 0 on n means %
evaluated using b, ..., b, and the subscript 0 on the
partial derivatives means the same thing. To relieve the
user of one of the most burdensome features of employing
derivative methods, computer programs have been written

1 D. J. Wilde and C. S. Beightler, Foundations of Optimization,
Prentice-Hall, Englewood Cliffs, N.J., 1967.

which approximate the partial derivatives by partial
difference quotients:

() = )
aﬂj = Sbj 0
7:(Xi5 b, ..., B + 8B, ..., bY)
— "Ii(xi; bglm, vy b;o), ceey
= 8bO

b)

where & represents a small perturbation. However, it
may not always be possible to compute a derivative
numerically with the required accuracy. If the regression
curve for the model is flat, the quantity in the denomina-
tor grows small and the relative error in the approximate
derivative can increase drastically. (The same feature is
true in the next section in connection with the numerical
approximation of the derivatives of ¢. As ¢ approaches
its minimum, the relative errors in the numerically
computed derivatives become larger. Consequently, the
search for the minimum of ¢ can oscillate and/or become
very inefficient.)

After the linear approximation for », Equation 6.2-12,
is introduced into Equation 6.2-11, the partial derivatives
of ¢ with respect to each of the Ab{” can be equated to
zero, as explained in Section 5.1

n Z ai
05w - m;)(oA;;o’)% (f’%) &l =0 (62:13)

Equation 6.2-13 yields a set of m linear equations corre-
sponding to the normal equations of Chapter 5:

n a )
2> %= o — (Z), a6
i=1 !

B (5—22)0 B + - ](ZZI) =0
2 z": wi[Yi — (mo _- (g—gi)o A1;<10) '

- (3), 0 (3, -

Let E{® = Y; — (0. Then these linear equations can
be written as follows:

s 3G G3) - 2 () G,
e 3 () (G me(G3),

) S (6.2-14)
s Sl ) e om0
e S .5 o ),




We now want to solve for the Ab/’s.
The array of equations can be made much more
compact by introducing the following matrix notation:

R H)) i=12,...,n
[X,] = oB; j=L1L2,...,m
@), - (@)
aﬂl 0 3/3," 0
X0 — : . ann X m
B ' ' matrix
(9’7_) ( 3%)
9B/ o 0B o0
Ab©®
(0
B© = A
ADD

Then:
A(O) — (XTWX)(O)

iw(zz;) @), 2 (szz;> (&),
> o) (), > ) (),

Z W’E’(O)(gzl) .
S (),

and Equations 6.2-14 can be written in matrix notation as

£

Z(O) — (XTWE)(O)' —

X*wX)OB© = (XTwE)© (6.2-15)
or
AOBO® — 7©
so that
BO = CO7©® (6_2_]6)

where C@ = (A@)~ 1. Observe the close analogy between
the development in Section 5.1 and that above.

Once the vector B is calculated by Equation 6.2-16,
a new estimate of each f; is obtained by repeating the
calculation with b, the improved estimate of B,
replacing b{® in Equation 6.2-16 and in the matrix
elements [X;;]. The recursion relation

B+D = b0 4 B AbGY (6.2-17)

is used to calculate b{¥; A, is an ‘“acceleration factor,”
i.e., a factor supplied by the user to speed up the progress
of 'the search for the minimum of ¢. In effect, Ab;
determines the direction of the search for the minimum
¢ in parameter space, and A; determines the step length.
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In the Gauss-Seidel method, /4; = 1. Other techniques to
evaluate h;, which have been used with greater effective-
ness, are:

1. Select the length of each step along the vector
B proportional to the slope of the approximating plane
for the objective function ¢.

2. Select equal size steps until an increase in ¢ is
experienced.

3. Use a Fibonacci search along the direction of
decrease in ¢ to locate its lowest point.

4. Use a multiple bigger or smaller than unity of
some initially chosen step size, a multiple proportional
to the number of previous successful moves in the given
coordinate direction.

The motivation underlying the adjustment of k; is
that the minimization can be accelerated or decelerated
automatically to: (1) speed up the initial approach to the
minimum of ¢ and also (2) slow down the final approach
to avoid excessive oscillation. Successive vectors B are
calculated until each Ab; is small enough and/or the
absolute or relative change in ¢ drops below a pre-
determined number, in which case the search for the
minimum ¢ is terminated.

Certain practical difficulties that arise in the procedure
will now be mentioned.

1. How can suitable initial guesses for the 5’s be
obtained? Because the function ¢ is nonlinear, more
than one minimum may exist in ¢—a feature absent
from the linear analysis of Chapter 5. Consequently, if
the initial guesses for the parameters are too far away
from the estimates that minimize ¢, the search may not
terminate at the global (lowest) minimum for ¢ but at
some other minimum. Figure 6.2-5 displays in two
dimensions what might happen with a poor choice for
the initial vector b‘®. One suggestion to obtain suitable
initial guesses for the B’s is to plot the response as a
function of a single variable, holding all other variables
constant, and to take some asymptotic value or other
clearly indicated value for 5{”. Thenthe initial values
for other parameters can be based on the(se) initially
selected values. Often, approximate values of the 8’s will
be known from earlier studies or from physical reasoning.
The ultimate resort is just to try several starting vectors
b® in the feasible range and ascertain whether or not
they all yield the same value for the minimum of ¢.
Kittrell, Mezaki, and Watsont described other tech-
niques to obtain initial parameter estimates.

2. The objective function may become unbounded
in the range of the search for the minimum of ¢, or
the first partial derivatives of the model may become

T J. R. Kittrell, R. Mezaki, and C. C. Watson, Ind. Eng. Chem.
57, 19, 1965.
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FIGURE 6.2-5 Effect of the initial guess for 8 on: (1) convergence to a local minimum in the sum
of the squares of the deviations (solid line), and (2) oscillation in ¢ in the search sequence (dashed

line) and subsequent divergence.

unbounded. Models with polynomials in the denominator
are particularly subject to this problem, as for example

5 = Bo + Bixy
Boxy + Baxo

in which both % and the partial derivative of » with
respect to B,

_ _ (Bo + Bixi)xs
0B, (Boxy + B3x2)®

become unbounded when b{"x;, = —b{x,. The only
ways to overcome this difficulty are to restrict the region
of search for the f’s and/or to be quite careful in the
original construction of the process model.

3. The matrix A” may become singular because of
redundancy among the data, or almost singular at one
or more values of @ in the search. A proper experimental
design for the original collection of data can overcome
this difficulty.

4. The iterative technique at some stage may increase
rather than decrease ¢. Refer to the dashed line in Figure
6.2-5. Suitable logical steps introduced into the computer
code will avoid this outcome, such as testing to see if
"D < 4™ 4t each cycle and, if not, cutting the value
of h; by a preselected factor.

We now give an example of the Gauss-Seidel method.
With initial estimates of the parameters far from the
final estimates, it is a characteristically slow method but
converges rapidly near termination (in contrast to the
method of steepest descent, described in the next section,
which converges very slowly).

o _

Example 6.2-4 Application of the Gauss-Seidel Method

Simulated data have been prepared to demonstrate
estimation by the Gauss-Seidel method. The simulated data
in Table E6.2-4a were generated by adding to the function
7 = 3x; + 3e~*2/2 random errors with a mean of 0 and a
variance of 0.01.

TABLE E6.2-4a SIMULATED DATA

y Y
X1 Xo (Exact) (Simulated)
0.0 0.0 3.00 2.93
0.0 1.0 1.82 1.95
0.0 2.0 1.10 0.81
0.0 3.0 0.67 0.58
1.0 0.0 6.00 5.90
1.0 1.0 4.82 4.74
1.0 2.0 4.10 4.18
1.0 2.0 4.10 4.05
2.0 0.0 9.00 9.03
2.0 1.0 7.82 7.85
2.0 2.0 7.10 71.22
2.5 2.0 8.60 8.50
2.9 1.8 9.92 9.81

We shall now assume that we know nothing at all about
the generation of the data in Table E6.2-4a, but merely that
we have the data and want to estimate the parameters in
the known (or assumed) model

n = lel + Bz efarz @

by minimizing
¢ = z [y, — B1x1 - /32 efa*2]? ®)
i=1

First, we have to determine the initial estimates 5,
b, and b. We might just select, out of thin air,

B = b = b = 1
or
bY = pP = pP =0

Instead, for illustrative purposes, we shall obtain estimates
near the true minimum by some preliminary graphical work.
We know from Equation (a) that if x, is held constant, we
obtain a straight line whose slope (8n/dx,),, is B;. Figure
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FIGURE E6.2-4a

E6.2-4a illustrates a plot of Y versus x; with x, fixed at
several different values. The slopes approximating 8, are:

Xz b
0 3.1
1 2.9
2 3.2

so that an average value of 3.1 can be used for 5. Note that
if the x, values had not been replicated, the above pro-
cedure would require considerable interpolation among the
data points.

To get b and b, we can form

(77 - 3.1x1) = 32 efa%X2
1I1 (‘f] - 3.1x1) =In Bz + ﬁst (b)

Figure E6.2-4b is a plot of the values of In (Y — 3.1x;) for
some of the data sets versus x,; the slope of the line is an
estimate of b while the intercept is approximately In ().
Figure E6.2-4b gives by ~ 2.9 and

b ~ [(In 2.88 — In 1.02)/(0 — 2)] = —0.52.

These estimates are close to the true parameters because of

the small error variance chosen for the simulated data.
Next we must decide on a weighting scheme. In this

example all the data sets will be weighted equally; i.e.,

20

15—

1.0

Slope == b3(©®

o
2

In(y — 3.0151x3)

1 2 3
x2
(d)

FiGURE E6.2-4b

-05 |
0
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w; = 1. Finally, a termination criterion must be selected to
let the computer know when to stop, say for each b, when

b(!n) — bg"—l)

by -1 < 10-° ©
The partial derivatives of 7 are
on .
o M
B,
o
—1) = efa¥a
2B,
on
- = efa*
9Bs Baxa o2
Consequently,
o,
(5}:)0 X11 = 0.0
ong
— = = 0.0
(aﬁl) o = Fa
(%) = ¢-0.52000 — |
9B/ 0
(aiz) = @-052(1) = (0,594
0B,/ 0
(%) = (2.9)0)e~% = 0
0B/ 0
3172)
— ) = (2.9)(1)e %52V = 1,723
(35). = @Owe

These elements comprise the matrix X@, from which the
matrix (X©@)TX©® = A©® can be computed. The elements of

E©® are v
E® = Y; — (o = Y1 — (3.lxzy + 2.9 ¢7052%12)

2.93 — [3.1(0) + 2.9 ¢~ 0-520] = 0.03

EQ® = Y, — (n2)o = 1.95 — [3.1(0) + 2.9 ¢7952] = 0.23

etc.

from which the matrix (X¥TE©®) can be computed. Then
B© can be calculated from Equation 6.2-16, and the vector
bY can be computed from Equation 6.2-17.

Table E6.2-4b lists the progress of the Gauss-Seidel
method by cycles (only four significant figures are shown in

TABLE E6.2-4b PROGRESS OF THE GAUSS-SEIDEL METHOD

Cycle Number b by b ™
0 (initial 3.1 2.9 —0.52 0.1981
guesses)
1 3.017 2.958 —0.5222 0.1573
3.017 2.958 —0.5220 0.1574
3 3.017 2.958 —0.5220 0.1574
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the table). Note that with the initial guesses close to the
final estimates ‘of B and with a well-behaved objective
function, only a very few cycles are needed to meet the
termination criterion.

To make the iterative procedure converge faster and
to avoid oscillation with less favorable objective functions
than used in Example 6.2-4, several authors have sug-
gested that the behavior of the sum of the squares of the
deviations, ¢, be automatically explored during each
cycle of iteration in the directions given by the elements
of B.t Hartley, after solving Equation 6.2-16 but prior
to applying Equation 6.2-17, calculated several values of
# for different values of v; Ab{™ in the range 0 < v; < 1.
Other ranges can be used, of course. The value of v; for
which ¢™(v) was a minimum, say v§, was used to obtain

d)(%)\-/
’ ¢ (3) ¢}
Parabora\ through

Approximate v*\ three values of
| | | BaE™),

1ap™™ Laptm) 3A6(m Ap(™)

FIGURE 6.2-6 Exploration of the surface .

1 G. E. P. Box, Bull. Inst. Int. Stat. 36, 215, 1958; G. W. Booth
and T. I. Peterson, IBM Share Program Paper No. 687 WL NLI,
1958; H. O. Hartley, Technometrics 3, 269, 1961. -

the (n + 1)st vector of b’s by placing v} = %, in Equation
6.2-17. If a parabola is used to fit the values of ¢™(v)
as illustrated in Figure 6.2-6:
$™(v) = ap + ar; + amv}

only three values of ¢ are required to obtain aq, a;, and
a,, and v¥ = —a;/2a,. Hartley demonstrated that this
modification of the Gauss-Seidel method converged to
a minimum ¢ under certain specific conditions. However,
because the given requirements cannot in general be
established prior to finding the minimum of ¢, the
practical merit of Hartley’s method lies in the evaluation
of h; in Equation 6.2-17 by a flexible objective rather
than a subjective criterion. The suggested exploration
technique has an advantage over the method of steepest
descent, which will be discussed shortly, in that the
scaling (selection of the magnitude) of the moves to
improve ¢ is controlled. Any method that continuously
adjusts A, so that ¢ can only decrease and never increase
will avoid some of the difficulties of the standard Gauss-
Seidel method in which 4; is unity.

Example 6.2-5 Modified Gauss-Seidel Techniques

Strand, Kohl, and Bonham} used a version of Haftley’s
modification of the Gauss-Seidel method to fit values for
the Thomas-Fermi-Dirac potential for atoms as tabulated
by Thomas. The model was

n(x, /31, .o .,Bs) = /31 e""a’” + ﬁa e""l” + Bs e—ﬂex

I T. G. Strand, D. A. Kohl, and R. A. Bonham, J. Chem. Physics
39, 1307, 1963.

TABLE E6.2-5 LEAST SQUARE FIT OF THE THOMAS-FERMI-DIRAC POTENTIAL FUNCTION

n
Cycle Number b b b b b b 6,10%*
Modified Gauss-Seidel Method

A: 0 0.4660 1.1420 0.5410 6.4470 0.1000 9.9990 83.7
1 0.4607 1.3458 0.4526 5.9621 . 0.0820 8.9045 7.415
2 0.5261 1.6027 0.4302 6.9199 0.0414 9.0207 4,048
5 0.5696 1.6775 0.3845 7.6433 0.0438 10.993 3.533
10 0.4786 1.5047 0.4063 5.4189 0.1125 12.708 3.016
B: 0 5.180 1.5770 0.3910 6.2190 0.0890 25.000 6.624
1 0.5625 1.6825 0.3674 6.5011 0.0699 22.126 2.390
2 0.5313 1.6276 0.3892 5.9050 0.0792 21.504 1.923
4 0.4578 1.4974 0.4758 5.2726 0.0651 28.376 0.786
9 0.4256 1.4431 0.4918 4.8668 0.0823 24.116 0.572
Unmodified Method
A0 T 10 0.5897 1.7177 0.2792 8.2340 0.1292 8.2392 3.574
A2 9 -0.5899 1.7182 —199.47 8.2426 199.88 8.1085 402.7
Bl 10 1.2226 —0.7341 1.9944 2.0019 0.2384 —7.8010 10t2

T Values at cycle number n with starting vector 40, etc, as designated in the upper portion of the table.



