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LINEARIZATION OF
NONLINEAR MODELS:
THE STATE-SPACE
FORMULATION

5

Many dynamic chemical processes arc modeled by a set of nonlinear, first-oruer differen­
tial equations that generally arise from material and energy balances around the system.
Common analysis techniques arc based on linear systems theory and require a ,\·tate~space

model. Also, most control system design techniques are based on linear models. The pur­
pose of this chapter is to provide an introduction to state-space Inodcls and linearization
of nonlinear systems. After studying this chapter the reader should be able to:

Write a linear model in stale-space form.

• Linearize a nonlinear model and place in state-space form.

Use thcMATLAB eig function to analyze the stability of a state-space model.

• Develop the analytical solution of state-space models.

Understand stability and transient response charactcrstics as a function of the
eigenvalues.

• Understand the importance of initial condition "direction".

Be able to use the MATLAB routines step and initial for simulation of statc­
space models.

The major sections in this chapter are:

5.1 State-Space Models

5.2 L,inearization of Nonlinear Models

5.3 Geometrical Intell1retation of Linearization

5,4 Solution of the Zero-Tnput Form

5.5 Solution of the General State-Space Form

5.6 MATLAB Routines step and initial

105
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5.1 STATE·SPACE MODELS

Thus far in this text we have discussed dynamic models of the general form:

x = f(x,u) ('ill

where f(x,u) is, in general, a nonlinear function vector.
A linear model is a subset of the more general modeling equation (5.1). 'I'he fonn of

linear model that we discuss in this chapter is known as a statc-space model. First. \vc
show how to write statc~spacc models for systems that arc inherently linear. Tlll'.IL \VC

show how to approximate nonlinear systems with linear models.
[~xamplc 5.1 illusln:ttcs the form of a state-space model.

EXAi\IPLE 5.1 NOllintcracting Tanks

Consider two tanks in series where the flow nut of the first tank enters the second lank (Fig­
ure 5.1). Our objective is to develop a model to describe how the height of liquid in tank 2

changes with lillIe, given the input fJowratc F,,(t). We aSsumc that the flow out of each lank is u
linear function of the height of liquid in the tank.

Fo t

h1 tbi. F1

h2 tt=L. F
2

FIGURE 5.1 Noninteracting tanks.

A material balance around the first tank yields (assuming constant density and F] :;;; [1 IlIl)

(5.21

where A J is the constant cross-sectional area (parameter), I) I is the flow coefficient (paranlt'((TL

Po is the fJowrale into the tank (input), and hi is the tank hcight (state).
Writing a materi<l.1 balance around the ~econd lank (since Ii~l :;::- [)2ItZ)

F J /3). - _ .. ' II
A, A, 2



where A2 is the constant cross-sectional area for tank 2 (parameter), ~2 is the now coefficient
(parameter), F

J
is the flowratc into the tank, and /12 is the tank height (state). In this case, F I is

not an independent input variable that can be manipulated, since F 1 =. {3JhJ" We can write the
previous equation as

Sec. 5.1 State-Space Models

dI',. /3, h ~2 h
df - A

2
1 - A

2
2
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(5.3)

Notice that we can write (5.2) and (5.3) in the following matrix form:

(5.4)

which has the general form:

x=Ax+Bu

where:

(5.5)

/3,
A,

/3,
A2

The state and input vectors arc (notice that the input is a sC:;llar):

x = r~:J anel II = Fo

The additional equation that is nonnally associated with a state space model is

y"c:Cx+[)u (5.6)

where y is a vector of output variables. Generally, output variables arc variables that can he mea­
sured (at least conceptually) or arc of particular interest in a siumlation study. Here, we will con­
sider the case where both tank heights arc outputs. Let output I be the first tank height and out­
put 2 be the second tank height

The matrix-vector form is:

y ~ [I 0] [h'l cc exo I h,

where:

c [
I oj
o I
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/fwe also consider the input, Fo' to be the third output variable, we have the following relation­
ship:

l' I []1 0 ' ()

y ~ 0 1 [;;'] + 0 [F;,]
o 0 2 1

which is the form of (5.6), with

5.5.1 General Form of State Space Models

Example 5.1 illustrated a specific case of a state-space model. In general, a state-space
model has the f{)lIowing form:

dX I

dt
-I- (JIll X;, -I- bll H) -I- -I- h Jill lim

-I- dim UIlI

which has n state variables (x), m input variables (ll) and r output variables (y). This rela-
tionship is normally written in the matrix form:

["] [' (112 'or] [" btl

"r]
""" x" + b", bill b~!Il1 I:",x" (lui (1,,2

[" I"["
ell '1'] ,I' d l2

"]1 "]
d~lIl ltl/lYr (r1 (;,<2 em x" tid da



where the dot over a stale variable indicates the derivative with respect to time. A~ shown
in Section 5.4, the eigenvalues of the Jacobian matrix (A) determine the slabihty of the
system of equations and the "speed" of response.

The aij coefficient relates state variable j to the rate of change of state variable i. Sillli~

larly, the bij coefficient relates inputj to the rate of change of state variable i. Also, cij relates
state j to output i, while dij relates input) to output i. We can also say that the klh row of C
relates all states to the ktll output, while the kth column of C relates state k to all outputs.

In this section we have shown how to write modeling equations that arc naturally
linear in the state-space form. In the next section we show how to linearize nonlinear
models and write them in the state-space form. Linear models are easier to analyze for
stability and expected dynamic behavior.

which has the general (state~space) form:
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x~Ax-l-Bu

y~Cx -I-Du
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(5.7)

5.2 LINEARIZATION OF NONLINEAR MODELS

Most chemical process models are nonlinear, but they arc orten linearized to perform a
stability analysis. Linear models are easier to understand (than nonlinear models) and are
necessary for most control system design methods.

Before we generalize our results, we will illustrate linearization for a single variable
problem.

5.2.1 Single Variable Example

A general single variable nonlinear model is:

d-,,;
dl ~f(x) (5.8)

The function of a single variable, j(x), can be approximated by a truncated Taylor senes
approximation around the steady-state operating point (.-r):

. iif I I a
2rI .j(x) ~ f(xJ -I- .. (x - xJ -I- .., (x - x,)' -I- hIgher order terms

dx x, 2 dx x,

Neglecting the quadratic and higher order terms, we obtain:

. . af Ij(x) = j(xJ -I- . (x - xJ
dx x,

Note that:

dxy ()~jx, ~O
dl

(5.9)

(5.10)

(5.11 )
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by definition of a steady-state, so:

dx iii I=f(x) == '. (x- x,)
dt rh .1,

where the notation 0f1(}ti.t
s

is used to indicate the parlial derivative ofJ(x) \vith respect to .t,

evaluated at the steady-state. Since the derivative of a constant (1;) is zero. we call write:

which leads to:

dx

dl

d(x - xJ
dl

d(x - 'J
dl

ill I,.= .' (x - x,)
dx -I,

I) 13)

() 1-II

ThcTcaSOll for using the expression above is that we arc orten interested in deviations in '-1
stale from a steady-stale operating point. Sometimes the I symbol is llsed to represellt dc
viat;rm variu!JIes, x' ::::: X -'_:y We can sec that a deviation variable rcprcscllls the CIWll).!C

or perturhation (dcviatirm) 1'1'0111 a stcady-state value.

'Ihis can be written in state~space Corm:

() 1)1

dr'

dt
(f x' (516)

where {/ :::: iH!dxxs .

We have shown how to linearize a single variable equation. Next, \VC consider a
system with one state and one input.

5.2.2 One State Variable and One Input Variable

Similarly, consider a function with one state variable and one input variable

x
dx

~ f(X,II)
dl

() 171

Using a Taylor Series Expansion Corf(x,u):

x . ill I ill I/(X"II,) + ;' (x - xJ + .' . (II - IIJ
d.x .t,.Il, {iu .1,.1/,

iY'/1 lil211'..: (x - X,)(II - II,) + ; 'i (II ~. II,)
dxtJU .1,.11, 2 rJlr .\\.11\

+ higher order terms

b



and truncating aftcr the linear terms, we have:
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. . ) iIf Ix ~~ fix It +. (x - x )
, s, s. (Jx .\",.(1, - S

ill I
t- ()ll IJ',

(It - ItJ
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(5.18)

and realizing thatj(x,I"u) :::: 0 and dx/dt = d(x ~ .r)/dt:

d(x - xJ .~. ilf I (x ~. x) + ilf I
dl ax ',.11, , all ',,II,

Using deviation variables,./ ::::.r - xI" and u' = It - 11,1':

which can be written:

dx'
= (/ x' j-- b u'

dt

where ({:::: cYIc-1rLr,\' and b::::; ~fl()u[x,\"u.\,

(li .~ uJ

(5.19)

If there IS a single output that is a function of the states and inputs, then:

Y g(x.lI) (5.20)

Again. performing a Taylor series expansion and truncating the quadratic and higher
terms:

(5.21 )

Since g(x,I"u\) is simply the stcady-state value of the output Cv), we can write:

(5.22)

or

y - y, ~ co (x - xJ + d (li - lIJ

where c:::: aJ;J{)xi.\. /I and d = dg/au:,_
\" s '- .\',II.\'

l~xalnplc 5.2 illustrates the application of linearization to a one~input, one-slate nonlinear
system.

Using deviation notation:

y' ,,::. C x' + d II' (5.23)
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EXA \IPLE 5.2 Consider H Nonlinear 'rank lleight Probll'l11

dh

<il

I·

.1
13 \ II
.'1

\vhcrc Ii i\ tlie sjalC \ariilhlc. F is the input \'ariahlc. 13 Hild A arc parameters. The riglJlhand side is:

I(ld)
r
A

1(l1F)
I

I ,

\
Ij \ hi
,I '

I - [3
III

2/\ \ h,
(:,),251

rile ftl'\l terll] ell] the righthand side is lern. because the lincari/<ltioll is ahout a slcady~swtc

point. That is.

W(, call jll)\'\ \\Tite:

d(h hJ
<il

<ih I

dl!' J

I

.1

I' II,
1,,\ \ II

()

I
11.1 + II

A

and lI\ing dC\ialiul1 \ariahk nutatioll (1/::0: Ii - h
j

and II':::: r and dmpping the

I'dh'

<II
I.'

2/\\ 11,
II"

,I

!--'\)r \:UIl\CllicllCC (simplicl1;' in llotatj()!11 we often urlJJ! the (') notation and assume that x ~l!1d II

arc dc\j,Hi(1I1 \(lriahles Cr:::: Ii - h,. /I:::: r (,i dIld write:

which i" in the :sta!('-sp;\l'l' form

til:

dl

dr

dr

IJ
2/\ \' h,

ux-l-bu

I

"I

(527)

5.2.3 Linearization of Multistate Models

The prC\ious cx,-ullples sho\\ed how to linearize single-stale vari~lhlc systems. In this sec­

lion \VC geJlcralizc the technilJue for any' I1umber ur slates. lkfnre vvc generalize the tech­

niquc. it is worthv,hile to consider an example system with Ivve) states, olle input and OIlC

output.

~.._------------_••-



Performing a Taylor series expansion of the nonlinear functions, and neglecting the quadratic
and higher terms:

(5.29)

(5.28)

(5.30)
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~ 1;(.r, ,X"ll)
dX j

lit

Linearization of Nonlinear ModelsSec. 5.2

EXAMl'LE 5.3 Two~statc S.ystCJll

From the linearization about the steady-state:

j;(Xj"Xh,U) = J;(X il ,X2",Il,) = 0

and:

g(X I."X2"U) ,=-, y,

Since the derivative of a constant is zero:

"\x, -=-or,,}
dl

and
d(x] - x2)

lit

we can write the state-space model:
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[

,II,
(Ju

f- _.
dfe
(JII ,ll""1 (5.311

I<lg
dg ,II~' XI,,

I·d.t] t .. "." ilx, t"

\\hid) i~ lhe form or a st:l!t'-SP:lCl' IlHldel:

x' A x' + H u'
y' ex' + D u '

\\here (') indicates dC\iation variahles.

5.2.4 Generalization

J
NO\\ consider the tll'ncral nonlinear Illodel \\'hcrc x is <l \cdor of II state v<triable,,_ lJ is (j

v('clOr of III input \ariahlcs and y is a vectur of r output \ariables:

x, ~ f,(.r,. ... \'",u, .. ·1/111)

xn
.. 1;,(x 1 ... .x/I·u I' , .. lI m )

V gJ (.r j ....-\"".11 J' .If",)- ,

Yr g,(.\l" ,X",II], .. .11 1)

In \-ector notation:

f( X,II)

g(x,u)

F killen!" of the linearization matrices arc defined III the follll\ving fashion:

15 ..\.11

(';,\41

/\ 1.1 "1.1(lX,' __ Ii

<11/, I .. "

b



Usually, the measured (output) variable is not a direct function of the input variable, so it
is Illore common to sec the following state~spacc model:

115

(538)

(5.37)iJu Ic, = '''i
'.I ~dAj .1,_1<,

i)u ID = -"-"
II aUj "/'>

Linearization of Nonlinear ModelsSec. 5.2

x~Ax+BlI

y' Cx'+Du'

Generally, the () notation is dropped and it is understood that the model is in deviation
variable form:

x=Ax+BlI

After linearization, we have the statc~spacc form:

x' A x' + H u'

y=Cx+[)lI

This procedure is applied in [~xample 5.4.

EXAMPLE 5.4 Interacting Tanks

Consider the interacting tank height problem shown in Figure 5.2:

FIGURE 5.2 Interacting tanks.

AsslIlne that the flowratc out of tanks is a nonlinear function of tank height. The f]owratc out of
tank one is a function of the difference in levels between tank I and lank 2.
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Also, assume that only the second tank height is measured. The output, in deviation variable
form is

Notice that there arc two state variables, one input variable, and one outptH variable.
Let

u = F- F,

The clements of the A (Jacobian) and R matrices «5.35) and (5.36» arc:

"fl IlJil1 hJ;

ilf IAu = ah'} h F
2 ".<

li = illi I
II ilF hJ',

IJ I

2A I Vhl,\~--h~;

~I­
2A1VhL\-=7i~\

~J
2A2v'hl;~-li;_;

1

Al

=0

~2

2A,vh"

Since only the height of the second tank is measured, y 0::: g(h 1,h2,F)::o::: h2 -- ilL, (from (5.37)):

ell = (jj;; k.", ~~ 0

and the state-space model is:
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[
(!li'] cc

{fJ:}

dt

Il,
--- 2/tl\,/h l:;- :~)17s

Il,
2A2V/hl,--~-h2'

where:

t Ul}UI
y [O!] 1~:1

(5.39)

In this section we have shown how to linearize a nonlinear process model and put it in
slate-space form. The states in this model arc in deviation (perturbation) variahle form;
that is, the states arc perturbations from a nominal stcady~stat:c. A stale-space moclel pro­
vides a good approximation to the physical system when the operating point is "close" to
the linearization point (nominal steady-state).

5.3 INTERPRETATION OF LINEARIZATION

In Section 5.2 we illustrated the method of linearization of models into slalc~space form.
The objective of this section is to illustrate what is meant hy linearization of a function.
Consider the single tank height problem, which has the following model:

dh F f3 ...
~ J(h,l')·c - vh

dl A II

for a system with A -= 1 n2 , !Is :::: 5 ft, and fj ;;:; I/V5 ftL5/min the steady-state f10wrale is
Fs ;;;;: I ft3/min. To focus our analysis 011 the meaning of the linearization with rcspect to
the statc variable, consider the ease where the input is constant. Then, from (5.39) and the
given parameter valucs:

1
f(hYJ c.c I ~ vh

performing the lincarization:

"If IJ(h.FJ = f(h,,!',) +: . (h ~ h,)
dh h,)"s

(5.40)
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0,5

~ linear
"'"

o

-a,s
o 2 4 6 8 10

x

FIGlJRE 5.3 Basic idea of linearization. 'rhe linear approximation is
exact for the steady-state value of x;::o: 5.

for our parameter values

(h,FJ '" 0 +
2\15

(h - hJ

or

I
('(hF)=O--(h-h)
. 's . 10' (54 I)

50403020

.' .. '

10

10

8

'"
6

1"
'"'q;

4.c

2

a
o

lime, min

FIGURE 5.4 Comparison of linear and nonlinear responses for two different
initial conditions.



We can see how good tbe linear approximation is by ploning both the nonlinear function
(5.40) and the linear function (5.4l), as shown inlijgurc 5.3 011 p. liS. Here we have used
x to represent tank height and .f(x) to represent the nonlinear and linear functions. Notice
that the linear approxiruation works well between roughly 3.5 to 7 feet. or course, the two
functions arc exactly equal at the steady-state value of 5 [eet, which was the point at
which the Taylor series expansion was performed. H.calizc that .f(x) is dx/dt, which is the
rate of change of tank height. It makes sense that the rate of change is positive at a tank
height less limn 5 feet, because the system "seeks" to achieve a steady-state level of
5 feel. Similarly, for a tank height greater that 5 feet, the rate of change of tank height is
negative, because the level "desires" to decrease to 5 feet. We can also see that the linear
system wiJl be slower than the nonlinear syslem, if the tank height is less that 5 feet, but
will be faster if the height is greater than 5 feet, as shown in Figure 5.4.
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5.4 SOLUTION OF THE ZERO·INPUT FORM

We have previously written the general state space Inodel in the following form:

x~Ax+llll

where x and u are deviation variable vectors for the stales and inpulS, respectively. In this
section we assume Ihat the inputs are held constant at their steady-state values, but thaI
the states may be initially perturbed from steady~state. The "zero-input" form of the state
space model is then:

or

[.j [
\1 all

t'/I {lnl

x

(/1I2

Ax

1r
·]{/lll XI

llll/l .fn

(542)

This form is used to analyze the stability of a system and to understand thc dynamic be­
havior of a system that has had its statcs perturbed from the steady-state values.

Recall that the single variable equation:

X a x

has the solution:

X(I) ,,'" x(O)

which is stable if a < O. In a similar fashion, the solution to (5.42) is

X(I) ~ e"'x(O) (5.43)

and the solution to (5.43) is stable if all of the eigenvalues of A are less than zero. The re­
sponse of (5.43) is oscillatory if the eigenvalues arc complex.



There arc many differenl ways to calculate the exponential of a matrix; in this chap­
ter we discuss only the similarity tr{[n.~1"orm method.

Recall that the eigenvector/eigenvalue problem is written (sec Module 2 for a re­
view):
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AV=V;\

l<Of a 2X2 A matrix we have the following eigenvector matrix:

Iv" "12)V = [s, S2J =. v" "22

where S, =[~~:]= first eigenvector (associated with AI)

S2 = [~~~] = second eigenvector (associated with 1..2)

and the following eigenvalue matrix:

II.., 0 I;\ = 0 1..
2

Multiplying (5.44) nn the right side hy V·] wc find:

A=V;\V '

multiplying by the scalar t and taking the matrix exponential, we find:

eM = V ei\1 V-I

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

where (5.49)

and we sec imlllediately why Ai < () is required for a stable solution. The solution for x(t) is

x(t) = V e'" V-I x(O) (5.50)

An interesting result is that an initial condition vector in the same direction as ~i has a re­
sponse in the direction of ~i with a "speed or response" of Ai" This is shown by the foll{)w~

ing analysis.

5.4.1 Effect of Initial Condition Direction (Use of Similarity Transform)

Recall that we arc solving the following model

x= A x

Define a new vector z, such that

x = Vz

(5.42)

(5.51 )
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or

z = V--- J X

and notice that (from (5.51 )):

x = V Z

Substituting (5.53) and (5.51) into (5.42):

Vz=AVz

or, left multiplying by V-I

z= Vi A Vz

But, from (5.44) A V = V A

so we can write:

V'AV=!\

which yields (from (5.55) and (5.56)):

z = !\ z

But A is a diagonal matrix (sec (5.46», so we have:

[il] = 'AI 0]1"']
Z2 _0 "-2 __ Z2

Notice that (5.58) represents two independent equations:

z] = "-IZ\

12 = "-2 Z2

which have the solutions:

z,(t) = Z,(O) e'"

z,(I) = Z2(0) e'i

and we can write:

[ZI(t)1 "e'" O][Z](O)]z,(t) = 0 e',1 .Z2(O)

or

z(t) = eAl z(O)

Notice that, if the z(O) vector has the form:

ESCOLA Dc EHGENHARIA
BIBLIOTECA

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)
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then:
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and, if tile z(()) vector has the form:

z(t) (5.66)

then,

(').67)

(568)

that is. initial condition,,; of z{O) :::

AI' v\ihile initial conditions ofz(O):::

Al •

"
will yield a ';spced of response" associated with

will yield a "speed of response" associated with

'I'llis means that state variable initial conditions in the "direction" of the first eigen­
vector will have a speed or response associated with the first eigenvalue:

(569)

and state variable initial conditions in the "direction" of the second eigenvector will have
a speed or response associated with the second eigenvalue

x(t) v z(t)

(5.71l)

Knowing the effect of the initial condition "direction" is impOitant. If a randOlll case
study approach was taken, then we might arbitrarily select initial conditions that \verc
'"fast.'" \vhilc other (missed) initial conditions could cause a much slo\\'cr response.

We \vill show two examples of tbe c-free! of initial condition: Example 5.5, where
the syS!elll is stable, and r':xample 5.6, \\'here the system is unstable.

t



Sec,5A Solution of the Zero-Input Form 123

I<;XAMI'LE 5.5 A Stable System

Consider the following system of equations

XI = - 0.5 XI + x2

Using standard state-space notation

x = Ax

The Jacobian matrix is

A = [. -1l.5 1'.1° -2

the eigenvalues are the solution to det(H - A) :;;:; 0, which yields

([
A + 05 - 1 J)det . = (A + 05)(A + 2) ~ °° A + 2

so

A, - 0,5 A, = - 2

and the eigenvectors are

(5,71 )

(5,72)

(5A2)

(5,73)

<, = [-11.5547 '1
0,8321

Note that Sl is the "slow" subspace, since it corresponds to Al = -0.5 and ~2 is the "fast" sub­
space, since it concsponds to'\2 :::;::-2,

The numerical values of (5.50) for this problem are

X(I) = V e'" V 'x(O)

-0,5547J[.e
O

" 011' 0,6667] x(O)
0,8321 ° e" ° 1.2019

(5,74)

If the initial condition is in the direction of ~l' that is

x(O) ~ [~J

we find the following slate solution (from (5.74) and (5.75»:

X(l) = [I e-~5'1

If the initial condition is in the direction of S2' that is,

X(O) = I. - 0.5547.1
0,8321

(5,75)

(5,76)

(5,77)
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we find the following state solution (from (5.74) ami (5.77»:

X(f)
- 0.5547

0.8321
(5.781

Note that x(O) :::; ~l"'" f.lll is the slow initial condition and x(O) :;; ~2 :::;; I---~;_:~-_:~ I is the fast

initial condition, as shown in Figures 5.4 and 5.5. The initial conditions in the fast subspace IWH'

reached the steady-state in roughly 2.5 minutes (Figure 5.6), while the initial conditions in the
slow subspace afC roughly 7SCYo complete in 2.5 minutes (J-'igurc 5.6').

11'IGlJRE S5 Transient response for initial condition in the slow
subspace.

The expm (matrix exponential) function from MATLAB can be llsed to verify these simula­
tions. Using t :;; 0.5 and the fast initial condition, we find

»d ;::: [~O. ~j I 1; 0, '-2] ;

»x -;;; expm(a*O.5)*[--O.5547
x ;:::

-0.2040
0.3061

0.8321]

t



which agrees with the plot ~hown in I,\gurc 5.6.

125Solution of the Zero-Input Form

fa.:H suospace

x(O) = [- 0.5547 ]
0.8321

Sec. 5.4

-1 '-------------------='o 2 345

FIGURE 5.6 Transient response for initial condition in the fast
subspace.

The previous example was a stable system. The next example is an unstable system.

EXAMPLE 5.6 An Unstable S}'stem (Saddle)

Consider the following system of equations;

.\:) = 2x1 + Xl

~\'2 = 2x, -. Xl

The Jacobian matrix is A = 12 II
.2 - I

the eigenvalues are

A, = -1.5616 A2 =. 2.5616

and the eigenvectors are

< = I 0.270:1 .1
1 ... -O.962g . lo.R719]

<2 - 0.4896

since Al < 0, s[ is a stable subspace; since A2 >. 0, S2 IS an unstable suhspace.
The solution for this system is:

Xl __._ [" 0.2703 o.R71911e 15(,lr"

( ) - -0.9628 0.4896 0 °11 0
.5038

e1.56 \(il.O.9907
-0.8972

1 x(O)
0.2782

If the initial condition is in the direction of ~l' that is:
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x(O)
O,'7(H!

-- O.~h2-f-; I
we find the fulJrming :--1,l1C SolUli(l1l

xl t)
O.270J ('

- O,9h28 ('

which is a stablt' solution. ~I\ shown in r"i)!UH: .".7

stable sUbspace

o
~

~~-~--===-------I

x ~~
-0 5 f /,. x(O) ~ [ 0.2703]1/ " -0 9628

-I'L----:----------::---;;------
o 2 3

FlCa"IU: 5.7 Inlli,t1l'(11Hli\i(l1l in till' \[:lhk SUh"p:ICl'.

If lhe initi;d condilinll is in the dirl'ctioll pI that is,

x(lI) [
0 X7191
(l'-iS96

we find the following state \o]lIliun:

X(I) [
rUnl9 (-"';('11,'

O.-iX(l() eo' ,",h'

which is all lHl.s[,lhJe SO!llliulL as ShU\\'ll lJl FlgUIT 5.S.

o
o 02 O~ 06 08

FIGUI-U: 5.8 Initial umditioll in tilt' unstahle \uhspau_'_

Il should be noted lhal if the initial conditioll is Ill)! ('.Y(lU/\' in the stahle slIh"pacc. the solUliull

\\'illl.w~jll to di\l'I'!,!c and hCCOllll' unslahk. Thut is. if thl' initlal cunditi()11 i" olT by. "a;, 10 !p.

thl' rl'Sp()Il"l~ \\,ill l'\,cntually lxconw Llllbuumkd.

t



5.5 SOLUTION OF THE GENERAL STATE-SPACE FORM

Now, consider the general form:

[] ["
at?

"T] l"
b 12 ;.] ",-

__ u:11 bnm . _U~iIali? (lll/!~ \ /I b"l bn2
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when u(f) = constant = {f(O).

In a similar fashion, the solution to (5.79), for a constant input (u(t) = nCO»~ from
t::::: {) to tis

or

x~Ax Illu

Recall that the single variable equation:

x=a.\l-bu

has the solution:

b
X(I) ~c en, x(O) I (e'" - I) 1/(0)

a

X(I) ~ P xeD) + Q u(O)

where

(5.79)

(5.80)

(5.8 I)

(5.82)

and Q ~ (I' - I) A 'II

(583)

(5.84)

F:quation (5.82) can be used ttl solve f{}I' a system where the inputs change from time step
to time step by using:

More often this is written as

X(I + AI) P X(I) + Q U(I)

x(k + I) ~ Px(k) + Qu(k)

(585)

(5.86)

where k represents the kth time step. Often a general purpose nuttlcrical integration tcch~

niquc (such as one presented in Chapter 4) will be used to solve (5.79).

5.6 MATLAB ROUTINES step AND initial

We show the usc of step and 1.nit i a 1 by way of the following example.
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EXA!\'1PLE 5.7 A Linearized BiOl"Cactol" l\lodel

Consider the follO\ving: lincarilcd form of a biorcactor model with suhstrate inhibition kinetics

(see tvloduJe 8 for details):

x=Ax-fBu

)'=Cx+Du

where:

A= o
- 0.7500

009056-]
2.5640

Enter the state space model:

B _[- 1.5302 [
_ 1.8255

[I 0]
o I

J) - [~;I

» a = [0, 0.9056;--0.7500, -).')640]

<::1

o 0.9056

-0.7500 -2, 'j640
» b co:: [--1.5302;3.8255)

b c

-1.5302
3.8255

>-,.c [l,O;l,OJ

1 0
o 1

»c1 [0;0)

d

o
o

t
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Check the stability

» eig(a)

ans :::;;:
~().3000

-2.2640

The system is stable.
Assume the process is initially at steady-state. Since this model is in deviation variable

form, the initial condition is the zero vector.

5.6.1 The MATLAB step Function

The MATLAB step [unction assumes a deviation variable form (the initial conditions
are zero). The cOlllmands arc.:

» [y,x, t] stcp{a,b,c,d,l);

" plol(t.,y)

which yields the plot shown in Figure 5.9.
Notice that the ::3 te-p function automatically determined the length of the Ii me vec­

tor. You may also provide an equal~spaccd time vector and usc the following command

[y,x] = step(a,b,c,d,l,t)

5.6.2 The MATLAB initial Function

The MATLAB ini t ial function assumes a deviation variable form, with the initial
conditions perturbed from zero. The commands arc:

FIGURE 5.9 Plot of outputs, for a step input change.
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» [Y,x,tJ = initial(a,b,c,d/l);

» ploL(t,y)

Chap. 5

Notice that the band d matrices are not really used by' the initial function. since it is as­
sUllled that there is no input change.

SUMMARY

In this chapter we have developed a statc~spacc model of a chemical process thm is in ..
hcrcntly linear (e.g., the tank height example). \\ic have also \ho\vn I1mv to linearize
models that are nonlinear. The models obtained in this fashion arc based on r/eriulioll

l'ariables, that is. the states and inputs arc perturhotiolls from the steady-state operating
point where the linearization is pcrfonncd. The stahility of a nonlinear syqcrn is deter­
mined from the eigellvalues of the Jacobian matrix in the linearized model (statc-sracc
form ).

Several important concepts were presented in this chapter.

For unforced systems (zero input). the initial conditiclll vector \vil! determine the
"speed" (If response. For stable systems (all A 0), the eigenvector associated \vith
the largest rnagnitude A is the fast direction, while the eigenvector associated with
the smallest A is the s\()\v direction.

Although it is possible for a system with both Ilegatin; (stable) and positi\e (unsta­
ble) eigenvalues to have stable behavior if the initial condition is In the stable sub­
space, this is impossible in practice. Any perturhation from the stable trajectory \-vill
cause lhe solution to become unbounded (unstable).

The I,,:1ATLAB routines that \-vere used include:

exprn:

step:

Matrix exponential

Step response of a state-space (or transfer function) model

State-space rnodels can be transformed to Laplace transfer function fOnl1, which is
particularly useful for control sy'stcm design. Applications of Laplace transforms \vill be
presented in Chapters 7 through 10.

Eigcnvector/cigenvalue analysis \vill be useful in pe-rfonning phase~p!anc analysis.
which is covered in Chapter 13.

The reader should understand the fol\O\ving terms:

state-space

Jacobian

deviation or perturbation variable

eigenvalue
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eigenvector

linearization

stability

Taylor series

FURTHER READING

L,inearization is discussed briefly in most books on process control, including:
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Seborg, D.E., T.F. Edgar, and D.A. Mcllichamp (1989). Process Dynamics and
Control, New York: Wiley.

Stephanopoulos, G. (1984). Chemical Process (:ol1trol: An Introduction to Theory
and Practice, Englewood Cliffs, NJ: Prentice-Hall.

STUDENT EXERCISES

1. As a process development engineer you arc working on a process with three
continuous-stirred-tank reactors (CSTRs) in series. A constant volumetric H(l\vrate
(flowratc docs not vary with time) is maintained throughout the system, howcver the
volume in each reactor is different (but constant). Since thc temperature varies from
reactor to reactor (but is constant in an individual reactor) the reaction rate parame­
ter is different for each reactor. The molar concentration of the inlet stream varies.

2

Assume that the density of the streams remains constant (independent of con­
centration). The reaction is a first-order (irreversible) decomposition (11 --> B).
Molar rate of decomposition of A (per unit volume) = k CA
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tI. \\irite the::; dynamic model equations.
h. \Vritc the statc-space model oCt") ::: A x + B It

c. The values or the parameters and variables arc

F::::: 1 nJ/min C(I::: I IhmoJlft.'l

V, = I() ft1 V, = ft' V, = 5 fl '
k

l
:;:; O.O:n3 mini k::.::::: 0.2 min- 1 k:;::: 0.55 mirr· 1

i. Find the steady-state concentrations in each reactor

it Evaluate the A matrix (Jacobian) and find the eigenvalues

2. Consider a chemical reactor with bypass. as shO\vn below. Assume that the rcnction
rate (per unit volullle) is first-order (r::: kC j ) and ('I is the concentration in the reac­
tor (the reactor is perfectly' mixed). Assume that the volume in the reactor (V) and the
feed flowrate (F) remain constant. crhc fraction of feed bypassing the reactor is
(l -a)F and that entering the reactor is aF. Assume that the fraction bypassing the re~

actor does not change. The inlet concentration (Ci) is the input vmiable and the mixed
outlet strcarn composition (e2) is the output variable. \\lrite this model in state-space
form (this model is inherently linear, so deviation variahles are not neededj.

o(.{-) A :( + n If

\"=C'x+-Dl/

3. C\msidcr the follc)\\.;ing set of series and parallel reactiolls

k. I k.-,
A .~) [i .) C

A + A ~, D
k,

Material balances on cOlnponents A and B yield the following t\-\/O equations

d('.,
dl

dC"
dl

F ,
V ((",1/ - CAl - k. (", - k, (":,

F
V ( .. ("/1)1 (k, (A - k: elll

where k,
5 I

min Ie
6

5 .
nlln- I

]

I liters
k, =----:-

, 6 mol min

(Ii
10 mol

liter

mol
(" ~ .,-~

ii' . I iter

a. Find the steady-state dilution raIl' UIVj and concentration of B (show all units).
h. Linearizc and put in state-space hlrm (find the numerical values of the A. B, and

(' matrices), assuming that the manipulated vari,l!,!e is dilution rate (F/I/) , and
the output variable is CI).

c. r;'ind the eigenvalues (shmv units).
d. Find perturbations in initial conditions that arc in the fastest and slo\-vcsl directions.

h
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4. A chemical reactor that has a singlc second-ordcr reaction and an outlct r10wrate
that is a linear function of hcight has the following model:

where the outlct f10wratc is linearly related to the volume of liquid in the reactor
(F == 13V). The parameters, variables and thcir steady-state values are shown below.

