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PREFACE

An understanding of the dynamic behavior of chemical processes is important [rom both
process design and process control perspectives. 1t is easy (o design a chemical process,
based on steady-state considerations, which is practically uncontrollable when the process
dynamics are considered. The current status of computational hardware and software has
made it easy to interactively simulate the dynamic behavior of chemical processes.

It is common for process dynamics to be included as the imroductory portion of a
process control textbook, however, there are a number of limitations o this approach,
Since the emphasis of most of the wxthooks is on process control, there is too little space
lo give adequate depth to modeling, analysis, and simulation of dynamic systems. The
foeus tends to be on transfer function-based models that are used for control system de-
sign. The prime motivation for my textbook is then to provide a more comprehensive
treatment of process dynamics, including modeling, analysis, and simulation. This tex(-
book cvolved from notes developed for a course on dynamic systems that | have been
teaching at Renssclaer since 1991, We have been fortunate to have a two-semester se-
quence in dynamics and control, allowing more depth to the coverage of each topic,

Topics covered here that are not covered in a traditional text include nonlinear dy-
nantics and the use of MATEAB for numerical analysis and simulation. Also, a signifi-
cant portion of the text consists of review and learning modules. Fach learning module
provides model development, steady-state solutions, nonlinear dynamic results, linear-
izalion, state space and transfer function anal ysis and simulation. The motivation for this
approact is to allow the student to “tie-together” all of the concepts, rather than (reat-
ing them independently (and not understanding the connections between the different
methods).

xvii
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An important feature of this text is the use of MATLADB software. A set of m-files
used in many of the examples and in the leaming modules is available via the world wide
web at the following locations:

http:/wwwirpi.edu/-bequeb/Process_Dynamics
hip:/www.mathworks.com/education/thivdparty html

Additional learning modules will also be available at the RPA location.

A few acknowledgments are in order, A special thanks to Professor Jim Turpin al
the University of Arkansas, who taught me the introductory course in process dynamics
and control. His love of teaching should be an inspiration to us all. Many thanks to onc of
my graduate students, L.ou Russo, who not only made a number of suggestions 1o improve
the text, but also sparked an interest in many of the undergraduates that have taken the
course. The task of developing a solutions manual has been carried out by Venkatesh
Natarajan, Brian Aufderheide, Ramesh Rao, Vinay Prasad, and Kevin Schott.

Preliminary drafls of many chapters were developed over cappuccinos at the Daily
Grind in Albany and Troy. Bass Ale served at the Ef Dorado in Troy promoted discus-
sions about teaching (and other somewhat unrelated (opics) with my graduate students;
the effect of the many Buffalo wings is still unclear. Final revisions Lo the textbook were
done under the influence of cappuccinos at Cafe Avanti in Chicago (while there is a lot ol
elfort in developing interactive classroom environments at Rensselacr, my ideal study en-
vironment looks much like a coffee shop).

Teaching and learning should be dynamic processes. | would appreciate any com-
ments and suggestions that you have on this textbook. I will use the WWW site to provide
updated examples, additional problems with solutions, and suggestions or teaching and
studying process dynamics.

B. Wayne Beguetie




SECTION |
PROCESS MODELING




INTRODUCTION

This chapter provides a motivation for process modeling and the study of dynamic chemi-
cal processes. It also provides an overview of the structure of the textbook. After studying
this chapter, the student should be able o answer the (olfowing questions:

* What is a process model?

* Why develop a process model?

* What is the difference between lumped parameter and distributed parameter sys-
tems?

* What numerical package forms the basis for the examples in this text?
* What are the major objectives of this textbook?

The major sections are:

1.1 Motivation

1.2 Models

1.3 Systems

L4 Background of the Reader

[.5 How to Use This Textbook

1.6 Courses Where This Textbook Can Be Uscd

1.1 MOTIVATION

Robert Reich in The Work of Nations has classitied three broad categories of employment
in the United States. In order of increasing educational requirement these categories are:
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routine production services, in-person services, and symbolic-analytic services. To di-
rectly quote from Reich:

“Symbaolic analysts solve, identify, and broker problems by manipulating symibols. They sim-
plify reality into abstract images that can be rearranged, juggled, experimented with, com-
municated fo other spectalists, and then, eventually, transformed back into reatity. The ma-
nipulations are done with analytic tools, sharpened by experience. The tools may be
mathemarical algorithms, legal arguments, financial gimmicks, sefentific principles, psycho-
Jogical insights about bow to persuade or to amuse, systems of induction or deduction, or any
other set of techniques for doing conceptual puzzles.” {italics added for emphasis)

Engineers (and particularly process engineers) are symbolic analysts. Process engineers
use fundamental scientific principles as a basis for mathematical models that characterize
the hehavior of a chemical process. Symbols are used to represent physical variables, such
as pressure, lemperature Or concentration. Input information is specified and numerical al-
gorithms are used (o solve the models {simulating a physical system). Process cngineers
analyze the results of these simulations to make decisions or recommendations regarding
the design or operation of a process.

Most chemical engincers work with chemical manulacturing processes in one way
or another, Often they are process exginecrs responsible for technical troubleshooting in
the day-to-dzy operations of a particular chemical process. Some are responsible for de-
signing feedback contro] systems 50 that process variables (such as tempetrature or pres-
sure) can be maintained at desired values. Others may be responsible for redesigning a
chemical process to provide more profitability. All of these responsibilitics require an un-
derstanding of the time-dependent (dynamic) behavior of chemical processcs.

1.2 MODELS

The primary objective of this texthook is to assist you in developing an understanding of
the dynamic behavior of chemical processes. A requirement for assessing the dynamic be-
havior is a time-dependent mathematical model of the chemical process under considera-
tion. Before proceeding, 1t is worth consulting with two different dictionaries for a deflini-
tion of model.

Dictionary Definitions:  Mode!

Model is derived from the Latin modis, whicls means ¢ sieasure. Used as a noun, i means “a small
representation of a planned or existing object” (Webster's New World Dictionary),

“A mathematical or physical system, obeying certain specified conditions, whase behavior is
used to understand a physical, biotogical, or social system to which it 15 analogous in some
way” (McGraw-Hill Dictionary of Scientific and Technical Terms),
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Notice that both definitions stress that a model is a representation of a system or object. In
this textbook, when we use the term model, we will be referring to 4 mathematical model,
We preler o use the following definition for model (more specifically, a process model).

Working Definition:  Process Model

A process madel s 2 set of equations (including the necessary input data 1o solve the equations) that
allows us 1o predict the behavior of a chernical process system.

The emphasis in this text is on the development and use of fundamental or first-principles
models. By fundamental, we mean models that are based on known physical-chemical te-
lationships. This includes the conservation of mass and conscrvation of cnergy,! as well
as reaction Kinetics, transport phenomena, and thermodynamic (phase equilibrium, cte.)
refationships,

Another common model is the empirical model. An empirical model might be used
if the process is too complex for a fundamental madel (cither in the formulation of the
model, or the numerical solution of the model), or if the empirical model has satisfactory
predictive capability. An example of an empirical model is a simple least squares fit of an
equation Lo experimental data,

Generally, we would prefer to use models based on fundamental knowledge of
chemical-physical relationships. Fundamental models will generally be accurate over a
much larger range of conditions than empirical models. Empirical models may be useful
for “interpolation™ but are generally not useful for “extrapolation”; that is, an empitical
model will only be useful over the range of conditions used for the “fit” of the data.

It should be noted that it is rare for a single process model to exist. A model is only
an approximale representation of an actual process. The complexity of a process model
will depend on the final use of the model. If only an approximate answer is needed, then a
simplified model can often be used.

1.2.1 How Models Are Used

As we have noted, given a set of input data, a model is used to predict the output “re-
sponse.” A model can be used to solve the following types of problems:

* Marketing: If the price of a product is increased, how much witl the demand de-
crease’?

* Allocation: If we have several sources for raw malerials, and several manufacturing

LOF course, the real conservation law is that of mass-energy, but we will neglect the inter-
change of mass and energy due to nuclear reactions.
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plants, how do we distribute the raw maletials among the plants, and decide what
products cach plant produces?

« Synthesis: What process (sequence of reactors, separation devices, ete.) can be used
to manufacture a product?

+ Design: What type and size of cquipment is necessary (o produce a product?

« Operation: What operating conditions will maximize the yield of a product?

. Control: How can a process input be manipulated to maintain a measured Process
output at a desired value?

« Safety: If an equipment faiture oceurs, what will be the impact on the operating per-
sonnel and other process cquipment?

o Environmental: How long will it take to “biodegrade” soil contaminated with haz-
ardous waste?

Many of the models cited above are based on a steady-state anatysis. This book witl
extend the steady-state material and energy balance concepts, oencrally presented in an
introductory textbook on chemical engineering principles, to dynamic systems (systems
where the variables change with time). As an example of the increasing impertance of
knowledge of dynamic behavior, consider process design. In the past, chemical process
design was based solely on steady-stale analysis. A problem with performing only a
steady-state design is that it is possible to design a process with desirable steady-stale
characteristics (minimal energy consumption, ete.) but which is dynamically inoperable.
Hence, it is important to consider the dynamic operability characteristics of a process duor-
ing the design phase. Also, batch processes that are commonly used in the pharmaceutical
or specialty chemicals industries are inberently dynamic and cannot bo simulated with
steady-state models.