The parameter v was allowed to vary between — 1.5 and

1.75 in intervals of 0.25. Fourteen values of ¢™(v) were

calculated on each cycle for each b{™; the smallest value of

¢™(v) was ascertained at v;. The minimum v* was found as

the minimum of a parabola through the points [, - 1, (v, 1)1,

[vs, ()], and [v; 41, $(v;+1)] (unless v; was — 1.5 or 1.75).
Iteration was terminated when

(n+1) _ 4m

d) ¢(n) ¢ < 10_4
or if ¢®+V increased. Table E6.2-5 lists selected results
comparing the modified Gauss-Seidel method and the
unmodified method. The modified procedure clearly
exhibits a superior performance.

6.2-4 Linearization of the Objective Function

Another way to minimize the sum of the squares of the
deviations, ¢, is to linearize the objective function itself.
Such methods include the well-known method of steepest
descent, the conjugate gradient method,} and Mar-
quardt’s method.} The gradient of ¢, i.e., grad ¢ or Vé,
is a vector perpendicular to the surface ¢ in parameter
space which extends in the direction of the maximum
increase in ¢ at a given point. The negative of the gradient
extends in the direction of steepest descent. Figure 6.2-7
illustrates the geometric interpretation of ¢, Vé, and
— V¢ in a space of two parameters, 8, and B,. The closed
curves represent contours of constant ¢ which are of
increasing value proceeding from the minimum ¢.

Suppose we expand ¢ in a truncated Taylor series
about b‘®:

b2 @o+ Z (55).8 — &

(the notation was defined in Section 6.2-3). The magni-
tudes of the_ components of —V¢:§
o
)

=il = ~(g5) 8 ~ (g), 5 -

evaluated at b‘@ are identical to the respective terms in the
first-order expansion of ¢ in parameter space, and the
components are used to establish the direction of search
in the method of steepest descent.

We assume that ¢, given by Equation 6.2-1, is single
valued, is continuous, and has a single minimum in the
region of search. By finding the components of the
vector — V¢, it is possible to carry out an iterative
sequence of calculations and reduce the value of ¢ to
at least a local minimum. The general procedure is to:

1. Compute analytically (or numerically) the com-
ponents of — V¢ and evaluate them ‘at b‘.

T R. Fletcher and C. M. Reeves, Compt. J. 7, 149, 1964,

1 D. W. Marquardt, J. Soc. Ind. Appld. Math. 11, 431, 1963.

§ 88, is a unit vector in the B, direction; 8B, is a unit vector in
the B, direction.
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B1.

bgni-l)

(™

1
bén+l) bgn) B2

FIGURE 6.2-7 Geometric representation of the sum of the squares
of the deviations, ¢, V¢, and the direction of steepest descent
-V, in parameter space at point P.

The unit vector — V¢/|—Vé| is computed to ascer-
tain the components of the direction of search:

o o
—V BT

AR

As an example, for the linear equation z = 28; — Ba:

(6.2-18)

Vz =28, — 8,

—-Vz -2
_5
=vz] ~ ot

1
V5

2. The components of — V¢/| — Vé| evaluated at b
establish the direction of search for the minimum of ¢.
(In the above example, if z were ¢, the intial Ab’s are
AB® = —2/4/5 and ABY = 1/V/5; the components of
the gradient above are not functions of § because the
example is linear in B.) Each new cycle of 5’s is com-
puted from the previous cycle (starting with b®®) by
means of Equation 6.2-17:

bg.n-!- O R b;ﬂ) + h;ﬂ) Abg_n)

3. The sequence of iterative moves continues until the
process terminates because ¢ is less than a specified
criterion or because the process diverges or oscillates and
no further reduction in ¢ can be achieved.

Improper scaling (i.e., the relative magnitudes of the
components of — V¢) can cause difficulty in minimizing
é. If the hyperspace is badly elongated, as illustrated for
two dimensions in Figure 6.2-8, the method of steepest
descent may take an excessively long time to converge
because the direction of steepest descent proves to be
nearly perpendicular to the direction that will minimize
¢. The negative of the gradient of ¢ points in the direction
that minimizes ¢ only in a Jocal region and not in the
direction of the global minimum of ¢, the minimum
desired, unless the contours are arcs of circles with ¢y
as a center.
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Marquardtt observed in practice that for elongated
ridges the method of steepest descent and the Gauss-
Seidel method gave directions of search nearly orthog-
onal to each other. He suggested a compromise between
the two methods. Marquardt’s method improves the
conditioning of the matrix of partial derivatives,
(X"wX) = A. Suppose that in Equation 6.2-15 a diagonal
matrix is added to A:

(A + DB = Z (6.2-19)

where A > 0. When A = 0, Equation 6.2-19 is identical
to Equation 6.2-15 and B™ is computed from Equation
6.2-16 as in the Gauss-Seidel method. When A — oo,
AL > A in some sense, and B is computed essentially as

1
= Z
In the method of steepest descent, the components of the
unit vector in the optimal direction can be multiplied by

the step size A™ to give

B ap(b™)
A= V(b)) % Hm
Bm = — " : RS
YOO | [ TV90
0B
Because

B > i = 26" il —zp

is the negative of the typical element in the matrix Z,
we find that :
_8¢w(b("))
22

= 7Zm

a(ﬁ(l.)(n))
OB

1 D. W. Marquardt, J. Soc. Ind. Appld. Math. 11, 431, 1963.

[

Consequently, for the case in which A — oo, the identifi-
cation is made
)\ == " — V¢(b<"’))”/h<n)

Thus, we find that Equation 6.2-19 encompasses both the
method of steepest ascent and the Gauss-Seidel method
as limiting cases. Intermediate values of A represent a
composite of the two directions of search. In general,
A decreases as the computations proceed.

We seek a small value of A where conditions are such
that the unmodified Gauss-Seidel method (which has
quadratic convergence) would converge satisfactorily.
Large values of A should be used only where necessary
to satisfy the condition that ¢ on the (r + 1)st cycle
should be less than ¢ on the rth cycle:

$UHD < g .
Specifically, A can be chosen as follows. Let » > 1 and
let A7~V denote the value of A from the previous itera-
tion (the initial AX® x 10-2). Compute $(A“~V) and
#(AT~Vfy). Three conditions exist which govern the
choice of AM:

1. If $AT-Vfy) < P, then let A7 = AC-D/fy,

2. If $ATVp) > ¢ and $(AT"V) < ¢P, then let
AD = )=

3. If AT VA) > 6 and (AT L) > ¢, increase A
by successive multiplication by v until, for some small
w, ATV p¥) < ¢, Then let A7 = X~D.pw,

Case No. 3 is met only rarely, such as when large corre-
lations between parameter estimates exist that cause
unreasonably large values of A. In this case, Case No. 3,
certain special additional refinements existin Marquardt’s
method. We shall not describe these refinements but they
can be found in the original reference.

Marquardt recommended that the elements of A and Z
be scaled as follows to make the objective function less
elongated:

Aﬁ = fifini
Zy = ¢Z;

$=6

+ Pmin

9600 >
=

A FrrrreT

Steepest descent from point A
++++ Gauss-Seidel procedure from point 4

Marquardt’s procedure

—— T
- from point 4

Ficure 6.2-8 A disadvantage of the method of steepest descent.
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where the (*) designates the scaled element and the scale
factor is & = (4;)~*%. The scaled elements of B* are
converted back to the elements of B by

&

However, Ball f showed that the recommended scaling is
exactly equivalent to replacing the matrix I in Equation
6.2-19 by the diagonal matrix D

(A + AD)B = Z

Ab] =

(6.2-20)

where the elements of D are made up of the elements
from the main diagonal of A = XTX. Equations 6.2-19
and 6.2-20 were equally effective in estimation in a
number of tests on kinetic rate models.

Marquardt’s method has been implemented by the
IBM Share Library Program No. 3094, dated March
1964, and is recommended as being quite effective. It is
definitely superior to either the Gauss-Seidel method or
the method of steepest descent. Because either analytical
or numerical derivatives at the minimum of ¢ are avail-
able, it is superior to the flexible simplex method in that
subsequent estimates of the precision of the parameters
are easy to make. On the other hand, the flexible simplex
method has the advantage that the partial derivatives of
¢ need not be calculated at all, thus saving considerable
computer time in estimation. For very complex models,
the flexible simplex method has proved the more effective
in estimating the parameters in simulation studies.

Example 6.2-6 ‘Nonlinear Estimation by Marquardt’s
Method

The same model as was used in Example 6.2-3 was fit by
Marquardt’s method as executed by the IBM Share Library
Program No. 3094. Some initial difficulty was encountered
in minimization starting with various initial parameter
vectors, because the routine tended to make some of the
parameters unbounded or zero. After parameter limits were
added to the computer routine, the same minimum was
obtained as in the direct search technique but a higher
minimum was obtained than with the flexible simplex method
(refer to Example 6.2-3). Table E6.2-6 is a summary of the

1t W. E. Ball, Ind. Eng. Chem. Fundamentals 6, 475, 1967.

progress of the search; A is the parameter in Equation
6.2-19; v is the angle, in degrees, between the direction of
search indicated by the linearization of the model and that
indicated by the gradient method.

Numerical partial derivatives generated by the computer
routine were employed in the estimation which caused the
computer time to be about twice that for the simplex or
direct search methods.

The matrix of correlation coefficients between the
elements of the (X*X)~! matrix (which roughly shows the
correlation among the estimated parameters—see Section
6.4) was

1.000 0.047 0.853 —-0.711
0.047 1.000 0.008 0.285
0.853 0.008 1.000 —0.851
—-0.711 0.285 —0.851 1.000

Based on a value of #; - £ of 2.00, the individual confidence
limits on the parameters (see Section 6.4) were

Lower Upper
m 2.65 3.61
n 16.1 31.7
f 0.29 0.49
a 0.64 0.78

A joint confidence region could be estimated as described in
Section 6.4.

6.3 RESOLUTION OF CERTAIN PRACTICAL
DIFFICULTIES IN NONLINEAR ESTIMATION

Any of the procedures to minimize the sum of the
squares of the deviations described in Section 6.2 can fail
to reach a global minimum because: (1) of improper
initial guesses for the parameters, and/or (2) the objective
function becomes unbounded, as described in Section
6.2.

Additional difficulties discussed in this section, which
may be encountered together or separately, are improper
scaling, parameter interaction, and null effect.

IMPROPER SCALING. Scaling difficulties can occur when
the value of one of the terms in the objective function
is of a much different order of magnitude than another

TaBLE E6.2-6
Cycle
Number ¢ m n f « A y
0 1.284 6.00 25.0 0.500 1.000 10-2 27.3
1 0.831 1.00 19.2 0.432 0.760 10-3 29.9
5 0.0284 3.22 25.1 0.371 0.722 10-7 52.3
10 0.0267 3.13 23.9 0.398 0.717 10-8 50.5
15 0.0267 3.13 23.9 0.398 0.717 10-8 50.9




194 NONLINEAR MODELS

relative to the significant figures in each term. Then the
objective function is insensitive to changes in the values
of the parameters in the small term. For example, the
value of an objective function

é = 10082 — 0.01082

would be unaffected by changes in S, unless the values of
Bs, because of its physical units, are much greater than
B:. If the values of B, are of the same magnitude as 8,
one or both variables should be multiplied by scaling
factors which convert the two terms on the right-hand
side of the equation to roughly equal magnitude. Let

B, = 108, B = 10242
Ba = 10718, B3 = 10%53

Then the terms in the objective function become the
same order of magnitude. After the minimum is found

for N N

¢ =Bt — B3
the values of the estimates of the f’s, namely b, and b,,
could be determined from the estimates b, and ..

It is clear from this example that spending some time
in proper scaling before attempting a minimization is a
sound practice. Poor scaling can lead to poor estimates
of the model parameters. However, scaling for nonlinear
models cannot usually be effected in advance for all
ranges of the independent variables.

PARAMETER INTERACTION. This term is used to de-
scribe the adverse mutual influence of the estimate of one
parameter on that of another. If one parameter is
incorrectly estimated, the other is also incorrectly
estimated (biased), but the combined effect of the
estimated parameters when introduced into the model
may yield quite reasonable predictions. Parameter inter-
action may be illustrated by examining an extremely
simple objective function in which two parameters are
multiplied by each other:

$ = 28,82 + 10

The individual estimates of B, and B, can range over any
series of values for a given estimate of the product B,8,.
Thus, once a parameter has been assigned a given value,
the other parameter will compensate to make the product
satisfactory, even though both estimates are badly
biased. Scaling is more difficult if interaction exists.
Quadratic functions, as explained in Appendix Section
B.5, can be transformed to canonical form so that the
interaction term is removed. New coordinate axes are
defined, as shown in Figure 8.2-2 by the dashed lines,
about which the quadratic surface is symmetric. For
example, the surface

¢ = 7B + 683 + 583 — 4B.By — 4Bafs
— 6By — 248, + 188, + 18

can be transformed to
¢ — 18 = 3B2 + 6% + 9P}

by a translation of origin and rotation of axes (refer to
Example 8.2-1). In the new coordinate system, the
scaling of each term is decidedly clearer than in the
original coordinate system. Nonlinear objective functions
(in the parameters) become quadratic functions only if
the model is linearized by some suitable transformation
or by expansion in a truncated Taylor series, and ¢ is
defined by Equation 6.2-1.

A more subtle example, but one just as vulnerable to
interaction among the parameters, involves a model such
as 9 = B, e®2* in which B; in effect multiplies B,, as
becomes clear if we expand the exponential ef2* > 1 +
Bax + (B2x)?/2 + - - -. The method of steepest ascent is "
particularly inhibited by parameter interaction and poor
scaling.

It is worthwhile examining the elements of the A
matrix in order to obtain information about the inter-
action of variables. The smaller the off-diagonal elements
are in relation to the main-diagonal elements, the less
likely A is to be singular and the less interaction will exist
between parameters.

