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NUMERICAL TECHNIQUES



ALGEBRAIC EQUATIONS

The purpose ol this chapter is (o introduce methods to solve systems ol algebraic equa-
tions. Alter studying this module, the student should be able to:

* Solve systems of linear algebraic equations.

* Solve nonlinear functions of one variable graphically and numerically.

*+ Use the MATLAB function fzero (o solve a single algebraic equation.

* Discuss the stability of iterative techniques,

+ Usc the MATLAB function Fsolve to sofve sets of nonlincar algebraic cquations.

The major sections in this chapter are:

3.1 Tatroduction

3.2 General Form for a Linear System of Equations

3.3 Nonlinear Functions ol a Single Varjable

3.4 MATLAB Routines for Solving Functions of a Single Variable

35 Multivariable Systems

3.6 MATLAB Routines (or Systems of Nonlinear Algebraic Equaticns

3.1 INTRODUCTION

In Chapter 2 we discussed how to develop a model that consists of 1 set of ordinary diffec-
ential equations. To solve these problems we need to know the initial conditions and how
the inputs and parameters change with time. Olten the initial conditions will be the
steady-state values of the process variables. To obtain a steady-state solution of a system
of differential equations requires the solution of a set of algebraic equations. The purpose
of this chapter is to review techniques to solve algebraic equations,
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52 Algebraic Equations Chap. 3

Consider a set of n equations tn a unknowns. The representation is

filvpxgy, o x,)=0
Flygag, o) =0

(3.0

folxpn, o) =0

The objective is 1o solve for the sel of variables, x;, that force all ol the functions, fito
vero. A solution is called a fived point ov an equilibrivm point,

Vector notation is used for a compact representation

f(x) =0 (3.2)

where f(x) is a vector valued function. Notice thal these can be the same funetional rela-
tionships that were developed as a set of differential equations, with = f{x) = @. The so-
lution x is then a steady-state solution to the system of differential equations.

Before we cover techniques for systems of noniinear equations, it is instruclive o
review systems of lincar equations,

3.2 GENERAL FORM FOR A LINEAR SYSTEM OF EQUATIONS

Consider a linear system with # cquadions and i unknowns, The first equation is
A Xy dyaXa Fdppky + oLk 0 = by

where the «’s and b’s are known constant parameters, and the s are the unknowns. The
second equation is:

g X+ dag Xy ¥y kX, = by
while the nth equation is:

Ay + ¥y F da ¥yt X, = by

The coefticient, ay, relates the jih dependent variable to the ith equation.

X, b,
T B L P b,
tyy Oy Uy - .y, |1 xx | | &y 3.3)
. tyy s - - Ay
ﬁ’rh 7'[)!1
Or, using compact matrix notation:
Ax=bh (3.3a)

The goal is to solve for the unknowns, X. Notice that (3.3a) is the same form as (3.2), with

f(x)=Ax — b
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Premultiplying cach side of (3a) by A1 we find:

A A x=bu
and since, ATA=1 (3.4)
x=A"'h

provided that the inverse of A exists. If the tank of A is less than n, then A is singular and
the matrix inverse does not exist. If the condition number of A is very high, then the sola-
tion may be sensitive to maodel error. The concepts of rank and condition nwmber are re-
viewed in Module 2 in Section V,

Lquation (3.4) is used for conceptual purposes 1o represent the solution of the set of
Jinear equations, In practice the solution is not obtained by finding the matrix inverse.
Rather, equation (3.3a) is directly solved using a numerical technique such as Gaussian
climination or LU decomposition, Since the codes to implement these techniques are
readily available tn any numerical library, we do not review them here.

The next example illustrates how MATILAB can be used to solve a system of lincar
eulations,

EXAMPLE 3.1 Linear Absorption Model, Solved Using MATLADB
Consider a 3-stage absorption column (presented in Module 6 in Section V) that has a model of
the tollowing form (x is a vector of stage liguid-phase compositions and w is a vector of cotunmn
feed compositions):
0=Ax+Bu
or
Ax=-Ru
the sofution for x isx = —A 1B u
The values of A, B, and u are:
a3 =
-0.3250 G.1250 g 0 ¢
0.2000 -0.3250 g.1250 0 3
0 0.2000 ~{.3250 0.1250 0
0 0 0.2000 ~0.3250 G.1250
0 G 0 G.2000 -0.3250
b =
0.2000 0
0 0
¢ 0
4] 0
0 0.2500
=
0
0.1800
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The following MATLAB command can be used to sofve for x
» % = —inv{a})*b*u

¥ =

0076
L0158
L0362
L0704
L1202

[en T w I e R S v

Use of the MATLAB left-division operator (\) yiclds the same result more efficiently
(Faster computation time}, using the LU decomposition technigue:

» x = -—a\{b*u)

3.3 NONLINEAR FUNCTIONS OF A SINGLE VARIABLE

Functions of a single variable can he solved graphically by plotting fx) for many values
of x and finding the values of x where fx) = 0. This approach is shown in Figure 3.1, An
interesting and challenging characteristic of nonlinear algebraic equations is the potential
for multiple solutions, as shown in Figure 3.1b. In fact, for a single nonlincar algebraic
equation it is often not possible to even know (without a detailed analysis} the number of
solutions that exist. The situation is easier for polynomials because we know that an nth
order polynomial has n solutions. Fortunately, many chemical process problems have a
single solution that makes physical sense.

Numerical techniques for solving nonlinear algebraic equations are covered in the
next seetion. A graphical representation will be used to provide physical insight for the
numerical techniques.

Numerical methods to solve nonlinear algebraic equations are also known as ftera-
rive technigues. A sequence of guesses o the solution are made wntil we are “close
enough™ (o the actual sotution. To understand the concept of “closencss”™ we must use the
notion of convergence tolerance.

0 4 ) & golutions

The solution

a. Single Solution b. Multiple Solutions

FIGURY 3.1 Graphical solution to flx) = (.
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3.3.1 Convergence Tolerance

A solution to a problem f(v) = O is considered converged at iteration & i
)| = &

where & 1§ a folerance that has been specified, If(x ) is used 1o denote the absoluete value
of function f{x) cvaluated at iteration k, and v, is the variable value at iteration k. At times
iLis usclul 1o base convergence on the vartable rather than the function; Tor example, a so-
tution can be considered converged at iteration & if the change in the vartable is less than a
cerlain absolute tolerance, &,

vy = xe] = e,
The absolute wterance is dependent on the scaling of the variable, so a relative tolerance
specilication, e, is often used:
ey~ x| -
b ||

The relative tolerance specification is not useful if x is converging to 0. A combination of
the refative and absolute tolerance specilications is often used, and can be expressed as

-

|Xk - X ll = II,‘,, l| g, t+e

H

The iterative methods that we present for sobving single atgebraic equations are: (1) direct
substitution, (i) imterval halving, (iii} false position, and (iv) Newton’s method.

3.3.2 Direct Substitution
Perhaps the simplest algorithm for a single variable nonlinear algebraic equation 1s known

as direct substitution. We have been writing the relationship for a single equation in a sin-
gle unknown as

fixy=0 (3.5)
Using the direct substitution technique, we rewrite (3.5) in the {form
x=gx) {3.6)

this means that our “guess” for x at iteration &+1 is based on the evalvation of g(x) at itera-
tion & (subscripts are used to denote the iteration)

Vet = 8LG) (3.7
If formulated property, (3.7) converges to a sofution (within a desired tolerance)
x* = g (3.8)

If not formulated properly, (3.7) may diverge or converge to physically unrealistic solu-
tions, as shown by the following example.
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EXAMPLE 3.2 A Reactor with Second-Order Kinetics
The dynamic model for an isothermal, constant volume, chemical reactor with a single second-

order reaction is:

dc, F . o 2
A = Car— v C,— kC;

Find the steady-state concentration for the following inputs and parameters:
FiV=1min |, =1 gmol/liter, &= 1 liter/(gmol min)
Al steady-state, 4O, fdt = 0, and substituting the parameter and input values, we find
1= Cyp—C2 =0

where the subscript § is used 10 denote the steady-state solution. For notational convenience, let
x =y, and write the algebraic equation as

F)==xt—x+1=0

We can directly solve this equation using the quadratic formula to find x = ~1.618 and 0.618 to
he the solutions. Obviously a concentration cannot be negative, so the only physically meaning-
ful solution is x = 0.618. Although we know the answer using the guadratic formula, our objec-
tive is to ilustrate the behavior of the divect substitution method.

To use the direct substitution method, we can rewrite the function in two different ways:
(D xf=—x+ 1 and Gi) x = =7 + |, We will analyze (i) and leave (ii) as an exercise for the reader
{see student exercise 4).

(i) Here we rewrite f{x) to find the foilowing direct substitution arrangement

4

X =-x+1
x=Vex+ 1= 2(x)
Or, using subscript £ to indicate the kth iteration
k= VE
For a first gaess of x, = 0.5, we find the following sequence
Nn=Vo05+1  =07071

v = V07071 + 1 = 05412

X, +1=glx)

Il

= V05412 + 1 = 0.6774

V=0.6774 + 1 = 0,5680

Ii

x4

This sequence slowly converges to (L618, as shown in Figure 3.2.
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0.75

0.55

0.5

FIGURE 3.2 The iteration x, ., = V—x, ., 1 | with xy=0.5. This
sequence converges to 0.6180.

Notice that an initial guess of xy = 0 or | oscillates between O and 1, never converging or
diverging, as shown In Figure 3.3,

! K 3 ) ) )
n " " i "
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0 y ¥ v v y
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FIGURE 3.3 Theiteration x, , ( = V ~x + 1 with xy = 0 {dashed} or
(solid}. This sequence oscillates between 0 and 1.