Fill == inlet llowrate (I liter/min)
Cin = inlet concentration (l gmolliiter)
C == tank concentration (0.5 gmollliter)
V = tank volume (I liter)
k == reaction rale constant (2 liter/(gmol min))
f3 == I min-- l

dVC 2-- = Fe - FC - WC
dt In III

dV
= F -F

dt III

Equations (5.87) and (5.88) can be written in physical state variahle form as

dC = Fi" (C _ C) _ kC 2
dt V - (1l

dV
= F - "Vdt 11/ t..J

(5.87)

(5.88)

(5.89)

(5.90)

H. l---ist the states, outputs, inputs and parameters for the nonlinear equations (5.89)
and (5.90).

b. Linearizc (5.89) and (5.90) and write the state space modcl (find the numeric_al
values for the A, B, and C matrices), assuming that thc inlet tlowratc is the input
variable and that both states arc output variables. Define thc deviation variahles
for states, inputs, and outputs.

5. Find the "fast" and "slow" initial conditions for the foJlowing model

6. Find the stable and unstable subspaccs for the following system of equations

Plot the transient responses for initial conditions in both the stable and unstable sub­
spaces. Show that a small perturbation from the stable initial condition will lead to
an unstable solution.



7. The l1ol1intcracting tank model I:) (sec Example 5. ()
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I

" - 13
1

0 1 I" I ]
AI, _ ["1\ + AI, I';,13 1 13, ",, '. 0
A, A,

. .

Chap, 5

Consider a system where the stcady~statc f10wratcs arc 5 ftJ/min, and the following
cross-sectional areas and steady-state heights:

Al ~ 2n' A, ~ lon'
hi ~ 2.5 It h, ~ 5 It

We find (1"')Ill F I ~ I3 lh l and F, ~ 132h2), then, that:

1'1 2 nz
13, ~ 2 , I', ~ 1

rnm nlln

and the state-space model (in physical variables) becmHes:

1,
--1 0 '1Ih l ,I+[05I F
0,2 - OJ h, 0 "

[
:J (:1[" 1,1 + [~;- [F I
o I ", () "
() 0 1

a. Work in deviation variable form and find the fast and slow subspaces. Use ini-·
tial to simulate the unforced deviation variable systcrn (input deviation re­
mains constant at 0), from initial conditions in both the fast and slow suhspaces.

h. Usc the results from part <1, and convert to the actual physical variables.
c. Work in physical variable form. Usc ini tial to simulate the unhJrced deviation

variable system (input remains constant), from initial conditions in both the fast
and slow subspaccs. Show that the results obtained afe the same as those in part b.

8. As a chemical engineer in the pharmaceutical industry you are responsible for a
process that uses a bacteria to produce an antibiotic. The reactor has been contami­
nated with a protozoan that consumes the bacteria. The predator-prey equations arc
Llsed to model the system (b ::::: bacteria (prey), jJ ::::: protozoa (predator)). The time
unit is days.

dh
dl

dl'
dl

u b 'Y bp

" 'Y hp- 13 I'
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a. Show thatthc steady-state values are

135

dz
=~ fl (1 ~ w) Z

d/

b. Usc the scaled variables, tv and z, to find thc following scaled modeling equations

Ii p
ll'

rill'

d/

z=

,,(I ~z)w

c. [<'ind the eigenvalues of the Jacobian matrix for the scaled equations, evaluated
at W s and zr Realize that ll'.

I
' and z,\. are 1.0 by definition, Find the eigenvalues in

terms of ct and f3.
d. "rhe parameters arc (~ :::0 f3 ;:;;: 1.0 and the initial conditions arc w(O) ;:;;: 1.5 and

z(O) = 0.75.

i. Linearize and write the state-spacel~ml1 (let the state variables be Xl :::0

HI ,- It\- and );:, ;;;;; Z - z).Find the initial condition vector xo ;;;;; [,,".,«0)) [, to use
. ~ . 'x,D

with in.it_ial. -

ii. Solve the state space model from (I) lIsing lsim and plot the transient re­
sponse of Xl and x2 as a function of time (plot these curves on the same
graph), simulating to at least t ;:;;: 20.

iii. Show a phase-plane plot, placing Xt on the x-axis and x2 on the y-axis.
iv. WhItt is the "peak-to-peak" time for the bacteria? By how much time docs

the protozoan "lag" the bacteria?

9. Consider the state-space model

Ii'l I. ~ 1.0 0.011 X'i
"2 4.0 ~ 5.0 .\,

a. Find the "fast" and "slow" initial condition directions.

10. Consider the foJiowing system of two reactors.

~
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Assullle a firsHmJcr decornpositi()tl of ;\-->8. Assume that all flo\\TatC\ arc C(lll·

stant (volumes arc consUlllt).

a. \\;'ritc the moueling equations for concentration or A, using either the instanta­
neous or integral method.

h. \Vritc these in state-space form:

X~AX4 Bu

c. Given the following constants. calculate the steady-slale concentrations:

I·;, =

cu

_ kgnlOl
.j L

111
IJ.3.1.13.1 hr I

VI'" 15nr' V~ = l)m

d. Find the eigenvalues of the A matrix. Discuss the swbility of this Sy'stClll.
e. The inlet concentration. ('Ii' is changed from 1.5 to 1.75 at {:::: O. Usc ,:;l:cp tel

simulatc the behaVior of this system.

11. ;\ stirrc,d lank heater is used to supply a chemical proct:~ss \vith a fluid at a constant
temperature. The heater receives fluid from an upstrcam pnll'l'SS unit \vhich may
cause the f10wrate or tcmperature to change.

Consider the diagram of the stirred tailk heater sho\vn belt)\:!". \vhere the tank
inlet stream is received from another process unit. /\ heat transfer fluid is circulated
through ajacket to heat the fluid in the tank, Assume that no change of phase nccurs
in either the tank liyuid or the jacket liquid.

F

T

Tank outlet

Jacket inlet~
T

F,

,
~ r----

V T

Tank

Jacket

Tank
inlet

Jacket
outlet

Part 1

a. Write the dynamic modeling equatiolls to find the tank ami jacket tcmperaturcs.
Do not usc any numerical values----Jeavc these equations in terms of the process
parameters and variahles. State any additional assumptions needed [0 sol ve the
problem.



Assume: Constant level.

Perfect mixing in both the tank and jacket.

The tank inlet flowratc, jacket flowrate, tank inlet temperature, and jacket
inlet temperature may change.

The rate of heat transfer from the jacket to the tank is governed by the equa­
tion Q ;:;; UAClj ~ T), where U is the overall heat transfer coefficient and
A is the area for heat exchange.

b. State the nl(~jor objective of this process.
c. What do you consider the most important measured variable?
d. What is a likely input variable variahle that you would use to maintain a desired

tank temperature?
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Part 2

Assume that both the tank fluid and the jacket fluid are water. The steady-state val~

ues of this system variables and some parameters arc:

I'l'

min

1; = 50"F

Tjill = 20(Y'F

Btu
p(~, = 61.3 OF

Toe 125°F

7; = 150"F

Btu
p/'~)j = 61.3 OF

v c= 10 n'
V = 1 ft'

J

e. Find Fj and UA (show units) at steady-state.
f. Linearize the set of two nonlinear ODEs obtained in problem a, to obtain the

state space form:

x=Ax+Uu

where x= = state variables

u= input variables

1
1'- l' ]

Y = T- 7:
J J.I

= output variables

Determine the A, H, and C matrices (symbolically and numerically)

g. Find the eigenvalues of A.



138

Part 3
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h. Simulate the system of state-space equations for a step change in the jacket
flowratc from F:i =: 1.5 ft3/min to l'j =1.75 ft3/rnin F at time::: 5 minutes (work
in deviation variables, but remember to convert back to physical variahles be­
fore plotting). What is the final value of the states, in the physical variables
(T and 7/? Plot the response.

i. Perform some simulations with step changes on some of the other input vari­
ables. Comment on any different behavior that yOll Illay observe.

12. Consider the following model of 2-stagc ahsorption column:

dz ~, (L) w _ (L + Vii) "+ V ".
dl MM· M'I

where IV and z arc the liquid concentrations on stage I and stage 2, respectively.
L and V arc the liquid and vapor molar flow rates. 'Zr is the conccntration of the vapor
strcam cntering the column.

Thc steady-state input values arc L := 80 gmol incrt liquid/min and V:::: 100
gmol inert vapor/min.

'fhe paramcter values arc M:::: 20 glnol inert liquid, a = 0.5, and 7f= 0.1 gmo]
solutc/gmol inert vapor.
H. Find the steady-state values of wand z.
h. Lincahzc and find the stale space model, assuming that L and V arc the inputs.
c. Find the cigenvalucs and eigenvectors of A (Jacobian).
d. l,'ind thc expected "slowest" and "fastcst" initial conditions (perturbations from

steady-statc).

13. Most chemical proccss plants have a natural gas header that circulates through the
process plant. A simplified version of such a header is shown below.

Pi

From valve i
source

Plant piping, represented
as a perfectly mixed drum

Gas drum for
a boilerhotlse
unit

To furnaces

Here, the natural gas enters the process plant from a source (the natural gas
pipeline) through a control valve. It flows through the plant piping, which we have
represcnted as a perfectly mixed drum for simplicity. Another valve connects thc



plant piping to the gas drum for a hoilerhouse unit. Gas passes through another
valve to the hoilerhouse furnaces.

The objective of this problem is to develop a linear model that relates changes
in valve position to changes in drum pressures.
a. Write modeling equations assuming that the pressures in drums I and 2 arc the

state variables. Let thcinput variables- be (I) valve position I, (2) valve position
2, and (3) sourcc prcssure.

b. Solve for the steady-state conditions and write the modeling equations in lincar,
deviation variable form.
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x=Ax+Uu

y = ex

x = rp , - 1"'1 = state variables
, P2 - Ph

\I

y

[

change in valve position 1J
:;:: change ~n v<.llve position 2 =

change III sourCe pressure

output variables

input variables

c. Study the effect of step changes in each input on each tank pressure.

HINTS: For simplicity, assume that the following equations can be used for the flow
through the valves:

fJj == (Xi hi (pi - PI) =:: flow through valve i

C/I :::: ('(, hi (PI - P2) == flow through valve I

q2 ::;: 0'2 112 (P2 ~ p}) == flow through valve 2

where the f10wrate is in Ibmol/min, h is the fraction that a valve is open (varies be­
tween 0 and I), and Ct is a valve coefficient.

STEADY STATE DATA:

gas flowratc =: lOOO std ff~/min

Pis:;::;; 250 psig, PIS::::: 50 psig, P 2s ::;: 30 psig, P 3s == 5 psig

assume that each valve is 1/2 open under these conditions (his:::: h lA,:::: h 2s == 0.5)



CONSTANTS:
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V, ~ I 135 n3, V, ~ 329 ft3, Temperature ~ 32 "F

psia ft J

R (gas constant) ~ 10.73
IbmoloR

Chap. 5

('wi ~

Cw2 ~

F ~

V, ~

V2
~

k ~

MAGNITUDE OF STEP CHANGES:

Make separate step changes of 0.1 (10(*)) in the valve openings, and! 0 psia in the
inlet pressure. Simulate for t:::; 0 to I = 15 minutes.

14. A strealll contains a waste chemical, W, with a concentration of 1 mol/liter. To Illeet
EPA and slale standards, at least 9()fJ{) of the chemical must be removed by reaction.
The chemical decomposes by a second-order reaction with a rale constant of
1.5 liter/(mol hr). The stream nowratc is 100 Iiter/hr and two available reactors
(400 and 2000 liters) have been placed in series (the smaller reactor is placed before
the larger onc).
a. Write the modeling equations for the concentration of the waste chemical. A')-

sumc constant volume and constant density. Let

concentration in reactor 1, mol/liter
concentration in reactor 2, mol/liter
volumetric flowrate, liter/hr
liquid volume in reactor I , liters
liquid volume in reactor 2, liters
second-order rate constant, liter/Cmol hI')

b. Show that the steady-stale concentrations are 0.33333 mol/liter (reactor I) and
0.09005 mol/liter (reactor 2), so the specification is met.
(Hint: You need to solve quadratic equations to obtain the concentrations.)

c. L,inearize at steady-state and develop the state space model (analytical), of the
form:

x Ax-t-Bu

where:

d. Show that the A and B matrices are:

u~

[
- - 1.25

A = 0.05 o I
- 0.320 IS

Il .= [0.0016667
0.0001216

O.25J
o

(also, show the units associated with each coefficient)
c. i. Find the eigenvalues and eigenvectors using the MATLAB eig function.

ii. Find the eigenvalues by hand, by solving det(Al- A) ~ o.



f. The system is not initially at steady-state. Solvc the following for the linearized
model, using the MATLAI3 function initial (first, convert the physical vari­
ables to deviation variablcs)
i. If Cw,(O) = 0.3833 and Cw2(0) = O.(J9005, find how the concentrations change

with timc.
ii. If Cw,(O) = 0.3333 and CwiO) = 0.14005, find how the concentrations

change with time.

Relate these responses to the eigenvalues/eigenvector analysis of c. Discuss the dif­
ferences in speeds of response (you should find that a perturbation in the first reac­
tor concentration responds more rapidly and a perturbation in the second reactor
concentration).

The MATL.AB ini tial function needs you to create the following matrices
before using it:

Student Exercises

c = [1 01o 1
0=[0 01

°°
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g. Solve f for the nonlinear equations, using ode4 5. Compare the linear and nonlinear
variables on the same plots (make certain you convert from deviation to physical
variables for the linear results).

h. Now, consider a step change in the flowrate from 100 liters/hour to 110 liters/hour.
Assume the initial concentrations arc the steady-state values (0.3333 and ().(l9005).
Compare the IincHr and nonlinear responses of the reactor concentrations. Is the re­
moval specification still obtained?

i. Would better steady-state removal of W be obtained if the order of the reaction ves­
sels was reversed? Why or why not? (Show your calculations.)

ESCOLA Dc ENGENHARIA
BIBLIOTLCA



SOLVING LINEAR nTH 6
ORDER ODE MODELS

The purpose of this chapter is to review methods to solve solve linear 11th order ()[)F~s,

After studying this material, the student will be able 10:

Transform a linear state-space model with 1/ states to a single nth order ordinary

differential equation.

Solve an 11th order constant coefficient coefficient homogeneous ODE.
Solve an 11th order constant coefficient coefficient heterogeneous ()DE.

Solve a first-order ()DE with a time-varying coefficient.

Usc the H.outh stability criterion for stability analysis.

The nwjor sections in this chapter arc:

6.1 Background

6.2 Solving Homogeneous, Linear ODEs with Constant Coefficients

6.3 Solving Nonhomogeneous, Linear OIJEs with Constant CocfTicicnts

6.4 Equations with Time- Varying Parameters

6.5 Routh Stability Criterion ,.. Determining Stability without Calculating l:':igen­

values

142
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6.1 BACKGROUND

A model composed of a single, nth order linear ordinary differential equation has the fol~

lowing form:

... +
dx

{/,(t) + ",,(I) x
til

du
+ b,(I) til + b,,(I) It

(6.1 )

where the state variable is x and the input variable is u. 'rhis general model is linear be­
cause the state (x) and input (ll) and all oftheir derivatives with respect to time appear lin­
early. Notice thallhc coefficients do not have to be linear functions of time, however.

Models of the form of (6.1) do not arise naturally when chemical processes arc
modeled. As shown in previous chapters, dynamic chemical process models arc generally
sets of first-order (either linear or nonlinear ordinary differential equations. The advan­
tage of the form of (6.1) is that there exist a number or·tcchniques to obtain analytical
solutions.

In this chaptcr we show how t(? transform scts of lincar, first-order differclltial equa­
tions to a single nth order differential equation. We then review several techniques for
solving this type of equation. For motivation, we use Hbatch reactor example to illustrate
each of the tcdllliques. It should be noted that there arc many good mathematics tcxts that
covcr each of these techniques in more depth (see Boyce andlJiPrima, 1992, for cxam­
pic). Our goal here is to provide a concisc overview of some morc lIscful tcchniques to
solve dynamic chemical process problems.

EXAMPLE 6.1 Hatch Chemical R(~ador

Cunsidcr a hatch chemical reactor, where there is no flow in or out of the vessel. The reactor is
initially charged \vith a liquid of volume \I and an initial concentration (mol/liter) of reactant A

of" C~,IO'

We consider a series reaction where component A reacts to lImn the desired component
B. Component B call rurther relet to form the undesired component C. Each of the reactions is
irreversihle, so A can react 10 rorm R, hUI B does not react to form A.

k k
A --,>1 11 -}- C

Here k l represents kinetic rate constant (lime l ) for the conversion of /\ to Ii, while k] represents
the rale constant II)r the conversion of U to C.

Since component 8 is the desired product, we would like to know how long to run the fe­
action in order to maximi/.c the amount of 8 produced. If the reaction time is too long, all or B
will eventually be converted to C,

Develop the Modeling Equations. Assume that each of the reactions is first-order. Since
the volume is constant (dVldt ;:;:; 0), and there is no flow in or out, the modeling equations arc
(the reader should be able to derive these, based on material balances on each component);
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dC""j
dt

k 1 Cit

Chap. 6

(6.2)

~{_Cll

dt
(6.3)

dec _.'
f

-'--- Ie, (II
{/

(6.4)

where C.',\' C'fj, Hnd C( represent the concentrations (mol/volume) of components A. fl, and C, re­

spectively. The units for the rate constants (k 1 and "-2) arc LIllie' I.

Notice that the time faLl' of change of component A is only a fUllction of the COllccntnllion

of /\. 'fhcH equation (6.2) call be solved, since C~4 and t arc separable, (0 find

(6.5)

where C;\O is the initial condition for the concentration of 1\. If we define the conversion of A as

\: :;;:; (CAO - C;\)/('"o and the dimensionless time T :::: kJt. (6.5) can be represented by the single
curve shown in r;igurc 6.1 (x:::: [ ~ ('7).

0.8

0.6c
.Q

"'ill
>c
g0.4

0.2

o
o 2 3

dimensionless time
4 5

FIGlJRE 6.1 Conversion of;\ as a function of the dimensionless timc,

Now wc wish to find a single diJlerelltial equation to solve for Cflo

Reduce to a Single Equation for CB. Here we have (wo different ways to solve for ell'
Method I, Substitute (6.5) into (6.3) to obtain the expression

(6.6)
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Equation (6.6) is a linear, constant coefficient, heterogeneous differential cquatiOiL ]t is hetenJ­
gcneolls because of the "forcing function" on the righthand side. Heterogeneous equations are
solved in Section 6.3.

Method 2. Here we can rewrite (6.3) to solve for ell in terms of en:

(6.7)

Taking the first derivative of (6.7) with respect to time, we find:

Substituting (6.7) and (6.8) into (6.2), we find the second-order equation:

(!2~~'-'i deft
{It' + (k, + k,) + k,k, ('/I C 0

til

Notice that (6.9) has the form

(6.8)

(6.9)

(6.10)

Equation (6. J0) is known as a linear, constant coefficient, homogeneolls differential equa­
tion. The term homogeneous means that there is no "forcing function" on the rigbthand
side. In Section 6.2 we cover the solution of these equations.

6.2 SOLVING HOMOGENEOUS, LINEAR ODES
WITH CONSTANT COEFFICIENTS

Homogeneous nth order linear differential equations have the form

d/lx
lin tit'f

{pr--1x
+ an _ I dt'l-l + ... +

dx
", I + aox = 0

{/
(6.11)

To solve equation (6.11) we replace all (JiX/df i terms by AJ

(6.12)

Equation (6.12) is called the characteristic equation. The n roots of the characteristic
equation are called eigenvalues (in control textbooks the rools are often called poles). The
eigenvalues arc used to solve (6.1 I). Two related methods are used, depending on
whether the eigenvalues are distinct (all are different) or repeated (some are the same),
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6.2.1 Distinct Eigenvalues

Solving Linear nth Order ODE Models Chap. 6

We sce that (6.12) is ,jJl nth order polynomial that will have JI roots, Ai' If all of the roots
arc distinct (not repeated), the solution to (6.11) is

(6.11)

where each or the constants ('I through en is found from the initial conditions, \iO).
!lxll " I (0 l!dIIl··1 .

In (lrder [0 find the coefficients, c i' \VC rl)ust know the illitia/ cOlldifiollS for r and its

derivatives.

6.1 Continued. Solution for C:nmponent A

~c(' l'nllll equation (6.2) that the concentration of /\ does not depend on the vahle:; or U
e

til

lIle l'haracteri'ilic cqlW(IOII is

(h,14)

A+ k] II

and [he eigenvalue is A:o: -- k l The solution is then

C\(I) = c
J

C k! (6.16)

e ,(I) e",e I., (h.17)

\\hich is the ",[llle result nhlaillcd in (h.)) usil1g Sl'lMratioll of variablcs and integnilioJ1.

Now. let's cuntilluc and use lhe gel]cnd procedure 10 so!vc a sccond-order differential

eqllalion

EXX\IPLE 6.1 ContimH'(I, Solution for Component B

r\.t'ctl! lhatthc cyuatin!l fur the concentration of B i.s:

(I

(h.! 01

t



From (3) we sec that:
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(6.19)
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and the solution call be written:

CJI) ~ c, exp(- ki) + (', cxp( .ki) (6.20)

which can be written:

Sec. 6.2

So the eigenvalues arc:

We need two initial conditions, ell(O) and dCjj(O)Jdt, to evaluate the constants, (:1 and ("2'
We assumed that there is no component B in the reactor initially, so ell(O) :::: O. From

(6.20) we then find:

(6.22)

Taking the derivative of (6.20) and using (6.21) and (6.22), we find:

C,,(t) (623)

This expression can be used, for eX<llnple, to solve for the amount of time that will yield the
maximum amount or ell (see student exercise J5).

Dimensionless Equation, It should also be noted that (6.23) call he made dimensionless by

defining the following variables:

x Cfic'!W = conversion of A to B

= dimensionless time

= rate constant ratio

to find:

I
[expCT) _. exp(-uT)1

n ~- 1

which is shown in Figure 6.2, for a "'" 0.5 and 2. Notice that when the first rcw:tion is faster than
thc sccond (ex "'" 0.5), there is a highcr concentration of B than when the first reaction is slower



than the second (0: = 2). When the second reaction is faster than the first, component B reacts
further to form C before a substantial amount of H is formed.

............_-~
-alpha ~ 0.5
-- alpha 0 2.0

Chap. 6
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dimensionless time

:'~~~~,

.: "'., .
, '.

:' ",
: ",

" ....

2

0.5

co 0.4
'0
C

'""c 0.30

""'"''"C
.Q 0.2
"'c

'"E
'6

0.1

0
0
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FIGLJRE 6.2 Concentration of B as a function of time. When the rate for the second
reaction is faster than the first «(~ = 2), the peak concentration of B is lower.

We notice in the previous example that (6.23) cannot be used if k2 :::: k l . This is a case
where the eigenvalues are repeated. The procedure for repeated eigenvalues is shown
next.

6,2,2 Repeated Eigenvalues

If a particular root in the solution of (6.12), Ai' occurs r times, then the corresponding
terms in the solution to (6.11) are:

(6.24)

EXAMPLE 6.1 Continued. Repeated Roots

The equation for the concentration of B is when k2 ::::: k l ;;;;;: k is:

~t':~_:.11_
rIl2

(6.25)
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and the characteristic equation is:

A' + 2 k A + k 2 ~ 0

which can he factored as:

(A + k) (A + k)c., 0

so the eigenvalues (roots) are:

A ~ A ~ -k, 2

The solution can be written:

C,,(t) ~ (e, + e, I) cxp( - k,)

Notice that we can find cl from the initial condition for Cn- From (6.27) at t = 0,

But Cn(O);;;;; 0, since there is no II initially, so:

C,,(I) ~ e, t cxp( - kl)

The derivative of (6.28) with respect to time is:

at t = 0,

We also know from (6.3) that

"e,,(O) ,
dt - k CAO

so:

C,,(I) k CAO ' exp( '" I,,)

(6,26)

(6.27)

(6,2H)

(6.29)

If we define lhe conversion or A to H as x = c,/eAO' ilmllhe dirncnsionlcss tiulC as T;::: kt. then
(6.29) can be written:

x(i) TexpC T) «(dO)



which is shown ill Figure 6.3. The reader should be able to find the 1l.1<1xiunJJn value for the COI\~

version of A to n and the reaction time required for this conversion.

0.25
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2 3
dimensionless time

________-' -'-- L.o
o

005

0.15

0.1

0.3

0.35

0.4 ----,.-

0.2
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FIGURE 6.3 Conversion of A to B as a fUllction of dimensionless time (T "" kt), for the
case of equal rate constants.

The previolls example illustrated the solution for systems with real roots. The next cxam~
pie illustrates a system with complex roots.

-----_.._~-...

EXA MIJl..E 6.2 Complex Roots

Consider the second-order equation:

dx
+x

dt
() (6.31 )

The characteristic equation is:

A' + A + I o (6.32)

Solving for the roots lIsing the quadratic formula, we find that the rools mc complex:

± -4

2

A~_l±V.3.
2 2 J



We can use the following Euler identities:

ejll = cos f:l j- jSln f:l
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(6.34)

(6.33)V3) (J Vi)2 j t + c1 e ,- 2 - --2'-- j tc e(- I +
.1 - 2,(t)

I. The solution iswhere j

Sec. 6.2

elo =0 cosO -jsinH «(dS)

and the property that eXtI' "" eXe Y to write (6.33) as:

x(t) '
10 1 V3ce'-cos (--I

1 __ • 2
Vii '/' [Vi Vi IJ'sill t -1- c (' "cos 1-- J" sin I. 2' . . 2 . 2 (6.36)

., [ V3x(t) = e l
/- c 1 COS 2 t

which can be written:

x(t) e ,/2 [ec,
vi

Ie,) cos t]. 2 e (e, -- ( 2) j sin ~3 tj

(6.37)

«(d8)

(6.39)2 [Vi Vi Ix(t) e lie;> cos 2 t + c4 sin 2 t

Again, initial conditions for x(O) and ~\:(O) can be used to determine {'3 and ('4- The student should
verify that jf x(O}:::: 1 and ~~(O) = I, then cJ :::: \.0 and (.'4 ::::1.5. A plot is shown in Figure 6.4.

1.5

::.:; 0.5

a

0.5
o 2 4 6 8 10

FIGURE 6.4 Plot of (6.39) with x(O) :::;:; I and ~r((»:::: I.
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Chemical process system models with complex roots include some exothermic chemical
reactors. Also, models including feedback control will often have complex roots (leading
to oscillatory behavior).

6.2.3 General Result for Complex Roots

We can now generalize the results of Example 6.2 for any equation that has pairs of com­
plex roots. For each pair of complex roots, A ;::::; At ±j Ai' where Ar and Ai arc the real and
imaginary portions, the solution is:

x(/) co (N lei cos A.,f + c, sin Ai II (6.40)

In the previous example the real part of the complex roots was negative (stable).
Notice that the state variables decayed to zerO with time. Notice from (6.40) that there
will be no decay (simply a continuous oscillation) if the real portion is O. We can also sec
from (6.40) that a positive real portion of the complex root will lead to an ever growing
(unstable) solution. This behavior is shown by studellt exercise 19.

Most chemical processes are stable; however, some exothermic chemical reactors
have unstable operating points. Also, improperly tuned feedback control systems call be
unstable.

Thus far in this chapter we have solved the homogeneous problems. Homogeneolls
problems result from models that are "unforced," that is, there is no input. This usually
occurs when the process model is in deviation variable form, and there is no change in the
input variable. They are based on a perturbation from steady~state in the state variable
values.

In Section 6.3 we will solve nonhomogeneolls problems llsing the rnethod of undc­
tcnnined coefficients. These types of problems arise when there arc input changes to a
process.

6.3 SOLVING NONHOMOGENEOUS, LINEAR ODES
WITH CONSTANT COEFFICIENTS

In Section 6.2 we solved homogeneous problems with constant coefficients:

In this section we will solve nonhomogeneous problems with the following form:

(6.41)

+ aox = '1(/) (6.42)

lIsing the method (4 undetermined coefficients, which is outlined below.



Method of Undetermined Coefficients

1. Solve the homogeneous problem to find

:t Combine the two solutions for

(6.14)

Trial Function

B (a constant)
BeHI

8] cos ctl + B} sin of
11,/1/ + Bn_1lll--J + ... + flo

A (a constant)
Ac(~(

A cos ca or A sin at
A ttl

Forcing FUllction

Solving Nonhomogeneous, Linear Odes with Constant Coefficients 153Sec. 6.3

2. Solve for the particular solution by determining the coefficients of a trial function (sec Table
6.1) that satisfy the non!1o!11ogcncOlls equation

X,,(I)

TABLE 6.1 Trial Functions for Method of Undetermined
Coefficients (noyee and DiPrim~l, 1992)

The method of undetermined coefficients consists of the following steps:

X(I) ~ Xu(l) + X,.(I)

We illustrate the method hy usc of an illustrative example.

EXAMPLE 6.1 Continued. First Order Heterogeneous System

Notice that we can take the solution for (A as a function of time

cAt) = CAUe-k,1

Step 2. Since the forcing function is k] CAU e k,I, we use c2 e k,f (Table (),1) as our trial func­
tion for the particular solution:

and substitute it into (6.3) to obtain

Step 1. The homogeneous solution to (6.43) is

Xp(t) c). e kl !

substituting this solution into the original equation (6.47),

---k
l

C
z

e- k ,! + k
2

C
z

e--- k,f = k
l

CAO e- k,f

(6.43)

(6.44)

(6.45)

(6.46)
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which we can solve for ('2:
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k,c, c--

k 2 ~ k ,

Step 3. Now find the complete solution as xU)::::: XII(t) + _'(/,(1)

(' (f) = c e I..,,' + e kit
;\ 1 k, __ k

l

We call evaluate ('I from the initial conditions, em!:::: 0:

(.'\ =

and the lotal solution is:

(6.47)

(6.48)

which, of course, is the same result obtaineu previously (0.23) by solving the second-order ho­
mogeneous equation in CII _

We have lIsed a single first-order equation to illustrate the procedure for heterogeneous
equations. The same procedure is used for higher-order equations.

6.4 EQUATIONS WITH TIME·VARYING PARAMETERS

Consider a first-order equation with the following form:

dx

1
-+ pet) x ." q(t)

({
(649)

Notice that the coefficient is timc~varying and the equation is heterogeneous. One
approach to solve thiS type of problem is to use an illtcf.iratingfactor.

Let the integrating factor be represented by 1J.(r)

,,(t) ~ exp [fp(t) dl]

Equation (6.49) IS solved by multiplying each term by the integrating factor:

dx
,,(t) -+ ,,(I) p(t) x ,,(I) q(t)

dt

exp lJ l'(t) dtI«11; -+ exp Ifp(t) dtl p(t) x ~ exp Ifpet) dtl q(t)

Notice that the lefthand side of (6.52) is simply the expansion of:

(6.50)

(65 I)

(6.52)

(~t [X(t) exp {Jp(t) dt}] ~ exp lJp(t) dtl (:;; -+ exp lJp(l) dt] p(I)X (6.53)

b



so we can write:

and, evaluating c using the initial conditions,

which is a separable equation. Separating and integrating, we find:

155

(6.54)

(6.56)

(6.55)

Equations with Time-Varying Parameters

X(t) = exp [- f pet) dl] {X(O) + fq(t) exp IIp(t) dt] ill}

x(t) exp [fpet) dl] = fq(t) exp IJP(I) dtl ill + C

::t [X(I) exp UP(t)dt}] = exp [fpet) iltl q(t)

Sec. 6.4

EXAMPLE 6.3 Semi-batch Reactor

Consider the case where the batch reactor is being filled. Assume a single, first-order reaction
(A -)B) and a constant volumetric flowrate into the reactor (F), with no llow out of the reactor.