In the previous discussion we have characterized models as steady-state or dy-
namic. Another characterization is in terms ol lumped parameter Sysiems OU distribuied
parameter systems. A fumped parameter systcm assumes that a variable ol interest (tem-
perature, for example) changes only with one independent variable (time, for example,
but not space). A typical example of a lumped parameler system is a perfectly mixed
(stirred) tank, where the temperature is uniform throughout the tank. A disiributed para-
meter system has more than one independent variable; for example, temperature may vary
with both spatial position and time.

EXAMPLE 1.1 A Lumped Parameter System

Consider a perfectly insufated, well-stiered tank where a hot figuid stream at 60°C is mixed with
a cold liquid stream at 109C (Figure [.1). The well-mnized assumption means that the flaid tem-
perature in the tank js uniform and equal 10 the temperature at the exit from the tank. This is an
example of a lumped parameter system, since the temperature does not vary with spatial position,
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Hot Cold

' Oulle!

FIGURE 1.1 Stirred tank.

Consider now the steady-state behavior of this process. If the ondy stream was the hot fluid,
then the outlet temperature would be equal o the hot fluid temperature if the rank were per-
fectly inswlated. Similarly, il the only stream was the cold stream, then the outiet temperatare
would be equal to the cold {tuid temperature. A combination of the two streams yields an out-
let temperature that is intermedizte between the cold and hot femperatures, as shown in Fig-
wre 1.2,

60— T e 4 T =

50

40 f :

Cutlet Temperature, deg C

10 1 3 1
0 0.2 0.4 0.6 0.8 1

Hot Flow, fraction

FIGURE 1.2 Relationship between hot flow and outlet temperature.

We sce that there is a linear steady-state relationship between the hot flow (fraction) and the out-
let femperature,

Now we consider the dynamic response to a change in the fraction of hot flow. Figure 1.3
compares outlet temperature responses for various step. changes in hot flow fraction at ¢ = 2.5
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minutes. We see that the changes are symwmetric, with the same speed of response. We will find
fater that these responses are indicative of a luear system,
50 T T T T ¥
45 +20%
a0 | +10%
|&]
5 .
B 35 0%
a
s
£30¢
—20%
25 1
20 1 t o i, i SO S
0 5 t0 i5 20 25 30
time, min
FIGURE 1.3 Response of temperatare to various changes in the hot low fraction.

EXAMPLE 1.2 A Distributed Parameter System
A simplified representation of a counterflow heat exchanger is shown in Figure 1.4, A cold
water stream Flows through one side of the exchanger and is healed by encrgy transiered from a
condensing steam stream. This is a distributed parameter systera hecause the temperatwe of the
water stream can change with lime and position.

P ——— Steam in

FIGURE 1.4 Counterflow heat cxchanger.

The steady-state temperature profite (water temperature as a function ol position) is shown in
Figure 1.5. Notice that rate of change of the water temperature with respect o distance decreases
as the water temperatore approaches the steam temperature (100°C). This is because the temper-
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ature gradient for heat ransfer decreases as the water temperalure increases. The outlel water
temperature as a function of inlet water temperature is shown in Figure 1.6,

100 { T T T 1 —_—

temp, deg C

20 S 1 i L i1 4,,7J
0 0.2 0.4 0.6 0.8 1

z, distance

FIGURE 1§ Water temperature as a function of position.
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outlet T, deg C

80

88 - . 4

86 I A i 1 _,J
0 20 40 60 80 100
inlet temperature, deg C

FIGURE 1.6 Outlet water lemperature as a function of inlet water temperature.
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Mathematical models consist of the following types of equations {including combina-
tions)

+ Algebraic equations
» Ordinary differential equations
« Partial differential equations

The emphasis in this texthook is on developing models that consist of ordinary dif-
lerential cquations. These equations generally resul from macroscapic balances around
processes, with an assumption of a perfectly mixed system. To [ind the steady-state solu-
tion of a set of ordinary differential equations, we must solve a set of algebraic equations.
Partial differential equation models result from microscopic balances and are not covered
in this texthook. One of the main techuigues for solving partial differential equations is
hased on converting a partial differential equation to a set of ordinary differcntial equa-
tions. Techniques developed in this texibook can then be used to solve these problems,

1.3 SYSTEMS

We have been using the term system very loosely. Consider the following definition.

Definition:  System

A combination of several pieces of eguipment integraled to perform a specific function; thus a fire
(artiilery) control system may include a tracking vadar, computer, and gun (McGraw-Hill Dictio-
nary of Scientific and Technical Terms).

The example in the definition presented is of interest 10 electrical, seronautical, and mili-
tary cngineers. For our purposes, a systeni will be composed of chemical unit operations,
such as chemical reactors, heat exchangers, and separation devices, which are used to pro-
duce a chemical product. Indeed, we will often consider a single unit operation to be a
system composed ol inputs, states (to be defined later) and outputs. A series of modules in
Section V of this textbook cover the behavior of a number of specific unit operations.

1.3.1 Simulation

One of the goals of this textbook is o develop numerical anabysis techniques that atlow us
to “simulate” the behavior of a chemical process. Typically, steady-stale simulation of a
tumped parameter system involves the solution of algebraic equations, while dynamic
simulation involves the solution of ordinary differential equations. We must be careful
when using computer simulation. First of all, we must be able to say, Do the resalts of this
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simulation make sense? Common sense and “back of the envelope™ caleulations will tell
us if the numerical results ave in the ballpark.

1.3.2 Linear Systems Analysis

The mathematical tools that are used to study linear dyriamic systems problems arc
known as linear systems analysis techniques. Traditionally, systems analysis techniques
have been based on lincar systems theory, Two basic approaches are typically used:
(i) Laplace transforms are used 1o analyze the behavior of a single, Hinear, nth order ordi-
nary differential equation, and (i) stale space techniques (based on the linear algebra
techniques of cigenvalue and eigenvector analysis) are used to analyze the behavior of
multiple first-order linear ordinary differential equations. If a system of ordinary differen-
tiad equations is nonlinear, they can be linearized at a desired steady-state operating point.

1.3.3 A Broader View of Analysis

In this textbook we use analvsis in a broader context than finear systems analysis that may
be applied to & model with a specific value for the parameters. Analysis means seeking a
deeper understanding of a process than simply performing a simulation or solving a set of
equations for a particutar set of parameters and input values. Often we want to understand
how the response of system variable ((emperature, for example) changes when a parame-
ter (e.g., heat transfer coelficient) or input (Mlowrate or inlet temperature) changes, Rather
than trying o obtain the understanding of the possible types of behavior by merely run-
ning many simulations (varying parameters, ete.), we must decide which parameters (or
inpuis or initial conditions) are likely to vary, and use analysis techniques to determine if
a qualitative change of behavior (number of solutions or stability of a solution) can oceur.

This qualitative change is illustrated in Figure [.7 below, which shows possible
steady-state behavior for a jacketed chemical reactor. In Figure 1.7a there is a monotonic

e
] ,_,.«/fp
2 5
e A
E 5
g £
5 2
- .
8 g
g g
o o
Jacket Temperature Jacket Temperature
a. Monotonic b. Multiplicity

FIGURE 1.7 Two qgualitatvely different types of mput/output behavior,
Steady-state reactor teriperature as a function of steady-state jackel tempera-
ure,
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relationship between jacket temperature and reactor lemperatuse, that is, as the steady-
state juckel emperature increases, the steady-stale reactor lemperature ereases. Figuie
1 7b illustrates behavior known as output multiplicity, that is, there is a region ol steady-
state jacket temperatures where a single jacket temperature can yield three possible reac-
tor temperatures. In Chapter 15 (and module 9) we show how to vary a reactor design pa-
rameter Lo change from one type of behavior to another.

Engincering problem solving can be a combination of art and science. The com-
plexity and accuracy ol a solution will depend on the information available or what is de-
sired in the final solution. If you are simply performing a rough (back of the envelope)
cost estimate Tor 4 process design, perhaps a simple steady-state material and energy bal-
ance will suffice. On the otber hand, if an optimum design integrating several unit opera-
tions is required, then i more complex solution wilk be involved.,

1.4 BACKGROUND OF THE READER

Tt is assumed that the reader of this textbook has a sophomore- or junior-level chemical
engincering background. In addition to the standard introductory chemistry, physics, and
mathematics (including differential cquations) courses, the student fas taken an intraduc-
tion to chemical engineering (material and cnergy balances, reaction stoichiometry)
COUTSE.

This fextbook can also be used by an engineer in industry who needs to develop dy-
namic models to perform studies to improve a process or design controliers. Although a
few years may have lapsed since the engineer-took a differential equations course, the re-
view provided in this text should be sufficient for the development and solution of models
based on differential equations. Also, this textbook can serve as review material for first-
year graduate student who is interested i process modeling, systems analysis, or numeri-
cal methods.

1.5 HOW TO USE THIS TEXTBOOK

The uktimate objective of this texthook is o be able to model, simulate, and (more impor-
tanily) understand the dynamic behavior of chiemical processes.