As noted earbier, this problem has two solutions (x* = —1.618 and x* = (L618), since it
is a sccond-order polynomial. This can be verificd by plotting x versus fix) as shown in

57
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Figure 3.4, From physical reasoning, we accept only the positive solution, since a concentration
cannoi be negative.

FIGURE 3.4 Plot of flx) versus x to find where f{x} =0,

ixample 3.2 illustrates that certain initial guesses may oscillate and never yield a
solution, while other guesses may converge to a solution. It turns out that the way that a
direet substitution problem is formulated may etiminate valid solutions from being
reached {sec student exercise 4).

These problems exist, o a certain extent, with any numerical solution technique.
The potential problems appear to be worse with direct substitution; direet substitution is
not generally recommended unless experience with a particular problem indicates that re-
sults are satisfactory, Direct substitution is often the easiest numerical technique to formu-
late for the solution of a single nonlinear algebraic equation.

If a numerical fechnique does not converge to a solution when the mitial guess is
close to the solution, we refer to the solution as unstable. The stability of iterative meth-
ads is discussed in the appendix,

3.3.3 Interval Halving (Bisection)

The interval halving technique only requires that the sign of the function vatue is known.
The following steps are used in the interval halving technique:

1. Bracket the solution by finding two values of x, one where f{x) is less than zero and
another where flx) is greater than zero.

2. Evaluate the function, fx), at the midpoint of the bracket.

3. Replace the bracket limit that has the same sign as the function value at the midpoint,
with the midpoint value. Check for convergence. If not converged, go back to step 2.
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f(x)

o f(xz) =+

initial

lower

limit oy Xg

| | ]
1 1 i

4 X4 *g
initial
upper
limit

e = -

FIGURE 3.5 Tlustration of the bisection technique.

An example of the interval halving approach is shown in Figure 3.5.
Notice that the solution was bracketed by

[y

. Finding x|, where f(x|) is negative and x, where f{x,) is positive.

2. The midpeint between x; and x; was selected (ry). The function value at g, flxq),
was negative, so

3. xy was thrown out and x5 became the fower bracket point.

4. The midpoint between xy and xy was selected (xy). The function value al xy, fx,).
wds positive, s0

5. x, was thrown out and x, became the upper bracket point.

6. The midpoint between xy and x, was selected (x5). The function value at xg, flxs),
was negative, 50

7. xy was thrown out and x5 became the lower bracket point,

You can see that the midpoint between x5 and x, will yield a positive value for flx,}), so
that the x,; point will be thrown out. You can also see that this process could go on for a
very long time, depending on how close to zero you desire the solution. Engineering
Jjudgement must be used when making a convergence tolerance specification.

The advanlage to interval bisection s that it is easy to understand. A disadvantage is
that it is not easily extended to multivariable systems. Also, it can take a long time to
reach the soluiion since it only uses information about the sign of the lunction values. The
next technigue is shmifar o interval bisection but uses the function vadues Lo determine the
variable value for the next iteration,
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3.3.4 False Position (Reguli Falsi)

The false position or reguli falsi technigque uses the function values al two previous itera-
tions to determine the value for the next Heration. The technique of false position consists
of the following steps:

1. Select variable values x,and x| to bracket the solution.

2. Draw line between flx,)y and flx,, ) and find x4

3. Evaluate flx;,,). Replace the bracket Jimit that has the same sign lor its function as
the sign of flx,»).

An example of the false position appreach is shown in Figure 3.0,

The next step would be to draw a line from flx,} to f{xy) and find x,. Conlinue until
a cerlain tolerance is met.

The false position method generally converges much more rapidly since it uses
known function values to determine the next “guess” for the variable. We have shown
graphically how each technique is wsed. You will have an opportunity in the student exer-
cises 1o wrile an algorithm to implement the two techniques.

3.35 Newton's Method {or Newton-Raphson)
The most common method for solving nonlinear algebraic cquations is known as New-

ton’s method (or Newton-Raphson). Newton’s method can be derived by performing a
Taylor series expanston of flx):

fx + Ax) = fx) + ['(¥)Ax + f,,,g") v+ ((—‘75?-)- Ay +...=0 (3.9
3
£
f(xz)
imitial
lower
firnit X3
| ]
!
X1 x2
T initial
upper
f(x3) limnit
xq)

FIGURE 3.6 Ilustration of the false position technigue,
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where

[y
Xy o a flx
fx)y = ) Lf(x)y = ---j(q), and so on.
X dx”
Neglecting the second-order and higher derivative terms and solving for [(x+Ax) = 0, we
oblain

)
AT

Since this is an iterative procedure, caleulate the guess for x at iteration &+1 as a function
of the value at iteration k:

(3.1h

defining Axp =g, —x (3.113

from (3.10) Ay, = f’;%*)) (3.12)

from (3.11)  xpy, —x, = /i(:)) (3.13)
_ k)

Koo =% (3.14)

Equation (3.14) is known as Newton’s method for a single-variable problem.

Notice that we can obtain the following graphical representation for Newton’s
method (Figure 3.7).

Starting from the initial guess of x;, we find that x, is the intersection of f'(x|) with
the x-axis. Evaluate f{xy) and draw a line with slope f'(x;) to the x-axis to {ind x;. This
procedure is continued until convergence.

fixy)

slope = F'{x;}

1 | FIGURE 3.7 Hlustration of Newton’s
Xp Xq method.

ESCOLA D ENCENHARIA
BIBLIOTLCA
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Advantages 1o Newton’s method include quadratic convergence (when close to the
solution) and that the method is easily extended to multivariable problems. Disadvantages
include the fact that a derivative ol the Function is required, and that the mcthod may not
converge (o a solution or may not converge to the nearcst solution,

Foran example of nonconvergence, consider the function shown in Figure 3.8, Here
the initial guess is at & point where the derivative of function is equal to zero (f(x,) = 0),
therefore there is no intersection with the x-axis to determine the next guess. We also sce
from (3.14) that there is no finite vakbue for the next guess for x.

Another problem is that the solation could continuously oscillate between two val-
ves. Consider f{x) = x> — x. A plot of Newlon’s method tor this function, with an initial
guess of xy = —1/V 5, Is shown in igure 3.9,

Notwithstanding the problems (possible division by zero or continuous oscillation)
that we have shown with Newton’s method, it (or some variant of Newton's) is still the
most commonly used solotion technique for nenitnear algebraic equations. Notice that
Newton’s method essentially Hnearizes the nonkincar model al cach iteration and therefore
results i successive solutions of lincar models.

Notice that increasing amounts of information were needed to use the previous
techniques. Interval halving required the sign of the function, reguli falsi required the
vithue of the function, and Newton’s method required the value and the derivative of the
furction. We also found that not all solutions to a nonlinear equalion are stable when di-
rect substitution is used. Next, we show that all solutions are stable using Newton's
mcthod.

1 r . 1 . r
05¢ |
fxy ©
0.5 horizontal tenget T
never meels ¥-axis
ET 05 0 0.5 1 15

FIGURE 3.8 Problem with Newlon's method when f{) ={.
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-1.5 -1 -0.5 0 0.5 1 1.5
X

FIGURE 3.9 Oscillation of solution between two values.

3.4 MATLAB ROUTINES FOR SOLVING FUNCTIONS
OF A SINGLE VARIABLE

MATLAR has two routines that can solve for the zeros of a function of a single variable,
FZERC is used for & general nonlinear equation, while ROOTS can be used i the nondin-
ear equation ts a polynomial.

341 FZERO

The first routine that we use for illustration purposes is £zero, fzero uses a combina-
tion of mterval halving and false position,

In order to use fzero, you nwist first write a MATLAB m-lile to generate the func-
tion that is being evatuated. Consider the function fix) = 2 —2v -3 =0,

The following MATLAB m-lile cvaluates this function (the m-file is named
fenl . m):

function y = Ffonl(x)
vy o= x™2 - 2AFx - 35

After generating the m-file £enl . m, the user must provide a guess for the solution
to the fzero routine, The following command gives an initial guess of 1= 0.

vy = Fzero{'fcnl',0)
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MATILAB returns the answer:
vy = -1
For an initial guess of x = 2, the user enters
z = fzero('tcnl', 2}
and MATLAB returns the answer
2 = 3

These results are consistent with those of Example 3.2, where we found that there were
iwo solutions to a similar problem (we could use the quadratic formula to find them).
Again, the solution obtained depends on the initial guess.

A third argument allows the user o select a relative tolerance (the default is the ma-
chine precision, eps). A fourth argument triggess a printing of the iterations.

3.4.2 ROOTS

Since the cquation that we were solving was a polynomial equation, we could also use the
MATLARB routine roots te find the zeros of the polynomial. Consider the polynontial
funclion:

Xt — 2x — 3 = 0
The user must create a vector of the coefficients of the polynomial, in descending order,
¢ = [1L -2 -3]"

Then the user can type the following command

roots{c)
and MATLARB returns
ans =
3
-1

Again, these are the two solutions that we expect.

3.5 MULTIVARIABLE SYSTEMS

In the previous sections we discussed the solution of a single algebraic equation with a
single unknown variable. We covered direct substitution, bisection, reguli falsi, and New-
ton’s method. In this section, we will discuss the reduction of a multivariable problem to a
single-vartable problem, as well as the multivariable Newton’s method.

Consider a system of # nonlinear equations in n unknowns

f(x)=0




EXAMPLE 3.3 Reducing a two-variahle preblem to a single-variable problem
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There we some special cases where n — 1 variables can be solved in terms of one vari-
able—then a single variable solution technique can be used. This approach is shown in
the following example.

