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LINEAR SYSTEMS ANALYSIS




LINEARIZATION OF
NONLINEAR MODELS:
THE STATE-SPACE
FORMULATION

Many dynamic chemical processes are modeled by a set of nonlinear, lirst-order differen-
tial equations that generally arise from material and energy balances around the system.
Common analysis techniques are based on linear systems theory and require a sfate-space
model. Also, most control system design techniques are based on linear models, The pur-
pose of this chapter is 1o provide an introduction to state-space models and linearization
of nonlinear systems. After studying this chapter the reader should be able to:

* Write 4 linear model in state-space forrm.

* Linearize a nonlinear model and place in state-space form.

* Use the MATLAB eig function to analyze the stability of a state-space model.

*+ Develop the analytical solution of state-space models.

* Understand stability and transient response characterstics as a function of the
eigenvalues.

*+ Understand the rmportance of initiad condilion “direction”.

* Be able to use the MATLARB routines step and initial for simulation of state-
space models.

The major sections in this chapter are:

5.1  State-Space Models

5.2 Linearization of Nonlinear Models

5.3  Geometrical [nterpretation of Linearization
5.4 Solution of the Zero-Input Form

5.5 Solution of the General State-Space Form
5.6 MATLAB Routines step and initial
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5.1 STATE-SPACE MODELS

Thus far in this text we have discussed dynamic modcls of the general form:

=
=

% = f(x,u) (5.

where f(x,u) is, in general, a nonlinear function vector.

A linear model is a subset of the more general modeling equation (5.13. The form of
linear madet that we discuss in this chapter is known as a state-space model. First. we
show how to write state-space models for systems that are inherently linear. Then, we
show how to approximate nonlinear systems with linear models.

Ixample 5.1 illustrates the form of a state-space model.

EXAMPLE 5.1 Noninteracting Tanks
Consider two tanks in series where the flow out of the first tank caters the second rank (Fig-
are 5.1). Our objective is to devefop a model 1o describe how the height of Tiquid in tank 2
changes with time, given the input flowrate 7 (). We assume that the flow out of each tank ix 2
linear function of the height of Tiquid in the tank.

F

o b

FIGURE 5.1  Noninteracting tanks.

A material balance around the {urst tank yields (assuming constunt density and I, = 5 4)

diy  F, B ;

(52
di A A

where A4, is the constant cross-sectional area (parameter), [3y is the flow coellicient (parameter).
£ is the flowrate into the tank (input}, and 2 is the tank height (state).
Writing a material balance around the second tank (since Iy = Bafty)
! Y 2
dhy By Bay
dt A, Ay
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where A, is the constant cross-sectional area for tank 2 (parameter), B, is the flow coefficient
(parameter), £ is the flowrate into the taik, and h, s the tank height (state). In this case, Fis
not an independent input variable that can be manipulated, since F\ =Bk, We can write the
previous equation as

By
22 Py
A, A

B A, (5.3)
2

Notice that we can write (5.2) and (5.3) in the foHowing matrix form:

- - B 0| 3
f.'u’ = [hi Mk O
i By -B|ln 0
Az Az
which has the general form:
where:
"By 1
Ao A,
A=1 . and B =
B B 0
-.}‘2 AZ

The state and input vectors are (notice that the input is a scalar):

_ {hi
* hy.

The additional equation that is normally associated with a state space model js

and u=F

o

y=Cx+Pu {5.6)

where y is a vector of output variables. Generatly, output variables are variables that can be mea-
sored (at least conceptually) or are of particutar interest in a simulation study. Here, we will con-
sider the case where both tank heights are outputs. Let output 1 be the first tank height and out-
put 2 be the second tank height

yi=h
Y=y

The matrix-vector form is:

~ftolini_ -
Y lo thJ ©x

where:

R
C= L) z‘
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1f we also consider the input, £, to be the third ouiput variable, we have the following relation-

shipr )
T 0
y=10 1
0 0

which is the form of (5.6), with -
I 0
C=10 1
0

Linearization of Nonlinear Models: The State-Space Formulation

and D =

Chap.

L£.]

0
0

5.5.1 Generai Form of State Space Models

Example 5.1 illustrated a specific case of a state-space model. In general, a state-space

model has the following Torm:

dx,

ar =apx tapx o b, x E by b by o
dt

dx, ]

df_ =d,n0 + Uya Xy + ..t Xy + lbnl Hy +oF hnm lyy,
y, =k F e o bayx, tdya o+ d
Y T €n Xy + Cﬂ R ot Con X + dr? [-i'-] +o d'm i

which has » state variables (x), m input variables () and r output variables (y). This reta-
tionship is normally written in the matrix form:

A1 dy dp a4 A1

= +
xn# s a’n? Uy "'(n
K1 i iz Cyy 1| ¥

= Niy
yr_ L. Crl Co Con L Xn

I
by by b, || )
b il bn’i b i — Hm
dy  dy di |

drl dr? (lrm L,
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which has the general (state-space} form:
x=Ax+Bu

5.
y=Cx +Du 67

where the dot over a state variable indicates the derivative with respect 1o tirme. As shown
in Section 5.4, the eigenvalues ol the Jacobian matrix (A) determine the stability of the
system of equations and the “speed” of response.

The a;; coeflicient relates state variable j to the rate of change of state variable /. Simi-
larly, the b,; coelficient relates input / to the rate of change of state variable i. Also, ¢y relates
state f to output £, while d;; relates input j to owtput i. We can also say that the kth row of C
relates all states to the kth output, while the kth column of C relates state k to all outputs.

In this section we have shown how 1o write modeling equations that are naturally
linear in the state-space form. In the next section we show how to lincarize nonlinear
models and write them in the state-space form. Linear models are easier to analyze for
stability and expected dynamic behavior,

5.2 LINEARIZATION OF NONLINEAR MODELS

Most chemical process models are nonlinear, but they are often linearized 1o perform a
stahility analysis. Linear models are easier to understand (than nonlinear models) and are
necessary {or most control system design methods.

Before we generalize our results, we will illustrate linearization for a single variable
problen.

5.2.1 Single Variable Example
A general single variable nonlinear model is:
) (5.8)
-=flx 5.
dt
The tunction of a single variable, flx), can be approximated by a truncated Taylor series
approximation around the steady-state operating point (x,):
af I a*f

1) = ) + | )+ 52

£ —x)* + higher order terms (5.9
Lan 2 dx ( X&) & ¢ -9}

X,

Neglecting the quadratic and higher order terms, we obtain;

=)+ Ly (5.10)
Note that:
dx, e —
T fAx)=10 {5.11)
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by definition of a stcady-staie, so:

af

x

dy

= flx) == (v —x,.) (5.12)
\\
where the notation af‘/a\ is used 1o indicate the partial derivative of f{x) with respect to v,
evaluated ai the steady- state. Since the derivative of a constant €x,) 18 zero, we can write:

de d{x - :\':‘)_

(5.13)
cdt ddt

which leads o;

K — (514
el (r - x)

('i.’(,\‘ - 1‘) " (}f E

The reason for using the expression above 15 that we are often interested in deviations i a
state from a steady-state opel'zlting point, Sometimes the ” symbol is used 1o represent de-
viation variables, 8 = x - x_ We can sce that a deviation varjable represents the change
or perlurbation {Ll(.,\f’ldll(]l}) imm a steady-state value,

oy f .
= y (5.13)
f[nr Ay
This can be writlen in state-space Lorm:
dx’ , -
e X (5.10)
dt

where a = dffdex,.
We have shown how to linearize a single variable equation. Nexl, we consider
system with one state and one input,

5.2.2 One State Variable and One Input Variable

Similarly, consider a function with one state variable and one input variable

. dx
£ = fay (5.7

Using a Taylor Series Expansion [or f(x,u):

. af af
¥ = fx ) A -* X—x)+ - o=
feepan) ¥ 5 ’ PR R BTN
1 a*f &°f 1 a8 -
t k K x )k Y —xu—-u)+ - - I
2 r"’.\'2 Apely ( '\) axdou *, ( \)( "\) 2 fJUz XY ( \}

+ higher order terms
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and truncating after the linear terims, we have:

S N . L
X = flx u) P ‘-".--“: (x—x,) 4 a“t . {0 —1) {5.18)

and realizing that fiv ) = O and dv/di = dx — x Wdr

do=x) U Ly Y

di A [, o

(u—u)
7,

X

Using deviation variables, »" =y —x and ¢ = u — -

dx’ af af
R f X'+ [ i
ot ax | i ] xou,
which can be written:
!
-=ax by (5.1
dr

where a = dffdvy, and b = aj/"f)u%x.\.,u_“

It there 1s a single output that is a Tunction of the states and inputs, then:
v o= gl (5.2

Again, performing a Taylor series expunsion and truncating the quadratic and higher
terms:

.
gl =gl + 0
: Jx

-
{v—x)+ (}’ t
i, (¢

1 — 1 5.21
L (e — 1) { )

v X

Since glx, 1) is simply the stcady-state value of the outpuat (v,), we can wrilc:

Y g
yoglon) + 0| ey
o dx ) '

g e — 1) (5.2
LR ot A

v,

Or

Y-y

b

=c{x—x)+d@—u)

where ¢ = dg/dv , and d =dg/ou
Syl BRI

Using deviation notation:
v ex Fdu (5.23)

Example 5.2 tllustrates the application of linearization {0 a one-input, one-state nonlinear
System.
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EXAMPLE 3.2 Consider a Nonlinear Tank Height Problem

dh F B ; _—
o AR2 (3.24)

ddt A A
where A s the stute variable, Fas the imput variable, 3 and A are parameters. The righthand side is:

Fopo
JULFY = W i Wi

Using u fruncated Tavior series expanston, we find:

‘i"‘ B
A A

| P

MR

JUREY A

3 h\.[ - b 15.2%
The first term on the righthand side 15 zero. because the linearization is about a sleady-state
point. That is.

dh F [3
-z - Nk (}
dt |t A A '
We can now wiie:
L 3 i
B R U N P
de QAN ' A '

and using deviation variable notation ¢4 =/ — A and 17 = F - f ) and dropping the =

dft B R
> —_ BRI h H .. 1
dt QAN B A
For convenience (sinplicily in notation) we often drop the () notgtion and assume that xand #
are deviation variables (v=h — how = F - Py and write:

oy 3 S (5.26)
= PTERTE SR 5260
i 2AN T, A
which is in the state-space form
oy ~
oo ax + b 15.27)
i

5.2.3 Linearization of Multistate Models

The previeus examples showed how Lo linearize singie-state variable systems. In this sec-
on we generalize the technique for any number of states, Before we generalize the tech-
nigue. it is worthwhile 1o consider an example system with two states, ene input and one
output.
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EXAMPLE 5.3  Two-state System

. dx .
A R (5.28)
i dx, .
Y= Flxpxg.u) (5.29)
y o= gl n,,u) (5.30)

Performing a Taylor series expansion of the nonlinear functions, and negleciing the quadratic
and higher terms:

o
Ll = i) + % (= x)

{L\'l RITa LY
af. af, .
+ - h (x, —x) + =L (1 - ) + higher order terms
0y |ty TR RN ’
. af;
Sl 0 = fHlraou,) 4 N (¥~ x3,)
{75 SN IR
af af )
+ - il (x, — xp,) + ]2 {1 — u,} '+ higher order terims
(}){,2 XXl - e |, :
) af
g(xlfr?,v”) - g(xlsv'x?.wu.‘.‘) + . _' 3 ("Ci 7x|a')
f}_ll F U
g dy .
foo Xy — Xy ) o # —u ) + higher order terms
(}.\’2 -"lu‘(:‘v“.( 2 2‘) i -‘iw".’v”r( A) E

From the linearization about the steady-state:
jl(x]\"xh""s) = .f?(‘xlwxh’ui) =0
and:
g(xl.r*xh"ux) = Y

Since the derivative of a constant is zero:

do _dn-x) o ody dln - x)

P -

ddt i dt dt

we can write the state-space model:

O

Xy Xy e, dx

RITAN -
== Xy — Xy

B R T

ey | [0

Is oxy

RPN




114 Linearization of Nonlinear Models: The State-Space Formulation Chap. 5

(L1 R
IR IR
d!:
[T — (5.340
Lot Lo
og g g YT
Vo v | : i j
axy s dny el - x,

dg
e

A
o
(]

l [ ]
[P

which is the form of a state-space modei:

oA By
y'o= Cx + Du'

where (73 indicates deviation variables.

5.2.4 Generalization

Now consider the gencral nonlinear model where X s a vector of n state variables, uis 4
veetor of 72 input variables and ¥ is 4 vector of youtpul variables:

%, = S
X, = 5ottt it
¥, 7 g e N )
¥ (Nt )

In vector notation:
x = f{xu) (5.33)
¥ o (X, (534

Elements of the lincarization matrices are defined in the following fashion:

af
o (3.35)
I -
' (j,\"i s

af.
g = (53600
f .

(}HJ TS
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. dg,
C,=- (5.37)
k (J)Cj ST
dg; .
D, = (5.38)
duj ERUN

After linearization, we have the state-space form:
x'=Ax +Bu’
y = Cx'"+BPu

Generadly, the () notation is dropped and it is understood that the model is in deviation
variable form:

x=Ax+Bu

y=Cx+Du

Usually, the imeasured {output) variable is not a direct function of the input variable, so i
is more common to see the following state-space model;

x=Ax+ Bu
y = Cx

This procedure is applied in Example 5.4,

EXAMPLE 5.4 Interacting Tanks

Consider the interacting tank height problem shown in Figure 5.2:

Fi

FIGURE 5.2 Interacting ianks.

Assume that the flowrate out of ganks is a nonlinear function of tank height. The Howrate out of
tank one is a function of the difference in levels between tank | and tank 2.
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dh

o EENR D
ot A o

) . F
= fi(h 0, F) = Al

(”1 . ‘3 - T Bz
7{{2 = fz(hl,hz,f‘) = Ai Wzl -y - A; \/112

Also, assume that only the second fank height is measured. The output, in deviation variable
form is
vy o=y by

Notice that there are two state variables, one input variable, and one output variable.
Let
hy,
— 1s
h,i = [}12!.’

41‘]- — vl'li — hh,_
Xy 7}11 ~ Iy,

e=F-F

X =

The elements of the A (Tacobian) and B matrices ((5.35) and (5.36)) are:

Al = £in D — Bl S
RV T 24, Vi, -~ Ry,
ify
Ay = == o
Y Ak, |t (2%
A Jj}_ [ ‘Bl, -
N gk e 24VR - By
A=l o B B
2 ahy (b 2A,Vh, ~ by, 24,Vhy,
af| 1
2= P
B e~ A |
iy
B = g o~

Since only the height of the second fank is measured, y = gy By = By — By (from (5.37)):

. dag
C, = =}
ol |na,
2
12 E)hz hn,

and the state-space model is:
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ST B
d.;c L 2ANH L 2AHRL, < h, ‘
dr -
T LB BB j
d;t) 240, = hoy 282k — s 2
¢
I
+ 1A | ¢
0
X
RIS
y=lo1] |4"2,
where:
y =X, =k, — by,

{n this section we have shown how to linearize a nonlinear process model and put it in
state-space form. The states in this model are in deviation (perturbation} variable form;
that is, the states are perturbations from a nominal steady-state. A state-space model pro-
vides a good approximation (o (he physical system when the operating point is “close” to
the lingarization point (nominal steady-state).

5.3 INTERPRETATION OF LINEARIZATION

In Section 5.2 we illustrated the method of lincarization of models into stale-space form.
The objective of this section is to illustrate what is meant by lnearization ol a function.
Consider the single tank height problem, which has the following model:
dh i F p - _
------ = fihF) = — "Nk (5.39
dt A A
for a system with A = 1 {12, i, =5 fLand B = 1/V'S £i25/min the steady-state flowrate is
F, = 1 [t}/min. To focus our analysis on the meaning ol the linearization with respect to
the stale variable, consider the case where the input is congtant. Then, from (5.39) and the
given parameter values:

. 1
FiURA I N Vi (5.40)
performing the linearization:

af
fOLE) = flhoF) + o0 (h~h)
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14
nonfineay
0.5
= linear
R
0l
-0.5 .
0

X

FIGURE 5.3 Basic idea ol linearization. The linear approximation is
exact for the steady-state value of v = 5.

for our parameter values

fIF)Y =04 S Vi (1)

or
o 1
fARF)y=0——(h—h)
’ ’ (0
— nonlinear
»=== lingar
&
e e e o
R
€
z 4
-
f‘"
.t’
0 ,,,,, e 1L . S 1 A1
0 10 20 30 40 50

time, min

FIGURE 5.4 Comparison of lingar and nonlinear responses for two different
midial conditions.

Chap. &
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We can see how good the linear approximation is by plotting both the nonlinear function
(5.40} and the Hinear function (5.4 1), as shown in Figure 5.3 on p. 118. Here we have used
x to represend tank height and Ax) to represent the nonlinear and linear functions. Notice
that the linear approximation works well between roughly 3.5 to 7 feet. Of course, the two
[unctions are cxactly equal at the steady-state value of 5 feet, which was the point at
which the Taylor series expansion was performed. Realize that f{x) is dv/dr, which is the
rate of change of tank height. It makes sense that the rate of change is positive al a tank
height less than 5 feet, because the system “sceks” to achieve a steady-state level of
3 Teet. Similarty, Tor a tank height greater that 5 Teet, the rate of change of tank height is
negative, because the level “desires™ 1o decrease o 5 feet. We can also see that the linear
system will be slower than the nonlinear system, if the tank height is less that 5 feet, but
witl be faster if the height is greater than 5 feet, as shown in Figure 5.4

54 SOLUTION OF THE ZERO-INPUT FORM

We have previously written the general state space model in the following form:
x=Ax+Bu

where X and w are deviation vartable vectors for the states and inputs, respectively. In this

section we assume that the inputs are held constant at their steady-state values, but that

the states may be initially perturbed {rom steady-state. The “zero-input™ form of the state

space model is then:

Xy ay .y, X

X, {ty an?. . aml "tn

o1
X = Ax (5.42)

This Torm is used to analyze the stability of a system and to understand the dynamic be-
havior of a system that has had its states perturbed from the steady-state values.
Recall that the single variable equation:

has the solution:
x(ry = e x(0)
which ig stable if ¢ <2 (. Tn a similar fashion, the solution 0 (5.42) is
x(f) = " x(0) (5.43)

and the sofution (o (5.43) is stable if alt of the eigenvaltues of A are less than zero, The re-
sponsc of (5.43) ts oscillatory if the eigenvalues are complex.
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There are many different ways to calculate the exponential of a matrix; in this chap-
ter we discuss only the similarity transform method.

Recall that the eigenvector/eigenvalue problem is written (see Module 2 for a ye-
view):

AV =VA (5.44)
Fora 2X2 A matrix we have the following eigenvector matrix:
T bV Vi
V o [zl EZ} o _""‘?,] \,‘22-’ {545)

1

where &, :' v“ )x first eigenvector (associated with A )
21 :

e
N [1’22

and the following eigenvalue matrix:

= second eigenvector (associated with A,)

A 0
A= I 0 A (5.46)
Multiplying (5.44) on the right side by V-1 we find:
A=VAV (5.47)
multiplying by the scalar # and taking the matrix exponential, we find:
A=V My (5.48)
where et = o g (5.49
O M o

and we see immediately why A; < 0 is required for a stable solution. The solution for x{7) i
x(t) = Ve VT x(0) (5.50)

An jnteresting resule is that an initial condition vector in the same direction as §; has a re-
sponse in the direction of € with & “speed or response™ of A, This is shown by the foHow-
ing analysis.

5.4.1 Effect of Initial Condition Direction {(Use of Similarity Transform)

Recall that we are solving the following model
X=Ax (5.42)
Define a new vector z, such that

XxX=Vg (5.51)
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oF
z=V'x
and notice that (from (5.51)):
x=V 1z
Substituting (5.53) and (5.51) into (5.42):
Vi=AVz
or, left multiplying by v—!
i=V'AVz
But, from (544 AV=V A
S0 We can write:
VAV =A
which yields {(from {5.55) and (5.56)):
7=Az

But A is a diagonal matrix (see (5.46)), so we have:

BRI

Notice that (5.58) represents two independent equations:

23
5

7 = Az
5= M2,
which have the solutions:
4 = 2, (0)
25(1) = (0} &

o ol20)

(1) = M z{(0)

Notice that, if the z(0) vector has the form:

and we can write:

[zl(f)' _

G

or

0= [1]

ESCOLA DE ENGENHARIA
BIBLIOTECA
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(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

{3.59)
(5.60)

5.60)
(5.62)

(5.63)

(5.04)

(5.65)
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then:
20y o
(1) = { ](‘0)( (5.66)
and, if the z{() vector has the form:
0
#H0) =1 () (5.67)
then,
(£) 1 v t (5.68)
zZ(t) = 5.6
_ZQ(())(’.’\J ¢

P will yield a “speed of response” associated with

that 1s. initial conditions of z(() = ["-““’é

[0

Ay, while initial conditions of 2(0) = ‘ o

Ay

l will vield a “speed of response”™ associated with

This means that state variable initial conditions in the “dircction™ of the first eigen-
vector will have a speed or response associated with the first eigenvalue:

[31("‘)-
za(1)

_ @] ez )t
X(f) - IVX')(T)‘l - lt‘lﬂzl((])e‘\llt]

vy v
Yy Vn

0

_ l PV

ty U

x(r) = V() = ‘ 7{Me wfl

(5.69}

and state variable initial condigons in the “direction”™ of the second eigenvector will have
a speed or response associated with the second eigenvalue

. ‘ e el o] ey e 0
x(n) = Valt) = ["f‘m 1‘:2’_27“) T || sl
(5.70)
x£,(0 (‘Uwzq(())ek"
{ = - T
X( ) ‘,\’2(1) ”2232(_())(’)\\!,,

Knowing the effect of the initial condition “direction”™ 1s important. Il a random case
study approach was taken, then we might arbitravily select initial conditions that were
“fast.” while other fmissed) mitial conditions could cause & much slower response,

We will show two examples of the effect of initial condition: Example 5.5, where
the system is stable, and Example 5.6, where the system is unstable.
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-
EXAMPLE 5.5 A Stable System

Consider the following system of cquations

X, = ~0.5x + 1 (5.71)
X, = ~2x, (577
Using standard state-space notation
X=Ax (5.42)
The Jacobian matrix is
05 1]
A= l {5.73)
0 -2

the eigenvalues are the solution to det(A\I — A) = 0, which yields

dc{(P Fo5 J) S OS5+ 2) =0

0 x+2
80
A= 05 M= -2
and the eigenvectors are
V] . [ -0s547
&= l_o_ &~ [ 0.8321

Note that & is the “slow” subspace, since it coresponds to A = —(1.5 andt &, is the “fast” sub-
space, since it cotresponds to A, =—2.
The numerical values of (5.50) for this problem are

x(r) = VM v x(0)

1 ~0.5547 |[e* 0 ] 1 0.6667"
1) = 0 574
x(1) [u 08321 | 0 e |lo 12010 ¥® (3.79)
I the initial condition is in the direction of &, that is
-\
0) = 3.75
x(0) [OJ (5.75)

we find the following state solution (from (5.74) and {(5.75)):

3 i J—U.SI
x(1) = [ ¢ 0 ] {5.76)

If the initial condition is in the direction of &), that is,

~0.5547 ] 597)

x(0) = ‘ 0.8321




124 Linearization of Nontinear Modeis: The State-Space Formulation Chap. b
we find the following state solution (from (5.74) and (5.77):

—0.5547 7"

N e _ 5.78
x(0) ‘ 08321 ¢ -7

Note that x(0) = &= m is the slow initial condition and x(0) = &, = [‘(’.;?j‘ ] is the fast
initial condition, as shown in Figures 5.4 and 5.5. The initial conditions in the fast subspace have
reached the steady-state in roughly 2.5 minutes (Figure 5/5), while the initial conditions in the
slow subspace are roughly 75% complete in 2.5 minutes (Figure 5.6).

1
G5} Xy 4
X0
Xz
slow subspace
054 © -
X =
0
-1
o 1 2 3 4 5

tme

FIGURE 55 Transient response for mitial condition in the slow
subspace.

The expm (matrix exponential) function from MATLAB can be used to verify these simula-
tions. Using 1 = 0.5 and the fast initial condition, we find

»a = [-0.5%, 1; 0,-2]);
»¥ = expm{a*Q.5)*{-0.55%47 ; 0.8321]
XN =

—.2040

0.3061
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which agrees with the plot shown in Figure 5.6.

1
X
0.5F N\ & 4
X Op
/’— fagt subspace
. X4 - .
3.5 %(0) = 0.5547
0.8321
-1
0 1 2 3 4 5

time

FIGURE 5.6 Transient response [or initial condition in the fast
subspace.
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The previous example was a stable system. The next example is an unstable system,

EXAMPLE 5.6 An Unstable System (Saddle)
Consider the following system of equations:
X =2x + x5,

Xy =24 -,

The Jacobian maftrix is A = ,2) N l] I
the eigenvalues are -
Moo= L5616 A, = 25616
and the cigenvectors are
£ = ‘ (_).27_03‘ £ = '().g?lﬂ
| —0.9628 0.4896

since Ay <0, | is a stable subspace; since A, > 0, &, & an unstable subspace.
The solution for this system is:

[ 02703 08719
o= [

_ 0
—0.9628 (14896 x(0)

(o 13016 0 [0.5038  —0.8972
0 0N 00507 0.2782

If the initial condition is in the direction of &, that is:
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02703 |

(0) =
x() ’ - (LU62E

we find the tollowing stute solution

- (L9628 i

(.2703 ¢t I

K1) = ‘

which is g stable solution. s shown in Figuee 5.7,

a5
\33 3table subipace
0 _‘“—“w_v_j—____
e
. /
. 3
osl X(0) = 0 279 )
X, - 0.9628
-1
0 1 2 3 4
wme

FIGURE 5.7 Initial condition in the stable subspuce.

11 the mitial condition i in the direction of £, that is,

LRl
() = 08714
o 0.4%96
we find the following state solution:
x(1) = QRTIG o el
T | oaxeg e

which is an unstable sotution. as shown in Freure 58,

10 : . -
81 unstable subspace |
0 0.8719
& Q) =
< © 04896 X, ’

0 0.2 0.4 0.6 0.8 1

FIGURE 5.8 Initial condition in the unstahle subspace.

LU should be noted that if the inigal condition is not cxecty in the stable subspace. the solution
will bewin o diverge and become unstable. That is. il the initial condition s off by, say 10
the response will eventuadly become unbounded.
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5.5 SOLUTION OF THE GENERAL STATE-SPACE FORM

Now, consider the general Form:

1 T LT P | by by by i
-+
X . Ly . Uy Xy ---bul bn?, N lbmn— L
or
x=Ax+ Bu (5.7%

Recall that the single variable cquation:
Y=ax+ bu (5.80)
has the solution:
X)) = ¢ 1{0) 1 (¢ - '1)3 w(0) (5.81)
when u{r) = constant = u(()).

In a similar fashion, the solution o (5.79), for a constant input (af) = u(0)) from
t=010fls

x(1) = P x(0) + Qu(0) (5.82)

where
P = o (5.83)
and Q=((P-DA'B (5.84)

Equation (5.82) can be used to solve for a system where the inputs change from time step
to thne step by using:

x(t + Ay = Px{(r} + Qu(r) (5.85)
More often this is wrilten as
x(k -+ 1) = Px{(k} + Qu(k) (5.80)

where & represents the kth time step. Oflen a general purpose numerical integration tech-
nigue {such as onc presented in Chapter 4) will be used to solve (5.79).

5.6 MATLAB ROUTINES step AND initial

We show the use of step and initial by way of the following example.
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EXAMPLE 5.7 A Linearized Bioreactor Model
Consider the following linearizes form of a bioreactor model with substrate inhibition kinetics
(see Module 8 for details):

xX=Ax+t Bu

y=Cx+Dn

where:

A= 0 0.9056
— (17500 -~ 2.5640
— 2

B - |.53g>m

38255

¢ o
0 1]

Iy = r_)l
0

Enter the state space model:

» a = [0, 0.9056:-0.7500,-2.5640}

a o=
3 0.9056
-0.7500 -2.5640

» b= [~1.5302;3.8255)

-1.5302
3.8255

= ¢ = [1, 0 ; 1 , 0]

wod o= [0 0]
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Check the stability
» elidgl(a)
ang =
-0.3000
~2.2640

The system is stable,
Assume the process is initiatly at steady-state. Since this model is in deviation variable
form, the initial condition is the zero vector.

5.6.1 The MATLAB step Function
The MATLAB step lunction assumes a deviation variable form {the initial conditions
are zero). The commands are;

» [y, x, ] = gstepla,b,c.d,1);
» plot(t,y)

~which yields the plot shown in Figure 5.9.
Notice that the step function automatically determined the length of the time vee-
tor. You may also provide an equal-spaced time vector and use the following command

[y.x] = stepla,b,c,d,1,t)
5.6.2 The MATLAB initial Function

The MATILLAB initial function assumes a deviation variable form, with the initial
conditions perturbed from zero. The commands are:

151}
Ya
1 .
> 05
0
05 \ ¥
0 0.5 1 1.5 2
t

FIGURE 5.9 Plot of outputs, for a step input change.
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» [y,%x,t] = initialfa,b,c.d,1};
= plot{t,y)

Notice that the b and d matrices are not really used by the initial function, since it is as-
sumed that there is no input change.