1.5.1 Sections

in Scction I (Chapters 1 and 2) we show how to. develop dynamic models for simple
chemical processes. Numerical techniques for solving algebraic and differential equations
are covered in Section IT (Chapters 3 and 4). Much of the textbook 1s based on lineur sys-
tem analysis techniques, which are presented in Section 1 (Chapters 5 through 12). Non-
Jinear analysis techniques are presented in Section IV (Chapters 13-17). Section V (Mod-
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ules | through 10} consists of a number of learning modules 1o reinforce the concepts dig-
cussed in Sections 1 through 1V,

1.5.2 Numerical Solutions

it is much easier to learn a new topic by “doing™ rather than simply reading about it. To
understand the dynamic behavior of chemical processes, one needs to be able to solve dif-
ferential equations and plot response curves. We have used the MATLAR numerical
analysis package to solve equations in this text. A MATLAR learning module is in the set
of modules in Section V (Module 1) for readers who are not familiar with or necd to be
reintroduced to MATLAB. MATLAR routines are detailed within the chapter that they
are used. Many ol the examples have MATLAB m-files associated with them. It is recom-
mended that the reader modify these m-files to understand the effect of parameter changes
on the numerical solution.

1.5.3 Motivating Examples and Modules

This textbook contains many process examples, Often, new techniques are introduced in
the examples. You are encouraged to work through each example to understand how a
patticular lechnigue can be applied.

There is a limit to the complexity of an example that can be used when introducing
anew techniques the examples presented in the chapters tend 10 be short and itlustrate one
of two numerical techniques. There is a set of modules of models, in Section V, that treats
process examples in much more detail. The objective of these modules is to provide a
more complete treatment of modeling and simulation of a spectfic process. In each
process modeling module, a number of the techniques introduced in various chapters of
the text are applied to the problem at hand.

1.6 COURSES WHERE THIS TEXTBOOK CAN BE USED

This textbook is based on a required course that ! have taught 10 chemical and environ-
mental engineering juniors at Rensselaer since 1991, This dynantic systems course (origi-
nally tided bunped parameter systems) is a prerequisite to a required course on chemical
process control, normaltly taken in the second semester of the junior year. This textbook
can be used for the first term of a two-tesm sequence in dynamics and control, T have not
treated process control in this text because | fecl that there is 2 need for more in-depth
coverage of process dynamies than is covered in most process control texthooks.

This textbook can also be used in courses such as process modeling or numerical
methods for chemical engineers. Although directed towards undergraduates, this text can
also be used in a first-year graduate course on process modeling or process dynamics; in
this case, much of the Tocus would be on Section 1V (nontintear analysis) and in-depth
studies of the modules,
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SUMMARY

At this point, the reader should be able to define or characterize the following

+ Process model

» Lumped or distributed parameler system
» Analysis

« Simulation

FURTHER READING

The textbooks listed below are nice introductions 1o material and enérgy balances. The Rus-
sell and Denn book also provides an excellent introduction to models of dynamic systems.,

Felder, RM., & R. Rousscan. (1986). Elementary Principles of Chemical
Processes, 2nd ed. New York: Wiley.

Himmelblau, DM, (1996}, Basic Principles and Calculations in Chemical Engi-
neering, 6th ed. Upper Saddle River, NJ: Prentice-Hall.

Russell, TRF., & M.M. Denn. (1971}, Introduction o Chemical Engineering
Analysis, New York: Wiley.

A comprehensive tutorial and reference for MATLAB is provided by Hanselman and Lit-
tlelield. The books by ktter provide many excellent examples using MATLAB to solve
engincering problems.

Hansclman, D., & B. Litdefickd. (1996). Mastering MATLAB. Upper Saddle River,
NI: Prentice-Hall,

Fiteer, D.M. (1993). Engincering Problem Solving with MATLAB. Upper Saddle
River, NI: Prentice-Hall.

Etter, D.M. (1990). Introduction to MATLAR for Engineers and Scientists. Upper
Saddlc River, NJ: Prentice-Hall,

The following book by Denn is a graduate-level text that discusses the more philosophical
issues involved in process modeling,

Denn, MM, (1986). Process Modeling. New York: Longman.

An undergraduate control texthook with significant modeling and simulation s by Luy-
ben. Numerous FORTRAN examples are presenled.

Luyben, W.L. (1990). Process Modeling, Simulation and Control for Chemical L
gineers, 2nd ed. New York: McGraw-Hill.
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A number of control textbooks contain a limited amount of maodeling. Examples inclade:

Seborg, D.E., TF. Edgar, & D.A. Mellichamp: (1989). Process Dynicmics and Con-
rol. New York: Wiley,

Stephanopoulos, G. (1984). Chemical Process Control: An Introduction 1o Theory
and Practice. Fnglewood ClifTs, NI: Prentice-Hall,

The fellowing book by Rameriz is more of an advanced undergraduate/lirst-year graduate
student text on numerical methods t solve chemical engineering problems, The emphasis
is on FORTRAN subroutines to be uscd with the IMSL numerical package.

Rameriz, W.F. (1989). Compurational Methods for Process Simulation. Bosion:
Butterwaorths.

Issues in process modeling are discussed by Himmelblau in Chapter 3 of the folfowing
book:

Bisio, A.. & R.L. Kabel. (1985). Scaleup of Chemical Processes, New York: Wiley.

The following book by Reich provides an excelfent perspective on the global economy
and role played by U.S, workers

Reich, R.B. (1991}, The Work of Nations, New York: Vintage Books.

STUDENT EXERCISES

Review the matrix operations module (Section V).

Work through the MATLLAB module (Section V).

Consider example 2. [f there is a sudden increase in stear pressure (and therefore,
temperature) sketeh the expected cold-side emperature profiles at 0, 25, 50, 75, and
100% of the distance through the heat exchanger,

Wb e



PROCESS MODELING

In this chapter, a methodotogy for developing dynamic models of chemical processes is
presented. After studying this chapter, the student should be able to:

Write balance equations using the integral or instardaneous methods.

Incorpogate appropriaie constitutive relationships into the equations.

Determine. the state, inpul and oulput variables, and parameters for a particular
moded (set of equations).

Determine the necessary information to solve a system of dynamic equations.

Define dimensionless variables and parameters to “scale” equations.

The major sections are:

16

2.1
2.2
23
2.4
2.5
2.6
2.7
2.8
29

Background

Balance Equations

Material Balances

Constittive Relationships

Material and Encrey Balances
Distribated Parameter Systenis
Dimensioniess Models

Faplicit Solutions to Diynamic Models
Cieneral Form of Dypamic Models
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BACKGROUND

Many reasons for developing process models were given in Chapter 1. Improving or un-
derstanding chemical process operation is a major overall objective for developing a dy-
namic process model. These models are often used for (i) operator training, (ii) process
design, (iii) safely system analysis or design, or (iv) coatrol system design.

Operator Training. The people responsible for the operation of a chemical
manufacturing process are known as process operators. A dynamic process model can be
used to perform simulations to train process operators, in the same fashion that fli ght sim-
ulators are used o train airplane pilots, Process operators can learn the proper responsc o
upsct conditions, before having to experience them on the actual process.

Process Design. A dynamic process model can be used 1o properly design
chemical process equipment for a desired production rate. For example, a model of a
batch chemical reactor can be used to determine the appropriate size of the reactor to pro-
duce a certain produet at a desired rate.

Safety. Dynamic process models can also be used to design safety systems. For
example, they can be used to determine how long it will take after 2 valve fails for a 5ys-
tem to reach a cerlain pressuore.

Control System Design. Feedback control systems are used to maintain
process variables at desirable values. For example, a control system may measure a prod-
uct femperature (an output} and adjust the steam flowrate (an inpul) to maintain that de-
sired temperature. For complex systems, particularly those with many inputs and outputs,
iLis necessary to base the comtrol system design on a process model. Also, before a com-
plex control system is implemented on a process, it is normally tested by simulating the
expected performance using computer simulation.

2.2 BALANCE EQUATIONS

‘The emphasis in an introductory material and energy balances texthook is on steady-state
balance equations that have the following form;

mass or cnergy mass or energy
entering - leaving =40 {2.1)

a system a system
Equation (2.1) is deceptively simple because there may be many ins and outs, particularty
for component balances. The in and out terms would then include the generation and con-
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version of specics by chemical reaction, respectively. In this text, we are interested in dy-
namic balances that have the form:

rate of mass or energy rale of mass or rate of mass or
accumulation in = | energy enlering | — | encrgy leaving (2.2)
a system & System a system
The rale of mass accurhulation in a system has the form dM/de where M is the total

muss in the system. Similarly, the rate of energy accumulation has the Torm dl/dt where
£ is the 1otal encrgy in a system. H A, is used to represent the moles of component £ ina
system, then dN/dr represents the molar tate of accumulation ol component i in the
system.

When solving a problem, it is important to specily what is meant by system. In
some cases the system may be microscopic in nature (2 differential element, for example),
while in other cases it may be macroscopic in nature (the iquid content of @ mixing tank,
for example). Also, when developing a dynamic model, we can take one of two general
viewpoints. One viewpoint is based on an integral balance, while the other is based on an
instantaneous balance. Integral batances are particularly useful when developing maodels
for distributed parameter systems, which result in partial differential equations; the focus
in this textis on ordinary differential equation-based models. Another viewpoint is the in-
stantancous balance where the time rate of change is written directly.