The modeling equations arc:

(6.57)

(6.5X)

Expanding the LHS of (6.58) as:

dve 1 ., dV dell
---~. = c _. + v-_·__ ···

dt A dt dt
(6.59)

we find:

(6.60)

If the f10wralc is constant and the initial volume is 0, then:

v = Ft (6.61)

and:

(6.62)

Let:

fp(t) dt ~ fG + k l) dt ~ In t + kit + ci (6.63)

exp IJpet) ilt] = exp [In t + kit + c,l ~ exp [In t] exp [kltl exp [cd

= c, I exp [kll] (6.64)



156 Solving Linear nth Order ODE Models Chap. 6

Multiplying through on each side of (6.64) by ('2! ('xp Ik1tl and dividing by c_'

exp [k,l] (6.6.'1)

and noting that the lefthand side is simply

" exp [k,11 C ,]
dt

we multiply by dt and integrate to find

k [exp [k,ll- I I,
multiplying by exp I -kill and dividing hy t. we find the solution

(6.66)

(6.67)

C ., k,1 II exp [ k,111

The division by t is bothersome at f;;;;; O~ the reader should llSC L Hospital's rule to sl1(1\\ that the

correct initial condition is obtained with this expression.

NOlice that we can define a dimensionless coucentration and time as

to find

V(T) 11 - exp [ ,II, (6.69\

which IS shown in Figure 6.:).

Notice that this solution hold.s while the rcacf(l1" IS being "fed" After the feed is stopped

the model is simply dei/ill:;:: ~kICi\ with appropriate intinl conditi(lI1s (sec student exercise ~f))

1 -_ ..~--- ,----

Solution, dilncnsionless sernihatch reactor prohlem.
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6.5 ROUTH STABILITY CRITERION-DETERMINING STABILITY
WITHOUT CALCULATING EIGENVALUES

The stability of the characteristic equation is determined from the values of its roots
(eigenvalues). This is easy for first and second order equations (and not too hard for third)
since there is an analytical solution for the roots of polynomials through third order. If the
polynomial is fourth order or higher, the roots must be determined numerically. There is a
method for determining if any of the roots arc positive (unstable) without actually calcu­
lating the roots (RoLlth, 1905} This method involves all analysis of the coefficients of the
characteristic polynomial by setting up the Rowh Array. The test of the coefficients in the
ROllth Array is called the Routh ,S'tability C'riterioll.

The Routh Stability Criterion is based on the characteristic equation that has the fol­
lowing polynomial form

(670)

We can arbitrarily assume that all > O. If an < 0 then multiply (6.73) by ~1. A neces­
salT condition for stability is that all of the coefficients in (6.70) Inust be positive. If any
of the coefficients are negative or zero then at least one eigenvalue (root of the character­
istic equation) is positive or 7.ero, indicating that the equation is unstable. I~ven if all of
the coefficients are positive, we cannot slate that the system is stable. What is needed is a
sl4licicllt condition for stahility. To determine that the system is stable, we must construct
the ROLlth array and use the ROllth stability criterion, which provides necessary and suffi­
cient conditions for stability.

Sometimes we simply wish to determine if a particular system is stable or nOl, with­
out actually evaltltlting the eigenvalues. This is partieuJtlrly true if we wish to determine
values of system parameters that will cause a systelll to lose stability. This approach will
be useful in performing a bifurcation analysis in later chapters, <lndin tuning control sys­
tems in chemical process control.

6.5.1 Routh Array

If "lll of the coeffients of the characteristic eq uation (6.70) arc PO"ilive, the llccessaJ)' con­
dition for stability is satisfied. The following Routh array (Seborg, Edgar, & Mcllichamp,
1989) is developed to test for the s/!llfcicnt conditions for stability:

Row

an (/11 ___'2 an--4

2 {[Il-! {[n-3 an 5
3 h, h2 h3
4 ci c2

n+l
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where II is the order of the characteristic polynomial. Notice that the first two rows consist
of the coefficients of the characteristic polynomial. 'fhe clemenls of the third row arc cal­
culated in the following fashion:

({1I-I(ln--2 -" ti,/In
hI = h2 =

{III I

and so 011. Elcments of the fourth and larger rows arc calculated in a similar fashion:

(:1

and so Oil,

Routh Stability Criterion

bj({/I ) - ({nlhZ

h,
('2

hl{[/I S - lltJJ}J

hi

A necessary and sufficient condition for all roots of the characteristic polynomial to have negative
real parts is that all of the coefficients of the polynomial are positive and all of the elements ill the
len column of the Routh array are positive.

EXAi\lPLE (,.4 Sccond~ordcl' Charadcdstic Equations

Consider the second-order ODE:

(Px
(/2 tlt2

The characteristic polynomial is:

dx
+ ttl

til
((J.7 I)

al ;>..? + a l A + an 0 (6.72)

If all of the coefficients (12' (II' and (10 arc positive, then the necessary condition is satisfied. We
call form the ROllth array to test for the sufficient condition:

ROll'

a) (10
2 (ll

3 an

Since the left column consists of the pc}lynomial coclTicienls, if all of the coefficients in the sec­
ond order system are positive, the. system is stahle.

Notice that, for second-order sysLems, a lesL for positive coetJicienLs is necessary and sufficient for
stability.
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EXAMPLE 6.5 ThirdMonlcl' System

The system:

rex (Px dx

riP + 2
dP + 3 + x = 0

dt

has the characteristic polytl(l!llia]:

A' + 2 A' , 3 A + I ~ 0

and the following Routh array:

ROH'

j 3
2 2 I
3 5/2
4 I

All of the coefficients of the characteristic polynomial arc positive and all of the elements in the
left column of the Routh ,-trray afC positive, so the system is stable.

---_.~~~~--~-_._---~-~

The Routh array is particularly useful for determining how much a parameter call vary before a sys­
tem loses stahility. The following cxan1pJe illustrates such a system.

EXAIVIPLE 6.() ThinJ·order, System 'Vith a Variable Parameter

The system:

d\- d2x
dt' -I 2 dr;

dx.
+3

dt
, f-Cx _. 0

has the characteristic polynomial:

A' 2 A' + 3 A , f-C ~ 0

where 1.1 is a parameter that may vary. The Routh array is:

I 3

2 2 f-C
3 h,
4 ('I



where b l :::: J -- f.L/2 and c j ::::: IJ... From the characteristic polynomial, we sec that /L > 0 is required.
The same result holds true for the requirement of c) > O. We notice that h] will be posj~

live only if f.L < 6.
F'rom these conditions, we find that the stability requirement is 0 < /L < 6.
for complex, high order (3 or greater), it is not uncommon for a system to have parame­

ters that stabilize the system only over a certain range of parameter values. 'rhis is particularly
true of feedback control systems.
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SUMMARY

We have reviewed techniques to solve homogeneolls and nonhomogeneous (heteroge­
neous) 11th order ODEs.

Homogeneous problems arc solved using the roots of the characteristic equatioll,
forming the solution IIS a sum of exponential terms. Homogeneous equations gener­
ally occur if the system is unforced, but there is an initial deviation from steady­
state in the state variables.

The method (~l undetennilled c()(dlicients is lIseful for solving nonhomogeneous
(heterogeneolls) problems. These generally occur if the system is forced by a chang~

ing input.

The integrating factor method was useful for solving a first-order heterogeneous
equation with a time-varying coefficient.

The Routh array was llsed to test for the stahility of a differential equation. This is
lIseful for finding vailles of a paranletcr that cause a system to lose stability, such as
in feedback control system design or bifurcation analysis.

The type of dynamic behavior of an nth order differential equation is a function of
the eigenvalues (roots of the characteristic equation). Eigenvalues that arc further in
the left half plane arc "fast." The larger the ratio of the imaginary portion to real
portion of a complex eigenvalue, the more oscillatory the response. Stability is de­
tennined by the real portion of the complex eigenvalue. If all eigenvalues have a
real portion that is negative, then the system is stable. If any single eigenvalue has a
real portion that is positive, then the systern is unstable.

Often engineers study the dynamic hehavior of processes by starting out at stcady~state,

then applying a changing input to the process. Although the method of undetermined co­
efficients can be used to solve these problems, the Laplace transform technique is used
more often. The Laplace transform method is introduced in Chapter 7.
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STUDENT EXERCISES

I. Consider the state-space model:

Ix, I 1- 1 .~ 211 XI]Ix, I 0 x2

a. Find the second order ODE in terms of XI'

b. Find the second order ODE in tenns,-of x'2'

c. For xI(O)::::: ~l and x2(O)::::: 1, ohtain the analytical solution for xl(t) and x2(t)·
d. Usc ode45 or initial to solve the set of two differential equations, given

the initial conditions in part c.

2. Consider the following linearized form of a hioreactor model with substrate inhibi­
lion kinetics (sec Module 8 for delails):

x=Ax+8u
y=Cx+DtI

where:

I 0
A~

~. -0.7500

1
1 0 IC = 0 1

0.9056.·.1
-2.5640

D=

I
·.~ 1.53021

3.8255

I;:]
a. Find the second-order ODE 1n terms of XI' assuming u::::: O.
b.Find the second-order ODE in terms of x 2, assuming u::::: O.
c. For x,(O) =- I and x2(O) = I, oblain the analytical solution for x, (I) and xP)·
d. Use ode45 or initial to solve the set of two differential equations, given

the initial conditions in part c.

3. Consider the slate space model for a two-state system:

x= Ax

[Xl] .1 all
'-\:2 = (121

ESCOLA Dc ENGENHARIA
BIBLIOTECA
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a. Lcty = xl' and derive the following relationship:

y-[all + a22] Y+ [a lla22 - a2\ad Y = 0

which has the characteristic equation:

1\2 - [all + a22 ] 1\ + [a ll a22 - a2\a12] = 0

Recall that the eigenvalues of the A matrix arc calculated by:

det(H - A) = 0

Chap. 6

Show that det(l\I- A) = 0 applied to this general two-state example, yields:

1\2 - [all + an] 1\ + [allan - a 2I a 12] = 0

4. Solve the following differential equation with the given initial conditions:

d2y dy
,+5········+6y=O

dx dx

yeO) = 0 and
dy(O)

dx
I

5. Find the particular solution of the differential equation:

d'y dy .
~i.~' - 3 ;I:;' - 4 y = 2 sm x

6. Consider the following second·order homogeneons ODE:

,l'x dx
····--3-+3x=O
dt2 dt

a. Write the characteristic equation for this ODE.
b. Find the solution (solve for any constants), x(t), if the initial conditions arc

x(O) =2.0 and x(O) =3.0.
c. Discuss the stability of this system.

7. Consider the following first-order heterogeneous ODE:

dx
3 + x = 2(1 - e''')

dt

a. Write the characteristic equation for the homogeneous part of this ODE.
b. Find the solution to the heterogenous problem. Show all steps. The initial condi­

tion is x(O) = 2.0.

8. Consider the following state-space model that results from a linearization of the
predator-prey equations:



Student Exercises

-1.0] [XII
0.0 X2

163

with initial conditions x,(O) =0.5 and x2(0) =-0.25.
a. What are the eigenvalues of the A matrix? Use both MATLAB and your own

analytical solution.
b. Write the second-order ODE that corresponds to xI. Use the method of Section

6.2 to solve for x,(t). Plot x,(t).
c. Write the second-order ODE that corresponds to x2. Use the method of Section

6.2 to solve for xlI). Plot x2(t).
d. Compare the results from band c with those obtained by integrating the statc­

space equations using cither ode45 or ini tial.
e. Show a phase-plane plot (Xl versus Xl)' placing XI on the .:r-axis and Xl on the

y-axis.

9. Consider a system described hy the following third-order ODE:

(Py- .... +
dt'

d'y dy
1.5, + .... + Zy = 0

dt- dt

Is the system described by this equation stable? Why or why not?

10. For a general third-order polynomial:

a J Po.
3 -I- 112 Po.

2 -I- ill A -I- ao = 0

show that {lj > 0 and ([la2 ~ {loa3 >°are necessary and sufficient for stability.

11. For a general fourth-order polynomial:

([4 Po.
4 + llJ Po.3 -I- a2 Po.2 -I- a l Po. -I- ao = 0

show that aj > 0, a2a3 ~ {l\a4 > 0, and {l1{l2{l3 - (l4ar ~ aoaj > 0 are necessary and
sufficient for stability.

12. Consider the following third-order ODE:

d'y d2y dy
;/ti + Ziti + (0: -I)d{ + o:y = 0

where ('{ is a parameter. Find the range of ('{ that will cause this equation to he
stable.

13. Consider the «lllowing second-order ODE:

d'y dy- + Z-- + ZY = 0
dt2 dt

which has eigenvalnes of -I ± Ij and initial conditions y(O) = 2 and y(O) = -Z. Find
y(t).
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14. Consider the series of two tanks, where the levels interact.

F
O

--.

tHJ21~h2.F
2

F,

a. Assuming that the flow from the first tank is linearly proportional to the differ­
ence in the tank heights (P'l :::.: ~l (h t - h2)), the flowrate from tank 2 is propor­
tional to the height in tank 2 (F2 ;:;;; rJ 1 liz), and the tanks arc or COllstant cross­
sectional area (A I and A2) show that the modeling equations arc

dh 13 13,
.... 2 '0 J (h _ h ) -' h
dl A I 2 A 2

2 . 2

b. Reduce these two equations to a single second-order equation in 112.

c. Assume that the steady-stale f10wratc is 3 [(3/min, and the steady-state tank
heights for tanks 1 and 2 arc 7 and 3 feet, respectively. The constant eros,\;­
sectional area is 5 ftl for each tank. The initial conditions arc h\(O) :::: 6 fect and
h2(O) = 5 feet. Solve for the heights of tanks 1 and 2 as a function of time, Plot
the tank heights as a function or time. Discuss your resulls.

d. Write a MATLAB Ill-file and lise ode45 to integrate the two equations shown
above. Show that the numerical integration agrees with your solution in part c.

15. For the batch series reaction (Example 6.1):

k k
A-}IJ-fC

H. Find the reaction time that maximizes the production of B. Recall that the solu~

tion for the concentration of B is:

'() k I C,lO[ (]eli I = 'k--=-;- cxp( - kit) - cxp - k21)
2 /(j

and that the maximum occurs when the condition den/dt:::: 0 is satisfied.
b. For k j ::::: I and k2 :::o 5 min-I, find the maximum conversion of A to B (express as

Cn/CAo) and the tinle required for this conversion.
c. In practice there is uncertainty in the rate constants. If the actual vallie of k, is

7.5 min-I, and the reaction time from b is used, find the actual c()nvcrsion~or
A to Ii,

d. Use the MATLAB routine ode4 5 to integrate the three state variable equations
and solve for C;\> Cn' and Cc as a function of time, for the parameter values in



X(I) = CH(I)/CAO = k I cxp( - kl)

where CA , Cu' and Cc represent the concentrations (mol/volume) of cOlnponents
A, B, and C, respectively. Using the following definitions:

165

k ll

A --> B 1<, C
f-- -->
k lr

Dimensionless time, 'T = kit

Conversion orA, Xl = (C';jO ~ CJ\)/CAO

Dimensionless concentration of B, x2 = Cu/ CAO

Ratio or rate constants, a = k z/ kIf
Ratio of forward and reverse rate constants, p = k ir/ kIf

Here kjr"nd k1r represent: the kinetic rate constants for the forward and reverse reac­
tions for the conversion of A to H, while k2 represents the rate constant for the con­
version of B to C

Assuming that each of thc reactions is first-order and constant volumc, tbe model­
ing equations are

h, with C~\O := 1.5 and em> :0;: Ceo::::: 0 mol/liter. Make a comparative plot for the
parameter values in c. What do you observe about the concentrations of A, B,
anel C?

16. For the batch series reaction with ilTeversible reactions (A --.--.7 B --.--.7 C):
a. Find the reaction time (tllla,,) that maximizes the conversion of A to B for the

case INhere k2 ::::: k j ::::: k. Also find the value for the maximum conversion of A to
B. Recall that the solution for the conversion is

b. Assume that the reactor is run for the period {max found in a. Now consider the
effect of an error in the reaction rate constant of +50%. What is the actual con­
version orA to B obtained at tmax?

17. Consider a batch reactor with a series reaction where component A reacts to form
the desired component B reversib(v. Component B can also react to form the unde­
sired component C. The reaction scheme can be characterized by:

Student Exercises
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ll. Show that the equation l~)r the dimensionless concentration of B is

Chap. 6

(Px)

(/72
+ (1:\ + <X + I) dX2

d'T

and that the roots of the characteristic equation can never be complex or ullsta­

ble (assuming that the rate constants arc positive).
h. Solve the previous equation to find x2 as a function of T and ex and r3.
c. For kif:::: 2, k 1r = ], and k2 :::: 1.25 hr"], find the maximum conversion or A to lJ

and tlie reaction time required for this conversion.
d. Usually there is some uncertainty in the rate constants. If the real value of k2 is

15 11I~1 and the reaction is fun for the time found in c, what will be the actual
conversion of A to B?

18. Consider the series reaction:

le l k? C' k~A-lIJ-j ~--->'f)

The modeling equations for a constant volume batch reactor arc

a. Show that the third-order ODE descrihing the concentration of Cis:

[Hint: Solve for en fWln the third equation and take the derivative to find

deBldt.1
h. Assuming that all of the kinetic parameters are positive, show that this system is

stable.

19. Consider the second-order equation:

Por initial conditions x(()) = I and x(O) =1, find the analytical solution and shm\'
that the following plot describes how x changes with time.
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20. Consider a semibatch reactor (Example 6.3) with a first-order kinetic parameter of
k:::: I hr- I . I\x a nowrate of 10 liters/hour, a feed concentration of 5 mol/liter, and
arced time of 2 hours, find (and plot) how the concentration changes fronl 0 to
10 hours.



AN INTRODUCTION
TO LAPLACE TRANSFORMS

Arter sludY'ing this chapter, the reader should hc able to:

7

Define the Laplace transform alld apply it to several example fUl1c1iollS.

Usc Laplace transforms to convert an nth order ()DL·: to the Laplace donwin.

Manipulate the algebraic equations by! performing a partial fraction expansion.

·'Invert" the Laplace domain functions to obtain the time domain solution.

Use the final v,due theorem to compute the lOllg+:r1n hehavior of a system.

The important sections of this chapter arc:

7.1 Motivation

7.2 I.kfinition of the Laplace Transform

7.3 Ex,unples of Laplace 'rransforllls

7.4 Final and Initial Value Theorems

7.5 Application Examples

7.6 T;:lblc of Laplace Transforms

7,1 MOTIVATION

In this chapter \vc introduce {\ mathematical tnoL the Lllp/ace fnlllsji irlii , which i:-; \cr.\
useful ill the analysis of linear dyn,unic -.;y-.;terns. crill' purpose of tile Laplace transform.
as used in this textbook, is to converl linear differential equations inLo algehraic equa,

168
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7.2 DEFINITION OF THE LAPLACE TRANSFORM

lions. Algebraic equations arc much easier to manipulate than differential equations. An
analogy is the usc of logarithms to change the operation of multiplication into that of
addition. Laplace transforms arc lIseful for solving jinear dynamic systems problems,
particularly nonhomogeneous (heterogeneolls) problems (Le., where the input to the
process system is changed), and are commonly used in process cOlltrol system design
and analysis.

Sec. 7.2 Definition of the Laplace Transform 169

Definition: Laplace transform

Consider the time domain function/(t). The Laplace fransform ofj{f) is represented by qj{t)J and is
defined as

1.[j(l)1 = F(s)c J/(t) e "<it
n

(71 )

This operation transforms a variable from the time dornain to the s (or Laplace) domain.
Note that some texts use an overbar or capital leucrs for the transformed variahle. In this
initial development wc will let/C!) represent the time dOlnain function and F(s) represent
the Laplace domain function. Later we may be more relaxed in our notation and let .f(s)

represent the Laplace domain function.
The Laplace transform is a linear operation, as shown below.

L[a,Jj(t) + a,Nt)1 = J [a,Nt) + ",Nt)] c "tit
<)

Oc ]a,I;(t) e~" <it + Ja,/;(t) e" tit
(J ()

= aJ'f(t) e" tit + a,!/;(t) e" tit
() , 0

(72)

Equation (7.2) satisfies the definition of a linear operation.

In (7.1) we used Ll/{t)1 :so; F(s) to define the transform of a time domain function. [I'
we wish to transform a Laplace dornain (sometimes called the s-domain) function to the
time dornain, we lise the notion of an inverse transform

L'IF(s)1 =/(1)

Although not emphasized in this text, Laplace transforms can also be used to solve linear
partial diffcrenlial equations (PDEs).
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7.3 EXAMPLES OF LAPLACE TRANSFORMS

In this section we develop transforms of some functions that commonly occur in the solu­
tion of linear dynamic problems. These functions afC: 0) exponential function, (ii) step
function, (iii) time-delay, (iv) derivatives, (v) integrals, and (vii) impulse.

7.3.1 Exponential Function

Exponential functions commonly arise in the solutions of linear, constant coefficient. or­
dinary difTcrcntial equations:

J(t) = e,n'

A plot of this function is shown in Figure 7.1.
Recall that the transfoml is defined for t > 0 (we also use the identity that eX+1

' ;::: e·1c\)

L[e-,n] = JHt) e- n dt = J e-,n e- n dt = J e-(dal ' dt
o () 0

I= _ [(((.\'+O)lj'''' =
S + (l 0

ILIe ,a] .-
s + a

L 1[' 1 ....J= eO'"~
.s + a

1 I
'-[0-1]=-

s+a s+a

E\pOllential

0.8

1ji
0.6

0:
x

OA Iw

i
0.2

0
0 2

at

3 4 5

FIGURE 7.1 Exponential function.



We must use the "more precise" definition of the Laplace transform, because of the dis­
continuity at t = 0:

Notice that the way we have solved for the limits of integration is only rigorously true for
{/ > O. For a < 0 the solution still holds for s > -a; we will assume that this condition is
always satisfied.

171

s

AA
- [0 - i]

s

T

+ I }(t) e-" dt
"

lim
1'---+0
T----'>7;

L[t(t)I =

L[A] = JAe-·" dt =
0'

Examples of Laplace TransformsSec. 7.3

{
Ofort<O}

}(I) = A f{)f 1 > 0

The step function is used to solve dynamic problems where a sudden change in an input vari­
able occurs (a flowratc could he rapidly changed from one value to another, for example).
The step function is defined as 0 before t = 0 and A after [= 0, as shown in Figure 7.2,

7.3.2 Step Function

Since the transform is defined for t > 0,

L[A] = ;\
s

5;tep

Notice that the same expression is used for the Laplace transform of a constant.

A

Step Function

o

t = 0

FIGURE 7.2 Step function.
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7.3.3 Time-Delay (Dead Time)

This is important for systems with transport delays (flow through pipes, etc.), or delays
due to measurements. l"ct ttl represent the time delay. If the undclayed time domain func­
tion isj(t), then the delayed function is/(t - l<f)' as shown in Figure 7.3.

TheL,aplace transform of the delayed function is:

Llf(t - t,,)1 = J ](1 - I,Je- W dt
o

= e-·w,J ](t') e"" dt' = e"" 1'(.1')
o

Notice that the lower limit of integration did not change with the change of variable, be­
cause the function/ttl is dehned as jet) = 0 for 1 < 0,

Llf(t - td ) 1~ 1"'" P(I') Time~De!ay

The transform of a delayed function is simply c---stt! times the transform of the undclaycd
function.

I(t)

function

delayed function

"FIGURE 7.3 Delay funclion.

~-----------_.
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7.3.4 Derivatives

This will he important in transforming the derivative (accumulation) term in a dynamic
equation to the Laplace domain.

Lei

LItiM]." 1dl( t) e "dt
... dt_ 0 dt

Using integration by parts U adv:::: uv - f vdu)

II ~, e wand v'·, fell

[.[{.IJ.(t).!_ J" dill) e •. - ." dl ~ [e'" j(l)]' + Jf(t) se" dt
dt or/t DO

[
dl(t)] . JJ '. .,L '. = [0 - j (0)] + s j (t) e'" dt ,. shes) - flO)

dt . 0

Derivative

dIet)
fit

t, 'lsF(s) -f(O) 1

nth Order Deriv(ltive
11 initial conditions arc neededf(O), ... ,./(n-I)(O)

Since we often work with deviation varinhlcs,j(O) := 0 in many cases.
In general, you should he able to show the following (sec student exercise I):

{I J(t) dll =I ~ J(l) dl" dl

I
Again, intcgratc by parts, lIsing u = e--,\-I dt and v::::: I./U)dt, to find

o

7.3.5 Integrals

This is often used in process control, since many controllers use information about the in­
tegral of the error between the desired value (sctpoint) and the measured value:
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FIGUH.E 7.4 Ramp functioll_

7.3.6 Ramp Function

I
F(s)

s
Integral

Consider the following ramp function:

f(l) b I

as depicted in I·'igurc 7.4.
You should be able to shmv (sec exercise 2) that

R(/Illp

L 'IINI

7.3.7 Pulse

Consider the pulse function in Figure 7.5, which consists of a step from () to A at [::::: 0, and
a slep back to 0 at t;;::;; tp.fiind lhe Laplace transfer function for this pulse.

There arc two ways to solve this problem.

FIGURE 7.5 Pulse fUllction.



'file usc of A::::: I is the unit pulse.

ONE METHOD

The pulse function is defined over the following two time intervals:

175

F(s) = f/(l) e" dl •.c f/(I) e" dl + ff(l) e'" dl
(lOll'

A. A
F(s) = ~ [e""~ I] = [I ~e "'I

s s

, A
f A e" dl + fOe" dl- ~ [e"I'"
o ~ s 0

Examples of Laplace Transforms

f(t) = A for 0 < I < I"

.I(t) = 0 for I > I"

and we can write the Laplace transform as:

Sec. 7.3

Llunit pulse of duration 'pi ,-- I [1 e- II"1
s

Unit Pulse

A SECOND METHOD

f(l) ,•• .1;(1) + NI)

F(s) F,(s) + F,(s) .c L[I(I)] ,,- Llt;(I) + f,(I))

Consider that the pulse is simply the sum of two step changes, as shown in Figure 7.6.
1'hat is, it is the sum of a positive step change at f = 0 and a negative step change at

t ::::: tv Lctfl(t) fcprCScllt the step change at t :::: 0, and lit) represent the negative step
change at I :::: If!>

+

/, (I)

o

A

TL

but notice thatl2(t) = ~f,(t ~ II')

FIGURE 7.6 Pulse function.
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and that (from the stcp fUBction):

and (from the delay function):

An Introduction to Laplace Transforms

s

Chap. 7

-(' 1.-" A
.I'

SO \VC call \vrite 1'(.1')
/1

[] .. e'·']
s

\vhich is consistent \vith the previous derivation.

7.3.8 Unit Impulse

In Figure 7.7, consider the pulse function as the pulse time is decreased, but the pulse area
remains the same, as ShOVv'1l by the dashed lines below.

l'he unit impulse fUllction is a special case of the pulse function, with zero width

(t/J -t 0) and unit pulse area (so A ::::. llt/,'!. Taking the limit and applying L' llnpiLa]'s
rule:

~, ,

~ :- .. ~ .

~,-'-'--'------'-----------

FIGURE 7.7 Impuhc function.
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L[o] lim
11')0

- c".'] .... lim
(!'--.,o

-I
I -sc "1"1

S
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Unit Impulse

7.3.9 Review

'rhus far we have derived the Laplace transform of a number of functions. f:;'or example,
we found:

LIe "'] ~
s+a

If we have a LapJace domain function, such asl/(s + a), we can "invert" it to the time do­
main.For example,

LII, I al.~e'"

Althollgh the student should he able to derive Laplace transforms of any lillle domain
fUllction, that is not our major objective. Our major objective is to usc Laplace transforrns
as a tool to solve clynarnic problems. The l-,aplacc transforms of many time-domain func­
tions have been derived and compiled in various tables and handbooks. Already, we can
construct a table of eight (exponential, step, time-delay, derivative, integral, ramp, pulse,
and impulse) time-domain functions along with their Laplace domain functions. Addi­
tional Laplace transforms aJ'e provided in Table 7.1 in Section 7.6.

7.4 FINAL AND INITIAL VALUE THEOREMS

The following theorems arc useful for determining limiting values in dynamics studies.
They will be used frequently to find the shortAenn and long-term behavior. The 1011g term
(final valuc) of a timc domain function can be found hy analyzing the Laplace domain be­
havior in the limit as the s variable approaches zero. Thcinilial value of a time domain
function can be found by analyzing the Laplace domain behavior in the limit as s ap­
proaches infinity.

Final Value Theoretl1

Initial Volue Theorem

lim Is F(s)]
,1',0

(7.3)

lim f(t) ~ lim is 1'(.1')]
{-)O )' __Pc

(7.4)
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If we have lransforlnc<J a time domain function to the s domain, \ve Call still find out the

value of the time domain function as it goes to steady~statc (l -~) (0) by finding the value
or the Laplace dornain fUllction as S _Nt O. All application of the final and initial value the­

orems is shmvn in L~xaTl1ple 7.1.

EXA1VIPLE 7.1 Applkatioll of Final and Initial Valu(' Thl'on'UlS to the Exponential Function

(\lllsider the exponential function:

j(1)

which had the Laplace transform:

\" + (/

Finu/ Vulue Theorem. \Vc first find:

lim s F(s)
;(1

which checks 'Ivith

lim !(T)

as IOllg as 1/ is positive.

Inilia! Va/Ill.' Theorem. We first find

lim
>it,- ()

Jim c!l" ()

o

\vbich checks with

\ t- II
~I

Illn !t t)."
which is safisfied for any fillite (/.

lim e'"
'"

. ...--~~----------~--------~~~~~~

One pOJl1lnot often made in texthouks is that the final value theorem only hold", for stahle
sy,'",tems (0 > 0).

7.5 APPLICATION EXAMPLES

crhe following is a checklist for solving dynamics probkms using Laplace transt'onns.

Stcp I.

Stcp 2.

Start \vith a linear ordinary differential equatioll and initial conditiolls.

Transform each of the tiJ\le domain fUllctions to the Laplace dumain. gen~

erally by using a tabk of Laplace transforms.
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Step 3. Usc algebraic manipulations to solve for the transformed variable. The
partial fraction expansion approach is particularly useful.

Step 4. "Invert" to the time domain, by using a table of Laplace transforms.

7.5.1 Partial Fraction Expansion

The partial fraction expansion approach is based on representing a ratio of two polynomi­
als as a sum of simpler terms. L,ct N(s) and D(s) represent numerator and denominator
polynomials, respectively.

N(s)

D(s)

C

D,(s)
+ +

D,(s) .. UJs)

Ci arc constants and Di are lower order (typically J) polynomials.
The [our-step procedure is llsed in each of the following examples. The partial frac­

tion expansion is first used in [~xample 7.3.

gXAMPI.J~ 7.2 Homogeneous First-order Problem

Step 1. Consider the simple IwmogeneotlJ' (unforced) first-order problem:

dx
+ 2x ~ 0

dt

subject to the initial condition:

x(O) ~ 4

Step 2. Rccall the following transforms:

II :';;] ~ s X(s)·· x(O)

"iilxj ~ al jxl c. 1/ Xes)

Then wc (an take the Laplace transform of (7.3) aud (7.4) as:

II ~;I+ 2Lix] ~ 0

s Xes) - x(O) + 2 Xes) -, 0

s X(s) - 4 I 2 X(s) ~ 0

Step 3. Solving (7.7) for Xes):

4
X(.,) -

.I' j-- 2

(7.5)

(7.6)

(7.7)

(7.8)
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Step 4. Inverting each clement back to the time domain:

L '[Xes)) crt)

CII 41 ~4e"
.s+ 2.

and the solution is

x(t) 4 e"

(791

17.10)

(7. II)

Indeed, using the lllcl!lod in Example 7.2, \VC can show that the general first-order
equation:

dr
+ax cc;:()

tit

with initial condition x(O)

has the solution x(t) cc x(O) e '"

which, of course, is the same solution ohtained by separating the variables and integrat­
ing. The real power of Laplace transfonns is in· solving heterogeneous problems, as illus­
trated in Example 7.3.

EXAMPLE 7.3 Illustration of the Partial Fradion Expansion Tc(~hnitluc

Step 1. Consider the simple heterogeneous first-order problem:

dx
-+- 2x = 4.5

dt

with the initial condition

x(O) ~ 4

Step 2. Taking the Laplace transform of each c1cmcnt:

4.5
s X(s)- x(O) + 2 Xes) ~

s

which can be written (since -,_-(0) "'" 4):

4.5
(sl 2) Xes) -c 4'

s

Step 3. Solving for the transformed varlahle

4 4.5
Xes) ~ +

s f 2 s(s + 2)

(7.12)

17.1\1

(7.14)



We would like to invert (7.14) to the time domain, however we do not know how to invert the
last term 4.5/s(s + 2).

We will use the approach known as apartialFaetion expansion. That is, write:

A ~ 2.25

then set s:::o;: 0 and solve for A:

181

(7.15)+
.\' S + 2

A Ii

Application Examples

4.5 lis
"C A +

s-+-2 s+ I

4.5

s(s \ 2)

to find A, finit multiply (7.15) by s:

To find fl, first lllUltiply (7.15) by s + 2:

4.5 A(s + 2) + IJ
s s

Sec. 7.5

and set s = -2 to solve for B:

IJ ~. 2.25

which yields:

4.5

.I(S + 2)

2.25 - 2.25
+

s s -+- 2
(7.16)

and We can write (7.15) as:

4
Xes) ~

s +- 2

2.25 - 2.25
\ +

s s + 2
(7.17)

Step 4. Inverting element by clement ill (7. J7) we find

x(t) = 4 C- 21 +- 2.25 +- - 2.25 ell

or

X(I) ~ 1.75 e" + 2.25 (7.1 ~)

the reader should verify that this solution satisfies the initial conditions and the differential equa­

tion.