SUMMARY

In this chapter we have developed a state-space model of a chemical process that is in-
herently linear {e.g.. the tank height cxample). We have also shown how o linearize
models that are nonlincar. The models obtained in this fashion are based on deviaiion
variables, that is, the states and mputs are pertirbations from the steady-state operating
point where the linearization is performed. The stability of a nonlinear system is deter-
mined from the cigenvalues of the Jacobian matrix in the lincarized model (state-space
form).
Several important concepts were presented in this chapler,

» For unforced systems (zero input). the initial condition vector will determine the
“speed” of response. For stable systems (all A <0 0, the eigenvector assoctated with
the largest magnitude N is the fast direction, while the eigenvector associated with
the smallest A s the slow direction.

+ Although il is possible for a system with both negative (stable) and positive (unsta-
ble} eigenvalues to have stable behavior if the initial condition is n the stable sub-
space, this is impaossible in practice. Any perturbation from the stuble trajectory will
cause the solution to become vnbounded (unstable).

The MATLAB routines that were ased include:

expm: Matrix exponential

step: Step response of a state-space (or transfer functiony model

State-space models can be transtformed to Laplace transfer function form, which 1s
particularly useful for control system design. Applications of Laplace transforms will be
presented in Chapters 7 through 10,

Eigenvectorfeigenvalue analysis will be usefu} in performing phase-plane analysis,
which is covered in Chapter 13,

The reader should understand the following terms:

state-space
Tacobian
deviation or perturbation variable

eigenvalue
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eigenveclor
linearization
stability
Taylor series

FURTHER READING

Linearization is discussed brietly in most books on process control, including:

Luyben, W.L. (1990}, Process Modeling, Simulation and Control for Chemical Eun-
pineers, 2nd Ed., New York: McGraw-Hill,

Marlin, T.E. (1995). Process Control. Designing Processes and Condrol Systems for

Dynamtic Performance, New York: McGraw-Hill.

Ogunnaike, B.A. and W. H. Ray (1994). Process Dynamics, Modeling and Control,
New York: Oxford University Press.

Seborg, DE., T.F. FEdgar, and D.A. Mellichamp (1989). Process Dynamics and
Control, New York: Wiley.

Stephanopoulos, G, (1984). Chemical Process Control: An Introduction 1o Theory
and Practice, Englewood Cliffs, NJ: Prentice-Hall.

STUDENT EXERCISES

As a process development engineer you are working on a process with three
continuous-stirred-tank reactors (CSTRs) i series. A constant volwmetric Aowrale
{flowrate does not vary with time) is maintained throughout the system, however the
volume i each reactor is different (but constant). Since the temperature varies from
reactor to reactor (hut is constand i an individoal reactor) the reaction rate parame-
ter is different for each reactor. The molar concemtration of the inlet streany varies.

Assume that the density of the streams remalins constant (independent of can-
cenlration). The reaction is a first-order (irreversible) decomposition (A --> B).
Molar rate of decomposttion of A {per unif volume) = k CA
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a. Write the 3 dynamic model equations.
b. Wrile the state-space model o(X) = A x + B u
¢. The values of the parameters and variables are
F=1femin C, = | IbmolAt?
V= 1000V, =1t V=51
k= 0.0333 min"! &y = 0.2 min"t &y =0.55 min!
i. Find the steady-state concentrations in each reactor
ii. Evaluate the A mainx (Jacobian) and find the eigenvalues
Consider a chemical reactor with bypass. as shown below, Assume that the reaction
rate {per unit volume) is first-order (7 = £C)) and € is the concentration in the reac-
tor (the reactor 1s perfectly mixed). Assume that the volume in the reactor (V) and the
feed flowrate (F) remain constant. The fraction of feed bypassing the reactor is
{1-a3F and that entering the reactor is aF. Assume that the traction bypassing the re-
actor does not change. The inlet concentration () is the input variable and the mixed
outlet strezum composition (C43 is the output variable. Write this model in state-space
form (this model is inherently lincar, so deviation variables are not needed).

o) = Ax+ Bu
y=0Cx 4 D

Consider the following set of series and parallel reactions
& ks
A B ooy O
A+A = D
k

(1

Material balances on components A and B yield the following two equations

¢ £ . -2
-M“:Vum~69vkiwf&cj
dC F . . -
O G R )
5o 5 1 liters
where o= Tmin ! ke Dmin! k=
R ¢ 3 T 6 moimm

C = 10 n.lo_l C,=3 moj

liter liter

a. Find the steady-state dilution rate (F7V) and concentration of £ (show alt units).

b. Linearize and put in state-space form (find the numerical values of the A, B, and
€ matrices), assuming that the manipulated vanable is dilution rate (7). and
the output variable is Cp,

¢. Find the ecigenvalues (show units).

d. Find perturbations in initial conditions that arc in the fastest and slowest directions.
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4,

A chemical rcactor that has a single sccond-order reaction and an outlet flowrate
that is a linear function of height has the following modet:

VC .
(_._-_. - FinCiu - }"C . kVC2 (5‘87)
dr
dV =5 f,‘ 5 88
dt in ©-58)

where the outlet flowrate is lincarly related to the volume of liquid in the reactor
(F = BV). The parameters, vartables and their steady-state values are shown below,

F;, = miet Mowrate {1 liter/min)

'y, = mlet concentration {1 gmol/liter)

C = tank concentration (0.5 gmol/liter)

= tank volume (1 liter)

reaction rate constant (2 liter/(gmol min})
f mint

it

Hi

174
k
p

Equations (5.87) and (5.88) can be written in physical state variable form as

dC F,
B (o L P o 5.89
df V ( i ) ( ( )
dv i
S FL - BY {5.90)
dt

a. List the states, outputs, inputs and parameters for the nonlincar equations (5.89)
and {5.90).

b. Linearize (3.89) and (5.90) and write the state space model (find the numerical
values for the A, B3, and C matrices), assuming that the inlet flowrate is the input
variable and that both states are output variables. Define the deviation variables
for states, inputs, and outputs.

Find the “fast” and “slow” initial conditions for the following model

X = -x
i, = —4x,
Find the stable and unstable subspaces for the following system of equations
X = = x
x; = 4x,

Plot the transient responses for initial conditions in both the stable and unstable sub-
spaccs. Show that a small perturbation from the stable initial condition will lead to
an unstable solution,



134 Linearization of Nonlinear Models: The State-Space Formulation Chap. &

7. The noninteracting tank model i3 (sce Example 5.1)

- B_l (} f

HER e A
]’9,. By - By [ 1A !
As As U_

Consider a system where the steady-state flowrates are 5 feb/min, and the following
cross-seclional arcas and steady-state heights:

Ay =200 A, = 10107

Il

By =251 h, =351
We find (from /7 = B and ) = Bohy), then, that:
ft*

o

[t?
=2 B, =1
min
and the state-space model (in physical variables) becomes:

Il _-1 0 |[m] L |o5]
hy 02 -0l Lo
/P S 0

h, 0 1|1 01,
o= s £
F, 0 1kl |0

Fl Lo 0 1

a. Work in deviation variable form and find the fast and slow suhspaces. Use ini-
tial to simulate the unforced deviation variable system (input deviation re-
mains constant at 0, from initial conditions in both the fast and slow subspaces.

b. Use the results from part a, and convert to the actual physical variables.

¢. Work in physical variable lorm. Use initial to simulate the unforced deviation
varfable system (input remaing constant), from initial conditions in both the fast
and slow subspaces. Show that the results obtained are the same as those in part b,

8. As a chemical engincer in the pharmaceutical industry you are respousible for a
process that uses a bacteria to produce an antibiotic. The reactor has been contami-
nated with a protozoan that consumes the bacteria. The predator-prey cquations are
used to model the system (b = bacteria {prey), p = protozoa {predator)). The time
unit is days.

db
o ah -y bp
dp

=y bp - Bp
a e he B
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#. Show that the steady-state values are

€] o
b.s = P =
=Y ki
b, Use the scaled variables, w and z, to find the following scaled modeling equations
b I
‘Li = Z ==
i”‘ l)‘n
dw
Sonm =) w
di ( )
dz
= ~B{l-w)z
i Bl -wiz

c. Find the cigenvalues of the Jacobian matrix for the scated equations, evaluated
at wyand 7. Realize that w and £ are 1.0 by definition. Find the eigenvalues in
terms of « and B.

d. The parameters are « = 3 = 1.0 and the initjal conditions are w(0) = 1.5 and
z(0) = 0.75.

i Lincarize and write the state-space form (let the state variables be x,

w —wand x, = z — z,). Find the initial condition vector x, = |‘*Eg; . o use
. 2 : o

1.

with initial.

ii. Solve the state space model from (i} using 1sim and plot the transient re-
sponse of x; and x, as a function of time (plot these curves on the same
graph), simulating to at least ¢ = 20,

iil. Show a phase-plane plot, placing x| on the x-axis and x, on the y-axis,

What is the “peak-to-peak” time for the bacteria? By how much time does

the protozoan “lag” the bacteria?

9, Consider the state-space model

=10 00
| 40 -50

x| X

X Az
a. Find the “fast™ and “slow™ initial condition directions.
10. Consider the following system of two reactors.

Fr
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Assumie a Liest-order deconsposition of A-—>B. Assunme that all flowrates are con-
stant (volumes are constant).
a. Write the modeling equations for concentration ol A, using either the mstanta-
neous or integral method.
b, Write these in state-space form:
x=Ax+ Bu

¢. Given the following constants, calculate the steady-state concentrations:

1] 1
Fo=125 Fo= 175"
‘ hr ’ hr
kemol .
Coe 1 M R S 010833 et ks - 033333 R

m’

= 13m* V,=9m’

d. Find the eigenvalues of the A matrix. Discuss the stability of this system.
¢. The inlet concentration, €, is changed from 1.510 1.75 at 1 = 0. Use sten (o
simulate the behavior of this system.

11. A stirred tank heater is used Lo supply a chemical precess with a fluid at a constant
temiperature. The heater receives fluid from an upstream process unit. which may
cause the flowrate or temperature o change.

Consider the diagram of the stirred tank heater shown below, where the tank
inlet stream is received from another process unit. A heat transler Muid is circutated
through a jacket to heat the fluid in the tank. Assuine that no change of phise occurs

“in either the tank liguid or the jacket ligquid.

Tank
inlet Jacket inlet
—— T,
F

£ L —
i

Jacket < —JJacket C'T:-D ’

outlet T ‘ Tank outlet
f

Part 1

a4, Write the dynamic modeling equations o [ind the tank and jacket temperatures.
Do not use any numerical values——leave these equations in terms of the process
parameters and variables. State any additional assumptions needed © solve the
problem.
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Assume:  Constant Jevel,
Perfect mixing in both the tank and jacket.
The tank inlet flowrate, jacket flowrate, tank infet temperature, and jacket
inlet temperature may change.
The rate of heat transfer from the jacket to the tank is governed by the equa-
tion O = UA( I] — T}, where U is the overall heat transfer coefficient and
A is the area for heat exchange.
h. State the major objective of this process.
€. What do you consider the most important measured variable?
d. What is a likely input variable variable thal you would use 1o maimtain a desited
tank temperature?

Part 2

Assuine that both the tank fluid and the jucket fluid are water. The steady-state val-
ues of this system variables and some paramelers are:

B Ll VTR SR L
T o 13 Pitpi = DL ok 10
T, = S0°F T = 125%F V= 1010
r. = o1 . R 1 3
Ty, = 200°F T, = I50°F V= 1t

e. Find Fjand UA (show units) al steady-state.
f. Linearize the set of two nonlinear ODEs obtatned in problem a, {0 obtain the
" state space forn:

x=Ax+Bu
y=Cx
T-T .
where X=]0 .. == state variables
-1 i
Fy = 1
—— FM 1'; e t L bi .\
u = 7T, = input variables
.._Tj.ir.! - r[:iin.\'
=t tput variabl
= ’ = oputput variables

Determine the A, B, and C matrices (symbolically and numericatly)
g. Find the eigenvalues of A.
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Part 3

h. Simulate the system of state-space equations for a step change in the jacket
flowrate from F; = 1.5 ft3/min to = [.75 f3/min F at time = 5 minutes (work
in deviation variables, but remember to converl back to physicat variables be-
fore plotting). What is the final value of the states, in the physical vartables
{(Fand .'!‘j)‘? Plot the response.

i. Perform some simulations with step changes on some of the other input vari-
ables. Comment on any different behavior that you may observe.

12. Consider the following model of 2-stage absorption colummn:

chy (1, + Va) (V(!)
SN (e et IR YT By gy
dt M M

ddz (]) (L + Vcr) 1%
S B B U B B A -
elt M M M-

where w and z are the fiquid concentrations on stage [ and stage 2, respectively.
£, and V are the liquid and vapor molar flowrates. z;is the concentration of the vapor
stream entering the column,

The steady-state input values are L = 80 gmol inert liguid/min and ¥ = [00
gmol inert vapor/min.

The parameter values are M = 20 gmol inert liquid, a = 0.5, and z,= 0.1 gmol
solute/gimol inert vapor.
a. Find the steady-state values of wand z.
b. Lineafize and {ind the state space model, assuming that L and V are the inputs,
¢. Find the eigenvalues and eigenvectors of A (JTacobian).
d. Tind the cxpected “slowest” and “fastest™ initial conditions (perturbations [rom

steady-state).
13. Most chemical process plants have a natural gas header that circulates through the

process planl. A simplitied version of such a header is shown below.

P P P P
i P, 2 Vs 3
From valvei valve 1 valve 2
sodrce .
Plant piping, represented Gas drum for To furnaces
as a perfectly mixed drum a boilerhouse

unit

Here, the natwral gas enters the process plant from a source (the natural gas
pipeline) through a control valve. It flows through the plant piping, which we have
represented as a perfectly mixed drum for simplicity. Another valve connects the
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plant piping to the gas dram for a boilerhouse unit, Gas passes through another
valve to the boilerbouse furnaces.
The objective of this problem is 1o develop a linear model that refates changes
in valve position to changes in drum pressures.
a. Write modeling equations assuming that the pressures in drums | and 2 are the
state variables. Let the input variables be (1) valve position 1, (2) valve position
2, and {3) source pressure,
b. Solve for the steady-state conditions and write the modeling equations in finear,
deviation variable form,

x=Ax+Bu
y=Cx
PPy, :
x= |1 Il = state variables
Py = Py,
hy—h, change in valve position 1
u == |y - Ry | = ] change in valve position 2 | = input variables
P.— P, change in source pressure
op |
Yo p _p *| = output variables
42 - 2s

. Study the effect of step changes in cach input on cach tank pressure.

HINTS: For simplicity, assume that the following equations can be used for the flow
through the valves:

g; = o J; (pi— p) = How through valve {

i

Gy =gy {py = ps) = flow through valve |

il

Gy =ty fiy (ppy — ) = flow through valve 2

where the flowrate is in hmol/min, A is the fraction that a valve is open (varies be-
tween 0 and 1), and o is a valve coefficient.

STEADY STATE DATA:

gas flowrate = 1000 std ft¥min
P =250 psig, £\ = 50 psig, Py, =30 psig, P, =5 psig
assume that each valve is 1/2 open under these conditions (J1, = b = h,, = 0.5)
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CONSTANTS:
v, = 1135 {13, V, = 329 ft}, Temperature = 32 °F

psia ft°

R (gas constant) = 10.73
(gas constant) ol R

MAGNITUDE OF STEP CHANGES:

Make separate step changes of 0.1 (10%) in the valve openings, and 10 psia in the
infet pressure. Simulate for 7= 0 to 7= 15 minutes.

14, A stream contains a waste chemical, W, with a concentration of 1 mol/liter. To meet
EPA and state standards, at least 90% of the chemical must be removed by reaction.
The chemical decomposes by a second-order reaction with a rate constant of
1.5 fiter/(mol hr)., The stream flowrate is 100 liter/ar and two available reactors
(400 and 2000 liters) have been placed in series (the smaller reactor is placed befose
the larger one).
a. Write the modeling equations for the concentration of the waste chemical. As-

sume consiant volume and constant density. Let

C,, = concentration in reactor 1, mol/liter
€, = concentration in reactor 2, mol/liter
F = volumetric flowrate, liter/hr
¥, = liquid volume in reactor |, liters
Vy = liguid volume in reactor 2, liters
k = second-order rate constant, liter/(mol hr)
b. Show that the steady-state concentrations are 0.33333 mol/iter (reactor 1) and
0.09005 mol/liter (reactor 2), so the specification is met.
(Hint: You need to solve guadratic equations to obtain the concentrations.)
¢. Linearize at steady-state and develop the stale space model (analytical), of the
form:

x=Axt+tBu

= l (’1"‘1 - Cu'] § \ — [ F— I“‘\ ‘
X = $ u = . ;
'C"'z - C‘WZ.\‘. (/ -

win < Wi
d. Show that the A and B mairices are:

- 1.25 & \
005 032015

0.0016607 0.25
00001216 0

(also, show the units associated with cach coefficient)
e. i. Find the eigenvalues and eigenvectors using the MATLAB eig function.
it. Find the eigenvalues by hand, by solving det(AL - A) = 0.
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h.

f. The system is not initially at steady-state. Solve the foltowing for the linearized
model, using the MATLAB function initial (first, convert the physical vari-
ables to deviation variables)

i IFC,(0)=0.3833 and (1) = 0.09005, find how the concentrations change
with time.

ii. I €, (0) = 0.3333 and Co{) = (.14005, find how the concentrations
change with time.

Relate these responses to the eigenvalues/eigenvector analysis of ¢. Discuss the dil-

ferences in speeds of response (you should find that a pertuthation in the first reac-

tor concentration responds more rapidly and a perturbation in the sceond reactor
concertdation).

The MATLAB initial function needs you to create the following matrices
belore using it:

._|to _
¢ (() 1] D

0 0"/
00

Solve I for the nonlinear equations, using oded 5. Compare the linear and nonlinear
variables on the same plots (make ceriain yout convert from deviation to physical
variables for the linear results).

Now, consider a step change in the flowrate from 100 liters/hour to 110 litersfhour.,
Assume the initial concentrations arc the steady-state values (0.3333 and 0.09005).
Compare the tinear and nonlincar responses of the reactor concentrations. Is the re-
moval specification still obtained?

Would better steady-state removal of W he obtained if the order of the reaction ves-
sels was reversed? Why or why not? (Show your calenlations.)

ESCOLA DE ENGENHARIA
BIBLIOTECA




SOLVING LINEAR nTH
ORDER ODE MODELS

The purpose of this chapter is o review methods 1o solve solve lincar ath order ODES.
After studying this material, the student will be able to:

Transform a linear state-space maodet with # states to a single pth order ordinary
differential equation.

Solve an sth order constant coefficient coefficient homogeneous ODE.

Solve an ath order constant coelficient coeflicient heterogencous QDI

Solve a first-order QDI with a time-varying coclficient.

Usc the Routh stabitity criterion for stability analysis.

The major sections in this chapter are:

142

6.1
6.2
6.3
6.4
0.5

Background

Solving Homogeneous, Linear ODEs with Constant Cocfficients

Solving Nonhomogeneous, Linear ODEs with Constant CocfTicients
Fguations with Time-Varying Parameters

Routh Stability Criterion—Determining Stability without Caleulating Eigen-
values
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6.1 BACKGROUND

A model composed of a single, nth order linear ordinary differential equation has the fol-
lowing form:

niﬂ

(n'”(f) + n l(f) i + HI(") d%' + au([) A
!” de! .' (6.)
Vi m-—iu 7. }
= b0 b0, b0+ b
£

where the state variable is x and the input variable is «. This general model is linear be-
cause the state (v) and input (¢ and all of their derivatives with respect to time appear lin-
carly. Notice that the cocfficients do not have to be fincar functions of time, however.

Models of the form of (6.1) do not arise naturally when chemical processes are
modeled. As shown in previous chapters, dynamic chemical process models are generally
sets of fivst-order (either Iinear or nonlinear ordinary differential cquations. The advan-
tage ol the form of (6.1) is that there exist a number of techniques (o obtain anakytical
solutions.

In this chapter we show how to transform sets of lincar, first-order differential equa-
tions to a single ath order differential equation, We then review several techniques for
solving this type ol equation. For motivation, we usce a batch reactor example to illustrate
cach of the technigues. It should be noted that there are many good mathematics texis that
cover cach of these techniques in more depth (see Boyce and DiPrima, 1992, for exam-
ple). Our goal here is to provide a concise overview of some more useful techniques to
solve dynamic chemical process problems,

EXAMPLE 6.1 Batch Chemical Reactor

Consider a batch chemical reactor, where there is no flow in or out of the vessel, The reactor is
mitially charged with a liquid of volume ¥ and an initial concentration (molfiter) of reactant A
ol O
We consider a series reaction where component 4 reacts to form the desired component
£ Component B can [urther react to form the undesired component C. Each of the reactions is
irreversible, so0 A can react 1 form A, but B does not react (o form A,
ky ky
A= B - C
Here &) represents kinetic rate constant (time™) for the conversion of A 10 8, while ko represents
the rate constant for the conversion of B to €.
Sinee component A is the desived product, we would like to know haw fong to run the re-
action in order to maximize the amount of 8 produced. 1f the reaction time is too Jong, all of B
will eventually be converted to C,

Develop the Modeling Equations.  Assume thay cach of the reactions is first-order. Since
the volume is constant (dVidr = 0, and there is no [low in or out, the modeling equations are
{the reader should be able to derive these, based on material balances on each COIMPONENt):




144 Solving Linear nth Order ODE Models Chap.

d( . .
d[i e fo, O (6.2)
dC . ]
----(-1;-’* =k, Cy oy Cy (6.3)
dC,. . )
.a'.{{ =J, Uy (6.4)

where Cy. Cy, and Cporepresent the concentrations {imol/volume} of components A, B, and € re-
spectively, The units for the rate cowstants (k) and ky) are time~ 1.

Notice that the tme rate of change of component A 3s only a function of the concentration
of A. Then equation (0.2 can be solved, since Cy and r are separable, (o find

C0) = Chye * (6.5)
where Cy, 13 thee inttiad condition {or the concentration of AL f we define the conversion of A as

v = (O — CYC and the dimensionless time T = kf, (6.5) can be represented by the single
curve shown in Figure 6.1 (x =1 — ¢ ™)

1 b i tr I T [
08 r
2087 |
Q9
o
&
£
c04 T
O
0.2 1
0 . L b 1
0 1 2 3 4 5

dimensionless time

FIGURE 6.1  Conversion of A as a function of the dimensionless time,

Now we wish (o lind a single differential eguation to sobve for Cp,.

Reduce to a Single Equation for CB.  Here we have two different ways to solve for Cp.
Method 1. Substitute {6.5) into (6.3) (o oblain the expression
dCy

by Oy hey g™ (6.6)
dt R
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Equation {6.6) is a linear, constant coefficient, heterogencons differential equation. It is hetero-
geneous because of the “forcing function” on the righthand side. Heterogeneous equations are
solved in Section 6.3,

Method 2. Here we can rewrite (6.3) to solve for 'y in terms of Cpe
1dCy K

K P + —= (; 1 3
Cy k, i K, (6.7)

Taking the first derivative of (6.7 with respect to time, we find:
dC, 1 &*Cy &, dC,
dit ko odPf Ok de ©.8)

Substituting (6.7) and (6.8) into (6.2), we find the second-order equation:

L d .
H;+(m+kﬁﬁf+hhc“=0 (6.9
Notice that (6.9) has the form
4% 0% 0 (6.10)
a, =5+t oax = i3
L dr Udr ¢

Equation (6.10) is known as a lincar, constant coelficient, homogeneous differential equa-
tion. The term homogeneous means that there is no “forcing function™ on the righthand
side. In Section 6.2 we cover the solution of these equations.

SOLVING HOMOGENEOUS, LINEAR ODES
WITH CONSTANT COEFFICIENTS

Homogeneous ath order linear differential equations have the form

d'x d"'x
a, oo [4 —
AP B dr 1

oot oa f-‘;-’fm:ox:o 6.11)
£

To solve equation (6.11) we replace all dix/di’ terms by Af
a, N+ a, N gt a, =0 (6.12)

Equation (6.12) is called the characteristic equation. The n roots of the characteristic
equation are called eigenvalues (in control textbooks the roots are often called poles). The
eigenvalues are used to solve (6.11). Two related methods are used, depending on
whether the eigenvalues are distinet (all are different) or repeated (some are the same),
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6.2.1 Distinct Eigenvalues

We see that (6.12y is an ath order polynomial that will have s roots, A, If all of the roots
are distinel (not repeated). the solution to (6. 11) s

A =, et <5 et b e e (6.13)

where cach of the constants ¢ through ¢, is found from the initial conditions. w0y, .,
dvt (it

fnoorder 1o find the coefficients, ¢, we must know the inirief conditions for x and its
derivatives.

EXAMPLE 0.1 Continued.  Solution for Component A

We see [rom equaton (6.2) that the concentration of A does not depend on the values ol B
and

R AN i6.14)

The characteristic equabon is
PN 0613
and the eigenvalue is A = — &, The selution is then
Colty = e (6.10)
and we can selve for ¢ from inttiad conditon C) = C . to obtain
Canoe Cype ini7)

which 1s the same result obiained in (6.5) using separation of variables and integration,
Now. lets continue and use the general procedure w sodve a second-order differential
equation,

EXAMPLE 6.1 Continued,  Solution for Component 3
Recall that the equation for the concentration of £ 1s:
ey
hll’:

d,

C k[
(k) :) i

4 kk Oy O (6.9
wnd the characteristic equation is:

5

Aok YN ek, =0 (6.13)
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which can be written:
AN+ E)N+h)=0 (6.19)
So the eigenvalues are:
ANo= —k oand A=k
and the sofution can be written:

Culf) = e exp(— k1) + o, exp{- k1) (6.20)

We need twao initial conditions, Cy(0) and dCu{N/dt, to evaluate the constants, ¢ and ¢,.
We assumed that there is no component B in the reactor itiafly, so Cpd) = 0. From
(6.20) we then find:

=0 (6.25)
From {3) we sec that;
dC(0) .
. ...r?r =k, Cy {6.22)
Taking the derivative of (6.20) and using (6.21) and {6.22), we find;
kl (-:Al'l 3
Cpl) = =7 Jexp(~ k) — exp(~ k1)) (6.23)
i ko~ k| ’

This expression can be used, for example, to solve for the amount of tme that will yield the
maximunt amount of Cy (see student ¢xercise 15).

Dimensionless Equation, It should also be noted that (6.23) can be made dimensionless by
defining the following variables:

x = U/ Chy = conversion ol A to B
=kt = dimensionless time
o = ky/k, = rate constant ratio

to find:
|
x{r) = o 1 [exp(~ T} — exp{—wr)]
o~ ]

which is shown in Figure 6.2, for a = 0.5 and 2. Notice that when the lirst reaction is faster than
the second {o = (1.5), there is a higher concentration of B than when the first reaction is slower
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than the second (a0 = 2). When the second reaction is faster than the first, component B reacts
furiher to form C, before a substantial amount of # 1s formed.

0.5

0.4

03 F

0.2

dimensioniess concen. of B

oA

dimensionless time

FIGURE 6.2 Concentration of B as a function of time. When the rate for the second
reaction is faster than the first (o = 2), the peak concentration of B is lower,

We notice in the previous example that (6.23) cannot be used if &, = k. This is a case
where the eigenvalues are repeated. The procedwre for repeated eigenvalues is shown
next.

6.2.2 Repeated Eigenvalues

If a particular root in the solution of {6.12), A, occurs r times, then the corresponding
terms in the solution to (6.11) are:

(4 e bt 0+ e, e (6.24)

I3

EXAMPLE 6.1 Continued. Repeated Roots
The equation for the concentration of Bis when ky = k) = kis:
£Cy d(

g PRk kG0 (6.25)
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and the characleristic eguation is:

M 2krt+ k=0 (6.26)
which can be factored as:

(ANFEYW+H k=10

so the eigenvalues (roots) are:

The solution can be written:
Cyu(t} = (e, + oy 1) exp{—k,) (6.27}
Notice that we can find ¢, from the initial condition for Cp, From (6.27) at t =),
oy = Ch()
But Cp(0) = 0, since there is no B initially, so:
Cu(f) = ¢y rexp(— ki) 6.28)
The derivative of (6.28) with respect to time is:
Ch0) = coe M=y kte ™
aet =0,
= Ch0)

We also know from (6.3) that:

dC, ) .
(if{!m =k Oy
S50
Cplry = & Oyt exp(— ki) {6.29

If we define the conversion of A to B asy = CpfCyp- and the dimensionless tme as 7 = ki, then
(6.29) can be written;

x(f) = v exp(—7) (6.3
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which is shown in Figure 6.3. The reader should be able to find the maximum value for the con-
version of A 1o B and the reaction time required for this conversion.

0.35

0.3 r

¢.25

VI DU ]

0 L 1 1
0 1 2 3 4 5

dimensionless time

FIGURE 6.3 Conversion of A to 8 as a [unction of dimensionless time (1 = &0, {or the
case of equal rate constants.

The previous example iHustrated the solution for systems with real roots. The next exaim-
ple tlustrates a system with complex roots.

EXAMPLE 6.2 Complex Roots

Consider the second-order equation:

d*x N dx i o ©631)
RS T AR I ..
de ot
The characteristic equation is:
MEXTL=0 (6.32)
Solving for the roots using the quadratic formuta, we find that the roots are complex:
CsVisd
2
1 V3
A= -k i
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where j = Vo

he solution is

x{(f) = £ 6‘(— : + \/Q) j) r+ e, (f(—']é - \g} j) t

2 2

We can use the following Euler identities:

e = cos 8k jsin b

e = cos o —jsing

and the property that e¥™ = ¢%¢¥ to write (6.33) as:

x{(8) = e

X = e
which can be writter
xft

V3

i/2

02 e - L. -
! [ v 6T Tl B A S F+ ¢ s b Cof 818 -
[ 1 2 2 2 if 2 o

1.