2.2.1 Integral Balances

An integral balance is developed by viewing a system at two ditferent snapshots in time.
Consider a finite time interval, Af, and perform matertal balance over that time interval

mass Or energy NIASS OF CNergy
inside the system | — | inside the system
att -+ Af al
MUSs OF energy MAss Or CAergy
entering the system | — | leaving the system (2.3
fromttor -+ At fromftor + Af

The mean-value theorems of intearal and differential caleulus are then used to reduce the
equations 1o differential equations.

For example, consider the system shown in Figure 2.1 below, where one bonndary
represents the mass in the system at time , while the other boundary represents the mass
in the system at 7 + Af

Anintegral balance on the total mass in the system is written in the form:
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mass in system at time = ¢t

mass in system

/ attime = ¢+ At

M out ()
FIGURE 2.1 Conceptual material
balance problem.
mass contained mass contained mass enlering mass leaving
inthe system | —~ | in the system | = the system - the system
atr + As atf from (Lot + At Iromistof + Az
Mathematically, this is written:
Pt Ar kA
M AT er = f "";Iin dr — f L dt
f i
or
£+ Ar
M'.’ +ar Mif = J‘("niu - "Hnm') ot (24)
I3

where M represents the total mass in the system, while fi, andwir, o represent the mass
rates entering and leaving the system, respectively. We can write the righthand side of
(2.4), using the mean value theorem of integral calculus, as:

i+ Af
f (mm - ”‘t.f:u[) ("I o (inin - muur)lr b nAIAf
3

where () < o < 1. Equation (2.4) can now be written:

M

T ‘M'L - (H'l.,“ - "nour){."ﬁx-_\l Ar
dividing by A,
M{L i Ml

- ("nin ”Irm,')|f e\t

At
and using the mean value theorem of differential caleulus (0 < B < 1} for the lefthand side,

er T Mll . (I'M
LS AI T (]f Li fas
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which yields
dM . .
(J;IL P 3Ar = (]”m - ”1.«1(:!)]1--} ot
Taking the limit as Az goes Lo zero, we find
dM
dr

= m,, —m (2.5

i

and representing the total mass as M = Vp, iy, as Fp;, andin,,, as F_p. where p is the
mass density (mass/volume) and £ is a volumetric flowrate (volumeftime) we obtain the

equation:
dVp
ot

=1 i — [:Jlli' P (26)

" i

Note thal we have assumed that the system is perfectly mixed, so that the density of mate-
rial leaving the system is equal to the density ol material in the system.

2.2.2 Instantaneous Balances

Here we write the dynamic balance equations dircctly, based on an instantancous rate-of-

change:
the rate of rale ol rate of
accumulation of | = | mass entering | — | mass leaving 2.7
mass in the system thie system the system

which can be written dircetly as,

dM . . 2.9
C= R, - 2.
(1[ ’m el
or
Vp
(' { - F;'n By F;lul o (29)
dt :

which is the same result obtained using an integral balance. Although the miegral balance
takes longer o arrive at the same resull as the instantaneous balance method, the integral
balance method is probably clearer when developing distributed parameter (partial diller-
ential equation-based) models. An example is shown in Section 2.6.

Section 2.3 covers material balances and Section 2.5 covers malerial and energy
halances. Section 2.4 discusses constitutive relationships.

2.3 MATERIAL BALANCES

The simplest modeling problems consist of material balances. In tiis section we use sev-
eral process examples to illustrate the modeling techniques used.
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EXAMPLIE 2.1 Liquid Surge Tank

Surge tanks are often used to “smooth” Howrate fuctuations in liquid streams Howing between
chemical processes. Consider a liquid surge tank with one inlet (flowing from process [) and one
outlet stream (flowing to process 1) (Figure 2.2), Assume that the density is constant. Find how
the volume of the tank varies as o function of time, if the inlet and outiel flowrates vary. List the
state variables, parameters, as well as the inpue and outpur variables. Give the necessary infor-
mation to complete the quantitative solution (e this problent.

FIGURE 2.2 Liquid surge tank.

The system is the liguid 0 the tank, the liguid swiface is the top boundary of the system. The fol-
lowing votation is used in the modeling equations:

Fo= indet volumetric {lowrate {volume/time)
I = outlet volumetric flowrate

Vo= volume of liquid in the 1ank

p = liquid density (mass/volume)

Integral Method

Constder a finite time interval, Az Performing a material balance over that 1ime interval,

mass of water mass of water
inside the tank | — ! inside the tank | =
at { + Ar at ¢
mass of water mass of waler
entering lank  { —|  leaving tank
from 1ot + As from ¢ g0 { -+ Ar

which we can write mathematically as:

Py £ Ar
Vp!, s Vol = J’Fjp de ~ JF p ot (2.1
T f
ESCOLA [ BRI 0 HARIA

BIBLIO L cu A




N

22 Process Modeling Chap.

Bringing the righthand side terms under the same integral
i E‘AI
VPI( rar T V[]Ef = f ([';!’ - Fo)dt (2.11)
B
We can use the mean value theorem of integral caloulus to write the righthand side of (2.11}
{where O = o = 1) as
£ A
j (Fp— Fp)di = (Fp~ Fp)l o, aiM (2.12)
i

Substituting (2.12) into (2.11)
Vpleoa— Vole = (5o = Tl o b0 (2.13)
pDividing by Ar, we obtain

VPL )Li; _V“L = (EP - Fp)l: feedh (2 14)

angt using the miean value theorem of differential caleulus, as &7 -5 0

avp

= i — I 2.15
di = 4p (2.15)

Instantancous Method
Here we write the balance equations based on an instantaneous rate-ol-change:

the rate of change of mass {lowrate of mass Howrale of

mass of water in tank waler inlo tank water ol of tank |

The toial mass of water in the tank is Vp, the rate of change is d¥p/di, and the density of the out-
tet streaim is equal to the tank contents:

dvp

0 s Fp e Fp (2.16)

which is exactly what we derived using the integral method. Given the sume set of assumptions
the two methods shoutd yiekd the same model. You should use the approach (integral or instanta-
neous) that makes the most sense to you. In this ext we generally use the instantancous ap-
proach since it requires the fewest number ol sieps.

Notice the implicit assumption that the density of water in the tank does not depend upon
position (the perfect mixing assumption). This assumption atlows an ordinary differential equa-
tion (ODE) Tformulation, We refer 0 any system that can be modeled by ODEs as lumped para-
wieler systems. Also notice that the outlet stream density must be egual 1o the density of water in
the tank. This knowledge afso allows us to say that the density terms in (2.46) are equal. This
equation is then reduced to!

Hi might be templing to the reader Lo begin te directly wiite “volume balance”™ expressions ihat took
similar to (2.17). We wish to make it clear that there s no such thing as a volume balanee and (2.17) is only
correct hecause of the constant density assumplion. 1t is a goad idea to alweys write a mass balance expres-
sion, such 45 (2.16), before making assumplions about the fuid density, which may lead to (2.17).
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av,

S L (2.17)

Equation {2.17) is a lincar ordinary differential equation (QDE), which is wivial to solve if we
know the infet and cutlet flowrates as a function of time, and if we know an initial condition for
the volume in the tank. Tn equation (2.17) we refer to V as a stafe variable, and Foand 7 as inpur
variables {even though £ 15 an cutlet stream flowrate), If density remained in the equation, we
would refer to it as a parameter.

I order to solve this probleny we must specity the inputs £47) and (e} and the initial con-
dition ¥O).

Example 2.1 provides an introduetion to the notion of states, inputs, amd parameters, This
example illustrates how an overall material balance is used to find how the volume of a
liquid phase system changes with time. It may be desirable to have tank height, #1, rather
than tank volume as the state variable. [T we assume a constant tank cross-sectiona] area,
A, we can express the tank volume as V = Al and the modeling equation as
dh  F, F 2.18)
dt A A '
If we atso know that the flowrate out of the tank is proportional to the square root of the
height of Tiquid in the tank, we can use the refationship (see student exercise 21)

F=8Vh (2.19)

where (3 is a ffow coefficient, 10 find
dh - BVRh T
di A A

(2.20)

For this model we vefer to b as the stare variable, inlet fTowrate (#) as the input
variable and § and A as parameters.

Notice that a single systemn (in this case, the liquid surge tank) can have slightly dif-
ferent modeling equations and variables, depending on assumptions and the objectives
used when developing the model.