Examples 7.4 and 7.5 provide additional illustration of the partial fraction expansion tech­
nique.

EXAJ\tlPLE 7.4 Find the Inverse Laplace Transform of lI(s + ales + b)

Write
1

(s \' ales + b)

A B
+

s+a s+b
(7.19)

Multiply (7.19) by s + a, set s =:: -0 to find:
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17 ..2UI

(

C(s

I' --'-- h

hi

(s

11 (/

10 ~ hi,

(/ - h

\

01

\-+-i!

1h ~ "II, I "I 1u I h II, I h I

Ii

An Introduction to Laplace Transforms

--u h
.\

(s ([) :'{.\

i\( ,\

101

- 101](1)(.\

(1)(0, h)

(s

I. L

\lultiply 17.23\ hy ,\ -+- hand -;ct s 0::: b 10 filld

--------------------- ....

and C;d ,\ ;:c: -u lu find

Here we C,lll!lU{ llluitiply b;. \ -+- (I ,p1(1 set S =-i1, because we \'\luld find 11l1buUlllkd (nULS. Fir"L
multiply 0,20)1 by (s -+- (1)2.

\lultil'l;. 7.19) hy.\ -+- f), ~l'l s --/1 tu find:

182

The Illl'thod in the prc\iou" c\i1lllple failed ir the rouLS n( the LttpLICC domain rlll1l~!i()l1

were equal. "fhc ldhming c\arnplc "IH'\'" hO\\ 10 pl~rrorll1 a partial fraction C\\"KlIbioll fur

I"Cj)('(lfcd I"oofs.

EX';\\IPLE 7.5 Consider the Following Transfer Function with Repealed Roofs
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Notice that we have solved for two of the coefficients of (7.23). Now, we can solve for olle
equation in one unknown, by setting s:;:;: any valuc-. For simplicity, choose s = O. Froln (7.23):

-I
we can reduce the solution for A to A =

(a-b)'
We have solved for A, H. and C' in (7.23), So we can perform an clcmcilt-by-clemcnt inversion of
(7.23) to find the time domain function:

L ,[.I(a=;))2] + l(b~a),1 + l(a~b)'I]· ~
(s + a) (s + a)' (s + h)

- I e"l _j J t em -+- I ... e hi
(a,· h-a (a_b)'

I

(a bJ'h

1

(b -a

A

L.- ~ . , ~

then expand the numerator and solve for the coeJTicienls A, lJ, and C such that the righthand side
is equal to the Ie-niland side. See student exercise 13.

The previous examples were for ODEs with real roots. This next example is a problem
with complex roots.

(7.26)

(7.24)

(725)

( ,11/, ,
(a-b)'

t c-- il
' -+­

b~a
e"l -+

(il '+ b) IL 'I (, +

As an alternativc-, we tan JJnd a COllUllon denominator for the right hand side of (7.23) and write:

A(s+ a)(s + b) + B(s 1 b) I· e(s + (I)'
+ b) (s + a)'(s 1 b)

and \VC call write:

EXA1\lPLE 7.6 A Second~ordcr System \vith Complex Roots

Step 1. Consider the homogeneous problem:

d~r dx
i+ +x~O

dt' dt

with the initial conditions:

\(0) ,(0) (7.27)

Step 2. From the table of Laplace transforms:

LI d"xi ~ s" Xes) _ S"IX(O) _ S" 2 .\'(0) - ... - S Xl" 2'(0) - xl" "(0)
.. dt il

.
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So, for a second derivative:

and, for a first derivative:

An Introduction to Laplace Transforms

Id"JL', ~ S2 XeS) - ,\' x(O) - x(O)
dt

[
dx

lL .. ·· = sX(s)-x(O)
df ..

Chap,7

We can now write the Laplace transform of (7.26) as:

s' Xes) - s x(O) -teO) + s Xes) - x(O) + Xes) = 0

Step 3. Attempting to isolate Xes) on the LHS:

(S' + s + I) Xes) ~ s x(O) + x(O) + x(O)

dividing by (,52 + S + 1):

S x(O) x(O) + x(O)X(s) =----- + --------
.\'2+ s +1 s2+.\"+1

and from the initial conditions:

Xes) =
,\'

+s+
+

2

+s+
(7,28)

the roots of (.\"2 + s + I) are - J/2 ± V3]2 j (from the quadratic fOl1TIula):

Notice another way that we can write (s2 + S+ 1) is:

( I)' (Vi)2(S2 + s + 1) ~ s + '2 + -Z'-

which means that we can write (7.28) as:

s 2
Xes) = ( 1); (\(3)-; + -(-'1-)2(\/3);

s+'+--- s+-+················
2 2 2 2

Step 4. Notice from a table of Laplace transforms that:

L[e-/JI sill wt] = --------~-----;­
(s + Ii)' + ",'

Lle-'" cos wI} = --------~--~~----­
(s + Ii)' + ",2

and we should maneuver (7.28) into the form of (7.29) and (730).
Notice that we can write (7.30) as:

(729)

(7,111)
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which has the lime domain response sho\vll in Figure 7.8. As we Iloticcdin Chapter 6, complex
roots give oscillatory responses. We see in Chapter 9 that this type of response is called llndcr­

damped.

(7.31)

1086

I.S

(SI i)'1 (\~7

• 'I' V3v3 e :. sin (
2

2

time

4

s+
2

'I
) V"3

e ~cos l. 2

2

l ' \/3 J.5 Ii' \/3
x(t)=el"cos t+ e-""sin t

2 2

ttl)

X(S)

FIGURE 7.8 ()sciJlatory response due to complex roots.

-0.5
o

o

and we invert each clement of the RHS of (7.31), using (7.29) and (7.30):

1.5

:..:: 0.5

For your convenience, selected Laplace transforms arc presented in Table 7.1. If yOll de­
sire to transform a function from the time domain to the Laplace domain, then look for the
time dOlnain ('unction in the first column (j(t» and write down the corresponding Laplace
domain function in the second column (F(s)). Similarly, if you arc trying to "invert" a
Laplace domain function to the time domain, then look for the Laplace domain function
in the second column and write down the corresponding time domain function from the
first column.

7.6 TABLE OF LAPLACE TRANSFORMS
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TABLE 7.1 Laplace Transforms for Selected Time-Domain Functions

fit) 1'(.1')

(j(t) (unit impulse)

, {Ofoft<OjS(t) (Uillt step) . _
1 lor I .> 0

A (constant)
f(t--O) (time delay)

t (ramp)

df
(derivative)

dt

d'~f

dtil

e--il !

(e--Oll -- e- Ojl)
a j - {/2

~~L_=~lJ c,,,,r +~lJ - (12 e"/
(J2~al al~a2

sin wt

cos wt

e-Il! cos (UI

1 + (1'1 e- t / T
, ~ 1'2 e---Il,,)

1'2 - 1'1

(1 _ 1

where w :c:.:c

I + _'l"~-_:'l"1 e-I/T) +'l"J .---'1"2 e liT,
Tl~T2 1'2-1'1

1- (1 - ::J e--t!'d

7

,I'

Ah
cos F(s)

1

-I

.v"

.1'1'(.1') -.1(0)

sllFCs) ~ SIl-l.!W) - s"-2j'(I)(())

- .1./,"-21(0) -.I''' "(0)

s + a
I

(.I' + "')(.1' + "2)

s -J-

Cs -+- llj)(S -+- (/2)
I

s(n + I)
W

s2 +
S

+
(,)

(.I' C [J)' +
s+a

(.I' + f

1

.1'(7,.1' + 1)(7,.1' + I)
I

+ 2;; 7S + I)

,(V = tan---- 1

+1

.1'(7,.1' + 1)(7", + I)
Til.\' --j-- 1

.1'(7".1' j- I)

___________________ •• TtII'"
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SUMMARY

187

We have defined the Laplace transform and applied it to several functions that commonly
appear in the solution of chemical process dynamics problems. Although the Laplace
transform concept seems quite abstract at this point, in the chapters that follow you will
find it extremely llseful in solving differential equation models. The final (7.3) and initial
value (7.4) theorems will be useful for checking the long-term (steady-state) behavior and
the initial conditions for a particular problem.

A number of examples were provided to illustrate the power of the Laplace trans­
form technique for solving ordinary differential equations. We noted that the tcchnique al­
lows us to convert the ODE problem to an algebraic problem, which is casier for liS to
solve. After performing algebraic manipulations in the Laplace domain, often with the usc
of a partial fraction cxpansion, we then look up inverse transforms to obtain thc time do­
main solution.

In the chapters that follow, we use Laplace transforms to analyze the dynamic be­
havior of different types of linear process models.

FURTHER READING

Many differential equations and process control textbooks provide details on Laplace
transforms. Some examples arc:

Boyce, W.• & R. DiPrima. (1992). Ordinary Differential Eqaatiolls alld BOlll/dary
Value Problems, 5th cd. New York: Wiley.

l~uyben, W.L. (1990). Process Modeling, Simulation and Controlf(Jr Chernical En"
R;,/{:ers, 2nd cd. New York: McGraw-HilI.

Seborg, I).E., T.P. Edgar, & D.A. Mellichamp. (1989). Process D.vnmnics {{nd Con­
frol. New York: Wiley.

Stephanopoulos, G. (J 984). Chemical Process Control: An Introduction 10 ThcOf)l
and Practice. Englewood Cliffs, NJ: Prentice Hall.

STUDENT EXERCISES

1-5. The student should derive the Laplace InmsfoJ'm for the following functions;

d'~l
L

dt"

2, '/(1) ~ bl

3, '/(1) ~ t2
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5. ttt):::; cos (I)!

(flilll: Although you can solve question:) using integration by pans. you may \vish
10 usc the Euler identity cos (I){:::; 1/2 (ei'dl + e-F'II).)

6. Find the Laplace transform, u(sL o!' the following input function:

2

u(11

o

o 10 20 35

7. Find the Laplace transform of the function y(l) lhal satisfies the differential equation
,md initial conditions:

d\ d\"
4 .) -'- 2y 2

dt' dl dl

,(OJ
d\(O) d\(O)

0
dt dt,1

8. Solve the dlllcrcntial equation:

\ (0) 2.0

9. A process input has the following Laplace transform:

2 6
u(s) ~

\ C
S S

\Vhat is the lillle domain input. It(t)? Find this analytically".

Sketch the time domain Input.

10. Find the tillle dornain solution yO) for the Laplace domain transfer function (\\'ilh
~ <: J):
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I
Y(s) = ,

S(T"S' + 2~TS + I)

11. Derive the time domain solution yet) for the Laplace domain transfer function:

189

+1

1)(T,s+l)

12. Derive the time domain solution y(l), for the Laplace domain transfer function:

+1
Y(s) =

'(TI'+I). "

13. Consider Example 75, involving the following transfer function with repeated
roots:

(.I' +
A Ii C=--+ +--

+ h) s + a (.I' + a)2 .I' + h

Find a common denominator for the righthand side:

A(s + a)(s + h) + B(s + h) + C(s+ af
(.1'+ +b) (.I' + a)2(s + h)

then expand the numerator and solve for the coefficients A, B, and C such that the
righthand side is equal to the lefthand side.



TRANSFER FUNCTION
ANALYSIS OF FIRST-ORDER
SYSTEMS

Arter studying this chapter. the reader should 11l1ck:rsland:

8

'fhe responses oj" first-order systems to step and illJpubc inputs.

flow chemical reactions change the tillle constant of a stirred tank.

The behavior or all integrating procesc,.

How to compare the long-term beh;lvior of a nonlinear process \viLll tll<'ll of' a linear
process \vitholll integratlng the nonlinear modeling cquaticllls.

The responses of first-order + ti!ll\>clcla)! models.

HO\\ to estimate the par~HT1Clcrs o( first-order and first-order + tillle-debl) lr;:1I1sfcr

fUllctions by apply'ing step input changes.

"rile response of a lead/Jag IlH)c!C] to a step input.

The important scctiolls in this chapter arc:

8. [ Perspective

82 Responses nf First-Order Systems

B.3 l':xarnplcs of Sdf-J{cgulmillg Processes

SA Integrating Processes

B.5 Lcwl-[,ag rVlodcls

190



One of the powers of the-Laplace transform technique is the ease with which it handles
heterogeneous (forced input) problems. It is most uscftl1 when the models arc separate
fronl the type of input imposed (step, ramp, etc.). The models that arc developed arc
called tl'mqlerjl/I/('lioll models and will be llsed frequently in control system design.

Process engineers often learn ITlLlch about the behavior of a process by changing the
inputs and seeing how the outputs respond. The goal of this chapter is to illustrate the typ­
ical responses of first-order models to step changes in inputs. Knowledge or these types of
responses will allow an engineer to determine a good approximate model for the process,
including the best parameter values, based on measured data fronl the process.

8.1 PERSPECTIVE

Sec. 8.2 Responses of First~OrderSystems 191

8.2 RESPONSES OF FIRST-ORDER SYSTEMS

The equation for a linear first~order process is generally written in the folIo\\ling form

dy
T..... -+- Y ~..~ k u

dt

where the parameters (T and k) and variables (y ;:lnd u) have the following nailles:

T :::: time constant (units of time)

k process gain (units of output/input)

y :::: output variable

u input variable

(8.1 )

The rllodel (8.1) is sometimes derived by linearizing a nonlinear model about a given
steady~state and then placing the resulting linear Illodel in deviation variable fortlL For
this reason, we assume that the initial conditions arc y(O) ::;: 0 <mel u(O) ::;: O. The input, U

and the outputy afe functions of time; uU) must be specified to solve for y(t).
In the next example, we show how a standard first~ofdcrprocess model arises,

EXA.MPLE 8.1 A mixing tank

Assume that a chemical compound, A. is in a ICedstream cntering a mixing lank. Assume tbat
there is no reaction, and that the concentration of A has no effect on the density of the fluid (this
is true for trace components ill water, for eXlIlnpk). Also assume that the f!owrate is constant
<lnd the volume in the tank is constant~this implieS thal the outlet flowrate is equal to the inlet
flow rate, as shown in r"igure 8.J. The process is operating at steady-Slate, then tbe iHlct concell­
tration is suddenly changed to a llew value, Find the tallk outlet concentration as a function of
time,
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F

C
;

Overall Material Balance

Transfer Function Analysis of First~OrderSystems

F

C

FIGURE 8.1 Mixing tank.

Chap.8

dV
= F - F = 0 (from problem statement)

dt

Component Material Balance

dVC
----~ FC-FC
tit '

since V is constant

de
tit

F F
C- Cv ' v (X.2)

First of all, we can solve for the initial steady-state concentration. At steady-state, dC/dt = 0, so
from (8.2) we find:

where Csis the steady-state tank outlet concentration and Cis is the steady-state tank inlet con­
centration. Now, since -FiV Cis + FIV Cs ::::: 0, we can add this to (8.2). Also, since C~ is a con­
stant. dC/elf = d(C - C)/dt, and we can write:

d(C - C,) F _. F. .
----,It' ~v (C, - C,J - V (C - C,)

or

v d(C= S,) + (C- C) ~ (C- C)
F dt .\ I J.\

Equation (8.4) is identical to the first-order equation:

dy
T--+y=ku

dt

(X.3;

(X.4)

(X I)

with-r= VIF, k= 1,y:::: C- Cs' It =: Ci - Cis

Notice that the time constant in this case is simply the residence time of the tank, that j~.

the average amount of time that a molecule stays in the lank.

_______________ "~~fPI
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Notice that for linear systems, we can directly write the deviation variable Illodel directly
from the physical model, skipping several intermediate steps. Also. since deviation vari­
ables arc defined on the basis of a steady~st:ate operating condition, if the process is ini­
tially at steady-state. then yeO) = 0 and lI(O) = O.

Taking the Laplace transform of (8.]) we find:

'fhc reader should become familiar with this type or representation. In general terms, /:(s)

is known as a !ral1.~Ierfimc[i()lI. In this specific case. g(s) is a first-order transfer fUllction.
You \vill often see a block diagram representation of Ut7) as shown in Figure 8.2

One nice thing about (8.6) is that it holds for any rirsHmJer process (with zero ini~

tial conclitions)- -we have not had to usc any knowledge (yet) about the input u as a fUllc­
tion of time. Once we know u(t), we can usc Laplace transforms to find U(s) to solve the
problem. We will sec later that block diagrams and transfer functions arc easy [0 work
with, when we have a complex system that is composed of a number of subsystems. Be­
fore we deal with such systems. we will first understand the behavior of first-order sys­
tems to different types of inputs.

Tis yes) - yeO)] + yes) Ie lI(s)
TS yes) + Y(s)c Ie lI(s)
(n + J) Yes) .c k U(s)

(8.5 )

(88)

(8.7)

(8.6)

Ie

Ie
TS + I lI(s)

g(s) lI(s)

g(s)

Y(ll

yes)

where:

which is most commonly written:

or,

8.2.1 Step Inputs

Themosi common input forcing function is the step input. For this problem, asSUllle a
step input of magnitude 6.U altimc I ~ O. We know that the Laplace transform of a step
input is (from Chapter 7):

LIMII
M!
s

(8.9)

V(s) --1 g(s) Yes)

FIGlJRE 8.2 Block diagram.
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5432

I
I

I I
I~~-----I------T------

I I I
I I I
I I I------1-------1------1------
I I I
I I I
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I I
I
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I
I
I

5 0.8S-
"0
00

0.6
00
ill
C
0 0.4·w
c
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E

0.2'5

0
0

Vlau

FIGURE 8.3 Dimensionless output step response of a first-order process.

and we can then write (8.6) as:

(8.11 )

(8.10)
ill)k

Y(S) =
'IS + 1 s

k!W
Y(s) =

S(TS + I)

From the table of Laplace transforms in Chapter 7 (the reader should be able to derive this
result, using a partial fraction expansion):

L I [. I] = 1_1'-';'
S(TS + 1)

(812)

and the solution to (8.11) is then:

y(t) = k",U[I-e 'I'] (8.13)

Notice that we can represent the solution of (8.13) with a single plot, by dividing (8.13)
by k!1U to obtain the dimensionless output:

(8.14)

A plot of (8.14) is shown in Figure 8.3, where we have used fIT as a dimensionless time.

I 'X,,,,,.'" ~,,'~.
As a numerical example, consider the case where V:;;;:: 5 ft\ F:;;;:: 1 f(\/min, and the steady~state

concentration (inlet and olltlet) is 1.25 Ihmol/ftJ . Consider a step change in inlet concentration
from 1.25 UHno]/ftJ to] .75Ibmol/ftJ . Theil:
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!>.if 0.5
U(s) ~ ~

s s

Y(s) .~ 1 0.5
5s + I s

(illl(t) ~ J.75 ~ 1.25 ~ 0.5 Ibll1ol/ll')

195

(8.15)

which has the time domain solution:

y(l) ~ 0.5 [1 ~ e '/5/ (8.16)

Since we desire to find the actual concentration, we can convert back to the physical variables,
froHl the relationship:

y ~ C ~ C, => C(I) ~ C, • y(l)

and (8.17) can be written:

C(I) ~ 1.25 + 0.5 [I - e '/51 Ibll1ol/ft ,

(R.17)

(8.18)

Notice that C(t -----0> DO) """ J .75, as expected. This can also be obtained by applying the Final Value
Theorem to (8.16) (mel using (8.18). A plot of (8.18) is shown in Figure 8.4.

1.7

1.6

f'
~ 1.5
0
E
.0

G 1.4

1.3

0 5 10

I(min)

15 20 25

}i'IGUU.E 8.4 Transient response of mixing tank.

PARAMETER ESTIMATION FOR FIRST-ORDER PROCESSES

H.cturning to the general model for a first-order process, we sec that tllcrc arc two parame­
ters of interest the process gain and the process time constanl.

yet) == kMJ [I -- c ';'1 (813)

Process engineers often find process gains and time conslanls by performing step
tests Oil processes.
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\VL' '-;l'l' 1'rOn] (0.1-+) thaI :lftCI I» T. the eli, ternl approachc" O. 'fhe \aluc or t:. can he de­

termined:

k.. =
\(1) as I -) (large)

::,.C
(~I'J)

lililt ie.,. the pn)("cs" gain ie., thL' clldllgC in output {as it appnwcl1('" it nC\\ stead\ -stall') di­

\id('d hy the c1wngl' ill illpLll.

TIME CONSTANT ESTIMATION

\\\' CIJl find lhe time CUllst,-lllt for '-1 firs!-(mkr prucc\s in the folhl\\'ing LlShioll. Apply a

"tep input to the process aL [;:::: O. From O';.I..J.). we set' that y(l) goes to a \(due of k.::"Ll as

r"7 ,YO. \\'lll'Il the timc is l'qual to lhe time COlhlanl (f;;;; ,j. from (S 13):

I (I) UU [I (' 'I = O.67,2k::"U

l!Jdl is. the lime constant cail he dClCl"Illilll'd hy finding thl' [inll' where thl' output. 1'(Tl. IS at

h.1.~(,1 of the ultimate 1'i.-'''pOIlSC (I1CW \It'ad> -\«ltC) 'fhi" rule is al\o O)WiOllS b> 1()O~in~;l1

l:i~lll'C S.3: \\hCll/I.:::: I, \(lllk~L!:::: O.6.r2.

You "Iwuld 1)(' ('~Hd\tI. Ik'l';HIS(' t11l'; is onl) trllc fur firsl un!.:'r jll\)(\:>SI.:''' \Iith Ill) tillll'-lkl;l) ~Illd :1

\I<:'p Illput at I ::;: U, If till' PI'UCl'S\ j" \ccolld·unlct PI" the input is 11111 a Sll'll Ch;lll,~L, elL:.. thi" 6.\.2 1
,;

\alul' \\ill nul hc currcct

rOll s!wuld get ill Ilu' !whil of i1ssocioring ullits \I·/tli ({II (~r f/ie \'(/rioblcs, ()[l\iou"ly. the
pmccss time cOlhlan!. •. 1T1ll\1 h,\\c units or limc hecausc c 1/7 must he diull'llsionk"s.
/\ho, thc prOl'css gain, k. must havc units of Oulput/input to he dimcIlsioll;dl)- C01FistCili.

SLOPE METHOD

All allnnali\T Illethod or c"tinl(llil1~ the tilllc COllstant is to rcnli/c tl1<lt the initial slope 01

till' output step response for a I'jrst-urdcr Im1ce;-.,s is k~l{h. as "how!1 \x'](1\\. 'raking the cit'

ri\,lti\t' of (S.13):

and l'\alllatillg at (:::: O. we find

dl(1)

ill

k::"( .
[,'

7

ilql II)

ill
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'5
Q.

'5
0

"'
0.6

"'ill
C
0 0.4'ii;
c
ill
E 0.2'6

0
0 2 3 4 5

Sec. 8.2

tltau

FIGURE 8.5 Slope method for time constant estimation (dimensionless
output;;;; ylk!1u).

If we extrapolate this slope to the final value of the output that is achieved, we find
the time constant 1", as shown in Figure 8.5. This is a dimensionless plot, so the intersec­
tion at tIT::;: I indicates an intersection at t::;: 'T in physical time.

Parameter estimation for first~ordcr processes llsing a step response is illustrated by
the next example.

EXAMPLE 8.2 Parameter Estimation of a First-Order Procc"is

A process operator makes a step change in an input from 20 to 17.5 gal/min (gpIll) and finds that
the output eventually changes from an initial value of SO psig to 55 psig, as shown in Figure 8.6
below. Find the process gain and time constant for this system.

56

55

0> 54
'ii;
Q.

'5 53
Q.
'5

520

51

50
0 5 10 15 20 25

time, min

FIGURE 8.6 Slope method for time constant estimation.
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(820)

\Ve call inlll1cdialely calculate the process gain from k =' .lr/:J.u "'" 55 SO psig/17.5
20 gplll ::;: --2 psig/gpl1l. \VC can cdculatt' the time constant in a 1ll11l1hcJ' uj' different \"a)'s. (lnt'
\\,<1Y is to find thl' time where the output change is 6_~2(;'i (If tht' rinal ch;lI1gc. I'hi:,> occurs v.. hen
the output is SO + 0.632())::;: :'13.2 psig. From the plo\. this occurs at I :::::.5 minutes. Another \\it)

10 find the time constant is to e\lWPOJatc the initial slope of the response III the final \,due. This

occurs at r:::=:'1 minutes, as Sh(1\\'I1. Th.' identified pnKcss transff'l" function is thell:

-- 2

Ss + I

NOlin: thallhc gain (-2 pSig/gpllll and timc cOIIQanl C'1 min) haH' units associated with tilt'llL

8.2.2 Impulse Inputs

C:nnsidcr a fir:-;t-order process \vith an impulse input of magnitude A. The tran:-;form of a
unit impulse (0) is 1. so L[A0]:::= A. The first order Laplace domain respomc is:

k . kA
Y(s) .~ U(s) cc

TS + I . is +

the linK domain response is:

\,(1) kA c i- (821 )

Dividing by kit \ve find the dimc.nsionlcs:-; OUq1ul respollse shO\\'n ill the 1-"igUl\~ 8,7
belo\\. The prime characteristic of a first-order :-;)-,':-;tem is that there is an immediate rc­
spome to an impulse input.

In practice it is difficult to actually implement an impulse function. /\ close approx­
imatioll can be made by implementing a pul:-;e input over a shon period of time. as SI1O\\11

in the next cxamp1t:'"

"i 0.8
<l
"i
0 0.6
~
~

~c
0 0.4
~
c
w
E

0.2D

0
0 2 3 4 5

t/tau

FIGURE 8.7 [lnpulse Response for it first-order process. The dimensionless

output is \'(f)/k.·\.
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EXA-~-il-I-'I->-E-8-.-3--(-:0-,-n-')-"-"-is-o-n-I-"-'-h-n-p-n-'-sc-' -,,-n-d-I-',-,-ts-c~np-ll-ts-'-----~------~-~-~--- --j

In the previolls example an impulse of magnillldc A was applied to the process. Consider il pulse ..11

input, where an input value of D..1l is applied for tfl units of time, as shown in Figure ~L8. The

tolal applied input is then A :;;:; till 1{"

I
o

FIGURE 8.8 Pulse jnpuL

Frolll Chapter 7 we find that:

!:111
U(s) ~ [I - e "'I

s

So, the output for a firsHmJer process with unit gain, is:

s(Tsf I)

I
e li,"'j

TS +1
!lll e (,.'D.ll

yes) =
s(Tsf I)

llu
yes) - 11

S

which has the time-domain solution (Chapter 7):

1'(1) co £'." [I - e 'I'] - £'." [I -- e (H)h] 11(IXpulse) (8.22)

where fl(t)::: 0 for l < '" nnd I for t 2 11' and the total input applied over the If! lillle units is !:if( fV
The i rnpuJ sc response i,~:

yet) (impulse) (8.231

The pulse and impulse responses are compared in Figure 8.9 for tf'::;:; O. IT and A .:0: 1.

1 !

0.8 :;

0.6 'ii

0.4

'!:
02 ;

i,
".

o
o 2 3 4 5

Vlau

FIGURE 8.9 Comparison of pulse (dashed, tp .:0: O.1T) and impulse (solid)

responses,
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8,3 EXAMPLES OF SELF·REGULATING PROCESSES

The standard first-order rnodel presented in the previous section is a typical scir-rcglllat~

ing process. If the input is changed to another value. the output eventually comes to a Ile\\'

steady-state. Contrast this "vilh \lon-self-regulating systems \vhcrc the output continues 10

change forC\'cr after a step input change. Self-regulating hehavior is shown by the systems
presented in the following example. One key idea to nntc is that a chemical reaction
changes the time constant of a standard mixing 1,mk model.

EXA\IPLE S.4 A C:STR with a First~()rder Readion

Nu\\, ('x [end the F':Xamplc S.l to include () single dccnmpositilln reaction. The component mater­

ial balance i~:

d\ (

cit
FC, F( F, \'

\\'hcrc f:. j ie; the rcadlr1!1 r;llc constant. SlllCC V Je; c()n.~1;1ll1

dC

rtt

r
(

\ '

and wc (',Ill calculate the "ready "ratc concentration" from dC/ilr,,-, 0

I'

V

I
I'

Thl' dnialinn "ariahle form uf our d)-narnil~ nwdc! ic;

d(( ,I
df

OJ

l
1

r
V k.;

d( ( ~ (

(It
IC ~ (,) ~

I
I'

I

1
(C~c,,) (S.27)

'\!2<l1Jl. Uh"l'J"\l' Lhal Lhi~ i~ silllply a first-order ODE \\ith:

\' I

F I' I
I ;]llt! I,

F I' r C
V 1 "' k, 1\1 k)r \ r

C ~ C and 11 C ~ (
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,mel thCldOlC, we know the soluuon tOJ d step change IllIllJet cOllccnlldllOn dt I:::: 0 I
Notlcc IhM the gdlllS and tlme consldnls 10] <1 stilled ldnk wIth ICdcllOll ,Ile less thdll those

to! d stilled !dllk WIthout lCdC!1{)/l TillS means tlMI dB 1Iliel composltlon chdllgC has d L1S(CI dy
nalHlC eltcelIll a system \Vah ChCI1llCdl lCdClltHl 'Ihlll III d system With Just mlXll1g

~~--~~---

Note that the previous examples \vcrc linear because the flow rate was constant. If the
tlowratc weJ'e changing (i.e., was considered an input), the models \vollid be nonlinear
(actually bilinear), because of the terms where an input llluitiplics a slate variable. The
linearization techniques developed ill Chapter 5 must then be llsed before a j,aplacc trans­
form analysis can he performed. fn the following example, linearization must hCLIsed be~

cause of the second-order reaction term.

EXAiVlPLE 8.5 A CSTR "dtll a Second-Order Reaction

Hcre we cxtend the previous examplc to include a second-order reaction problem. We will as~

Slime that the rate of reaction (per Ulli! volume) is proportional to thc square of the concentration
of the rcacting componcnt. An example would he A +;\ ---} H. As beforc, \ve afC making the sim­
plifying assumption that the fluid dcnsity is not a function of the concentration. Again, assume
that Ci Is thc Input. The component material balance is:

dve
d/

FC,- FC-k, VC' (B.2B)

where k2 IS the reaction rate constant. Since V is constant,

dC

d/
(B.2~)

,md we can calculate the steady-state concentrations from dC/rtf;:;;o 0

F
k C' ,~ C

~ -, V s (B.JO)

Notice that (X.30) is LJuadratic in C\_, <lud will always have olle positive and one negativc foot

(the rC<lder should verify this by using the quadratic formula). Obviously, only the positive root
makes physical seusc.

Now, the problem with obtaining an analytical solution to (g.29) is the nonlinear tenn.
We can use the lineariz.<.llion technique from Chapter 5.

to find that:

d(C - CJ .
dl

"II. (C - C,) +iill. (C,~ C,J
de .<\ dC'.H

I d(C-CJ+(C

(
F+ 2k ,C) d/
V ,-,

CJ

/'

V
(C,

2 k, C,)
C,J (B.J I)
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.'\gam. \-Vt' kl\c a first-onJer. linear relationship. \\lhen::,:

prucess grlln

time COnsli\nt

, -

/

I'

I

( It lk, C ')
I' ", ( I

I'
2" C, /,J

\,

I

------ -,~~--~

SUllllllarizin§!. the pmCll1lcters for each of the previolls cxalnplcs arc shown in Table R.],

"fA BI.E S.I Summary of Pannll('ters from Examples
~~-

PnlCCY'; Crain. k

Prnccss Time (~onslal1L ..

t,x.0.1

\'Jixing Tank
No Rxn

\'

I

Lx.. K.4
CSTR

First-Order Rxn

I
\ ' ,
F I

\'

I
\ '

F 1;1

Ex. S.5
CSTR

Secolld-()rder Rxn

EX.-\:\IPLE 8.6 A Numerical Stud.v of Examples Sol, 8.4. 8.5

Here \\'l' will perform a numerical study. using the following values'

\ '

F,
k,

C"

." min

o.~ min I

O.J2 1'1' lhlllOl I min 1

1.25 Ih11101 n

AJJ case"

(S1'R with first-mdt'l RXII

CSTR with sccund-ordcr Rxn
All cases

r1WIl. \\C l'<Hl calculate the foll()\\'ill~ steady sldll! concentratiollS:

( ,
('

(

1.25 Ihrnol fr,'
0.625 IhllHlI rt
0.625 lbll)o! 1'r"'

Ivlixinp tank with no Rxtl
CSTR with first-OHler Rxn
(STl~ \Vilh sCC\llId-onkr Rxn
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Process Gain. k
Process Time Constant, T (min)

Mixing Tank
No Rxn

I
5

CSTR
First-Order Rxn

0.5
2.5

CSTR
Second-Order RXll

0.5
2.5

For all of the examples, assume that a step change in thcinJet concentration occurs at t:::: O. Tbat
is, Cj changes from 1.25 lbmol flu] to 1.75 IbmoJ fr J at t::;: 0 minutes. In terms of deviation vari­
ables, this means that u increases from 0 to 0.5 Ihmol ft-3 at t::;: O.