Y g 2

(e

3, V3
CO8 Tt J s o f
2 P |

12

+ ¢ 2 € COs

2 2

V3

+ ey) cos \;} 1+ (o] - ¢)sin 2 fJ

Defining oy = oy + ¢y and ¢y = (¢ ~ 3},

X0 = e

/2

3 b 3 ‘
€308 -1+ g sin
- 2 LA

V3

V3 ]

2

T i e
/ 2
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{633}

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

6.39)

Again, initiat conditions for x(0) and xX(0) can be used to determine oy ancd ¢y, The stedent should
verily that if o(0) = 1 and x(0) =1, then ¢y = L0 and ¢y = [.5. A plot is shown in Figure 6.4,

1.5

-0.5

FIGURE 6.4

Plot of (6.39) with x(0) = [ and (0 = |,

10
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Chemical process systern models with complex roots include some exothermic chemical
reactors, Also, models including feedback control will often have complex roots (leading
{0 oscillatory behavior).

6.2.3 General Result for Complex Roots

We can now generalize the results of Example 6.2 for any equation that has pairs of com-
plex roots. For each pair of complex roots, A = A & f A, where A and X, are the real and
imaginary portéions, the solution is:

x(f) = eM'|e, cos Ag + ey sin A ] (6.40)

In the previous example the real part of the complex roots was negative {stable).
Notice that the state variables decayed to zero with time. Notice [rom (6.40) that there
will be no decay (simply a continuous osciflation) if the real portion is 0. We can also sce
fromn (0.40) that a positive real portion of the complex root will lead to an ever growing
(unstable) solution. This behavior is shown by student exercise 19.

Most chemical processes are stable; however, some exothermic chenvical reactors
have unstable operating pomts. Also, improperly tuned feedback control systems can be
unstable,

Thus far in this chapter we have solved the homogeneous problems. Homogeneous
problems result Trom models that are “unforced,” that is, there is no input. This usually
oceurs when the process model is in deviation variable form, and there is no change in the
input varigble. They are based on a perturbation from steady-state in the state varjable
values.

In Section 6.3 we will solve noshomageneous problems using the method of unde-
termined coelficients. These types of problems arise when there are input changes to a
PrOCCss.

6.3 SOLVING NONHOMOGENEOUS, LINEAR ODES
WITH CONSTANT COEFFICIENTS

In Section 6.2 we solved homogeneous problems with constant coefficients:

d'x d 'y

dx
: a, e Lo g A a,x =0 (6.41)
dr" R bt ”

In this section we will solve nonhomogeneous problems with the following form:

d"x d 'y

dx
dt" o= di! g a,x = g(0) (6.42)

di

using the method of undetermined coefficients, which is outlined below.
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Method of Undetermined Coefficients

The method of undetermined coefficicnts consists of the following steps:

1. Solve the homogeneous problem to find
xp()

2. Solve for the particular solution by determining the coefficients of a trial function (see Table
6.1) that satisfy the nonhomogeneons cquation

x,(6)

3. Combine the two sohutions for

x(1) = x (0 + x:(0)

TABLE 6.1 Trial Functions for Method of Undetermined
Coefficients (Boyce and DiPrima, 1992)

Forcing Function Trial Foniction

A (a constant) B (a constant)

Ae[ﬂ [;(f(v!

A cos o or A sin o By cos at+ By sinat

A B+ B ol L+ B,

We illustrate the method by use of an illustrative example.

EXAMPLE 6.1 Continued.  First Order Heterogencous System

Notice that we can take the solation for C, as a function of time

cally = Cype (6.14)
and substitute it inte (6.3) to obtain
dC . i )
drH +k, Cp = k) Cppe ™ (6.43)

Step 1. The homogeneous solution to (6.43) is

60 =ce ™ (6.44)
Step 2. Since the forcing function is k; C, ¢, we use ¢, e “ (Table 6.1) as our trial func-
tion for the particular solution:

il = oy e R (6.45)
substituting this solution into the original equation (6.47),

cheyey e ko, eR =k O e (6.46)
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which we can solve for ¢y

Ky Caa
o T 047
g k2 - k| ( }
Step 3. Now find the complete solution as x(£) = xy(8) + xp{0)
. o R Cy :
C)y=cpe ™+ K, - ki e (0.48)
We can evaluate o) from the initial conditions, Cyy = 0
B TR
} ky =k
and the total solution is:
. k,C
Cylt) = L Eﬁ/;(“ [exp(—kyt) — exp(— k)]
2 Ry

which, of course, is the same result obtained previously (6,23) by solving the second-order ho-
mogeneous equation in Cp.

We have used a single first-order equation to illustrate the procedure for heterogeneous
equations. The same procedure is used for higher-order equations.

6.4 EQUATIONS WITH TIME-VARYING PARAMETERS
Consider a first-order cquation with the fotlowing form:

vy ,
S p(nx o= gl (6.49)
dt

Notice that the coefficient s time-varying and the equation is heterogeneous. One
approach to solve this type of problem is 1o use an integrating fuctor.

et the integrating factor be represented by ju(n)

plt) = exp Jp(f) d!J (6.50)
Equation {6.49) is solved by multiplying each term by the integrating factor:
dlx
wle) el p(o) x = (0 gl0) (6.51)
a

exp

Jp(f) dt l Pty x = exp [Jp(!) df] g{r) {6.52)

VJ’[J(t) d'.f.

-
-+ exp
dt [
Notice that the lefthand side of (6.52) 1s simply the expansion of:

x(f) exp {JP(U dtH = exp

d; + exp Up(n’) a'fl pOx  (6.53)
( P

fp(r) dt

¢l
oft
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$O we can write:

4(t)

% [x(:‘) exp {fp(f)df}J = exp UP(I) df’

which is a separable equation. Separating and integrating, we {ind:

x(?) exp Up(t) diJ = fq(t) exp

Jup(!) dl.

and, evaluating ¢ using the initial conditions,

x(t) = exp 1—];)(1) dfu {x((}) + J‘q(t) cxp

dr + ¢

| f plt) d!ul (11}
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(6.54)

{6.55)

(6.56)

EXAMPLE 6.3 Semi-bhateh Reactor

Consider the case where the batch reactor js being filled, Assume a single, first-order reaction
(A—3R) and a constant volumetric flowrate o the reactor (5, with no flow out of the reactor,

The modeling equations are:

............ = I.f
dt
dvC . i
d;-ﬁ ==k VO, +FCyp
Expanding the LHS of (6.58) as:
AV, _ o dV 4G,
dt A di
we find:
dC F 1. Fo
'd;‘l + _.V + li Cy = 'V(fmf'
If the flowrate is constant and the initial volume is 0, then:
V=Ft
and:
dC ] (O
dCa ) ’ by ki‘ C, =~
dt H ] t
et

1
Jp([) dt = f(l + k.\) dt=1Int+ k¢t +c

CXp

= ¢y fexp [&yi]

Jp(f) dtJ =exp|lat+ kg + o] = exp [Int] exp [k ffexp[g]

6.57)

(6.58)

(6.59)

(6.00)

(6.61)

(6.02)

(6.63)

(6.64)
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Muhiplying through on each side of (6.64) by ¢y £ exp [k ] and dividing by ¢,
dC . e
texp (A1) o toexp [k [1 4 k] Cp e exp k] Oy (6.65)
(

and noting that the lefthand side is simply

------ {6.00)
et
we multiply by ¢f and integrate to find
cxp L] Ut = !:”.. fexp [k - 1} (6.07)
1
multiplying by exp {-k,#] and dividing by 1. we find the sojution
- (-‘,.u-' .
Cam gy e [t (6.68)

The division by ¢ is bothersome at 7 = 01 the reader should use L Hospital's rule to show that the
correct initial condition is oblained with this exp
Notice that we can define a dimensioniess concentration and time as

S810n.

v OO, and v o=k
to find

1 o
viT) = — {1 - exp |- Tt (6.69)
which is shown in Figure 6.5.

Natice that this selution holds while the reactor 1s being “fed™. After the feed is stopped
the model is simply € At = —k, C with appropriate intial conditions (see student exercise 20,

1 . S T ey [
< 0.8 r i
B
[&]
<
2
o 0.6
<
@
[
=
[
5 04t 4
£
el
0.2t —
O —_ 1 1 L . L S—
0 2 4 6 8 10

dimensionless time

FIGURE 6.5  Solution, dimensionless semibatch reactor problem.
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6.5 ROUTH STABILITY CRITERION —DETERMINING STABILITY
WITHOUT CALCULATING EIGENVALUES

The stability of the characteristic equation is determined from the values of its roots
{eigenvalucs). This is easy for first and second order equations (and not too hard for third)
since there is an analytical solution for the roots of polynomials through third order. If the
polynomial s fourth order or higher, the oots must be determined numerically. There is a
method for determining if any of the roots are positive (unstable) without actually caleu-
lating the roots (Routh, F903). This method involves an analysis of the coelficients of the
characteristic polynomial by selling up the Routh Array. The test of the coetficients in the
Routh Areay is called the Rowth Stability Criterion.

The Routh Stability Criterion is based on the chatracteristic equation that has the fol-
lowing pelynomial form

a, N+ a, N+ FaNta, =0 (6.70)

n—1i

We can arbitrarily assume that a,, > 0. 1f ¢, < 0 then multiply (6.73} by —1. A neces-
sary condition for stability is that all of the coefficients in (6.70} must be positive. 11" any
of the coefficients are negative or zero then at least one eigenvalue (root of the character-
istic equation) is positive or zero, indicating that the equation is unstable. Even i all of
the coefficients are positive, we cannot state that the system is stable. What 1s necded is a
sufficient condition for stability. To determine that the system is stable, we musl construct
the Routh array and ase the Routh stabitity criterton, which provides necessary and sulfi-
cienl conditions for stability.

Sometimes we simply wish (o determine il a particular system is stable or not, with-
out actually evaluating the cigenvalues. This is particularly true if we wish to delermine
values of system parameters that will cause a system to lose stability. This approach will
be useful in performing a bifurcation analysis in later chapters, and in tuning control sys-
terns in chemical process control.

6.5.1 Routh Array

IT adl of the coelTients of the characteristic equation (6.70) are positive, the necessary con-
dition for stability is satislied, FThe following Routh array (Seborg, Edgar, & Meliichamp,
1989} is developed to test for the sufficient conditions for stability:

Row
1 i€, L) g
2 dy 3 Qs
3 b hy by
4 Cy sy

n+l
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where a is the order of the characteristic polynomial. Notice that the first two rows consist
of the coefficients of the characteristic polynomial. The elements of the third row are cal-
culated in the following fashion;

4]

-

oy, _yfl,_y — a0

h, = -H7 nled !{r'},;{,j {lﬂa”ff_‘
| =

) by =
a, a,

H o
and so on. Elements of the fourth and larger rows are caleulated in a similar fashion:

Dt s 4Py oo Dt sy

“ by - by

and so on.

Routh Stability Criterion

A pecessary and sufficient condition for all roots of the characteristic polynomial to have negative
real parts is that all of the coefficients of the polynomial are positive and all of the elements i the
feft column of the Routh array are positive.

EXAMPLE 6.4  Second-order Characteristic Kquations

Consider the second-order O

Ly 0 ©.71)
oy ta s Foayn = ).
e Lt v
The characteristic poiynomial 1s:
WA A a ko= 0 (6.72)

IF all of the coefficients a,, ¢, and a, are positive, then the necessary condition is satisfied. We
can form the Routh array to test for the sufticient condition:

Reny
1 it ey
2 @y
3 g

Since the left column consists of the polynomial coelficients, it all of the cocflicients in the see-
ond order system are positive, the system is stable.

Naotice that, for second-order systems, a test for positive coelficients is necessary and sulficient Lor
stability.
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EXAMPLE 6.5 Third-order System
The system:
d’x d*x dx
at e
has the characteristic polynomial;
ME2NE3N+HTE=0

and the folfowing Routh array:

Renw
1 I 3
2 2 |
3 572
4 i

Atbof the coefficients of the characteristic polynomial are positive and all of the ¢lements in the
left colunm of the Routh array are positive, so the system is stable.

The Routh array is particularty usefud for determining how much a parameter can vary before a sys-
tem loses stability. The following example Hlustrates such a system.

EXAMPLE 6.6 Third-order, System With a Variable Parameter
The system:
s , dix +13 dx \ 0
.- A+ 3 x =
dr’ dr dr M

has the characteristic polynomial;

where . is a parameter that may vary. The Routh array is:

Row
| H 3
2 2 i
3 h
4
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where b = 3 - /2 and ¢ = . From the characteristic polynomial, we see that 2> 0 is required.
The same result holds true for the requirement of ¢ > 0. We notice that b, will be posi-
tive only if w < 6.

From these conditions, we {ind that the stability requirement is 0 < g < 6,

For complex, high arder (3 or greater), it is not uncommon for a system to have parame-
ters that stabilize the systcm only over a certain range of parameter values. This is particularty
true of feedback controf systems.

SUMMARY

We have reviewed technigques to sobve homogencous and nonhomogeneous (heteroge-
neous) ath order ODEs.

* Homogeneous problems are solved using the roots of the characteristic equation,
forming the solution as a sum of exponential terins, Homogencous equations gener-
ally oceur i1 the sysiem is anforced, but there is an initial deviation from steady-
state in the state variables,

» The method of undetermined coefficients 1s useful for solving nonhomogencous
(heterogeneons) problems. These generally occur if the system is forced by a chang-
ing input.

e The integrating facior method was usetul Tor solving a first-order helerogencous
equation with a time-varying coefficient.

s The Routh array was used to test for the stability of a differential equation. This is
useful for finding values of a parameter that cause a sysiem to lose stability, such as
in feedback control system design or bifurcation analysis,

* The type of dynamic behavior of an ath order differential cquation is a function of
the eigenvalues (roots of the characteristic equation). Eigenvalues that arc {urther in
the left half plane are “fast.” The larger the ratio of the imaginary portion 1o real
poettion of a complex eigenvatue, the more oscillatory the respense. Stability is de-
termined by the real portion of the complex cigenvalue. if all eigenvalues have a
real portion that is negative, then the system is stable. 1 any single eigenvalue has a
real portion that is positive, then the system is unstable.

Ofien engineers study the dynamic behavior of processes by starting out al sleady-state,
then applying a changing input to the process. Although the method of undetermined co-
efficients can be used to solve these problems, the Laplace transform technique is used
more often. The Laplace transform method is introduced in Chapter 7.
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1. Consider the state-space model:

FL{
X3,

STUDENT EXERCISES
Find the second order ODE in terms of x,.

¥
...xj

Find the second order ODE in terms.of x,.

For x,(0) = =1 and x,(0) = 1, obtain the analytical solution for x;(£) and 1,(7).

Use oded5 or initial to solve the set of two differential equations, given

the initial conditions in part c.

M[._] "
Lt 0

B Fe

2. Consider the following linearized form of a bioreactor model with substrate inhibi-
tion kinetics (see Module 8 for details):

x=Ax+ Bu

y=Cx+ Du
where:
A = ' 0 0.9056 B l 1.5302]
075000 —2.5640 _ 3.8255
1 0 0
= D=1
¢ 0 lJ ()‘
a. Find the second-order ODE in terms of x,, assuming u = (.
b. Find the second-order ODE in terms of x5, assuming u = 0,

¢. Forx;(0) =1 and x,(0) = I, obtain the analytical solation for x; (1) and x,(1).
d. Use oded5 or initial to solve the set of two differential equations, given
the initial conditions in part c.
3. Consider the state space model for a two-state system:

x=AX
Fl _ | 2 x1]
X, lay apn |

ESCOLA DE ENGENHARIA
BIBLIOTECA
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a. Lety =x, and derive the following relationship:

y=lay +aply + lapay —aaply = 0

which has the characteristic equation:
N = layy + apl h + [ayay —ayayp] = 0

Recall that the eigenvalues of the A matrix are calculated by:

det(hI —A) = 0

Show that det(AI — A} = 0 applied to this general two-state example, yields:

A —fay + ap] A+ [ayay ~ aya] =0

Solve the following differential equation with the given initial conditions:

d’y dy
- + 5 i + ( — }
dx’ dx 7 (
1y (0
y(0) =0 and dy(0) _ !
dx

Find the particular solution of the differential equation:
***** ~4y=2sinx
» y

Consider the following second-order homogeneous ODE:

,‘ﬁf?wigf!{"}_:;x:()
dr

a. Write the characteristic equation for this ODE.
b. Find the solution (solve for any constants), x(r), if the initial conditions are
£(0) = 2.0 and x(0) = 3.0.
¢. Discuss the stability of this system.
Consider the Tollowing first-order heterogeneous ODE:
dx
3o x =20 eV
et ( )
a. Write the characteristic equation for the homogeneous part of this ODE.
b. Find the solution to the heterogenous problem. Show all steps. The initial condi-
tion is x(0) = 2.0,
Consider the following state-space model that results from a linearization of the
predator-prey equations:
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9.

10.

11.

12

13.
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X

_ [ 0 - 1.(]] [x,"

o 00] Lk,

with initial conditions x,(0) = 0.5 and x53(0) = -0.25,

a. What are the eigenvalues of the A matrix? Use both MATLAB and Your own
analytical solution.

b. Write the second-order ODE that corresponds to x,. Use the method of Section
6.2 to solve for x,{#). Plot x ().

¢. Write the second-order ODE that corresponds to x,. Use the method of Section
6.2 Lo solve for x,(n). Plot x,(r).

d. Compare the results from b and ¢ with those obtained by integrating the state-
space equations using either oded5 or initial.

€. Show a phase-plane plot (x; versus x,), placing xp on the x-axis and x, on the
y-axis,

Consider a system described by the following third-order ODE:

Xy

P Py d
CP AL AL, S

ar da? s
Is the system described by this equation stable? Why or why not?
For a general third-order poalynomial:

as N g, N+ ag Nty = 0

show that ¢; > 0 and a4, ~ aya; > 0 are necessary and sufficient for stability.
For a general fourth-order polynomial:

a N a N a, N e Nt a, =0

show that @; > 0, ayay ~ ajay > 0, and o @yay ~ aa? — aya’ > 0 are necessary and
sufficient for stability.

Consider the following third-order ODE;

dy

!y
dr +(

+2-
dr

1
0{—])((—1?-+ay:{}

where o is a parameter. Find the range of « that will cause this equation to bhe
stable.
Consider the following second-order ODE;:

dy
Ly |, dy

i o +2y=1{

which has eigenvalues of -] % 1j and initial conditions y(0) = 2 and w0y = -2, Find

¥,
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14. Consider the series of two tanks, where the levels interact.

<.

...\
o

h I -
> £

Fi

Assuming that the flow from the first tank is linearly proportional to the differ-
ence in the tank heights (/| = B (/I; — A;)), the flowrate from tank 2 is propor-
tional 1o the height in tank 2 {(F, = (3, hy), and the lanks are of constant cross-
sectional area (A and A,) show that the modeling equations are

dhy _F, 8

.......... — B o}
de A, )
dhy

_ By B
ar A, (hy = hy) /12h?'

Reduce these two equations to a single second-otder equation in #,.

Assume that the steady-state flowrate is 3 ft¥/min, and the steady-state tank
heights for tanks 1 and 2 arc 7 and 3 feet, respectively. The constant cross-
sectional area is 5 17 for each tank. The initial conditions are 2 (0) = 6 fect and
hy() = 5 feet, Solve for the heights of tanks 1 and 2 as a function of time. Plot
the tank heights as a function of time, Discuss your results.

Write 1 MATLARB m-file and use ode4s fo integrate the two equations shown
above. Show that the numerical integration agrees with your solution in part c.

For the batch serics reaction (Example 6.1):

it

C.

d.

kl k?. .

A B C
Find the reaction time that maximizes the production of B. Recall that the solu-
tion for the concentration of 1 is:

Cuh) = T4 [oxp(— k) = exp(— k)]
ky—k,

and that the maximum occurs when the condition dCp/dr = 0 is satisfied.
Fork; =1 and &, = 5 min~!, find the maximum conversion of A to B {express as
Cp/Cyy) and the time required for this conversion.
In practice there is uncertainty in the rate constants. H the actual value of &, is
7.5 min~!, and the reaction time from b is used, find the actual conversion of
Ao B.
Use the MATLAB routine ode45 to integrate the three state variable equations
and solve for Cy, Cp, and Cp-as a function of time, for the parameter values i
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b, with Cyy = 1.5 and Cpyy = Cpyy = 0 molfliter. Make a comparative plot for the
parameter values in . What do you observe about the concentrations of A, B,
and C7
16. For the batch series reaction with irreversible reactions (A — B — C):
a. Hind the reaction time {7, ) that maximizes the conversion of A to B for the
case where &y = k; = k. Also find the value for the maximum conversion of A to
B. Recall that the solution for the conversion s

x{0) = Cy(Y/Chy = k texp(— ki)

b. Assume that the reactor is run for the period £, found in a. Now consider the
elfect of an error in the reaction rate constant of +50%. What Is the actual con-

version of A (o B obtained at ¢ 7
17. Consider a batch reactor with a series reaction where component A reacts to form
the desired component B reversibly, Component B can also react to form the unde-

sired component C. The reaction scheme can he characterized by:

k'lj‘

A=k
dl LR
ky,

Here & and &, . represent the kinetic rate constants for the lorward and reverse reac-
tions for the conversion of A to B, while ky represents the rate constant for the con-
version of B o C.
Assuming that each of the reactions is first-order and constant volume, the model-
ing cqualions are

dC, . .
,;i,[}, = — k” (’.4 + klr (‘H
d{ . |
,d[,!i = ki Cy~ Ky, Cy
dC - -
ke,

where C,, Cp, and C,. represent the concenirations (mol/volume) of components
A, B, and C, respectively. Using the following definitions:

Dimensionless time, 7=k

Conversion of A, X = (Chn— C/Cay
Dimensionless concentration of B, 5= CufChy

Ratio of rate constants, a = kyfky;

Ratio of forward and reverse rate constants, B = k; /k,;
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18.

19.

Solving Linear nth Order ODE Models Chap. 6
a. Show that the equation for the dimensionless concentration of £ 15

P Lx
et rang=0
dr dr

and that the roots of the characteristic equation can never be complex or unsta-
ble (assuming that the rafe constants are positive).

h. Solve the previous equation to find &, as a function of + and « and 3,

c. Fork =2, ki, =1,and &k = 1.25 !, find the maximum conversion of A 1o I3
and the reaction time required for this conversion,

d. Usually there is some wncertainty in the rate constants, 11 the real value of £, is
1.5 hi~! and the reaction is run for the time found in ¢, what will be the actual
conversion of A to #7

Consider the series reaction:

ky ko Ky
A-=8505D

The modeling equations for a constant volume batch reactor are

dC 4 :
A _pc
dt o
d(, - ~
.EHBI =k C, = ky Cy
dC.- . ~
_d_f(- = /\.? (a[_; - k! ¢ C

a. Show that the third-order ODE describing the concentration of C is:

&£C,. C,. dC,. .
(”.3-(-- + [k + ky + k) ;h; + Lok, + koky + ok ----;ﬁ--‘-- +hkok, Co=0

{Hint: Solve for Cp from the third equation and take the derivative to find
dCpldt.]

b, Assuming that all of the kinetic parameters are positive, show that this system is
stable.

Consider the second-order equation:

d*c  dx N 0
de dr

For initial conditions x(0} = | and x(0) = 1, find the analytical solution and show
that the following plot describes how x changes with time.
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20. Consider a semibateh reactor (Example 6.3} with a first-order kinelic parameter of
k=1Trl For a flowrate of 10 litersfhour, a feed concentration of 5 mol/iter, and
a feed time of 2 hoars, find (and plot) how the concentration changes from 0 to
10 hours.




AN INTRODUCTION
TO LAPLACE TRANSFORMS

Alter studying (his chapter. the reader should be able to:

+ Define the Laplace ransform and apply it o several example functions,

+ Use Laplace transforms to convert an #th order ODE o the Laplace domain.

+ Manipulate the algebraic equations by perferming a pactial lracton expansion.
« “luvert” the Laplace domaim functions to obtain the time domain solution,

« Use the tinal value theorem to compute the long-term behavior ol a sysleti.
The important sections ol this chapter are:

7.1 Motivation
Delinition of the Laplace Transform

[

()

Examples of Laplace Translorms

7.4 Final and Initial Vatue Fheorems

n

Application Examples

7.6 Table of Laplace Translorms

7.1 MOTHVATION

fn this chapter we introduce a mathematical wol. the Laplace transforni, which is very
wsebul in the analysis of Tinear dynamic systems. The purpose ol the Laplace transform.
as used in this extbook, is to converl lincar differential equations o algebraic equa-

168
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tions. Algebraic equations are much easier to manipulate than differential equations, An
analogy is the use of togarithms to change the operation of mudtiplication into that of
addition. Laplace transforms are useful for solving linear dynamic systems problems,
particularly nonhomogencous (heterogencous) problems (i.c., where the input to the
process system is changed), and are commonly used in process control system design
and analysis,

7.2 DEFINITION OF THE LAPLACE TRANSFORM

Definition:  Laplace transform
Consider the time dorain function f#). The Laplace transforn of f{1) is represented by LI} and is

defined as

LIAD| = F(s) = { O e dt a0

This operation transforms a variable from the time domain to the s (or Laplace) domain.
Note that some texts use an overbar or capital Jetters for the wansformed variable. In this
initial development we will let A1) represent the time domain function and F(x) represent
the Laplace domain function. Later we may be more relaxed in our notation and let Js)
represent the Laplace domain function.

The Laplace transform is a linear operation, as shown below.

i

= falf‘l(f) e..-_sf d[ + J.'azfj([) e_..._” [l[
3 a
(7.2)

1l

(h!?f;(l‘) e dr + cg?_(j:_/fz([) PR

Lafit) + o (0] = a, LI (D] + a,L{,(1)]

Equation (7.2) satisfies the definition of a linear operation.

In (7.1} we used LIf{N)] = F(s) to define the transform of a time domain function. If
we wish to transform a Laplace domain (sometimes called the s-domain) function to the
time domain, we use the notion of an inverse transform

LEs)) = fn)

Although not emphasized in this text, Laplace transforms can also be used (o solve Hnear
partial differential equations (PDEs).
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7.3 EXAMPLES OF LAPLACE TRANSFORMS

In this section we develop transforms of some functions that commonly occur in the solu-
tion of linear dynamic problems. These functions are: (i) exponential function, (ii) step
function, (iii) time-delay, (iv) derivatives, (v) integrats, and (vii) impulse.

7.3.1 Exponential Function

Exponential {unciions commonly arise in the solutions of Huear, constant coefficient, or-
dinary differential equations:
finy= e
A plot of this function is shown in Figure 7.1.
Recall that the transform is defined for £ > 0 (we alse use the identity that e™*¥ = e¥e)

o o =3
Lle ™) = [y e dr = [ewetd = [ emteran g
0 i n

1 bes 1 - I
= . e JarBFe)T = [ (] = —
e
.s*+a[ 1“ y+a[ ] s+a

- 1
e ] = P

Exponential

exp(-at}

at

FIGURE 7.1 Exponential function.
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Notice that the way we have solved for the limits of integration is only rigarously true for
« = (. For g <2 0 the solution still holds for s > —a; we will assume that this condition is
always satisfied.

7.3.2 Step Function

The step function is used to solve dynamic problems where a sudden change in an input vari-
able ocewrs (a flowrate could be rapidly changed from one value 1o another, for example).
The step function is defined as 0 before 1 = 0 and A afier r =0, as shown in Figure 7.2,

Oforr << 0
(1) =
) {A fore = 0}

We st use the “more precise” definition of the Laplace transform, because of the dis-
continuity at £ = 0:

LIftn] = lin;g} + f[j(f) = dt

T

Since the transtorm is defined for ¢ == 0,

S A s A ; A
LA} = [ AeSdt = =[] = —=[0-1] ="
ot g a L §
1A} = %
‘ Step
! "lfAJ = A
ap .

Notice that the same expression is used for the Laplace transform of a constant,

Step Function

FIGURE 7.2 Step function.
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7.3.3 Time-Delay (Dead Time)

This is important for systems with transport delays (flow through pipes, etc.), or delays
due 1o measurements. Let £, represent the time defay. It the undelayed time domain func-
tion is ff), then the delayed function is f{t - 1), as shown in Figure 7.3.

The Laplace transform of the defayed function is:

a

LIft—tp] = (— t)e ™ di = [ fie -t et ds = f(t 1 )e e
d d 3 d )

I
LE—

fie—ty e etad(t—1,) = ()"""'ff fe—1) e (0~ 1)
3 :

'

e"“"f (Y e drt = e ()
b

Notice that the lower limit of integration did not change with the change of variable, be-
cause the function f(£) is defined as f{r} =0 for 1 < 0.

LI (=) = e " F(s) Time-Delay

The transform of a delayed function is simply ¢~ times the transform of the undelayed
function.

1}
function

i

t=0
f(t— 1)
delayed function

|

| |
t=0 t=ty

FIGURE 7.3 Delay function,
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7.3.4 Derivatives

This will be important in transforming the derivative {accumulation) term in a dynamic
equation to the Laplace domain.,

AW 3 A
Cdt i di ¢

L *dt

Using intcgration by parts ([ wdv = wv — [ vdit)

Let v = andw = f(1)

_,J{f’f(f)"i YO v~ ey, + [y se

dt oot

0| = 001+ sfrw e = sty - 70

dr

#mim”uw,
L, g = 5I7(5) ~ F{)
Derivative
Fi]
1 'i.\‘]’(.&') — 0] = 5:) -

Since we often work with deviation variables, f{0) = ( in many cases.
In general, you should he able to show the following (see student exercise 1)

1) IR U )y (1) Ly A (1) IS A ual /(1) I A (1))

L
(/!"

nth Order Derivative

n initiaf conditions are nceded f{0), ..., fA-1X0)

7.3.5 Integrals

This is often used in process cogtrol, since many controllers use information about the in-
tegrat of the error between the desired value (setpoint) and the measured value:

L[ nd | =1 |[ foyde | e ar
0 0

4

{
Again, integrate by parts, using 1 =™ dr and v = [ {01, to find
0
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t FIGURE 7.4 Ramp function.