EXAMPLE 2.2 An Isothermal Chemical Reactor
Assumge that two chemical species, A and B, are in 4 solvent feedstream entering a liquid-phase
chemical reacior that is maintained af a constant temperature (Figure 2.3, The two specics react
irreversibly to forns a third species, £. Find the reactor concentration of cach species as a func-
tion of time.
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F
C
FIGURE 2.3 [sothermad chemical reactor.
Overall Material Balance
The overall mass bajance is (since the tank is perfectly mixed}
W - (.21,
At i T p 2.21)

Assimption: The liquid phase density, g, is not a function of concentration. The tank (and out-
let) density is then equal 1o the inlet density, so:

7 (2.22)

and we can write (2.21) as:

F-F (2.23)

Component Material Balances
11 is convenient to work in molar units when writing component balances, pariicularly i chemi-
cal veactions arc invoived. Let €, €y, and Cp, represent the molar concentrations of A, &, and £
(molesfvoluine).
Assume that the stoichiometric equation for this reaction is

At 2B - P

The component material balance equations are (asswmipg no component P is in the feed to the

reactor):

dvVe o

T N[O, - FC, - Vry (2.24)
dVC L o

o B [ Cp— FCu + Vry (2.25)

dvC, ; :

sl RO+ Vg, (2.26)

dt
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Where 1y, ry and rp represent the rate of generarion of species A, B, und P per unit volume, and
Cy tind Cy represent the inlet concentations of species A and B. Assume that the rate of reaction
of A per unit voluime is second-order and a function of the concentration of both A and B. The
reaction rate can be written

rp= kGG (2.27)

where & is (he reaction rate constant aud the minus sign indicates that A is consumed in the reac-
tion. Each mole of A reacts with two moles of & (froin the stoichiomelric equation) and produces
one mole of £, so the rates of generation of B and P (per unit volume) are:

g = 2RGE, (2,28)
rp o= KCLCy (2.29)
Expanding the lefthand side of (2.24),
davC, dC, dV
BRI Y Vpi: SR . .30
dr di N dr (2:30)
combining (2.23), (2.24), (2.27), and (2.30) we find;
dC Fo . o
: d-;‘ = (Ch ~ C) — kCLCy (2.31)
Similasly, the concentrations of B and P can be written
d¢ £ . A
d!“ V’ (Cp ~ Cp) = 2kC,C, (2.32)
dc,  Fo. ,
,,m,f = ) Cp+ RC,Cy (2.33)

This model consists of foar differential equations (2.23, 2.31, 2.32. 2.33) and, therefore, four
state variables (V, €y, Cp and Cp). To solve these equations, we must specify the initial condi-
teons (W0}, C,(0), Cyx(0, and Cp(0)), the inputs (F, Cyp and Cyd as a function of time, and the
pacameter (k).

2.3.1 Simplifying Assumptions

The reactor model presented in Example 2.2 has four differential cquations. Often other
simplifying assumptions are inade to reduce the nwnber of differential equations, (0 make
them easier to anatyze and faster to solve. For example, assuming a constant voluime
{dV/dr = 0 reduces the number of equations by one. Also, it is common to feed a1 excess
ol one reactant to obtain nearly complete conversion of anather reactant. H species B is
maintained in a large excess, then Cp is nearly constant, The reaction rate equation can
then be expressed:

Py =k OOy = — kG (2.34)
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where
k) = kCy (2.35)

The resulting differential equations are (since we assumed dV/dr and dCp/dr = 0}

ac, F.o .
-Jff-‘ = (Coo— €)= K, Cy (2.36)
ac,  F )
d-" = (Cp,— Cp) + £,C,y (2.37)

Notice that if we only desire to know the concentration of species A we only need to solve
one differential equeation, since the concentration of A is not dependeat on the concentra-
tion of P.

EXAMPLE 2.3  Gas Surge Drum

Surge drums are often used as intermediate storage capacity for gas streamns that are transferred
betweent chemical process units. Consider a drum depicted in Figure 2.4, where ¢, is the indet
molar flowrate and g is the outlel molar flowrate. Here we develop a model that describes how
ihe pressure in the tank varies with time.

FIGURE 24  Gas surge drum,

Let ¥V = volume of the dram and V = molar volume of the gas (volume/mole). The total amount
of gas {moles} fn the tank is then VAV

Assumption:  The pressure-volume relationship is characterized by the ideal gas law, so
FV=RT (2.3%)

where P is pressure, T is temperature (absolute scale), and R is the ideal gas constant. Equation
(2.38) can he written

L7 (2.39)
Vo RT -
and, therefore, the total amount of gas in the tank is
S 4 :
v TR totat amount (moles) of gas in the tank {2.40)
iY

the rate of accumlation of gas is then d(PY/RT)dr. Assume that 1" is constang; since Vand R are
also constant; then the molar rate of accumlation of gas in the tank is:
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V odp (241)
Y 4
RT a9
where g; is the molar rate of gas entering the drum and ¢ is the molar rate of gas leaving the
drum. Equation (2.41) can be written

dP RT ( ) (2.42)
= Dla — 42
P
To solve this equation for the state variable P, we must know the inputs g, and ¢, the parameters
R, T, and V, and the initial condition P(0). Once aguin, although ¢ is the molar rate ons of the
drim, we consider it an input in terms of solving the model.

2.4 CONSTITUTIVE RELATIONSHIPS

Examples 2.2 and 2.3 required more than simple material balances to define the modeling equa-
tions. These required relationships are known as constifutive equations; several examples of con-
stitutive equations are shown in this section.

2.4.1 GaslLaw
Process systems containing a gas will normally need a gas-law expression in the model.
The ideal gas law is commonly used to relate molar volume, pressure, and temperature:
PV = RT 243
The van der Waal’s PVT relationship contains two pavameters {a and b) that arc system-
specific:
ay\ o~
P+ Ry (Vﬁ b) = RT {2.44)
v
For other gas laws, see a thermodynamics text such as Smith, Van Ness, and Abbote (1996).

2.4.2 Chemical Reactions

The rate of reaction per unit volume (mol/volume*time) is usvally a function of the con-
centration of the reacting species. For example, consider the reaction A + 28 > C+ 300 If
the rate of the reaction of A is first-order in both A and B, we use the following expresston:

ry= —kCCy (2.45}
where

ry  isthe rate of reaction of A (mol A/volume*time)

ks the reaction rate constant (constant for a given temperature)
¢y is the concentration of A {(mol Afvolume)

C,; is the concentration of B (mol Bfvolume)
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Reaction rates are normally expressed in terms of generation of a species. The minus sign

indicates that A is consumed in the reaction above, It is good practice to associate the units

with all parameters in a model. For consistency in the units for ry, we find that k has units

of (vol/mol B time). Notice that 2 mols of B react for each mol of A. Then we can wiite
rp =2, = =2kC,C,

—-r, =kC. g

~3r, =3k C,C,

Usually, the reaction rate coefficient is a function of temperature. The most commonly
used representation is the Avrhenius rate law

KTy = Aexp{—E/RT) (2.46)
where
Ty = reaction rate constant, as a function of temperature
A = Irequency factor or preexponential [actor (saime units as k)
E = aclivation encrgy (cal/fgmol)

R =ideal gas constant (1.987 cal/gmol K, or another set of consistent units)
T =absolute temperatwre (deg K or deg R}

The frequency factor and activation energy can be estimated data of the reaction constant as
a lunction of reaction temperature. Taking the natural tog ol the Arthenius rale law, we Tind:

Efl

nk=ma-t (1) 247)
R\T

and we see that A and £ can be found from the stope and intercept of a plot of (In k) ver-

sus (1.

2.4.3 Equilibrium Relationships
The relationship between the liquid and vapor phase compositions of component i, when
the phases are in equilibrivm, can be represented by:

o= K, (2.4%)
where

x; = liquid phase mole fraction of component i

¥; = vapor phase mole fraction ol component i
K; = vapor/liquid equilibrium constant for component i

The equilibrivm constant is a function of composition and temperature. Often, we
will see a constant relative volatility assunipion made Lo simplify vapor/iquid equilib-
rium models,
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In a binary system, the relationship between the vapor and liquid phascs for the
light component often used is:

- (2.49)
T .
) E+{o—Dx
x = liquid phase mele fraction of Hight component
vy = vapor phase mole fraction of light component
a =relative volatility (o = 1)

2.4.4 Heat Transfer

The rate of heat transter through a vessel wall separating two floids (a jacketed reactor,
for exaple) can be described by

O = UAAT (2.50)
where
(= rate of heat transfered from the hot thuid to the cold uid
{/ = overall heat transfer coefficient

A = arca [or heat transfer
AT = difference hbetween hot and cold fluid emperatures

The heat transfer coefficientl is often estimated from experimentat data. At the design
stage it can be estimated from correlations; it is a function ol fluid properties and veloci-
tigs.

2.45 Flow-through Valves

The [ow-through valves are often described by the following relationship:

. AP,
b (‘!‘f(v\') \/ e (251)
' f 8.8
where

= volumelric Howrate
C, = valve ceefficient
x = {raction of valve opening
AP = pressure drop across the valve
s.g. = specific gravity ol the fluid
Sy = the flow characteristic (varics from 0 o 1, as 4 function of x)

Three common valve characleristics are (i) linear, (it) equal-percentage, and (i11) quick-
opening.
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quick-opening

linear
equal-percentage

et ot e 1 FIGURE 2.5 Flow characteristics ol
0.2 0.4 0.6 0.8 b control valves. a = 50 for equal-
fraction open percentage valve,

For a linear valve

For an equal-percentage valve

For a quick-opening valve

The three characteristics are compared in Figure 2.5.

Notice that for the guick-opening valve, the sensitivity of flow to valve position
(fraction openy is high at fow openings and fow at high openings; the opposite is true Tor
an equal-percentage valve. The sensitivity of a lincar valve does not change as a function
of vabve position. The equal-percentage valve is commmonly used in chemical processcs,
because of desirable characteristics when installed in piping systems where a significant
piping pressure drop occurs ai high ftowrates. Knowledge of these characteristics will be
important when developing feedback control systems.