Recall that the solution for a fifst~order system with it step input change of magnitude
A is:

und since

our solution is

For the mixing tank

r"or the CSTR with first-order Rxn

For tile CS'fR with second-order Rxn

Y(I) kA [J - e'hl

y(t) -, C(t) - C,

C(t) ~ C, +kA II _e'h]

C(t) ~ 1.25 + 0.5 [I - e,j']

C(I) 0.625 + 0.25 [I - e -,j' 5]

e(r) = 0.625 + 0.25 [I -- c 1/).51

(8.32)

(8}3)

(8.34)

(8.35)
Notice that solutions for the 11lixing tank (8.33) and the CSTR with first-order Rxn (8.34) are
exact because these systems arc inherently linear. The solution to the CSTR with second-order
Rxn (835) is only approximate, because it is based on a Iincarized approximation to a nonlinear
model.

The actual rcsponse of the nonlinear model (using ode45) is compared with the linear
solution (8.35) in Figure 8.10. Notice that the initial response is similar, but the long-term rc-

0.9

t) 0.8

0.7

0.6
o 5

linear

nonlinear

10

t(min)

15 20

7

FIGURE S.lO Reactor concentration responsc to it step iucrca,se in inlet
conccntration, for a second-order reaction.
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spO!1se of the lincar model deviates significantly from the nonlinear model. Indeed, we can cal"
culatc the long-term response without doillg any lllllllcricaJ integration, as showll below,

o

Lim'ar Model (8.35) as {---->=

Nonlinear rVlodel (8.30) as !--'V'C)

'filc solution that makes physical sense is:

C("j ~ 0.625 + 0.25 ~ O.S750

F F
C~ + \lk, e', Vk~ (

C; t- 0.625 C, - 0.625( 1.75) 0

C(,,) ~ 0.7790

InF;x<llllple X.6 we were able to find the new steady-state for the nonlinear system by
solving a single quadratic equation. }-;'or the general case, with a model composed of a set
or nonlinear equations, one would need to solve a sct o!" nonlinear algebraic equations.
'fhis would he done twice, once to find the initial steady-statc, thcn again to find thc final
stcady-state after a new input change.

EXA:VlPLE 8.7 First Order + Dcadtimc

l'hc most common rnodel for process control studies is known as a first-order + dcadtilllc
process 11l0dcL and is written in the following form

T dt -I- ." = k u(t ,-- 0) (8.3(»)

where 0 is known ,'IS the time delay. A.ssul1lc that )'(0);;;;; 0 and 1/(0);;;;; O. The input. II lind the OLlt~

put yare functions of timc; 1/(1) must be specified to solve for I'{t).

To understand how this equation might arise, sec r;igure 8.11.

F

c,

c',

FIGlJRE S.li rVlixing tank.

F

C

Notice that if the inlet pipe Iws a sigllit'icant volume, there will be a delay between a change in
the concentration at the inlet pipe and the concentration at the outlet of the pipe. The delay can
be calculated as:
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V"H ,-
F
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where Vp is the volume of the pipe. The relationship between the concentration at the exit of the
pipe and the inlet of the pipe can be found by:

C; (t) ~ Cj(t - 0)

which is equivalent to (8.36) when written in dcviat'lon variable form, where:

That is, the concentration at the exit of the pipe is equal to what the conccntnllion at the outlet of
the pipe was () time units in the past. The modeling equation is:

V
'j=

F
c,

F F
V C , V q(t)

dC

dl

1(" F F
( ..~ - C + Cit - 0)
cit V V I

which can be written:

Taking the Laplace transform of (8.36) we find:

Tis Vis) - y(O) I + Vis) ~ k CO" U(s)

TS V(s) + Y(s) 0_ k e 0, U(s)

(TS + I) Vis) - k eO' U(s)

(X.37)

which is most commonly written:

k e°l'
Vis) - Vis)

'is -l I
(X.3X)

or,

Vis) ~ Mil) Vis) (X.39)

where:
k C---- fl ,

K(S) -
TS + I

(X.40)

Assume a step input of magnitude flu at time t::;;:; O. We know that:

Clu
L IClu] -

s
(XAI)

and we can then write (8.38) as:

keos 0/1
Y(s) ~ TS , I s (XA2)

kou elf,
Vis) ~

S(TS + I)

Vis) ~ Mu c'" [I ~ T 1,,]s 'TS +- ..

(XA3)

(XA4)
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I'{t) () fOJ U H

,It I Id" [I 1.II"j l'or!

\!uticc lh:ll (x ....J-."i) 1\ merely a traml~lri(ln urlhe first-(lnkr n>,p(ln~l' h~ 0 time Ul1ll\.

Cumidcr till' (olhl\\in,'; pin! (FIgure S.121 of lile reSpmlS(' nt" ~\ -.y\tcrn [I) a step input
Ch:Ulf'-l~ o( llwgnitude U,S at lilll<.' I ~: O. VV'L' '.t'e illll1lClIiaiely that the llllw ,klu) i\ 0 =::; Illinlllt..'\

Sinn' tile d1aIl~~' ill \)utpUI ,rfrer (l long penoel of time i\ ..1" = I k ..111, \\C \C'C thaI I. :: (ulli(\ Dj

il1put/(-'UlpU[), The' prUCl'\" lime COIl\!<lIl[ l'UTl ht' lktcrlllill('d from r!1l: <llll11llllt IlllullC. :ll"kr til('

dt'1:ly, that it [il!..;t'\ fp[ h,i.2 1( ol' tl)(' change (ll occur In this Cht'. th,' ril1lv COI1".t:lJH 1\ ,lppru,\i

matl'l: 5 minutc",

0.8

06

~

0.4

02

0
0 5 10 15 20 25

FHiCRE K12 r,~C\Plill\C of a fit'\t-ordn + dC:llllill1l' 15 tilllL' lJlllhlll1nl!c'l[u a
Sl<:.'P input ~.lll::;: 0,

8.4 INTEGRATING PROCESSES

'rhe P1T\ioLiS e\~l!llplcs were for sclr-re,~ula[il1g proCCSSL:", If ,Ill input changed. [!lC)] Illl'

pnJCc"" output camc [0 a Ill'\\ Slc<ldy-stalc, Another L~OIT11TlO!l cheJ1ljc;lI proccs:, is [he in(('­

gr,Hing proccss, a;-; ;-;!lo\\'11 in thc cxample hc](m.

EXA \IPI.E X,X An Integrating Systelll

Cunsidcr a \\;ller SIOr(igc lank \vith itllet and OUI!ct SII"(',\I11\ lh,il C(in bl' incll'pcndcntly <ldiu\tcd
rJ1C C;1(J1"agc tank has d c("(lss-sectiolwl ;n-C,l pf JOO fl~. Initially. lhe CIO\\ in is cq\lalto the f10\\

put. winch i" 5 fl (/min, Tlw inittal height of \\',\\('1" ill the Idnk is -1. ft ,llld the height of till' l:lId,- i\
10 fl, At I :()() pm the inlet rlU\\Ta\(' is incre,i\cd to 6 ft'/lllln. \\'IlL'1l doc\ the tallk (l\Crf]()\\"
Thl' m,\teriul balance (,t"slIming constal1l tk'nsityl is

______________________ z ....
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dV
~ P, ~ E':,

cit

207

(8.46)

where F j and Fo arc the inlet and outlet flowratcs, and Vis the tank volume. Assuming a constant
cross-sectional area:

d1l

dt
(8.47)

To satisfy steady-slate relationships Fis :;;:; Fps' so we can L1SC the following deviation variable
form:

d(h '. hJ
dl

~ (P, P,,)
1 • •

(E' ~f)
A " m

(8.48)

For simplicity, lei's assume that l;~) is constant, then:

which has the form:

d(h ~

dl

(~Y

dt

~ J(F~F)'A I (\

ku

(8.49)

(8.50)

where y:;;:; Ii ~ hI' k:;;; 1//\ and 1/:;:: Pi ~ Pi,I" Taking Laplace transforms, we find:

sY(s) ~ yeO) k U(s) (851 )

where yeO) ~ h(O) - hI" Assuming that we are, starting from a stcady-slate, y(O):;:; !I(O) hI';::: O.
So we can write (8.51) as:

s yes) ~ k U(s)
Of,

yes)
k

U(s)
s

(852)

Using the notation D.U for tllC magnitude of the step increase:

Lll/
U(s) ~

s
(8.53)

and

Taking the inverse Laplace transform:

Liu
yes) ~ k (8.54)

,I.k Lll/IV(I) ~ L'[Y(s)] ~ L

y(i) kilnl

Substituting hack for the physical variables,

(8.55)

(8.56)

(8.57)
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Solving for Ii ;::: I () I"t

1t=.:J.ft

( lOft

(6 ~ 5) ai/min
100 ft' [

100 ft'
4 ft) ..\

(6~5)n/mjIl
60n ruinutcs

10 hnms

Since the step change was madc at I :00 pm. the tank \vill overflo\\' at II :O(j pm.
i\ plot of tank height versus time is slwwn in r;igurc 8.IT

10

9

8

S
" 7

6

5

4
0 100 200 300 400 500 600

time (min)

FIGL'RE 8.13 Intcgmtillg .system. j

Notice in equation (8.52) t11at the process transfer fUllction has a pole at s ;::: O. This is a

characteristic oj" an integrating system.

8.5 LEAD-LAG MODELS

Some dyuarnic systems. particularly involved \vith process controL have the follO\ving

fonn for a lrallSfcr fUllction modcl:

Y(s)
T S -I- I

k" U(s)
i,r" + 1

Consider a slt'p input change or magnitude t111

'--------- ." _.,,,,h I
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TIlS + I All
Y(s) ~ k

7,/'. + I s
(8.59)

The reader should find that time domain response is (see student exercise II)

)'(1) ~ k c,u [1- (I - ~~) e '/'J (8.60)

8.5.1 Simulating Lead/Lag Transfer Functions

A plot of (8.60) is shown in Figure 8.14, for kAu :::: I. Notice if 'Til> Td! the immediate in~

crease in the OlItput is greater than the ultimate steady-state increase, while if 'III < 'Td> the
immediate increase in the Olltput is less than the ullimatc steady-state increase.

(8.61 )

252015

Lead-Lag for 'd =5

Various values of 'n

10

(T,t' + 1) Y(s) ~ (T"S + 1) 1I(s)

2
10

1.5 7.5

5
I

2.5
Y 0.5

kt>.u 1

0

-0.5
-5

-1
0 5

We have derived the step response for a IcadlIag transfer function. This transfer function
does not usually arise in the modeling of a physical system, but it often arises in control
system design. Our desire in this section is to show how to convert a lead/Jag transfer
function to state-space form, so that a general simulation package can be used to integrate
the corresponding ordinary differential equation.

Multiplying through by the denominator term in (8.58), we find:

FIGURE 8.14 Lead/lag response.
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'~illg the I ,apL\cc trallsl'orm relationships.

_ (.<1\ .\(II))! \
'j "dr .

_ (.<I!! !!(II))
'/I "dt

!!

and we KllO\\ that to obtain the tr,\llsfer function fu rill , the illiti,tI conditions of aJI \'ari,
abies \\('fC, ,!'isul1ll'd to he I(TO. so:

,/\
I, f Y
" til

!!

We canllol sohc (XJd) 11) using a gc'ncra] purP{hC integrator. because it j" not in the "tall
LIard forlll uf dr/dl ;::: j(x). Our gual Jl{)\\ is tn ddinc a !lC\V variahle that ,,,,'ill ,illow LIS to

usc' ,I standard intci2r;llur
Rl'arrangc (:-\.63) [0 rind:

ill' (111
= - \'

'II dr

T,i\ i,,/I

!! (x 6-1!

(X.h:"1

and "incc ',t (lud '11 ;11'(' CUI1\t<ulh. \'1t' call Lake the c!cl"j\aLi\t' oj 18,(5) with rcspccIlO lIl1h.'

to find:

dr

<II
T

! dt

rill
., dl (8.661

Suhstitutill,l! the righthand side of (8,66) for the Icftiwild sidc of (8.6..J-). wc find:

\ t- II

t\\l\\. \\c must soh'C (8.65) tu find r as a function 01 .r, tu ohtain

(S.671

r = (8.681

\\'hich \\(': substitute intI) (X.67) to find:

dr

dr
- ~ .\ + r I .. :) II

I,i ". 1<1

(S J}<)I

and \\l' see lhat wc h,1\'e the standard slale-space !"orm:

x=cAx 1I11

ex D u

except that (8.68) and (8.691 consist of scalars:

----------------- "-
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dx
cc=aX+bll

dt

y-=cx+du

211

(X.70)

(8.71 )

where

h ( I Td )a=
- ~d

T"

C d
Tn

Td T"

We wilJ sec in Chapter II how (8.70) and (8.71) can be used within the context o1'a block
diagram.

SUMMARY

'We have studied the response of a number of processes that have denominators of transfer
function models that arc first-order in the Laplace variable, s. The systenls were: first­
order, first-order + deadtime, integrating, andleadllag. Most chelnical processes can be
represented by a cascade of these types or modes. We found that stilTed lank chemical re­
actors arc linear first-order processes, as long as they have first-order kinetics (or no reac­
tion) and the input 1'lowrate is not changing.

For first-order and first-order + time-delay transfer functions, we disclissed how to
e!ilimatc the parameters (which always have units associated with theJ,n) by applying a
known step input to the process and observing the response. First-order + tirne-dclay
models arc commonly used in control system design.

In lhe next chapter we study the transient response behavior of seconcl- and higher­
order systems.

STUDENT EXERCISES

1. As a process engineer, you are attempting to estimate the model parameters for a
process that you believe is first-order (with no deacltime). At 3:00 pm, you lnake a
step input change to the process. At 4:00 pm, the process output has reached 8(v;,{;

of its final change.
What is the time COllstant of the process?

2. Consider a water storage tank with inlet and outlet streams that can be illdepen~

dently adjusted. The storage tank has a cross-sectional area of 100 1'f2. Initially, the
flow in is equal to the flow out, which is 5 ft:'ljlnin. The initial height of water in
the lank is 4 I't and the height of the tank is J0 1'1. At 1 ::::- 0 a ramp increase in the inlet
flowrate is made, so that Fi(f) ::::- 5 + 0.251 where the nowrate units are nJ/rnin.
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Hm\' long docs it take the tank to overlhm"? Solve using Laplace transforms.

()bti.lin a general CXjJl'cssioll for SystClllS llJO(ll'lcd in Lin iatic)11 \ ,niahlt' (orlll hy:

\\'here:

dy

<II
III I) (l [

3. \\,'rile a eli/Terential equation \vllich corresponds to the following input-olltput trans­
fer function rclatioJlshirJ:

Tn,\" I I
\(s) k II(S)

',jS I I

4. Consider a chemical reactor that has fern-order kinetics. that is. the rate of reactioll

per unit volume is a constant (a fero-order Kinetic pararnell'r) that does not depend
on concentration. Compare this model with that of a stirred tank mixer. and a stirred

tanK reactor with first-order kinetics. Perform a numerical study'. related to ExamplL'
X.5. by finding the 7ero-order paramcter thal yields the sanK' slcad;..'-statc conc(':l1tra­

tion as the first-order kinctic modeL

5. A process operator rnakes a step change on an input variable at 2:00 pIll and discu\,­

ers no output response is observcd until aflcr 2,10 p111. She finds that the output i"

tHY>;: or the way to its final steady-state aL 2:4::1 pm. YULl beliCH' Lbat this is a fir"L

order + dcadtirnc process.

tlllli..'

1:00pm
I: .10 pnl
I ::')9 pill
2:00 pm
2: 10 pill

2:..:1-5 pm
atter 5:00 pm

JI1put

2001h/hr

cOO lh/hr
200lb/hr
225 Ib/1lr
225lh/hr
2251h/hr
225 Ib/1l1

output

IIIO"!

IOO"!
IIIO''!'

IOO"!'
IIIII"F
9j f T:

90"F

(i) What is the deadt]mc for this process (show ullits)"

(ii) WhaL is the tinlc constant for this pnKcss (sho\\' unit.s)"?

(iii) What is the process gain (sho\\' units)"?

6. As the process engineer for an operating ullil ill a process plant. you are trying to g('t

a "feel" for the dynamic characteristics of a particular process. You have a discus­

sion \vitb the operator about a process (w'hieh .ynt! feel is J"irsl--orderJ that uses stealll

f]owratc as all input variable. and process ternpcralurc ,IS a measured variable. After

the steam f]O\-'vTatc is increased from 1000 lb/hr to lion Ib/hr (quickJy), lhe process

fluid temperature changes from IO(tr~' (the initiaJ steady-state) to 11 O"F in 30 [nin­

utes. The temperature e\Tlltual1y renches a ne\\' steady-state \',duc of J2()"F.'.
0) Find the process gain (show ulliIS).

(ii) Find the process time constant (show units).
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7. A process input is:

u(t)=O !')rt<O

u(t) = ! - e' I')r t > 0

The process transfer function is:

g(s)
2.5

12s +

F,

9. Compari.wm qllmpulse and Pulse Re.s])(JIlses. Consider a tank with constant cross­
sectional area, At::::: 1 m2, and assume that the flow out of the tank is a linear func­
tion of the height of liquid in the tank. 'The steady-state values of tank height and
flowrate are I meter and 1 m3/hr, respectively. Find the impulse response of tank
height if 1 m3 (in addition to the constant steady-state flow) is instantanollsly
dumped in the tank. Compare this with several pulse responses, where the addi­
tional I m3 is added over 0.05,0.1, and 0.15 hour periods.

IO. Consider a chemical reactor where a step change in coolant flow rate frolll 10
gal/Inin to 12 gal/min (at t::::; 0) causes the change in reactor temperature shown in
the figure below.

Find the time domain output, y(f). Plot both the input and the outpul.

8. Consider the mixing process shown below, where a portion of the feed stream by­
passes the mixing tank.
3. Show that the process has a lead/lag transfer function, if the input is Cj- and the

output is C\. (Hint: Write a dynamic balance around the tank and a static bal­
ance around the mixing point (after the tank outlet). Use deviation variable
form.)

b. Let F::::: 2 m3/min, F I ::::: 1 m3/min, Cr::::: I kgmollm3, and V::::: 10 !TI3. Find the
state-space model and the transfer function representing this system.

c. Consider a step increase of CI to 1.5 kgmollm3. Find the response in C3 to this
change.

C3c,

F,

C,

F

C,
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I"inel the gain, lime constant, and time-delay for this system.

U. For step response of the lead/lag transfer function:

+
Y(s) = k

T,t', +

Show that time domain response is

s

v( I) = k "" [I _ (I _T,,)
... T,j.



TRANSFER FUNCTION ANALYSIS
OF HIGHER-ORDER SYSTEMS

After studying this chapter, the reader should be able to:

9

Understand the dynamic behavior of sccond~ordcrsystems.

Understand the effect of poles and zeros on the response for higher-order systems.

• Usc the Padc approximation for time-delays.

Understand the concept of inverse response.

• Understand how to simulate transfer function models using ODE solvers that re­
quire sets of fiL':'I-ordcr ODEs.

• Usc theMATLAB routine tf2ss to convert from transfer funclion to state-space
fOrln.

Usc the MATLAB routines step and impulse.

The 1l1,\jor sections are:

9.1 Responses of Second-Order Systems

9.2 Second-Order Systems with Numerator Dynamics

9.3 The Effect of Pole-Zero IJlCations on System Step Respollses

9.4 Pade Approximation for Deadtimc

9.5 Converting the Transfer l'\mclionModel to State-Space Form

9.6 MATLABRoutines for Step and Impulse Response

215
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The dYJ1atnic behavior of./lrSHJI"dc!" systems was studied in Chapter R. In this chapter, \ve

present results for higher-order systems and shmv I1mv to usc standard nutlll'l"ical integra­
tion routines for tinlc domain sirllulation of these ITHldcls. V,ic first study second-order

s)'ste111s, thcll generalize our results to higher-onler systems.

9.1 RESPONSES OF SECOND-ORDER SYSTEMS

Consider a linear second-order ()I)E, with constant parameters:

(ty
1./, "',

- dc

This is UftC.Il \vrittcn in the form:

h II( I) (9.1 )

\vhcrc (obviollsly o() * 0):

(hnT !r~kll(l)
- dr

(9.21

(/, (/, h
T' 2'7 k

(ill an ali

where the parameters arc:

k :::0; gain (units of output/input)
( ;;;:0 damping factor (dimensionless)

T :::0; natural period (units of time)

We discussed in Chapter () that single nth order ODEs do not naturally arise in chemical

processes, The second-order model shmvn in (l).l) or (9.2.) gCllerally m'ist's by changing a

set of t\)".'o first~()rder equations (state-space model) to a single second-order equ;ltioll.Fol

a given second-order ODE, there are all infinite numher of scts of two firSl--nrdcr (statc~

space) models that arc equivalellt.

Taking the Laplace transform of (9.21:

T' lv' Y(v) ~ sv(O)i,(O)] + 2CT I.IY(.I) ~ v(O)] + Y(s) kU(v)

\vhere Y(s) indicates the Laplace transformed variablc.

Assuming initial conditions arc zero. that is .\'(0)::: ."(0) :::: O. Vie find:

Y(v) (9.3)

\vhich can he represented as:

Y(I) cc g(s) U(s)

T'he choruC!crisfi( cquariol/ of the second-order transfer function is T~S~ + 2~T S + 1. \Ve

can find the roots (also known as the poles) by Llsing the quadratic formula:
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ovcrdumped
critically damped
underdamped

Characteristic BehaviorPole Location

2 real. distinct poles
2 real, equal poles
2 cOInp]cx conjugate poles

Damping ['actor

Sec. 9.1

I
II
III

Case

fJi=
- 2\:TJ \/4\:'T2 - 4T2

2T2 (9.4)

9.1.1 Step Responses

The following analysis assumes that ~ > 0 and T > O. This implies that the real portions
of PI ancljJz arc negative and, therefore, the system is stable. The three possible cases arc
shown in Table 9.1.

which yields the following values for the roots:

\: + \: ·1
V\:2_ I

1', ~ -_ .._-----

T 272
T T

\: v\:' .. I
fJ 2

...

T T

(9.5)

(9.6)

Now, we consider the dynamic response of second-order systems to step inputs (U(s) :::;
!>u/s):

k !>u
Yes) ~, , .

TT + 2\:TS + I s
(9.7)

where Llu represents the magnitude of the step change.

(:ASE 1 Ovcrdamped (t ~" 1)

Since '> 1, we can see that the two roots will be rcal and distinct. Also, since we assumed that
T :> 0, the system is stable (the roots arc less than zero, since we are assured that \/~2~--J< ').
We btctor the polynomial T 2S2 + 2'TS + 1 into the following form;

(98)

We sec immediately from (9.8) that the poles (values of s where the polynomial,;: 0) arc;

1',

from (9.5), (9.6) and (9.g) we find:

1', -liT, ~ .. (iT + V((' 1)/T

(9.9)

which gives the following value for the first time constant:



/\hu. \\l~ find lhe :--ccond pole

( - -I

_ \ ~c

(9.10)

which gin:::-- the following \allle fur the second time cunstant-

T

r\panding the rlghthand side of (9,S).

(911 )

T,\-

\\'e call \,Tile:

2~ TS ·t- (9.12 )

\\lllCh lead to the relatiollships

T

T 1 "

2\ Oi"'

,,'

(i). 1.:1-)

\Ve call derivc (sec student excrcisc la) the fuIIO\\'ing solution 1'01 step ["eSpll!1SeS ()fllVenlalllpcd

SystClllS

fhcnlmnpl'cl. S> ]

If f) unll 1'1(' " c
T

ft). I 5 )

v,here "
and T,--

( - \

T

Nlltc thaL as in thl' case llf first-order systems. we can divide hy k":'l1 to develop a dimensionless

UUlpUL Also, the dimctl\ioliJcss timc is th and we can plu( Cllr\'es f(n dimellsionless outPUl as a

fUllction of i;. Thi:-- IS donc III Figure 9. I. \v-hich includes the critically damped l:asc. as discllssed

ncxt. \los( chcmical processes t'xhihit ovcnJalllped behav-ior. The critIcally dampl'd .step l'e­

SpUIlSC is also .ShUV..-rl ill ['igurc 9.1 (curn: with ~:::: I).

0.8

0.6

0.2

o
o

1.5

5

Various values 01 damping factor

10

t/lau

i5

FIGLRE 9.1 Step ''''I,onse of a second-order rller"damped system.
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CASI-: 2 Critically Damped (~ = I)

The transition between ovcrdampcd and underdmnpcd is known as critically damped. We can
derive the following for the step response of a critically damped system (see student exercise I b)

Critically (hlmpcd, ~ := I [Repeated polesl

(9.16)

Notice that the main difference between overdampcd (or critically damped) step responses and
first-order step responses is that the second-order step responses have an "S" shape with a rnaxi­
mum slope at an inflection point, whereas the first-order responses have their maximum slope
initially.

The initial behavior for a step change is rcally dictated hy the relative order of the system.
The relative order is the difference betwccn the orders of the numcralor and denominator
polynomials. If the relative order is I, then output response has a non-zero slope at the
linle of the stcpinput; the step response of a system wilh a relative order greater than I
has a zero slope at the time of the step input.

CASE 3 Undcrdamped (~ < 1)

For S<: l, from (9.5) and (9.6), we find that the poles are complex:

fJ= .. ~I
T T

which is wriUcn in terms of the real and imaginary contributions:

P=(X±jf3

ex =where: ~ f) ~
T T

We can derive the following step response for all undcrdamped system (sec student exercise I):

lJndcnJampcd, (t < 1) [Complex poles1

V(I) :-= k!:l.u (I (' (1(. ,,,in (I3t + <I'))
V'( -

<I' Iwhere f) = = tan
~T

(9.17)



Again, dividing by kD.lI, we can produce the plot shown in Figure 9.2.
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2nd order underdamped

Chap. 9
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FIGURE 9.2 Step response of a second-order undcrdampccl system as it

function of the damping factor (0.

A number of insights call be obtained from r;igure 9.2 and an analysis of the step response
equations. Notice that the poles for the second-order SystCll1 can be wrillen:

. .. _ I
P - [-( + jV(I-(')!

T

Observe that, for smaller S, the respollse is more oscil1atory. For S< I, the ratio of the imaginary
portion to the real portion of the pole is:

imaginary

real S

As the imaginary/real ratio gets larger the response hecomes more oscillatory. We also notice
that a decreasing T corresponds to a larger negative value for the real portion. As the real portion
becomes larger in magnitude (more negative) the response becomes faster. We use these insights
to interpret po1cl7.ero plots in Section 9.3.
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time to first
peak

221

l
c

I.-period of j
rise time oscillation

d
. becay mIlO = -•

overshoot ratio = %

Time

FIGURE 9.3 Step response character­
istics of undcrdamped second-order
processes.

9.1.2 Underdamped Step Response Characteristics

The following C0111mon measures of underdampcd second-order step responses arc shown
on r7igurc 9.3 and defined below: (I) risc timc, (2) timc to first peak, (3) overshoot,
(4) decay ratio, (5) period of oscillation.

Rise lime. The amount of timc it takes to first reach the new steady-state value.

Time to jirst peak. The timc required to reach the first peak. Notice that there arc an
infinite number of peaks.

Overshoot. The distance between the first peak and the new steady-state. Usually
expressed as the overshoot ratio, as shown in the figure.

Decay ratio. A measure of how rapidly the oscillations are decreasing. A h/a ratio
of 1/4 is commonly called "quarter wavc damping".

Period (d'osc'illation. The tilnc betwecn successive peaks.

The following example shows how to usc Figure 9.2 to estimate these values.

EXI\l\;lPLE 9.1 Undcrdampcd Second-Order System

Consider the following transfer function, subject to a ullit step (L\.u ::::: 1) input change (assume
time units arc minutes):

5
g(s) ~ ,

4s"1 0.8s + I

Find the (1) rise time, (2) time to first peak, (3) overshoot, (4) decay ratio, (5) period of oscilJa·
tion, (6) value of yet) at the peak time,

ESCOLA Dc H,GENHARIA
BIBLIOTECA
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Our first step is tu calculalt' the system parameters. \Ve Cilll sec that;

k~5

7 2 ::;: 4 so T ::: 2
II.K D,S

2i::'T := 0.8 so t::: '" ::: ----- ::::: 0.2
- -.!T.:.1-

\VC usc Figure 9.2 as lhe lJasis for the follmvil1g calculatio!ls,

I
1. rhe risc lime fur ~ = 0.2 is' 1)1, so II"::::;; l,g T = J.6 minutes

1"
2. The time to first peak for ~ ::: 0.2 is'~ 1.2. so 'II::: 3.2 .. ;.c; 6.4 Illinu(t's

=--:: (l.5J.3. The o\Trsh()()( ratio is

I 15
4. The decay ratio is lSI

15J

I
I
I ~ IJ,\

I
5. The ptTiod or oscillation is';' 9.6 - 3.3. so f(,,, :::: 6.3 ... ;;;; ] 2.h rninutt's.

,
(.. rile \'aluc pf YUf,l is k~1I = J .53. so \' = 1 5.1 kJII::: 1.53(5) ::: 7,(\5.

Although equation (1).17) C<ltl be used to solve the previous <;.'xarnple.
usc the dimensionless plot (Figure 0.21.

it is often easier to

9.1.3 Impulse Responses

NO\v, \ve cO[l;-.;idcr the dynamic response of second-order systems to impulse inputs.

k
Y(s)

-+- 2~7S + J

where 1\ represents the lnagllitude of the jmpulse.

\I,'hne dt)/k/\ is the dimensionless output and lIT is thl~ dimensionless rimt'.

The lime domain solution for the ovcrdamped C<.l.SC is (see sludent exercise 2a):

(,~I ~ sinh (: \1 - (' ~)
T

CASE I O\'crdamped (~ 1)
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CASE 2 (:riticallJ' Damped (~::::: I)

The impulse rcspOilsC for the critically damped case is (see student exercise 2b):

y(t)/kA = - 7 e liT
T

CASE 3 Vndcrdampcd (t / 1)

The time domain solution for the nnderdamped case is (see student exercise 2(~):

Y(I)/kA
T

e-U/' sin (VII
The impulse responses as a function of {are shown in F'igure 9.4.

0.8

108642

0.6 '···f-'r·.,··.+······················,················· ; ,..................... !

·0.4
o

'5 0.4
%
0
w
w

0.2'"C
0
'w
c

'" 0E
i5

·0.2

tltau

FIGURE 9.4 hnpulse response as a function of~.
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CI'Iw underdampcd responses show characteristic oscillator)' behavior.

9.1.4 Response to Sine Inputs

Consider the case where the input is a sine fUllction. with amplitude A and frequency (,):

lI(r) c:::C A sin (ll!

The Laplace transform is:

when applied to the second-order transfer function and inverted [0 the lillle domain. the
response after a long period of lime is the periodic function:

\vhcrc:

y(l)
\

kA

+ sin (rof + (l)) (9181

(sec student exercise 3). The amplitude of the output is:

kA

(9191

and the phase angle is (b. Often, system behavior is discussed in tenns of an amplitude

ratio, which is the amplitude of the output eli vided hy the amplitude of the input. The am­
plitude ratio is:

k

These relationships are used in ExarnpJe 9.2.

EXi\IVIPLE 9.2 Sine Forcing of Se(~ond~OrderSystems

C:unsider the fol1owing system:

"'--~-I

g(s)
I

\.: -+- n,:?:s +- 1

A Imv frequency sine forcing ((,) ::::; 0.1 min-- I) yields the input/output response shown 111 Fig­
ure 9.5.

Notice that the output lags slightly behind the input. and the amplitude of the output is
slightly smaller than the input amplitUde. Contrast this result with the folhnving case 01" a higll
frequency input.

_______________."':,£'"ifi
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1.5

-0.5

-j

-1.5
a 20 40

time, min

60 80 JOO

FIGURE 9.5 Low frequency sine input response.

A high frequency sine forcing (l') 0::: 5 min I) yields the input/output response shown ill Fig­

Ufe 9.6.

0.5 u

" y

" a
~

-0.5

-j

a 2 3 4 5

time, min

FIGURE 9.6 High frequency sine. input response.

Notice that the output lap significantly behind the input, and the amplitude of the output is

much smaller than the input amplitude.
A particularly interesting type of behavior that can occur with second-order undcrdamped

systems is known as reSOll(///(.'C pe(lking, which occurs in intermediate frequency ranges as
shown in Figure 9.7, where a frequency of 1 fad/min is llsed.

Here the output amplitude is significantly higher than the input amplitude although the
input/output gain is I. At lower ([;igme 9.5) and higher (Figure 9.6) frequencies the output had a
lower amplitude than the input, while al an intermediate frequency (Figure 9.7) the output had a
higher amplitude than the input. This phenomcna can only happen in systcms with complex
roots.
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5 10

time, min

15 20

FIGlJRE 9.7 R.t'sonam;c peaking phenomenon.