’ Lo
Ll [riyde | = - F(s) taregral
i 8

7.3.6 Ramp Function

Consider the following ramp function:
Sy = b

as depicted in Figure 7.4,
You should be able to show (see exercise 2) that

Reunpr
LS b

7.3.7 Pulse

Consider the pulse function in Figure 7.5, which consists of a step [rom 0 to A at £ =0, and
astepback toDatf =1, Find the Laplace transfer function for this pulse.
There are two ways (o solve this problem.

t FIGURE 7.5 Pulse function.
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ONE METHGD
The pulse lunction is defined over the following two time intervals:

fy=Afor0 <ty
fity=0 forf > t,

and we can write the Laplace gransform as:

F(s) = [f(0) e de = [F(y e + [ (1) e™ i
0t o fr
1, x A
!
= Aede+ [ Oevdr= " {e "
0 L ¥

4 A .
Fs) = - ‘; e —11=" 1 e

The use of A = | is the unit pulse.

I
L]unit pulse of duration £ ] = - [1 ~ ™ Unit Pulse
$

A SECOND METHOD

Consider that the pulse is simply the sum of two step changes, as shown in Figure 7.6.

That is, it is the sum of a positive step change at r = 0 and a negative step change al
=1, Let fi(f) represent the step change at £ = 0, and f5(1) represent the negative step
changeatfr=1,

T = 1)+ A0
Fs) = F(s) + () = AL = LA + £0)

bue notice that /5(7} = ~ fi{1 — fl,)

(1}

FIGURE 7.6 Puise function.
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and that (from the step function):

and (from the delay function):

So we can write

An Introduction to Laplace Transforms

Bl =
Fis) = ¢ (= Fy(s)
A

il p— () {\'.v
hY

A
F(s) = Fils) + () = =01 = o]

which is consistent with the previous derivation.

7.3.8 Unit Impulse

Chap. 7

In Figure 7.7, consider the pulse function as the pulse time is decreased, but the pulse area
remains the same, as shown by the dashed lines below,
The unit impulse function is a special case of the pulse function, with zere width

(r,
ruie:

]
¥
P S

f:fp

FIGURE 7.7 Tmpulse function.

, = O and unit pulse area (so A = /1) Taking the Timit and applying L Hopital™s
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. . 1 ! o = ‘
L8] = lm =1 — e} = lim [ —se ] = 1
R Tl

L[] =1 Unit Impulse

7.3.9 Review

Thus far we have derived the Laplace transform of a number of functions. For example,
we found:

If we have a Laplace domain tunction, such as /(s + ), we can “invert” it to the time do-
main. For example,

Sl

=g

Although the student should be able to derive Laplace transforms of any time domain
function, that is not our major objective. Owr major objective is to use Laplace transforms
as a tool to solve dynamic problems. The Laplace translorms of many time-domain func-
tions have been derived and compiled in various tables and handbooks, Already, we can
construct a table of eight {exponential, step, time-delay, derivative, infegral, ramp, pulse,
and impulse) time-domain functions along with their Laplace domain functions. Addi-
tional Laplace transforems are provided in Table 7.1 in Section 7.6.

7.4 FINAL AND INITIAL VALUE THEOREMS

The following theorems are useful for determining limiting values in dynamics studies,
They will be used frequently to find the short-term and long-term behavior. The long term
{(final value) of a time domain function can be found by analyzing the Laplace domain be-
havior in the limit as the s variable approaches zero. The initial value of a time domain
function can be found by analyzing the Laplace domain behavior in the Hmit as s ap-
proaches infinity.

Final Value Theorem

lim () == lim |s ()] (7.3)

Tnitial Value Theorem
lim f{7) = lim [s F(s)] (1.4)
1—0) ¥
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I we have transformed a time domain function e the s domain, we can still find out the
value of the time domain function as it goes to steady-state (7 — =) by {inding the value
of the Laplace domain function as s ~» 0. A application of the {inal and initial value the-

orems 1s shown in Example 7.1,

EXAMPLE 7.1  Application of Final and Initial Value Theorems to the Exponential Function

Consider the exponential tunction:
I

f “) g
which had the Laplace transtorny:
Fy = |
s +
Fined Value Theorenm. We first find:
. .. . Al
Iy s FLs) = e oo = Q)
] sl g = g

which checks with
lim fir) = !II}I e e )
as long as o s positive,
initiad Vedhue Theorem. We first find
lim s F{s) = lim - =1
s ER
which checks with
lm}. HOE !il}& e o]

which is satistied for any finite «.

One point not often made in texthooks 1s that the final vaiue theorem only holds for stable
systems (a = 0.

7.5 APPLICATION EXAMPLES
The tellowing is a checklist for solving dynamics problems using Laplace transforms.
Step Lo Start with a linear ordinary ditferential equation and initial conditions,

Step 2. Transform euach of the time domain functions 1o the Laplace domain, gen-
erally by using a table of Laplace transforms.
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Step 3. Use algebraic manipulations o solve for the transformed variable. The
pertial fraction expansion approach is particularly useful,
Step 4. “Invert” 1o the time domain, by using a table of Laplace transforms.

7.5,1 Partial Fraction Expansion

The partial fraction expansion approach is based on representing a ratio of two pelynoni-
als as a sum of simpler terms. Let N(s) and D{s) represent numerator and denominator
potynomials, respectively.

N(s) C, c, C,

e + L I

I)(‘Sl) Dl(‘v) DZ(‘) 1)11(S)
C; are constants and ; are lower order (typically 1) polynomials,

The four-step procedure is used in each of the following examples. The partial frac-
tion expansion is first used in Example 7.3,

EXAMPLE 7.2 Homogeneous First-order Problem
Step 1. Counsider the simple homogencous (anforced) fivst-order problem:

dx
+2x=0 7.5
t 2y (7-3)

subject 1o the initial condition:

£(0) = 4 (1.6)

Step 2. Recall the following transforms:

dx
dr

Llax} = al. [x] = a X(5}

L

J = ¥ X(5) - x(0)

Then we can take the Laplace transform of {7.3) and (7.4) as:

dx
1_._-;#-] + 2L =0
§ X(8) —x(0) + 2X(s) = 0
sX(8) —4 4 2X(5) = (} 7.7

Step 3. Solving (7.7) for X(+):

L4
Xy = (18
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Step 4. l1averting each element back to the time domain:

LX) = 2

L—ll 4_ | =4 2
s 2 ’

and the solution is

A1) = e

Chap. 7

(70

(7.10)

(7.11)

Indeed, using the method in Lxample 7.2, we can show that the general
eqguation:

dv
+ax =0
i

with initial condition x(0)

has the selution i) = x(0) e ™

first-order

which, of course, is the same sofation ebtained by separating the variables and integral-
ing. The real power of Laplace transforms is in solving heterogeneous problems, as itlus-

traled in Example 7.3.

EXAMPLE 7.3 Illustration of the Partial Fraction Expansion Technique
Step 1. Consider the simple heterogencous first-order problem:

L -
oy =4as
et

with the initiaf condition
x(0) = 4
Step 2. Taking the Laplace transform of each element:
4.5
s X(s) - (0) + 2 X(5) = -
§
which can be written (since x(0) = 4):
4.5
(s + 2} X(5) = 4+
§
Step 3. Solving tor the transformed vartable

* s+2 s(s+2)

(7.12)

(7.13)

(7.14)
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We would like to invert (7.14) (o the time domain, however we do not know how to invert the
fast term 4.5/5(s + 2).
We will use the approach known as a parrial fraction expansion. That is, write;

ss+2)y x5+ 2 (7.15)

to find A, first multiply (7.15) by -

then set s = 0 and solve for A:

To find B, first multiply (7.15) by s + 2
45 A(s+2
ST o .(\ : ) + B

s &
and set s = =2 to solve for B:
which yields:
S 4 : -' T (7 l())

and we can write (7.15) as:

RN o
s+ 2 5 s+ 2
Step 4. Iverting element by element in (7.£7) we find
) =de T+ 225+ —225¢7Y
or
ey = 175 e M+ 225 (7.18)

the reader should verify that this solution satisfies the initial conditions and the differential equa-
tion.

Examples 7.4 and 7.5 provide additional illustration of the partial fraction expansion tech-
nigue.

EXAMPLE 7.4 Find the Inverse Laplace Transform of V(s + a)(s + b)

1 A B

(s +a)(s+b) s+a s+b 719

Write

Multiply (7.19) by s + a, set s = —a to find:
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|
A
a b
Multiphy (719 by y + b et s = b o find:
1
B
o — b
[ | 1 | i o
Therelore., : ¥ : o - (7.2
feor (v =+ als = 1) b—aliy v u ’__(! - i! v oE fl‘

‘ i I
’(.s =iy — 1'7)} b

Notice that tis echnigue ilsita = b,

The method in the previous example failed il the roots of the Luplace domain Tunction
were equal. The lowing example shows how 1o perform a partial fraction expansion lor

repeaicod roots.

EXAMPLE 7.5 Consider the Following Transter Function with Repeated Roors

I\ : (7.2
(& = a){y = M
Expand (7.2271n the tollowing fashion;
: R (7.23)
(s =~ atily = hH) § o (s + ) N h

Here we cannot multiply by s 4+« and set s = - because we would find unbounded werms, Tirst
multiphy (7233 by (5 + al

and set s = - Lo find

Multiply (7.23) by v+ frand set s = b to find
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Notice that we have solved for two of the coefficients of (7.23). Now, we can solve lor one
equation in one unknown, hy setting s = any value. For simplicity, choose s = 0, rom (7.23);

| o A L } y ,,,,,,,l ]
&b a (b—a) (a-b)h
o -1
we can teduce the selution for A to A= e
(a~ bY’

We have solved for A, B, und € in (7.23), 5o we can perform an clement-by-clement inversion of
{7.23) to find the time domain function:

-1 | f 17
\ (a H._ b)“'?_I I(b - n)_ | ;,(”.7 by’ ‘ _
(v + a) (s + a)? (s + B)
- , L
) N a3 L te al e I
(a~ by ‘ h-a' {a— by ‘
and we can write:
I ' -1 1 t
! . Y I TR T e L P 724
(v + a¥{s + ) (e - B)” ‘ poa'f (a—b) ‘ 7-24)

Ay an alternative, we can find & common denominator for the righthand side of (7.23) and write:

o /}(E+ a)(s + B) + B(s v b) + _(_,‘(_g + _(1)::! (725
(s +afs + 1) (s + ) s + h) o
then expand the numerator and solve for the coefficients A, B, and € such that the righthand side
is equal to the lefthand side, See student exercise 13.

The previous examples were for ODEs with real roots. This next example is a problem
with complex roots.

FXAMPLE 7.6 A Second-order System with Complex Roots

Step 1. Consider the homogeneous problem:

A S SN (7.26)
di*  di
with the initial conditions:
#(0) = x(0) = | (7.27)

Step 2. From the table of Laplace transforms:

(Jﬂx.
i

L = 5" X(5) =" (0) = 57 T () - = s ™ I(0) — 2 (0)
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So, for a second derivative:

% Twry :
Lbﬂzxﬁ””“m"m»

and, for a first derivative:

Lﬁj ] = 5 X(5) - 1(0)

We can now write the Laplace transform of (7.26) as:
& X(5) — 5 2:(0) — HO) + 5 X(5) ~ x(0) + X(5) = 0
Step 3. Allempting to isolate X(s) on the LHS:
(sF + 5 + 1Y X(s) = 5 x(0) -+ x{0) + H{0)
dividing by (s + s + 1)

s () x(Q) + £(0)
+
SHs+1l S st

X(x) =

and from the initial conditions:

5 2
D) T S I S— 728
) StHs+1. P Hs+d ' )
the roots of (52 + s+ D are —1/2 % \/’5/_2 J {trom the guadratic formula):
s+ 1) ( +I.+\/§_)( +E \/'3‘)
§ 5 y = |s+ -+ — s+ -
P 2 2’ 2 2/
Notice another way that we can write (5% + 5 + 1) is:
1y? AAAY]
S5+ )= ( + ) + (——‘i—)
(" + s ) s+ 5
which means that we can write (7.28) as:
s 2
X(‘\) = e l 2 \/3 " + e _\/3_ ;
(o) (27 (e ()
2 2 2 2
Step 4. Notice from a table of Laplace transtorms that:
(1]
Lfe™ sinwt} = —m——ory 7.249°
[ sin i) (s + b)Y + o (7:29)
Lle ™ cos wi] = S (7.30)
¢ ) (s + 0 +w’ N

and we should maneuver (7.28) into the form of (7.29) and (7.30).
Notice that we can write (7.30) as:
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§ l 1.5
X(\} g L H T (73”

NN

and we invere each element of the RHS of {(7.31), using (7.29) and (7.30}:

V3 15 ., . V3
) = e eos et b e e g T
O 2 Vi © 2

2

3 . V]
x() = e Yeos 5 L Ve sin 5 f

which has the time domain response shown in Figure 7.8. As we noticed in Chapter 6, complex

rocts give oscillatory responses. We sce in Chapter 9 that this type of response is called ander-
damped.

1.5

fime

FIGURE 7.8  Oscillatory response due to complex roots.

7.6 TABLE OF LAPLACE TRANSFORMS

For your convenience, setected Laplace transtorms are presented in Table 7.1, 1t you de-
sire to transform a function from the time domain to the Laplace domain, then took for the
time domain function in the first column (A1) and write down the corresponding Laplace
domain function in the second column {(F(s)). Similarly, if you are trying 1o “invert” a
Laplace domain function to the time domain, then look for the Laplace domain function
in the second column and write down the corresponding time domain function from the
first columa.
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TABLE 7.1 Laplace Transforms for Selected Time-Domain Functions

An F(s)
B(r} (unit impulse) I
L 0 for <2 ¢ I

S(#) (unit step) {] for U} ;
A (constant) Als
fi—0) (time delay) e B

i
t {ramp) =

5
el (.ﬂ. ﬁl )I

5"

df \ .
. (derivative) sF(x) - i
d

drt

e ~&t

L. (ea2t - gma1f)
&y~ iy

a4

({.,.ﬂ}, 4

ay ~ d,
dy — a4y —d,

it
[

1 - e—rf-r

st wt

COs wmf

¢~ sin mf

e~ cos wf
1

e € T A PR A
Tz"'ﬁ( I 2 )

1

-_iz; e Hgin (wr + (IJ))
VITTER
where @ = - i
T

2o b o= tan”

SF(s) = 5 ROY - 2000 -
_ Af(n——Z)(()) gj(n— Dy

s the
(s + a)(s + a,)
s{ts + 1)

w

4wl

8
& w
oo
(s +a) +
s +a
T
1
s + Das + 1)
1
_v(fz.yz + QE . )
A VI-g?
£
(s + 1) )
slrs + D,y + 1)
R
s(rpe + 1)
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SUMMARY

We have defined the Laplace transform and applied it 1o several functions that commonly
appear in the solution of chemical process dynamics problems. Although the Laplace
transform concept seems quite abstract at this point, in the chapters that follow you will
find it extremely useful in solving differential equation models. The final (7.3) and initial
value (7.4) theorems will be useful for checking the long-term (steady-state) hehavior and
the initial conditions for a particular problem.

A number of examples were provided to iltustrate the power of the Laplace trans-
form technique for solving ordinary differential equations. We noted that the lechnique al-
lows vs to convert the ODE problem o an algebraic problem, which is easier for us to
sobve. After performing algebraic manipufations in the Laplace domain, often with the use
of a partial fraction expansion, we then look up inverse transforms to obtain the time do-
main solution.

In the chapters that follow, we use Laplace transforms to anatyze the dynamic be-
havier of dilferent types of lincar process models.

FURTHER READING

Many differential equations and process coatrol textbooks provide details on Laplace
transforms. Some examples arc:

Boyce, W., & R. DiPrima. (1992). Ordinary Differential Equations and Boundary
Value Problems, 5th ed. New York: Wiley.

Luyben, W.L. (1990). Process Modeling, Simulation and Control for Chemical En-
gineers, 2nd ed. New York; McGraw-Hill.

Seborg, DLE., T.E, Edgar, & D.A. Mellichamp. (1989). Process Dynamics and Con-
trol. New York: Wiley.

Stephanopoulos, G. (1984). Chemical Process Control: An Introduction to Theory
and Practice. Englewood CLifts, NI: Prentice Hall.

STUDENT EXERCISES

1-5. The student should derive the Laplace transform for the following functions:
d'f

dar

2. fin=bt

3 fin=~
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d. L[ f(eydr
1]

5. A0 =cos
{Hing: Although you can solve question 5 using integration by parts. you may wish
touse the  Buler identity cos wr = 172 (e 4 grion) )

6. Find the Laplace transform, w(s). ol the following input (unction:

L{t)

0 10 20 35

7. Find the Laplace translorm of the function v(7) thal satisfies the differental equation
and imitzal conditions:

dv o dN v
R R

; SFS T+ 2y =2
dr’ dr- di :
AX(O R AT()
V) = () ot "(j) = ()
et dr- -
8. Solve the differential equation:
oy
o 3w {)
ddt ’
MO} = 2.0

9. A process input has the following Laplace wansform:

20

w(s) = - e
AY A

iy

What is the ume domain input, #(6)7 Find this analytically.
Sketeh the time domain input,
18, Find the time domain solution (1) for the Laplace domain tansfer function (with

£« 1n
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I
s(xl + 281 + 1)

Y(s) =

11, Derive the time domain solution y(r) for the Laplace domain transfer function:

. T8+ 1

s{me + Brs + 1)

12, Derive the time domain solution y(2), for the Laplace domain transfer function:
T+ 1

Y(S) [ S ——
s{r + 1)

13. Consider Example 7.5, involving the following fransfer function with repeated

FOOLS:

I _ A, B cC
(s+ay(s+b)y sta (staf s+b

Find a common denominator for the righthand side:
b A+ o+ b) + Bls+ D) + Cls + a)
(s + &)(s + b) (s + a)(s + b)

then expand the numerater and solve for the coefficients A, B, and C such that the
righthand side is equal to the lefthand side.




TRANSFER FUNCTION
ANALYSIS OF FIRST-ORDER
SYSTEMS

Alter studying this chapter. the reader should understand:

= The responses of first-order systems w step and impulse inputs,

= How chemical reactions change the time constant of 4 stirred tank.

* The behavier of an integrating process.

¢ How to compare the long-term behavior ol a nonlinear process with that of a lincar
process without integrating the nonlinear modeling equations,

* The responses of lirst-order + time-delay models.

¢ How to estimate the parameters of first-order and (irst-order + time-delay wansler
functions by applying step input changes.

* The response of a leud/lag model to a step inpul.

The important scetions in this chapter are:

8.1 Perspective

8.2 Responses of Firs-Order Systenis

3.3 Examples of Self-Regulating Processes
84 Integratung Processes

3.5 Lead-lag Models

190
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8.1 PERSPECTIVE

One of the powers of the Laplace transform technigue is the case with which it handles
heterogeneous (forced input) problems. It is most useful when the models are separate
from the type of input imposed (step, ramp, ctc.). The models that are developed are
called transfer function models and will be used frequently in control system design.

Process engineers often tearn much about the behavior of a process by changing the
inputs and seeing how the oulputs respond. The goal of this chapter is to itlustrate the typ-
ical responses of lirst-order models to step changes in inputs. Knowledge ol these types of
responses will allow an engineer to determine a good approximate model for the process,
including the best parameter vidues, based on measured daga from the process.

8.2 RESPONSES OF FIRST-ORDER SYSTEMS

The equation Tor a lincar first-order process is generally written in the following form

(fy
T ey ,' 8.1
T dr Y Y { )

whese the parameters (7 and &) and variables (v and &) have the following names;

il

time constant {anits of Gme)

k = process gain (units of outpul/input)
y = ouipul variahle
t = inpul variable

The model (8.1) is sometimes derived by lincarizing a nontincar model about a given
steady-state and then placing the resulting linear model in deviation variable Toem. For
this reason, we asswine that the initial conditions are y({) = 0 and u(0) = 0. The input, u
and the outpul v are functions of time; #(r) must be specified to solve for v(1).

In the next example, we show how a standard {irst-order process model arises.

EXAMPLE 8.1 A mixing tank

Assume that a chemical compound, A, s in a feedstream entering @ mixing tank, Asswme that
there is no reaction, and that the concentration of A has no effect on the density of the fiuid (this
is true for trace components in water, for example). Also assume that the Fowrate is constant
ancd the volume in the tank is constant—this implics that the outlet ftowrate is equal to the inlet
flowrate, as shown in Figure 8.1, The process is operating at steady-state, then the infel concen-
tration is suddenly changed 1o a new value, Find the tank outlet concentration as a function of
ime.
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c. ¥

FIGURE 8.1 Mixing tank.

Overall Material Balance

dv
T F—F=0 (fromproblem statement)

Component Material Balance

IV
dve = FC - F(
dt
since Vis constant;
d¢  F F
......... Y G ® 2
@ vy 8.2)

First of all, we can solve for the initial steady-state concentration. At steady-state, JC/dt = 0, so
from (8.2) we find;

C\‘ = C{s
where C; is the steady-state tank outlet concentration and C;, is the steady-state tank mlet con-
centration. Now, since —F/V ;. + FIV (=0, we can add this to (8.2}, Also, since C is a con-
stant, dC/df = d(C — C)dr, and we can write:

HC-C)y F . F ‘
R Y { G D 8.3
df V( ! ) V(C € (83
or
Vd(C-C
A Cha =V S C)=(C=C,) (8.4)

F oot
Equatton (8.4) is identical to the first-order equation:
Ty = kg (8.1)
witht=WF k=1, y=C-C, u=C,~C,

Notice that the tlime constant in this case is simply the residence time of the tank. that is.
the average amount of time that a molecule stays in the tank.
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Notice that for lincar systems, we can directy write the deviation variable model directly
{rom the physical model, skipping several intermediate steps. Also, since deviation vari-
ables are defined on the basis of a steady-state operating condition, if the process is ini-
tially at steady-state, then ¥(0) = 0 and 12(0) = 0.

Taking the Laplace transform of (8.1) we {ind:

Tls Y(s) = y(O)] + ¥(s) = k Uls)
ws¥{s) + Y(s) = k U(s) {(8.5)
{ry + 1) Y(s) = k U(s)

which is most commonty wrilten:

k
Y(.S‘) == 'TS+ E U(.S‘) (8.6}
or,
Y(s) = g(s) U{s) (8.7
k
where: gls) = - i_ | (8.8

The reader should become familiar with this type of representation. In general erms, g{s)
is known as a transfer function, Tn this specific case, g(s) is a first-order transfer function,
You will often see a block diagram vepresentation of (8.7} as shown in Figure 8.2

One nice thing about (8.6) is that it holds for any first-order process (with zero ini-
tial conditions)—-we have not had to use any knowledge (yet) about the input w as a fune-
tion of me. Once we know u(1), we can use Laplace transforms to find U(s) to solve the
problem. We will see later that block diagrams and transfer functions are casy 0 work
with, when we have a complex system that is composed of a number of subsystems. Be-
fore we deal with such systems, we will first understand the behavior of first-order sys-
teins o different types of inputs.

8.21 Step Inputs

The most common input forcing {unctton is the step input, For this problem, assome a
step input of magnitude AU at tme ¢ = 0. We know that the Laplace transform of a step
inpui is {from Chapter 7}

AU
L]AUL == (8.9)
5

Us) —®  gls) —® Vs

FIGURE 8.2 Block diagram,
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FIGURE 8.3 Dimensionless output step response of a first-order process,

and we can then write (8.6) as:

kAU
VIEg) = oo o 3,10
) s+ 1 5 ®10
k
ys) = AU 8.11)

s(ms + 1)

From the table of Laplace transforms in Chapter 7 (the reader shoukd be able to derive thig
result, using a partial fraction expansion):

=1 = (8.12)

and the solution to (8.11) 15 then:
w6 = kAU [1 — e /7] (8.13)

Natice that we can represent the solution of (8.13) with a single plot, by dividing (8.13)
by kAU to obtain the dimensionless output:

;fg{)j = [1 = e (8.14)

A plot of (8.14) is shown in Figure 8.3, where we have used #/7 as a dimensionless time.

EXAMPLE 8.1 Continued

As a numerical example, consider the case where V=5 ft%, F = 1 ft)/min, and the steady-state
concentration {inlet and cutlet) is 1.25 Fhmol/3. Consider a step change in inlet concentration
from 1.25 Bmol/ft? o 1.75 Ibmol/13. Then;
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AU 0.5
U(s) = o (Au(r) = 175 = 1.25 = 0.5 Ibmol/[(*)
R &
105
Ys) Ss+1 & (8.13)

which has the time domain solution:
¥ =05]1-¢5 (8.16)

Since we desire to find the actial concentration, we can convert back to the physical variables,
from the relationship:

y=0-C = Cl/)=C + i) (8.17)
and (8.17) can be written:
CO =125+ 051 ~e 1 Ibmol/i® (8.18)

Notice that C(f — o) = 1.75, a5 expected. This can afso be obtained by applying the Final Value
Theorem to (8.16) and using (8.18). A plotof (8.18) is shown in Figure 8.4.

J

1.7

1.8

1.5

C{lomol/ft™3)

1.4

1.3

15 20 25

t{min}

FIGURE 8.4 Tuiansient response of mixing tank.

PARAMETER ESTIMATION FOR FIRST-ORDER PROCESSES
Returning o the general model for a first-order process, we see that there are two parame-
ters of interest: the process gain and the process tine constant.

V() = kAU 1~ e 7] (8.13)

Process engineers often find process gains and time constants by performing step
tests on processes,
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GAIN ESTIMATION

We see from (8, 14y that after 7 > 1. the ¢ 77 e approaches 0. The value of & can be de-
wrmined:

vipas i — (large)  AY

' L (5.19)
AL AU

k=

that is. the process gain is the change in output {as it approaches a new steady-state) di-
vided by the change ininpul.

THVE CONSTANT ESTIMATION

We can find the time constant for a tirst-order process in the following fashion. Apply a
step ioput 1o the process at £ = 00 From (8. 14). we see that vii) goes 1o a value of £A as
s, When the time is equal to the lime constant (£ = 75 from (8.13):

V(1) s KA T - e ] = 0.632 kAL

-

that s the time constant can be determined by inding the time where the output, v s at
6:3.2% ol the ultimate response (new steady-stated. This rule is also obvious by looking at
Figure 8.3 when /7 = 1Ly AL = 00632,

You should be caretul. because this is only tue for Grstorder processes with no tdme-defay and a

step input at ¢ = 0. 18 the process is second-order or the input is not @ step change, cte. this 63.2%

value will not be correct.

You stiowdd ger in the habin of associgiing units with all of the varialbles, Obviously. the
process lime constant. 7. must have units of time because ¢ 77 must be dimensionless,
Also. the process gain, &, must have units of output/input o ke dimensionally congistent.

SLOPE METHOD

An alternative method ol estimating the time constant is w realize that the inttial slope of
the output step response for a lirst-order process is £3/7. a5 shown below, Taking the de-
rivative ol (8.13):
dv(ry kAU
ot T

ol

and evaloating at ¢ = 0. we Tind

dv(t =0) kAU
dt T
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dimensionless output

ttau

FIGURE 8.5 Slope method for time constant estimation (dimensionless
output = ykAwu),

1f we extrapolate this siope to the final value of the output that is achieved, we find
the time constant 7, as shown in Figure 8.5, This is a dimensionfess plot, so the intersec-
tion at /7 = | indicates an intersection at £ = 7 in physical time.

Parameter estimation for first-order processes using a step response is ilustrated by
the next example.

EXAMPLE 8.2 Parameter Estimation of a First-Order Process

A process operator makes 2 step change in an iuput from 20 (o 17.5 gal/min (gpm) and Tinds that
the output eventually changes from an initial vahue of 50 psig to 55 psig, as shown in Figure 8.6
below. Find the process gain and time constant for this system.

55
54

53

output, psig

52|

51}

0 5 i0 15 20 25

time, min

FIGURE 8.6  Stope method for time constant estimation.




198 Transfer Function Analysis of First-Order Systems Chap. 8

We can innnediately caleulate the process gain from A = AW/ A = 35 - 50 psig/17.5 -
20 gpm = -2 psig/gpm. We can caloeulate the time constant in a number of different ways. One
way is 10 [ind the time where the ourput change is 63.2% of the linal change, This oceurs when
the output is 50+ (.632(5) = 53.2 psig. From the plot this occurs at ¢ = 5 munutes. Another way
to fined the time constant is o extrapolate the initial stope of the response to the final value. This
oceurs al 7 = 5 minutes, as shown, The idemilied process tansler tunction is then:
-2

) e
8D = L

Notive that the gain (=2 psigZgpm and time constant (5 min) have units associated with theny,

8.2.2 Impulse Inputs

Consider a first-order process with an impulse inpul of magnitude A, The transform of a
unit impulse (3) is 1. so LIA8] = A. The first order Laplace domain response is:
k kA

Y(s) =~ - - Uls) = (8.20
() 75 + 1 (s) 15 + 1 )

the time domain response is:
vy = kA e T7 (8.2

Dividing by A4, we find the dimensiontess output respense shown 1 the Figure 8.7
below. The prime charactenistic of a first-order system is that there is an immediale re-
sponse to an impulse input.

I practice it s difficult o actually implement an impulse function. A close approx-
imatien can be made by implementing a pulse mput over a shorl period of lime, as shown
1 the next example.