2.5 MATERIAL AND ENERGY BALANCES

Section 2.3 covered models that consist of material balances only. These are useful il
thermal effects are not importad, where system propertics, reaction rates, and so on do
not depend on temperature, or if the system is traly isothermal (constant temperature).
Many chemical processes have imporiant thermal effects, so it is necessary o develop
material and energy balance models. One key is that a basis must always be selected when
evaluating an intensive property such as enthalpy.
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25.1 Review of Thermodynamics

Developing correct encrgy batance equations is not trivial and the chemical engineering
Hteralure contains many incorrect derivations. Chapter 5 of the book by Denn ([986)
points out numerous examples where incorrect energy balances were used to develop
process models.
The total energy (TE) of a system consists ol internat (U), Kinetic (KE) and poten-
tial energy (PE):
TE = U + KE + PE

where the kinetic and potential energy lerms are:
N
KE = _my”
2
PE = mgh
Often we will use energy/mole or energy/mass and write the following

TE = U + KE + PE

where * and = represent per mole and per mass, respectively. The kinetic and potential en-
ergy terms, on a mass basis, are

..... . 1

KE = _v°
2"

PE =gh

For most chemical processes where there we thermal effects, we will neglect the kinetic
and polential energy terms because their cotribution is generally at Teast two orders of
magnitude less than that ol the intermal coergy e
Wien deating with flowing systems, we will usually work with enthalpy. Total en-

thalpy is delined as:

H o= U+ pV
while the enthalpy/mole is

Ho= U+ pV
and the enthadpy/mass is (since p = (V)

H= U A pV = U+
P

we will make use of these relationships in the following example.
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EXAMPLE 2.4 Stirred Tank Heater

Consider a perfectly mixed stirred-tank heater, with a single {eed steeam and a single product
stream, as shown in Figure 2.6. Assuming that the flowrate and termperature of the inlet stream
can vary, that the tank is pertectly inmsulated, and that the rate of heat added per unit time () can
vary, develop a model 1o find the tank temperature as a function of time. State your assumptions.

FIGURE 2.6  Sured tank héater,

Material Balance
accumulation = in - out

dVp .
: = FEp, - fp (2.52)
dt

Energy Balance
accumulation = in by flow — cut by flow + in by heat transter + work done on system
d;f" = P Tl —FpTE + Q1 W,
Here we neglect the kinetic and potential energy:
(féj = EpU - Fpll + O + W, (2.5%)

We write the total work done on the systent as a combination of the shalt wosk and the energy
added 1o the system to get the-fluid into the tank and the energy that the system perflorns on the
surroundings to foree the fluid ot

We =W, + Fp, - F, (2.54)
This allows us to write (2.53) as:

17 _ -
g f*"[-p,-(l_/’,- + "") - fq)(u + ”) O W, (2.55)
df 18 P
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and since H = U7 + pV, we can rewrite (2.55) as

dH  dpV . o
P RN H o O+ W (2.56)
dt i :

Since, dpVidy = V dpldt + p dVidr, it the volume is constane and the mean pressuce change can be
neglected (a good assumption for hiquids), we can write

([U

= Fpdl— Fp H+ O W (2.57)
di

We must remember the assumptions that went into the development ol {2,573

* The kinetic and potentiad energy effects were neglected,
* The change in p¥ 1ern was neglected. This is o good assumption for a liquid system, pro-
vided Ap is not e farge and constant volume is asstumed.

The total enthalpy term is;

i Vo H
and assuming no phase change, we select an arbitrary reference temperature (T} for enthalpy:
-
(1) = j e, dT
T

Often we assime that the heat capacity is constant, or calcuated at an average lemperature, so

1= cf{T-1 2 {(2.58)

I =c (-1, 259
We now write the energy balance {2.57) in the following fashion:

Voo T = T} _

o = Epe (0~ L)+ Q- Fpo (T-T,) + W, {2.00}

using the asstonpfions of constant deasity and volume (so Fo=F, from (2.52)). we lmad

AT~ 1)

Ve, 0 P = Bp (1= T) - (T Tl + Qo W, (2.61)
¢ . g
or
AT~ T F 0 W,
s (T Ty 2.62
dt ( nH V[J{fp Vec, (2.62)

but 1, pis & constant, so o (T-1, )dr = di7de. Also, neglecting W, we can write

arF _ 0
= (T =T) + - 2.63
i =y Voe, (2.63)

In order to salve this problem, we must specify the parameters 'V, p, o, the inputs £, Q, and 7;
(as a function ol time), and the initial condition 7{0).

33

_J
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2.6 DISTRIBUTED PARAMETER SYSTEMS

In this section we show how the balance equations can be used to develop a model Tor a
distributed parameter system, that is, a system where the state variables change with re-
spect to position and time,

Consider a tubular reactor where a chemical reaction changes the concentration of
the Tluid as it moves down the tube. Here we use a volume element AV and a time element
At The tota] moeles of species A contained in the element AV is written (AV)C,y. The
amount of species A entering the volume is FCAI w and the amount of species leaving the
volume is FC[-‘| veay The raie of A leaving by reaction (assuming a first-order reaction) is
(—k CAV.

The balance equation is then:

14 At
(AV)CAI: Far T (AV}CAL = f [FCA!V - FC,

Using the mean value theorem of integral caleulus and dividing by As, we find:

A VE‘..CA |4 A “CM 1
Ar

YAy kCAAVJ (1’1‘

= FCyly — FCA'M av — KC,AV (2.64)

Dividing by AV and letting Az and AV go to zero, we find:

dC, IFC, .
A o LT —kC 2.65
at av A (269
Normally, a tube with constant cross-sectional area is used, so dV = Adz and F = Ay,
where v, is the velocity in the z-direction. Then the cquation can be written:

e av.C
T Vol (2.66)

at dz
Similarty, the overall material balance can be found as:

d dv,
e R (2.67)
7K dz
If the fluid is at a conslant density (good assumption for a liquid), then we can write the
species balunce as

e 9C
R e ToN (2.68)
ot T odz

To solve this problem, we must know the initial condition (concentration as a function of
distance at the initial tme) and one boundary condition. For example, the following
boundary and initial conditions

Cilz, 1 =10) = Caol2)

2.69
CA(O! I) = C‘Aixj(t) ( ’ )
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indicate that the concentration of A initially is known as a {unction of distance down the
reactor, and that the infet concentration as a function of time must be specified.

In deriving the tubular reactor equations we asswmned that species A left a volume
element only by convection (bulk flow). Tn addition, the molecules can leave by virlue of
a coicentration gradient. For example, the amount entering at Vis

. dCA
FC, + AD |V (2.70)
iy
where is the diffusion coefficient. The reader should be able to derive the following
reaction-diffusion equation (sce exercise 19).
aC, dC,

S = -y + D,
at c oz Az

DC
(aﬂd' e (.71

Since this is a second-order PDE, the initial condition (C, as a function of z) and
two boundary conditions must be specified.

Partial differential equation (PDESs) models are much more difficult 10 solve than
ordinary differential equations. Generally, PDEs are converted to ODEs by discretizing in
the spatial dimension, then techniques for the soletion of OIDEs can be used. The focus of
this textis on ODEs; with a grasp of the solution of ODEs, one can then begin to develop
solutions to PDEs.

2.7 DIMENSIONLESS MODELS

Madels typically contain a targe number of parameters and variables thal may differ in
value by several orders of magnitude. It is often desirable, at least for asalysis purposes,
to develop models composed of dimensionless parameters and variables. To illustrate the
approach, consider a constant volume, isothermal CSTR modeled by a simple first-order
reaction:

dC, roo ‘
“h= (O G -k

[t seems natural to work with a scaled concentration. Defining
x=C/C
where Cyy is the nominal (steady-state) feed concentration of A, we find
dy F F )
= L b B x
dt v (V

where xp= € /Cy . ILis also natural to choose a scaled time, 7 = /2%, where 1% is u scal-
ing parameter to be determined. We can use the relationship dr = r#dr (o write:
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()
par vy )

A natural choice for 1# appears to be V/F (known as the residence time), so

de _ | (] ; _Vk) "
cr Y F !

The term VA is dimensiontess and known as a Damkholer nutmber in the reaction engi-
neering literature. Assuming that the feed concentration is constant, X = 1, and letting
w = VI/F, we can write:

dx
el Rl U N S Y
dr

which indicales that a single parameter, «, can be used to characterize the behavior of all
first-order, isothermal chemical reactions. Similar results are obtained if the dimension-
less state is chosen to be conversion

¥ o (( ‘1(1 - C,\__,g))/ C"Afﬂ

2.8 EXPLICIT SOLUTIONS TO DYNAMIC MODELS

Explicit solutions to nonlinear differential cquations can rarely be obtained. The most
common case where an analytical solution can be obtained is when a single differential
equation has variables that are separable. This is a very limited class of problems. A main
objective of this textbook is to present a number of techniques (analytical and numerical)
to solve more general problems, particularly involving many simultancous equations. In
this section we provide an example of problems where the variables are separable.