Solve the following system of nonlinear equations.

A= x ~4x7~ x5 =0 (3.15)

Sl x) =20, - ,\'% +3xy =0 (3.16}
Fron: (3.15) we can solve for v, in terms of x| o find:
= 1—drx, (3.17)
Substituting (3.17) into (3.16), we find:
4+3x, -2842=0 ' (3.18)
which has the two solutions for v, (from the quadratic formula)
xy =025 or x; =-{.1429
The corresponding vitlues of 1y (Troin (3.17)) are
=00 and  x,= 15714
Or, writing these solutions ia veetor form:

—0.1429
L5714

. (125 ) .
solution 115 x == I 0 ] while solution 2 is x = {

Question:  Arc we certain that there are only two solutions?

Observation:  We can also sec by inspection that the origin (sometimes called the twivial so-
lation), x = ig;, is also a solution. Another solution that is slightly less obvious is x =[], which
we can see by mspection satisfies (3.13y and {3.16.

Question: How did we miss the other two solutions?

Observation: Perhaps we will find the other solutions if we solve (3.16) for Xy in terms of
Xy, then substitute this result into (3.15) to solve for x,. When this is done, we obtain the result
that

-4, v 4=10

and using the quadratic formula x, = ) & \/ =

2

which gives us the sotution x = [9]. Notice that we are stil] missing 1he trivial solution, x = Igl.
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The mistake that we made was back at the first siep, when we solved (3.15) for x, in terms of
to find (3.17). We must recognize that (3.15) is quadratic in x;, therefore there are (wo solutions
for x; in terms of x,. This is more clear if we write (3.15) as
—4xiex(l-x)+0=0
and solve for x to find x) =0 orx; = 174 (1 — xy). The reader should show that substituting these
values into (3.16) will lead to the four solutions:
o1 [0 '{J.25} — 03,1429
s L and o
01211 0 1.5714

k]

The previous example illustrates the care that must be taken when using reduction tech-
niques Lo solve several nonlinear algebraic equations.

If a problem cannot be reduced to a single variable, then a general multivariable
strategy (such as that discussed in the next section) must be used.

3.5.1 Newton’'s Method for Multivariable Problems

Recall that we are solving the general set of equations

fx)y=0 (3.1
That is, a set of # equalions in # unknowns
filxpxg oo xy) 0
fZ(xl’xl’ e xn) 0
= . (3.20)
Flxx,, oo x, 0

The objective is to solve for the set of variables, x;, that forces all of the functions, f;, to zero.
We can use a Taylor series expansion for each f;:

H i) ' ]
fi{x + Ax) = fi(x) + 2 ﬁf Ax; + higher order terms (3.21)
iy 9%
Neglecting the higher order terms and writing in matrix [orm
F(x + Ax) = f(x) + J Ax 322

where J is known as the Jacobian

afy, o, oy
dx, ax, ' ! ax,

=000 (3.23)
o, o, af,

ax,  dxy T 0x,
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Now, since we wish 1o solve for Ax such that f{(x + Ax) = 0, then (from 3.22)

f(x) + JAx =10 (3.24)
Solving for Ax at iteration k
Ax, = —J, 7 E(x,) (3.25)
but Ax is simply the change in the x vector from the previous ieration
Ax, = x.. - X, {(3.26)
Substituting (3.26) into (3.25)
X = X~ J 7 () (3.27)

Remember that x| is a vector of valucs at iteration k. Notice that for a single equation
(3.27) is:

_— f(’\'k)
i J'(xg)

which is the result that we obtained in Section 3.3.4.

“Comment: In practice the inverse of the Jacobian is not actually used in the solution
of (3.25). Actually, (3.25) is solved as a sct of linear algebraic equations, using Gaussian
climination or LU decomposition.

Xra1 ™

¥, Ax, = —K(x,)

where Jy and £(x,) are known at iteration k.

EXAMPLE 3.3 Revisited. Newton’s method
Silepxs) = xy — 4 -
Ll =25, - x + 3xgx, =10

Tx,—dxt —xx, 0
or f(x) = ! 2' =
2x,— x5+ 3ax, {1
The Jacobian elements are
afy . af
= - =1 = 8‘]: — i J . L=y
1 ax, 1 2 12 o, i
i af.
Yy = =3k, | R R R
dx, X,
s0 the Jacobtan is written
I = 1 - 8x, —x, - X
3x, 2-2x,+3x,
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Consider an initial guess of x; = ~1 and x; = —1. Let x(()) represent the vector for this initial
FUESS
x,( -1 ’
x(0y == |} -
o[l |
The value of the Jacobian at this initial guess is
HIEEN
Xx(0)) =
aon -1 ]
The inverse of the Jacobian is
_ Lo
13 13
T ix(0)) = .
=y,
L1313

The value of the function vector for the tnitial guess is

-, 31

and the guess Tor x(1), where x(1) represents the veclor at iteration |, ts

1 -1
] P13 13 |[-e
x(s)’{—[‘_ 30010 [0]
1313
L [-0s385
x(1) = ‘ 03846

Continuing with iterations 2 through 7 we find the following resulis

{teration X X,

0 -1 -1

] —)1.5383 0.3846
2 —.3104 1.0688
3 -0,2016 £.3952
4 —). 1561 [.5317
5 —0.1439 [.5683
6 —0.8429 1.5744

7 -0.1429 1.5714
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The sequence of iterations for an initial guess of x; = 1 and x, = 1 is

[teration X5 X,

{} 1 1

1 0.6190 0.0476
2 0.3893 0.0081
3 0.2870 0.0608
4 (.2542 0.0000
5 06,2501 0.0000
6 0.2500 0.0000

Notice that a guess of x = [-1 -1]1"' convergedtox = [-0.1429 1.5714] " after six
tterations, anda guessof % = [ 1 17" convergedtox = [ 0.2500 0.0000]" after
$ix iterations. Other initial guesses may fead to the other two known solutions that were deter-
mined analytically.

- The previous example illustrates that, for systems that have multiple solutions, the
solution obtained depends on the initial guess.

3.5.2 AQuasi-Newton Methods

Most computer codes actoally implement some variant of Newton’s method; these are re-
ferred 10 as quasi-Newton methods. Remember that Newton’s method is guaranteed to
converge only if the system is nonsingular and we are “close” to the solution,

DAMPING FACTOR

Often it is desirable to “dampen” the change in the guess for x4, to make Newton’s
method more stable. Applying a damping factor, a, to (3.27), we write

X1 = X -k, (x) (3.28)

whetre « is chosen so that I f(xq, Y 1< 1 f(x) Il and 0 < o < 1 (we use the |l fix,) I nota-
tion to represent the norm of the vector f(x,)). Often o ts selected to minimize N fixy, ) Il
using a search technique, that is, o is adjusted until f f(x, ,;} Il is minimized.

It should be noted that the single-variable equivalent to (3.28) is

fx)

- 329
“ f(x) ( .

Mert T Fg

HANDLING SINGULAR (OR ILL—COND?TIONED) JACOBIAN MATRICES

Notice that the Newton method with or without the damping lactor requires the inverse of
the Jacobian matrix (or the sotution of a set of linear algebraic equations) to determine the
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value for the next fteration. IF the Jacobian is singular, it cannot be inverted. One method
that avoids this problem is known as the Levenberg-Marquardt method:
— T TyT

N = X~ (A BD N f(x) (3.30)
where T represents the matrix (ranspose and B is an adjustable parameter used o avoid a
singularity. The single variable cquivalent to (3.30) is

IR ChI(C) 33
[ B 2 (3.31)
(/) o+

Notice that if f = 0, the standard Newlon algorithim results,

X

WHEN ANALYTICAL JACOBIAN MATRICES ARE NOT AVAILABLE

If an analytical Jacobian is not available, a numerical approximation to the Jacobian must
be used by the quasi-Newton technique. A backward differcnces approximation for the
Jacobian is

_ xR Six(k) + Bxikk)) - f(x(K)) 5
T =50 ) (k) (3-32)

where 8x {k) is a small perturbation in variable x; at iteration k. A problem with this ap-
proach is lha{ an n-variable problem requires n + 1 evaluations of the function vector al

each iteration. There are other lechnigues that sely on infrequent function evatuations to
update the Jacobian matrix.

3.6 MATLAB ROUTINES FOR SYSTEMS OF NONLINEAR

ALGEBRAIC EQUATIONS

The MATLAB routine fzolve is used to solve sets of nonlinear algebraic equations,
using a quasi-Newton method. The user must supply & routine to evaluate the function
vector, Tt is optional to write a routine to evaluate the gradient of the function vector, As
another option, the user can sclect the Levenburg-Marquardt method.

EXAMPLE 3.3 Reconsidered. Using MATLAR
The m-file used to imptement Example 3.3 using £sclve is

function £ = nle(x)
T(lye x(1y-a*x (L) *x(1)-x (1) *x(2);
F{2)= 2%x(2)-x(2)*x{2)+3*x (1) *x(2);
which is placed in an m-file called nle.m
The initial guess is entered

0 o= [1 11';
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anet we oblain the solution by entering
*» = fsolve('nle',x0)
which gives us the expected results
x = {0.2500 0.0800]
Computationally faster results will he obtained if the analytical Jacabian is used.
y - 1 - 8x, —x; -
3x, 2-2x +3x,

The tollowing function file generates the analytical Jacobian for this problem,
function gf = gradnle(x)
gf(1,1)=1-8*x{1)-x(2};
gf(1.2)=-x{1):
gE(2,1)=3%x%(2);
gf(2,2)=2-2*x(2)+3*x (1} ;

which we place in an ni-file called gradnle . m. We can then solve this problem by entering

x0 = [1 11';
options (5)=0;
x = fsolve('nle',x,optiong, 'gradnle’)

The options vector can be used 1o select the Levenberg-Marquardt method by setting

opltions(5)=1;

SUMMARY

In this chapter we have presented a number of techniques to solve nonlinear algebraic
equations. Bach technique had a number of advantages and disadvantages—the approach
that you use may depend on the problem at hand. If you have the option, it is a good idea
to plot the function, f(x), to see if the results agree with your numerical solution. This op-
tion may not be available with multivariable problems,

Notice that if a particular problem has multiple solutions, the actual solution ob-
tained will depend on the initial guess. There are many actual chemical processes that
have “multiple solutions,” that is, there are several possible “steady-states” that the
process may operate at. ln practice, the steady-state obtained wilk depend on dynamic
considerations, such as the way that the process is started up. These issues will be ad-
dressed when we discuss differential equation-based models.