The concept of phase angle is illustrated by Figures 9.5 through 9.7. At low frequencies (Figure

9.5) the output barely lags the input, and therefore has a phase lag of almost {) deg. At inlt'Tmcdi­

ate frequencies (Figure 9.7) the output Jags the input by (jO", and ill high frt'qucncics IFigure 9.(l)

the output lags the input hy almost ISO". Also noll' that the notion of "high,"' "intcnncdialc.'· and

"lil"/' frequencies is relative (dependent Oil T). Lm',!, medium. and high frt'ljUCJKit'S cnllcspol1d

roughly to (,jT 0::; 0.1, J, and 10. re::;pcctivcly.

T'he method of sinc-forcing a system is llsed in the analysis of feedback control systel11s
and is knO\vn as frequency response analysis. Bode diagrarns arc llsed 10 plot the ampli­
tude and phase angle as a function of rrcqlll~ncy. Vv'e do not provide further analysis here.
but refer the reader to any textbook on process control for 1110re detai 1.

9.2 SECOND-ORDER SYSTEMS WITH NUMERATOR DYNAMICS

"rhe previous discussion involved pure second-order systems. COil sider \10\\'. a sccond­
order system with numerator dynamics with the gain/time constant form:

The pole-zero form is:

s(s)

s(S)

k(T"S + J)

( )
.//(1)

",.1+ 1 (T!S+ I)

//(s)
(s -1',)(.1 - 1',)

W201
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The gainltimc constant form has the following time domain response to a step input (sec
student exercise 4):

(9.21 )

The reader should show that, if Til:::: T2' the response is the same as a first~ordcr process.

EXAMPLE 9.3 Consider the Following Transfer Function

yeS)
(3s +

+J
lI(S)

1)(15, + I)
(9.22)

The step responses are shown in Figure 9.X. Notice that negative numerator time constants yield
a step response that initially decreases hefore increasing 10 the final steady-stale. This type of re­
sponse is known as inverse n\"jJollse and causes tough challenges for process control systems.

"1 = 3
"2 15

varying "n

60

FIGURE 9.8 Step responses of a second-order system with numerator dy­

namics.

Notice also that a numerator time constant that is greater than the denominator timc con­
stant causes ovcrshoot before settling to the hnal steady-state. Also notice that the inverse
response becomes "decr>er" as the process zero (-11711 ) approaches a value of zero from
the right.
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9.3 THE EFFECT OF POLE-ZERO LOCATIONS
ON SYSTEM STEP RESPONSES

There (lfC it numher 01 difkrcnt \va)'s to represent process tra/lsfer [unctions. The "t!,lin­
time constant" form is:

g(,,)
k(TII1S -+- I -+- J). ,('''''/ -+- ]

(T,I'" + I )(T,I'" + I) .. (Td,," + I)
(9.23)

WI1Cl\' TII/' is (\ nUlllerator time conslanl and Tdi is a nUlllCl"(l[or time constant.

The "poIY'l1omiaJ" form is

(b,!,SIll h hiS I hll )

g(.l) --_. m (9.24 )
(1,/'!' ([II (f IS I do

The \'alues of \' that cause the numerator oj' (9.23) or (9.24) [0 equal zero arc known as the
"zen},,·' of the transfer function. 'fhe val LIes of s tll,l! cause the denominator of (CJ.23) or

(lJ.24) to equal /cro arc knowll as the "poles" of the transfer function.
The "pole-/el'o" for111 is:

\\Ilcrc:

g/,(I)
C, )(.1 cJ ("- cm )

II, )(" - pJ (" p.,l

..
II I', )

k i J

i'i (-:), ,
The notation il ( fl,) is shorthand for ( -fll)( -P2) ··(Plll.

Notice ~ll~() Ihm the poles ;m:

Ill::: -
I,ll

and the Icrn is

and that complex poles (or Zt~ros) must occlIr in cornplcx conjugate pairs.

EXA\II'I,E 9,4 Comparison of Various Transfer Function Forms

('nnsidcr a trallsl"cr fUllction \\ith lhe follt\\\ini! E!<l1J1-1irnc constant fnnn:

2(-[0., I I)

(.1.\ + 1)( 15.1 t J)

(l).271

(9.281

~~~~~ ~ "'_-Itj-:.l;:~
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The gain-polynomial form is:

and the pole-zero f(mn is:

g(.,) -

g(s) ~

"- 20s + 2

-1- ISs +

lOs 1- I)

+ 18s 1 I)

(
4) (, - io)

N,Js) ~- 9 (s +1)(s + I)
3 15

The zero is O. J, and the poles are 1/3 and -1 lIS.

Notice that the zero for Example 9.4 is positive. A positive zero is called a right-half­
plane (RHP) zero, because it appears in the right half of the complex plane. Right-half­
plane zeros have a characteristic inverse response, as shown in r'igurc 9.9.

Also notice that the poles are negative (left-half-plane), indicating a stable process.
Right-half-plane poles (positive poles) arc unstable. Recall that complex poles will yield
an oscillatory response. A pole-zero plot of the transfer function in Example 9.4 is shown
in Figure 9.10 (the pole locations arc (-1/3.0), (-1115,0) and the zero location is (0.1,0);
the coordinatc~ arc (reaJ,imaginary)). For this system, there is no imaginary component
and the poles and zeros lie on the real axis (Figure 9.10).

2

1.5

FIGUU.E 9.9 Inverse response.

'" 0.5

0

0.5

-1
0 20 40 60 80 100
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Imaginary axis

Chap. 9

Real axis

F[G(:RE II.! 0 P"k-/cr" locatio" plot
((I)' Example 9.-4 (x-j1olc\. {l-!l'ro)

As poles move further 10 the left they yield a ra...;ter rcspnnsc. while illcrcclsing the
n1<lglliludc of the illlagillar.y porti 1 11 makes the rcspcH1S(' mure oscillatory, 'fhis bchavim j"

slllllillaril.l~d in Figure 0.11. RcC<.·q also that a process with a pole at the origin (and nOlle

in the right-halt'-planc) is kllO\vn ,-IS an intcgmting system. that is the sy-stcrn nevCl setllts
[() a stcady-state when a step input change is made.

Mulli[J1c right-hair-pjtmc zeros «lUSt' multiple "changes in direction" for e\ample.
\vilh two RIIP leros. the step respollse is initially ill nile dirceti(HL switches dirL'ctioll.
then ::-witches back to the initial direClion.

f),tI P,I.WE APPROXIMATION FOR DEADTIME

Recall eJat the Laplace transfer function rllr a pure linl(>dela) is (,-HI where 0 is the tinH>
delay'. This i::- an irrational transfer function: an approximation that is rational and often
pro\'idcs an ad'LJuak representation of the deadtilllt' is known as the Pack approxilnaliol1.

faster response

Imaginary

oscillatory
aXIs

more

r x

1
x

Inverse response zeros

unstable poles

Real axis

FIGUHE 9.11 [(Teet of polc-/l'J'o location (lJ) dynamic hd1avlor (\-P(llt"'.
n-/cm). As poles hCc(l1l\t' more negative. !Ill' rt'SPC1I1SC is la\lt'l'. As the

111Ia~il1dry/n::nl ratio increa'ics. lhe response becomes mme uscill~llor:
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1.5

..J1 Second-Order Pade'
Approximatlon

0.5

y
0 Pure Time-Delay

-0.5

Fir.ll-0rder Pade' Approximation
-1

0 5 10 r-
!,::>

time

FIGURE 9.12 Comparison of step responses for pure time-delay with rirst~

order and second-order Pade approximations. Dcadtimc::: 5,

The first-order Pad6 arr)foxil1lation is

B
s

0-,= 2
e

0
+ s

2

(9.29)

The second-order Padc approxilnation is

c 0,,=

1 +

o 02
,\' + y'

2· 12

o 0
2

",. + 12·'··2.

(9.30)

A comparison of the step responses of first and second-order Padc approximations with
pure time delay arc shown in r"igurc 9.12,

EXAiVIPLE 9.5 Comparison of the Pade Appmximations for Dcadtimc

Consider the foUowing first~order + deadtimc transfer function

e Ss

xes) ~
5s -+- I
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The first.-order P,ldc appruximatioll yields tht' fullowill(! lnulsfcr functiol\

-- 2.Ss

7.Ss

and the second-order Pade appro\i11latio/l .yields

2.0SJJ\: -- 2S1

1041 j 1-1-.58.\3,' -+ 7.51'

a cOlllparison {If the step response.s (If ~(s). gl(s) and g~l(S) is "llUwn in [:igurc 9.] J. Notice tllat
the first-urdcr aPllW\llllati(Hl has an inverse response. while the sl'l'())Jd~ordcr appmximatill)l has

a "double inverse 1'l:.'SP(1!1"t'." The reader should I'ind that th,'I\' 1\ it sin,!,'Jc Ilo\itin,' len) fur NI{S)

and there arc t\\'() po.siti \'c. complex-conjugate lcros of the J111I11Cra\(lr tr,lIlSfcr functi(lI1 \)f g~(.\).

0.5
y

o 5 10 15 20 25

FIGURE 9.13 Cumparisun uf first-urdcr + tlcadtill1c rcspulhC with fll'st- and

L ~ '_c_c_"_n_r1_-,_"_.d_c_r_l'_a_r1_c approximations 101- dcadtimc

Most ordinary dirferenti,ll equation llurllcrical illtcgrat()rs (including c)(le4~-)) fCCjU1IT pure

differcntialcquations (with no time-delays). II' yCIl! h,H-e a system of differential equations

\vhich has time-delays, the Pack approximation call bc used to convert them tll delay-frec

dillerentiaI equations, \vhieh call then be numerically inll'grmed. See studeIlt exercise 2S

as an example.

One urthe mallY advant<lf!cs to using SI!'vlULINK is that time delays are easily han­

dled so that no approximation is required,

9.5 CONVERTING THE TRANSFER FUNCTION MODEL
TO STATE-SPACE FORM

Til this section \ve sho\-v One way to convert the input-output transfer fuul'liOll model to st;lte­

space form. Although the Laplace domain is llsed for mwlysis, the state-space form \-\'ill nor

mally be used for tillle domain simulaliolls. Consider the transfer function relationship:



which we can write as:

Divide (9.31) by 72 to obtain:

d'y 2{ dy+. .. +
dt2

1" tit

(931 )

233

(932)

(9.33)

(9.34)

k
_I 2{7S 1_ I lI(s)

X2 ::::x1

y ::::;~-rl::: ·\:2

.r] :::: y

y(S) =

Converting the Transfer Function Model to State~Space Form

LeI:

which arises from the following equation:

, d'" dy
7 Ci + 2{7· + Y c.c k U(I)

dl dl

Sec. 9.5

and:

so:

2{ dy I k
._- ;Y+,U(I)

'T dt 'T~ . 'T

or,

The student should show that defining y::;;: x 2 leads to the following state-space model:

(9.38)

(936)

(937)

(935)

I I I]
. 2{ 1 . k

I.
XII = - 7 -7' l.xll + 7' [u]
X, I () .', ()

y = [1 0] 1::1

and since:

and we can write in the slate-space fonn
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J'vlATLAH has routines for converting fron] transfer function fonn to stalc-spi.]CC form
(tf2ss) and vice versa (ss2tf). tL2ss is llsed in LxarnpJe 9.5.

EXAiVIPLE 9.5 i\lATLAB Routine tf2ss

C'onsidcr the following second-order system:

j

U.7071 \

First define the Ilumerator and denominator arret)'S by:

1 I/(s)

and ClllCl" the command:

num ­

den
J
). 0.7071

la, b, c,dJ

I'vlATL \13 returns the SUite-space matrices:

a 0.3535 -0.5000
i.(lOUO 0

b --: ]
(1

c- (J 1.S000

c.1 ()

Lt2soc; (num, den)

Notice that the slale space models ill Exmnplc 9.5 are dif{l~rent than the malices that arc

obtained from (9.3."1) and (9.36) or (9.:n) and (9.38), hut the differellt forms vvould all yield
the same results for the output variable via simulation. Rcmcmber that a transfer function

relates inputs to outputs but docs not represent the actual stales of the s)'stern. There arc an
infinite number of statc-space models that \vill yield the sank' input/output lllodel.

After finding the state-spacc form for a transfer function, we can use any available
numerical integrator to solve problems. MATLAB rOlltines of interest include od(:, 4 (),

in.itiaL and step.

9.6 MATlAS ROUTINES FOR STEP AND IMPULSE RESPONSE

MAITAB has routines for step and ilnpulse response of either transfer function models or

state-space models. In the following, we sllmV' hmv these routines arc used for transfer
function models.

9.6.1 step

A quick \vay to generate stCJ1 responses is 10 use the MATLAB function step. This call
be used \vith either a state-space or a Laplacc domain model.



The following MATLAB commands arc llsed to generate the response shown in I-;ig­
ure9.J4.

\vhich can be written:

Consider the following Laplace dOlnain model:

235

20s + 2
g(s) ••

50 + 15 s + 3

2(IOs + I)
g(s) ~ ---

50 s' + 15 s + 3

MATLAB Routines for Step and Impulse ResponseSec. 9.6

Dum = [20 2] i

den ,0: [50 15 3J;
[Y,x,L] = step{num,den)
plot(t,y)

Notice that a tinlC vector is automatically generated, wilh a length close to the settling
lime of the process.

The same plot could be generated from the state-space form by using:

[y,x,tJ = step(A,B,C,D,l)
pIot(t,y)

where A, n, C, and f) arc the Slate-space matrices and' I' indicates the first input. Al­
though state variables arc calculated, only the output variables arc of interest.

We could supply an equally spaced time vector and use:

12

FIGURE 9.14 Step response for the example system.

0.8

" 0.6

OA

02

0
0 10 20 30 40

time

[y,x] = step(num,deD,t)
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0.4

0.3

0.2

"
0.1

0

01
0 10 20 30 40

time

FI(~LRE 9.15 Impulse rcsp(lnsc for lhe example sy:'lClll.

Chap,9

for tilt.' Sll'p response of a transfer fllllction IllUdel. The nUlllhet' or urguJl1CnL" determine,,>

\\'hether a tntl1.';fcr function or statc space rnodel is used by lllC step function, and whether

the lime \ ('c\(X has hel-'ll specified or not.

9.6.2 impulse

The output and time veclors arc generated lIsing:

[y,x,tJ = impul~;e(num,clcn);

the plot is obtained from

plot (t,Y)

'rhe plot is SIl0\Vll in Figure 0, 15 above. Notice that an impulse has an immediate (disl'(Hl­

titlllOlIS) dfcct Oil the output. because this is a relative order olle sy'slcm.

\Vc could also supply an equally spaced time Vl'([Or and usc:

[y,x] = impulse(num,den,t);

SUMMARY

The step responses of the classical seconu order system (o\'erdampcd, critically' damped,
and undcrdampedl were presented. In addition. \ve sho\ved the effect of ll11rncrator dy­
namics (and particularly right-half-plane zeros) 011 the rc-"ponse or a sccond-order sy'stenL
The Pad0 approxilnations for dL'<ldtiJl)c \vere presellted. You should understand the effect
of the location ()r poles and /eros 011 the speed and quality of response of a transfer fUllC­

tion model. The process gain is sllnply the ultimate change in OLltput divided by the
change in input.



The MATLAB routines used were

Student Exercises

step: step response

impulse: impulse response
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transfer function to state spacetf2ss:

Critical concepts from this chapter include:

damping factor

natural period

numerator dynamics

Padc approximation for time~dclay

relative order

STUDENT EXERCISES

1. Derive the step responses for the following second-order systems.
a. Overdamped
b. Critically damped
c. Underdamped

2. Derive the impulse responses for the following second-order systems.
a. Overdamped
b. Critically damped
c. Underdamped

3. Consider a sine input with magnitude A and frequency w. Solve for the time domain
value of the output for the following second-order systems.
a. Overdampcd
h. Critically damped
c. Underdamped

4. For a second-order system with numerator dynamics, find the step response for the
following.
H. Ovcrdampcd.
b. Underdamped.
c. Critically damped.

5. A second~order system has the following Laplace transfer function form:

Y(s) = 2.5
U(.\)

+ 5s + I

where the time unit is hours. The initial steady-state value for the output is 20 psig
and the input is 4 gpnl.

At t::;;: 0, a step input decrease is made, from 4 gpm to 3 grm.
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a. \Vhat is the final value of the outpUt'?
h. \\,'hcn docs the Olltput first reach this final \,-tllIe',J
('. \\:hal is the minimum value of the output',)

d. \VhCll docs the output hit this minimulll \aluc'?
e. PInt the response.

6. ('ullsickr the follO\ving second-order Ol)F~:

d\
'II' dt'

d\'
(T l -I- T,)

- ill
f k /I

with the initial conditioll" ,,'(OJ::: dO) ::: 1f'(O) =:: u(()) ::: ()

a. Find the Laplace lransfmm of the elitTerential equatioll. \Vrilc this cxprC'\SI(ll1 in
the form of \'(s) ::::: ,l,'(s) II(S}

b. Nnw. assullle that a step clwngc of magnitude .-\ !l1 tilt' variahk /I Dccur" at
tinlc::: 0, Find the lime domain resulL y(l),

c. Nm\'. assume that a step change or lllaf,:JliWc!c ,\ in the \<triahle ({ OCClII', at
time::: O. Find the time domain re"ult. y(lJ. hy lhing a parti,lI fraction c\jI<llhio1]

and sol\ing for the iJl\er"c Laplace transform by ll'lllti.
d. Plot tilL' tirOL' domain respullse. yUl from p;lr! c. Llsing 11ll' t()lh1\\ing parallkllT

\',due" k:::::: I. '1:::0; J.,~::::; 10. and try s('v('l-al plots. \arying III from J to 10
c. Plot the time domain re::.potlsc. r(f) from part c. u"ing the follc)\\ing p;lr,II1WtL'I

\allil'S k::;::: I. II::: 3.,~:::: 10. and lry sl'\l'ral plots. \arying 'II from 10 to ()

7. C:ollsider the fol]()\\'ing two first-ordcl' ODE'.;:

d.r I
I ,['[ ,[ II

til

dr,

" + " ell
til

and the static rclation"hip y:::::: XI + x:~

where XI and x::, arc two state \'ariahles. r is the output \,lriable, and II is ;m input
\ariahlc.
a. Show that the twn equations call he combined to yield a single ODL in the Corm

of problem 6. Find k and III a" a rUlIction of k I' k::.. 'I' '::,.

b. No\\'. assume that a step change of magnitude ~u in the \ariahlc II OCCULS :H

time:::: O. Find the time domain result. y(fl. hy ming a partial fraction l'.\jlaIlSloll
and solving for the iJl\erse Laplace transform by hand.

c. Plot_l.'t(l). x:,(t) and YU.l if j,l/:::: I. k 1 :::: ~I. k2 :::: 2. 11:::0; J. and '2:::; 10.

R. As a proct'ss engineer with the Complex Pole Corporation. you arc as"igned a unit
\vitll an cxotlll'nnic chemical reactor. In order to learn Innre ahout the dynilll1ic" of
the process, ),'OLJ decide to make a step change in the input variable. which is ('()ulant
lenlperaturc. from 10"e to [SOC, Assume that the reactor \vas inItially at a srl'~ldy­

slate. You obtain the follmvingplot for the outpUl variable. \vhich is reactor tCJllpcr~

aturc (notice that the reactor temperature is in OF).

---- ~~rg.iF,r
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where y is the Olltput and u is the input. Assume that:

also, assume that at time 1 := 0, the input begins to increase with the following rela­
tionship

a. What is the value of the process gain? (show units)
h. What is the value of 1''1 (show units)
c. What is the value of~? (show units)
d. What is the decay ratio?
c. What Is thc period of oscillation? (show units)
f. Write the second-order transfer function.

(). A process is described by tile f,Jifowing finear ordinary differential equation;

d~' dv d 2
l{

4 ~ + 1~2 ~ + y 2.5
d1 2 tit

~~ ~ 0du(O)

dl
tlr(0) c »(0)

til

U(I) 1 2
2 I

The units for time are minutes.
a. What arc the values of the poles of this process (give units)?
b. When docs the output of the process reach a maximurn value?
c. What is the maximum value or the process output?

10. A process has two poles and one zero. The poles are located at -I ± 0.5) and the
zero is located at 0.5. Sketch the type of responsc that you expect to a step change in
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input. Explain. F,'ind the transfer function and verify these results assuming a gam of
one.

(1,0.5)
x (0.5,0)

(-1,-0.5)
x

11. Consider the following state-space model (from Module 7):

[ ~: I [ 2AOS

0.833
o II x, [ [

-2.238 x, +
7 [

-1.117 /I

Y - 10 11 [x,'[
Xl.

a. Find the transfer function g(s) where yes) ~ g(s) lI(s).

b. Find the poles and zeros.
c. Plot the response to a unit step input.
d. Plot the response to a unit impulse input.

12. A process engineer responsible for the operation of a complex chemical reactor has
the process operator make a step change in the coolant f10wrate from 10 gpm to 15
grm to the reactor at 2:00 pm. The reactor temperature is initially 150"F at 2:00 pm
and drops to a low of 115°P at 2: I0 pill. Eventually the reactor temperature cornes
to a final stcady-state temperature of 125"F. Assuming that the response is second­
order (k!T2 \.2 + 21;TS + I), find k, 1;, T (show units).

13. The output of a sccond~order, 1I1lderdamped system has a rise time 01" I hour. and a
maximum value of 15°[" (in deviation variables), aner a stcp change at time { =: o.
After a long period of lirne. the output is 12"F' (again ill deviation variables).
a. What is the value of 7'1
b. What is the value of C
c. What arc the poles? (also, show their location in lhe complex plane)

14. A step change of magnitude 2lb/min is applied to the input of a process. Thc result­
ing oulput response, in dcviation variables, is shown in the figure below.

_____________________________ ~_,=_jf-_-_kLl'*;1t
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Student Exercises

11(.1')

a. Pind the period of oscillation, rise time, and time to first peak, for this system.
Show your work.

h. Find parameters (show the units) in the transfer function, g(s) :::::: k/(T2S2 + 2~TS

+ I), by using the dimensionless plot, Figure 9.2. Show your work.

IS. Consider the following third-order transfer function, where ~ is a parameter. Find
the conditions on the parameter [3 that will give an inverse response.

(2.1'2+.1'+/3)
g(s)c

(5.1' I- 1)(3.1' + 1)(2.1' + I)

Show your work and explain your answcr.

16. Consider the following transfer function:

S2 + s - 2

s2+4s+3

ESCOLA Dc ENGE~~HARIA

B I BL I 01 cCA

a. Find the poles and zeros for this transfer function.
b. A unit step change is made at f = O. Find thc value of the outpul, using the final

and initial value theorems:
i. After a long timc.
ii. Immediately after the step change.

c. Verify your results in b by finding (analytically) the time domain solution.
d. Verify the results in h using the MATLAB function step.

17. Consider the following state-space model:

I~;I I-6.5
4

2.511 X'I + 10.00155111
- 6.5 x, 0.00248
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Find the lrallsfn l"unctiulls n.·lating the input tu c<lch output. Find the step rc"poll_sc
01" l'<ldl output.

IS. A unit step change in input is lTl<ldc 011 a 11lJlnhcr of processes (f--lV), rile '\~'illjtillg

outputs arc shown ill the plot below. Associate each process with a rCSpn!1Sl' ClIl'\t'

('line (kucl'l fr(jIll Pint

21'
L <';(,\)

2\

II C:(.\ )

.:s I
III .l::(.\) =

I

-1-(.\ 2\ - !)
IV. (;'(.1) = Is

2

d
a

15

"
0.5

0

05
0 2 4 6 8 10

19. ('ollsidcr (\ SC(nIH! order transfer flllll'lion \vilh IlUlllcralm dYIl<.Ullil"';:

11(' )
I)

let 11 represent the qmtlkr denominator time constant. ,,\S';';\lllle a step change ill
inpuL. Shc)\\' thal a max.imulll ill \'(l)/kj./{ occlirs if 'II T, and tkJl a llliIllJ1lLl111 (ill­
dicating ill\ erst' rcspllllsC) occur.., if Til O. i\l..,o 'ibmv th,lt there is IlO L'.\lrellW ill
Lhe '-tep respoll"e if 0 '11 To. (llim: Reali/e LhaL a lTw.\imUIll or rninilllllill oel'I.I!""
at \/1/1 ~ 0.)

20. ('ol1sidcr the tran"fer fU1Jction g,,(s)
12.\1 2

-L I
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c. Write the gain-pole-zero form r; (s') =
'I" (.1'-1',)(.1'-1'2)

21. The reader should show how the firsl- and second-order Pade approximations relate
to a Taylor series expansion. The 'I'aylo1" series approximalion to a time-delay in the
Laplace domain is

Student Exercises

a. Write the gain-polynomial form gJs)

b. Write the gain-time constant fonn g,,(s)

k(T"S + I)
r\,l + 2STS +

k(TIJ," + I

h.l' + 1)(72.1' + I)
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Use long division of the first- and second-order Pade approximations and cOinmenl
on the number of terms thai arc consistent with the Taylor series expression.

22. Consider the following interacting lank problem. Assume that the flow between
tanks 2 and I is linearly proportional (rJ 1) to the difference in lank heights and that
the outlet flow from tank 2 is proportional (f3 2) to tank height 2. Develop the trans­
fer function models relating the inlet Ilowrate to both tank heights.

~

23. Consider an exothermic chemical reactor that has the f{Jllowing transfer function re­
lationship hetween the inlet flowrate (input) and the reactor tcmpcrature (output).

()
2( - 2.5.1' I- I)

~ v = '.' •... ......
<' 9s2 + 3s ,I, I

The units of the input arc liter/min and the output is in deg C.
a. Find the values of the zeros and poles. Is tbis systcm lIndcrdamped or over­

damped?
b. For a step input change of +3 liter/min, find how the Olltput changes with time.

How much docs the temperature decrease before increasing? Compare plots of
your analytical solution with those obtained using the MATLAB function
step.

c. What is the ultimate change in temperaturc aftcr a long period or time'!
d. If the steady-state input and output values (in physical terms) arc 10 liter/min

and 75°C respectively, what arc the physical values of thc results in band c'!
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c. If a step decrease in the input of ~3 liter/min is made, what would he the results
in b, c, and d?

24. Consider a CSTR with a first-order irreversible reaction A --> B. The modeling
equations are:

dC (F) FA~_ ·+kCA + CAr
dl V V

dC" F
dl ~ k C" ~ V CII

The following parameters and steady-state input values characterize this system:

F
= 0.2 min- l

V

k cc-c: 0.2 min-- '

gmol
1.0

liter

The input is CAl and the output is Cn. You should be able to show that the stcady­
state values of (~ and CjJ arc 0.5 gmolliitcr.
a. Show that the transfer function relating the feed concentration of A to the COIl­

centration of B is:

0.5
y(.I") =

(5.1" + 1)(2.5.1" + I)

. . gmol B/lilcr ....
where the gam 15---------------, and the tllne lIl11! IS Il1lIlutcs.

gmol A/liler
b. At time t :;:0 0, the input begins to vary in a sinusoidal fashion with amplitude

0.25 and frequency 0.5 min -J; that is,

1/(1) ~, 0.25 sin(O.s I)

Using Laplace transforms, find how the output varies with time.
c. Compare your results in b with the integration of the modeling equations using

the MATLAB integration routine ode45. Remember to use the correct initial
conditions. Also, remember that the transfer function results arc in deviation
variable form and must be converted back to physical variable values.

d. Discuss how the amplitude of the output changes if thc input frequcncy is
changed to 5 mitr-- t .

25. Oftcn higher-order process transfer functions arc approximated by lower-order
transfer fUllctions. Considcr the following sccond-order transfer function:
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1

1)(11 1)
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Find the value of 'T in a first-order transfer function, Ij('TS + 1), which best approxi­
mates the step response of this second-order transfer function, in a least-squares sense.

(Hint: Define an error as a function of time as e(t):::: Y2(t) - YI(I), where }'2 and
YI are the step responses of the second- and first-order responses respectively. Find I

\vhich minimizes e2(t) when t --> inf'.)

26. Consider a criticaIJy damped second-order system:

1
~(\) "
" (71 + 1)(TI + 1)

a. POI' a unit step input change (Au = 1), find the time at which the rate of change
of the output is greatest (i.e., find the inflection point).

b. Compare this rate of change with a unit step response of a first-order systelll
with the following transfer function:

1
g(l) ~ (27,V + I)

c. Plot the step responses for a and h, for 'T = I. COinpare and contrast the n>
sponses.

27. Pharmacokinetics is the study of how drugs infused to the body are distributed to
other parts of the body. The concept of a cOinpartmental model is often used, where
it is assumed that the drug is injected into compartment 1. Some of the drug is elim­
inated (reacted) in compartment I, and some of it diffuses into compaltment 2 (the
rest accumulates in compartment I). Similarly, some of the drug that diffuses into
compartment 2 diffuses back into compartment I, while some is eliminated by reac­
lion and the rest acculllulates in compartment 2. Assuming that the rates of diflu~

sion and reaction are directly proportional to the concentration of drug in the COI11­

partment of interest, the following halance c<.J.uations arise:

~ -(k,o + k 12 ) x, + k21 x, + II

where XI and x2 ;::: drug concentrations in compartments I and 2 (f.1g/kg patient
\vcight), and u ::;0; rate of drug input to compartment I (scaled by the patient weight.
/-Lg/kg min).

Experimental studies (of the response of the compartment I concentration to
various drug infusions) have led to the following parameter values for the drug
atracurium, which is a muscle relaxant:



dx)... ~ -2x
dt J

using the first-order Pacte approximation for dcadtimc, write the corresponding (ap­
proximate) pure differential equations. (llin!: define a new variable x3;:;;: xz(t - H).)

Solve the equations using ode45, for an initial condition or () in all states,
and a value of 1 for the input

Chap.9

~ -x,(1 - 8) I 1/(1)

~ 0.015 min I

(k lO + k,,) ~ 0.26 min I

(k 2ll + k2l ) 0.094 min I

Transfer Function Analysis of Higher-Order Systems

a. [,'inc! the poles and zeros of the transfer function that relate the input, II, to the

olltput, xl'
b. Find the response of the concentration in compartment I, Xl' to a step input (If

I /-Lg/kg mill. What is the value at 10 minutes? What is the value after a long pc~

rind of time?
c. Find the response of the concentration in compartment I, Xl' to an iII/pulse input

of 10 f.Lg/kg. What is the value at [::: 0'1 'What is the value at 10 minutes'!

28. Consider the following delay-differential equations:

dX 1

dl

246
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Chapter 6 presented simple examples for transforming a state-space model to a single 11th
order ditlcrcntial equation. Once the single differential equation was obtained, the meth­
ods of characteristics and undetermined coefficients (Chapter 6) or Laplace transforms
(Chapters 7-9) could be used to obtain a solution. A general method for converting a
slate-space model directly to the Laplace domain is presented in this chapter. With the
transfer function representation, one can easily obtain the corresponding single nth order
differential equation. After studying this chapter, the reader should be able to:

Convert a state-spate model to a transfer function model analytically.

Convert a slate-space model to a transfer function model using the MATLAB
routine Sf32tf.

Discuss interesting effects from pole-zero cancellation,

The rm~ior sections arc:

10. J A Second-Order Example

]0.2 The General Method

10.3 MATLAB Function ss2tf

247
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The goal of this chaptn is 10 take il gCllt'ral stdte-space model:

x Ax+Bu

y~CxjUll

and convert it to the matrix transfer function form:

yes) <;(s) lies)

and usc this mode] to solve for the response;.; of each output to each input. \Vc will also

usc this technique to easily find the 11th order differential equation corresponding to l'<ICh

output variahle.

10.1 A SECOND-ORDER EXAMPLE

Consider the follo\ving tv\'o-statc, single-input. single-output model:

dX I
= (111'\"1 -+ (1 1.',1.":, -+ hi] II

dl
( I 0 I ,

dr")

dl
{ 10.21

( IO.JI

'faking Laplace transforms of (IO.l) through (10.3), \ve find:

s X,es) ',(0) "" X,(') + II,. )(,(s)l iJ" (J(I)

s X.(s) x,(o) !I" X,(I) + II" X.(s) iJ", (J(I)

Yes) _. "" X,es) + c,. X,es) d" (J(s)

Assuming .\)0) ~ .1.':;(0) ;;:;: O. and rearranging:

(s -- II,,) X,es) - II" X.(s) iJ" U(s)

(s .. lI,el X,es) -!I" X,es) iJ" U(s)

( I ()·l,

{10.) I

( 10(; I

( 10.71

( IO,~ I

III order [0 generalize this procedure later. we \vritc (10.7) and (10.8) in matrix form:

or,

(,,)]_.] 0"

.. (/: 1

11,",1 \ I :,',(1)1 ~ 1hill U(s)(/., I .\ ,(.,) h"

1

(/,Ii

(/) I
0',',1,\ [X,(S)](/ .. f X.(I) I

h" lues)
h 21

( I ()_C) I

~~~~-~~----- ~,
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and (10.6) is written in matrix form:

[
X,es) I

yes) = [e" e12 ] X,(s) + <1" U(\")

We scc (10.9) is of the form:

(sl ~ A) Xes) ~ II U(s)

with the solution for Xes):

Xes) • (sl ~ A) 'II U(s)

and writing (10.10) as:

yes) C X(I) + D U(s)

combining (10.12) and (10.13):

yes) c" [C (sl ~ A) 'II + D] U(s)

recall that often D::::: 0, in which case (10.15) is written:

yes) •..• [C (sl ~ A) 'II] U(s)

or,

yes) ~ G(s) U(s)

(10.10)

(10.1 I)

(10.12)

(10.13)

(10.14)

(IO.IS)

(10.16)

In this example, since there is a single input and a single output. G(s) is a single transfer
function, which we call g(s). The transfer function is the ratio of a numerator and a de­
nominator polynomial:

H(s)g(s) •..•
D(s)

(IO.l7)

The reader should show that the polynomials in (10.17), based on (10.15) afC (sec student
exercise 4):

H(s) ~ "l S + " 0

D(s) = s' + <1, s + do

where the polynomial coefficients, in terms of the matrix coefficients, arc:

11 1 = ell btl + en bI,

flo = elJ [0 12 bll - {In blJl + C l2ra21 bl ] ~ alJ h21 1

Since the inpuHmtput relationship is wrillen:

(1O.18a)

(HU8b)

(IO.19a)

( 10.1%)

(lO.19c)

(lO.19d)
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We call further write:

Y(s)

Matrix Transfer Functions

Nix) .
lJ(s) lis)

Chap. 10

or.