EXAMPLE 2.5  Nonlinear Tank Height

Consider a lank height problem where the outlet {low Is 2 nonlinear function ol tank heighi:

div I B

i

dt A A

i

Here there is not an analytical solation because ol the nonlinear height relationship and the fore-
ing function. To iHustrate a problem with an analytical solution, we will assume that there is no
nfel flow 1o the tank:

dh B3 /
e
we can see that the variables are separable, so
dh 3
Lo — [ t

Vi A




Sec. 2.9 General Form of Dynamic Madels 37

f die ;" B,
Vi Ioac
) I, I,
which has the solution
W -2V, - - P (r—1)
] /\ £
. . [}
) Vb=V, — -t
or b= Vi = (1)

letting ¢, = €, and squaring both sides, we obtain the solution

&}

\/;é‘) - ,)’/1' f

2

iy =

This analytical solution can be used. for example, to determine the time that it will take for the
tank height to reach a certain level

GENERAL FORM OF DYNAMIC MODELS

The dynamic models derived in this chapter consist of a set of (irsi-order (meaning only
first derivatives with respect to time), nonlinear, explicit, initial value ordinary differential
equations. A representaiion of a set of [irst-order differential cquations is

.(‘:l’ Nyl faeeasll s P, pr)
f(\E ot m!pl’ f))

Xy # .f.:i("‘l"'"”‘YH‘”P'"’!{HI’ n”|1""-n”r)

where v, is a state variable, , is an input variable and p, is a parameter. The notation 508
used to leiLSLllL di/di ] \!ol:u that there are # equations, i state variables, s inputs, dlld r
prarameters.

2.9.1 State Variables

A state variable is a variable that arises naturally in the accumulation term of a dynamic
material or energy balance. A state variable is a measurable (at least conceptually) quan-
tity that indicates the stale of a system. For example, lemperature is the common state
variabte that arises from a dynamic energy balance. Concentration is a state variable that
arises when dynamic component balances are writien.
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2.9.2 Input Variables

An input variable is a variable that normatly must be specified before a problem can be
solved or a process can be operated. Inputs are normally specified by an engineer based
on knowledge of the process being considered. Input variables typically include lowrates
of streams entering or leaving a process (notice that the flowrate of an outlet stream might
be considered an input variable!). Compositions or temperatures of streams entering ¢
process are also typical input variables. nput variables are often manipulated (by process
controllers) in order to achieve desired performance.

2.93 Parameters

A parameter is typically a physical or chemical property value that must be specified or
known to mathematically solve a problem. Parameters are often tixed by nature, that 1s,
the reaction chemistry, molecular structure, existing vessel configuration, or operation.
Examples include density, viscosity, thermal conductivity, heat ransfer coelficient, and
mass-transter coeflicient. When designing a process, a parameter might be “adjusted” 1o
achieve some desired performance. For example, reactor volume may be an gmportant de-
sign parameter.

2.9.4 Vector Notation

The set of differential equations shown as (2.72) above can be written more compactly in
vector form.

x = f(x,u, p) {2.73)
where
x = vector of r stale variables

u = vector of m input variables
p = vector of r parameters

Notice that the dynamic models (2.73) can also be used to solve steady-state problemns, since
x =0 (2.74)

that is,
r(x,u,p) = 8 (2.7%)

for steady-stale processes. Numerical techniques (such as Newton's method) to solve al-
pebraic equations (2.75) will be presented in Chapter 3.

The steady-stale state variables from the solution of (2.75) are often used as the ini-
tial conditions for (2.73). Frequently, an input will be changed from its steady-state value,
and (2.73) will be solved to understand the (ransient behavior of the system. The numeri-
cal solution of ordinary differential equations will be presented in Chapter 4. In the exam-
ple below we show Example 2.2 (chemical reactor) in state variable form.




Sec. 2.9 General Form of Dynamic Models

EXAMPLE 2.6 State Variable Form for Example 2.2

Consider the modeling equations for Example 2.2 (chemicul reactor)

Ko - ey -keyg,
d;’f - {/ (Cpi— Cp) = 2kC,Cy
d(;; - ‘i} Cp+ kCLC,

(2.31)

(2.32)

{2.33)

There are four states (V, Cype Cpoand Cpy, four inputs F, F Ciui Cppy and & single parameler
(k). Notice that althaugh £ is the outlet flowrate, it is considered an input to the model, beeuuse

it must be specified in order 1o solve the equations.

V FoF
¢, (= C) = KCL0y
: Fo .
Cp %4 (Cr— Cyp) -2 kCLCy
: F
O y Cp + RCLC,
or
L)k; i u - u, l
. u, . [ (xup) "
£ X (13— X3}~ prxox, )
. 1 f.(x,u,p)
X3 X'II (= X3) = 2 o, ] f:(x:il:p)
u
| % | L x: Xy X
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SUMMARY

A number of material and energy balance examples have been presented in this chapter,
The classic assumption of a perfectly stirred tank was generally used so that all models
(except Section 2.6) were lumped-parameter systems. Fuiure chapters develop the analyti-
cal and numerical technigues Lo anatyze and simulate these models.

The student should now understand:

» that dynamic modets of lumped parameter systems yield ordinary differential equa-
Llions.
« that steady-state models of lwmped parameter systems yield algebraic equations.

« The notion of a state. put, outpul, parameter.

A plethora of mudels are presented in modules in the final section of the textbook, More
specificaily, the following modules are of interest:

Module 5. Heated Mixing Tank

Module 6. Linear Equilibrinm Stage Models (Absorption)

Module 7. Isothermal Continuous Stirred FTank Reactors

Module 8. Biochemical Reactor Models

Module 9. Diabatic Reactor Models

Module 10, Nonlincar Equilibrium Stage Maodels (Disullation)

Bach of these modules covers model development and prescats examples for analyt-
ical and numerical calculations.

FURTHER READING

A nice introduction to chemical engineering calculations is provided by:

Felder, R.M., & R. Rousseau. (1986). Elementary Principles of Chemical
Processes, Ind ed. New York: Wiley.

Excellent discussions of the issnes involved in modeling @ mixing tank, incorporating
density effeets, and encrgy balimces is provided in the following two hooks:

Denn, MM, (l%()) Process Modeling. New York: Longman.

Russell, T.RE, & MM. Dean. (1971}, huroduction fo Chemical Engineering
Anolysis. New York: Wiley.

An introduction {0 chemical reaction engineering is:
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Fogler, HLS. (1992). Elements of Chemical Reaction Engineering, “nd ed, Hngle-
wood Cliffs, NJ. Prentice-Hall.

An excellent textbook for an introduction to chemical engineering thermodynamics is:

smith, LM, | H.C. Van Ness, & M.M. Abbott, (1996). Chemical Engineering Ther-
modynamics, 5th ed. New York: McGraw-Hill.

The following paper provides an advanced eatment of dimensionless variables and para-
ineters:

Aris, R. (1993}, Ends and beginnings in the mathematical modelling ol chemical
engincering systems. Chemical Engineering Science, 43(14), 25072517,

The relationships for mass and heat transport are shown in textbooks on transport phe-
nomena. The chemical engineer’s bible is

Bird, RB., W.E. Stewart, & E. Lightfool. (1960). Trausport Phenomena. New
York: Wiley.

The predator-prey model in student exercise 16 is also known as the Lotka-Volterra equa-
tions, after the rescarchers that developed them in the late 1920s. A presentation of the
equations is in the following text:

Bailey, J.E., & D.F. Ollis. (1986}, Biochemical Engineering Fundamentals, 2nd ed.
New York: MeGraw-ill.

STUDENT EXERCISES

L. In Example 2.1 it was assumed that the input and output flowrates could be inde-
pendently varied. Consider a situation in which the outlet flowrate is a function of
the height of liquid in the tank. Write the modeling cquation for tank height assum-
ing two different constitative relationships: (i) F = Bh, or (i) F = B \/i-z, where B is
known as a flow coefticient. You will often see these refationships expressed as
F=hRor F = VIR, where R is a flow resistance. List the state variahles, paramic-
ters, as well as the input and output variables. Give the necessary information to
complete the quantitative solwtion to this problem. If the flowrate has units of
liters/min and the tank height has units of meters, find the units of the flow coetli-
cients and flow resistances for (i) and (ii).

2. Consider a conical water tank shown below, Write the dynamic material balance
equation if the flowrate out of the tank is a function of the square root of height of
water in the tank (7, = BVA). List state variables, input variables and parameters.
(Hint: Use height as 4 statc variable.)
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"
<

Tﬁ
1

Extend the modet developed in Example 2.2 (isothermal reaction) to handle the fol-
Jowing stoichiometric equation: A + B —-> 2P, Assume that the volume s constant,
but the change in concentration of component 8 cannot be neglected.

[txtend the model developed in Example 2.2 (isothermal with first-order kinetics) to
handle muitiple reactions (assume a constant volume reactor).

A+ B—->=2P (veaction I}
24 + P~ > (reaction 2)

Assume that no 2 is Ted to the reactor. Assume that the reaction rate {gencration) of
A per unit volume for reaction | is characterized by expression
= —ky Oy Cy

! AA

where the minus sign indicates that A is consumed in reaction 1. Assume that the re-
action rate (generation) of A per unit volume for reaction 2 is characlerized by the
EXPression

ry= kO Ch

A

If the concentrations are expressed in gmolfliter and the volume in liters, whal are
the units of the reaction rate constants?

If it is desirable to know the concentration of component ¢J, how many cqua-

lions must be solved? IF our concem is only with P, how many equations must be
solved? Explain.
Model a mixing tank with two leedstreams, as shown below. Assume that there are
two components, A and B. C represent(s the concentration of A. (Cy is the mass con-
centration of A in stream 1 and €, is the mass concentration of A in stream 2).
Model the following cases:

H Fy
Cy vy Cy
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9.

