Práctico 12

medida exterior y medida de Lebesgue

- 1. Sea m^* : $\mathcal{P}(X) \to [0, +\infty]$ una medida exterior, \mathcal{M}^* la σ -álgebra de conjuntos medibles respecto a m^* , y $\{A_n\}_{n\in\mathbb{N}}$ una colección de conjuntos en \mathcal{M}^* disjuntos dos-a-dos. Para todo $E\subseteq X$, demuestre las siguientes afirmaciones:
 - (a) $m^* \left(E \cap \left(\bigcup_{i=0}^n A_i \right) \right) = \sum_{i=0}^n m^* (E \cap A_i)$ para todo $n \in \mathbb{N}$. Sugerencia: Empiece aplicando la definición de m^* -medible a A_0 respecto al conjunto $E \cap \left(\bigcup_{i=0}^n A_i \right)$.
 - (b) $m^*(E \cap (\bigcup_{n=0}^{\infty} A_n)) = \sum_{n=0}^{\infty} m^*(E \cap A_n)$. Sugerencia: Use la parte (a).
- 2. Sea $m_{\mathcal{L}}^*$ la medida exterior de Lebesgue en \mathbb{R} . Si $E \subseteq \mathbb{R}$ es numerable, demuestre que $m_{\mathcal{L}}^*(E) = 0$. ¿Es cierto el recíproco?
- 3. Sea $A = (0,1) \cap \mathbb{Q}$ y $\{I_k\}_{k=0}^n$ una colección finita de intervalos abiertos que cubren a A. Demuestre que $\sum_{k=0}^n l(I_n) \ge 1$.
- 4. Sea $A \subseteq \mathbb{R}$ y $\varepsilon > 0$. Demuestre que existe un conjunto abierto $U \subseteq \mathbb{R}$ tal que $A \subseteq U$ y $m_{\mathcal{L}}^*(U) \le m_{\mathcal{L}}^*(A) + \varepsilon$.
- 5. Demuestre que $m_{\mathcal{L}}^*$ es invariante por traslaciones, esto es, si $A \subseteq \mathbb{R}$ y $t \in \mathbb{R}$, entonces $m_{\mathcal{L}}^*(E+t) = m_{\mathcal{L}}^*(E)$, donde $E+t=\{x+t \mid x \in E\}$.
- 6. Sea $A \subseteq \mathbb{R}$ tal que $m_{\mathcal{L}}^*(A) = 0$. Para todo $B \subseteq \mathbb{R}$, demuestre que $m^*(A \cup B) = m^*(B)$.
- 7. Sea $m_{\mathcal{L}}$ la medida de Lebesgue en \mathbb{R} , e $I \subseteq \mathbb{R}$ un intervalo de la forma (a,b), [a,b), (a,b] o [a,b].
 - (a) Si $-\infty < a < b < +\infty$, demuestre que $m_{\mathcal{L}}(I) = b a$.
 - (b) Si $a = -\infty$ o $b = +\infty$, demuestre que $m_{\mathcal{L}}(I) = +\infty$.