Dis) Y(s) = N(s) Uis)

The corresponding differential equation is:

till
II,

dl

V·'/e no\\ have all automated procedure to find the transfer function for a single-input.

single-output. two-slate S}'stel\1. An example is shmvl1 below.

Example 10.1 Linear Biol"l'ador \todd

('oll"idcl <l llncari;cd Illode! of a l)iorc<ll'tOL wlth the sl'cund-statl' \"ariahk (SUbslralt' c{llKCIlIJ,1

liun) Il1c,l"urcd and with dilution ralt' (I:;V) as the input \ari;\hlc,

rhe statc-space matrices arc

A=

B

l II

-II 7';1111

c ~ [II I]

[) II

Using the follt1\\ing steps [0 rind Gel) c:;;: C (sf - A) J B:

(sl A) !O.7~O(J
O.9().')() I

s + 2.."640_

Recalling the simple method for ill\'t:'lling a 2 x 2 matrix. \\'e find:

(s)

( (d

A)'

A) J

I
s j 2.:'i640

IJ.7SIII1

o7';00\ I,
\ 2.:'1640 s

2..'1640 s f 0.67920

U.6792(J

0.7';011 II [ "l;l~21 '
..).XL).J S t 2.5640 s I O.h7920



3.RZ55 sl 1.14765
yes) ~ U(s)

s/ -t-- 2.5640 s t- 0.67920

Sec. 10.2

so,

The General Method

C(sl-A) 'I!
3.RZ55.\ 1 1.14765

" 2.5640 s + 0.67920

251

and we easily find that

d\' dy dll, + Z.5640 ' ,j 0.67920 \' ~ 3.RZ55 + 1.14765 II
de dt -- dt

We generalize this procedure in SectioIl 10.2.

10.2 THE GENERAL METHOD

Consider a general slate-space model with 11 stales, JJ1 inputs, and r outpuls (see Chapter 5):

tit"1
= (lIIXI + (/I2X2 -+- ... +- Ol/J·T" -+- h ll u 1 -I ... + bllJlumdt

(10.20)

which can he written in matrix fonn as:

I
i, I [all

., .~" = _a",

[
Y',1 ~ Ie,,'
\' c.-, II

a'''.lx,I [""
a"" x" + -"",

,'''1[ ''] Id"
(,/1 _ \11 d'l d'2

(10.21 )
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which has the form:

Matrix Transfer Functions

x~Ax+Bu

y~Cx+Du

Chap, 10

(10.22)

where the dot over a slale variable indicates the derivative with respect to time. Recall
from Chapter 5 that the eigenvalues of the Jacobian matrix (A) determine the stability of
the system of equations and the "speed" of response. Now, taking the IJaplacc transform
of (10.22):

Xes) (.II ~ A) 'lIli(s)

Y(I) ~.. lC (.II ~ A) 'II + DIV(s)

If D ;;::;; 0 we can write:

Yes) "' G(s) lies)
where:

G(s) ~

(I' X Ill)

The trailsfcr function matrix, G(s), is:

C(sl~A)'ll

(I' X n)(n X n)(n X Ill)

G(s)

r
gll(S)

g" (s)

g pes)

g,,(s)

g'm(s) I

R,m(s)

Notice that G(s) is square if r:::: m (number of outputs::: number of inputs),

10.3 MATLAB ROUTINE ss2tf

The routine ss2 t £ can be used to convert a state-space model to a transfer function
model. After entering the A, 13, C, and D matrices, the command:

[num,denJ~ss2tf(A,B,C,D,m)

will generate the numerator and denominator Laplace domain polynomials for the transfer
function between input number m and the outputs, in descending order of s.

EXAMI'LE 10.2 Example 10.1 Using MATLAII ss2tf

Here we consider the linearized biorcactor model, with two inputs. The first input is dilution
rate, the same input llsed above. The second input is the substrate feed concentration. We will
also consider both state 1 and state 2 to be outputs, and modify the C and 0 matrices so that
ss2 tf provides the transfer functions between the input and both outputs.



Sec. 10.3 MATLAB Routine [3,,2,,[

»A =:; [0,0.9056;-0.'15, 2.5640]

A -
a 0.9056

-0.7500 -2.5640

» B=- [-'1.5302,0;3.8255,0.3]

253

13
··1.5302

3.825'3

o
0.3000

Input I

" c - [1,0; 0, ] ]

c c:o

1 0

0 1

" D [0,0; 0,0]

D ""
0 0

0 0

The numerator and denominator polynomials relating the first input to the two outputs arc found

using the following command:

» [nuffi,den] "",ss2tf (A,B,C,D, 1)

num =

[] -1 .5302 -0.4591
0 J .8255 1.1476

den
1.0000 2.5640 0.6792

where the first row of the num matrix is the coefficients of s in the gil (s) polynomial. in dccreas~

ing order from left to right. Similarly, the second row of the num matrix is the coefficients of s in

the 1;'21(8) polynomial, in decreasing order from left to right:

-1.5302 .I' - 0.4591
11 (,)+ 2.5640.1' + 0.67920 l'

3.8255.1' + 1.14765
)',(.1') ~ g2l(s) "l') ~ .1" + 2.5640.1'1- 0.67920 ",(.I')

We realize that the eigenvalues of the A matrix and the poles of the transfer fUllctions will be the

same. 'fhis is verified by the rooLs and eig cOll1mands
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((lot-,; (den)

dll;:;

O.30()O::1

» eiq (al

an,;

. 3 () CJ CJ

.) . /. 6 ,} ~J

Matr"ix Transfer Functions Chap. 10

We call ahcl \\I'ilt' the Ir;lTlsfcr fUIlCliulls ill POk-/t~l\) fOHn"

I ,,"iJ02 (s +- O.J)
III(S)

(s +- 2.2(40)(0" +- 0.3)

1-
3)Q55 (s 0._')
!J'''. ',-.11 1(,\)is + ~.jA(I)(., 11.,1

\\herc \~C ha\'c the interesting result (11:11 tile lern canccl~ (jill' uf the pll1cs ttl yield firsHll'clc1

sy"kIl1S

).5J02
/I (s)

(s j. 2.2(40) 1_

3./{255
II,(S)

(s + 2.1(40)

0.6759
0.4417.1'1 1 11 1(.1')

1.()S()7

(1·)·)17 \
1/, (s)

1

\Vi.-' \I.ould notice the Il'ro-pok cancellation if we ;\Is() lIsed the TOC)t~3 cOll1llwnd \() find the

fOOls of the IHlIJ1Crator polynomial

q'Tot:-? (nurc(l,:))

- () . 3 C1 (I 0

'>rU(I\ '; ([;1 :Ti{~;, :))

-().~jOCC

and \\"l' sec that tbe rool of the Jlllll1craloJ pulynomi;l! is the same a" one of the nl(l!s of the de­

nOlllinalor p()Jynomial.
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The numerator and denominator polynomials relating the second input to the two outputs arc
found using the following command:

»[num,den]=ss2tf(a,b,c,d,2)

num :::::
o
o

den

1.0000

,-tnd we have the result that;

o
0.3000

2.5640

0.2717
o

0.6792

v,(s) = g,,(s) lI,(s)

y,(s) = gn(s) lI,(s)

0.2717 ( )
+ 2.5640.':1 -t- 0.67920 1/

2 s

0.3 s ( )
2 ().t,7')7l) 1/, s+ .5640 s I _

The relationship between the second input and the second output is particularly interesting. The
secoodinput has no steady-stale effect on the second output, as can he seen from the final value
theorem. Assume a step change of magnitude !YJ.uz in input 2.

y(t-, ~) = s yes -) 0)
0.3 s au}

-- 0( 2.5640 s I 0.67Y20 s

10.3.1 Discussion of the Results from Example 10.2

THE FIRST INPUT

We noticed that the transfer functions with respect to the first input had pole-zero cancel~

Jation. This created an input-output relationship where the step response is faster than
would be expected, because the slow pole was canceled by the process zero

- 1.5302 (.I' + 0.3) ( )y,(s) = ---- ... !I, .I'
(.I' + 2.2640)(.1' + 0.3)

( )
3.8255 (.I' + 0.3) ( )

Yo .I' = (sf 2.264(1)(;+ ()3) !I, s

This can also be seen using the gain~time constant form:

····0.6759 \.,._,_,_,_, .I' +
yJC,\') = (().44·17 ,. + + '1) !I,(s)" 1)(3.3333 s

1.6897 " ..._., .... .I' + 1
y,(s) = (0.4417.\. + u,(s)1)(3.3333 s + I)
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The step responses for a unit step input change are shown in Figure 10.1.

Chap. 10

2

2015

1.5

10

time

y,

5

0.5

- 0.6759
y,(s) = 0.4417 s + I LI,(S)

1.6897
y,(s) ~ 0.4417 s + I fl,(S)

FIGURE 10.1 Unit step change in input I.

2 ,- ------ - -- ----

y,

o

-1
o

1.5

-0.5

:;,.., 0.5

0.4

0.3

2: 0.2

"
0.1

a
0

FIGURE 10.2 Unit step change in input 2. Notice that the- steady-state value
of Y2 docs not change.

or,

256
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THE SECOND INPUT

257

Notice that input 2 docs not have a steady-state effect on output 2, only a dynamic effect.
This can be seen hy using the MATLAB step function, then plotting the results (sec Fig­
me 10.2).

Dum
0 0
0 0.3000

d.en
1.0000 2.5640

0.2717
o

0.6792

»[y,x,t]=step(nuffi,den)

plot(t,Y)

SUMMARY

We have shown how to converl a state-space model to a transfer function model, for IllUI­

tiple inputs and outputs. We have also seen some interesting results regarding pole-zero
cancellation. One has to be particularly careful with pole-zero cancellation if a pole is UIl­

stable (positive), as will beshowll in Section 11.3.
The following MATLAB routines were used:

ss2tf: converts state space to transfer function form

eig: matrix eigenvalues

roots: roots of a polynomial

STUDENT EXERCISES

1. Compare the step responses of the following three transfer [unctions:
1

a. gt(s) ~
(0.4417 s + 1)(3.3333 s + I)

1
b. g2(s) ~ 0.4417 .\' + I

1
c. g,(s) ~

. 3.3333 s + 1

Which has a faster step response? Why?

2. Consider the following state-space model (a 5-stage absorption column)
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- 0.325 OJ25 0 0 0

0.2 -0.325 0.125 0 0

A= 0 0.2 - 0.325 OJ25 0

0 0 0.2 - 0.325 O. I25

0 0 0 0.2 0.325

0.2 0

0 0

B= 0 0

0 0

0 0.25

Chap. 10

a. Convert this model to transfer function form, assuming that all of the states arc
outputs, using ss2tf.

b. Find the response of all of the states to a unit step in input I. Usc the fUllction

step.
c. Find the response of all of the states to a unit step in input 2. Usc the function

step.
d. Compare and contrast the curves from band c.

3. Consider the following model f()f an isothermal CSTR with a single ltTcvcrsi ble re­
action (sec Module 7). Find the transfer function matrix relating bOlh inputs to both

states.

I
dX,]ai -OA O' x, 0.5
dX2 = [ 0.2 ~O.2IU + 1-0.5
dt

0.211'//'.1o II)

4. I"or a 2~state, single-input, single-output process, derive the relationships shO\\1l in
(10, I 8) and (10.19).

5. For the following state-space model, find the transfer function matrix rcl'llill,!.! all
four inputs to both outpulS,

I
-OA

A=
3

B_[0
- SD

C= [I
o

D.3.1
-4.5

-7.5 D.l

D D DI
1.5



Student Exercises

6. Consider the following state-space Illodel:

[

<It I III OJ [ 7 ]
at- 5 \, 5
'h

2
= _ 1 1 [\,1 + 2 II

<It 10 2 25

}'::::: x2

259

Show that the eigenvalues of the A matrix are -liS and 112, so the system is unsta~

hie. Also, plot the step response. Derive the transfer function relating u(s) to yes)
and show that the unstable pole is cancelled hy the positive zero. This problem will
be analyzed in more detail in Chapter 11.

7. Consider a chemical reactor with bypass, as shown helow. Assume that the reaction
rate (per unit volume) is first-order (r = kC 1) and C 1 is the concentration in the reac­
tor (the reactor is perfectly mixed). Assume that the volume in the reactor (V) and
the feed fJowrate (F) remain constant. The fraction of feed bypassing the reactor is
(l ~ a)F and that entering the reactor is of. Assume that the fraction bypassing the
reaclor docs not change. 'l'he inlet concentralion (Cin ) is the input variable and the
mixed outlet stream composition (C2 ) is the output variable. Write this lllodel in
state-space form, using deviation variahles.

x'-:::Ax--I-Bu

y=Cx+Du

Find the transfer function relating If to y.

For the following parameters, simulate a unit step response.

F = J() lim in, V =1001, ("n = 1 gmolil, ,,= 0.5, k =0.1 min-I.

F

(X F

(1_(<) F

C, C2
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8. Consider the follmving set of series and parallel reactions (from Module 7)

k j
A+A~f)

Material balances OIl components A and B yield the following two equations:

dell F
.. ~ ('C1,) + (k l C..I 'k,'cI')

dt V '

\vhcrc the rate constants are:

'i
k = ' 1nio' j

I 6 Itllll
.1

k,
liters

6 mol min

and the steady Slate feed and reactor concentration of component A arc:

IlHl]
III

liter
CA\

mol
1
. liter

a. Find the steady-state dilution rate U/V) and concentration of n (shO\v all unih).

h. Linearize and put in state-space form (find the numerical values of the A, B, and
C matrices), assuming that the manipulated variables afC dilution rate (FIV) and

feed concentration and that hoth states are outputs.
c. l~'ind the eigenvalues (show units).
d. Find the transfer functions relating each output to each input. Find the poles and

zeros for each transfer function and make plOlS of the responses to unit step

changes in each input. Comment on your results.
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The objective of this chapter is to introduce block diagram analysis. After studying this
chapter, you should he able to:

Analyze the stability of a block diagranl system.

Understand how inverse response processes can arise.

Understand potential problems with polc~zcro cancellation.

Write a set of differentia] equations to simulate systems modeled by transfer fUllc­

tions in series.

Usc the MATLAB routines sE~ries, paral1(~1 J fC'cdback, conv, and
roots.

Use Sll'vIUIJNK for block diagram simulation.

Major sections of this chapter arc:

11.1 Introduction to Block Diagrams

11.2 Block Diagrams of Systems in Series

11.3 Pole-Zero Cancellation

! 1.4 Systems in Series

11.5 Blocks in Parallcl

11.6 Feedback and Recycle Systems

11.7 Routh Stability Criterion Applied to Transfer Functions

t 1.8 SIMULINK

261
ESCOLA DE ENGEN HARIA

13IBLIOTECA
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( ) y(s) FIGl'llE 11.1 Hinck diagram n:,prl'

~cntatlun.

\\'\, han: shown 110\\- Laplace transforms (irc Llsed to reduce differcntialcljuatiollS to

algehraic l"clatiullships. Algehraic equations arc mllch casier to Irlanipul ethan dif­
rl'rt'l1liall~qll{\tiol1s. Similarly, hlock diagrams allO\v us to easily Illanipu . complex
modds that ,Ire cumpo...;cd of subset'; of simple illudels.

iNTRODUCTION TO BLOCK DIAGRAMS

('oll\idcr a standard first-ordn process 1ll()(k~l:

!lr(i)
T

!II

\\hich h,j':; the transfl'r fUllction Conn:

+ r(l) k 11(1) ( I I. I I

r(s)

g(s)

g(s) 11(.\)

'TS+

( lUI

( 11.31

!'!'()CCSS engineers usually try' ,1Ilel solve problems b) 'ike-telling diagrams to undC)";-,lal1d

lilpLiL-OUlpUI rL'1iltionships. Process control engineers usually lise block diagrams to urllkr­
.:;lllIJ the illpu["output relation"hip" in a dynamic system, A block cli,lgrarn represcntation
\1!'(11.2)isshowninFigure 11.1.

\\\~ can sec that II(S) is tIll' input to the trallsfer functiun block <lnd yes) is the output
i'i(lillthc transfL'r function block. Block. diagr,un" \vill he particularly useful \vhell analyzing
\'ulllpkx dynamic sy'slellls. which may be represellted as hlocks ill serics or parallel and
'-illl kedhack. Tiley are particularly,' mcful for feedback cOI11rol Sy"tClll design and analysis.

!iLOCK DIAGRAMS OF SYSTEMS IN Sl:RIES

('ullsidcr 1l0\\ the block diagram rcprc"entation of t\\'o prucesses in "eric" ,IS shown ill
i ;gme 11.2.

u(s) --.~I 9, (5) I2(5) ~I -9, (5) If------..
FIGliRE 11.2 Block dirlg'ill11 olIW" I"nccsses ,n """'5.

Y(5)
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1'hc input/output transfer function of Figure 11.2 is:

y(s) 0 g,(s) z(s) cO g,(s) g,(s) 1/(.\)

or,

y(s) ~ g(s) I/(s)

where:

g(s) c= g,(s)g,(s)

If the two transfer functions arc first-order:

and

then the overall process is second order:

( 115)

(Ii,.)

(Iii)

( 118)

where:

g(s)
I<

(T,sf I )(T2S + 1)

I< ~ 1<,1<2

( 1191

'rhe same idea can be continued for any Dumber of transfer functions in series. The ~~;tl!~

dent should notice that the poles of 1.1 system composed of many lran:':lfcr functions in se­
ries arc simply the poles of each transfer function. This leads to the following conclusion
about tbe stability ofsysfems lvi/II tran.~ler.fllnctirms in series:

If([ system is composed (?(traJl.~r('rli/ll('ti()lIsin series, (llId ifal! r?!'t!wse tralls(cr/il1l(,t;o/iS (/ie s/(/­
ble, then the overall system ;,<, stable,

Also, the 7.eros of a system or transfer functions in series are simply the zeros of the inch­
vidual transfer functions.

11.3 POLE-ZERO CANCELLATION

Again, in this section we consider two blocks in series, as shown in Figure 1J.2:

y(s) Oc g,(s) z(s) ~ g,(s) g,(s) 1/(.1') (1l.IO)
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If WC ;lre not careful. we Gill O\t'rIUUK possihle prublems \\ith sy'>lCllh in scries, if \\c

look onl> at the u\'crilil input/output rclati()lhiJip. 111 the Ile\! cX<JI11pic \\c slw\\' problems
\\-jtll f)ofL <em ('(f!lcellu{ioJ).

---------

EX"'IPLE 11.1 Lead/Lag in St'ril's with Lnstahle First-Order Systl'lll

Cu[]sidt'f the' follO\\illg lead/la~ in s(Tic" \\ itll <111 L11l.\['lhk' first-order' ": :'lCllI

2.\ I
g:(s)

)., I

2\ -

'I 1/(\)
I·

(11.11 )

( Il.l .2)

"1'(,\) g{i) 11(\) II(S)
I

I I I I _~ )

\\'(' Intl"t ['caJIIl' Ill:]! tllese tr,lIlsl"cT fUJlctiolh UllimiltL'l: ['cprt'SC111 (l phY\lcd )'r'uccss III pracrin'.
ph) "iedl j!iH,II11('tCI'S <.-'annul hl' kll(1\\'ll pnl't~(11) Whal tillS I11C,II1S h Ill,]l gt'll(~r(lll) the 1l1l111Cf<.llu]

llf g (\\ \,ill I1Pl ('\;It:ll) cmCc'l the dCllOminatur of g~(sl. in pr:lctin'.

COllsjtkr II n:ali:-li ..... (,;dSI:\ \\ h..... re .t.':(si ha) ,[ sl,iglH t:rrOl in the \'alul' (If till' poll'

thell \\ C find thdl

I'{s)

t;,(s)
I

-- :U)()O!l -'--- I

2\

.:. ()OUll

ill 14)

I{S) "---' g(s) 11(\)
--.:\

I (),()Ons\~

I J I I ~I

'\Olll..:(' th,ll \\ IlL'll \\l' do nnt 11d\<" pnfcd p\lkllt:n\ Cdlll..:l'llilIHlIl. thnc i~ :111 ull\labk pok in tlh'

illput!PlItPlit relationship. \(sl= ,L:II) 11(1 I. Our goal t1ll\\ i\ \(J C()lllp;tl'l: tll(' I"l'SPOIlSC\ 01 thc 1\\0

11HldL'I\ I 11 1J) dllt! ( I 1.1,"'\), LCl II (\ ) I"cpl"CS,'lll lhl: (lutpul ill ( 1I.I,~I ;\Ild \'JI) rl']1rL'~cnt tile \lUl­

pUl in I 11 I:' I \\~lllllillg:l unll \kP illpUl. 11(1);;:: Ill.

\(5s

\'(1)

I)
I I I 1(1)

111 17)
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Also,

Pole-Zero Cancellation

-2\' +]

y,(s) ~ s( ~I (J.60lJSs' -:;: 2.9999s + I)

265

(lUg)

which has tbe time domain solution (Chapter 9):

7
y(t)"I- e'/5

2 7.(JOOl
___ 0.0001 er/2.(l{)(Il

7.0001
(11.l9)

and we call sec that, at low t, (ll.19) is almost identical to (11.17). As time increases, however,
the unstable exponential tcrm in (11.19) begins to dominate. This is shown dearly in Figure 11.3.

Y1' stable

0.5

o

-0.5
o 5 10

time

15 20 25

FIGUREl1.3 Comparisollof(11.17)and(1119).

Note that if we had used the state-space form for the model represented by equations
(ll.JO) through (Il.J 2), we would have discovered the instahility, cven for the perfect pa­
rameter case. The following example analyzes the state-space form of l~xamplc 11.1.

EXAMPLE 11.1 Continued State-Space Aualysis

Refer to z(s) as the output of the lead/lag block. FrotH Chapter 8 we find the following state­
space realization of the lead/lag:

dx

dt

z;::~ x+'T!'u
'Trt 'T(/
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T"S +
T,t\ + [ 5s ~ .. I

, so:

Block Diagrams Chap.11

dl." 7
\ + II

dl ) )

2
,\ II

) 5

(Illd lhe stall' space rcali/ation of the ullstable lag is:

(11.20j

(11.2 J)

dv
dl

Suhstiturill12 (11.21) into (11.22). we find

I
\',

rf we usc notation

r 1 :=:.\

Xl c::;;: Y

dy

dl
\'

2

I
x + II

III )
( 11.23J

\\c can \\rile ( II 20) and (11 2J) in the following form:

dt j

dt

7
II

5 5
(1 J .24)

dx-.

dl

Using the usual :,talc-space notation:

I
2 x, 10 Xi II

)
( 11.2'1)

x Ax Bu

Y (.' xl l) u

\Ve \tTlle

(hi

~]i:' I
7 I

dl :"

1JII
dx, I

1_ dl I()

( Il.2hl

\\it' c<lsily' find Lhat the eigenvalues of the /\ matrix arc --1/5 and Ill. The positive eigenvalue in

dicatcs thatlhis S.ySlCJll is llllst;\hlc.
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The previous example illustrates the importance of not cancelling an unstable pole with a
right-half-plane zero. It also shows how slalc~space analysis can always be used to ad­
dress the stability of a system.

11.4 SYSTEMS IN SERIES

The dynamic behavior of chemical processes can often be represented as a scries of sim­
ple models, such as first-order transfer functions. As an cxmnplc, consider the following
process, which is characterized as II first-order processes with a gain of 1 and a time con­
slant of 5:

I
g(s)c (5.1 + I)" (I 1.27)

The step responses for 11 ::::;0 I to 5 arc shown in Figure 11.4. Notice the characteristic
S-shape for all orders greater than 1 and the additional lag associated with each higher
order.

11.4.1 Simulating Systems in Series

( I 1.28)Xl +
k,

uT, T,

Although we analyze processes lIsing transfer functions, to obtain time domain responses
we must usc a IllHllcrical integration package. Consider a system of II first-order processes
in series, as shown in Figure! 1.5.

IJere we write the sct of ordinary differential equations that describe this process.
'fhe ODE describing the first process is:

dX1

dl

1
(53 + 1)'

o~L.L~~~~--c:::---:'::------:c:::------:lo 5 10 15 20 25 30
time

FIGURE 11.4. Step responses of first-order systems in series.
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XIL-lS)r----'XIL(S)
gutS) )~S)

FIGURE 11.5 n processes in series.

Notice that we can think of the output of the first process as the input to the second
process:

+
k z

x) X'
j

7 2 7 2

and so on through the nth process:

( 11.29)

( 1130)

To solve (Il.28) through 01.30) we can lise the numerical integration techniques devel­
oped in Chapter 4 or the analytical expressions developed in Chapter 6.

We can also write (11.28) through (! 1.30) in the following state-space form:

dX j - 1 k
dt 0 0 0 x, ,

T, T,
dxz k2 1 0 0 x 2 0
dt T2 T2

1 + u ( 11.26)

dXn , 0 0
0

dt
Tn ,

dXn 0 0 kl/ X" , 0

,Ii Tn Tn X" 0-

In Example 11.2 we show how to usc the MATI,AB routines series and conv to find a
transfer function that represents two blocks in series.

EXAMPLE 11.2 Two Transfer Functions in Series

Consider two processes, g](.I') and g2(s), in SCrlCS, where:

1.5
g,(s) ~

2, + I

3
~ (s) -
,2 4s +

g(s) ~ g/,) g,(s)
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We use the following MATLAB commands (0 enter the numerator and denominator polynomi­
als for each transfer function:

»numl [1.5] j

>:> denl [2 1] j

»num2 [3];

» den2 - [4 l];

the series command generates the llurucrator and denominator polynomials for the transfer
function g(s):

»[num,den]

Dum :::

o 0 4.5000

den :::::

8 6 1

which iildicatcs that

cony

:'3cries (numi, denl, num2, den2)

4.5
M(s) ~ 0

gs~ 1- 6s 1- 1

cony is llsed to multiply two polynomials. Using the previous example, we multiply the numer­

ator polynomials to find:

» num

nwn -

cony (nwnl J num2)

4.5000

and the denominator polynomials to find:

» den = COIlV (deni , den2 )

den ~

861

11.5 BLOCKS IN PARALLEL

Sometimes the behavior or a chemical process can be modeled by transfer functions in
parallel as shown in Figure 11.6.
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u(s)

y, (5)

9, (5)

+

+

9, (5)

Y2 (5)

Y(5)

FIGLREI1.6 System" In parallcl.

For this sy.'stem \\'C can \\Tite the total output. r(sL as the sum of two outputs, \'1(.1) + Y:::(.I),

or,

1"(S) g(s) u(s)

\\'here:

Consider the case \vhere gl(s) and g2(s) arc fir'>t-ordcr lramJcr functions:

'loS -+ 1

so

(II ,I)

{1112}

{ I I .11}

( 11 ,3~1

(1115)

( II,ft)

g(s)
TjS

fl..
(1117)

Developing a common denominator. \\'C find:

Notice that (11.38) has the form (sec Chapter 9):

kiT,s i I)
g(s) = _ ',I

(T,\ + 1) (T,S + I)

(] J .38)

( 111'))
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where:

Blocks in Parallel

"~ " I 1<2,

", j k2T l
T" ", I "2

271

(I lAO)

(I IAI)

We will assume thallhc transfer functions gl(s) and g2(s) arc stable, so Tl and T2 >, O. The
goal of this section is to show a system where inverse response (discussed in Chapter 9
and Example 9.3) behavior can occur.

11.5.1 Conditions for Inverse Response

Recall that a transfer function will have inverse response only if there is a right-half-plane
(positive) zero. Since the zero is "-117/1' this system will have inverse response only if
Til < O. We find that Til <:; 0 only if k j and k2 are of opposite sign. We can arbitrarily as­
sume that k1 :> 0, which means that k2 <: 0 is necessary for inverse response. For inverse
response, the condition:

or,

means that
+ k2T l

k l + k]
<0

" <:

", + ", ", + ",
which yields the following conditions for inverse response.

1. If k J + k2 ::> 0, thcn k[I2 < k211' which implies thal 12fT [ musl be./ kzlk[ for m~

verse response.

2. If k
J
+ k2 -< 0, then kJI2 ::> ~~k211' which implies that 7/11 must be -:> -kik] for in~

verse response.

Physical examples of systems with inverse response include: steam drum level, rcboilers
in distillation columns, chemical and biochemical reactors. A reason that inverse response
behavior is important is that it creates tremendous challenges for tight process control.

We can usc theMA'fLAB routine parallel to simulate lwo systems in parallel,
as shown by the next cxample.

EXAMPI,E 11.3 '1\\'0 syskms in parallel

Considcr Ihc following systcm of (wo first-order processes in parallel (Figure 11.7):

g,(s)
2

5s +1
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-I
8,(S) -

lsi 1

Chap. 11

2
g(s) ~

5s +
-1

f
Is + 1

»num! [2] ;

» denl = [5 1];

» num2 - [~lJ;

» den2 [1 1];

The following command is used to fiud the new transfer function:

» [num, den] ;0: parallel (numl,denl,Ilum2,den2)

nulU =

0 -3 1

den

5 6 1

» [y,x, t] stE~p(num,c1en);

»[yl/xl] sLep(numl,denl,t);

»[y2,x2] step(num2,den2,L);

» p1ot(t,y,t,yl,t,y2)

2

y,

y

y,

2
o 5 10 15 20 25 30

FIGURE U.7 Two systems in parallel that have an inverse response when

added together.
••..•__••• 1



11.6 FEEDBACK AND RECYCLE SYSTEMS

This previous example has shown that inverse response occurs in systems where the gain
of the "s(ow process" (larger time constant) is larger in magnitude (but opposite in sign)
than the "fast process" (smaller time constant).

Sec. 11.6 Feedback and Recycle Systems 273

r,'ccdback systems arc common in engineering. Examples include chemical and biochcllli~

cal reactors, where a certain portion of the product stream may be recycled to the fccd­
stream. Feedback naturally occurs in most "self-regulating" models where, for example,
the rate of change of a state variable (say, concentration of A) is a function of the same or
another state variable (say, concentration of B).

The entire field of process control is based on the concept and theory of feedback
systems. Our goal with this section is to introduce feedback analysis and, in particular,
stability analysis of feedback systems. A block diagram of a feedback system is shown in
I·'igure 11.8.

In this figure, the input to the feedback system is res) and the output is yes). Here we
develop the relationship between res) and yes).

but

and

So we can write (11.44) as:

Solving for .y(s) we find:

Notice that we can view this as:

yes) ~ g lv) /1.(.1')

1/(.1') ~ r(s) + z(s)

z(s) ~ g,(s) yes)

yes) ~ g,(s) (r(s) + g2(s)y(S»

g,(s)
yes) ~ . . res)

I - g,(s)g,(s)

(I 1.44)

(l1.4S)

(I 1.46)

( 11.47)

(11.48)

FIGURE t 1.8 Feedback diagram.

where

r(s)

y(s) ~ g,., (.I') res)

g,(s)g (\) ~ ----------
" ' I - g,(s)g,(s)

u(s)
g (s) I--

+ ~ 1
+

'-- g2(s) f4-
z(s)

(I 1.49)

(11.50)
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r(,)
u(s)

g (,)
+ 1

+

L....- gz(,) f-z(,)

y(')

Block Diagrams Chap. 11

r(s) ----..I_g_cl(_S)---.JI-----. y(S) FIC;.(JU.E 11.9 Equivalent block

diagraills.

and we know that if the poles of gcl(s) arc stable, then the feedback system is stahle. \Vc
realize that the two block diagrams shown in l·'igurc 11.9 arc equivalent.