0.8 -

0.4 -

0.2 -

dimensicnless output

tau

FIGURE 8.7  [linpulse Response for a first-order process. The dimensionless
output is v(#1/kA.
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EXAMPLE 8.3 Comparisen of Tmpulse and Pulse Inputs

1o the previous example an imputse of magnitade A was applied to the process, Consider a pulse
input, where an input value of Au is applied for 1, units of time, as shown in Figure 8.8, The
total applied input is then A = Ay .

Ay

0 fa

FIGURE 8.8  Pulse input.
From Chapter 7 we find that:

A
U = S -e )

So, the owtput for a first-order process with unit gain, is:

At |
Vis) = — - {] e :
N R

Y(S) - . A“ [ AH € !‘
sfrs H 1) (s 4 1)
which has the time-domain solution (Chapter 7):
V(0) = A1 — e - Au [t — e O Y pulse) (8.22;

where H(f) = 0 Toe 1 < t,and | for¢z £, andd the total input applied over the £, ime units is dir -
The impulse response is:

v(1y = kA ¢ = |k An tye = (impulse) (8.23)

The pulse and impulse responses are compared in Figure 8.9 for f,=0d7and A =1,

dimensioniess output

trtau

FIGURE 89 Comparison of pulse (dashed, t, = 0.171) and impulse (selid)
responses,
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8.3 EXAMPLES OF SELF-REGULATING PROCESSES

The standurd first-order model presented in the previous section is a typical selt-regulut-
ing process. [F the inpat is changed (o another value. the cutput eventually comes to a new
steady-state. Contrast this with non-sell-regulating systems where the output continues
change forever atter a step input change. Self-regulating behavior is shown by the systems
preseited in the following example. One key idea te note Is that a chemical reaction
changes the time constant o a standard mixing tank moedel.

FXAMPLE 8.4 A CSTR with a First-Order Reaction

Now. extend the Example 8.1 to include a single deconmposition reaction, The component maler-

ial hatanee 15
dV{ R, .
w RO Bk VI (%24
dt

where &) Ix the reaction rale constant. Since V Is constant:

ooyl

@

= kO & 18.25)
dr ] o

1.
.. ('
( X ]y,/ &)
-
y ek

Tlhe deviation vanable form ol our dynamic model is

d(C - ) i ‘ oo .
ok C ) (O R.2¢
" [ ko - (8.26)
oF
- - Ia
: O - ) v .
f P (C—-0C) = (¢, =070 (8.27)
'L k i ot : [ -k '
J % AR
Again. observe that this is simply a ficst-order QDI with:
v EoF
L - v 1
+ o= [ ok . p and &k - . ¥
} L+ A | = k|
v (= C and o = O
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and therefore, we know the soletion for a step change in indet concentration ai ¢ = ().

Notice that the gainys and time constants Lor a stirred tank with reaction are less than those
for a stivred tank without reaction. This means that an inlet composition change has a Faster dy-
namic effect in a system with chemical reaction than in a system with just mixing,

Note that the previous examples were linear because (he owrate was constant, If the
flowrate were changing (i.e., was considered an input}, the models would be nonlinear
{actually bitinear), beeause of the terms where an input multiplies a state variable, The
linearization techniques developed in Chapter 5 must then be used hefore a Laplace trans-
form analysis can be performed. In the following exanple, lincarization must be used be-
cause of the second-order reaction terne,

EXAMPLE 8.5 A CSTR with 2 Second-Order Reaction

Here we extend the previous example to include a second-order reaction problen. We will as-
sume that the rate of reaction (per wait volume? is propoertional to the square of the concentration
of the reacting component. An example would be A + A - J. Ag before, we arc making the sing-
plilying assumption that the Muid density is not a function of the concentration. Again, assume
that C; is the input. The component material balance is:

dve

KO- FC—k, V(2 {8.28)
et ’

where &, is the reaction rate constand, Since Vis conslani,

e - o )
ato_ / Com o O, O {8.20)
dt vy B

and we can caleulate the steady-stase concentrations from ¢/t = 0

22 f - v
o €L 1 € G =0 (8.30)
Notice that (8.30) is quadvatic in €, and will always have one positive and one negative root
(the reader should verily this by using the quadratic formula). Obviously, only the positive root
makes physical sense.

Now, the problem with obtaining an analylical solution 1o {8.29) is the nonlinear term.

We can use the linearization technique from Chapter 5.
dc-cy o
dt ac

% RN

Loy fing that:

L) (8.31)
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Again, we lave a first-order. linear relationship, where:

-
- ¥ I
OCENS 04 P - = s
process gain o : "
( lex,c") (1 2h -
v - f
Vv
; F

lime constant = 1

Summarizing, the parameters for cach of the previous examples are shown in Table 8.1

TABLE 8.1 Swmmary of Parameters from Examples

Ex. 8.1 x84 Ix. 8.3
Mixing Tunk {8TR CSTR
No Rxn First-Order Rxn Second-Order Rxn
. 1 I
Process Crin. & =
¥ \
i+ ,r:"‘ boe 2k C
Vv §
o . [ F I
Process Time Constant, 7 o
f v §
1 P k, I+ 24, C

EXAMPLE 8.6 A Numerical Study of Examples 8.1, 8.4, 8.5

Here we will perform a numerical study. using the Tollowing values:

;: = 3 min All cases

A, = 0.2 mm' ‘ CSTR with first-order Rxn

k. : .32 1t Ihmnl P rip ! CSTR with second-order Rxn
C, = 1.25 lbmot 1t # All cases

Then, we can calculate the following steady-slate concentrations:

C = 1.25 Ibmol -7 Mixing tunk with no Rxp
0.625 lhmol (14 CSTR with first-order Rxn
o) = 0.625 lbmol 1t ° CSTR with second-order Rxn

,-\
l
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Mixing Tank CSTR CUSTR
Mo Rxn First-Order Rxn  Second-Order Rxn
—_— T
Process Gain, & 1 0.5 0.5
Process Time Constant, (min) 5 2.5 2.5

MMM

For all of the examples, assume that a step change in the inlet concentration occurs at £ = (), That
is, C; changes from 1.25 lbmol fe3 to 1.75 thinol f-2 at ¢ = 0 minutes. I terms of deviation vari-
ables, this means that 1 increases from 0to 05 bmol ft3atr =,

Recall that the sofution for a first-order system with a step input change of mignitude

A s

Wi} = kA1 = 7]
and since Wy = C()y - C,
our solution is C(r) = C + kA1 — 77 (R.32)
For the mixing tank Cl) =125+ 05[1 - Pl (8.33)
Tor the CSTR with first-order Rxn C(e) = 0.625 + 0.25[1 — e (8.34)
For the CSTR with second-order Rxn C(r) = 0625 + 0251 — ¢ 23] (835

Notice that solutions for the nixing tank (8.33) and the CSTR with first-order Rxn (8.34) are
exaet because these systems are isherently linear. The solution to the CSTR with second-order
Rxn (8.35) is only approximate, because it is based on a linearized approximation (o a nonlinear
model,

The actual response of the nonlinear mexlel {using oded5) is compared with the linear
solution {8.35) in Figure 8.10. Notice that the initial response is similar, but the long-term re-

0.9} linear

© 0.8 nonlinear
0.7 i
0 5 10 15 20
f(min)

FIGURE 8.0 Reactor concentration respanse to a step increase in inlet
concentration, for a sccond-order reaction.




204 Transfer Function Analysis of First-Order Systems Chap. 8

sponse of the linear model deviates significantly from the nonlinear model. Indeed. we can cal-
cufate flie long-term response without doing any numerical integration, as shown below,

Linear Model (8.35) as (- o) = 0.625 + 0.25 = 0.8750
Nonli Model (8.30) as r— o+ F & r C 0
onlinear v 3Uh as oo ; R O

onlinear Model ( ) as N vk, O v, O

CIF0.625 C, - 0.625(1.75) = 0

The sotution that nsakes physical sense is: ey = 7790

In Fxample 8.6 we were able to find the new steady-state for the nonlinear system by
solving a single guadratic equation. For the general case, with a model composed of 4 set
ol nonfinear equations, one would need 1o solve a set of aonfinear algebraic equations.
This would be done twice, once (o [ind the initial steady-state, then again to find the final
steady-state after & new nput change.

EXAMPLE 8.7  First Order + Deadtime
The most common model for process control studdies is known as a (irst-order + deadtime

process madel, and is written in the following form

ey
T by = Al - ) (8.36)
dr
where 0 is known as the tine delay. Assume thag W0) = 0 and #(0) = 0. The input, u and the sut-
put v are Tunctions of time; w{/} must be specitied to solve tor y(r).
To understand how this equation might arise, see Figure 8.11.

&

G

G \

FIGURE 811 Mixing tank.

Notice that il the inlet pipe has a significant vofume, there wilt be a delay between a change in
the concentration at the inlet pipe and the concentration at the outlet of the pipe. The delay can
be caleulared as:
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g o= .Vf’
I
where V), is the volume of the pipe. The relationship between the concentration at the exit of the
pipe and the inlet of the pipe can be found by:

CEE = - 0)

That is, the concentration at the exit of the pipe is equal to what the concentration at the outlet of
the pipe was 8 time units in the past. The maodeling equation is;

W
a v v
which can be written:
JdC I F
e I o7
et Vv 1% 1{ )

which is equivalent to (8.36) when written in deviztion vaviable form, where:
v
w="0, -0, yo= - C, o=
2 ; y:
Taking the Laplace transform of (8.36) we find:
T8 V(Y — (OO} + Vi) = ke Uls) {8.37)
TSY(s) + Y{s) = k™ Us)

which is most commonly written:

k s
Y(s) = o U(s) (8.38)
T8 b1
or,
Y(s) = g(s} U(s) (8.3
ke®
here: N - ‘840
where g2(x) N { )
Assime g step input of magnitude Aux at time £ = 0, We know that:
A
L{Auf = °F (8.41)
$
and we can then write (8.38) as:
ke s A
Y(s) = - & au {8.42)
LT S
kAg e
V(g = ot 8.43
(=) s{es -+ 1) (8.43)

1
Y(s) = kAw ™ L' " 1 J (8.44)
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The solution we (8441 is then sinee L{v(r~ 8] = ¢ ™Yo
v{f) == () for O = 1= 0
V() e KA b e T ary w8 (B.-43)

Notice that (3,451 s merely @ translation of the first-order response by 0 e units,

Consider the Tollowing plot (Figure 8,121 of the response of 0 system o g step input
chanpe of magnitude 0.3 at thne ¢ = 0. We see immedialely that the time delay is 8 = 5 minutes.
Since the change in output after a long pertod of tme is Ay == | =5 dwowe see that A = 2 (units ol
input/outpun), The process time constant can be detennined from the amount ol ume. alter the
delay, that it takes for 63,24 of the change o oceur. in this case. the e constant is approxi-

matelv 3 minates.

0.8
0.6
0.4

0.2

FIGURE 8,12 Response of a first-order + deadiime 03 time units) model (o 4

step input at £ = (L

8.4 INTEGRATING PROCESSES

The previous examples were for self-regulating processes. I an input changed. then the
process cutput came o a new steady-state. Another commeon chemical process is the inte-
{

arating process, as shown in the example below,

EXAMPLE 8.8 An Integrating System
Consider @ water storgge tank with inlet and outlet streams thae can be independently adjusted.
The stotage tank has a cross-sectional area of 100 (12, Tmitally. the flow s equal to the flow
oul. which = 3 1t min, The mitial height of water in the tank is 3 v and the height of the tink s
L6 L AL 100 pm the inlet Dewrate is increased o 6 f4min, When does the tank overtlow”?

The material balance (assuming constant density) is
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d |4

= F-F 8.4
= E, (8.46)

where F;and £, are the inlet and cutlet flowrates, and V is the tank volume. Assuming a constant
cross-sectional area:
dh ] P 1 5 (8.47)
di A AT '
To satisfy steady-state relationships Fi, = F. . so we can use the following deviation variable
form:
dih—hy |1 ]

o (o Y
dt /\( ! ») A

(F,=F) (8.48)
For simplicity, let’s assume that £, is constant, then:

dih—h) 1 .

N — S 49

T (8.49)
which has the form:

Doy (8.50)
dr ! h

where y =k — i, &£ = YA and = F, - F,,. Taking Laplace transforms, we find;
SY(s) — ¥(0) = k UAs) (8.51)

where 3(0) = {0) — i, Assuming thal we are starting from a steady-state, »(0) = A(0) ~ /i, = 0.
So we can write (8.51) as:

sY(8) = k U(s)

or,

¥(s) = ’:‘ U(s) (8.52)

Using the notation Ay for the magoitude of the step increase:

Uy) = (8.53)
A3
Au
and Y(s) = £ 9“ (8.54)
5

Taking the inverse Laplace transform:

kA

vy = LY = 1! { ; {8.55)

(i} = kAut (8.56)

Substituting back for the physical variables,

] _
B h o= AR 8.57
1 -, ; (8.57)
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i
or, B hot “- RO
{(6-3) I‘li/miu

o= 3t A i
100 1t

Solving forfi = 10 ft

100 ft*

e s 600 mimies
{6 — 3"/ min e

£ (10 - 410

= 1} hours

Singe the step change was made at 1:00 pm, the tank will overflow at T1:00 pm.
A plot of tank beight versus time is shown in Figure 8.13.

9-

At

0 100 200 300 400 500 600
time {min)

FIGURE 8.13  Integraung systenu.

Chap. 8

Nolice in cquation (8.52) that the process transfer function has a pole at v = 0. This is a

characteristic ol an mtegrating systemn.

8.5 LEAD-LAG MODELS

Some dynamic systems. particularly involved with process control. have the following

forn: for a transter function model:
V(s) = ke Us)
75+ 1

Consider a step input change of magnitude Au

{8.58)
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7,8 + 1 An

Y(s) = k- 8.59
() Ts+ 1o ¢ )
The reader should find that time domain response is (see student exercise Fi)
Tu . V -
y(i) = kdu|l- (E - —) et (8.60)
Td

A plot of (8.60) is shown in Figure 8.14, for kAu = 1. Notice il 7, > 7, the immed:ate in-
crease in the output is greater than the ullimate steady-state increase, while if 7, < 1, the
immediate increase in the output 1s less than the ultimate steady-stale increasc.

8.5.1 Simulating Lead/Lag Transfer Functions

We have derived the step response for a lead/lag transfer function. This transfer function
does not usually arise in the modeling of a physical system, but it often arises in control
system design. Our desire in this section is to show how to convert a lead/lag transfer
function 1o state-space form, so that a general simulation package can be used to integrate
the corresponding ordinary ditferential equation.

Multiptying through by the denominator term in (8.538), we find:

(8 + 1) Y(s) = (1,8 + 1) Uls) (8.61)
2 , , . .
10 =

Lead-Lag for = 5

15k75 .
Various values of T,
. 5
2.5
y
K&u 01 T
Ot J
,.1 5

05t / 1

..1 N N A L

0 5 10 15 20 25

1
FIGURE 8.14  Lead/lag response.
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Lising the Laplace transform relationships.

ey . { it 3
T,_,( ['! _\'{())} b= g n u(())) s (8.62)
1 ! L

and we know that o obtain the transfer funcuon fornt, the imtad conditions ot all var-
ables were assumed o be zero. so;

ey elie o
T oy S (8.03)

We cannol solve (8.63) by using a general purpose integrator. because it s not in the stan-
dard form ol dvidr = H. Our goat now is o deling o new variable that will aHow us to
use o standard integrator.

Rearrange (8.63) to f1nd:

ey dt ,
Ty T, = -yt (8.641
ol dr

N TN Tk (8.63)

and since 7, and 7, are constants. we can lake the derivative of (863} with respect o tine

10 hind;

dx i i )
T T (8.()(\3
ddi oy e

Sabstituting the vighthand side of (8,601 for the lefthand side of (8.641. we find:

el N
S T, (8.67)
ot

Now. we must solve (8.65) (o find v as o function of x, o ehiain
lﬂi oA
yv=- v+ "y (8.681

which we substitute into (8.67) 1o find:

Iy { ' T,
e v E ( [ !s) it (8.6
di T, ! Ty

and we see that we have the standard state-space form:
i=Ax+ Bu
v Ux & Du

cxeept thal (8.68) and (8.69) consist of scalars:
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ey
=ax -+ bu (8.70)
di
y=cx+du (8.71)
where
1
g4 = - - bh = (1 - 'f-d)
Ty Ta
i -
v o (’ e ’r”
Ty Ty

We will see in Chapter 11 how (8.70) and (8.71) can be used within the context of a block
diagram.

SUMMARY

We have studied the response of a4 number of processes that have denominators of transfer
function models that are first-order in the Laplace vanable, s, The systems were: first-
order, first-order + deadtime, integrating, and lead/lag. Most chemical processes can be
represenied by a cascade of these types of modes. We found that stirred tank chemical re-
actors are linear first-order processes, as long as they have {irst-order kinetics (or ro reac-
tion) and the input flowrate is not changing.

For first-order and first-order + time-delay transfor functions, we discussed how o
estimate the parateters (which always have units associtated with them) by applying a
known step input o the process and observing the response. First-order + time-delay
maodels are commonly used in control system design,

In the next chapter we study the transient respense behavior of second- and higher-
order systems.

STUDENT EXERCISES

1. As a process engineer, you are attempting to estimate the model parameters for a
process that you believe is first-order (with no deadtime). At 3:00 pm, you make a
step input change to the process. At 4:00 pm, the process output has reached 80%
of its final change.

What is the time constant of the process?

2. Consider a waler storage tank with indet and oudet streams that can be indepen-
dently adjusted. The storage (ank has a cross-scctional area of 100 (2. Initially, the
flow in is equal to the flow out, which is 5 ft¥min, The initial height of water in
the tank is 4 ¢t and the height of the tank is 10 {t. At f =0 a ramp increase in the inlet
flowrate is made, s0 that F{£) = 5 + 0.25¢ where the [lowrate units are {%/min.
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How long does it take the tank 1o overflow? Solve using Laplace transforms,

OBtan & general expression for systems modeled in deviation sartable form hy:

dv k() S
s kon( :
(f'f ' ‘ .
where: uft) = ot 5

Write a differential equation which corresponds o the following imput-output trans-
fer function relationship:

Consider a chemical reactor that has zere-order kinetics, that is, the rate of reaction
per unit volume is a constant (a zero-order Kinetie parameter) that dees not depend
on concentration. Compare this model with that of @ stirred tank mixer. and a stirred
tank reactor with first-order Kineties, Perform a numerical study, related to Example
8.5 by finding the 7ero-order parameter thal yields the same steady-state concentra-
tion as the {irst-order kinetic model.

A process operator makes @ step change on annput vartable at 2:00 pm and discov-
ers ne output response is ohserved untl after 2:10 pm. She finds that the output is
0% ol the way 1o its final steady-state at 2:45 pm. You beheve that this is a first
order + deadtime process,

terng iﬂplll UUIPUI
1:00 pm 200 1b/hr 100 ;
1:30 pm 200 Ib/hr 00°F i
1:59 pm 200 Ib/he HO0°r
2:00 pm 225 Ib/hr 00T
210 pm 225 Ibihr HOO°E
2045 pm 225 )h/hr Orr
after 5:00 pm 225 Ih/hr Plaed

(iy What is the deadtime for this process (show units)?

(i) Whal is the time constant for this process (show units)?

(iif) What is the process gain (show units)?

As the process engineer for an operating unil ina process plant. you are trying o get
a “feel™ for the dynamic characteristics of a particular process. You have a discus-
sion with the operator aboul a process {which you feel is frst-order) that uses steamn
flowrate as ar mput variable, and process lemperature as a measwred variable, After
the steam flowrate is increased frony 1000 Th/hr to HHLOO I/l (quicklvy, the process
Muid temperature changes from LO0°F {the initial steady-staie) o [TOPF in 3G min-
utes. The temperature eventually reaches o vew steady-state value of 120°F,

(i) Find the process gain {show unigs).

(ii) Find the process time constant {show units).
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7. A process input is:

9.

10.

u(ty =0 fors <20
w(y =L —e™ fore=0

The process lransfer function is:

2.5
) = 5

Find the time domain output, y{0). Plot both the input and the vutput.

Consider the mixing process shown below, where a portion of the feed stream by-

passes the mixing tank.

a. Show that the process has a lead/lag transfer function, if the input is €, and the
output is Cy. (Hint: Write a dynamic balance around the tank and a static bal-
ance around the mixing poeint (after the tank outlet). Use deviation variable
form.)

b. Let F =2 mmin, #, = 1 m¥min, Cr=1 kemol/m?, and V = 10 m*. Find the
state-space model and the transter function representing this system.

¢. Consider a step increase of Crto 1.5 kgmol/m?. Find the response in Cy 10 this

change.
F

F

Cr F

G
Fa=F
>
c, Cy

Comparison of Impulse and Pulse Responses. Consider a tank with constant cross-
sectional area, A, = 1 m?, and assume that the flow out of the tank is a lincar func-
tion of the height of liquid in the tank. The steady-state values of tank height and
flowrale are 1 meter and 1 m3hr, respectively. Find the impulse response of tank
height if | m? (in addition to the constant steady-state flow} is instantanously
dumped in the tank. Compare this with several pulse responses, where the addi-
tional 1 m3 is added over 0.03, (1.1, and (.15 hour periods.

Consider & chemical reactor where a step change in coolant flowrate from 10
gal/min (o 12 gal/min (at f = 0) causes the change in reactor temperature shown in
the figure below.
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temp, deg F

0 20 40 60 80 100 120

time, minutes
Find the gain, Lime constant, and time-delay for this system.
1L, Forstep response of the lead/ag transfer function:

T8+ LA
V) = 4 8L B
e Y

Show that tdme domain response is

i) = k Au l] - (} -

T P
' {3--‘ b
Ty .

Chap. 8




- TRANSFER FUNCTION ANALYSIS Q
- OF HIGHER-ORDER SYSTEMS

After studying this chapter, the reader should be able to:

* Understand the dynamic behavior of second-order systems.

* Understand the effect of poles and zeros on the response for higher-order systems.

* Usc the Padé approximation for time-delays,

* Understand the concept of inverse responsc.

* Understand how (o simulate transfer function models using ODE solvers that re-
quire sets of first-order ODIs.

« Use the MATLAB routine tf2ss to convert from teansfer function to state-space
form,

+ Use the MATLAB routines step and impulse.
‘The major sections are:

9.1 Responses of Second-Order Systems

9.2 Second-Order Systems with Numerator Dynamics

9.3 The Effect of Pole-Zero Locations on System Step Responses
9.4 Padé Approximation for Deadtime

9.5 Converting the Transler Function Model 1o State-Space Form
9.6 MATLAB Routines for Step and Impulse Response

215
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The dynamic behuvior of firsr-order systems was studied in Chapter 8. In this chapter, we
present results for higher-order systems and show how (o use standard numerical integra-
tion routines lor tme domain simulation of these models. We first study second-order
systems. then generalize our resuits o higher-order systems.

9.1 RESPONSES OF SECOND-ORDER SYSTEMS

Consider a Imeay second-order QODE, with constant parameters,
dy oy b uts) ©.1
i, L+ oa agy = bl .
S dr Ve "

This 1s often written in the form:

N ([j?' Lo ({\- . & uf ) {92
Ty b 20T vo=kuls )
dr- Todr
where (0bviously e # 0%
- a h
ot Qe o=
iy iy dy

where the parameters are:

k = gain (units ol output/inpul)
L = damping luctor (dimensiontess)
T = natural period (units of time)

We discussed i Chapter 6 that single sth order ODEs do not naturally arise in chemical

set of two first-order equations {state-space model) (o a single second-order equation. For
a given sccond-order QUL there are an infinite number of sets of two first-order (state-
space) models that are equivalent.

Taking the Laplace transform of (9.2):

7 V() = sv(0) = O] + 207 [sY(s) — w(O)] + Y(5) = kLIs)

where Y(s) indicates the Laplace wanslormed variable.
Assuming initial conditions are zero, that is 3(0) = v(0) = 0, we find;
k :
Y(sy = 5, U{s) (9.3
Ty ok 2T o 1
which can be represented as:

V() = g(s) U(s)

The characteristic equation of the second-order transfer function is s> + 281 & + . We
can find the roots (also known as the poles) by using the quadratic formula:
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TFTABLE 9.1  Characteristic Behavior of Second-Ovder Transfer Functions

Case Damping Factor Pole Location Characteristic Bebhavior
I {>1 2 real, distinet poles overdamped
II (=1 2 real, equal poles eritically damped
HE {<t 2 complex conjugate poles underdamped

= 2p7k '\/ 4@272 - 47?

D, = 9.4
[f z’rz ( )
which vields the following values for the roots:
VaT(2 - 1) VT -1

po b VAT@-D g Vet 05

T 27 T T

ViR -1
e = L L {9.6}

T T

The following analysis assumes that £ > 0 and + = 0. This tmplies that the real portions
of p, and p, are negative and, therefore, the system is stable. The three possible cases are
shown in Table 9.1,

9.1.1 Step Responses

Now, we consider the dynamic response of second-order systems to step inputs (U(s) =
Auilsy:
k Aur
V(o) = oy e . (().7)
(s) T s F Ly
where Au represents the magnitude of the step change.

CASE 1 Overdamped (€ = I)

Since {2 |, we can see that the two roots will be real and distinct. Also, since we assumoed that
7 == {}, the system is stable (the roots are less than zero, since we are assured that \/C2 — 1<)
We factor the polynomial 126% + 2075 + 1 into the following form:

T+ 2y L= (s ok Dy 1) {9.8)
We see immediately {rom {0.8) that the poles (values of s where the polynomial = 0} are:
R VAT R Vo ©.9)
from (9.5), (9.6) and {(9.8) we tind:
po= U= =g VI - D/

which gives the following value [or the First time constant:




T . (10
SR EE
Also. we find the second pole:
p= ol =it =N

R TR}
B ¢
Lxpanding the righthand side of (9.8),
ERE SRR R T B o8 AU SRR R U 30 O R (912}
We cdh Wit
oo, oand 20w ovy T,
which lead to the relationships
TENTT, (V.13
= b 'CREY

W can derive (see student exercise la) the following solution {or step responses of overdamped

Sy stens

Overdamped, { > 1

Tt e e )
i) A H A (9.15}
’ Too T
T | T
where 7, = o T o
T A

Note that, as in the case of first-order systems. we can divide by A3 to develop a dimensioniess
output. Also. the dimensiosless time s ¢7 and we can plet curves Tor dimensionfess output as a
Function of £ This is done in Figure 9.1, which includes the eritically damped case. as discussed
next. Most chemical processes exhibit overdamped behavior, The eritically damped step re-
sponse 1s also shown o Figare 901 (curve with { = 1.

Various values of damping factor

0 5 10 15
tlau

FIGURE 9.1 Siep response of a second-order overdamped system.
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CASIL 2 Critically Damped ({ = 1}

The transition between overdamped and underdamped is known as critically damped. We can
derive the following for the step response of a criically damped system (see student exercise th)

Critically damped, { = 1 [Repeated poles]

¥{t) = kAu (l - (I + ;) c"”"') (9.16)

Notice that the main difference between overdamped (ot critically damped) step responses and
first-order step responses is that the second-order step responses have an “87 shape with a maxi-
mum slope at an inflection point, whereas the first-order responses have their maximam slope
initially.

The initial behavior for a step change is really dictated by the relative arder ol the system,
The relative order is the difference between the orders of the numerator and denominator
polynomials, It the relative order is 1, then output response has a non-vero slope ai the
time of the step input; the step response of a systermn with a relaiive order greater than |
has a zero slope at the time of the step input.

CASE 3 Underdamped (£ <2 1)
For [ < |, from {9.5) and (9.0}, we find that the poles are complex:
I . PR
L, V0D

T T T T

which is written in terms of the real and imaginary contributions:
peatip
g V- 8)
-2 p=

T T
We can derive the following step response for an underdamped system (see student exercise 13

where: w =

Underdamped, (£ < 1) [Complex poles]

y(r) = kA (l \./'l“l;*‘:i e U s (P + (|))) (9.17)

V-

A VL=
where B = &b = tan }

T g
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Again, dividing by kAu, we can produce the plot shown in Figure 9.2,

2nd order underdamped

yikA

ttau

FIGURE 9.2 Step response of # second-order underdamped system as a
funetion of the damping factor ().

A number of insights can be obtained from Figure 9.2 and an analysis of the step responsc
equations. Notice that the poles for the second-order system can be writien:

, e |
Pl VOO

Observe that, for smaller £, the response is more oscillatory. For § <0 1, the ratio of the imaginary
portion to the real portion of the pole is:

imaginary _ V(1 - [7)

real {

As the imaginary/real ratio gets larger the response becomes more oscitlatory. We also notice
that a decreasing T corresponds to a larger negative value for the real portion. As the real poréion
becomes larger iy magnitude (more negative) the sesponse becomes faster. We use these insights
to interpret polefzero plots in Section 9.3,
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time tw© first
pesk

period of
c rige time - ogcillation

decay ratio = %

.8
overshoot ratio = — o . .
€ FIGURE 9.3  Step response character-

istics of underdamped second-order

Time processes.

h 5 ’ a

9.1.2 Underdamped Step Response Characteristics

The following common measures of underdamped second-order step responses are shown
on Figure 9.3 and defined below: () rise time, (2) time to first peak, (3) overshoot,
{4) decay ratio, (5) period of oscillation.

Rise tinte. The amount of time it takes (o first reach the new steady-state value,

Time to first peak. The time required to reach the first peak. Notice that there arc an
infinite number of peaks.

Overshoot, The distance between the first peak and the new steady-state. Usually
expressed as the overshool ratio, as shown in the figure.

Decay ratio. A measure of how rapidly the oscillations are decreasing. A h/a ralio
ol 1/4 is commonly called “quarter wave damping™.