Much research is being done in applied mathematics to develop numerical tech-
niques that yield every one of the multiple solutions, without having to make many initial
guesses. Among these is “homotopy continuation,” These lechniques are not well-
developed and are beyond the scope of this text. For now, the student must be willing to
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try a number of techniques, with a number of initial guesses, to find all of the solutions to
a problem. It is recommended that you generally use commerically available routines for
solving these problems.

The numerical technigues covered were

+ Dircct substituiion
= Inierval bisection

Reguli falsi
* Newton’s method

Newlon’s method (and some variants) is the most commonly used multivariable tech-
nigue. The reader should be able to understand the notions of

-

Tacobian

 Fixed or equiltibrium points
+ Convergence and stability
= Tolerance

* licration
The MATLAB routines that were introduced in this chapter are

fsolve: Solves a system of nonlinear algebraic equations, using quasi-Newton
and Levenberg-Marquardt based algorithms

fzero: Solves for asingle equation

roots:  Solves for the roots of u polynomial equation

A number of other numerical routines are availiable through the MATLAB NAG Tool-
box. '

FURTHER READING

More detailed treatments of numerical methods given in the textbooks by Davis, Fin-
layson, and Riggs:

Davis, M.E. (1984). Numerical Methods and Modeling for Chemical Engineers.
New York: Wiley.

Finlayson, B.A. (1980). Nondinear Analysis in Chemical Engineering. New York:
McGraw-Hill,

Riggs, J.B. (1994). Nuwmerical Techniques for Chemical Engineers, 20d ed. Lub-
bock: Texas Tech Universily Press.
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Example numerical techniques are also presented by Felder and Rousscau:

Felder, RM., & R.W. Rousseau. (1986). Elementary Principles of Chemical
Processes, 2nd ed. New York: Wiley.

The following book is more of an advanced undergraduate/first-year graduate student
text on numerical methods 1o solve chemicat eagineering problems. The emphasis 18 on
FORTRAN subroutines to be used with the IMSL (FORTRAN-based) package.

Rameriz, W, (1989). Computational Methods for Process Simudation. Boston:
Butterworths.

STUDENT EXERCISES
Single Variable Methods

1. Real gases do not normally behave as ideal gases except at low pressure or high
temperature. A number of equations of state haw been developed to account for the
non-idealitics (van der Waal's, Redlich-Kwong, Peng-Robinson, ete.). Consider the
van der Waal’s PV T relationship

(P )(v —-b) = RT

where P is pressure (absolute units), R is the ideal gas constant, 7 is temperature

(absolute units), V is the molar volume and a and b are van der Waal’s constants.

The van der Wual’s constants are often calculated from the critical conditions for a

particular gas.

Assume that ¢, b, and R are given. We find that it # and T are given, there is an iter-

ative solution reguired for V.

a. How many solutions for V are there? Why? (Hinl: Expand the PVT relationship
to form a polynoinial.)

b. Recall that direct substitution has the form ‘i}kH = gV,). Wrile three different
direct substitittion formutations for ﬁm problem (call these [, H, and HI).

¢. What would be your first guess for V in this probleny? Why?

d. Write the MATLAB m-files to solve for V using direct substitution, for each of
the three formulations developed in b,

Consider the following system: air at 50 atm and —100°C. The van der

Waal’s constants are (Felder and Rousseau, p, 201) a = 1.33 atm liter¥/gmol2,
b = 0.0360 litet/gmol, and R = 0.08206 liter atm/gmol K. Solve the following
problems numerically.

¢. Plot V as a function of iteration number for each of the direct substitution meth-
ods i b, Use 10 to 20 iterations. Also use the first guess that you calculated
in ¢. Discuss the stability of each solution (think about the stability theorem).
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f. Rearrange (1) 1o the form of _f(‘?) = () and plot _f(l;'} as a function of V. How
many solutions are there? Does this agree with your sofution for a7 Why or why
not?

2. Use the MATLAB funclion roots to solve for the roots of the polynomial de-
velaped in a.

h. Wiite and use an m-Tile to solve for the equation in a using Newton’s method.

Vi Vi
Vi

The numerical sobution is considered converged when < g, Let

&= 0.0001,

Consider the van der Waals telationship for a gas without the volume correction
term (b = 0)

oy AN0 o Ry
P oo | V= RT

a. How many solutions for V are there? Show the solutions anatyticaily.

b. Which solution is correct?

A process furnace is heating 150 Ibmobhr of vapor-phase ammmonia. The rate of
heat addition to the Furnace is 1.0 x 109 Bw/hr. The ammonia feedstream tempera-
ture is 550°R. Use Newton’s method to find the temperatare of the ammonia leav-
ing the furnace. Assume ideal gas and use the following egquation for heat capacity
al constant pressure!

C,=at+ bl +cl” ?

Btu ) Btu . Btu 'R
w= T b =333 % ]g)---i . S = — 1.2 10° -
“ Itmnol ‘R ’ Ihmol “R? ‘ hmaol
T‘E!l‘t
and remember that {J = n C,dr
;

where 7 is the molar (lowrate of gas and ¢ s the rate of heat addition to the gas per
unit time. How did you determine a good frst guess to use?

Consider Example 3.2 , flx) = —x2 — x + | = 0, with the direct substitution method
formulated as v = —x2 + 1 = g(x), so that the iteration sequence is

N = gl) = —xg
Try several different initial conditions and show whether these converge, diverge,
or oscillate between values. Discuss the stability of the two solutions x* = 0.618 and
1% = —1.618, based on an analysis of g'{(x*).
Show why the graphical Newton's method is equivalent to xy, ¢ =% - Lo Mf ().
Develop an algorithm (sequence of steps) to solve an algebraic equation using inter-
val halving (bisection). '
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7.

8.

16.

Develop an algorithm (sequence of sieps) to solve an algebraic equation using reg-
uli falsi (false position). Compare and contrast this algorithm with Newlon's
method.

A component malerial balance around a chemical reactor yields the following
steady-state equation

F F
0= Cp=mC—kC?
V’ 5 V
I3 Do hinol ft8
where v 0.1 min"', C,, = 1.0 ' ~and ko= 0.05 ool min

4. How many steady-stlate solutions are there?

b, Write two different direct substitution methods and assess the convergence of
each.

¢. Perform two iterations of Newton’s method using an initial guess of C = 1.0.

Consider the following direct substitution problem, which resulbts from an cnergy

balance problem

BT 0716 - 4257 < 1006 T,

Will this method converge to the solution of 7= 443,5717 Why or why not?
Consider the following steady-state madel for an exotherntic zero-order reaction in
a continuous stirred-tank reactor. The variable x is the dimensionless reactor tem-
perature,

f(x) = 042204 exp- o~ 137 = 0
14 -
20

There are two solutions to this equation, as illustrated in the figure below. The solu-

tions are x = 0.55946 and 2.00000.

4. Formulate a direct substitution solution to this problem. Will your direct substi-
tution technique converge to 0.559467 Will your direct substitution technique
converge o x = 27 Use a rigorous mathematical argument in each case.

b. Yor an initial guess of v = 1.35, would you expect Newton's method to have any
trouble with this problem? Explain.

c. What is the next guess from the reguli falsi technique if your first guess was
x =1 and your second guess was x = 2.5 (show this mathematicatly)?

d. Write a function routine to solve this problem using the MATLAB function
fzero. Also show the commands that you would give in the MATLAB com-
mand window o run fzero,
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zero-order rxn - dimensionless

085 .o -

25

X

Plot of x versus fix) for problem 10

11. A component material balance around a chemical reactor yiclds the following

steady-state equation
F F ax
S~ O = RO

0="c
V m V
Ibmol o
10 T nd k= 005 e
' : £ e s 1bmoi™® min

F
where — = 0.I min™', G,
Vv

1. Write two ditferent direct substitution methods and assess the convergence of
cach to the steady-state concentration of 0.75354.
b. Perform two iterations of Newton's method using an initial guess ol C= 1.0.
12. Consider the dimensionless equations for an exothermic CSTR (continuous stirred
tank reactor) shown in a module in the final seetion of the textbook.
=0

filxpxy) = —dxgx(x) + (1 —~xy)
=)

Llxpx) = Bdxr(x,) + (1 + 8).x,

X
. z
where k{x,)) = exp | — %~
)=o)
Use f(x),%,) 10 solve for x; in terms ol x, and substitute into fy(x),x;) (0 oblain the

single equation
i
(1) = B - owla) — (1 + 8)x, =0
fl) = B Gy gy ) = (O
Consider the parameter vafues B = 8, ¢ = 0.072, y = 20, & = (L3, Determine the
number of solutions to this problem (graphically). Find the xy and x; values for cach

solution, using the single variable Newton’s method.
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Multivariable Methods

13,

14.

15.