10.

11.

a. Constant volume, constant density.

b. Constanl volume, density varies linearly with concentration.

¢. Variable volume, density varies lincarly with concentration.

Consider two tanks in series where the flow out of the first tank enters the second
tank. Qur objective is to develop a model to describe how the height of figuid in
tank 2 changes with time, given the input fTowrate # (1), Assume that the flow out
of cach tank is a lincar function of the height of lquid in the tank (F =B, and
17y = Byh,) and each tank has a constant cross-sectional area.

Fa

A material balance around the first tank yields (assuming constanl density and
Fyo=Ba)

Two liquid surge tanks (with constant cross-sectional area) arc placed in series,
Write the modeling equations for the height of liquid in the tanks assuming that the
flowrate from the first tank is a function of the difference in levels of the tanks and
the flowrate from the sccond tank is a function of the level in the second tank. Con-
sider two cases: (i) the function is linear and (i) the fanction is a square root refa-
tionship. State all other assumptions.

A gas surge drum has two components (hydrogen and methane) in the feedstream.
Let y; and y represent the mole [raction of methane in the leedstream and dram. re-
spectively. Find dP/dr and dy/dr if the inlet and outlet ffowrates can vary. Also as-
sume that the inlet concentration can vary. Assume the ideal gas law for the effect
of pressure and composition on density.

Consider a liguid surge drum that is a sphere. Develop the modeling equation using
liguid height as a state variable, assuming variable inlet and outlet flows.

A car tire has a slow leak, The Rowrate of air out of the tire is proportional to
the pressure of air in the tire (we are using gauge pressure). The initial pressure is
30 psig, and after five days the pressure is down to 20 psig. How long will it take to
reach 10 psig? _

A car tire has a slow leak. The flowrate of air out of the tre is proportional to the
square root of the pressure of air in the tire (we are using gavge pressure). The ind-
tial pressure is 30 psig, and after 5 days the pressure is down to 20 psig. How long
will it take to reach 10 psig? Compare your results with problem #0.
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A small room (1011 X 10 {t > 10 1) is perfectly sealed and contains air at b abm
pressure (absolute). There is a large gas cylinder (104 ft¥) inside the room that con-
tains hetium with an initial pressure of 5 atm (absolute). Assume that the cylinder
valve is opened (at £ = 0) and the molar flowrate of gas leaving the cylinder is pro-
portional to the difference in pressure between the cylinder and the room. Assuie
that room air does not diffuse into the cylinder. '

Wirile the differential equations that (if solved) would allow you to find how
the cylinder pressure, the room pressure and the room mole [raction of helium
change with time. State all assumptions and show all of your work,

A balloon expands or contracts in volume so that the pressure inside the balfoon is

approximately the atmospheric pressure.

a. Develop the mathematical model (write the diflerential equation) for the volume
of a balloon that has a slow leak. Let V represent the volume of’ the balloon and
g represent the modar flowrate of air leaking from the balloon. State alt assump-
tions. List state variables, inputs, and parameters.

b. The following experimental data have heen obtained for a lcaking halloon.

f (minutes) r{em)
4] 10
5 1.5

Predict when the radius of the batloon will reach 5 cm using (wo different assump-
tions for the molar rate ol air leaving the batloon:

{i) The molar rate is constant.

(i) The molar rate is proportional to the surface area ol the balloon.

Reminder: The volume of a sphere is 4/3 7r? and the arca of a sphere is 472,

Often Jiquid surge tanks (particularly those conlaining hydrocarbons) will have a
oas “blanket” of nitrogen or carbon dioxide to prevent the accumulation of explo-
sive vapors above the liguid, as depicted below.

q

f > » 7
aas

liquid
4 » F

Fr —»

Develop the modeling equations with gas pressure and liquid velume as the state
variables. Let g and ¢ represent the inlet and outlet gas molar flowrates, £ and £ the
liguid volametric flowrates, V the constant (total) volume, V; the liquid volume, and
P the gas pressure. Assume the ideal gas law. Show that the modeling cquations arc:

dV, . .
= F—
dt ’
dP P ] RT
T e F.—FY+ - . _
de V- vl( Iy V.(q’ 9)

and state any other assumptions,
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15, Most chemical process plants have a natural gas header that circulates through the

16.

17.

process plant. A stmplified version of such a header is shown below.

h i
From vaive i - valve 1 ] valve 2
source -
Plant piping, representad Gas drum for To furnaces
as a perfectty mixed drum a boilerhouse
unit

Here, the natural gas enters the process plant from a source {(the natural gas
pipetine) through a control valve. It [Tows through the plant piping, which we have
represented as a perfectly mixed drum for simplicity. Another valve connects the
plant piping to the gas drum for a beilerhouse unit. Gas passes through another
valve to the boilerhouse furnaces,

Write modeling equations assaming that the pressures in drams | and 2 are

the state variables. Let the input variables be iy {valve position 1), /i, (valve posi-
tion 2), and £, (source pressure). _
The Lotka-Volterra equations were developed to model the behavior of predator-
prey systems, making certain assumpltions about the birth and death rates of each
species. Consider a system compaosed of sheep (prey) and coyotes (predator). In the
folfowing Lotka-Volterra equations ¥ represents the number of sheep and x, the
number of coyoles in the system,

dx,
- = X, — YeLX
dr S SR O
dx, B
= gyx.4, - Bx
dt v 2

Discuss the meaning of the parameters o, B, v, & and the assumptions made in the
model.

Consider a perfectly mixed stirred-tank heater, with a single fiquid feed stream and
a single liquid product stream, as shown below.

F“’_
i
v, r
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18.

19

26.

21.
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Develop the material and energy balance equations that describe this process, £ s
the volumetric Mowrate into the tank, F'is the volumetsic (lowrate out ol the tank, 7;
is the temperature of the (luid entering the tank, ¥ is the temperaturce of the fluid in
the tank, /1 is the height of liquid in the tank, and @ is the rate of encrgy added to the
rank. State assumptions (such us constant density, etc.). )
Assume that the volume can vary with time and that F is proportional to Vi,
How many differential equations does it take io modet this system? What are the
state variables? What are the parameters? What are the inputs? List the information
pecessary to solve this problent,
Consider a gas surge drum with variable inlet and outlet molar ftowrales, gy and ¢,
respectively. Assume that heat is being added to the tank at a rate, (. Wrile the
modeling equations that describe how the temperature, 7, and pressure, P, vary with
time. Do not neglect the p¥ term in the encrgy balance.
Derive the reaction-dilTesion equation
G, G
of vz

4 d‘(-"‘ LT
Dy 5 = kC,

using the same method to derive the tabular reactor model in Section 2.0, Asswme
that a chemical species enters a volume element via convection (buik flow) and a
concentration gradient (diffusion):

leaves by convection and a concentration gradient:

o dC,
FC, = AD, 7

VAV
dz A
and also leaves by a first-order reaction,
Consider the nonlinear tank height inodel
dh F, B
o= —~ N
et A A

and define the dimensiontess variables u = F/F, and x = h/h, Where I and /i are
the steady-state flowrate and height, respectively (17, = B'\/ h,). Define the dimen-
sionless lime, 7, that will yield the following dimensionless equation:

dx -

o= = VX i

dt
Derive the constitutive relationship £ = B\/h by considering a steady-state eneegy
halance around a fank with a constant flowrate. Use P = P, + pgh for the pressure at
the bottom of the tank, where P, is the atmospheric pressure {pressure af the top
surlace), A is the height of liquid in the tank, p is the density of {tuid. Assume that
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22,

23

24,

the cross-sectional area at the surface is much larger than the cross-sectional area of
the exit pipe.

Consider the isothermal CSTR model with {irst-order kinetics:

dc F
, _h;l' Y, (Cy=C)— k€,

Use 7 = & as the dimensionkess time. Develop the dimensiontess equation for two
cases: (i) v = Cy/Cypand (1) x = 1 — C/C,p Compare and contrast the resulting
equaijons with the example in Section 2.7,

Semibatch reactors are operted as a cross between balch and continuous reactors,
A semibatch reactor is intlially charged with & volume of material, and a continous
feed of reactant is staried. There is, however, no outlet stream. Develop the model-
ing equations for a single first-order reaction. The state variables should be volume
and concentration of reactant A,

Pharmacokinetics is the study of how drugs infused to the body are distributed to
other parts of the body. The concept of a compartmentai model is often used, where
it is asswmed that the drug is injected into compartment 1. Some of the drug is elin-
inated (reacted) in compartment [, and some of it diffuses o compartment 2 (the
rest accumulates in compastment ). Similarly, some of the drug that diffuses into
compartment 2 diffuses back into compartment |, while some is eliminated by reae-
tion and the rest accumulates in compartment 2. Assume that the rates of diffusion
awnd reaction are directly proportional o the conceatration of drug in the compart-
ment of interest. Show that the following balance equations arise, and discuss the
meaning of each parameter (k,:,-. uits of min™")

dx,

o =k ok ok
ey,

d{— oz kl',l"\-i - (.[(.2“ -+ k?i) Xy

where £, and v, = drug concentrations in compartments | and 2 (pg/ml), and
i = rale of drug input (o compartment | {scaled by the volume of compartment [,
pe/ml min).