Period of oscillation. The time between successive peaks.

The following example shows how to use Figure 9.2 to estimate these values.

EXAMPLE 9.1 Underdamped Second-Order System

Consider the following transfer function, subject to a unit step (Ax = 1) inpat change (assume
time units are minutes):
5
(5} = s .
87 4 oy 1
Find the (1) rise time, (2} time to first peak, (3) overshoot, (4) decay ratio, {5) period of oscilla-
tion, {6) value of v(f) at the peak time,

ESCOLA DE EMGENHARIA
BIBLIOTECA
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Char Hirst step is to caleulate the system paramceters. We can see that

k=
=dsoT =2
0.8 08
2‘-7 =08 s0 C = _} - _.:1__ =072
2T

We use Figure 9.2 as the hasis for the foliowing calculations.,

. S - S , o .
L. Therise time for {=0.215 7 = 1.8 50 = 1.8 7= 3.0 minutes

T

!
2, The time to firstpeak for £ = 0.255 o = 320500, = 3.2 7 = 6.4 minutes

. R T
3. The overshoot ratio is | = ()53
- R S ;
4, The decay ravois = o= (0.3
‘ 1.53 - ]

. O 4 : ‘
5. The period ol escillation is ™ = 9.6 - 33,501, = 6.3 7= 12.6 minutes.
T

A

153 sov=1 53 kA= 1.53(5) =
e 153, sov=153 A= 133(5) = 7.65.

6. The value of (7)) is

Although equation (9,17} can be used 10 solve the previous example. itis often easiar to
use the dimensionless plot {Figure 9.2).

9.1.3 Impulse Responses
Noew, we consider the dynamic response of second-ovder systems o impulse inputs.

},(\) - Y K

757 A 2y £

where A represents the magnitude of the impulse.

CASE T Overdamped (= 1)
The tme demain solution for the overdamped case is {see student exercise 2a)

o 1 - fo
V) hA s ¢ T ki (\ 1 - ¢ )
{ i ! T

TN —

where v/ 1s the dimensionless output and #/7 is the dimensionless tme.
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CASE 2 Critically Damped ({ = 1)

The impulse response for the critically damped case is (see student exercise 2h):

t ;
‘({)/k/l =y HT
77

-

CASE3  Underdamped (£ = 1)
The time domaim solution for the underdamped case is (see student exercise ¢y
1 f P e f
L ¢ “Etf sin [ VT - CZ
TV -2 g

‘The impulse responses as o function of L are shown in Figore 9.4,

0.8

0.8

0.4}

0.2}

dimensionless output

ttau

FIGURE 94 Lmpulse response as a function of £,
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The underdamped responses show characteristic osciltatory behavior,
9.1.4 Response to Sine Inputs

Consider the case where the inpul is a sine function, with amplitude A and {requency o
(e} = A sin wr
The Laplace transform is:
Aw
(A\‘: 'I.' .u;:}

when applied to the second-order pansfer function and inverted to the time domain. the
response alter a long period of time is the periodic function:

f(.S‘) =

0 5 (9.1%
i V(T - 0’y o+ (2w SN (o + ) )
where:
- ZC—(I) |
b = l'{ll]'l ( . _:')i \J ({)IUJ
I — 17w,

(see student exercise 3). The amplitude of the output is;
kA
VI - 120 + (2irw)?
and the phase angle is &. Often, system behavior is discussed in terms of an amplitude
ratio, which is the amplitude of the cutput divided by the amplitude of the input. The am-
plitude ratio is:
k
V(I = ) (o)

These retationships are used in Fxample 9.2,

EXAMPLE 9.2 Sine Forcing of Second-Order Systems
Consider the following system:
_ i
s1E 025+ 1
Alow frequency sine forcing (e = 1] min ™) yiekls the input/output response shown in Fig-
ure 9.5,

Notice that the output lags slightly behind the input, and the amplitude of the output is
shghtly smaller than the input amplitude. Contrast this result with the foilowing case ot a high

freguency input. i

= T
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1.5 e e ot e« . J— }

0 20 40 60 80

time, min

FIGURE 9.5 Low frequency sine input response.

100

225

A high frequency sine forcing (w = 5 min™!} yiclds the input/output response shown in Fig-

we 9.6,

time, min

FIGURE 9.6 High (requency sine input response.

Notice that the owtpnt lags significantly behind the input, and the amplitade of the output is

muck smaller than the input amplitude.

A particularly interesting type of behavior that can vccuar with second-order underdamped
systems is known as resonance peaking, which occurs in inlenmediate frequency ranges as

shown in Figure 9.7, where a frequency of 1 rad/min is used.

Here the output amplitede is significantty higher than the input amptitude although the
input/output gain ts 1. AL lower (Figure 9.5) and higher (Figure 9.6) frequencies the output had a
lower amplitide than the tnput, while at an intermediate frequency (Figure 9.7) the output had a
higher amplitiele than the input. This phenomena can only happen in systems with complex

roots.
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5 S
=
5 0-
2
0 5 10 15 20

time, min

FIGURE 9.7 Resonance peaking phenomenon.

The concept ol phase angle is illustrated by Figures 9.5 through 9.7, At low frequencies (Figure
9.5) the output barely lags the input, and therefore has a phase Tag of almost O deg. At intermedi-
ate frequencies (Figure 9.7) the output lags the inpuet by 90% and at high frequencies (Figure 9.6}
the output fags the input by almost 1807 Also note that the notion of “high.” “intermediate.” and
“low™ requencies is relative (dependent ou 7). Low, medivm, and high lrequencies correspond
roughly to w7 = 0.1, 1, and 10, respectively.

The method of sine-forcing a system is used in the analysis of feedback contral systems
and 1s known as frequency response analysis. Bode dingrams are used to plot the ampli-
tude and phase angle as a function of frequency. We do not provide Turther analysis here,
but refer the reader (o any textbook on process control for more detaif,

9.2 SECOND-ORDER SYSTEMS WITH NUMERATOR DYNAMICS

The previous discussion involved pure second-order systems. Consider now, a second-
order system with numerator dynamics with the gain/time constant forn:

(x) ks +1) ) (9,201
wix) = - B 2

: {rp8 + 1)1 + 1)
The pole-zero form is:

=)

s -
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where:

ket I 1

v Ty - —
pr pl - p2 -
T\T2 T T,

The gain/time constant form has the following time domain response Lo a step input {sec
student exercise 4).

T, 7T - Ty T ; V
},('_,) = FAul 1 + R T I L (9.21)
: Ty T2 Ty ™ T

The reader should show that, if 7, = 75, the response is the same as a fiest-order process.

EXAMPLE 93  Consider the Following Transter Function

PR L L .
y(s) = Go+ 5+ u(s) | (9.22)

The step responses are shown in Figure 4.8, Notice that negative numerator Lime constants yield
a step response that indiaily decreases before increasing to the final steady-state, This type of re-
sponse is known as inverse response and causes tough chatlenges for process control systems.

0 20 40 60

FIGURE 9.8 Step responses of a second-order system with numerator dy-

NRIMICS,

Notice also that a numerator time constant thal is greater than the denominator time con-
stant causes overshoot before settling to the final steady-state. Also notice that the inverse
response becomes “deeper” as the process zere (—1/1,) approaches a value ol zero from

the right.
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9.3 THE EFFECT OF POLE-ZERO LOCATIONS
ON SYSTEM STEP RESPONSES

There are a number of djfferent wavs to represent process transfer functions, The “gain-
time constant” foroe is:

_ Ay o Dt ) dg,y 1) (9.23)

§ls) (IJE- ){TJ;I" + )"'(\*[”'\ 1)

where Toi is @ numerator tme constant and T Is 2 numerator fime constant.

The “polynomial™ forny is

{!) ST b, T L b By

_[,’(-"_} — ey m i |

&l § f (1,8 o,
0ol b i 3]

The values of s that cause the numerator of (9.23) or (9.24) 1w equal zero are known as the
“zeros” of the transfer function. The values of s that cause the denominator of {9.23) or
(9.24) to equal zero are known as the “peles™ of the transler unction,

The “pole-zero™ form is:

g, (s) = s skl {9.25)
- (s = )(» ~m (s m
where:
m(p)
ko= ket (9.26)
mt=2)

The notation 11 (-3 is shorthand for (=0 o)
Notice also that the poles are

1 .
po= = (v.27)
Tz.’f
and the zerois
1
L - (9.28)
b

and that complex poles (or zeros) must occur in complex conjugale pairs.

EXAMPLE 94 Comparison of Various Transfer Function Forms
Constder a transter function with the following gain-time constant forn:
’( ~10s 4 1)

AT s 1)
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The polynomial form is;

6= 205 + 2
BT A4S s 4

The gain-polynomial form is:

o 105+ 1)
(455 + 185 + 1)

oo b
gy

The zero is (L1, and the poles are ~1/3 and —1/15,

and the pole-zero form is:

Naotice that the zero for Example 9.4 js positive. A posilive zero is called a vight-hall-
plane (RHP) zero, because it appears in the right half of the complex plane. Right-half-
plane zeros have a characteristic inverse response, as shown in Figure 9.9,

Also notice that the poles are negative (left-half-plane), indicating a stable process.
Right-half-plane poles (positive poles) are unstable. Recall that complex poles will yicld
an oscillatory response. A pole-zero plot of the transfer function in Example 9.4 is shown
in Figure 9.10 (the pole locations are (—1/3,0), (—#15,0) and the zero focation is (0.1,0);
the coordinates are (real imaginary)). For this system, there is no imaginary component
and the poles and zeros e on the real axis (Figure 9.10).

0 20 40 60 80 100
¢

FIGURE 9.9 Inverse response.
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Imaginary axis

Real axis

FIGURE 910 Pole-zero location plog
tor Example 9.4 (x-poles. o-zero b

As poles move [usther to the telt they yield a faster response. while increasing the
mitgnitude of the imaginary portion makes the respense more oscillatory, This behavior is
summarized in Figure 9.1 1. Rece!l also that a process with a pole at the origin (and none
in the vight-half-planc) is known as an ieregrafing system, that is the system never setiles
1o a steady-state when a step input change is madc.

Multiple right-hall-plane zeros cause muitiple “changes in dircction™ for example.
with twa REP zeros. the step response is initially o one direction. swilches direction.
then switches back 1o the iitial duection.

9.4 PADE APPROXIMATION FOR DEADTIME

Recall Gat the Laplace wansler function for a pure time-delay s ¢ ™ where 0 is the time-
delay. This s an irrational transter function: an approximation that is rational and often
provides an ad quate representation of the deadtime s known as the Padé approximation.

Imaginary -
axis :
more osclilalory
X
P —— inverse response Zeros
faster response o Real axis
- unstable poles
X
v

FIGURE 9,11 Effect of pole-zero location on dvnamice behavior (-poles.
v-zero). As poles beconte more negabve, the response is faster. As the
unaginary/real ralio increases. the response beconwes more oxcillatory,
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1.5 : .
1 | Second-Order Pade'
Approximation /
¥ 0 / Pure Time-Delay ]
-05¢
First-Oxder Pade' Approximation
-1 . o
0 5 10 15
time
FIGURE 9.12  Comparison of step responses for pore iime-delay with first-
ofder and second-order Padé approximations, Deadtime = 5,
The first-order Padé approximation is
f
P&
s 2 2
e Wem T (()'2())
]
1,% 2 ¥
The second-order Padé approximation is
(0 o,
- A Y
|33 2’ 12 (‘) 30}
| ] N LU '
2 12

A comparison of the step responses of first and second-order Padé approximations with
pure time delay are shown in Figure 9.12,

EXAMPLE 9.5  Comparison of the Padé Approximations for Deadtime

Consider the following first-order + deadtime transfer fFunction
Pnﬁr '

B0 = 50

T
[
ik
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The [irst-order Padé approximation yvields the following transter funchion

~2.55 + |

1255+ 755 = |

.91(“‘)

and the second-order Padé approximation yviekds
2083357 - 2.5

-1
ST AT 1 1S TS -

a comparison of the step responises of gle), g ts1 and gats) is shown in Figure 9,13, Nouee that
the first-order approxintion has an inverse response. while the second-order approzimation has
a “deuble tnverse response.” The reader should find tha there 1 a single positive zero for g ()
and there are two positive, complex-conjugale zeros of the numerator transfer function ol g.(5).

time

FIGURE 9,13 Comparison of first-order + deadtime response with first- and
sccond-order Padé approximations for deadiime,

Most ordinary differential equation numerical integrators {including cded %) require pure
differential equations (with no time-delays). 1 vou have a sysiem of differential equations
which has time-delays. the Padé approximation can be used to convert them 1o dejay-free
differential equations. which can then be numerically integrated. See student exercise 28
as an example.

One of the many advantages to using SIMULINK is that time-delays are easily han-
dled so that no approximation is required.

9.5 CONVERTING THE TRANSFER FUNCTION MODEL
TO STATE-SPACE FORM

[ this section we show one way to convert the mput-output transfer lunetion model 1o state-
space form. Although the Laplace domain is used for anatysis, the state-space Form will nor-
mally be used for time domain simulations, Consider the transler function relationship:
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5T+ s

yis) = o )

which arises from the following equation:

,dy ely ~
T 20 7 4y = kult
dr* ¢ dr 7 ®
fet: =y
and: Xy = X,
50 ¥ =X =k

Divide (9.31) by 12 to obtuin:

dy 20 dy 1 k
) 4+ TRy = 2wl
At T dt T Y T u(®)
which we can wrile as:
dy _ 2dy

k
: y A+ e
dr? T odr 1 72 )

Of,

and since:

= Ay
and we can write in the state-space form
0] |
v x O
Al o] [
Xy — Xy )
72 T 72
X
y=11 0]
A2

S A W ER AR T
* ! o "2 1o

LRI

233

930

(9.32)
(9.33)
(9.34)

(9.35)

(9.36)

The student should show that defining y = x5 leads to the following state-space model;

(9.37)

(0.38)
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MATLAB has routines for converting from transfer function form to state-space form
(tf2as)yand vice versa (ss2t), tL2ss 1s used in Esample 9.5,

EXAMPLE 9.5 MATLADB Routine t£2ss

Consider the following second-order systen:

3
vis) o — (8
: 2=+ 0071 s + 1 (
First, define the numerater and denominator arrays by:
mam = [ 3 ]
den = [ 2 0.7071 11
and enter the command:
la, b, ¢, d]l = LiZss{num,den)

MATLAB retums 1he state-space matrices:

a o 0.3%35 -0.5%000
1.0000 0
b o= 1
0
c o= 0 1.5000
ad o= 0

Netice that the state space models in Example 9.5 are different than the matices that are
ebtained from (9.35) and (9.36) or (9.37) and {9.38), but the dilferent forms would all yield
the same results for the output variable via simulation. Remember that a transfer function
relates puts to outputs bul does not represent the actual states of the system. There are an
infinite number of state-space models that will yield the same input/output model.

After finding the slate-space form for a tansfer funclion, we can use any available
numerical integrator to solve problems. MATLAB reutines of interest include oded o,
initial, and step.

9.6 MATLAB ROUTINES FOR STEP AND IMPULSE RESPONSE
MATLAB has routines for step and impulse response of either transfer function models or
state-spuce models. In the following, we show how these routines are used [or transter
function models.
9.6.1 step

A quick way to generate step responses is o use the MATLARB function step . This can
be used with either a state-space or a Laplace domain model.
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Consider the following Laplace domain modei:
2(10s + 1)

00500 1 155 13

which can be written:
208 + 2
508+ 155+ 3
The ToHowing MATLAD commands are used to generate the response shown in Fig-
ure 9.14.

num = {20 21;

den = [50 15 31;
[v,x,] = step{num, den)
plot{t,y)

Notice that a time vector is automatically generated, with a length close to the serling
time of the process.
The same plot could be generated (rom the state-space form by using:

[y, x,tl = step{h,B,C,D, 1}
plot{t,v)

where A, B, €, and D are the slate-space matrices and 17 indicates the fisst input. Al-

though state variables are caleulated, only the cutput variables are of interest.
We could supply an equally spaced time vector and use:

{v,x] = step(num,den, t}
1.9 e
08 -

04

0.2

o 10 20 30 40

fime

FIGURE 9.14  Step response for the example system.
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.4
0.3 -
0.2

0.1

0.1 . e
o 10 20 30 40

time

FIGURE 915 [mpulse response Tor the example systein.

for the step response of o transfer Function model, The number ol arguments determines
whether a transfer function ar state space model is used by the step Tunction. and whether
the time vector has been specified or not.

96.2 impulse

The output and time vectors are generaled using:
[v.x, 0] = impulse{nun,den};
the plot is obtained from
plot{t,y)
The plotis shown in Figure 9,15 above. Notice that an impulse has an immediate {discon-

tinuous) effect on the output, because this is a relative order one systens.
We coutd also supply an equally spuaced time vector and use:

[v,x] = impulse{numn, den, t);

SUMMARY

The step responses of the classical second order system (overdamped, critically damped.
and underdamped) were presented. In addition, we showed the effect of numerator dy-
pamics (and particularly right-halt-plane zeros) on the respoense ol a second-order system.
The Padé approximations for deadlime were presented. You should understand the effect
of the location of peles and zeros on the speed and quality of response of a transfer fune-
Gen model. The process gain is simply the ultimate change in ouput divided by the
change in inpul.
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The MATLAB routines used were

tf2ss: wmansfer function to state space
step: S1Cp response
impulse: impulse response

Critical concepts from this chapter include:

damping factor

natural period

numerator dynamics

Padé approximation for time-delay
relative order

STUDENT EXERCISES

Derive the stepr responses for the following scecond-order systems,

a. Overdamped

b. Critically damped

¢. Underdamped

Derive the impulse responses for the following second-order systems.

a. Overdamped

b. Critically damped

¢. Underdamped

Consider a sine input with magnitude A and frequency . Solve for the time domain
valae of the output for the following second-order systems.

a. Overdamped

b. Critically damped

c. btnderdamped

For a second-order system with numerator dynamics, find the step response for the
following.

a. Overdamped.

b. Underdamped.

¢. Critically damped,

A second-order system has the following Laplace transfer function form:

Y{s) 25 T ()

2587 + Sy
where the time unit is hours. The initial steady-state value for the output is 20 psig
and the input is 4 gpimn.

Al t= 0, a step input decrease is made, from 4 gpm to 3 gpm.
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a. What is the finai value of the outpnt?

b. When does the output first reach this final value?
¢. What is the minimum value of the output?

d. When does the output hit this minimun value?
¢, Plot the response.

6, Consider the following second-order QD

A b o, 1) dv L i by
B T e ST
Y dr T ar i
with the initial conditions Vi = v =t = uih =0

a. Find the Laplace trapsiorm of the ditferential equation. Wrile this expression in
the form of vis) = gis) as)

h. Now, assume that a step change of magmuude A o the variable o occurs
time = 0, Find the time domain result. v(i).

e, Now. assume that a slep change of magnitude A in the variable w occurs wl
time = 0. Find the time domain reswll v(7). by using 2 partial fraction expansion
and solving for the inverse Laplace transtform by hand,

d. Plot the time domain respunse, v(7) from part ¢, using the following parameter
values &= 1.7, = 3. 7. = 10 and try several plots, varying 7, from 3 to 10

¢. Plot the time domain response. vir) fvom part ¢. using the following parameter
values & = | 1) = 37, = 10, and try several plots. varyig 7, from =10 1o 6.

7. Consider the following two first-order ODLEs:

el
T by sk
o
s
T, vy ke
"ol -
and the statje relagienship ARSI A

where v, and v, are two state variables. v is the outpul variable, and s s an input

variable,

a. Show that the two equations can be combined o yvield a single O in the form
ol problem 6. Find & and 7, as o tunction of kL &7y 75,

b, Now. assume that a step change of magnitude Ju i the variable o occurs at
time = (). Find the time domain result. y{1). by using a partial [raction expansion
and solving for the inverse Laplace transtorm by hand.

c. Plotg . xatnyand vy if de= 10k, = -1 ky=2 1 =3 and 7, = 10.

8. As a process engineer with the Complex Pole Corporation. you are assigned & unit
with an exothermic chemical reactor, In order 1o learn more about the dynamics of
the process, vou decide 1o make a step change in the input variable, which is coolant
temperature. trom 10°C to 15°C. Assume that the reactor was initially at a steady-
state. You chiain the following plot for the output varable. which is reactor lempet-
ature {notice that the reactor temperature is in °F).
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285 R e ] T

280 b ———f A e e L

275 DS

270

265

reactor temperature, deg F

265

250
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time, minuies

a. What is the value of the process gain? (show units)
b. What is the value of t7 (show units)

¢. What is the value of £7 (show units)

d. What is the decay ratio?

e. Whal is the period of oscillation? (show units)

f. Write the second-order transfer function.

9. A process is deseribed by the following finear ordinary differential cquation:

4d2}'+ l7dy+ 2%([21,:
N I U T
dr’ dr dt?

where y is the output and « is the input. Assume that:

dy(0) du{()
A w0y = 0 =0
et ) dr

also, assume that at time ¢ = 0, the input beging to increase with the tollowing rela-
tionship ' '

1
friid 2
u(t.) 5 t

The units for time are minutes. _

a. What are the values of the poles of Lhis process (give units)?
b. When does the output of the process reach a maximum vatue?
¢. What is the maximum value of the process output?

10. A process has (wo poles and one-zero. The poles are located at —1 £ 0.5 and the
zero is Jocated at 0.5, Sketch the type of response that you expect {o a step change in
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input. Explain. Find the transfer funclion and verify these results assuming a gan of

One.

(-1,0.5)
{0.5,0)

(-1,-0.5)

11, Consider the following stute-space model (from Module 7):

7
+ 1]
’ wl.1]7’

X

& [ 24050
0.833 —2.238

Xy X,

y = ]() 1]

EY
X

2

a. Find the transfer function g(s) where v(s) = g(s) 1(s).
b. Tind the poles and zeros.

¢. Plot the response 10 a unit step input.

d. Plot the response to a uanit impulse input.

el

12. A process engineer responsible for the operation of a complex chemical reactor has
the process operator make a step change in the coolant Howrate from 10 gpm to 15
gpm to the reactor at 2:00 pm. The reactor temperature is initially F30°F at 2:00 pm
and drops to a tow of FL3°F at 2:10 pni. Eventually the reactor temperature comes
1o a final steady-state temperature of 125°F. Assuming that the respoase is second-
order (/1252 + 2075 + 1), find &, L, 7 (show units).

13. The cutput of a second-order, underdamped system has a rise time of | hour, and a
maximum value of 15°F (in deviation variables), after a step change at time 7 = 0.
After a long period of time, the output is 12°F (again in deviation variables).

a. What is the value of +?
b. What is the value of 17
¢. What are the poles? (also, show their location in the complex plane)

14, A siep change of magnitude 2 h/min is applied to the input of a process. The result-

ing outpul response, in deviation variables, is shown in the figure below.
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output
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time (min)

Step response of a physical system, in deviation variables.

a. Find the period of oscillation, rise time, and time 1o first peak, for this systen.
Show your work.
b. Find parameters (show the units) in the transfer function, g(s) = k(722 + 21
+ 1), by using the dimensionless plot, Figure 9.2, Show your work,
15. Consider the following third-order transfer function, where B is a parameter. Find
the conditions on the parameter B that will give an inverse response.

(2 45t p)

SO0 5o+ D@+ et )

Show vour work and explain your answer.
16. Consider the following transfer function:

P re=2
#4445+ 3

gls) =

a. Find the poles and zeros for this transfer function.

b. A unit step change is made at 1 = 0. Find the value of the output, using the final
and initial value theorems:
I After a fong time.
i, Immediately after the step change.

¢. Verily your results in b by finding (analytically) the time domain solution.

d. Verify the results in b using the MATLAB function step.

17. Consider the following state-space model:

ml@.ﬁ 2.5
4 65

X, 1

-

'"0.00_155"] ;
0.00248

e

FSCOLA DE ENCEMHARIA
BIBLIO L eUA
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Find the ranster Tuncdons relating the input (o cach outpat. Find the step response

of cach output.

I8, A unit step change in input Is made on a number of processes -1V, The resulting
outputs are shown in the plot below. Associate each process with a response cunve,

Frocess Transler Function Curve (leteny trone Plot

\ N . ;
1

11 ey :

AR} |

2y -
1] wis) =

s k]

s -2+ )
IV, el = o

{s = 2)

19, Consider a second-order transfer function with numerator dynamics:

Mrs T
(1,5 = 1}(1us + 1) )

let 7, represent the simaller denominator e constant,. Assiine a step change in
input. Show that a maximum in y(17k e oceurs if 1 % vy and that a minimum ¢in-
dicating i erse response) occurs 1107, <0 00 Also show that there is no extrema in

=Lt Hin: Realize thal @ maximum or mininunt oceis

Y

the step response 1F 0 -0 7
aty/An =0

1

20, Consider the transter function glsh= .
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ks 1)
st A 2rs +

N . . ~ k("i’”.\' + E)
b. Write the gain-time constant form g, (s) = ( -% 'l) ( T 1
Ty T Ta¥

. : . k(s - 2)
¢. Wrile the gain-pole-zero form g,(s) = = e
(s =) —po)
21. The reader should show how the first- and second-order Padé approximations relate
to a Taylor series expansion, The Taylor series approximation to a ime-delay in the
Laplace domain is

a. Write the gain-polynomial form g (s) =

s 0%* 8%t el
¢ L= I — @S. 4+

" oy 0%
¢ TR TR TR

Use long diviston of the [irst- and second-order Padé approximations and comment
on the number of terms that are consistent with the Taylor series expression.

22. Consider the following interacting tank problem. Assume that the Flow hetween
tatks 2 and | is lincarly proportional (3,) to the difference in tank heights and that
the oudet flow from tank 2 is proportional {B,) o tank height 2. Develop the tans-
fer function models refating the inlet flowrate 1o both tank heights.

R

>

23. Consider an exothermic chemical reactor that has the fotlowing transfer function re-
lationship between the inlet flowrate (input) and the reactor temperature (owput).

2(-235s+ 1)

8(s) = O+ 35 4+ 1

The wnits of the input are lter/min and the output is in deg C.

a. Find the values of the zeros and poles. Is this system underdamped or over-
damped?

b. For a step input change of 43 liter/min, find how the output changes with time.
How much does the emperature decrease before increasing? Compare plots of
your analytical solution with those obtained using the MATLAB fumction
st

¢. What is the ultimate change in temperature after a long period of time?

. If the steady-state input and output vatues (in physical terms) are 10 Ier/min
and 75°C respectively, what are the physical values of the results in b aad ¢?
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¢. If a step decrease in the input of =3 liter/min is made, what would be the resultg
i b, ¢, and d?
24. Consider a CSTR with a {irst-order irreversible reaction A --> B. The modeling
equations are:

de, _ (I"_f_ . k) o P
elt Vv ATy A
IC ¥

dlp -k CA _n C;{

dr v

The following parameters and steady-state input values characterize this system;

"= 0.2 min!

k= 0.2 min™'

Co 2mo]

Can © liter

The input is €y and the output is Cp. You should be able to show that the steady-

state values ol €, and 'y are 0.5 gmol/liter.

a. Show that the transfer function relating the feed concentration of A o the con-
centration of B is;

0.5

Y= s 2y 4 1)

.. gmol B/liter ) L
where the gain is >-—-~%———_and the time unit is minutes.

gmol A/liter

b. At time ¢t = (), the input begins 1o vary in a sinusoidal fashion with amplitude

0.25 and frequency 0.5 min™ 1 that is,
ul) = 0.255sin(0.51)

Using Laplace transforms, find how the output varies with time.

¢. Compare your results in b with the integration of the modeling equations using
the MATLAB integration routine oded S, Remember to use the correct initial
conditions. Also, remember thai the transfer function results are in deviation
variable form and must be converted back to physical variable values.

d. Discuss how the amplitude of the outpul changes if the input frequency is
changed to 5 min~.

25. Often higher-order process transfer functions are approximated by lower-order
wansfer functions. Consider the following second-order transfer tunction:
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26.

27.

{0 = o

Find the value of 1 in a first-order transfer function, /(ts + 1), which best approxi-
mates the step response of this second-order transfer function, in a least-squares sense.
{Hint: Define an ervor as a function of time as e(f) = yo(¢) - v, (1), where ¥, and

y, are the step responses of the second- and first-order responses respectively. Find «

which minimizes ¢2(¢) when 1 - inf.)
Consider 4 critically damped second-order system:

1

g(s) =

a. For a unit step input change (Ax = 1), find the time at which the rate of change
of the output is greatest (.., find the iaflection point). ’

b, Compare this rate of change with a unit step response of a first-order sysiem
with the following transfer function:

i

g(x)

¢. Plot the step responses for ¢ and b, Tor 7 = 1. Compare and contrast the re-
SPOnses.

Pharmacokinetics is (he study of how drugs infused to the body are distiibuted to
other parts of the body. The concept of a compartmentat model is often used, where
it is assumed that the drug is injected into compartment 1. Some of the drug is elim-
inated (reacted) in compartment T, and some ol it diffuses into compartment 2 (the
rest accumulates in compartment ). Similarly, some of the drug that difTuses mto
compartment 2 diffuses back into compartinent 1, while some is eliminated by reac-
tion and the rest accumulates in compartment 2. Assuming that the rates of diffu-
sion and reaction are direcily proportional to the concentration of drug in the com-
partment of inferest, the following balance equations arise:

dx

(-]; =~k t k) T kyx,
dx.,

] Tk xy  (hyy toky )

dt

where x; and &, = drug concentrations in compartments 1 and 2 (ug/kg patient
weight}, and ¢ = rade of drug input to compartment 1 (scaled by the patient weight,
pelkg min).