Example 6.3-1 Reduction of Interaction of Parameters by
Transformation of Variables :

A difficult nonlinear expression to fit because of the
interaction between k and E is the Arrhenius rate equation,
r = k e~ T and similar equations where the preexponential
factor k£ and the energy of activation E are constants to be
estimated and r and T are the measured dependent and
independent variables, respectively. If we form the elements
of the matrix A:

A emmr L

ok~ ¢ k

o _ ke T

oF T T
1 N 1<crf
K2 Z Tk Z 7T,

= 2

1 r? r?) ¢
k<& T, 2 (T,

and calculate the determinant of A, we obtain

w53 (@ (5] w

Because r?, (r?/T3)%, and (+#/T,) are all positive for any
range of r; and T3, the det (A) can be quite small if 7; takes
on only a small range of values, and the matrix A becomes
singular as the values of the two terms in the brackets
approach each other. On the other hand, if a transformation
of variable is carried out so that

- -

NN

T* 1- (b)
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FIGURe E6.3-1
by fitting two related models.

where T is the average value of the absolute temperature,
the variable T* can assume both positive and negative
values. Reformation of the Arrhenius rate expression as

r= ke = IEeE(b%)

= (k eF)(e~ETIT) (©)

makes it possible to identify

k=keE and E=ET

In terms of the transformed temperature, the partial
derivatives of r are
or =
— =€
ok
or

- = kT* Ere _ rT*
oF

™

i

and the equation for det (A) corresponding to Equation (a) is

det (A) = % [Z 7> (THR — (Z r?T,-*)z] @

Here, the second term in the brackets, with T;* taking on
both positive and negative values, will be relatively small.
Hence, the det (A) will not approach zero, and A will not
be singular.

A related, commonly used transformation is to let

O}

where T, may be T or some other arbitrary temperature.
Figure E6.3-1 contrasts the approximate 95 percent con-
fidence region obtained for the model r = k e F'T with
that obtained for Model (e).

Comparison of the approximate 95-percent confidence regions obtained

Example 6.3-2 Scale Factors and Transformations
Fariss and Law{ calculated the best fitting coefficients k&;,
A, ks, and A, for the following nonlinear objective function

(a)

where ¢ is in degrees Centigrade. One hundred experimental
data points were simulated by using the following constants:

ky = 201182032 g, = 5000
ks = 24720192 g, = 20,000

P o= kytty /2T 4 oy goalt+273)

and by using random values of #; and u, in the range 0 to
1 and random values of ¢ in the range 100 to 200. A normally
distributed error with a mean of zero and a variance of

02 = 0.01 + (0.05r)? (b)
was added to each deterministic data point:
Ri=r+¢ ©

The sum of the squares of the deviations, ¢, given by
Equation 6.2-1 with the weights defined as w; = ¢, 1, was
minimized to estimate ki, k2, a,, and a.. The initial guesses
for the parameters and the final results by a derivative-type
estimation technique appear in Table E6.3-2.

The derivatives were calculated analytically. The followmg
scale factors, used in the calculations,

Parameter k1 ko a; as
Factor used ks ko 1000 1000

were divided into k., k., a1, and a,, respectlvely, at the
beginning of each iteration cycle.

The transformation for the absolute temperature given in
Example 6.3-1 was also applied to Equation (a); T was set

1 R. H. Fariss and V. J. Law, Paper presented at the Houston
AICE meeting, Feb. 18, 1967.
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TABLE E6.3-2
k1 Kka a az '}5

Initial guesses 10e20 5e20 8,460 8,460 7,671
Estimated parameters

at the minimum ¢ 20.085¢11-7358 1.9220¢%7-7613 4,964 20,203 90.7
Model parameters

in Equation (a) 201182033 2¢47.28132 5,000 20,000 100

equal to 423 (7 = 150). Minimization of the transformed by letting . nk
/= n

objective function gave the following results:

El 1;2 ﬁl d2
Starting guesses 10 ? E) 20
Scale factors 10 5 20 20

Estimated parameters
at the minimum ¢  20.085 1.9220 11.7358 47.7613

Several different minimization techniques were used to
minimize the sum of the squares of the deviations. The
authors’ experiences can be summarized as follows. (The
functional evaluation count below was based on 1iz of
the sum of: (1) the number of calculations of (R, — r),
plus (2) the number of evaluations of a partial derivative
of r with respect to one parameter.) :

1. Unweighted steepest descent with untransformed
temperature but with scaling and an adjustable acceleration
factor h: After 579 functional evaluations, ¢ was reduced to
only 3615; after 1019 evaluations, ¢ was still 3523. Con-
clusion: not an effective procedure.

2. Steepest descent with transformed temperature, an
adjustable acceleration factor A, and with scale factors ¢;
based on

Iné =(n q){l — exp [ (

in (oo

where ¢ = maximum scale factor = 100: After 206 func-
tional evaluations, ¢ was 100; after 471 evaluations, ¢ was
90.95. Conclusion: effective but characteristically (for
steepest descent) slow.

3. Gauss-Seidel with untransformed temperature: Ob-
tained a ¢ of 2904 after 1265 functional evaluations, and a
¢ of 90.7 after 1317 functional evaluations. Conclusion:
slow except for last 10 evaluations.

4. Gauss-Seidel with transformed temperature: Obtained
a ¢ of 90.7 with 28 functional evaluations. Conclusion:
effective and quick.

5. Marquardt’s method with the initial A = 1 (a large-
sized selection) and A adjusted each 10 cycles: For the
ultransformed problem, ¢ was 90.7 after 1501 functional
evaluations; for the transformed problem, ¢ was 90.7 after
21 functional evaluations. ' Conclusions: essentially as
effective and rapid as Gauss-Seidel.

A second transformation of Equation (a) to

ro=u ety =9yt +o1 g elFa— 8yl +o)] )

was carried out. The starting values for £’ were the logarithms
of the original starting values; the scale factors were taken
to be 1 for both £} and k5. The results were essentially the
same as with the transformation of Example 6.3-1, although
the number of functional evaluations was slightly greater.

Estimation was also carried out by using fine-mesh
forward difference schemes to approximate the derivatives
numerically. With a parameter increment of 0.001 times the
scale factor, little difference was experienced between the
two methods. However, larger meshes indicated that
additional functional evaluations were required.

NuLL errecT. This can be illustrated by using as an
example the following objective function:

¢ =P+ 288+ P+ 2
=B+ B)+2

After the transformation B, + B, = B, is made, we find
$=PF+2

Observe that only one variable is left, f,. The geometric
interpretation of ¢ = (8, + B2)® + 2 is shown by the
slanted lines in Figure 8.2-2¢; in the new coordinates the
values of ¢ are all parallel to the dashed axis, B, (which .
corresponds to X, in the figure). Although both B8, and
B: appear to be parameters, in truth there is only one
parameter which must be varied to minimize ¢, namely
B, (corresponding to %, in the figure). The Gauss-Seidel
method is particularly vulnerable to the null effect of a
parameter because the matrix A tends to be singular
when such an effect exists. On the other hand, the method
of steepest ascent continues to operate in the presence
of unrecognized null effects with the penalty of a greater
series of zig-zag steps. As to the procedure of Marquardt,
the influence of the null effect depends on the value of A.
For small A the Marquardt method is similar to the
Gauss-Seidel method and is vulnerable to the null
effect; for large A the Marquardt method corresponds
more closely to steepest descent. Direct search methods
for problems in which the null effect exists encounter
difficulty mainly in improper scaling and ‘parameter
interaction.
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6.4 HYPOTHESIS TESTS AND THE CONFIDENCE
REGION

In addition to estimating the parameters in a nonlinear
model, the analyst would like to obtain some measure
of the dispersion of the parameter estimates and also
some measure of dispersion of the predicted dependent
variable Y. We shall describe below three methods to
accomplish these objectives.

6.4-1 Linearization of the Model in the Region About
the Minimum Sum of the Squares

An approximate confidence region for the parameters
can be constructed by linearizing the nonlinear model (as
described in Section 6.2-3) about the least square
estimate b in parameter space. The variances and co-
variances of b are then given approximately by the
analog of Equation 5.1-14, that is, by

Covar {b} ~ (X™wX)~'0%, = Cok  (6.4-1)
Each element of the matrix X is evaluated at b. If the
derivatives of 5 cannot be calculated analytically, they

can still be evaluated numerically. To estimate o%, if the
model is correct, one can compute

T,
52 = EVE (6.4-2)
n—m
at the minimum ¢ and then
75 ro—1 EWE
Covar {b} ~ (X"wX) pra—— (6.4-3)

where 7 is the number of data sets and m is the number
of parameters estimated. Of course, if the model used is
incorrect, Equation 6.4-2 will give a biased estimate of
o%; hence, as usual it is desirable to obtain s? from
replicate data in order to determine how well the model
represents the data.

From Equation 6.4-3 the approximate confidence
intervals for the individual B’s: can be calculated as
described in Section 5.2 for the linear models; the con-
fidence interval for n can be approximated by using S?
calculated as follows. First, obtain

ng = Var {bj} >~ S?}ic_ﬁ

where Cj; is a diagonal element of C = (X*wX)~*. Then
use the linearized (about b) predicted response Y to
obtain
5 7]
s%,( = Var{Y;} ~ (8

-3

i=1

|’*<>

>
N5

P

)" vai'ts)
( )( ) Covar {b:b}
=

22 @)

i=1j=

S

)

l:[\/l5

(6.4-9)
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An approximate joint confidence region, ellipsoidal in
shape, can also be formed from the quadratic form
corresponding to that used in Section 5.2 for the linear
models

B — BX*WX)B — b) = sjmFy_o[m,n — m] (6.4-5)

where F,_, is the upper limit of the F-distribution for
m and (n — m) degrees of freedom. The graph of
Equation 6.4-5 can be drawn in two or three dimensions,
as illustrated in Figure 6.4-1 which compares a true sum
of squares surface with the contours determined from
Equation 6.4-5 for simulated data from the model

B (e Box __ e—le)

T B - B

Note that B, is estimated more precisely than 8.
The approximate contours for the sum of squares
surface can be written as in Section 5.2:

br-a = Pmin + S%ngl—a[mi (n — m)]

m
= o[l + 2 Frilonn = m)] (646
. n—m
T T T L L
100 — ]
80— ]
6.0 —
«
e L |
% 40
y
30— .
20—~ Sum of squares
contours for the
nonlinear model
——— Sum of squares
contours for the
0.95 model linearized
10 - about ¢ . —
08— 1
| | | I S
2 3 4 6 8

B1x 104

FiGURE 6.4-1 Contours for a true sum of squares surface and the
corresponding contours based on Equation 6.4-5. Numbers next
to contours indicate probability for indicated confidence region.
(From G. E. P. Box and W. G. Hunter, Technometrics 4, 301,
1962.)
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where ¢,., is the approximate value of the sum of
squares contour for the confidence level (1 — «) and
$min = Sfer wil(Y; — )2

Guttman and Meetert discussed measures of non-
linearity that indicate when the degree of nonlinearity is
small enough to justify using linear theory as an approxi-
mating theory for nonlinear models. Beale } also provided
some additional insight into estimating confidence limits
for nonlinear models.

Example 6.4-1 Approximate Joint Confidence Region for a
Nonlinear Model

To illustrate the estimated individual confidence intervals
for estimated parameters and the joint estimate of the
confidence region, a two-parameter model used in a chemi-
cal kinetic study will be described. Data were collected for
a hydrogenation reaction in a tubular flow reactor repre-
sented by the empirical model (at constant temperature)

r= Bor
1+}31p

where r = initial reaction rate and p = total pressure. It
was assumed that R = r + e. The data at 164°C were:

R, g-moles/(hr)(g catalyst) p, psia

0.0680 20
0.0858 30
0.0939 35
0.0999 40
0.1130 50
0.1162 55
0.1190 60

A portion of the results calculated by a modified version

_of Marquardt’s method (IBM Share Program SD No. 3094)

employing analytical partial derivations were
? (R— R x 108
20 0.433

30 ~0.656
35 ~0.0619
40 —0.605
50 1.636
55 0.282
60 —1.006
0.0191 0.178
X7X = [ ]

0.178  1.703

XT%)-1 [ 2020 -211.1 ]
c = T ==

—211.1  26.65
. [5.154 x 10-3]
" 12,628 x 10-2

1 1. Guttman and D. A. Meeter, Technometrics 7, 623, 1965.
1 E. M. L. Beale, J. Royal Stat. Soc. B22, 41, 1960.

The sum of the squares of the residuals was ipi, =4.76x 1076,
A ranged during the search from 10-2 to 10-%, and the
estimated parameter correlation matrix was

[1.000 0.9902]
0.9902 1.000
Note that the parameters are highly correlated.

For « = 0.05 and v =7 — 2 = 5 degrees of freedom,
h_f = togrs = 2.571; hence the individual parameter con-

fidence intervals, calculated as in Section 5.2, for the linear-
ized model are ’

bo — tl_gsy,\/c_n < Bo < bo + t1_gSY‘V Cn
b~ t1-g59,VCas < By < by + t:-357,VCaa

As an estimate of sy,

- .76 10-6
s = Vs = /4—-—-(;4:(2
= v0952 x 107¢ = '0.975 x 10-3

is used since no replicate data are available. If the model is
a poor one, s, is a poor estimate of sy,. The respective con-
fidence intervals are then

~0.107 < B, < 0.117

0.0119 < B, < 0.0263
An approximate joint confidence interval is defined by
Equation 6.4-5:
0.0191 0.178]

— 5.154 x 10-3)(, — 2.628 x 10-2
(B x 107 )][0.178 1.703

(Bo — 5.154 x 10-3)
= (0.952 x 10-%)(2)(5.79)

(B: — 2.628 x 1072)
or .

2 +18.648:8,+89.1382 —0.4998, —4.875P8, +-0.00698=0 - (a)
and is illustrated in Figure E6.4-1. Note the typical long
attenuated region which is characteristic of cases in which
the parameter estimates are correlated. The sum of squares
contour written in the form of Equation 6.4-6 is

$i-a = 476 % 1071 + 7 2 R0 5] ®
[}
0.20 -

0.101- [bo = 0.00515

\/ b = 0.0263
| ] ! o \I | I

-150 =100 =050 0 0.50

=010

Ficure E6.4-1 Approximate 95-percent confidence interval
contour.
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6.4-2° The Williams Method

Williams 1 reviewed some of the alternative methods
of establishing parameter confidence intervals and also
suggested a method for models containing one nonlinear
coefficient. To clarify the technique, the model

n=F8 +pe "™ (6.4-7)

will be employed for which the estimated regression
equation is
Y = bo + b]_ ek

where k is the estimate of x. Equation 6.4-7 in general
can be represented as

1 = Bo + Buf(x, X)

in which f(«, x) contains the nonlinearity. The usual
assumption (that Y is distributed normally with constant
variance o?) is presumed to hold, and the criterion used
in estimation is the minimization of the sum of the
squares of the deviations, ¢, in Equation 6.2-1.