Use the multivariable Newton's method to solve the {ollowing problem. Solve this as
atwo-variable problem. Do not reduce it to a single-variable problem via substitation.

Hx)=2x -x,-5 =10

HMx)= —x;~x,+4 =0
How many iterations does it tuke (o converge to the solution? Explain this result
conceptually.
A sitnple bioreactor modef (assuming steady-state operation) is

Penax 42
0 = [=—-timax D
(km +x, + kyxd )x,

0= (s;~x,) D~ (".C!.) ( e Pmax F2 )
- [

k,, -+ x, + kx?

where .. = 0.53

k, = 0.12
ki = {(1.4345
I = (4
S5 = 4.0

Xy is the biomass concentration (mass of cells) and x, is the substrate concentration

(food source for the cells),

Find the steady-state values for xp and vy if £ =103 (There are three solutions).

a. Use £solwve and several initial guesses for the solution vector.

b. Perform a detailed analysis by hand (hint: the trivial solution x; = 0 and x, = sy
should be easy to show.)

For the dimensionless C8TR problem (module 9 in Section V), use the MATLARB

routine fsolve to {ind the solutions. Show (he initial guesses and the solu-

tions that fsolve converges to. Show your function routine as well as the calis to

MATLAB.

Nl = —dxm(x) + (1-x)) =0
S} = Bbxk(n,) — (1 + 8)x, = 0
where k(x,) = exp (i fx; /W/)
and the following parameters are used
B= 8 ¢$=0.072
y= 20 =03
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APPENDIX

Stability of Numerial Solutions —Single Equations

If the iterates (x,) front a numerical algorithm converge o a sofution, we refer to that solu-
tron as heing stable.

Definition 3.1

Let v represent the solution {fixed point} of v = g(x®), or p{aFy - x® =0,

Theorem 3.1
de
oy

< | evaleated al v¥, &% 3s an unstable solution of

¥* is a stable solution of ¥ = g(v¥), if E

. T y
X = p{x®), al i}?l o> 1 evatuated at v
3 13

L . . .. ., .
i i LI 1, then no conclusions can be drawn. For simplicity in notation, we generally use
[1A% .
£ to represent !r}g|_

X

We continue with Example 3.2 to illustrate the numerical stability ol direct sub-
stitution,

EXAMPLE 3.2 Cantinued.  Stability of direct substitution
Comsider the Case 1 formulation,
x o= p(x) e Vx4 1

which has the degtvative

9L )
b -
Ir - t table soluti
s 2| = 1, them x* is a stable s .
PV - 1. then x* s a stalle solution
1
e yF = s ; Sy = e = (8090 < Qo o =0, i 2
L Forx 0.618, we tind that g'(x*) VAN T O.8000 <2 1. 8o x 0.618 15 a

stable sojution, that is, an initiz] “guess” {for g, close 0 0.618 will converge 1o = (LOl8,
—1
21618 4 1
be a seable solution, that is, an initial “guess” tor v, close to —1.618 should converge
=618

2. Forx®=—1.618, we lind | g'(x¥) 1
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Question:  Why did we {ind previously that an initial guess close to —1.61% did aot converge?

Observation: We must realize that the square root of a positive nsmber has two values. For
example, the square rool of 1 can cither be +1 or —1 (aftler all —DZ=1n.

You may be questioning the utility of a stability test for the direct substitution method,
which requires that the solution be known to apply the test. Owr purpose 1s mainly to show
that the direct substitution method can be unstable, Newton’s method guarantees stable
solutions, if the “guess” is close to the solution.

Stability of Newton's Method for Single Equations

Here we use Theorem 3.1 to show thal Newlon's method is stable. We see that Newton’s

method can be written in the form of
Yt = £y
where
o At
X
S
Then we can find that the derivative, g'(x,) is
] I (—_‘"1.—) + Sl ()
fx) [F e

) =1~
or

fCe) f1(x)
THERE

g(x) =

At the solution, x*, we sec that

ooy - S )
SO0 pnp

And since flv®) = 0, we find that the stability constraint is satisfied
g =0

as Tong as f(+%) 5 0. This shows that Newton’s method will converge (o the solution, pro-
vided an initial guess close o the solution.




NUMERICAL INTEGRATION

Most chemical process models are nonlinear and rarely have analytical solutions. This
chapter introduces numerical solution techniques for the integration of initial value ordi-
nary differential equations, After studying this material, the student should be able tw:

» Understand the difference hetween explicit and implicit Euler integration.

+ Wiite MATLAB code to implement fixed step size Tuler and Runge-Kutla tech-
niques.

o Use the MATLAB ode4b integration routine.

The major sections of this chapter arc:

4.1 Background

472  Huler Integration

4.3 Runge-Kutta Integration

44 MATLAB Integration Routines

41 BACKGROUND

Thus far we have developed modeling cquations (Chapter 2) and solved for the steady
states (Chapter 3). One purpose of developing dynamic models is to be able to perform
“what i types of studics. For example, you may wish to determine how long a gas stor-
age tank will take to reach a certain pressure if the outlet valve is closed. This requires -

80
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tegrating the differential equations from given initial conditions. If the dynamic equations
are linear, then we cun generally obtain anatytical solutions; these techniques will be pre-
sented in Chapters 6 and 8 through Q. Even when systems are linear, we may wish (o use
numerical methods rather than analytical solutions.
At this point it is worth reviewing the difference between linear and nonlinear dif-
ferential equations. An example of a linear ordinary differential equation is:
dx
dt

= —X

since the rate of change of the dependent variable is a linear function of the dependent
variable. An example of a nonlinear differential equation is:

dx

Ty

di
since the rate of change of the dependent variable is a nonlinear function of the dependent
variable. Although this particulary nonlinear equation has an analytical solution, this will
not normally be the case, particularly for sets of nonlinear equations. Notice that the fol-
lowing equation is finear:

dx B

v = gy

dt
since the only nonlinearity is in the independent variable (f).

The purpose of this chapter is to introduce you to numerical techniques for integrat-
ing initial value ordinary differential equations. The first numerical integration technique
that we will present is the Fuler integration. In the next section we discuss two algo-
rithms, the expficit and the implicit Buler methods.

4.2 EULER INTEGRATION

Consider a single variable ODE with the form

x =x = f(x) (4.1)
dt :
We consider two ditferent approximations to the derivative. In Section 4.2.1 we consider
a forward difference approximation, which leads to the explict Euler method. In Section
4.2.2 we consider a backwards differences approximation, which leads to the implicit
Euler method.

4.2.1 Explicit Euler

If we use a forward difference approximation for the time derivative of (4.1), we {ind

ok + ) - ik -2)




82 Numerical Integration Chap. 4

where & represents the ith discrete time step of the integration. Now, asswme that f{x) is
evaluated at x(k). We will refer to this function as flx(k)), and can write (4.1) and (4.2} as

R AR 9

Normally we will use a fixed increment of time, that is, £k + 1) ~ #(k) = As, where Asis
the integration step size. Then we write (4.3) as
(k4 1) —alk)
Ar

= flak)) (4.3)

Solving for x(k + 1}
xk + 1) = x(k) + Arflx(k))y Explicit Euler 4.4)

We can view (4.4) as a prediction of x at k + | based on the value of x at & and the
slope at £, as shown in Figure 4.1.

Equation (4.4) is the expression for the explicit Euler method for a single variable.
The general statement for a moltivariable problem is

x(k + 1) = x(k) + Ar1(x(k) (4.5)

Where x(k) 15 a vector of state variable values at thne step k and f(x(k)) is a vector
of functions evaluated at step k. Bquations (4.4) and (4.5) are explicit because the stale
vartable value ai time step k + 1 is only a function of the variable values at step k. This
method is straightforward and easy to program on either a handheld calculator or a com-
puter. A major disadvantage is that a small step size must be used for accuracy. However,
if oo small of a step size is used, then numerical truncation problems may result. Explict
Euler is not often used in practice, but is covered here for illustrative purposcs.

4.2.2 Implicit Euler

This method uses a buckwards difference approximation for the derivative in (4.1). The
function (or vector of functions} is evaluated at time step k + 1 rather than lime step A-

x(k + 1) — x{k _ _

D) o)

x{k+1) based on x(k} and f(x{k))

X(K) /\

slope, f{k),
avatuated at step &

PR
=
F o
=

FIGURE 4.1  Pictorial representation
of the explicit Euler method.

—~
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whiich can be writlen

x(k 4+ 1) = x(k) + Arf(x(k + 1)} Daplicit Euler (4.7)
Equation (4.7) is implicit because the value x(k + 1) must be known in order to solfve for
x(k + 1). What this generally requires is a ponlinear algebraic solution technique, such as
Newton’s method, For a lincar system, equation (4.7) can be explicitly solved (o obtain
the Torm

xlk + 1) = g(x(k))

The following section compares the explicit and implicit methods for a single linear ordi-
nary differential equation. In particular, we compare how the integration step size (Af) af-
lects the stability of each method.