Experimental studies {of the response of the compartment | concentration 1o
various drug infusions) have led to the following parametler values for the drug
atracurium, which is a muscle relaxant:
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(ko + k) = 026 min*!
(ko + kzy) = 0.094 miin
kysky, = (.015 min "'

a. Find the poles and zeros of the transfer function that relate the input, v, to the

OHpPUL, X

b. Find the response of the concentration in compartment 1, x4, 10 a step input of
[ pgfkeg min. What is the value at 10 minutes? What is the value after a long pe-
riod of time?

¢. Find the response of the concentration in compartment |, x|, to an impalse lnput
of 10 pgfkg. What is the value al ¢ = 07 What is the value at 10 minutes?

28. Consider the following delay-differential equations:

dx,

ke = (- 8) b t

di ol )
dx,

= sz__'
dt Y

using the first-order Padé approximation for deadtime, write the corresponding (ap-
proximate) pure differential equations. (Hins: detine a new variable vy = (7 — )

Solve the equations using oded5, for an initial condition of ¢ i all states,
and a value of | for the input,




MATRIX TRANSFER
FUNCTIONS

Chapter 6 presented simple examples for ransforming a state-space model 1o a sigle nth
order differential equation. Once the single differential equation was obtained, the meth-
ods of characteristics and undetermined coeflicients (Chapter 6) or Laplace transforms
(Chapters 7-9) could be used to oblain a solution. A general method for converting
state-space model direetly to the Laplace domain is presented in this chapter. With the
transfer function representation, one can easily obtain the corresponding single nith order
differential equation, After studying this chapter, the reader should be able to:

» Convert a state-space model to a transfer function model analyticalty.
» Convert a state-space model to a transfer {unction model using the MATLAB
routing ss2tf.

+ Discuss interesting effects from pole-zero canceltlation,
The major sections are:

10.1 A Second-Order Example
10.2  The General Method
10.3 MATILAB Function ss2tf

247
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The goal of this chapter is to take a generad stale-space modek:

x= Ax+ Bu

y=Cx+Du

and convert it to the matrix transfer Tupction form:
Y(s) = G5y Uls)

and use this model 1o solve for the responses of cach output o cach input. We will also
use this technigue 1 easily find the ath order differential equation corresponding to cach
output variable,

10.1 A SECOND-ORDER EXAMPLE

Consider the following two-state, single-input. single-oulput mode]:

dv

b= x b aps by o h
dt
dx, ,

R TR S 7N S L Y (L2
it : o .

VOO A PO T od) (103

Taking Laplace transferms of (10.1) through (10.3), we find:

s Xy o ) = oay X () Foags Xalsy 4+ by UG {10.-H
s A8y - 0 {0) = ay X(v) © oas Xo(s) + bay Uls) {105
Yis) = ¢ X8 + o Xols) + dy, L) {10.6
Assuming (0 = .t0) = 4, and rearranging:
(5 —a, Y X, (5) — a,: Xols) = by, Uls) (107
(5~ o) Xol(5) — sy X\ () = boy U(s) (10

I order o generalize this procedure later, we write (10.7) and (10.8} in matrix form:

{ s 0 dy, f'f!_@‘l IX(.\‘]E ’.")Hi ()
- = ALY
0 s day J No(s) iny,
Qr,
.\" | ()1 ...... ayy sy l \/;(5) /)]] ('(\) (N).(}]
01 ay s, [ AL(Y) by '
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and (10.6) is written in mafrix form:

X, (%)

Y(s) = [y, o2l [Xz(s} + d,, U(s) (10.10)
We see (10.9) is of the form:
(s1— A) X(s) = B U(s) (10.11)
with the solution for X(s):
X(s) = (s1 - A) 'BU) (10.12)
and writing (10.10} as:
Y(s) = C X(s) + D U(s) (10.13)
combining {10,12) and {10.13):
¥(s) = [C (sI - A) 'B + D] U(s} (10.14)
recall that often I = 0, in which case (10.15) is written:
Y(s) = [C (sT = A) 'B] U(s) (10.15)
or,
Y{s) = G{s) U(s) (10.16)

In this example, since there is a single input and a single output, G(s) is a single transfer
function, which we call g{s). The transfer function is the ratio of a numerator and a de-
nominator polynomiat:

a(s) = ?)’8 (10.17)

The reader should show that the polynomials in (10.17), based on (10.15) are (sec student
exercise 43

N(s)=n; s +my (10.18a)
D(s) = s 4+ d s+ d, (10.18b)

where the polynomial coefficients, in terms of the matrix coefficients, are:

ny =y byt oo by (10.19a}
ny = ¢yl by — yy by} eplan, by — gy byl (10.19b)
dy = a + ay (10.19¢)
dy = ay ay —ap ay (16.19d)

Since the input-output relationship s writien:
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MY

Y{s)y = - Hy
{s) Dis) (+)
We can further write:

DY Y (s = Ny U(s)

ar,

[v" + dy s b d ] Y8 = [y s b o] Uls)
The corresponding differential equation is:
d™ dv it
Ceobdy e A dy Yy o o
Wi~ et ‘ ddi

We now have an automated procedure to find the tansfer Tunction Tor @ single-input.
single-outpul. two-state system. An example is shown below.

Example 10,1 Linear Biorvactor Model

Consider a linearized model ol a biorcactor, with the second-state variable (substrale concentrs-
tion) measured and with dilution rate (/) as the mpuat variable,

The state-space matrices are

L] 0.9056]
T Co7s00 —2.5640

B S —1.3302
T 38235

C =10 1]
D=0
Using the following steps (o lind Gisy = C 51 - Ay B

s - 0.9050

sh—A) -
(s ) 1(1.750“ s+ 25640

Recalling the simple method for inverting a 2 x 2 matrix. we find:

s 256400 09056
-().7300 B

1

(sT - A SL—- . L .
- ) ¥k 25640y 4 0.67920

!

e I ] T i _— S - . .
COP=A) D= T=0T3005) 50 si0s 1 067920

|

COT-AY B = [ -075005] b 2.5640' s + 067920

SBZND
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382555 4+ 1 I47(ﬁ

C(sl—A) B = -
2125640 5 + 0.67920

50,
3.8255 5 + 1.14765

- )
2.5640 5 + U 67920

Y(s} = e

and we easily find that

.
&y

d
325640 By 067920 ¢ = 38255 ¢ o
i

+ 114765 u

251

We generalize this procedure in Section 10.2.

10.2 THE GENERAL METHOD

Consider a general state-space model with » states, s imputs, and r outputs (see Chapter 5):

dx,
------- =gy 5 tanx, ¥ day,x, by et
o )
dx,
=gt Xy b, x, F by
dt *
Yo Fop X tepxn o bagy, Hdpet
Yo =ean tepxn oo, x, bdyu +
which can be written in matrix form as:
Xy 4y Ay i || & by by
= +
- \’." LN a‘n? ' annf "\'u Jl}nl bn?
A i 2 - Cmp dy dy
p .I»,
¥, €1 Coo . CollX, d, d;

b

ot I")Im
- ’{' !Jf”ii LIIH
. + blm “m
(10.20}
il lll”
[)‘1117 Jul
")nm— L
(021
dim ty
dmx iy,
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which has the form:

X=Ax+Bu

y=Cx+Du

(10.22)

where the dot over a state variable indicates the derivative with respect to time. Recall
from Chapter 5 that the eigenvalues of the Jacobian matrix (A) determine the stability of
the system of equations and the “speed” of response, Now, taking the Laplace transfonn
of (10.22):

X{s) = (sI — AY 'B U(s)
Y5y = [C s - AY'B + DJU(s)
H D = 0 we can write:
Y{(s) = G(s) U(s)
where:
G(s) = CGI-A)'B
(r xXm) {r X n)y{n X a)y(nxXm
The transfer function matrix, G{(s), is:
wgl I('g) gl'),("") . - 8 |Hi(x)
Gsy =
gl'i (S) grl(“‘) N ' r{u]rm(s)

Notice that G(s) is square if r = (number of outputs = number of inputs).

MATLAB ROUTINE ss2tf
The routine ss2t £ can be used to convert a state-space model to a transfer functjon
madel. After entering the A, B, C, and D matrices, the command;

[num, den]=ss2tf(A,B,C,D,m)

will generate the numerator and denominater Laplace domain polynomials for the transfer
function between input number m and the outputs, in descending order of s,

EXAMPLE 10.2 Example 10,1 Using MATLAB ss2¢f

Here we consider the lincarized bioreactor model, with two inputs. The first input is dilution
rate, the same input used above. Fhe second input is the substrate Ffeed concentration, We will
also consider both state 1 and state 2 to be outputs, and modify the € and /) matrices so that
ssdtf provides the transfer functions between the input and both outputs,
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» A [0,0.9056;-0.75,-2.5640]

|
il

0 0.805%6
-0.7500 -2.5640

= B

I

[-1.53062,0;3.8255,0.3]

B =
~1.5302 O
3.8255 0.3000

» o= {1,0;0,1]

1 0
0 1

» D = [0,0:0,0]

Input 1

The numerator and denominator potynonials relating the first input to the two outputs are found
using the fotlowing command:

» [num, denl=ss2tf (A, B,C, D, 1)
num =
0 -1.5302 -0.4591
0 3.,8255 1.1476

den =
1.0000 2.5640 0.6792

where the first row of the num matrix is the coefficients of s in the g, (s) polynomial, in decreas-
ing order from left to right. Similarly, the second row of the num matrix is the coctficients of s in
the g5, (+) polynomial, in decreasing order from Jefl to right:
—1.5302 5 — 0.4591
y,(8) = g () uyfs) = 5 N T
19 = &) ) = 5 s 1 0.67920 1)

. 382555 + 114765
2 = £V = 500 a0 4+ 067020

We realize that the eigenvalues of the A walrix and the poles of the transfer functions will be the
same. This is verified by the roots and elg conuands
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zoopoots (dan)

ans =

We can also write the transter functions i pole-zero form:

<1302 (s + 0.3)

ST 600 4 03y

H{y)

} 38255 (s - 0.3) (s)
. s
TG 22640005+ 031

where we have the interesting vesult tha the zero cancels one ol the poles to vield first-arder
systems

- 15302

its) urrzjnunl““}
38255

valg) (s}

(5 + 2.2630)

shich we are mote used to seeing in gain-time constant form:

L Thers
L R

" 1.6897 )
S s 0

Wo would notice the zero-pole cancellation 16 we also vsed the roots command to lind the
roots of the pumerator polyuomial

=rootanue(l, @)

ans =
—(. 3000

ERVAN

roots (numid, o))

and we see that the root of the numerator polynomial is the same as one of e roots of the de-
wominalor polynomial.
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Input 2

The numerator and denominaior polynomials relating the second input to the two oeutputs are
found using the foltowing command:

»[num, den]=ss2tfla,b,c.d,2)

nam =
0 0 0.2717
0 0.3000 0

den =
1..00006 2.5640 0.6792

and we have the result that;

0.2717

FE5640 s + 067920 2

¥i(8) = gals) wpls) =

0.3y

%) 7 8l 6() = s Sean - grane ")

The relationship between the second input and the second output is particularly interesting. The
second input has no steady-state effect on the second output, 4s can be seen from the final valve
theorem. Assume a step change of magnitude Az, in input 2.

0.3s Au,

At -5 o6) = § V(x = 0) = — -
@) = s M= 0 = o s be7920 5 0

10.3.1 Discussion of the Results from Example 10.2

THE FIRST INPUT

We naticed that the transfer functions with respect to the first input had pole-zero cancel-
tation. This created an input-output relationship where the step response is faster than
would be expected, because the slow pole was canceled by the process zero

~1.5302 (s + 03)

1= (1 206400+ 0.3)

3.8255 (s + 0.3)

(s |2264<))(q+f)3) (s)

ys) =

This can also be seen using the gain-tisne constant form:
() = 0.6759 (3 33335 + E)
o
71 (0 44175 + D335 + 1)

16897 (3.3333 5 + 1)
(04417 5 + 1)(3.3333 5 + 1)

t,(8)

vi(s) = ()
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[ -
1.5
Yo
1
= 05
0
05 M
0 0.5 1 1.5 2
time

FIGURE 16.1  Unit step change in input [.

or,

044175 + 11
1.6897

) = g aair v 1 W

¥, (‘) P

The step responses tor a unit step input change are shown in Figure 10.1.

¥ii)

FIGURE 10.2  Unit step change in input 2. Notice that the steady-state value
of y, does not change.

e T R
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THE SECOND INPUT

Notice that input 2 does not have a steady-state effect on output 2, only a dynamic effect.
This can be seen by using the MATLAB step function, then plotting the results {see Fig-
ure 10.2).

num =
0 0 0.2717
0 0.3000 0

den =
1.0000 2.5640 0.6792

» [y, %, tl=step (num, dern}

plot{t,y)

SUMMARY

We have shown how Lo convert a state-space model o a transfer function model, for mul-
tiple inputs and outputs. We have also seen sowe interesting results regarding pole-zero
cancellation. One has to be particularly careful with pole-zero cancellation if a pole is un-
stable (positive), as witl be shown in Section 11.3.

The following MATLAB routines were used:

se2tf:  converls state space to transfer function form
eig: matrix eigenvalucs
roots: roots of a polynomial

STUDENT EXERCISES

1. Compare the step responses of the following three transfer functions:

z
8= 044175 ¥ 13 4 1)
]
TP E) P —
ol VYT B
1
R EE I

Which has a faster step response? Why?
2. Consider the following stale-space model (a S-stage absorption column)
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T0325 0125 0 0 0
02  —0325 0125 0 0
A=1 0 D2 —0325  0.125 0
0 0 02  —0325 0125
0 0 0 02 - 0.325
(02 0
0 0
B=| 0 0
0 0
0025

a. Convert this model to transfer function form, assuming that all of the states are
outputs, using ss2tf.

b. Find the response of all of the states to a unit step in input 1. Use the function
step.

¢. Find the response of all of the states to a unit step in input 2. Use the [unction
step.

d. Compare and contrast the curves from b and ¢,

Consider the following model for an isothermal CSTR with a single irreversible re-

action (scc Module 7). Find the transfer function matrix refating both inputs (o both

states.

dx,
dr _lA()A 0 7 [x l 0.5 0.2'; F'ul}
(17& 0.2 —02]|x, —0.5 (U
dt

For a 2-state, single-input, single-output process, derive the relationships shown in
(10.18) and (10.19).

For the following state-space model, find the transfer {unction matrix relating all
four inputs 1o both outputs,

—04 0.3
A= 3 4.5 l
0 -75 01 0
B = 50 0 0 1.51
I 0
C =
0 1J
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6. Consider the following state-space model:

dy Lo 7

i . 5 ,X], 5

do | T 1 U T2 |

dt 0 2 25
y =X,

Show that the eigenvalues of the A matrix are —F/5 and /2, so the system is unsta-
ble. Also, plot the step response. Derive the transler function relating u(s) to y(s)
and show that the unstable pole is cancelled by the positive zero, This problem will
be analyzed in more detail in Chapler 11,

7. Consider a chemical reactor with bypass, as shown below. Assume that the reaction
rate {per unit volume) is first-order {r = kC|) and €| is the concentralion in (he reac-
tor (the reactor 1s perfectly mixed). Assume that the volume in the reactor (V) and
the feed flowrate (F) remain constant, The fraction of feed bypassing the reactor is
(1 — a}F and that entering the reactor is oF, Assume that the fraction bypassing the
reactor does not change. The inlet concentration () is the inpul variable and the
mixed outlet stream composition (Cy) is the output variable. Write this model in
stale-space form, using deviation variables.

x=Ax+ Bu

y=Cx+Du
F {l —{x) F
o F
Cir.l
»Y >
C! CE

Find the transfer function relating v to y.

For the following parameters, shnulate a unit step response.

Fo= 10 Vmin, V=100 1, C,, = | gmol/l, « = 0.5, k = 0.1 min~,
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8. Consider the following set of series and paraltiel reactions (from Module 7)

ko ik
A B C

ky
A+ A-->D

Muterial balances on components A and B yield the following two equations:

dC, o } -
’ mﬁ Y (Coy= O+ =k Oy =k C)
dC F . . .
""L,fj = 'V( =Cpy (k) O =k Cy)
where the rate constants are:
5 50 I Tters
k, = -—min ky = —mm hy = o
G -3 6 mol min

and the steady-state feed and reactor concentration of compoenent A are;

. mol 3 mol
C an 10 - o

liter 7 liter

a4 Find the steady-state dilution rate {F/V} and concentration of £ (show all units).

b. Linearize and pul in state-space form (find the numerical values of the A, B, and
C matrices), assuming that the manipulated varsables are dilution rate (F/V) and
feed concentration and that both states are outputs.

¢. Find the eigenvalues (show units).

d. Find the transfer functions relating each output to each input. Find the poles and
zeros for each transfor function and make plots of the responses to unit step
changes in each input. Comment on your results,




BLOCK DIAGRAMS

The objective of this chapter is to introduce block diagram analysis. After studying this
chapter, you should be able to:

+ Aunalyze the stability of a block diagram system.

» Understand how inverse response processes can arise,

» Understand potentiat problems with pole-zero cancellation.

= Wrile a set of dilferential cquations Lo simulate systems modeled by transfer Tune-
teons in series.

* Use the MATLAB routines series, paraliel, feedback, conv, and
roots.

= Use SIMULINK for block diageam simulation.

Major sections of this chapter are:

11.1  Iatroduction to Block Diagrams

11.2  Block Diagrams of Systems in Scries

11.3  Pole-Zero Cancellation

I1.4 Systems in Series

1L.5  Blocks in Paraltel

[1.6  Feedback and Recycle Systems

1.7 Routh Stability Criterion Applied to Transtfer Funclions
[1.8 SIMULINK

261
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) —— gfs) 4y} FIGURE 11.1 Block diagram repre
sentatien.

We have shown how Laplace transforms are used to reduce differential equations to
algebraic relationships. Algebraic equations are much casier o manipul. e than dil-
lerential equations. Similarly, block diagrams allow us 1o easily manipu® .- complex
models that are composed of subsets of simple models,

INTRODUCTION TO BLOCK DIAGRAMS

Consider a standard Nest-order process modek:

it
T('()-'r_\'(r) """ - koul(rn) (1
et
which has the transfer function form:
v(s) = op{s) afs) (112
where:
) k
(v = (11.3)
Ty A

Process engineers usuatly try and solve problems by sketching diagrams o undersiand
sipul-outpul relationships. Process control engineers usually use block diagrams to under-
sand the input-output relationships in a dynamic <ystem. A block diagram representation
A (11,20 35 shown in Figure 1L

We can see that «(s) is the input 1o the tansier Tunction block and v(y) is the outpul
fiom the ransfer Tunction block. Block diagrams will be particdarly uselul when analyzing
comples dynamic systems, which may be represented as blocks in series or parallel and
with (eedback, They are particularly useful for feedback control system dexign and analysis.

3. 0CK DIAGRAMS OF SYSTEMS IN SiRIES

Consider now the block diagram representation of two processes in series as shown in

Pigure 11.2,

ws) P (S) e G

©

M)

FIGURE 11.2 Block diagram of two processes in series.
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The input/outpul transler function of Figure .2 is;

¥(s) = £0) 2(5) = g0) ,(5) () i
or,
(s} = glsy uls) (11.5)
where:
8(s) = g,(s) g,(5) (i)
I the two transfer functions are first-order:
gls) = 'r‘skﬂlL 1 A
and
8a(s5) = ”fj i (118
then the overall process is second order:
. k .
B0 D 4 D) (o
where: k= kiky

The same tdea can be continued for any number of transler functions in series, The stu-
dent showld notice that the poles of a system composed of many transfer functions in se-
ries are simply the poles of each transfer function. This leads (o the following conclusion
about the stability of systems with transfer functions in series:

If a system is composed of transfer functions in series, and i all of those transfer functions ai e sio-
ble, then the overadl svstem is stable,

Also, the zeros of a system ol transfer functions in series are simply the zeros of the indi-
vidual transter functions.

POLE-ZERO CANCELLATION

Again, in this section we consider {wo blocks in series, as shown in Figure 11.2:

vis) = @(3) 2(s) = g5} g,(s) u(s) (111
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I we are ol careful. we cun everlook possible problems with systems in series. il we
look only at the overall input/output relationship. In the nest example we show problems

with pole-zere cancellation.

EXAMPLE 1LT  Lead/Lag in Series with Unstable First-Orvder System

Consider the following fead/lag in series with an unstable first-order sy stame

e
gils) oo CAe irrnh
Sy o
|
o v s [RERS]
:05) w2y =]

Hey o ( s j . . ( A S ;I .‘j ]
,“(.\) TR \}“w‘(\ sy = Ay | I 22 i ”(-\’
vielding the ransfer function relagonship:
i
vis) =gl ae(s) o oy [INRS!
Ay o]

W must realize that these transter lunctions ultimately represent a physical process, I praciice.
physical parameters cannot be known perfeetly . What this means s that generally the numerator
of ¢, (9 will not exactly cancel the denominator of g-(o. in practice,

Consider a realistic case, where gavrhas a sliebterror in the value of the pote

!
R T R
then we find that
RS A I (- S 20000s - )
N : S
P
v{y) = glshu(y) fiy}

IOD00SS - 2.99005 — |

Notice that when we do ot have perfect pole/zere cancellatzon. there is an unstable pole in the
input/output relationship, vy = gy sdx), Our goal now is 1o compare the responses ol the two
maodels CEL T3 and (1115 Let vty represet e output in 01103 and vafa) represent the oot

pucin L T30 Assuming a unie step input. mlsy = [y,

I
Viols g e ARl
o s(3s - 1)
which bas the time donean solution (Chapter 81
vy e 7 RN
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Also,

-2 + 1

7D = Caoiis + 2999 + 1) (i

which has the time domain solution (Chapter 9);

s 00001

7 .
AN =1 — M 72000 TRL
yf) 7.0001 © 7.0001 (L19)
andd we can see that, at Tow 1, (11.19) is almost identical to (11.17). As time increases, however,

the unstable exponential term in (11.19) begins to dominate, This is shown clearly in Figure 11.3,

¥y, stable

¥, unstable
0.5

¥

time

FIGURE 11.3  Comparison of (11.17) and (11,19},

Note that if we had used the state-space form for the model represented by equations
(L 10) through (11.12), we would have discovered the instability, even for the perfect pa-
rameter case. The following example analyzes the state-space form of Example [1.1.

EXAMPLE 11.1  Continued State-Space Analysis

Refer to z(s) as the output of the lead/lag block. From Chapter 8 we find the following state-
space realization of the lead/lag:

dx 1 T
__ e ('1_ ...... 2 .t)u
dt Ty Ty
{ "
g x oMy
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. ( ) \“‘\ + 1 2:5 o
inour case. g;(s) s 500
“t Tt S5 1
ey 1 7
= - v+ oo (11.20n
dt 3 5
| 2
A (11.21}
Bl hl
and the state space realization of the uustable lag is:
dy 1 l
I U (122
de 20 2

Substituting {1121y into (11.22). we tind

dv 1 o s
de L1 ]
a2 Tt s J

[ we use notation

H=a
Ny =N

we can write (HL20) and (11.23) in the following form:

dy, | 7

_X o .24
di 57 05

dy. i | , 1 (11.25)
I T A P S L2

F7EE R RET B R

Using the usual state-space notation:
x= Ax+ Bu
y=Ux +t Pu

we write

5 + -
| cli - 1_' i 2 H (11,260
‘ (]»\“f _ I | R I
i dr 12 2
Vo

We easily find hat the cigenvalues of the A manix are —1/5 and 172, The positive eigenvalue in-
dicates that this syslen is unstable.
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The previous example illustrates the importance of not cancelling an unstable pole with a
right-half-plane zero. It also shows how state-space analysis can always be used to ad-
dress the stability of a system,

SYSTEMS IN SERIES

The dynamic behavior of chemical processes can often be represerded as a series of sim-
ple models, such as first-order transfer functions. As an example, consider the following
process, which is characterized as n first-order processes with a gain of 1 and a time con-
stant of 5:

!
H{(8) = e 11.27)
(L:() (5.‘_ 1 ])n {
The step responses for 7 = | to 5 arc shown in Figure 11.4. Notice the characteristic
S-shape for all orders greater than 1 and the additional lag associated with each higher
arder.

11.4.1 Simulating Systems in Series

Although we analyze processes using transfer functions, to obtain time domain responses
we must use a numerical inlegration package. Consider a system of » first-order processes
in series, as shown in Figure 11.5,

Here we write the sct of ordinary differential equations that describe this process.
‘The ODE describing the first process is:

= — X’E —+ g i (] E28)

0 5 10 15 20 25 30
time

FIGURE 114, Step responses of first-order systems i series.




Block Diagrams Chap. 11
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%y i3 L3} xn—l':g} Xy (2
U3} ] gi{s) M gz{s} - el v e W
FIGURE I1.5 n processes in serjes.

Notice that we can think of the output of the first process as the input to the second
process:
dx, 1 k,
e X (11.29)
elt T,y

and so on through the ath process:

dx

n

e K (11.30)
=y, b x, . .30)
et T, "1,
To sobve (11.28) through (11.30) we can use the numerical integration techniques devel-
oped in Chapter 4 or the analytical expressions developed in Chapter 6.

We can also write (11.28) through (11,30} in the following state-space form:

o] [ SR
5 S0 e 0 ¥, o
do | |6 L. 0 0| e |0
dt ™ . :
: — : : ) '1 ’ +| | (11.26)
d e 0
! (}'!1 ] 0 The ]
/ v .
dx, R Y R )
G n b 0|

In Example 11.2 we show how to use the MATLAB routines series and conv to find a

transfer function that represents two blocks in series.

EXAMPLE 11.2  Two Transfer Functions in Series
Consider two processes, g () and g,(s), in scries, where:

N
O

Bal8) = T

g(s) = 51(3) 205)

IR A
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We use the following MATLAB commands (o enler the numerator and denominator polynomi-

als for each transfer function:
-
»
e

Ea

numi
den’l
numz

den?

[2 i1;
(31;

= 14 1];

the series command generates the numerator and denominator polynomials For the transfer
function g(s);

» {num, den] gerieg(numl, denl, num?, den?)

num

0 0 4.5000

den
8 6 1
which indicates that

A9
87+ 6s + 1

8ls) =

conv

conv is used to muttiply two polynomials. Using the previous example, we multiply the numer-
ator polynonals to find:

» num = conv{nunl, numz2 )
num =
4.5000
and the denominator polynomials o find:
» den = conv{denl,den2}
den =

861

11.5 BLOCKS IN PARALLEL

Sometimes the behavior of a chemical process can be modeled by transfer functions
paraliel as shown in Figure 11.6.
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¥2 (8) FIGURE 11.6  Svswems iy paralleh.

Hor this system we can write the otal cutput, v(s). as the sum of two outputs, v (£ 4 va(s),

FO) = 3 (8) + ()
vis) = li(5) + g:(3)] uls)
or,
vix) = ogls) uls)
where:
glx) = gyls) + gl

Consider the case where g () and g-(5) arc first-order transfer functions:

ko
g(s) = T 4
k.
el =
50
. I ks,
gls) = R .

(U A B S |

Developing a common denominator, we find;

('kl T, 4 ko))
ky + s

(" s+ l){ 58t

(.',( + rr\w) }.S' + 1

gly) =

Notice that (11.38) has the Torm (see Chapter 9):

k{z,s+ 1}

L st )

(1131

{11,

(il

(11.;

(1]

3

13

39)

NSRRI NE S 23
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where:

k=k +k (1140

B I'C]_ T, -+ ko

R (11.41)

We will assume that the transler functions g (s) and gy(s) are stable, so v and 7, = 0. The
ol of this section is 1o show a system where tnverse response {discussed in Chapler 9
and Example 9.3) behavior can occur.

11.5.1 Conditions for Inverse Response

Recall that a transfer function will have inverse response only if there is a right-haif-plane
(positive) zero, Since the zero is ~ /7, this system will have inverse response only if
7, < {. We find that 7, << & only if' &; and &, are of opposite sign. We can arbitrarily as-
sume that &, = 0, which means that &, < 0 is necessary for inverse response. For inverse
response, the condition:

kymy t kom

T, < () means that kK, <)
or,
k (T~ ko,
ky vk, Kk t+k
which yields the following conditions for inverse response,
Lk + k&5 > O, then k1 <0 —ky7 ), which implies that Tyf7| must be <7 — &,/ {or in-

VOTSE TCSPONSe.

2. Wk +ky 20, then k7, = ~k,7,, which implies that 1,/7 ) must be > ~ky/k, for in-
VCTSE FeSPONSe.

Physical examples of systems with inverse response include: steam drum level, rebhoilers
in distiltation cofummns, chemical and biochemical reactors. A reason that inverse responsce
behavior is important is that it creates tremendous challenges for tight process control.

We can use the MATLAB routine parallel o simulate two systems in parallel,
as shown by the nest example.

EXAMPLE 1.3 Two systems in parallel

Consider the following systein of two first-order processes in parallel (Figure 11.7):

2
O
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8290 = 0y
2 -1
(gY = - - S .
8(s) S¢+1 1y +1
» numl = [2];
» denl = [5 1];

¥

num2 = [-1];

Y

denz2 = [1 1];

The following command is used (o tind the new transfer function:

» {num,den] = parallel (numl,denl,num2, den2)
rmm =
0 -3 1
den
5 6 1
» [y,x,t] = step(num,den);

» [y, xl] = step(numnl,denl,t};

» [y2,x2] = step(num2,den2, L) ;

w

> plot{t,y,t,vl, t,v2}

Yo

FIGURE 1L7  Two systems in parallel that have an inverse response when
added tegether,
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This previcus example has shown that inverse response occurs in systems where the gain
ol the “slow process”™ (larger thme constant) s larger in magnitude (but opposite in sign)
than the “fast process” (smaller time constan().