First we linearize Equation 6.4-7 by means of a trun-
cated Taylor series expansion about an assumed k@

(6.4-8)

7= B+ B [f(X, k) + df(ka(m). (« — k“”)] 7

= fo+ Auf k) + 5, LEED (649

where b, = B,(x — k'®). The parameters 8, and B;, as
well as b, and their variances, can be estimated by linear
analysis. After.the first iteration, the second approxi-
mation for k starts with an assumed

kO = kO 4 2_2

1

(6.4-10)

and the iteration continues. At such time as
b(2n+1) — bgﬂ+1)(k(n+l)___ k(n)) —0

or
b(2n+1)
b "
the iteration can be terminated. Thus the linear coeffi-
cient b, vanishes at the minimum least squares estimate.
To test the null hypothesis « = k™, where k™ is any
in the sequence of values of k, we check to see if by is

significantly different from zero. If it is, the null hypothesis -

is rejected. Williams established the confidence limits for
« as the values of k for which b, was not significantly
different from zero at an assumed probability level. In
the iterative process a number of values of k™ are estab-
lished, but it may be necessary to start with different
values of k¥ in order to encompass the necessary range of
values of b,.

t E. J. Williams, J. Royal Stat. Soc. B24, 125, 1962.

From linear analysis we know that the sum of the
squares of the deviations for any variable adjusted for
all the others is
b? -
ASS,, = =+

Ci

where b; is the linear regression coefficient and c;; is an
element on the main diagonal of the inverse matrix ¢. By
selecting an initial set of values of the coefficient k@
and/or using values of k developed during the iteration
process, it is possible to plot ASS,, versus k and use the
significance level associated with ASS,, to ascertain the
confidence limits for « as shown in the example below.
Halperin} extended Williams’s procedure to a broader
class of regression functions with more than one non-
linear parameter. He also pointed out that the Williams
method will not yield exact confidence regions for the
linear parameters independent of the nonlinear ones.

Example 6.4-2 Confidence Limits for a Parameter in a
Nonlinear Model

Williams fit the following data (x = independent variable
and Y = dependent variable, with 4 degrees of freedom for
each entry):

Y, Xi
51.6 0.4
53.4 14
20.0 54

—4.2 19.5
-3.0 48.2
—4.8 95.9

to the modely = By + B, e~**. An initial estimate for x was
k® = 0.165. The regression results were

First Iteration Second Kteration
b = 65.276 b® = 65.262
b’ = 0.0518 bP = —0.0269
Y — k©) = 0.0008 k@ — k) = —0.0004
kY = 0.166 k@ = 0.166
bP = —4.85

at which stage the analysis was terminated.

Additional values of b, were determined for 0.05 < k@ <
0.40, and ASS for b, was plotted versus the values of k. See
Figure E6.4-2. The sum of the squares, J}.4 (Yy; — Y))%,
for the six data sets was 1108.80. Consequently, the error
variance was

1108.80
24

The sum of the squares of the residuals, ¢, for £ = 0.166,
divided by the number of degrees of freedom, 3, gave s? =
24.66.

Suppose an F-test were to be carried out at, for example,
a significance level of 0.01 for which, from Table C.4 in

= 46.20

Se =

1 M. Halperin, J. Royal Stat. Soc. B24, 330, 1963.
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FIGURE E6.4-2 (From E. J. Williams, J. Royal Stat. Soc. B24,
125, 1962, with permission.)

Appendix C, we find Fyg9fl, 24] = 7.28. If we equate
(s2,/s2) to 7.28, we can compute sz, = (7.28)(46.20) = 361.4
at the 1 percent level. Because the degrees of freedom
associated with b, are just 1, s2,= (ASS,,/1) and

ASS,, = 52, = 361.4

At the intersections of ASS,, = 361.4 with the curve for
ASS,, versus k, we can read k = 0.057 and k = 0.372.
These values are the 99 percent confidence limits for «.
They are exact in the sense that any values outside these
limits are rejected at the 1-percent level of significance by an
exact test on the associated value of b,.

6.4-3 The Method of Hartley and Booker

Hartley and Booker t suggested an alternate method to
the least squares technique which can provide both the
parameters and their confidence limits. It yields estimates
b which are asymptotically (as .n—o0) 100-percent
efficient under fairly general assumptions. (the details of
which can be found in their article). Consider the case
of n sets of observations with m parameters. Let n = 6
and m = 3 and the model be 5 = B, + B, e %2*. We can
describe the data by a set of six nonlinear equations:

Y1, = Bo + Py efa*u
Yia = fo + Bi efare

Yy = Bo + By efo*m
Yaa = Bo + B efo*a

}Groupl;k=2

} Group2;k =2

Yo1 = Bo + By efe™n

Y3 = ﬁo + 51 eﬁzxaz} Group 3;k =2

Although this is an overdetermined set of equations and
thus calls for statistical treatment, we could average the
equations into £ sets of two equations each (k = 2) so
that A = m (= 3 here). We would then obtain a com-
pletely determined system of nonlinear equations in
which f, is a consistent estimator of 8, and

Yh = ](h’ E)

1 H. O. Hartley and A. Booker, Ann. Math. Stat. 36, 638, 1965.

(6.4-11)

where

Yu=

-

k
R
i=1

L
1
Fh B = % ;f(xm, B
For example, for group 1:

Y, = fz Yy = 4(Y1 + Yia)

2
JO,B =1 [0, B
= HBo + By efa*11 + By + By ef*ua)
= 30 + %(eﬁa"u + eﬂa"m)

The solution of the nonlinear Equation 6.4-11 for B
presumably can be carried out by the Newton-Raphson
method, by one of the search methods, or by one of the
optimization methods described in the references at the
end of this chapter. '

After the values of the elements of § have been
established by solving Equation 6.4-11, the {3 are used as
the starting values to carry out a one-step iteration by the
Gauss-Seidel methiod. At the termination of the first
iteration, Hartley and Booker showed that one obtains
asymptotically 100-percent efficient estimates of @,
f*. When the regression equations are linear, B* agrees
with the standard least squares estimators, b.

If the experimental valués of x are repeated for each
of the k trials in the Ath group of data, Hartley and
Booker described how to obtain the confidence interval
for each of the m functions f(h, B) based on values of ¥,.

6.5 TRANSFORMATIONS TO LINEAR FORM

Certain classes of nonlinear models can be easily
transformed to linear form, and the linear model can be
treated by linear analysis. For example, taking logarithms
of both sides of

7 = Boxfixfe (6.5-1)
yields
logn = log By + By log x; + By logx; (6.5-2)

a model linear in the coefficients. However, note that
minimization of >}, (log Y; — log 7;)? is not the same
as minimization of X7, (¥; — )% ,

If a linearizing transform J exists that will transform
the nonlinear model into linear form, in order that the
least squares estimates by, ..., b, of the related model
parameters B;,..., B, possess optimal properties (i.e.,
unbiasedness, minimum variance, etc.) when estimated in

[r S




the transformed regression equation, it is necessary that
the assumptions concerning the additive unobservable
random error be applicable to the transformed model
rather than to the original model. Thus, for the trans-
formed model and for an observed Y; corresponding to a
set of independent variables x,, we assume that

TY) =T s X3 By -, B)] + & (6.5-3)

where the random variable ; is independently distributed
with zero mean and constant variance. For example, for
Equation 6.5-1,

log Y; = log By + Bilogxy + Balogxy + ¢
i=12...,n (6.5-4)

The effect of the additive error in Equation 6.5-3 can
be related back to the untransformed model only by
examining each model as a separate case. The usual
assumptions of linear analysis described in Section 4.2
lead to the best linear unbiased estimates of the param-
eters By,...,Bn in Equation 6.5-4. However, the
estimation procedure produces the best linear unbiased
estimate of log B,, not of B, itself. In terms of the non-
linear model of Equation 6.5-1, the additive error in
Equation 6.5-4 corresponds to a multiplicative type of
error in the untransformed model

Y, = Boxfixfe. - - xBig, i=12,...,n (6.5-5)

where ¢; = log™! ¢; is a positive error. The usual tests of
hypotheses and confidence intervals require that ¢; be
lognormally distributed. We can conclude that the log-
arithmic transform and subsequent least squares analysis
are justified if the error ¢ is proportional to Y rather than
being a fixed value independent of the value of Y.
For example, rulers have a fixed error whatever the value
of the measured distance, whereas many observed process
variables come from measuring devices in which the
error indeed is proportional to the value of the variable.
As another example, suppose the model is

» x = B, éfe¥
and that Y is the dependent random variable available
for fixed values of x. Since log x = log B; + B, 7,

Y, = logx; logp:

B2 Be

and linear regression yields the best estimates of the new
parameters: .

+€i

B, = log (Bll)lmz

B2 Sﬁ_lz

The calculation of the approximate confidence limits of the
old parameters can be from those of the new parameters.
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As a final example, replacement of the nonlinear
Hougen-Watson-Langmuir-Hinshelwood type of rate
equation, such as the “dual site” model

kKc
Re=sxp*e

where

R, = rate of reaction, dependent random variable
¢ = concentration, independent deterministic variable
k, K = constants

by the linear model

c\% 1 K

- = ——+ —c¢ + e
(Ro) VKK VEkK
in order to use a linear (in the parameters) estimation
routine ignores the fact that the additive error € in the
linear model is not the same as e in the original model.
The relation evolved from the linear model would be

_ kKc + kK
° T A+ K (1+ Ko)

Additional information pertaining to transformation of
the independent variables can be found in Box and
Tidwell { and of the dependent variable in Box and Cox.}

R 5 (Roe'2 — 2V Ryce€)

6.6 ESTIMATION WITH THE PARAMETERS
AND/OR VARIABLES SUBJECT TO CONSTRAINTS

The idea of imposing constraints on the parameters
and/or the variables in a process model comes about
quite naturally. For example, in certain essentially
empirical models for chemical kinetics such as

_ kKspaps
1 4+ Kypa + Kppg

r

where r is a rate of reaction, k and K are constants, and
p is the pressure, arguments on physical grounds lead to
the conclusion that k, K,, and Kz must be nonnegative.
Consequently, fitting the model without restricting the
region of search for the parameters estimates to k > 0,
K, > 0, and Kz > 0 will lead to unreasonable, often
negative, estimates. An example of constraints on the
independent variables occurs when the independent
variables x; represent mass fractions, in which case

Z X = 1.
In general, constraints can be classified into two types:

1. Equality constraints.
2. Inequality constraints:

The strategy of optimization (minimization for least
squares) of an objective function subject to inequality

+ G. E. P. Box and P. W, Tidwell, Technometrics 4, 531, 1962.
I G. E. P. Box and D. R. Cox, Dept. of Stats. Tech. Rept. No. 26,
Univ. of Wis., Madison, Mar. 1964.
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SIAM J. on Control 4, 194, 1966.

Computer Routines for Nonlinear Estimation

Derivative-type methods:

Booth, G. W. and Peterson, T. 1., AICAE Computer Program
Manual No. 3, Dec. 1960, AICE, 345 E, 47th St., New York
(FORTRAN).

Efroymson, M. A. and Mathew, D., “Nonlinear Regression
Program with Nonlinear Equations,” Esso Res. and Develop.
Co. (FORTRAN). )

Marquardt, D. W., et al.,, “NLIN, Least Squares Estimation of
Non-linear Parameters,” IBM Share Program SD 3094,
1964 (FORTRAN).

Moore, R. H., Zeigler, R. K., and McWilliams, P., “PAKAG,”
Los Alamos Scientific Laboratory, Albuquerque, N.M.
(FORTRAN and FAP). .

Derivative-free methods:

Beisinger, Z. E. and Bell, S., “H2 SAND MIN,” Sandia Corp.
(FORTRAN). Direct Search.

Lindamood, G. E., “AP MINS,” John Hopkins Univ. Baltimore,
Md., SD 1259 (FAP). Direct Search.

Kaupe, A. F., “Collected Algorithms from the Association of
Computing Machinery,” Algorithm 178, New York, annu-
ally (Algol). Direct Search.

Rosen, J. B., “GP90 Gradient Projection Method for Non-linear
Programming” (FAP).
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Problems

6.1 Using the following data (x; = independent variable

6.2

and Y; = dependent variable):

Xy Y
0.4 51.6
1.4 534
54 20.0
19.5 -4.2
48.2 -3.0
95.9 —4.8

find the best fitting parameters for the equation
Y= bo + b;e”z" + € .

Fit the Antoine equation
B
logiop = A — T
where p is the vapor pressure in millimeters of mercury,
T is the temperature in degrees Kelvin, and 4 and B

are constants to be determined.

TABLE P6.2 VAPOR PRESSURE-TEMPERATURE DATA FOR
SULFURIC ACID-WATER SYSTEM (95 PERCENT WEIGHT
H.SO. IN H,O0)*

Vapor Absolute
Pressure, p Temperature,
(mm Hg) T(°K)

a b a b
0.00150 8.39000 308.16 438.16
0.00235 10.30000 - 313.16 443.16
0.00370 12.90000 318.16 448.16
0.00580 15.90000 323.16 453.16
0.00877 20.20000 328.16 458.16
0.01330 24.80000 333.16 463.16
0.01960 '30.70000 338.16 468.16
0.02880 36.70000 343.16 473.16
0.04150 45.30000 348.16 478.16
0.06060 55.00000 353.16 483.16
0.08790 66.90000 358.16 488.16
0.12300 ° 79.80000 363.16 493.16
0.17200  95.50000 368.16 498.16
0.23700 115.00000 373.16 503.16
0.32100 137.00000 378.16 508.16
0.43700 164.00000 383.16 513.16
0.59000 193.00000 388.16 518.16
0.78800 229.00000 393.16 523.16
1.07000 268.00000 398.16 528.16
1.42000 314.00000 403.16 533.16
1.87000 363.00000 408.16 538.16
2.40000 430.00000 413.16 543.16
3.11000 500.00000 418.16 548.16
4.02000 580.00000 423.16 553.16
5.13000 682.00000 428.16 558.16
6.47000 790.00000 433.16 563.16

* Data for sulfuric acid are from J. H. Perry, Chemical
Engineers Handbook, McGraw-Hill, New .York, 1963.
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6.3 Fit the data below to the model

A
~ Aix; loge (x_z)
y = eAaxs + A4

Find A4,, A;, As, and A, by least squares.

Y X1 X3 X3
0.81028 1.0000 : 0.1000 0.1000
8.1028 10.000 0.1000 0.1000

12.154 15.000 0.1000 0.1000
5.0514 5.0000 0.1000 0.1000
60.771 75.000 0.1000 0.1000
0.68833 1.0000 0.1000 1.0000
6.8833 10.000 0.1000 1.0000
10.325 15.000 0.1000 1.0000
3.4417 5.0000 0.1000 1.0000
51.625 75.000 0.1000 1.0000
0.30451 1.0000 1.0000 0.1000
3.0451 10.000 1.0000 0.1000
4.5676 15.000 1.0000 0.1000
1.5225 5.000 1.0000 0.1000
22.838 75.000 1.0000 0.1000

6.4 Fit the data below to the model

_e_"‘[a1+a2x+aax2+x3]
Y x las + asx + agx? + x°

by least squares.