4.2.3 Numerical Stability of Explicit and Implict Euler Methods
Consider the tank height problem covered in Example 2.1, There was no inflow, and the

outlet flowrate was assumed to be lincarly related to height, which gave us the following
equation:

dx 1 .
= po= vy = f{x) (4.8)
dt T
where v = A/, A =~ I/ and the stale variable x is the tank height. Since the vartables
are separable, the reader should show that the analytical solution is;
1) = x(Me™" = x(()eM (4.9)

Next, we compare this analytical solution with the explicit and implicit Evler solutions.
EXPLICIT EULER
The function value at step & is:
1
SRy = — x(k)
T
and the state variable value at the next time step is:
Ar At
x(k + Dy =x(k) + - x(k) = (l ) x(k) (4.1
T

T

IMPLICIT EULER

The implicit Euler method evaluates the function at & + 1 rather than k:
1
Sk + 1)) = — xlk+ 1)
T

and the state variable at step & + 1 is:
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Ak + 1) = s(k) + —-‘:‘x(k + 1) .11

Notice that, since this is a linear problem, a nonlinear algebraic equation solver is not
needed for (4.11). We can rewrite (4.11) as

x(k+ 1y =" !At x(k) (4.12)

i B
T

In the next section we compare the numerical stability of the explicit and implicit Buler
methods.
NUMERICAL STABILITY

The explicit Euler solution, written in terms of the initial condition, is (from (4.10)):

Wk + 1) = (1 - -A’-)"' L (0)

T

which will be stable if |1 — At/ | < 1. This is the same result if we use the representation:

Ar
x(k+ 1) = glx(k)) = (l - )x(k)
T
and the stability requirement that | ¢ | < 1. The explicit Buler method is then stable if:

A
w1y
T

and will oscillate for:

These criteria lead to the explicit Euler stability condition of:
0 AMr<<2n7

while the solution will have a stable, oscillatory solution for:
T< A <27

and a stable, monotonic solution for:

O<Ar<rT
The implicit Buler solution, written in terms of the initial condition, is (from (4.12)):

k4t
1
Wby =] = | X
4
T
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which will be stable if | 1/1+As,7] <7 1. This is the same result il we use the representation

x(k + 1) = glx(k)) = A x(k)
I+ .

and the stability requirement that | g’ # <CI. Notice that the implicit Euler method is sea-
ble for any value of Ar (as long as the sign of Ar is correct) and will not oscillate,

EXAMPLE 4.1 Numerical Comparison of Explicit and Implicit Euler

Let /(i) = 4, v =5, and Ar = |, Table 4.1 comparcs the exact solution (4.9) with the explicit
Ealer (4.10) and implicit Euler (4.12) methods,

TABLE 4.1 Linear First Order Example (7=5, At = 1)

[ X, exact %, Explictl Buler ereor x, Implicit Euler Error
0 4.0000 4.0000 4.0000

1 3.2749 3.2000 -2.3% 3.3333 |. 8%
2 2.6813 2.5600 ~4.5% 2.7778 3.0%
3 2.1952 2.0480 —0.7% 2.3148 5. 4%
4 1.7979 1.6384 ~8.9% 1.9290 7.3%
5 14715 1.3107 —10.9% 1.6075 9. 2%

The results shown in Table 4.1 are illustrated graphically by the curves in Figure 4.2.

implicit

explicit

0 5 10 15 20
t

FIGURE 4.2 Comparison of the exact solution with the explicit and imphcit Euler for
Ar=1.
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Larger Integration Step Size. We have seen the well-behaved response for Ar = |
(which is 1/5). Consider.now a larger A1, We can see from (4.10) that the explicit Euler
method predicts x = () for alt time alter time 0, if Ar = 7. Indeed, the explicit Euler solu-
tion is oscillatory for Ar > 7, for this process. For example, let Az = 6 for this problem.
The results are shown in Table 4.2, These results are iflustrated more graphically by
the curves plotted in Figure 4.3. The implicit Euler technique has monotonic behavior
and more closely approximates the exact solution. We sec that the implicit Euler
method can tolerate a larger integration siep size than the explicit Euler techiique,

TABLE 4.2 Linecar First Order Example (v = 5, At = 6}

! x, exact x, Explicit Buler x, Implicit Buler
0 4.0000 4.0000 4.0000
0 1.2048 —(.8000 1.8182

12 .3629 01606 0.8264

I8 0.1093 -(1L0320 0.3757

24 0.0329 0.0064 0.£708

implicit

explicit

] 5 10 15 20 25 30

t

FIGURE 4.3 Comparison of exact solution with implicit and explicit Euler for At = 6.

We have seen that there is a limit to how large a step size can be tolerated by the explicit
Euler method belore it goes unstable, while the Implicit Euler method remains stable for
any step size. This is true for a simple linear ordinary differential equation. The following
example illustrates an timportant jssue when solving nonlinear equations. That is, the im-
plicit Euler method requires an ilerative solution at cach time step.
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EXAMPLE 4.2 Explicit and Implicit Euler—Nonlinear System

Consider a surge tank with an outlet flowrate that depends on the square root of the height of lig-
uid in the tank. When there is no inlet fiow, the model has the following form

dx
dt

= —aVx (4.13a)
where v is the tank height and o = B/A ( = flow coefficient/eross-sectional area).
Analytical solution (exact). The analytical solution is
x(1) = [Va(0) - ar/2]? (4.13h)
Next, we compare this solution with the explicit and inplicit Eoler solutions.
Explicit Euler, The explicit Euler method yields the following equation
k4 1) = k) — Aravia(k)) (4.14)

For the nimerical example of a = 0.8, curves for 3 different Ass are shown in Figure 4.4,

0.01

t

FIGURE 4.4  Explict Euler solution. Ar = 0.01, L1, and 1.0. The 0.00 and 0.1 step
sizes yield virtually identical results, while there is a signiticant evror in a step size of 1.0,
Implicit Evder.  The implicit Buler method yields the following equation

k1) = k) - AraVielk + 1) (4.15)

Recall that when we were dealing with a lincar equation we were able to rewrite the impliciy
Euter eguation o yield an explicit caleulation of the state variable at the next tiine step. Here we
see that this is Impossible for a nowinear equation. Rewriting (4.13),

{4+ 1Y+ Arave(kF 1) - x(k) = 0 (4.16)

we sce that {4, 16) requires an iterative sotution, That is, at time step &+ 1 we must use a numeri-
cal method that will solve a nonlinear algebraic equation. We know from Chapter 3 thet a num-




88 Numerical Integration Chap. 4

ber of technigues, including Newton's method, can be used. To illustrate clearly one approach
that we can take, let v reprosent the value of x at step k + 1 for which we desire 1o find the solu-
tion. We can rewrite (4.16) as

y+EbVy—c=0 (417

where y = x(k + 1), & = Ar o, and ¢ = (k). If Newton's method is used, we can write:

SOD) = 5(0) + BV ¢ (4.18)
where (/) is an index to indicate the ih iteration of Newton’s method.
) (vl
S+ 1) = 30 - ;,%,((3))) (4.19)
where
b R
g (D)) =1+ T/)'(T_) (4.20%

We can .write (4.19) as (from {4.18), (4.19), and (4.20})

Wi+ 1) = p(i) YA+ by = vyl (420

. b
V(i) +
¥(7) 2

Equation (4.21) is then gerated to convergence.
Summarizing, at step &+1 of an integration, we must feratively solve for the value of v at
k+1. That is, (4.21) is iteratively sobved 1o convergence, in order to find x{k + 1) in (4.16).

COMMENT ON IMPLICIT INTEGRATION TECHNIQUES

We have scen that the implicit Fuler method is more accurate and stable than the explicit
Fuler method. We also noted that, For nontinear systems, a nonlinear equation must be it-
eratively solved at cach time step. The tmplicit Euler method allows a much larger time
step, but some of the computational savings much be sacrificed in the interative solution
of the nonlinear algebraic equation at each time step. There are a pumber of more ad-
vanced implicit methods that are used n a number of commercially available integration
codes. In this text we emphasize explicir techniques, which are used by the MATLAB rou-
tines ode?3 and oded 5. SIMULINK has choices of some implicit integration routines.

An cxplicit technique that is more accurate than the explicit Euler technique is
known as the Runge-Kutta method and is shown in the next section.

4.3 RUNGE-KUTTA INTEGRATION

This technique is an extension of the Euler method. n the Euler method, the derivative at
time step &k was used to predict the solution at step i+, Runge-Kutta methods use the
Huler technique (o predict the x value at intermediate steps, then use averages of the
stopes at intemediate steps tor the full prediction from the beginning of the time step.
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4.3.1 Second-Order Runge-Kutta

The first Runge-Kutta approach that we discuss is the sccond-order Runge-Kutta method,
which is also known as the midpoint Euler method, for reasons that will become clear.
The Euler technique is first used to predict the state value at A2, The derivative is evalu-
ated at this midpoint, and used to predict the value of x at the end of the step, Ay, as shown
in Figure 4.5,

Let m represent the slope at the initial point and m, represent the slope (dx/dr) at
the midpoint:

m% = [{t(k), x(}) (4.22)

m, = f([(k) + L;t’ x(k) + L;I ’ﬂi) i (4.23)
x(k + 1) = x(kY + m,Az (4.24)

For autonomous systems, the derivative functions are not explicitly functions of time, so
(4.22) and (4.23) can be written:

my = fe(k) (4.22a)
m, = j(x(k) + Azt m,) (4.23a)
or
my = f(x(k) " %’3 j'(x(k')) (4.23h)
x(k+1) based on x(k)
and slope at t, + %_t
. midpoint slope
/ 7“/_ ——————— slope at initisd point, I(tk,xk)
x(k) <=-=777
] [ |
f l I
b Yert
b b + %}; e + At

FIGURE 4.5 Pictorial representation of second-order Rumge-Kutta {(midpoint Euler) technique.
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Fouation (4.24) can now be writien:
At
x(k + 1) = x(k) + Arflf1xlk) + 5 FllEY) (4.24n)
which is of the form:

x(k -+ By = glx(k))

1t should be noted that the second-order Runge-Kutta is accurate to the order of Ar?,
while the explicit Euler is accurate 1o the order of Ar.