EXAiVlI'LE 11.4 Feedhack syst('Jll

Consider two first-order process transfer functions:

k 2

'2S _of

glv)

1i,(s)Ii,(·I)

(11.51 )

(11.52)

(11.5.1 )

kl(.;s I

(T,S ,- I )(T)S I) - k,k)

k, (T).I , I)

('1T,S2 -1 ('I -j '2)sl k1k!)

and Xd(s) is stable if the roots of '1'2S2 + ('I] + T2)S + J - k 1k2 arc stahle. We recall frum the
I{outh stahility criterion that aJi of the roots of a quadratic polynomial afC negative if the l'oelli
cients of the polyllOlniaJ are positive. If we assume that 'I and 1"2 arc positive, then (11.53) will
be stable if I k1kz is positive. For stability, then, k 1k2 must be less than I. [,d's consider the

folJowing IlUinerical example:
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g,(s)
k]

lOs 1

Since k l ;;;;; 2, then k2 must be less than 0.5 for stability.
As a Ilumerical chc(k, lei k2 :;;:; ~ I. Solving for the roots of

T1lzS
l + (T I + 7))S -j 1 k/<2 0

we find

50."J + 15s-1 3 0

which has the roots (using the quadratic formula)

-- 0.151 0.1936j

(we can verify this result using the MATLAB routine roots)
Since the real part of the rools is negative. the system is stable. This is verified in the

MA'rLAB simulation presented in Figure I J.I 0, where the response of the output to a unit step

change in r is presented.

0.8

'" 0.6

0.4

0.2

0
0 10 20 30 40

time

1.2

FIGURE 11.10 Step response for the example feedhack system.

We can also Lise the MATLAI:3 feedback function to obtain the closcd"Joop transfer

function, as shown below.

2
5s

-I

lOs +
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numl - ] ;

Block Diagrams Chap, 11

and. using lhe rtlutillC fcC'db,)ck

" [nurn,c]cn]

nUllt -

den

S(j T ') 3

»den] = [5 1];

" den? '-' 1 I ;

'\)v'l' use the routine :;tep to find the step respollse:

[y, .":, L I

which gives the plut shuwl1 in Figure 11.1 n.

~,;t ':~'I)(nutn,dcn)

11.7 ROUTH STABILITY CRITERION APPLIED
TO TRANSFER FUNCTIONS

Recall from Cb,OIptcr Athat the purpose of the Routh stability criterion IS t() determine if a
polynomial with the following form has any positin:' roots:

II

Since trallsfer functions that have dCIl()lllinator polynomials in the Laplace transform vari­

able (s) are arc the S,lIl1C form (IS (I J .54). \VC can lise Routh i1naly'sis tu determine the S[d­

bility or transfer rUlltioJ1s. As before, assume that (/11 > O. If (//1 < 0, then rmtltiply' (J 1.54)
by ~ I. A nccl?sswy condition for stability is that all of the l'{)efficicnts in (11.54) must Ix

positive. If any of the coefficients arc negative or zero, then at !cast onc pole (root of the

characteristic equation) is positive or lero, indicating that the equation is unstable, Even if

all of the coefficients arc positive. \vc cannot state that the systcnl is stahle. \Vhat i"
needed is a sl{/I/cient condition fur stability'. 'ro deterrnine that the system is stahlc. \\('

must construct the Routh alTay and llSC the Routh stability' criterioll. which provides ncc­

essary and sufficient conditions for stability.

Sometimes we simply \vish to determinc if a particular systcm is stable or noL \vith­

out actually evaluating the eigenvalues. This is particularly true if we Vv,'ish to determine

valucs of system panlll1ClCTS that \vill cause a SYSll'll1 to lose sUlbility 'Thi::; appnl,lCh will

be useful in performing a bifurcation analysis in later chapters (14 and 15), and in LUlling

control systems for chemical processes.
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11.7.1 RouthArray

rf all or the coetlients or the characteristic equation (11.54) are positive, then develop the
following ROllth array:

Ro\v
I an
2 {fll_!

3 ",
4 '"

J/+I

(In- __2

an -3

172

(;2

(ln4

(111_ )

h3

where 1/ is the order of the polynomial. Notice that the first two rows consist of the coeffi­
cients of the polynomial. The clements of the third row arc calculated in the following
hlshion:

({n-2 -- a/PII

{In __ ]

(lll_'_ !

and so on. [~lcmcnts of the fourth and larger rows arc calculated in a similar fashion:

and so 011.

A sufficient condition for an rools of the characteristic polynomial to have negative real paris is that
ali of the elements in the first colunm of the Routh array arc positive.

EXAMPLE 11.5 Uouth Array to Determine Closed.Loop Stability

Consider the block diagram of figure 11.9.

yes) -

or,

yes) g,,(s) res)

where:

g,(s)
I - g,(s)g,(s)
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And the trails!''') fUlll'llOJlS are:

( )S

A
lOs

I )(1, ~ I)
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Our g(lal h ((i r-Iml k, til (lSSUrl' __ lahility nl the clnscd-luup s~'-.tl'1ll

We e:lsil) find the traw,fci l'ullclinil. gi.\):

g(s)
( I50s'

"111h I}
9).\" ISs --~ 2/,;,)

\\hkh has Ill(' c!l,u-ilctcristil' pulYJlolnial

150s' --" 95\

\\ llich j" of the rlmn

lSs ?k,

150 IN
\)5 I 2L

, 1>1 II
4 c l

rile ilCCC,I.\UrI C()I1c1lliull is that all (II > n, Ilhidl is sari'-Jit'd if J - 2k, > 0, u!" k, ().:'i.
'I'll(' sufficient conditiull is s<lli:·Jiec! d' all uf the cudfkiClIl'- in till' fil-\( ('Ohllllil (\1 111<.'

Routh array arc pmitilt'.

(u/ - 1/,11" ISO
h IX II 2k ,) II

a 90

hi (1,-, a)) ,
2k1."1 (III - II

hi

The hi l'lillditioll is satisfied if k~ > :=;) while the ('I cUlldlljOI] is the \(lillt' as the necessary l'(lll

ditioll. \Ve then kl\l? the folluv,'illg rcstrictioll on k, fur st;lhility'

11.8 SIMULINK

5.2 0.5

III the prC\ious sections \VC 11;\\c shown hO\\ \1XfLAB routines can be' usnJ for hlod; dl

agr,iIll analysis and simulation. The ohjeetJ\"c of this sec-tirHl is to Lise the bind dl<l~rall1

simulation features 01" SIMULINK.
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ff------j
Step input

g2(s)

;=;G~s---I~ .J'J
output

FIGlJRE 11.11 SIMULINK block diagnllll for two blocks in parallel.

Consider the block diagram system from Example 11.3. A SlMLILJNK block dia­
gram is shown in l~'igure 11.1 I, Notice the use of step, transfer function, sum, workspace
and clock blocks to generate the nccessary input and output information.

The parameters menu is used to specify the intcgration type (L1NSIM), final time
(30), and minimnll (0.01) and maximum (I) step sizes. The results arC the same as shown
in r'igure J 1.7. More information on SIMULINK is provided in Module 4 in the final sec­
tion of the text.

SUMMARY

Block diagram analysis is irnportant because it allows us to think about a system of
processes in terms of a cOlnbination of the individual processes. We have shown how to
analyze the slability of a bloek diagranl systelll, particularly if there are recycle or feed­
back processes. \Vc have shown how inverse response processes can arise from systems
in paralleL We have also shown potential problems with pole-zero cancellation when ana­
lyzing transfer functions in series.

The following MArLAR routines were used:

series:

conv:

parallel:

feedback:

roots:

two models in series (either transfer function or state space)

multiplies two polynOinials

two models in parallel (either transfer function or state space)

two models in feedback form (either transfer function or state
space, and either positive or negative feedback)

find the roots (zeros) of a polynomial

SlMULINK has also been used for block diagram simulation.
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STUDENT EXERCISES

Chap. 11

1. Consider a first-order process that has a positive pole (Ilcgati\c tilne co]]stant). indi­

cating that the process is open-loop ullstahle.

5s +

It is desirable to design a feedback cOTnpcnsatOJ g2(s), so that the feedback systl'rn
is stable. Assume that g2(S) is simply a gain:

A'~(s) J,:,

Find the range of gains that \vill make the following feedback system stable.

u(s)
r(,)-..-~

+
+

,(s)

g (s)
1

y(s)

2. Consider the recycle system shown bclmv, where:

]

g,ls) ~ Is ~ l)(s + IJ.5)

g,ls) c. k

Find the values or II. (if allyl that \vil! ensure stahility of the system. Shmv )'OUT wurk

and explain y'our reasoning.

r(s)
u(s)

g (s)
+ 1

+

- gz (s) r.-
z(s)

y(s)

3. Find the analytical solution for a unit step applied to the following process:

ge,)
(5.1 1)'

4. Consider the recycle system shO\vn belm\', \vhere:
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r(')
u(,)

g (3)
+ 1

+

~ g2(3) I--
Z(3)
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Discuss how the values of k2 and 1'2 effect the dynamic behavior of y with respect to
a unit step input change in r. Use SIMULfNK and show compare plots for various
values or k2 and 1'2 to illustrate your points.
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One purpn-;c or thi" chapter i\ to summari/c the technique'> LhaL ha\c been dnelc)pcd ill
Chapters:) through I I to :-,ol\c lincar ordinary dilfCfl'lltial equation;.,. Since the focus 11:1"
beell on initial \;due problems. \Vc also intrntlucc techniques to soh'C huundary \U]Ul'

()[)I:: problems..Also. since the emphasis has hCl'll on cOlllinoLls (dilTncJltial equatiun

h<lsed) rnodcls. dJlothn objccti\c is to introduce discrete IllDdcls. ,After Slutly'ing tIlis chap­
ter. the student \llOUld he able to:

Lsc till' dl~Haclcri"'lic equation lT1Cl1lOd to \ol\c hound;uy \alut' linear ODE
prublclllS

Select all appropri,l1c technique to sohc a particular linear initial \<.tlucproblcllJ

r:onnulalc lint'ar discrete-time lllodcb

I':stinlalc parameters for linl'ar di~crcte time mo(\eh

The major sections of this chapter art':

12.1 Background

12,2 Linear Boundar) V<lluc Prublcms

12.3 Rc\ic\\ of \kLhods for Linear Initial Value ProlJ!cms

12.-1- lntruduction lo Discrctc~ rime i\lodcls

12.) Parameter J-~sLilllaLioll of Discrete Linear Systems

282



Thus far in this text, all of the problems that we have solved have been initial value ordi­
nary differential equations. '1'0 solve these problems we simply need to know the initial
values of the state variables, and how the inputs change with lime. The models arc then
integrated to find how the states change with time. Ordinary differential equation models
may be constrained to satisfy boundary conditions. Boundary value problems often arise
when solving for the steady-state behavior of a dynamic system modeled by a partial dif~

ferential equation. 'T'ypically, a boundary value prohlem has distance as the independent
variable and the boundary conditions lhat must be satisfied are tbe values of the state vari~

abies at different locations (typically at each "end" of the system).
Recall that in Chapter 11 we required ninitial conditions to solve an nth order ini­

tial value ODE. Similarly, we require n boundary conditions to solve an nth order bound­
ary value ODE. Most chemical processes that can be modeled as second-order boundary
value problems (e.g., the reaction-diffusion equation) arc two-point boundary value prob­
lems. A second-order split boundary value prohlem has a boundary condition at one end
and another boundary condition at the other end. If both boundary conditions were at the
front end, then our problem would be an inital value problem. U' both boundary conditions
were at the rear end, then we would have an initial value problem by simply redefining
the independent vari'lble and forming an initial value problem in the opposite direction.

In this chapter, \ve first cover linear boundary value problems in Section 12.2 and
review methods to solve linear initial value problems in Section 12.3. We provide an in­
troduction to discrete-time models in Section 12.4 and show how to estimate parameters
for discrete-time models in Section 12.5.

12.1 BACKGROUND
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12.2 LINEAR BOUNDARY VALUE PROBLEMS

An analytical solution to boundary value ordinary conditions can be obtained lIsing the
method of characteristics when the ODE and the boundary conditions arc linear. Consider
the following second order ODE

+ aox = 0 ( 12.1)

where £10_ at and 02 arc constant coefficients, _r is the state variable (dependent) and z is
the independent variable (often distance). The solution to (12.1) will have the form

where Al and 11.2 arc obtained by rewriting (12.1) as

(/211.
2

--1-- ((I A + an 0

( 12.2)

( 12.3)

llsing the method discussed in Chapter 6. The constant coefficients (e
J

and ( 2) are ob­
tained [rom the boundary conditions.
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EXAMPLE 12.1 Second-order Soundar)' Value Problem

Consider the following second··order equation:

d)x dx 7
j 4 I x

dz 4
o ( 12.-1.1

subject to the boundary conditions 'II each end;

x(z ~ 0) 2

x(z=-I)=1

We solve for the eigenvalues by using the characteristic equation:

A' + 4 A + : _. 0

which yields (from the quadratic formula):

AI 3.5

A, - 0.5

(lilt! the solution is:

Substituting the boundary conditions results in two equations and two unknowns:

2 = c 1 + c;~

C
j

e:1.S I- (2 eO'S

which yields:

C 1 "" 0.36968

", - 1.63032

A plot of the solution, x:;:;; 0.36968 e -35z + 1.63032 eO.5z, is shown ill figure 12.1.

2

1.8

1.6

1.4

1.2

( 12,))

{ 12,hl

( 12.7)

(J 2.SI

( 12.91

( I 2.]() I

( 12111

(12, J 2)

1
a 0.2 0.4

z

0_6 0_8

FIGURE 12.1 Solution to Example 12.1.
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More generally, the boundary conditions may consist of some function of the state vari­
able and its derivative. The more general linear boundary condition is the form:

dx
", I<"ox=d

dz

EXAMPLE 12.2 Second-Order Boundary Value Problem

Consider the second-order problem from the previolls example;

subject to the new houndary conditions,

dx
+x=1

dz

dx
=0

dz

Since the solution is:

+
7
4 x = 0

al z ,. 0

at z

(124)

(12.13)

(12.14)

then the first derivative with respect to z: is:

( 12.15)

dx
elz

(12.16)

and boundary condition (12.13) yields:

while boundary comlilion (12.14) yields:

3.5 C
j

e --'5 0.5 ('2 CO,') 0

Solving these two equations for c 1 and c2' we obtain the solution:

( 12.17)

(12.IX)

x 0.37394 C 33, I 0.13032 eO" (12.19)
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which is showll ill Figure 12,2.

0.1

o

X; 0.1

-0.2

Linear Systems Summary Chap. 12

0.3
o 0.2 0.4

z

0.6 0.8

FIGURE 12.2 Solution to Example 12.2.

We have illustrated how the method of characteristics is llsed to solve lincar bOllndar)

value problems. 'rhe solution to nonlinear boundary value problems generally in\'llIH':-' it
crativc methods. For example, consider a single second-order nonlinear problem \vitll

boundary conditions at each end. 'We know that the second-order equation can be COI1­

verted to two first-order equations. Typically, one boundary condition will fix an '"inititd
condition" for one of the states. A second initial condition can be iteratively guessed
(lising a Quasi-Newton method, for example) until the equations, when integrated. yield
the correct value for the end boundary condition. This approach is shol,vn in l~xalllpl(' 12.,~

for the linear system considered in l':xamp1e 12.1.

EXAiVlPLE 12.3 Formulating a Boulldal'Y Value Problem as an Itcnttive Initial Valuc ProblcHl

Consider the secolld~ordcrbOllndary valuc problem:

with thc boundary conditions:

x(z ~ 0)

x(z cc 1)

7
x~O

4

2

( 12.-1-1

( 12.5)

(12,61

It can be shown that (sec student exercise I), by defining xl'"" X and '\'2 = dy/d:. the follu\\'il1!!
equations arc obtained:
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( 1220)

(1221 )

and that one of the initial conditions is

X, (2 ~ 0) ~ 2 (12.22)

We sec that -\"2(2"" 0) must be "guessed," then the two equations can he integrated from z:::;:; 0 to
z cz J. The value of x I at z:::;: I is then checked; if x I (2 ;;;:; 1) is not equal to I (within an acceptable
tolerance) then values of .:r2(z ;:;;: 0) arc iteratively guessed until the final value is satisfied. This
method is known as the "shooting method." 'fhe reader is encouraged to llSC this approach to
solve exercise I.

12.3 REVIEW OF METHODS FOR LINEAR INITIAL VALUE PROBLEMS

rn Chilptcrs .5 through II we presented a number of tcchniqtJcs for solving linear initial
value ordinary differential equations. In Chapter 5 we noted that dynamic chemical
process models arc oftcn formulated as a set or first-order, nonlinear differential eqLla~

tions, where the initial values are known. I'bcsc equations have the general fonn:

x= f(x,u)

y ~ g(x,u)

(12.23)

(12.24)

where x is a vector of n state variables, u is a vector of m input variablcs, and y is a vcctor
of r output variables:

.:\:/I = j;Jxj, ... ,X/pll1,···,um)

YI c-~ gj(xl"",xn,uj"",utI/)

12.3.1 Linearization

Elcmcnts of the linearization matrices are dcfincd in tbe following fashion:
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_ rJg'l() .. -
II allj X"II,

Chap. 12

where X,I" H,I" and Y.I, represent the steady-state values of the states, inputs, and outputs,
which solve:

() = f(x"uJ

y, = g(x"uJ

After linearization, we have the state space form:

x' = A x' + B u'

y' = ext + Dn'

where the deviation variable vectors are:

X' = x - x,
II' = U ~ II,

( 12.25)

( 1226)

( 12.27)

(J2.2n

( 12.29)

( 12.10!

Generally, the (') notation is dropped and it is understood that the model is in deviation
variable form:

x=Ax+BII

y=Cx+DII

Once the model is in this form, a number of techniques can be used.

12.3.2 Direction Solution Techniques

3. Solve the zero-input (perturbation in initial conditions) form (Chapter 5):

x(t) = e A
' x(O)

One way the matrix exponential can be solved is

eAI = V eAt V--l

The MATLAB function for matrix exponential is expm.

b. For a constant step input at time zero (Chapter 5):

X(I) = eA'x(O) + (eA'_I) A' B u(O)

(12.31)

(\ 2.32)

(1233)

(12.14 )

(1235!

c. For inputs that are constant over each time step (from t to t + Cit) (Chapter 5):

x(t + !J.I) .~ e A'" X(I) + (CAM - I) Al B lI(t)

which is often written as:

(1216 )
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x(k + I) o. eAM x(k) + (eA
"' - I) A I B u(k)

289

( 12.37)

where k represents the ktll time step_ This represents a discretc~timc model, which is
discussed in more detail in Section 12.4.

12.3.3 Rewrite the State-Space Model as a Single nth Order Ordinary
Differential Equation

a. Solve the homogeneous problem (Chapter 6);

dx
+ ... + (lJ tit + u() J: =--= 0 ( 12.38)

by first writing the characteristic equation:

all All + {In_1 AIl
-

1 + ... + G 1 A + al! = 0 ( 12.39)

and solving for the roots (eigenvalues) of the nih order polynomial. 1f the roots arc
distinct, the solutionis of the form:

( 12.40)

where the coefficients arc found llsing the n initial conditions.

h. Solve the nonhomogeneous problem using the method of undetermined coefficients
(Chapler 6):

dn-Jx dx
J "",,, J + ... + ii, d + ""x = f(1t(t»rt - .f

(12.41)

using 11 three-step procedure,
i. Solve the homogeneous problem to Find:

(12.42)

ii. Solve for the particular solution by determining the coefficients of a trial func­
tion (see Table 6.1, Chapter 6) that satisfy the nonhomogeneous equation:

xl'(t)

iii. Combine the two solutions for:

x(t) ~" Xf/(l) + xl'(t)

(12.43)

( 12.44)

c. Use Laplace transforms to solve the nth order equation (most useful for nonhomo­
geneous equations) (Chapters 7-1 I):

(1245)

which corresponds to the differential equation:
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The more general case is:

which corresponds to the differential equation:

Chap. 12

(12.46)

(12.47)

dllu
= b---- + b

/I dtll II-I

ri"-Iu du
J+ ... +b J +boudt ll -- dt

(12.48)

For physically realizable systems, bll = 0, Onen many of the leading hi terms arc
zero. If the leading r terms in the b polynomial arc zero, then the systcnl is referred
to as relative order r.

12.3.4 Use Laplace Transforms Directly on the State-Space Model

Previously we have assumed that: the state-space model has already been converted to a
single nth order differential equation. We can also transform the set of n firsl-ordcrlincar
state space equations directly using:

Y(.I) = lC (.1'1- A) 1R + DI U(.I) ( 12.49)

Generally, the Laplace transforms technique is used for nonhomogeneolls problems, that
is, systems that have an input forcing function (such as a step).

12.4 INTRODUCTION TO DISCRETE-TIME MODELS

Consider the genera] linear state space model:

or,

XI

([1,,] lX1] Ibl1

. . + .

. . .

{{/Ill _~XJ! _nhlll

x~~Ax+Ru (1231 )

Recall that the single variable equation:
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x-::;:ax+!Ju
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( 12.50)

has the solution:

iJ
X(I) = eal X(O) + (eM - 1) U(O)

({
(12.51 )

when u(t) :::: constant::::: u(O).
In a similar fashion, the solution to (12.31), for a constant input (u(t):::: lI(O» fronl

t= 0 to tis:

where:

and

X(I) c. (I' x(O) + r u(O)

G = (t/>-I) A 'B

( 12.52)

(1253)

( 12.54)

Equation (12.52) can be used to solve for a system where the inputs change from time
step to time step (t to t+6.1) hy using:

X(I + AI) tP x(t) + r u(t)

More often this is written as:

x(kc I) tI' x(k) + "u(k)

where k represents the kth time step. The output at tillie step k is written:

y(k) = C x(k) + D u(k)

( 12.55)

(12.56)

( 1257)

The stability of the discrclcstatc-space model is determined by finding the eigenvalues
of (J>, If the magnitude of all of the eigenvalues is less than I, then the system is stable.

12.4.1 Discrete Transfer Function Models

Continuous time models transfer function models arc characterized by the Laplace tran­
form variable, s. Similarly, for discrete transfer function models, a discrete transform vari­
able, 7., is uscd:

where:

Y(z) c.c G(z) U(z)

G(z) = IC (zl- A) 'n +- DJ

( 12.58)

(12.59)

f,'or the case of a single input""single output system, (;(7.) consists of a numerator and de­
nominator polynomial of the form:

.( ) = bnz
lJ + bl/_Izl( I

g Z Ii. II I
anz + ali jZ +

... + h1z + h"

.. , + alz + a"
( 12.60)
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The transfer function is normally written in terms of the bachvards shUt operator, ;-1.

Multiplying the transfer function by Z'--II/t---II , we find:

+ hoz-n

+ {loZ-n
(1261 )

The backwards shift operator is defined as;

y(k ~ 1) = z' y(z)

so y(k ~- 2) := [l.V(Z), etc. The discrete transfer function notation:

( 12(2)

then represents:

__. b ll -t­
y(z)

-I- ... -I- {'IZ.---n+ 1 f /, Z····f{
" 1(")j 1 . __ 11 t 4.+ ... + {lIZ'-n --f- aoZ

( 12(3)

(an + {l1l_IZ-1 + ... + (ljZ-n+l + ((OZ'-II) Y(2)

(hI] + b ll _12 j + .. - + btZlll1 + buz I!) u(z)

which corresponds to the discrete input/output model:

a"y(k) + a"ly(k ~ 1) + ... -I- (I,y(k" 11) (I"y(k ~ 11 ~ 1)

= ""u(k) -I- h"o,u(k·· 1) -I- ... -I- hlu(k ··11) f h"u(k 11 ~ 1)

( 12(4)

( 12.(5)

Usually we arc solving for y(k+ I), and without loss of generality we call assume all :::; ].

y(k -I- 1) -I- {["ly(k) -I- ... -I- a,y(k ~ n -I- 1) -I- {[oy(k ~ 11)

= "ou(k +1) -I- "o,u(k) -I- ... + ",a(k ~ 11 ~ 1) + "ou(k ~ 11)
( 12(6)

Also, for rnost systems there is not an immediate effect of the input on the output, so
hn ;;;;: O.

The most common discretc~til11cmodel is fin..;t-order:

y(k -I- 1) -I- I/"y(k) ~c hol/(k)

or,

y(k + 1) = I/oy(k) + h"u(k)

which has the transfer function relationship:

( 12671

y(z) = 1
boz- J

+ lloZ-
( 126~)

Physically realizable systems will always have at least a z -I factor (unit time delay) in the

numerator.
A first-order discrete system with N additional units of lime-delay is written

or,

y(k + 1) -I- I/"y(k) = hol/(k ~ N) ( 12N))
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y(k -I I) = -aoy(k) -I boll(k- N)
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which has the transfer function relationship:

EXAMPLE 12.4 Linear Van de Vnssc Reador Model

( 12.70)

Consider a statc-space model from the isothermal chemical reactor module (specifically, the
Van de Vussc reaction);

A = 1- 2.404R
0.R3:n

II 1 7.00001
- 1.11 70

c·~ [0 I[

J) 1~I

o 1
- 2.23Rl

For a sample lillle of 0.1 the discrete Slate-space model is (using (12.52)-( 12.54), or the MAT­
LAB c2d function):

(I) =-0

1'-

r
O.7R63 0 1
0.0661 0.7995

0.6222
1

··0.OR49

and the discrete inpul-outpulmodcl is (using (l2.59), or the MATLAB ss2tL function)

- 0.0751 z I I 0.100 I? '
g(z)~ I '

1 - I.oR57z -I 0.62R6z -

which has poles of 0.7995 and O.7g63 (which have a magnitude less than J, sO the system is sta­
ble). The zero of the numerator polyllOll1iai is 1.3339.

The step responses of the continuous and discrete systems arc compared inr'igure 12.3.
For a sample time orO.?5, the discrete Slate-space model is (using (12.52) -(12.54), or the

MAfLAB c2d function):

(I)
10. [647 o ]
OJ 096 n.1 k66

r 1
2

.
43

[4J
0.1164
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FIGURI'; 12.3 Step respOllse of continous and dis<:rete (0.1::::; 0.1) models.

,old thl~ discrete input-output model is (using (12.59), or the MA"llJ\B ~3E;2tt funClion):

g( z)
0.1564z I

0.3513z

0.240Xz '
,. 0.1I307z

whidl has pole; at 0.1866 and 0.1647, indicating stability. The zero of the numerator polynomial
IS 15199.

A comparisoll of the step responses of the continuous and discrete models is ShO\Vll in

Figure 12.4. Notice that the discrete sample time is too large to capture the "inverse respollse"
hehavior of the continuous systelll.

0.6

05

0.4

S 0.3
0.
S 0.20

0.1

0

-0.1
0 2

time

r-.. continuous
[OdeJt := 0.75

3 4

FIGURE 12.4 S1l'p response of continolls :md discrete (.::\.1::::; 0.75) models.



Sec, 12,5 Parameter Estimation of Discrete~LinearSystems

12.5 PARAMETER ESTIMATION OF DISCRETE LINEAR SYSTEMS

Often when discrete linear models arc developed, they afC based on experimental ,-:y.';[CllJ

responses rather than converting a continuous model to a discrete model. The e~;tillla{ioi1

of parameters for discrete dynamic models is no different than the linear regression ,maly
sis presented in Module J. Please review Module 3 to understand the not:ctioll ,mel ideas
hehind linear regression.

The measured inputs and outputs arc the independent variables, and the dependent
variables arc the outputs. For simplicity, consider the folIowing single inpllt~singlcoutput
model:

y(k) ~ (/,y(k -- 1) ~ (/oy(k ·'·2) + h, lI(k ~ 1) 1 hO/(k ~ 2)

Now, 1'01' the SystClll of N data points we call write:

Y~(I)H

(12.71 )

(IU2)

where,

lY(I).J . ['1'0)1.']
Y~ ellee 0

, ,

y(N) <p(N) ,
[

.. -", I
--: Uo

hi
bo

( 12.73)

<p(k)J [y(k ~ I) y(k ~ 2) lI(k --I) u(k ~ 2)1

'rhc solution to this problem is:

( 12.74)

(12. I';)

_..~~--~._~--~.._~~~- -~..

EXAMPLE 12.5 Parameter Estimation

A unit step input is made to a system at time t::;: 0 (k:;;:; 0). The sample lime is D.I:;;:; 0.75. The step
response data are shown below and plotted in figure (2.5.

k r(k)

o 0
I 0,1564

2 0.45l2

3 11,5513

4 0.5770

5 0.5830
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1'(4)

1'(5)

FIGUREl2.S Step response data (some as l'igurc 12.4).

r

O

.

15fJ4

1
0.4522

0.5513

0.5770

0.5830

The solution is:

y(O)

y(4)

y( ·1)

y(3)

1/(0)

u(4)

1/(-1)]­

11(:)

o
O.15fJ4

0.4522

0.5513

IJ.5770

IJ

o
0.1564

0.4522

0.5513

:::,] [- ~:~~~]~]
hi 0.1564

ho __ 0.2409_

which afC the same parameters that we found for the discrcle transfer function model thal W:lS

converted from the contiullOU\' Illodel with a sample time of 0.75.



References 297

This sirnplc cxample illustrated the step response of a perfectly modeled system (no mea­
surement noise). The approach can also be applied to a systenl with arbitrary inputs and
with noisy measurements. The data was analyzed in a batch fashion, that is, all of the data
were collected before the parameter estimation was performed.

There are other approaches that are useful for estimating model parameters in real
time, often using the model parameters to modify feedback control laws. These ap­
proaches arc beyond the scope of this textbook. The MATLAB System Identification
Toolbox is useful for these types of problems. A good reference is the text hy Ljung.

SUMMARY

There were multiple objectives to this chapter. The first was to introduce analytical solu­
tion techniques for boundary value ordinary differential equations. The second was to
provide a concise review of techniques to solve linear initial value ordinary differential
equations. The final ohjective was to introduce discrete-time modcls and discuss parame­
ter cstimation for these models.

For continuous-time models, the eigenvalues of the state-space model must have
negative real portions for the system to be stable. Equivalently, the poles of the continu~

ous transfer function models must be negative (the eigenvalues of the state-space m(){icl
are equal to the poles of the transfer function model). Analogollsly, the eigcllvalues of the
discrete state-space model mLlst have a magnilUde less than one to be stable. Also, the
poles of a discrete transfer function model must have magnitudes less than one to be
stable.

Continuolls-timc input/olltput (transfer function) models with zeros that arc positive
exhibit inverse response. Similarly, discrete transfer function models with /,cros that have
a magnitudc greater than one (yet have a negative real portion) exhihit inverse response.
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STUDENT EXERCISES

Chap. 12

1. Consider the following second-order boundary value problem:

J!x 4 dx 7
0

dz 2 + +
4

x .-

tlz
where:

x(z 0) = 2

x(z = 1)

Show that, by defining x I ::::; x and -1:2::::: dx/dz., the following equations arc obtained:

dx,/dz cc x2

7
dx,/dz = ~ x, ~ 4x2.. 4

and that one of the intial conditions is:

We see that x2(;: = 0) must he "guessed," then the two equations can be integrated
(using ode4 ~j) from? :::: 0 to ? :::: I. The value of x I at z ::::: 1 is then checked: if
xIV:::: I) is not equal to J (within an acceptable tolerance) then value,,> ofx2L~ :::;: 0)

arc iteratively guessed until the final value is satisfied. This method is known as the
"shootingmclhod". Usc [zero to solve for the initial condition that satisfies the
end boundary value.

2. Consider the reaction/dispersion equation

let:

ac;\
iJl

CA

C'AO
= dimensionless concentration

and:

define:

and:

y

'T -:::

p =
"

D
II

z
I,

D.,/{
I}

/),,/

k /,'

J),l7

= dimensionless axial distance

dimensionless time

Peclct Illllnber

--- Damkohler number

to show that:
ilC ilC

PI' +
ay

(1221



Student Exercises 299

and:

f"ind the dirncnsionlcss form of the Danckwerts boundary conditions at steady-state:

dC" (L) = 0
dz

u. Perform steadY-Slate calculations (analytically) using lhe Danekwerts boundary
conditions for:

i. P(':::;I, D
II

::;:;:; I, 10, 25 (compare on same plot)
ii. 1',.= IO,Do = I, 10,25, 100 (compare on samcplol)
iii. Pe = 25, D(/ :::: I, 10,25, 100 (compare 011 same plot)
iv. 1',. = 100, Do = I, 10,25,100 (comparc on same plot)

3. Consider the following continuous state-space model:

1

-3.6237
A 0' . 0.8333

I.
5.50511Ii=

-- 1.2660

C ..= [0 II

D = 0

o )
- 2.9588

a. Find the continuous transfer function model.
b. For a sample time of 0.25, find the discrete state-space and transfer function

models.
c. Compare the step responses of the continuous and discrete 11lOdcls. What do you

observe'!

4. Consider a unit step change made at k:::: 0, resulting in the output response shown in
the plot and table below.

1.2 o c.;---
o 0

o
o o

o 0 0 0 o 0 o 0

0.8

'5
-50,6 0

0

0.4
0

02
0

0
0

o

_._.L _

20
------.-1- L

40 60
sample time

80 100
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k 0 I 2 3 4 5 6 7 8 9 10 II

Y 0 0.1044 0.3403 0.6105 0.8494 1.0234 1.1244 1.1616 1.1531 1.1184 1.0746 I.OJ3h

k 12 13 14 15 16 17 18 19 20

y 1.0023 0.9828 0.9744 0.9742 0.9790 0.9860 0.9929 0.9985 1.0022

Estimate the parameters for a discrete linear model with the fonn:

-f- boz--- 2

- ({oZ2