Y X
1.9697 0.1000
3.867 x 10! 0.6700
1.226 x 10-1 1.3400

- 4,611 x 102 2.0100
1.877 x 10-2 - 2.6800
1.5805 x 10-2 4.6900
7.2126 x 10-3 5.3600
3.3327 x 103 6.0300
1.5553 x 10-3 6.7000
7.3177 x 10-* 4.73700
3.4665 x 10-% 8.0400
1.6516 x 10~* 8.7100
7.9076 x 10-% 9.3800
3.8024 x 10~5 10.050

6.5 Given the data below, estimate a;, a3, ds, and a, in

the model

¥ = (a1 + azx} + coS azxy)*it @4*a

Y X1
7.7385 x 104 75
42372 x 10-* 68
8.8133 x 10 39
4.5851 x 10 16
9.4883 58
1.1336 x 10-3 53
1.2052 x 102 61
1.0767 x 10-1 47
4.3098 x 10-1 99

X2
33
15

9
25
48

5
63
72
29

X3
15
68
39
16
58
53
61
47
99

6.6 Select a series of (simulated) data points from the
Steam Tables for water vapor, or for another gas
from data available in the literature, and fit the
(simulated) data to the following equations of state

Y X1 X2

8.0050 x 10! 33 17
6.1111 x 10-* 97 80
3.1792 x 10° 29 61
4.40359 1.6 23
1.4448 x 102 13 32
7.5917 x 103 72 77
2.6723 x 104 43 67
3.6466 x 10-8 84 34

9.5717 x 10~% 100 15
47435 x 10-° 81 13
2.4336 x 10 63 11

for 1 mole.

(@)

(b)

©)

@

O]

)

®

(h)

@

0]

Van der Waals:

(p + %)(V— b) = RT

Macleod:
nV — b) = RT
2

71'=p+V2

X3
33
97
29
16
13
72
43
84
100
81
63

b = bo(l — Br + Cr?)

'Clausius :

RT a

P=w =8 T+ P

Lorentz:

RT a
P=—V—2(V+b)—ﬁ

Dieterici:
_RT
PEw=w

e~ o/VRT

Berthelot:
RT a
P=w=p TVE
Wohl:
RT a
PEw_pn vo-p T

Keyes:

RT A

P=r—s -1p¢

8 =pBec"
Kammerlingth-Onnes:
C

_ 5 _
pV=RT[1 +y gt

Holborn:

pV =RT[l + Bp + C'p* +-

£
e

]

|




(k) Beattie-Bridgeman:

pV=RT+%+Il,'-2+Vi3
B:——RTBO—AO—}T%:

y = —RTBob + ady + Rﬁ;’c
3:5?;’2—’”

(1) Benedict-Webb-Rubin:

_ B, o 1 w
PV=RT+ 5+ 35+ 35+ 3

¥
n=cyexp —75

w = au
The notations (use consistent units) are:

p = pressure
V = volume/mole
T = absolute temperature
R = gas constant

All other symbols are coefficients to be determined.
Discuss what should be done if the independent
variables as well as the dependent variables are sto-
chastic. .

6.7 A compartment-type experimental dryer was built to
simulate the drying conditions of a commercial
leather drier.t After a certain drying time (¢), the
thickness of the ieather (L) and the mass velocity of
the drying air (G) were measured. The drying coeffi-

~ cient (B) was then calculated for that run from the
equation
aw
7l BW AH
where
L = thickness of leather
W = free moisture content of leather
AH = unsaturation of air
B = drying coefficient
t = time elapsed
G = mass velocity of drying air
The purpose of the experiment was to find the value
of B as a function of the parameters G and L in the
nonlinear equation
mG®
L

where m and n are the constants to be determined.

B =

1 O. A. Hougen, “Rate of Drying Chrome Leather,” Ind. Eng
Chem., pp. 333-339, Mar. 1934.
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TaBLE P6.7 ORIGINAL DATA

( kg evap. G kg
Runs (meter)z(min)) L (min) ((meter)’(min))

1 1.305 1.05 14.1

2 1.90 1.17 42.7

3 271 1.06 42.0

4 2.61 1.00 42.5

5 248 1.04 42.3

6 3.61 1.13 714

7 3.48 1.02 70.0

8 4.95 1.02 117.0

9 4.38 1.00 115.0

10 4.63 1.06 112.0

11 4.65 1.04 114.0

12 3.18 1.32 99.6

13 3.55 1.43 99.6

6.8

6.9

Find the best values of m and n for the following
data. The values in the article were m = 0.282 and
n = 0.2, obtained by graphical methods. Comment
on the possible bias in the parameters m and #n. What
are their respective estimated variances?

Nitrogen oxide is absorbed in a reacting solution to
produce a product; the data are given below. Estimate
the coefficients B;, B2, and B; in the model

y = Bl ef2%xPs

Y x
Nitrogen Oxide Concentration of Product
Absorbed (g/liter) (g/liter)
0.09 15.1
0.32 57.3
0.69 103.3
1.51 . 174.6
2.29 191.5
3.06 193.2
3.39 178.7
3.63 172.3
3.77 167.5

Diffusion data have been collected in the laboratory
to fit an equation:
N = ﬁ
Tt

N = moles absorbed/min

¢ = concentration, moles/cc
D = diffusion coefficient, cm?/min
t = time, min.

where

The variables N, ¢, and ¢ are measured. You are
asked to calculate D from 12 sets of data. How would
you go about this ? Give the equations you would use
in terms of the notations above. Give a means of
calculating the confidence limits on a predicted value
of D. How should the magnitude of the experimental
error in the work be determined ?

p——— |



206

NONLINEAR MODELS

6.10 In Example 3.6-3, Bartlett’s test demonstrated that

6.11

the variances at four values of x; were not homo-
geneous, i.e., were not the same. Since there is no
physical reason to presume any particular functional
relation between Var { ¥, | x} and x, the form of the
relation can be established by regression analysis in
fitting the best curve through the s#(x) data.

However, a large number of functional forms for
Var {Y,| x} can be proposed, many of which will
prove to be essentially equivalent. For example,
some possible regression equations are

5¥3(x) = e~**

1
S0 = v P
s*x) = axl-l- b
) =

and so forth. From the data in Example 3.6-3,
determine a suitable functional form for s2(x) for
use in equations incorporating nonunity weights.
Also test the resulting predicted values of s2 for each
of the four x’s to see if they meet the modified
Bartlett’s test based on weighted variances:

/2 ¢
5= ——
* 82(x;)

(the pooled variance is weighted also). Make a plot
of the predicted values of s2(x) versus x, and show the
experimerital points for comparison.

The density and viscosity of anhydrous hydrazine
were measured at elevated temperatures ranging
from 288.16 to 449.83 degrees Kelvin.t Samples of
99.6-percent purity were prepared by stirring com-
mercial-grade (about 97 percent) hydrazine over
barium oxide for several hours, vacuum distilling,
and passing the condensate twice through a packed
column of Linde Molecular Sieves. The hydrazine
content of each sample was determined by an iodine
titration method. Density determinations were made
with sealed borosilicate glass pycnometers.

The following equation has been suggested to
express the relationship between the absolute vis-
cosity, 7, the density, p, and the temperature, T

- e b i)
N =p exp(a+T+T3

Determine the constants a, b, ¢, and k; the con-
fidence limits on the constants; and the confidence
limits on the predicted values of 5. What basic
assumptions have you made? List them.

+ R. C. Ahlert, G. L. Bauerle, and J. V. Leece, “Density and
Viscosity of Anhydrous Hydrazine at Elevated Temperatures,”
J. Chem. Eng. Data, Jan. 1962. .

TABLE P6.11 DaATaA

Temperature (°K) 7 (centipoise) p (g/cc)
288.16 1.0275 1.0114
310.94 0.7268 0.9934
338.72 0.5363 0.9672
366.49 0.4028 0.9392
394.27 0.3266 0.9124
422.05 0.2728 0.8862
449.83 0.2344 0.8575

Fit the Berthelot equation of state (for 1 mole):

_ RT __a
Py TV?

for SO, to the following data:}

Mass of Gas
V(cm®/g) P (atm) (8 t (0
67.810 5.651 0.2948 50
50.882 7.338
45,280 8.118
72.946 5.767 0.2948 75
49.603 8.237
23.331 15.710
80.170 " 5.699 0.2948 100
45.664 9.676
25.284 16.345
15.285 24.401
84.581 5.812 0.2948 125
42.675 11.120
23.480 19.017
14.735 27.921
23.913 20.314 1.9533 150
18.241 25.695 '
7.2937 51.022
4.6577 63.730
20.685 26.617 1.9533 200

10.595 47.498
5.8481 74.190

6.13 A model for a surface reaction mechanism:

—Ps
) kKa(pa - %)
1+ Kipy + Kops + Kaps

r

where

k, K = constants
dependent variable, stochastic
independent variables, deterministic

r
p

has been linearized as follows for regression analysis:

pa—(ps/K) 1 . K l 51
kT et ®

1 T. L. Kang, Ph.D. Thesis, Univ. of Texas, 1960.
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CHAPTER 7

I'dentiﬁcation of the Best
Models

Chapters 4, 5, and 6 have been primarily concerned with
the mechanics of parameter point and interval estimation
and hypothesis tests for a given empirical model. In this
Chapter we inquire as to which among several models is
best, inasmuch as the main interest of the analyst is to
select an appropriate model from among many feasible
models. For example, if the objective is just to fit a
polynomial to some experimental data in order to use
the data in the form of -a function (rather than using
tabulated data) in a computer program, a natural
question to ask is: How many terms should be employed
in the polynomial? In other instances, too many inde-
pendent variables exist in an empirical model; then the
analyst is interested in finding a smaller set which con-
tains the important variables, deleting those of slight
importance from the model. Chapter 8 describes the
intermeshing of experimentation with estimation and
model building, but we are interested now in the analysis
of process data,.taken in perhaps undesigned experi-
ments, for which the estimation and analysis may occur
as afterthoughts. A discussion of the methods of experi-
mentation to discriminate effectively among models is
deferred until Section 8.5. _

What we would like to do is select the “best” model
when more than one is possible or proposed. For the
linear models described in Chapter 5, it is impractical to
employ computer procedures to evaluate all the possible
regression equations obtainable by deleting and adding
successive sets of variables, even if we ignore possible
transformations. Instead, the analyst works with a
limited number of different models and discriminates
among them by one or more systematic procedures. As
to the criterion of “best,” one or a combination of the
following is commonly used:

1. Fewest coefficients consistent with reasonable error.

2. Simplest form consistent with reasonable error.

3. Rationale based on physical grounds (“seems to
follow .. .’s law™). -

4. Minimum sum of squares of deviations between
predicted and empirical values.

5. Minimum variance, s3, (s, is not an unbiased
variance estimate since it contains a systematic com-
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ponent that exists because of the difference between the
estimated function and the true function; refer to Section
5.2-2).

To help identify suitable models, we shall discuss first
the analysis of residuals, which should be one of the first
phases in any model-evaluation program. Then we shall
describe stepwise regression for linear models, which is a
systematic estimation procedure that simultameously
isolates the important independent variables. Finally, we
shall discuss certain tests that have been proposed to
discriminate among two and among more than two
models. '

7.1 ANALYSIS OF RESIDUALS

The analysis of variance has been used in Sections 4.3
and 5.3 to establish whether or not a linear model repre-
sents the data adequately. But the variance ratio test to
determine if (s?/s?) is greater than F;_, only demon-
strates that the overall fit of the model is satisfactory.
Important discrepancies can still exist, even though the
model passes the F-test. These discrepancies often can be
detected through the analysis of residuals, that is, by
examining the set of deviations between the experimental
and predicted values of the dependent variable,
(Y; — Yi) = E,. . .

Certain underlying assumptions have been outlined for
regression analysis, such as independence of the un-
observable errors ¢, constant variance, and normal

distribution for e If the model represents the data

adequately, the residuals should possess characteristics
that agree with, or at least do not refute, the basic
assumptions. The analysis of residuals is thus a way of
checking that one or more of the assumptions under-
lying regression analysis is not violated. For example, if
the model fits well, the residuals should be randomly
distributed about the ¥ predicted by the regression
equation. Systematic departures from randomness indi-
cate that the model is not satisfactory; examination of
the patterns formed by the residuals can provide clues
as to how the model can be improved.

Examinations of plots of the residuals versus ¥;, x;,
or time, or a plot of the frequency of the residuals versus

ORI
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the magnitude of the residuals, all have been suggested
as numerical and/or graphical aids to assist in the
analysis of residuals.f A study of the signs of the re-
siduals (+ or —) and sums of signs can be used.{ Many
of the nonparametric tests described in Section 3.7 can
also be employed. In the following example (adapted
from Nelson), five features of residual analysis are
presented:

1. Detection of an outlier (an extreme observation).

2. Detection of a trend in the residuals.

3. Detection of an abrupt shift in level of the experi-
ment.

4. Detection of changes in the error variance (usually
assumed to be constant).

5. Examination of residuals to ascertain if they are
represented by a normal distribution.

When residuals are used to elucidate the adequacy of
a model, keep in mind that as more and more inde-
pendent variables are added to the model, the residuals
become less and less informative. Each residual is in effect
a weighted average of the €’s; as more unnecessary x’s
are added to a model, the residuals become more alike,
each one reflecting an indiscriminate average of all the
€'s instead of reflecting primarily one e. '

+ F. J. Anscombe, Proceed. Fourth Berkeley Symposium on Math.
Stat. and Probability 1, 19, 1963; F. J. Anscombe and J. W.
Tukey, Technometrics 5, 141,.1963; G. E. P. Box, Annals. N.Y.
Acad. Sci. 86, 792, 1960; R. J. Freund, R. W. Vail, and C. W.
Clunies-Ross, J._Amer. Stat. Assn. 56, 98, 1961; L. S. Nelson,
Chem. Div., Amer. Soc. Qual. Control Trans., Houston, Texas,
1955, p. 111.

1 N. R. Draper and H. Smith, Applied Regression Analysis, John
VWiley, New York, 1966, Chapter 3.
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In carrying out the analysis of residuals, the analyst
will quickly discover that graphical presentation of the
residuals materially assists in the diagnosis because one
aberration, such a single extreme value, can simul-
taneously affect several of the numerical tests.