EXAMPLE 4.3 Second-order Runge-Kutta (Midpoint Euler) Technique

Consider again the first-order process:

dx 1 ,
A - o
1 -1
m, = f(x{(k)) = ( - r,r.x(k)) = - x(k) (4.25)
, = f(x(k) +o mlAt) = (x(k) - ?‘—x(k))J (4.26)
_ T

For Ar=1,7 =35, and x(0) = 4.0:

} —1 —4

Prom (4.25) My x(0) = 5

N oM Y vy = _ 30

From (4.26) my = (l - 10) x(hy = 3 (=014 = - Z

From {4.24) x(1y = x(0) + m, At

x(1) = 4.0 - 0.72 = 3.2800

Cotnpare this with the analytical resule of 4.0 ¢ =15 = 3.2749

Notice that the ervor is (.16%. Contrast this with an error of —2.3% from Table 4.1 for the
Ewler method. For the same step size, Runge-Katta techniques are more accurate than the stan-
dard Explicit Euler technigue.

Thus far, we have nsed single variable examyples. The next example is for a two-state vari-
able system.
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EXAMPLE 4.4 Two-state Variable System, Second-order Runge-Kutta Method

Consider two interacting tanks in series, shown in Figure 4.6, with outlet flowrates that are &
function of the square root of tank height. Noftice that the flow from tank 1 is a function of
\/,h1 = hy while the tlowrate out of tank 2 is a function of \/1'12.

1
“11 2 |2
L »

FIGURE 4.6 Interacting tanks.

The following modeling equations describe this system
dhy ¥ N —
- P
dt ﬁmd@m] A= Vi

(k) F5,F). By « o By 4.27
f‘z v /il?_ \/]11 — ]32 — /1-_) \/ hz

dh,

_dt
For the following parameter values:

ft*s 5 i s
= 2.5 = - A, =5fA, =10
By min e V6 min ! :

and the inpat: F =5 f3/min
the steady-state height values are:

hy, =10 hy =6
Numertcally, we can write (4.27) as:

dh, P
i 1-05Vh -}
dt | Tty b

dhy | L),

- 1 {4.28)
dr 0.25 Vh, - h, - e Vi

Since this system is autonomous (no explicit dependence on time), we can Jeave ¢ out of the ar-
guments;

m, :f(h(k)) — fl(hl(k)v hQU‘))J

(R (k) hy(K))

. Ar At
Silly (k) + 5 my, (k) 4 5 myy)

L, =

. At Ar
Sl (k) + 5 my, ho(k) + 5 ny,)
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Rk + 1 h{k
Bk + 1) = i€ UL + myie
ik + 1) hy(k) :
Let the inittal canditions be /1,(0) = {2 ftand A, (0) = 7 ft. Also, let Ar= 0.2 minutes.
For k =0, we find

Cosvier |
Hty = _()118{1341

cu o T 00189ss
025V12-7 W VT

Ris

0.2
. 12 4 5 (~0.118034
Ihl(o)J AL 2 )

oy T2

B I 11.988197 ‘
) -

0.2 T 7.001896
7 + =5 (0.018955) : '

At 02
y(0) 5 myy = 124 (- 0TER034) = 11988107 &

! )
(0} + ‘3 T (,f- (0.018955) = 7.001896 f

At At
oy, = _[;(:’11(0) A 5 e h(0) + 5 m,z) = f{11.988197, 7.001896)

=1 - 05VIT.088197 7001806 = -~ 0.11a6501

At At
My, = _fz(h,(()) + T M hy(0) + 5 mu) = fH{11.988197, 7.001896)

= 0.25 V11988197 — 7.001896 — EN VEHTRSE = 0.018116
2V6

B (1) = h{0) + myAr = 12 + — 0.116501 (0.2} = F1.976700 ft

y(1) = B{0) + my,Ar = 7 4 0.018116 (0.2) = 7.003623 fe

and we can continue for the next time step, k = L. A plot of the response of this system is shown
in Figure 4.7. The response of i, actually increases slightly before decreasing—this is missed
hecanse of the scaling,

Notice that when R is greater than b, the flow is from (ank | 1o tank 2; while when /i) is
less than fry, the flow is from tank 2 to tank 1 {atthough this cannot oceur at steady-state). Since
we have assigned a positive value o F| when the flow is from tank | to tank 2, then a negative
value of /| indicates the opposite flow. Care must be taken when solving this problem numeri-
cally, so that the square root of a negative nunber is not taken. For this purpose, the sign func-
tion is used
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where sign () — Jip) = Vit hy = iy and sign ()~ ) =1 il hy 2= By

12 e
11
10

&

e 9

o

=g

0 20 40 60 80 100

time {minutes)

FIGURE 4.7 Transient response of the interacting tank example, using sccond-order
Runge-Kutta.

The idea behind the second-order Runge-Kutta can be extended to higher-orders. The
most commeonly used method is the fowrth-order Runge-Kutta method as outlined in the
next section,

4.3.2 Fourth-Order Runge-Kutta

Using this method, the approximations are more accurate than explicit Euler or second-
order Runge-Kutta. The idea is to use the initial slope (1)) to generate a first guess for the
state variable at the midpoint of the integration interval. This first guess is then used o
find the stope at the midpoint (m,). A “corrected” midpoint slope {(m3) is then tound by
using m,. A linal slope (1) is found at the end of a step using my. A weighted average of
these slopes ts then used for the iMegration. The algorithin is

nry = ftk), x(k)) (4.29)
m, :]‘({(k)) o+ 21 At x(k) + ;;;;,Ar) (4.3
H, :Af(l(k) + ; Al x(k) + ; mZA!) (4.31)

my = f(i(k) + At, x(k) + m;Ar) (4.32)
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m,

x(k 4+ 1) = x(k) +

"y N ony

-

v At 433
6 3 T3 T .33)

To become more familiar with integration techniques, you should solve some of
your initial problems using the explicit Fuler method. Make certain that your step size 13
small enough so that the errors do not build up oo rapidly. As you find a need for more
accuracy, you should then use the fourth-order Runge-Kutta method. In Section 4.4 we in-
troduce the MATLAB routines that are available For numerical integration.

SELECTION OF INTEGRATION STEP SIZE

Gienerally, integration step size must be “small” for Euder, can be farger for second-order
Runge-Kutta (as far as aceuracy is concerned), and can be still farger for fourth-order
Runge-Kutta, Particularly for Euler, step sizes that are too karge can be unstable or inaceu-
rate. Step sizes that are too small may waste computer time or have numerical truncation
ervors since the state variables may not change much from step 10 step. If the sardent uses
afixed step size, then it is generally a good idea to try larger and smaller step sizes 1o sec
il the results change significantly. Generally, you will want to use as large a step sive as
possible. A particular challenge is from “saff” systems (time constants that span a wide
range), where a commerical code specifically for stff systems shoutd be used. One well-
known implicit method for suff systems is Gear’s method, which is available
SIMULINK. Tmplicit methods will only work well for systems that are continous. F dis-
conlinvous systems are simulated (for cxample, step changes at certain times), then
Runge-Kutta methods should be used,

Most commerical integration packages use a variable siep size. The integration step
size is automaticalty chosen and varied from step-lo-step o assure accuracy whike mini-
mizing computation {ime. The integration routines in MATLAB usc a variable integration
step size.

4.4 MATLAB INTEGRATION ROUTINES

The primary purpose of the previous sections in this chapter was (o review simple numer-
ical technigues for integrating initial value ordinary differential equations. We have illus-
trated the techniques with some simple nwmerical examples, tmplemented as m-files in
MATLAB. In practice, we do not recommend thal you write your own integration rou-
tines. You will spend much time debugging these routines and they will generally not he
as powerful as cxisting academic or commerical infegration routines. Your goal should be
to provide the correct formudation of the model, specifying the costect initial conditions
and parameters. You should generally use a well-documenied, commerical or public do-
main integration code o implement your simulation.

MATLAB has several routines for numerical integration; two are ode?23 and
oded5. odel3 uses second-order and odeds uses fourth-order Runge-Kuta integra-
tion. Both routines use a variable integraiion step size (At ts not constant). The integration
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step size is adjusted by the routine to provide the necessary accuracy, without taking oo
much computation time,

44.1 ode23 and oded5
To use oda2? or odeds, the reader must first generate an m-file to evaluale the state
variable derivatives. Then the student gives the couvmand:
(L, x]= odedb{ 'xprime’, [t0,tf]x0}
where

wprime 1% astring variable containing the name of the m-tile for the derivatives

&0 is the inital time

tf is the final time

=0 is the initial condition vector for the state variables (usually a column
vector)

The arrays that are returned are

ta(column) vector of time
% an array of state variables as a function of time (column | is state |, elg.)

For example, it the ime vector has 50 elements, and there are three state variables,
then the state variable vector has the 50 rows and three columns. After the inlegration is
performed, il the student wishes to plot ali three variables as a function of time, she/he
simply types

plot{t,x)

H o you only want 1o plot the second state variable, then the command
plot{t,=x(:,2)} is given,

EXAMPLE 4.4  Revisited Solution Using MATLARB Routine ode45
Tirst, the following file titled twotnk . m was generaled:
function hdot = twolbnk(t,h};
consL={1/{2%sqrt (6}));
hdot: (1) = 1-0.5%*sgrt (h{l)-h{2})};
hdot (2) = 0.25*%sgrt(h{1)-h{2))-const*sqgri(h{2)};

Then, the following command is cotered m the MATLAB command window:

(£, hl=zoded5{"twotnk ', [01001, (12 V}1'};
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Notice that we are generating two arrays, (and h, and using ode45. The function file is named
twotnk.m. The initial time is /0 = 0 and the final time is i = 100. The initial condition is
A0 =112 77, Al the MATLAB prompt (») the following commands were given:

plot{t, hi:, 1))
plot{c,h{:,2})

The transient responses are shown in Figure 4.8.