Example 7.1-1 Analysis of Residuals
Simulated data were generated by the following model:

Y; = 10.8 4+ 0.40x; — 0.20x2 + ¢

in which x; and x; took on integer values 1, 2, 3, 4, 5, and
6, and the errors, €, were random, normally distributed
with an expected value of 0 and a variance of 1. Note that
the model is linear and no replicate measurements were
generated. The simulated data are listed in Table E7.1-1a;
the numbers in parentheses above each Y; indicate the order
in which the Y;’s were calculated. Each cell will have a
corresponding residual.

Application of the linear estimation procedure described
in Section 5.1 yielded the following estimated regression
equation:

¥ = 10.52 + 0.49x, — 0.19x, (a)

and the analysis of variance given in Table E7.1-1b.

The linear term for x, was significant at P = 0.001, while
the linear term for x, was significant at P = 0.025. Note that
s? was 0.73 as compared with o? = 1.

DETECTION OF AN OUTLIER. If the value 9.6 in the cell
(x1 = 1, xo = 6) is replaced by 13.9 (a value 3.9 standard
deviations higher than 10), a new analysis of variance
indicates that the variable x, was not significant (see Table
E7.1-1¢). The mean square for the residuals, s2, was still close
to unity and the estimated regression equation was ¥ =
10.32 + 0.39x,. Figure E7.1-1a is a plot of the residuals
calculated by using this equation. The circled point. is an
outlier. If the data had been taken in a real experiment, the
adequacy of the experimental conditions for which the
encircled point was collected should be reexamined.

X1
1 2 3 4 5 6 Sum Mean
(28) €)] ()] (€2)) (36) ©
1 10.3 11.3 13.0 12.0 10.6 13.2 70.4 11.73
) 13) “@ (25) 49 (19)
2 11.6 10.4 11.5 11.9 13.3 14.2 72.9 12.15
® (30) @15) &) 34) (16)
3 9.7 12.2 10.9 11.8 12.1 12.8 69.5 11.58
Xz @n an (29) (12) ™ (18)
4 114 11.5 11.0 11.5 11.3 14.5 71.2 11.87
(32) 33) (22) (35) an (10)
5 10.3 10.6 10.0 11.3 11.4 12.8 66.4 11.07
(20) . 2 (14) (23) 1 (26)
6 9.6 9.4 11.8 10.2 12.7 12.4 66.1 11.02
Sum 62.9 65.4 68.2 68.7 714 799 416.5
Mean 10.48 10.90 11.37 11.45 11.90 13.32 11.57
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TABLE E7.1-1b ANALYSIS OF VARIANCE

v Sum of Variance
Source of Variation df. Squares Mean Square Ratio
X 1 25.51 25.51 375
X2 1 3.68 3.68 54
Deviation from regression: 33 24.05 0.73
Total 35

TaBLE E7.1-1¢

Source of v Sum of Mean Variance
Variation df. Squares Square Ratio
X1 1 16.01 16.01 14.0
Xg . 1 0.75 0.75 —
Deviation from
regression 33 37.51 1.14
Total 35

DETECTION OF A TREND. Because the underlying process
may shift with time, the experimenter must always check for
a trend in the residuals. To simulate this characteristic of a
real process, the values 0, 0.1, 0.2, 0.3,. .., 3.5 were added
to each of the entries in Table E7.1-1a in the sequence given
by the precedence order numbers (those in parentheses).
The new simulated data are listed in Table E7.1-1d.

The analysis of variance for the data in Table E7.1-1d
indicated that x, was a significant variable but that x; was

l" i | | | | I

1 5 10 15 20 25 30 35 40
" Sequence number

FiIGURE E7.1-1a

TasLE E7.1-1d

not. See Table E7.1-le. Note that s? became somewhat
larger than 1. The regression equation used in calculating
the residuals, which are plotted in Figure E7.1-1b, was

¥ = 11.53 + 0.51x, (b)

Figure E7.1-1b clearly brings out the trend of the residuals;

a least square line which best fit the residuals indicated
that the trend could be removed if 0, 0.09, 0.18,..., 3.15
were taken from the simulated data in order of their initial
sequence.

Other trends can be expected to occur in experimental
data, such as a diverging or converging spread of values or
a nonlinear trend. A graph such as Figure E7.1-1b can help
in the detection of such a trend.

TABLE E7.1-1¢

Source of v Sum of Mean  Variance
Variation df. Squares Square Ratio
X1 1 27.31 27.31 15.7
Xo 1 1.43 1.43 —
Deviation from
regression 33 57.44 1.74
Total 35 -

DETECTION OF AN ABRUPT SHIFT IN LEVEL. To simulate

an abrupt shift in process level, each value in the sequence. '

of data in Table E7.1-1a numbered 18 through 36 was
increased by 3. The analysis of variance for the new data
indicated again that x, was a significant variable (P = 0.01)

X1 .
1 2 3 4 5 6 Sum Mean
1 13.0 11.5 13.0 15.0 14.1 14.0 80.6 13.43
2 12.1 11.6 11.8 14.3 14.6 16.0 814 13.57
3 10.4 15.1 12.3 12.2 15.4 14.3 97.7 13.28
*2 4 14.0 13.1 13.8 12.6 11.9 16.2 81.6 13.60
5 134 13.8 12.1 14.7 124 13.7 80.1 13.35
6 11.5 9.5 13.1 124 14.7 14.9 76.1 12.68

Sum 74.4 74.6 76.1 81.2 84.1 89.1 479.5

Mean 12.40 12.43 12.68 13.53 14.02 14.85 13.32

o i TR dyttisind R
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Sequence number
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and x, was not. See Table E7.1-1f. (Observe that the mean
square of the residuals is now significantly different from 1.)
A plot of the residuals based on predicted values of Y from
the equation of best fit

P = 11.44 + 0.465x; ©

clearly shows what has happened; examine Figure E7.1-1c.
The difference between the sample mean values for the two
groups of residuals was computed as 2.8.

TaBLE E7.1-1f
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1 5 10 15 20 25 30 35 40
Sequence number

Ficure E7.1-1¢

simulate nonhomogeneity of variance, each error added to
all the values at experimental levels 5 and 6 for x; in Table
E7.1-1a was multiplied by five to yield the simulated data
listed in Table E7.1-1g.

An analysis of variance of the data in Table E7.1-1g
yielded the results shown in Table E7.1-1h. The effect of
variable x; showed up strongly (P = 0.001), but the effect
of factor x, was at the 10 percent level of significance. The
residual variance s? was very much greater than one. If
variable x, was ignored, the estimated regression equation
was

Y =839 + 1.19x; (d)

Sou‘rce' of v Sum of Mean Varlapce Table E7.1-1i lists residuals calculated with Equation (d).
Variation df.  Squares Square Ratio Analysis of the ranges of the residuals in Table E7.1-1i
suggested that the two highest levels of variable x; had a
X1 1 22.63 22.63 7.6 significantly different variance from the other levels.
X 1 0.46 0.46 — .
Deviation from
regression 33 98.24 2.98 TasLE E7.1-1h
Total - 35
Source of 7 Sum of Mean Variance
Variation df. Squares Square Ratio
DETECTION OF CHANGES IN  THE ERROR VARIANCE. A
major assumption in the analysis of variance usually is that X1 o1 148.93 148.93 20.6
the error variance is constant. It is of some importance to X2 1 20.81 20.81 2.9
ascertain if this assumption is not fulfilled. The analysis in ~ Deviation from
Chapter 5 gives an average value for the error variance, and regression 33 236.27 7.16
if the error variance is not homogeneous, this average value Total ;5"
may not correctly represent any part of the experiment. To
——
TaABLE E7.1-1g
X1
1 2 3 4 5 6 Sum Mean
1 10.3 11.3 13.0 12.0 224 14.2 83.2 13.87
2 11.6 10.4 11.5 11.9 16.7 19.8 81.9 13.65
% 3 9.7 12.2 10.9 11.8 12.8 13.4 70.8 11.80
4 11.4 11.5 11.0 11.5 8.6 23.1 77.1 12.85
5 10.3 10.6 10.0 11.3 10.0 15.1 67.3 11.22
6 9.6 9.4 11.8 10.2 17.1 13.0 72.0 12.00
Sum 62.9 65.4 68.2 68.7 87.6 98.6 452.3
Mean =~ 1048 - 10.90 11.45 14.60 16.43 12.56

11.37
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TaBLE E7.1-1i

X1

4 5 6 Range

1.04
—-046
-1.06
—-0.96
—-1.96
-0.16

3.00

0.53
-0.37
1.43
0.73
-0.17
-1.37
2.80

0.72
2.02
. 0.12
" 1.82
0.72
0.02
2.00

X2

N b WN =

—-1.33
4.27
-2.13
1.57
—043
—1.63
9.70

9.39
5.52
3.56
13.31
5.06
5.71

8.06
2.36
—-1.54
-5.74
—4.34
2.76
13.80

~1.15
-1.25
—-1.35
—1.65
-1.85
-2.95

1.80

0T T T T T T T T T T
150 -
1.00 -

0.50 -

Deviation
(=]
|

-=0.50 [~

=-1.00 (—

=150 - ‘ 4

-2.00 SR | I I I I | L1
1 2 5 10 20 3040506070 80 90 95 98
Percent

Ficure E7.1-1d
EXAMINATION OF RESIDUALS TO ASCERTAIN IF THEY ARE
NORMALLY DISTRIBUTED. Figure E7.1-1d is a plot (according

to the method outlined in Example 2.3-3) on normal prob-
ability paper of the 36 residuals based on the data of Table

1.80
(e)
® ¢ L4 Y
1.00 - -
® [ ]
-~ 03
e
\ 0 lo | L e | |
5 100 11.0 o 120 *130¢ ¥,
~— . o o L4
e
- L ] L
-
PY -
®
-100 ° .
-

FiGURE E7.1-1¢

E7.1-1a with ¥ given by Equation (a). The residuals appear
to be normally distributed. A plot of relative frequency
versus the value of the residual will give the familiar bell-
shaped curve about a mean of zero; it also can be used to
check for outliers.

Figure E7.1-1¢ is a plot of the residuals based on Equation
(a) versus the predicted response ¥. No anomalous data are
noted, except perhaps the one residual equal to 1.80. Factors

such as: (1) systematic departures from the estimated

regression equation (because the model is not adequate), or
(2) nonconstant variance can be detected in figures such as
E7.1-1e.

7.2 STEPWISE REGRESSION

Stepwise regression consists of sequentially adding

(and/or deleting) a variable to an initial linear model and
testing at each stage to see if the added variable is
significant or not. For the reasons given in Section 5.3,

the procedure is most effective when the independent

variables are orthogonal because the calculational
sequence is then unimportant. (Orthogonal experimental
designs to implement this requirement can be found in
Chapter 8.) At each stage in the computation, a decision

is made as to whether to terminate the computer run.
with the current regression equation or to move to the

next stage by replacing the current regression equation
by a new one. By starting to build the model from scratch
and by using orthogonal independent variables, a unique
model is obtained for a predesignated criterion of best.
For nonorthogonal variables, using a different starting
equation can lead to a different terminal equation; hence,
there may be several adequate models. However, each
terminating equation is locally optimal in the sense that
it is “better” than the others tested.

Efroymsont described a procedure (the *“forward
procedure”) in which each of the independent variables
(and corresponding parameters) is introduced into the
model one at a time. At each stage that independent

variable is added which causes the greatest reduction in -

1 M. A. Efroymson, “Multiple Regression Analysis,” in Mathe-
matical Methods for Digital Computers, ed. by A. Ralston and
H. S. Wilf, John Wiley, New York, 1960, p. 191.




the sum of the squares of the residuals, provided the
reduction is significant. Essentially the same algorithm
can be used to delete independent variables one by one
from a full model (the “backward procedure”) if the
subsequent introduction of another variable renders a
model variable insignificant. Several variations of
Efroymson’s algorithm are avallable as computer
routines.t

In determining at each stage whlch independent vari-
able to add to a model, use is made of the partial
correlation coefficient which we have not yet defined.
Suppose that in a model with three variables, defined as
Xi, X,, and X;, we treat the variables X, and X, as the
dependent and independent random variables, re-
spectively, in a model

E{Xy | Xa} = pay + Bra(Xs — pay)  (7.2-1)

Then, in turn, we treat X, and X; as the dependent and
independent random variables, respectively, in a model

E{ Xz | Xs} = pa, + Bos(Xs — Bxg) (7.2-2)

From the bivariate normal distribution developed in
Example 2.3-4, after integration over X, we can obtain
the conditional probability density:

pOG | Xs) = '\/2_170){1'\}1‘;—[’)2(1;3 -
A
exp [ —5 ox,V1—plxs

The expected value of (X; | X3) is-
X, | X} = px, + lexa( )(Xa - pxy) (7.2-3)

and the variance is
Var (X, | Xo} = od(I — phz)  (124)

Similar relations can be obtained for (X, | X3), and they
will be used shortly.

Next we form the deviations between X, and its
expected value and between X, and its expected value,
using Equations 7.2-1 and 7.2-2 as follows:

X; .3 = - &{X, I Xa} = X —- bx, — Bia(X; — an)
' ' (7.2-5)
X .3 = Xé ~ &{X, l X} = X, — Bxy — Bas(Xs - Hxs)

(1.2-6)

1t W. J. Dixon, ed., BMD: Biomedical Computer Programs,
Health Sciences Computing Facility, UCLA, Los Angeles, Calif.,
1964; H. Thornber, A Manual for B34T—A Stepwise Regression
Program, Center for Mathematical Studies in Business and
Economics, Univ. of Chicago, Chicago, Ill., 1966.
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The symbolism X;.; denotes a variably X; after
“eliminating” the effect of variable Xj; a similar conno-
tation applies for X, to the symbol X, ;. The partial
correlation coefficient between X; and X,, eliminating
X, is defined as the correlation coefficient of X; .4 and
X .3t

pra.s = Covar {X; .5, X3.4} . @27

V/'Var {X; .5} Var {X; 5}

We now proceed to express p;5.3 in terms of the usual
correlation coefficients py, x,, px, x5 and px,x,, coefficients
in which the effect of Xj is not eliminated ; the correlation
between X and X,, for example, may exist solely because
both are related to X; in some fashion. From Equation
7.2-5, employing Equation 2.2-9,

Var {X, .3} = Var {X1} + Bf; Var {X;}
— 2B, Covar {X, Xa}

and by comparing Equation 7.2-1 with 7.2-3, we see that
Bis = px,x,(0x,/0x,). Consequently,

2 2 (Tx:)? 4
Var {X; .3} = 0%, + piix, ox 0%,
3

Ox,
2PX1X3( ) (PX 1X39X. 10Xa)

= U?fl(l - PX1X3) : (7'2-8)
Similarly, Var {X,.a} = 0},(1 — p%,x,)- Finally, .
Covar {X1 3 Xg.a} = €{X .5, Xy .3} — E{X1.3}6{X; .5}

lexangxa)

(1.2-9)

= 0’x1¢7x2(Px1x3

‘We are now able to express p;; .3 as

p — PX],Xz - PX]_XangXa
12 .3 —
\/(1 - PX1X3)(1 PXzXa)

The estimated correlation coefficients from a sample
can be used in lieu of the respective ensemble correlation
coefficient to give an estimate of py5 .5, f15.a. Although
the calculation given by Equation 7.2-10 can be extended
to obtain the partial correlation coefficient between two
variables, eliminating the effect of several others, in
general the quickest way to calculate the estimated
partial correlation coefficient between Y and a single x
among many x’s, say x;, eliminating the effect of all the
other x’s, is to include x; in the model and then compute }

(7.2-10)

n ) o S,
»prl. xk(k #]) = (bj ! m (7.2'11)

We return now to the construction of a model by
stepwise regression. A typical computer program will

1 R. L. Gustafson, J. Amer. Stat. Assn. 56, 363, 1961.
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accept a list of a suggested sequence of variables to
include in the model and/or it will select from the total
list the one with the largest partial correlation coefficients
Py, -x;» After one variable is included, a second can be
added which has the largest partial correlation coefficient
among the remaining variables, and so forth. Various
types of tests of significance can be applied to determine
whether or not the added variable is a significant one.
But, in general, either the variance ratio test described in
Sections 5.2 and 5.3 or a test on the statistic Z = b,/s,,
is employed.

In the example below a r-test of significance for
Pyx; - x, is made. If the ensemble parameter py,; . », is zero,
i.e., the expected value of gy, .., is zero, the estimated
variance of Py, .., can be shown to be equal to
(1 — p%+; .x)/(), where v = the number of data sets
less the number of terms absorbed in the correlation. If
the correlation is between Y and one x;, v = n — 2; if
it is between Y and one x; after incorporating one x;, in
the model, v = n — 3, and so forth. Thus, the statistic ¢is

ﬁYx, - X
= —_—— 7.2'12
[(1 — B3, 2 )]* ( )

A variable once included in the model can be later deleted
if it no longer makes a significant contribution tothe
sum of the squares.

Example 7.2-1 Stepwise regression

Stepwise regression was used to identify the terms in a
model of an extruder that related the shear stress to the
temperature, viscosity, and pressure:

V= B0 + Bu(x1 — X1) + Balxz ~ X2) + Ba(xs — X3) + €
where, in coded units,

V = shear stress
X1 = viscosity
Xx; = temperature
X3 = pressure

The matrix of observations was (with Y = V)

Y X1 X3 X3
3.98 1 0 0
-5.10 0 2 -1
-1.03 -1 3 2
9.00 4 10 1
32.0 2 0 8

In the first stage of the analysis the reductions in the sum
of the squares, using in turn each of the individual terms to

initiate the model, were:
Square of the

Reduction Partial Correlation
Adding the in Sum of Mean Coefficient
Term Squares Square By« i
X1 28.9 28.9 0.271
X 23.5 23.5 0.028
X3 722.0 722.0 0.857

Inasmuch as the partial correlation coefficient for x; was
the largest coefficient, x; became the key variable. The
significance of the term involving x; was tested by a ¢-test
of significance, using Equation 7.2-2:

%5 — 2)%
,_ O8SDHG — 2%
(1 — 0.857)%

From Table C.3 in Appendix C, 505 = 2.35 for 3 degrees
of freedom, indicating that x; was a significant variable and
should be incorporated in the model.

Next, the sum of squares and the partial correlation
coefficients for the remaining two terms were reevaluated
by assuming that x; was already incorporated in the model
(as: described in Section 5.3 by suitable manipulation of

matrix elements) to give
Square of the

Reduction Partial Correlation
Adding the in Sum of Mean Coefficient
Term Squares Square PRy sl xa
X1 91.7 91.7 0.758
X2 68.7 68.7 0.057

The key variable was now x;; the r-test based on

_ [O.758)(5 — 3%
= [ {1 — 0.758) ] =210

indicated that variable x; did not contribute (nor would x,)
significantly to the model. .

As a consequence of the forward stepwise regression
procedure, the estimated regression equation would be

Y= Y + bg(xs — X3)
or
Y = 0.201 + 0.38(X3 - fa)

(The intercept of the model was a significant term.) The
model was so simple that no tests for stepwise removal of
a variable had to be carried out as might be the case for a
more complicated model.

7.3 A GRAPHICAL PROCEDURE FOR SCREENING
MODELS

If there are g independent variables proposed for
incorporation in a linear (in the parameters) model,
there are 2¢ possible models. Clearly, as g becomes large,
it is not possible, even if the analyst wishes, to evaluate
all the possible models. Also, if the experiment that
provides the data has not been designed properly,
inadvertently or otherwise, stepwise regression may lead
to confusing results, especially when the independent
variables are highly correlated. Furthermore, instead of
one best model existing, several equally good models
may exist. In view of these rather common handicaps,
Gorman and Toman suggested a simple graphical method
of screening models which has considerable merit.t The

1 J. W. Gorman and R. J. Toman, Technometrics 8, 27, 1966.
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development and the example which follow have been
taken from their work.

They used a graphical method for isolating the best
among several regression equations based on a statistic
originally proposed by Mallows.} For n data points and
a linear model containing g parameters, an estimate of
the sum of the squares of the bias error plus the residual
error, both divided by o3, is given by the statistic C,:

3 1% - PP

Co= e — (1 - 29)

7.3-1
% 73D

When a g-term model has negligible bias,
DY - V)P
t=1

is equal to si(n — ¢q) (refer to Table 5.3-1 where there are
(g + 1) parameters involved), so that

n — q)s?
C, % —(n—29) (7.3-2)
¥
However, s? & 53, so that
C,~q (1.3-3)

Equation 7.3-3 is interpreted as follows. When C,
calculated by Equation 7.3-1 is plotted against g for

1 C. Mallows, Paper presented at the Central Regional Meeting,
I.M.S., Manhattan, Kansas, May 7-9, 1964,

e T
o]
80 |— —
70— : —
60 |— o Model IV _]
Cq & Model I1I
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20} —
10 —
M
0
) 1 2 3 4
q

FIGURE 7.3-1 Discrimination among regression equations.

TABLE 7.3-1

Model  Variables q S(Y - )3 C,

v None 1 77.28 87.6
I X1, X2 3 10.07 33
I X1 2 12.48 44
I Xz 2 11.23 2.8

different values of ¢, models leading to unbiased esti-
mated regression equations will yield C,’s that tend to
cluster about the line C, = g. A point well away from
the line C, = g represents a biased equation. An unbiased
estimate of o}, must be used for s3, in Equation 7.3-1,
because if only sZ is available, the graphical approach
causes the values of C, to be near the line given by
Equation 3.3-3. :

Figure 7.3-1 illustrates the graphical procedure of
Gorman and Toman, using the data of Example 5.3-1 as
shown in Table 7.3-1. Model I has the least bias and
also the least sum of the squares. A point such as @ in
Figure 7.3-1 would have a smaller sum of squares but
more bias. If an equation is needed just for interpolation
in the region in which the data are collected, it may be
useful to accept the equation corresponding to point @

100 T | T I I 1
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0 1 2 . 3 4 5 6 7
q

FiGURe 7.3-2 Screening models involving six independent
variables, x, through x;,.
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in order to use a simpler equation with a smaller variance,
s2, and to accept some bias. If the number of variables is
large, Gorman and Toman suggested fractional factorial
designs (described in Chapter 8) to reduce the extent of
the calculations. Figure 7.3-2, based on the work of
Gorman and Toman, is a plot corresponding to Figure
7.3-1, except that six variables are involved in the possible
models, x, through x,. Forty-eight models were con-
sidered (only those with estimated C,’s less than 100 are
plotted) of which the models containing the variables
(the x’s are suppressed) abf, abdf, abdef, and abcdf are
candidates for further examination.

74 COMPARISON OF TWO REGRESSION
EQUATIONS

We now turn to methods of discrimination among
models that apply equally well to linear or nonlinear
models. We shall first examine tests that can be applied to
two estimated regression equations to determine which is
the best. In the next section we shall take up the important
case of discrimination among many estimated regression
equations.

Many different comparison tests can be executed
depending upon the specific hypothesis selected. In-the
unsymmetrical test suggest- by Hoel,} an estimated
regression equation ¥; is presumed to represent correctly
the data and a test is carried out to see whether ¥,
should be abandoned in favor of ¥,, another regression
equation. The test is made by finding the slope A of the

relation

where Y represents the empirical measurement, Y, and
Zis the dependent variable. If A is significantly positive,
then 7, is rejected in favor of ¥,.

To select among two estimated regression equations
which, initially at least, are equally feasible, one can use
the symmetric test of Williams and Kloot.} The null
hypothesis is that the two (perhaps nonlinear) regression
equations are of equal ability in predicting the values of
Y. The test is carried out by estimating the slope A
(obtained by linear regression) of the equation which
passes through the origin:

Z=[Y-3I + ) =XNT, - 1) (742
The argument underlying Equation 7.4-2 is as follows.
Suppose two models exist:
N = "71(Xs )]
N2 = na(X, B)

in which the x and B vectors do not have to be the same.
Furthermore, suppose that Model 1 is correct so that

Y=1)1+€

+P. G. Hoel, J. Amer. Stat. Assn. 42, 605, 1947.
1 E. J. Williams and N. H. Kloot, Aust. J. Appld. Sci 4, 1, 1953.

If we define the variable
Z=[Y~-¥Y + 7))
and substitute in for Y, we obtain
Z=m -3V + 7)) +¢

Let us now assume that b is very close to B and,
consequently, ¥; is very close to ;. Then, if we replace
n, with ¥;:

Zxy —HY,— P)+e (7.43)

and a plot of [Y — 3(¥; + ¥.)] versus (¥; — ¥,) should
have a slope of approximately —4 if the hypothesis about
Model 1 being correct is true. We can infer that a signifi-
cant negative A indicates that ¥, is a better estimated
regression equation than ¥,; hence Model 1 is better
than Model 2. A similar analysis with the supposition
that ¥, is the correct equation leads to the conclusion
that A = 1; ie., a significant positive slope should be
found. If A is not significantly different from zero, no
choice can be made between ¥; and ¥,.

Example 7.4-1 The Williams and Kloot Test

The following data are for flood damage as a function of
the discharge in Little Lehigh Creek in the Lehigh River
Basin. These data represent an undesigned experiment, but
they fulfill reasonably well the estimation assumption of
independent error since they were collected at different
time periods (the dollar values have been adjusted to a 1956
price level).

x Y
Discharge, Damage, § x 10-3
cfs x 10-8 (1956 price levels)

61 0 )

64 50

70 100

75 150 -

83 180

88 210

94 250

100 290

105 340

112 420

120 520

127 670

134 810

142 1200

150 1600

160 2100

170 2500

180 2900

190 3300

200 3700

A plot (see Figure E7.4-1a) of the data indicated that a
power series might fit the data well. To keep the model as
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TABLE E7.4-1c CALCULATIONS FOR THE WILLIAMS AND KLOOT TEST

Z =
Y- @)%+ Fo)

Yy - % Y, V.- ¥ @A+ P
0 -19 118 137 50 -50
50 143 64 -79 103 -53
100 ‘126 96 -30 111 -11
150 110 69 —-41 90 40
180 113 88 -25 100 80
210 136 122 -14 129 81
250 186 182 -4 184 66
290 257 261 4 259 31
340 334 341 7 337 3
420 465 475 10 470 -50
520 647 657 10 652 —132
670 833 841 8 837 —167
910 835 888 48 859 51
1200 1305 1304 -1 1305 —105
1600 1593 1587 -6 1590 10
2100 1984 1971 —-13 1978 122
2500 2404 2389 —-15 2397 103
2900 2847 2834 —13 2840 60
3300 3308 3304 -4 3306 -6
3700 3782 3796 14 3789 —89

~appear to be no significant differences in the fits of the
models. By arbitrarily eliminating the two models with the
largest variances, the choice of models is reduced to a
choice between Model 1 and Model 2. The only difference
between them is that Model 1 contains the extra term
Ba/(x — 60). We shall use the test of Williams and Kloot
to ascertain which of the two models is the best.

200 —
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S 100
x
wH
5 sof-
k]
]
s | l
& 50 100\ 150 200
£ Discharge,10~3 cfs
fvd
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—-150 [~
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Figure E7.4-1¢ Residuals for Model 1.

Table E7.4-1c lists the data and calculations needed for
Equation 7.4-2. Figure E7.4-1b is a plot of [Y— @) (P1+ ¥2)]
versus (Y2, — Y3) for all the values of Z except the first row
in Table E7.4-1c in which a negative P; appears. The slope
of the best fitting line through the original, computed from
Equation 4.3-7a, was —0.473. However, the Var {b} ~
8000/13,104 = 0.61, and the confidence interval for 8
for a significance level of « = 0.05 (tl_.; = 2.13 for 15
degrees of freedom), —2.13 < 8 < 1.19, does not lead to
the conclusion that Model 1 is any better than Model 2.

Figure E7.4-1c is a plot ‘of the residuals for Model 1.
Although no longrange trends are visible, the residuals are
not randomly distributed. Several shortrange trends are
visible in the discharge regions of 90 to 125 x 10-2 cfs
and 160 to 200 x 10-3 cfs. The existence of shortrange
trends in the residuals does not invalidate the model, but
it does demonstrate that the model can be improved
somewhat.

7.5 COMPARISON AMONG SEVERAL REGRESSION
EQUATIONS

To compare several linear or nonlinear (in the coeffi-
cients) estimated regression equations simultaneously,
Wilks} developed a test in which all the regression
equations are considered to be on an equal footing. The -
test is posed in terms of the homogeneity of the residual
sums of the squares for different regression equations.
Williams  gave a lucid description of the Wilks test and
1 S. S. Wilks, Ann. Math. Stat. 17, 257, 1946. )
1 E. J. Williams, Regression Analysis, John Wiley, New York,
1959. i
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TABLE 7.5-1 ANALYSIS OF VARIANCE FOR MODEL SELECTION

Degrees
Source of Variation of Freedom Sum of Squares Mean Square
S(- PP - 3 (%-
" n _ n . 2 el —_— 2 (e
Improvement of ¥ p—1 z Y - P - Z Y, — P¥p? PR 151
over ¥ p—1
i=1 i=1 ;
) " ) S (v P2
Deviation from Y* n—p+1 ; (Y, — %73 53 = Err:p_+1——
. d _ S - Ty
Deviation from ¥ n Z (Y, - P)? §2 = __n—
=1

also pointed out that it is essentially an approximate
method since the sums of the squares for the equations
which are not the “true” ones contain an extra system-
atic component not present for the “true” equation.