12 - : . et oot

105
0 20 40 &0 80 100
time (minutes)
a. Height of Tank 1
7.2

fp

0 20 40 60 80 100

time (minutes)
a. Height of Tank 2

FIGURE 4.8 Transient response curves for interacting tank example.

Notice the tremendous reduction in effort when compared with generating your own Runge-
Kutta code.




Further Reading 97

Often it is desirable to know the state variable values at a particular time or at fixed time
steps. A variable step size algorithm yields vanable values that are not at a fixed step
sizes. One has two options. If the variable step size is smaller than that of the variable
step, then we could reduce the step size. The major disadvantage is that computation time
will increase.

The best option (and that recommended by MATLABR) is to use a spline fit to inler-
polate or extrapolate the values Lo desired points. The routine used is interpl.

SUMMARY

It is mmportant Tor the student to understand the Euler, as well as the second and fourth
order Runge-Kutta integration techniques. When using your own fixed step size integra-
tion code, be careful with the selection of At. In practice, it is preferable to use a commer-
cial integration code, which automatically selects the integration step size.

The MATILAB routines used were

"ODE23:  Variable step size, second-order Runge-Kulta

ODE45: Variable step size, fourth-order Runge-Kutta

FURTHER READING

A nice treatment of numerical integration is provided by:

Parker, T.S., & L.O. Chua. (1989). Practical Numerical Algorithms for Chaotic
Systems. New York: Springer-Verlag.

A treatment of integration techniques with chemical engineering applications is presented
by Davis.

Davis, M. E. (1984). Numerical Methods and Modeling for Chemical Enginecrs.
New York: Wiley.

The following book is more of an advanced undergraduate/first-year greaduate student text
on numerical methods to solve chemical engineering problems. The emphasis is on FOR-
TRAN subroatines to be used with the IMSL (FORTRAN-hased) package.

Ramertz, W.F. (1989). Compuiational Methods for Process Simulation. Boston:
Butterworths,
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STUDENT EXERCISES

Consider the scaled predator-prey equations.

dy

dtl = afl - }’2) ¥
dy,

dr Bl - ¥y,

The parameters are o = § = 1.0 and the initial conditions are y(0) = 1.5 and
¥,(0} = 0.75. The time unit is days.
a. Solve these equtions using explicit Euler integration. Compare various integra-
tion step sizes. What At do you recommend? In addition {o transient responses
(¢ versus y, and y,), also plot “phase-planc” plots (v, versus y,}.
b. Solve these equations using the MATLAB integration routine ode4 5. Compare
the transient response curves with the Enler results.
¢. How do the initial conditions effect the response of y, and y,? Please elahorate.
Consider a CSTR with a second-order reaction. Assume that the rate of reaction
(per unit volume) is proportional to the square of the concentration of the reacting
component. Assuming constant volume and constant density, show that the model-
ing equation is:
dC _F F

L= C—k,C?
dt VLV 2

Use the following parameters:

v
i 5min  k, = 0.32 ft Ibmol ™" min'

and a steady-state inlet concentration of
€, = 1.25 lbmol ft*

Calculate the steady-state concentration of C; = 0,625 Ibmol 3.

Assuine that a step change in the inlet concentration occurs at £ = 0. That is. ¢
changes from .25 lbmol ft3 to 1.75 lbmol 173 at ¢ = 0 minutes, Use odedb to sim-
ulate how the outlet concentration changes as a function of time.

Analyze the stability of the fourth order Runge-Kutta method for the classical first-
order process.
dx
s
et
What is the largest integration step size before the numerical solution becomes un-
stable?




4.

Student Exercises 99

A gas surge drum has two components Chydrogen and miethane) in the feedstream.
Let y; and y represent the mole fraction of methane in the feedstream and drum, re-
spectively. Find P/l and dv/dt il the inlet and outlet {Towrates can vary. Also as-
sume that the inlel concentration can vary. Assume the ideal gas law for the effect
of pressure and composition on density.

Assume that the gas dram volume is 100 liters. The emperature of the drum
is 31.5 deg C (304.65 K).

At steady-state the drum pressure is 5 atm, the molar flowrate in and out is
2 gmol/min and the concentration is 25% methane, 75% hydrogen.

Use Euler integration and ode4d5 to solve the following problems. Discuss
the effect of Integration step stze when using Euler mtegration. in all cases, you arc
inttially at steady-state.

a. Assume that the molar flowrates remain constant, but the inlet methane concen-
tration is changed to 50%. Find how pressure and composition change with
time,

b. Assume that the molar flowrate out of the drum is proportional to the differcnce
in pressure between the drinm and the outlet header, which is af 2 atm pressure.
Perform a step change in inlet concentration to 50% methane, situltancously
with a step change in inlet Nowrate to 3 gmoel/min.

¢. Assume that the MASS flowrate out of the drum is proportional fo the square

root of the difference in pressure between the drum and the outlet header
{which is at 2 atm pressure). Agamn, perform a step change in inlet concentra-
tion to 50% methane, simubtancously with a step change in inlet flowrale o
3 gmol/min,

d. Asswme that the MASS lowrates in and out are propottionad to the square root
of the pressure drops. Assume that the steady-state inlet gas header is at 5 atm.
Perform a step change in inlet concentration 1o 50% mcthane, sinuitaneously
with a step change in inlet pressure (o 6 atm,

Pharmacaokinetics is the study of how drugs infased to the body are distributed to

other parts of the body. The concept of a compartmental model 1s often used, where

it 1s assumed that the drag is injected into compartment 1. Some of the drug is olim-
inated (reacted) in compartment 1, and some of it dilfuses nto compartinent 2 {the
rest accumulates in compartment 1), Similarly, some of the drug that diffuses inlo
compartment 2 diffuses back mto compartment 1, while some is eliminated by reac-
tion and the rest accumulates in compartiment 2. The rates of diffusion and reaction
are directly proportional to the concenttration of drug in the compartmeni of interest.

The following balance equations describe the rate of change of drug concentration

in each compartment.

dx,

o Ak P kp)x oyt
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where x; and x, = drug concentrations in compariments | and 2 (pg/kg patient
weight), and « = rate of drug input to compartment | (scaled by the patient weight.
wg/kg min).

Experimental studies (of the response of the compartment 1 concentration to
various drug infusions) have led to the following parameter values:

(kg + ki) =026 min™!
(ko + kpy) = 0.094 min~!
kiokyy = 0015 min~!

for the drug atracurivm, which is a muscle relaxant. Notice that the parameters have
not been independently determined. Show (through numerical simulation) that all of
the following values lead Lo the same results for the behavior of x,, while the results
for x, are different. Let the initial concentration be 0 for cach compartment, and as-
sime a constant drug infusion rate of 5.2 pgfkg min.

a. ki =k
h. k§2=2k2|
¢ kyy = 0.5 ky

Discuss how the concentration of compartment 2 (i measueabie) could be used to
determine the actual values of &, and ks
Use the MATELAB function cdeds for your simulations.

A stream comains a waste chemical, W, with a concentration of 1 mol/liter. To meet
EPA mntd state standards, at least 90% of the chemical must be removed by reaction,
The chemicai decomposes by a second-order reaction with a rate constant of
1.5 liter/(mol hr). The stream flowrate is 100 liter/hr and two available reactors
(400 and 2000 liters) have been placed in series (the smaller reactor is placed before
the larger one).

a. Write the modeling equations for the concentration of the waste chemical. As-

sume constant volume and constart density. Let

C . = concentration in reactor I, mol/liter
O, = concentration in reactor 2, mol/liter
F = volumetric flowrate, liter/hr
v, = liguid volume in reactot 1, liters
V, = liquid volume in reactor 2, Titers

S
|

= second-order rate constant, liter/(mol hr)

b. Show that the steady-state concentrations are .33333 mol/liter (reactor 1) and
0.09005 mol/liter (reactor 2), so the specification s met.
(Hint: You need to solve quadratic equalions to obtain the concentrations.)

¢. The system is not initially at steady-state. Write a function file and use oded5
for the following:
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(i), i C(0) = 03833 and C 5(0) = 0.09005, find how the concentrations
change with time,
i), If C,{0) = 03333 and C ,(0) = 0.14005, find how the concentrations
change with time.

7. Consider a batch reactor with a series reaction where component A reacts to form
the desired component B reversibly. Component B can also react to form the unde-
sired component C. The process objective is to maximize the yield of component B.
A mathematical model is used fo predict the time required to achicve the maximum
yield of B.

The reaction scheme can be characterized by

ki

e T ](,Z
A T B-*-

klr

C

Here & yand &y, represent the kinetic rate constants for the forward and reverse reac-
tions for the conversion of A to B, while &, represents the rate constant for the con-
version of B to C.

Assuming that each of the reactions is first-order, the reactor operates af con-
stant volume, and there are no teed or product streams, the modeling equations are:

dC

_;’;ﬂ_ = —k,Cy + k&, C,
dC,

T,itﬁ = k'f Co—ky, Gy~ Ky, Gy
dC,-

dt(l ~hG

where €, Cp, and C- represent the concentrations (mol/volume) of components A,

B, and C, respectively,

a. For k,fm 2, k=1, and ky = 1.25 hr 1, use oded5 to solve for the concentra-
tions as a fonction of time. Assume an initial concentration of A of Cyy =
{ molfliter. Then plot the concentrations as a function of time. For what time is
the concentration of B maximized?

b. Usually there is some uncertainty in the rate constants. If the real value of &, is
1.5 hr—* find how the concentrations vary with time and compare with part a.