Recall that for a single estimated regression equation
an analysis of variance can be made (Tables 5.3-1 and
5.3-2) which leads to the F-test as an overall test of
significance for regression. An F-test can be used to
discriminate among different estimated regression equa-
tions if they are assembled in a linear combination as
follows. Let the various regression equations to be com-
pared be designated Yy, Y,,..., ¥,, and let Y* be a
linear combination of the regression equations

Y* =b¥Y, + b5, +- -+ b5Y, (151)
with the b*’s chosen so that each regression equation
contributes toward Y* according to its fitness as an
estimator of Y*. For convenience we shall adjust the 5*’s
so that >%., b = 1. It would also seem wise to restrict
the B¥’s to-be 0 < BF < 1. Define

(1.5-2)

Suppose we consider Y;;, where the index i indicates
the predicted value of Y for the ith set of data by the jth
regression equation, as the independent variable with
one set of ¥,’s existing for each observed dependent
variable Y; (Y; if replicate observations are made). The
test involves determining if the compound variable ¥* is
a significant improvement over the average predictor Y.
Table 7.5-1 summarizes the calculations needed for the
analysis of variance. If the variance ratio sZ/s2 with
(» — 1) and (n — p + 1) degrees of freedom for the
numerator and denominator, respectively, is greater than
Fy_,, then the null hypothesis that the compound
function makes no significant improvement over the
average ¥ is rejected.

Once the b*’s are computed, as described below, their
order of rank is a rough measure of the effectiveness of
each regression equation in fitting the experimental data.
Furthermore, any two 5*’s can be tested as described in
Section 5.2 to determine if there is a significant difference
between them and, thus, to conclude whether one esti-
mated regression equation is better than another.

The scope of the calculations can be simplified by
computing the following quantities. To make the notation
clear, we shall define a p x p matrix V whose element
[Vl is

n ISZSH
[ij]=Z(Yi_ Y)Y, — Yy) l<j<p
=t l<k<p

where Y; is the observed experimental dependent variable
in the ith data set and Yj; is the predicted response. As

examples,
n

V11 = Z(Yz - Yu)z
i=1

n
V12 = Z(Yi - Yu)(yi - Yi&!)
i=1

The elements of the inverse matrix V=1 are [V;,] 2. In
terms of this notation,

n —~ 1 p D
Y, - Y2 = oy Vi
Z( Y= ZZ[ ] 053
Sh- P = e —— (7.5-4)
3 5w
3 Wl
b = 2=t (1.5-5)

121 k§1 [Vl ™




220 IDENTIFICATION OF THE BEST MODELS
? _1 2
(2, w1)

Var {b}} = o34 [Via] ™ — ’-1‘,
AN LA
i=1 k=1
- c%-{[ka]‘l. CIP [V,kl-l}
) j=1k=1
: (7.5-6)

2 )
> [Vul™t 3 [Vil™
Covar {b¥, b¥} = 03 [Vis] "t — 122 i=1

f Zpl [Val™?

i=1k
P 14
= og{[m-l L) [V,kl-l}
i=1k=1
(7.5-7)

The variance o3. can be estimated from

3 _ 1 1
SY‘ (n — D -+ l) ( i i [ij]—l) (7.5‘8)

i=1k=1

To test the hypothesis that b} is different from some
constant y, we can compute

bf —v

t = ————
b3
and for a significance level o, we can determine if ¢ is
greater than ;g obtained from the tables for (n — p)
degrees of freedom. To test for a difference between two
parameters, b¥ and b}, and some constant y (perhaps 0),
a value of ¢ is computed as follows:

. bf = bt) - ¥
[Var {b¥} + Var {b}} — 2 Covar {b}, b}}]*%

If the null hypothesis is rejected, then b¥ and b¥ are

different, and ¥, is a better fitting equation than ¥,.
Another essentially equivalent test would be to follow
the scheme outlined in Table 5.3-2 and remove in sequence
a ¥, from Equation 7.5-1, testing each time to see if the
deletion is significant.

Example 7.5-1 The Wilks Test

To illustrate the numerical computations in the Wilks
test, the following data were generated using the model
Y=2+x*+e: :

X Y
1 31
2 59
3 11.1
4 17.8
5 27.2

Two linear models were fit to the data.
with x; = x
with Xg = x’

M = boy + buixs
Na = boz + baixa

The respective estimated regression equations were deter-
mined by the methods of Section 4.3 as

¥, = —4.83 + 6.01x
Y2 = 2.20 + 1.00x?

The elements of the V matrix were next calculated:

5
V= > (Yi = Pa)(¥i — Pi) = 11883 x 10°
i=1

Via = Vay = 1.1795 x 10°
Ve = 1.1807 x 10°
and thereafter the inverse matrix V-1:
0.10001 —0.09991
[0.09991 0. 10065]
The estimates of b* were
. _ [0.120]
0.880

We conclude, as expected, that Model 2 is the best.

1l

-1 _

Example 7.5-2 Selection Among Nonlinear Models .

An example based on simulated data illustrates the
difficulty of selecting the best model among several non-
linear models.t Fifteen data points (shown in Figure
E7.5-2) were generated from the model

= 10 + 100(1 — e—0.115x) (2)

Random deviations with a mean of zero and a standard
deviation of o were selected from a truncated (at 2¢) normal
distribution and added to each value of 7.

Five different nonlinear models were fitted to the simulated

data .
M) n=F + Bl — e F2%)
@ 7 =fo+ AT 55)

(3) n = Bo + Bultan—1 (Bx)]
@) 73 = Bo + Biltanh (B2x)]
(5) p =P+ Breba* .

with the corresponding estimated regression equations
shown in Figure E7.5-2.

Each equation fitted the data well and closely resembled the
shape of the other four curves. As increasing error (from
o? = 0 to o2 = 100) was introduced, the estimates of the
parameters in each model remained fairly stable, and s%,
increased in proportion to o2. The covariances, i.e., elements
off the main diagonal of Covar {b}, remained very much
less than the variances. :

t+ W. L. Wilcoxson, U.S. Naval Civil Engineering Laboratory -

Tech. Rept. R419, Port Hueneme, Calif., Dec. 1965.

B
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140 T I

120

100

limit on generated data: true mean + 20
upee!

[ r

80
Y
60
True model n =10+ 100(1 — e~0.115x)
40 ' —
Model Regression equations s2
1. ¥1= 143+ 924 (1 - ¢~0.15%) 74.2
2. Y5 = 146 + 1028 (0.167x)/(1 + 0.167x) 1130
0] 3. ¥3= 148 + 1003tan=1(0.1533) 952
1 4. ¥4 = 148 + 90.7 tanh (0.0837) 628 7]
5. ¥5 = 15.1 4 101.0e—4.73/x 94.7
4
0 -1 | 1 [
0 20 40 60 80 100

x

FIGURE E7.5-2 Test results for a set of 15 generated points for o%; = 100.

TABLE E7.5-2 TEST RESULTS OF THE MODEL SELECTION
PROGRAM

Degree of Random
Error Introduced
Into True Model,

Fraction of Cases in which Correct
Model was Selected by

a Coefficients b* Minimum s,
Cc* 4 N C A N

0 160 — — 1.0 — —
0.5 — 08 02 08 02 —
1.0 — 0.5 0.5 0.8 02 —
2.5 — 04 0.6 0.6 04 —
5.0 — 02 038 04 06 —
10.0 — — 10 — 1.0 —

* C = correct model selected; 4 = another model selected, N =
no model selected.

Wilcoxson carried out the Wilks test by using the five
regression equations; he concluded that the coefficients b*
were not arranged in descending order according to in-
creasing values of s%,. He also showed that selection by
using the minimum S?"q was in general a better selection tool
for identifying the true model than using the b*’s. Examine
Table E7.5-2.
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Problems

7.1 Carry out an analysis of residuals based on the
estimated regression equation determined in Example
4.3-2. What interpretation can you give to the experi-
ment and model of that example in addition to that
already provided in the example ?

7.2 The data of Example 7.4-1 were fitted by the linear
model

y=a+ﬁ1x+ﬂzx’+ﬁax3+xf‘6o+£

and the following estimates of the coefficients

In addition, the computer printout indicated the
following residuals (truncated):

Data Set

Number Residual
1 0.018
2 —0.093
3 —0.026
4 0.040
5 0.067
6 0.074
7 0.064
8 0.033
9 0.006
10 —0.045
11 -0.127
12 —0.163
13 0.075
14 —0.105
15 0.006
16 0.116
17 0.096
18 0.053
19 —0.008
20 —0.082

Carry out an analysis of residuals as indicated in
Section 7.1.

7.3 The following model was fitted to the experimental

data designated “actual value” in the IBM printout

obtained by stepwise regression.
a = 2.8389 VISI = 14.637262 — 11.204441 PULSE
b, = —7.4057 + 1.4795947 (PULSE)?
by = 5.7223 where
b; = —0.8916 VISI = visibility factor
by = —0.02669 PULSE = log;o (number of pulses)
MATRICES FoRr P7.3
R MATRIX = 1.0000 0.9755 0.9313 0.8880 0.8515 0.8224 —0.9410
0.9755 1.0000 0.9878 0.9647 0.9407 0.9195 —0.8509
0.9313 0.9878 1.0000 0.9937 0.9812 0.9678 —0.7673
0.8880 0.9647 0.9937 1.0000 0.9966 0.9897 -0.7007
0.8515 0.9407 0.9812 0.9966 1.0000 0.9981 —0.6501
0.8224 09195 0.9678 0.9897 0.9981 1.0000 —-0.6121
—0.9410 -—-0.8509 —-0.7673 —0.7007 —0.6501 -—-0.6121 1.0000

SIGMA = 0.8681

B(0) = 0.1483 x 102

B(1) = —0.1120 x 102
CBQ) = 0.1479 x 10t

B(3) = O.

B@) = o.

B(5) = O.

B6) = O

F1 (ENTER) = 2.500

F2 (REMOVE) = 2.500

SB(0) = 0.3069 x 10°
SB(1) = 0.1135 x 10'
SB(2) = 0.2477 x 10°

SB(3) = 0.
SB(4) = 0.
SB(5) = 0.
SB(6) = 0.

e
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VISIBILITY

NUMBER ACTUAL PREDICTED

PULSES VALUE VALUE
6000 —0.7100 x 10* —0.6574 x 10*
6000 —0.6300 x 10! —0.5420 x 10!
900 —0.3300 x 10* —0.3310 x 10!
900 —0.2800 x 10! —0.3310 x 10!
200 —0.3000 x 10° —0.1278 x 10°
200 0.3200 x 10 0.4268 x 10!
50 0.1040 x 10? 0.9628 x 10!
50 —0.6000 x 10* —-0.5574 x 10!
12 —-0.5100 x 10* —0.5420 x 10!
12 -0.1200 x 10! —0.1278 x 10°
3 0.3400 x 10 0.4268 x 10

PERCENT
DIFFERENCE ERROR
0.5257 x 10° -74
0.8796 x 10° —14.0
—0.1042 x 10-1 0.3
—0.5104 x 10° 18.2
0.1721 x 10° -574
0.1068 x 10 334
—0.7717 x 10° -14
—0.5742 x 10° 9.6
—0.3203 x 10° 6.3
—-0.1027 x 10! -110.7
0.8688 x 10° 25.6

Key: R is the normalized covariance matrix. It consists of the sums of products

and crossproducts normalized with respect to the diagonal elements.
SIGMA is the sum of the squares of the residuals.

B( ) is the vector of estimated parameters,
SB( ) is the vector of estimated standard deviations of B( ).

F1 (ENTER) and F2 (REMOVE) are the Fisher F-values for adding and

removing variables from the model.

(a) Has the model been properly constructed?
(b) Analyze and interpret the residuals.

Refer to Problem 5.9. If a residual is defined as
D, = Y, — ¥, express each residual as a function of
all the observations (with the aid of the table in
Problem 5.9). For example:

D, =0471Y; — 0.257Y; — 0.350Y; —---+ 0.150Y,

Prepare a table of coefficients for each residual in the
form of Y; versus D;.

(a) Show that &{D;} = 0.
(b) Determine the &{ D7} for each D,, and sum them
to obtain

> &(Dj} = 4,000},

Note that the sum is the trace of the main diagonal
in the table, and that 4.000 represents the degrees of
freedom, namely 8 observations less 4 parameters.
Also note that:

1. Var {D;} = &(D; — 0)% is the main diagonal of
the table.
2. Covar {D;D,} is the off-diagonal element in
the table.

3. Calculate the correlation coefficient between
D7 and Dg, PDqDge

Obtain a stepwise regression program and ascertain
the best model to fit the data of: (a) Problem 5.11
and (b) Problem 5.21. Many stepwise regression
programs also plot the residuals and carry out an
analysis of residuals which aid in the interpretation

- of the model’s adequacy at various stages of its

construction.

7.6 The data in the Table P7.6a represent the specific

fuel consumption of a jet engine at 25,000 feet and
a Mach number of 0.4. Several different functions
were used as models to fit the data; refer to Table
P7.6b.

(a) By stepwise regression, determine if a fourth-
order polynomial is the polynomial of best fit.

(b) Which model in Table P7.6b is the best and
which is the worst?

TABLE P7.6a
Specific Fuel
Thrust Consumption
t Y
2,000 1.295
3,000 1.088
4,000 1.010
5,000 0.963
6,000 0.935
7,000 0.920
8,000 0.912
9,000 0.910
10,000 0.912
11,000 0.918
12,000 0.929
13,000 0.940
14,000 0.952
15,000 0.966
16,000 0.980
17,000 0.994
18,000 1.010
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TABLE P7.8a DATA ON SPOUT DIAMETER (Continued)

Mass
Velocity, Average
Column Orifice Bed Lb/(Hr) Spout
Diameter, Diameter Height, (Sq Ft) Diameter,

Material In, d. In, d, In, L G In, d,
4 0.50 6 889.0 1.00
1017.0 1.12

1193.5 1.20

1273.3 1.20

0.25 8 881.3 1.19

1028.2 1.22

1175.1 1.31

10 999.2 1.24

1175.1 1.31

6* 0.75 24 1054.0 1.63
1160.0 1.70

1265.0 1.75

24 * 4.00 72 736.3 3.25

3.00 72 638.9 3.13

2.00 72 593.1 3.13

60 604.6 2.95

664.6 3.18

724.8 3.53

36 428.0 2.53

48 462.0 . 2.69

60 541.4 2.80

Rice 6 0.50 12 535.2 1.13
594.0 1.27

654.0 1.33

8 416.1 1.06

476.0 1.11

535.8 1.25

4 0.50 6 663.0 0.94

928.6 1.10

4 0.25 10 800.6 1.14

934.1 1.28

1067.5 1.33

8 694.1 1.04

934.1 1.17

1067.5 1.28

Corn 6 0.50 12 1195.2 2.12
1326.6 2.28

8 840.0 1.75

972.0 1.98