FEEDBACK AND RECYCLE SYSTEMS

Feedback systems are commion in engincering. Examples include chemical and biochemi-
cal reactors, where a certain portion of the product stream may be recycled io the feed-
stream. Feedback naturally oceurs in most “sell-regulating”™ models where, for example,
the rale of change of a stute variable (say, concentrution of A) 1s a function of the same or
another state variable (say, concentration of B),

The entire field of process control is based on the concept and theory of feedback
systems. Our goal with this section is to introduce feedback analysis and, in particular,
stability analysis of feedback systems. A block diagram of a feedback system is shown in
Figure [ 1.8.

In this figure, the input to the feedback system is #(s) and the output is y(s). Herc we
develop the relationship between r(s) and y(s).

v(s) = g,(s) ) {11.44)

bt w(s) = r{s) + z(s) (11.45)
and z{s) = g,(8) y(3) (11.46)
So we can write {1 1.44) as:

y(s) = gi(s) (r(s) + g (s)y(s) (11.47)
Solving for y(s) we find:

R AEY L4
Notice that we can view this as:

¥(5) = gals) r(s) (11.49)
where PR 11O N (11.50)

1 - g()g,(5)

w3
x(s) ) g 1(8)

£,(3)
&(s) FIGURF 11.8 Feedback diagram,
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(3} —p gl(s} p H3)

£,(3)

2(3)

X8) o) §(8) | J(3)  FIGURE 119 Equivalent block
diagrams.

and we know that il the poles of g (3) arc stable, then the feedback system is stable. We
realize that the two block diagrams shown in Figure 1.9 are equivalent.

EXAMPLE 114 Feedback system

Consider two first-order process transfer functions:

k, <
() = . S
sl =y (151
ks
vy (g) = ot 52
£:143) Tys F 1 (132
k,
g,(s) s+
£as) ] - H|(-")E,’2(-Y) 1 ( ,kt . ) ( k:, )
T+ AT + 1
o ks ey
(s + D+ 1) - Kk
k(s + 1
:grl(‘?} . : I.(Tf S ) ([ 1.53)

(5,78 + (7, + s F 1=Kk,

and g,405) iy stable i the roots of 77557 + (1) + Tphy + 1 ~k ks are stable. We recall from the
Routh stability criterion that all of the roots of a quadratic polynomial are negative il the coelli-
cients ol the polynomial are positive. If we assume that 7, and 7, are positive, then (11.53) wiil
be stable if |~ k&, is positive. For stabilily, then, k&, mast be less than 1. Let’s consider the
following numerical example:
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2
#ls) = 5\ 1

. iy ]
a9 = e 1

Since ky = 2, then k, must be fess than 0.5 for stability.
As a nuinerical cheek, lel &y = — 1. Solving for the toots of:

TS (b )s b 1Tk, = 0)
we find
50874+ 155 + 3 =0
which has the roots (using the gquadraiic formwla)
= 0L153E0.1936f

(we can verify this result using the MATLAB routine roots)

Since the real part of the roots is negative, the system is stable, This is verified in the
MATLAR simulation presented in Figure 11,10, where the response of the output to a unit step
change in r is presented. h

0 10 20 30 40
time

FIGURE 1L10  Step response for the example feedback system.

We can also use the MATLAB feedback function to obtain the closed-loop transfer
function, as shown below.
2
s (s} :
&uls) Ss 4+ 1
-1
10s + 1
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s onuml o= 2]
I NP0 e T A S B
» denl = [% §1];
» oden? = (10 1];
and, using the rovtine T eedback
»  [nuam, den] = feedback (muml, dend, nuws, dend, 11
rum =
o202
den -
50 1% 3

We use the routine step to find the step response:

{v,m, ] s, den)

which gives the plot shown in Figure 11,10,

11.7

ROUTH STABILITY CRITERION APPLIED
TO TRANSFER FUNCTIONS

Recall from Chapter 6 that the purpose of the Routh stability criterion is e determine 1t a
polynomial with the following form has any positive roots:

a N b a, AU+ o+ g N a, = D) {(11.5:4)

Since transfer functions that have denominator polynomials in the Laplace tansform vari-
able () are are the same fonm as (1].54), we can use Routh analysis to deernmine the sta-
bility ol transfer Tuntions. As before. asswme that e, = 00 10 ¢, < 0, then muliiply (11.54
by —1. A necessary condition Tor stability s that all of the coefficients in (1154 must be
positive. H any of the coefficients are negative or zevo, then at least one pole (root of the
characteristic equation} is positive or zero, indicating that the eguation is unstable. Even il
all of the coefficients are positive. we cannol state that the system is stable. What s
needed is o sufficient condition for stability. To determine that the system is stable. we
must construct the Routh array and use the Routh stability criterion. which provides nec-
essary and sufficient conditions lor stability.

Sometimes we simply wish to determine if 2 particuiar system is stable or not, with-
oul actually evaluating the eigenvalues. This is particularly true if we wish 1o determine
values of systent parameters that will cause a systom 1o lose stabhity. This approach will
be useful in performing a bifurcation analysis in later chapters (14 and 15). and in uning
control systems for chemical processes.
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11.7.1 Routh Array

I all of the coeffients of the characteristic equation (11.54) are positive, then develop the
following Routh array:

Row
! dy . ay .y
2 ey .3 5
3 by by by

4 ¢ €

1+

where # is the order of the polynomial. Notice that the first two rows consist of the coeffi-
cients of the polynomial, The elements of the third row are calculated in the following
fashion:

Uy oy Gy 7 Bylly 3 — Ay By — 08, 5

L) b L
)
€l - a

-

n

h, =
i1

and so on. Elements of the fourth and larger rows are calculated in a similar Fashion:

_bha

el .bl’- - byays—a,.

by

w3l

¢ = 9
1 p
b, b,

and so on,

A sufficient condition for all roots of the claracteristic polynomial to have negative real parts is that
all of the elements in the first colummn of the Routh arvay are positive.

SXAMPLE 11.5  Routh Array to Determine Closed-Loop Stability

Consider the block diagram of Figure 11.9.

I {16 I
YO G
ar,
yls) = ga(s) r(s)
where:

L&)

8007 g )
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And the tanster functions are:

2
gy~ (35 4 13 = 1)
ok
sy R
ST s

Our goal is to find £+ o assure stability of the closed-loop svstem,

We eastly Nind the transfer function. g(y):

) 210y + 1)
BNy e 5
(15057 & 93y~ ¢ I8¢ -+ | - 2k
which has the characteristic polynemial
IR ST T IR NP

wlich s of the form

(oS LN by g

The Rowh array s

Reony

| 150 18

2 93 I 2K
3 I {)

4 )

The necessary condition is that ail e, > 00 which s satislied if 1 = 242 = 0 or £ 2 (L5,
The sufficient condition s satishied iF all of the coelficients in the first columm of the

Routh array are positive,

gl — b 150
[ B T I I R
" a. Of) { v
C|ufﬁuw ”ﬁ\”{m”7]W2k.”“
by -

The ) condition is satisfied i &, > 3.2, while the ¢ condition is the same as the necessary con

dinon. We then have the following restriction on A~ for stabifity:

)

~ 82k, w0,

11.8 SIMULINK

In the previous sections we have shown how MATLAB routines can be used for block «i-
agrang analysis and simulation. The objective of tlus section is o use the block diagram
simulation features of SIMULINK.
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55+1
'i e .
Step input gUs) :;1 + >

Sum

FIGURE .11 SIMULINK Block diagrum for twoe blocks in parallel.

Consider the block diagram system rom Example 11.3. A SIMULINK block dia-
gram is shown in Figure 11,11, Notice the use of step, transfer function, sum, workspace
and clock blecks to generate the necessary input and oulpui information,

The parameters menu is used to specify the integration type (LINSIM), final time
(30), and mintnum (0.01) and maximum (1) step sizes. The results are the same as shown
in Figure 11.7. More information on SIMULINK is provided in Module 4 in the final scc-
tion of the text,

SUMMARY

Block diagram analysis is important because it allows us to think about a system of
processes in terms of a combination of the individual processes, We have shown how 1o
analyze the stability of a block diagram systen, particutarly if there are recycle or feed-
back processes. We have shown how inverse response processes can arise from sysiems
in parallel. We have also shown potential problems with pole-zero cancellation when ana-
tyzing transfer functions in series.

The following MATLAB routines were used:

series: two models 10 series (either transfer function or state space)

conv: mudtiplies two polynomials

parallel: twomodels in paralle] (either transfer function or state space)

feedback: two models in Tecdback form (either {ransfer function or state
space, and either positive or negative feedback)

roots: (ind the roots (zeros) of a polynomial

SIMULINK has also been used for ock dizgram simulation,
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STUDENT EXERCISES

1.

Consider a lirst-order process thal has a positive pole (negative ume constant). indi-
cating that the process 1s open-loop unstable.

3’](5) — M..SS...+ |

It s desirable 1o design a feedback compensator g5(5), so that the feedback system
is stable. Assume that g-(s) 1s simply a gain:

Find the range of gains thal will make the following feedback system stable.

u(5)
(s) > gi(S) - 3K3)
+
2 g,(3) |

2. Censider the reevele system shown below, where:
- 1

(s — s + 0.5)
5(9) = &

g(¥)

Find the values of 2 (if any) that will ensure stability of the system. Show your work
and explain your reasoning.

ws)
x(3) e g (3) » (3}
+ 1
+
2,(5)
a@ | P
3. Find the analytical selution for a unit step applicd to the following process:
1
ST

4. Consider the recycle system shown below, where:
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) l\! —_— e .._ S—
&%) (s + 1)

kZ
£ = o

us)
xz) — e £ 3 6))
+
23) £,(s) =

Discuss how the values of k, and 7, effect the dynamic behavior of y with respect (o
a unit step input change in r. Use SIMULINK and show compare plots for various
vatues ol &, and 7, to itlustrate your points.




LINEAR SYSTEMS SUMMARY

One purpose of this chapter Is to summarize the techniques that have been developed in
Chapters 5 throngh T o solve Tear ordinary dilferential equations. Since the focus has
been on mitial velue problems. we also introduce techmques to solve boundary value
O problems. Also. since the emphasts has been on continous (differental equation-
busedy modeis, another objective is to introduce discrete models. Afler studyving (his chap-
ter. the student should be wble w:

* Lise the characteristic equation method o solve boundary value linear ODE
problems

+ Selectan appropriate lechnigue to solve a particalur lincar initizl value problem

o Formulate linear diserete-time maodels

o Listimate paramelers (or linear discrete-time models
The major sections of ths chapter are:

121 Background
12,2 Linear Boundary Value Problems
123 Review of Maethods for Linear Inidal Value Problems

124 Introduction w Discrete-Time Models

()
iy

Parameter Estimation of Discrete Linear Systems

282
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BACKGROUND

Thus far in this text, all of the problems that we have solved have been initial value ordi-
nary differential equations. T solve these problems we simiply need to know the initial
values of the state variables, and how the inputs change with time. The models are then
integrated to find how the states change with time. Ordinary differential equation models
may be constrained (o salisfy boundary conditions. Boundary value problems often arise
when solving for the steady-state behavior of a dynamic syslem modeled by a partial dif-
ferential equation. Typically, a boundary value problem has distance as the independent
variable and the boundary conditions {hai must be satisfied are the values of the state vari-
ables at different locations (lypically at cach “end” of the system).

Recall that in Chapter L1 we required # initiad conditions to solve an mth order ini-
ttal value ODE. Simifarly, we require n boundary conditions to solve an ath order bound-
ary value ODH. Most chemical processes that can be modeled as second-order boundary
value problems {e.g.. the reaction-diffusion equation} are two-point boundary value prob-
lems. A second-order spiit houndary value problem has a boundary condition at one end
and another boundary condition at the other end. If both boundary conditions were al the
front end, then our problem would be an inital value problem. H both boundary conditions
were al the rear end, then we wonld have an initial vatue problem by simply redefining
the independent varkable and forming an initial value problem in the opposite direction.

I this chapter, we first cover linear boundary value problems in Section 12.2 and
review methods to sobve linear initial value problems in Section 12,3, We provide an in-
troduction to discrete-time models in Section 12.4 and show how {o estimate parameters
for discrete-titne models in Section 12.5.

LINEAR BOUNDARY VALUE PROBLEMS

An analytical solution to boundary value ordinary conditions can be obtained wsing the

method of characteristics when the ODE and the boundary conditions are linear. Consider
the following second order ODE

d’x 4 dx

oy v Ay

2 2 I([z

da + o ayx =0 (2.1

where gy, ay and e, are constant coelficients, v is the state variable (dependent) and z is
the independent variable (often distance). The sotution to (12.1) will have the form

X =c & F oo, et (12.2)
where A; and A, are obtained by rewriting (12.1) as

a Nt ay A a0 (12.3)

using the method discussed in Chapter 6. The constant coelficients (¢ and ¢} are ob-
{ained from the boundary condilions.




“ EXAMPLE 12,1 Second-order Boundary Value Problem
Consider the following second-order equation:
™ dx 7
o _..). 4- 4_ B ()
dz” dz 4

subject to the boundary conditions at cach end:

We solve for the eigenvalues by using the characteristic equation:
5 7
,\""+4A+4:()

which yiclds {from the quadratic formula):

and the solution is:
X =g e 4 e
Substituting the boundary conditions resalis in two eguations and (wo unknowns:
2=¢ +0
1= e™ & cye™
which yields;
¢, = 0.36968
¢y, = 1.63032

A plot of the solution, x = 0.36968 ¢33 + 1.63032 ¢ 0%, is shown in Figure 12,1,

2
1.8 ¢
16+
14

1.2

z

FIGURE 12.1  Solution to Example 12.1.

e e, e R TR
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More generally, the boundary conditions may consist of some function ol the state vari-
able and its derivative. The more gencral linear houndary condition is the fonm:

dx
b, & +byx=d

EXAMPLE 12.2  Second-Order Boundary Value Problem

Consider the second-order problem from the previous example:
sH4 4 x =0 (12.4

stibject to the new boundary conditions,

dx .
ey = ] atz = 0 (12.13)
dz
fx
Yoo atz =1 (12.14)
iz
Since the solution is:
x = e e, e M (12.15)
then the first derivative with respeet to z is:
ex 35z 052
i EC s B Y | B ol B (12.16)
dz “
and boundary condition (12,13} yields:
=35¢,-05¢+e +¢ =1 (12.17)
while boundary condition (12.14) yields:
=38 ¢, e 0500 =0 (12.18)

Solving these two equations for ¢ and ¢y, we abtain the solution:

&= 037304 ¢ 1 013032 670 (12.19)
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which is shown i Figure 12.2.

0 0.2 0.4 0.6 0.8 1

Z

FIGURE 12.2  Solution to Example 12.2.

We have illustrated how the method of characteristics is used to solve lincur boundary
value problems. The solution to nenlinear boundary value problems generally involves it-
erative methods, For example, consider a single second-order nonlinear problem with
boundary conditions at each end. We know that the second-order equation can be con-
verted to two first-order equations. Typically, one boundary condition will fix an “initial
condition” for one of the states. A second initial condition can be ileratively guessed
{(using a Quasi-Newton method, for example) untii the equations, when integrated. vield
the correct value for the end boundary condition. This approach is shown in Example 2.3
for the linear system considered in Hxample 12.1,

EXAMPLE 12.3  Formulating a Boundary Value Problem as an Iterative Initial Value Problem
Consider the second-order boundary vajue problem:
% dy 7

R4 Ly =0 (124
dz dz 4

with the boundary conditions:

x(z =) =2 {129}
x(z=1 =1 (12.6)
[t can be shown that (see student exercise 1), by defining v} = v and x, = dv/dz the following

equations are abtained:
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dx/fdz = x, (12.20}
7
dofdz = = x - dx, (12.21)

aid that one of the wntial conditions is
(z=0=2 (12.22)

We sec that x,(z = 0) must be “guessed,” then the two equations can be integrated from z = 0 to
2= 1. The value of xp at z = | is then checked; if v {z = 1) is not equal to | (within an acceptable
tolerance) then valies of x(z = 0) are fteratively guessed until the final value & satisfied, This
method is known as the “shooting method.” The reader is encouraged to use this approach to
solve exercise 1,

12.3 REVIEW OF METHODS FOR LINEAR INITIAL VALUE PROBLEMS

In Chapters 5 through 11 we presented a number of techiiques for solving linear initial
vatue ordinary differential equations. In Chapter 5 we noted that dynamic chemical
process models are often formulated as a set of first-order, nonlinear differential equa-
tions, where the initial values are known. These equations have the general [orm:
X = f(x,n) (12.23)
y = g(x,u) (12.24)

where X 15 a vector of 1 stile variables, w is a vector of m input variables, and ¥ is a vector
ol r oulput variables:

Xy = Al Xl enit,)

".—n = f.:i(’\ﬁlﬁ"'!xu?ui"“’um)
¥ o= gl ety )

Yo T 8RN X il sl

12.3.1 Linearization

Elements of the linearization matrices are defined in the following fashion:
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o o,
i = Bij = -
().’L',- X0, ()Hj- *,4,
ag; ag;
(Jx,,- X al-(-i LTS

where X, u, and y, represent the steady-state values of the states, imputs, and outputs,

which solve:

0= f(x u) (12.25)
Y, = g(x.u) (12.26)
After lincarization, we have the state space form:
¥ =Ax +Bu (1227
y =Cx'+Du (12.28%)
where the deviation variable vectors are:
X' = XX, (12.2%
n=u-un (12.30)

Generally, the (") notation is dropped and it is understood that the model is in devialion
variable form:

x=Ax+Bu (E2.31)
y=Cx+Du {12.32)

Once the model is in this form, a number of technigues can be used.
12.3.2 Direction Solution Techniques

a. Solve the zero-input (pecturbation in inital conditions) form (Chapler 53
x{(7) = ™M x(0) (12.3%)
One way the matrix exponential can be solved is
A= VMV (12.34)

The MATLAB function for matrix exponential is expm.
b. For a constant step input at time zero (Chapter 5):

x(f) = e x(0) + (M- 1) A" Bu(0) (12.35)
For inputs that are constant over each time step (from ¢ to £ + Af) (Chapter 5):

x(t + A =™ x(D) + (™ -DATBu) (12.30)

1

which is often written as:

[N o T T
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x(k + 1) = "™ x(k) + ("~ D AT Bu(k) (12.37)

where k represents the k&th time step. This represents a discrete-time model, which is
discussed it more detail in Section 12.4.

12.3.3 Rewrite the State-Space Model as a Single nth Order Ordinary

a.

b.

Differential Equation

Solve the homogencous prablem (Chapter 6);

d’x d*'x I o .
a, (f.{;'“ . (1("7] +o o dl’ +a,x = 0 (12.38)
by first writing the characteristic equation;
a, N+ a, N+ e N ba, =0 {12.39)

and solving for the roots (eigenvalues) of the ath order polynomial. I the roots are
distinct, the solution is of the form:

() = ¢ Ml ey e b L, (1240

where the coefficients are found using the s initial conditions,
Solve the nonhomogenecus problem using the method of undetermined coefTicients
{Chapter 6);

d™ d iy

dx
wgpn b g T ot a, x= fudt) (12.41)

using a three-step procedure,
i. Solve the homogeneous problem to find:
X0 (12.42)

ii. Solve for the particular solution by deiermining the coefficients of a trial {unc-
tion (see Table 6.1, Chapter 0) that satisfy the norhomogeneous cquation:

xp(t) (12.43)
itt. Combine the two solutions for:

x(0) = x, (1) + xp(0) (1244

Use Laplace transforms to solve the ath order equation (most useful for nonhomo-
gencous equations) (Chapters 7-11):

]
) ast b a, N L ay +oa, @) ( )

which corresponds 1o the differential equation:
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d"s d" iy

a I/
-1 .
Tt el gyt

Ix
+ ..+ a (J; +a,x = u(l) (12.46)
e

The more general case is:

R e O
as" +oa, "+ L +as+oa,

x(s) = tel(y) (12.47)

which corresponds to the differential equation:

d" " x dx
a, Vﬂrf” L .dln;——“i + .+ iy At + a,x
el "t d" 'y du ,
= b” ;11” -+ b_,ki d'{”l + ...+ bl i + bo 1" (12.48)

For physically realizable systems, b, = 0. Oflen many of the leading b, terms are
zero, If the leading r terms in the b polynomial are zero, then the sysiem is referred
o as relative order r.

12.3.4 Use Laplace Transforms Directly on the State-Space Model

Previously we have assumed that the state-space model has already been converted 1o a
single nth order differential equation. We can also translorm the set of # first-order Hinear
state space equations directly using:

Y(s) = [C(sT-A)'B + D]U(s) (12.49)

Generally, the Laplace transforms technique is used [or nonhomogeneous problems, that
is, systems that have an input fercing function (such as a step}.

12.4 INTRODUCTION TO DISCRETE-TIME MODELS

Consider the general linear stale space model:

Aq

ay iy . a4y, |1 by b o by
] . . . .
i Ayt . )X, by b o b,
or,
x=Ax+Bu (12.31)

Recall that the single variable equation:

e e ettt 41 R L T B
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v = ax khu (12.50)

has the solution:
'l g i N i)
x(f) = e x(0) + (" — 1)~ u(0) (12.51)
a
when (1) = constant = u((}).

In a similar fashion, the solution to (12.31), for a4 constant mput (u(f) = w0 from
F=01o1fis:

x(1) = D x(0) + I'uw(0) (12.52)

where:
P = ({"l" (125'11)
and G={(d-IA'B (12.54)

Equation (12.52) can be used to solve for a system where the inputs change from time
step to time step (f to (A1) by using:

x( + Ar) = @ x{(1) + T u() {12.55)
More often this is wrilten as:
x(k + 1) = dx{k) + I"ua(k) (12.56)
where & represents the kth time step. The output at time step & is written:
yiky = Cx(k) + Dufk) (12.57)

The stability of the discrete state-space model is determined by finding the cigenvalucs
of @. If the magnitude of all of the eigenvalues is less than 1, then the systeim is stable,

12.4.1 Discrete Transfer Function Models

Continuous time models transfer function models wre characierized by the Laplace tran-
form variable, 5. Similarly, for discrete transfer function models, a discerete transform vari-
able, z, 1s used:

Y(z) = G{z) U(z) (12.58)

where:
G(z) =[C(z1-A)"'B + D] (12.5%)
For the case of a single input-single output system, G(z) consists of a numerator and de-

nominator polyneinial of the form:

bet+b 2"V L+ b+ b
wd T DT o : 1 al] (12.60)

¥ Z = -
8() a, " o, 2 L ez o,
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The transfer function is normally written in terms of the backwards shift operator, 1.
Multiplying the transter function by 779/, we find:
b brz—l_zj l. + .+ blzﬂz-.ﬁ-? + b”z—n

glz) = "

i z (12.61)
a, ta, 2z o az az

n
The backwards shift operator is defined as;

vk 1)y =27 () (12.62)
50 vk~ 2) = z72y(z), ete. The discrete transfer function notation:
by £ by 2 A b e b

Y( ) i, + d, |z -1 + .+ alz--n{] + i’-l,,Z"" (,\) .

then represents:
(a, +a,_ 27"+ 4 az" a7y v(z)
= (b, ¥ b,z B+ bz u(z) (12.64)
which corresponds to the discrete input/output model:
aylky +a, ylk—1y+ . +aplk-n) +aylk-—n-1)
= k) + bk~ 1) b ot bk =n) btk -n -1y 30D
Usually we are solving for v(k+1), and without foss of generality we can assume a,, = 1.
vik + 1y +a, yk)+ . +aylk—-n+ 1) +aylk-—n)
=hulk + 1)+ b, ulk)+ . +hulk-n-1)+ bulk-n) (12.66)

Also, for most systems there is not an immediate effect of the input on the output, so
b, =1
The most commaon discrete-time model is first-order:

vk + 1)+ ay(k) = b k) (12.67)
or,
yk 4+ 1y = —ayk) + bulk)

which has the transfer {function relationship:

-1
bz

= : 12.68)
1+ a,z (12

Wz}

Physically realizable systems will always have at least a z7! factor (unit time delay) in the
numerator.
A Tirst-order discrete system with & additional units of thme-delay is written

yik + 1) + a (k) = bu(k — N) {12.69)

QF,

PR o )
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v+ 1) = —a,p(k) + bu(k ~ N)
which has the transfer function relationship:
N1

b z
W(z) = o 12.
y(z) 1+ (r(,z" (1270

EXAMPLE 12.4  Lincar Van de Vusse Rexctor Model

o

Consider a state-space model from the isothermal chemical reactor module (specifically, the
Van de Vusse reaction):

A | 24048 0
08333 - 22381
7.6000°
3 -
! -'L1170J
C=[0 i
0

For a sample time of 0.1 the discrete state-space model is (using (12.52)—(12.54), or the MA'T-
LAB c2d function):

0.7863 U }
0.0661 (L7995

[ﬁ““" 0.6222
T - 0.0849

and the discrete input-output model is {using (12.59), or the MATLADB ss2tf function)

0075127 F 0100127

(7)) = o L
B2 = 7 sg570 U D660
which has poles of 0.7995 and 0.7863 {which have a wiagnitude less than 1, so the system is sta-

ble). The zero of the numeratar polynomial is 1.3339.
The step responses of the continuous and discrete systems are compared in Figure 12.3.
For a sample time of 0.75, the discrete state-space model is (using {12.52)-{12.54}, or the
MATLAB ¢2d fuaction):
P ' 0.1647 0 i
""" (11096 0.1866

2.431 4J
O.1ted
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o
oo
05 |
04y . continuous
o delt = 0.1

03 |
=
&
3 02|

c.1 | -

0
(_)1 b . Fl 1
0 1 2 3 4

time

FIGURIE 123 Step response of continous and discrete (Ar = 0.1 models.

and the diserete input-output medel is (using (12,59}, or the MATLAB  ss201 funclion):

L1564z '+ 0.2408; 7

] - 0358327 + 0.03072
which has poles at 001860 and 0.1647, indicating stability. The swero of the numerator polynomial
s - £.53399,

A comparison of the step responses of the continuous and diserete models is shown in

Figure 12.4. Notice that the discrele smmnple tine is oo large to capture the “inverse response”
behavior of the conttnuous system,

06 o e e S 4._7‘.—;;:“;;;_“_69_»_“____ p—— {D -
e
0.5
04 ¢ —— continuous
o deit = 0.75

~ 03
=
=2
Z 02}

0.1 1

0 \
0 1 2 3 4

time

FIGURE 12,4 Step response of continous and discrete (Ar = 0.75) models.
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PARAMETER ESTIMATION OF DISCRETE LINEAR SYSTEMS

Often when discrete lincar models are developed, they are based on experiments| sysgem
responses rather than converting a continuous mode! to a discrete model. The estimation
of parameters for discrete dynamic models is no different than the linear regression analy-
sis presented in Module 3. Please review Module 3 to understand the notfion sind ideas
behind linear regression,

The measured inputs and outputs are the independent variables, and the dependent
variables are the outputs. For simplicity, consider the following single input-singic ouiput
modek:

wk) = ~aylk -y —ayy(k = 2) + byalk = 1) + byu(k -2) (1271

Now, lor the system ol N data points we can write:

Y =30 (82,723
where,
HON oM [ -a
L L I 'hl“" (12.73)
¥(N) (N by
(k)" = [y(k = 1) ylk —2) u(k -1} u(k - 2)] (12.74)
The solution to this problem is:
6= (b)) '’y (12.75)

EXAMPLE 12.5 Parameter Estimation

A unit step input i made Lo a systent at time £ = 0 ¢k = (). The sample time is A7 = 0.75, The step
response data are shown below and plotted in Figure 12.5.

k ¥(k)

0 0
01504
04522
0,5513
05710
(15830

ok W b —
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&
05 F R
O
04
=1
=t
3 037 b
0.2
8]
1 F
0 1. 1 I3 | I
0 1 2 3 4 5
sample time
FEGURE 12.5  Step response data {same as Figure 12.4).
w1y 0.1504
¥(2) 0.4522
Y = | y(3) 0.5513
y(4) 0.5770
- y(5) 0.5830
0 0} 1 0
N e y(- -
oD y(O )y @) e 01564 0t 1
B = ’ ' ' ' =i 0.4522 01564 1 1
‘ ' ' ‘ ‘ 05513 04522 1 1
5y : (3 4 (3} X
W] Lx@y v(3) w4 w3} 0570 05563 1

Fhe sclution is:

B = (bidy 'd!y

Sy 0.3513
—ay |1 - 0.0308
by L] 0.1564

by 0.2409

Chap. 12

which are the same parameters that we found for the discrete transfer Function mode] that was
converted from the continuous madel with a sample time of (0,75,
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This simple example illustrated the step response of a perfectly maodeled system (no mea-
surement noise). The approach can also be applied to a system with arbitrary nputs and
with noisy measurements. The data was analyzed in a batch Fashion, that is, all of the data
were collected before the parameter estimation was performed.

There are other approaches that are useful for estimating mode! parameters in real
time, often using the model parameters to modify feedback controb laws. These ap-
proaches are beyond the scope of this textbook. The MATLAB System 1dentification
Toolbox is useful for these types of problems. A good reference is the text by Ljung,

SUMMARY

There were multiple objectives to this chapter. The first was to introduce analytical solu-
tion technigues for boundary value ordinary differential equations. The second was to
provide a concise review of techniques to solve linear initial value ordinary differential
equations. The final objective was to introduce discrete-time models and discuss parame-
ter estimation for these models.

For continvous-time maodels, the eigenvalues of the state-space model must have
negative real portions for the system to be stable. Equivalently, the poles of the continu-
ous transfer function models must be negative (the cigenvalues of the state-space model
are equal to the poles of the transfer function model), Analogousty, the eigenvalues of the
discrete state-space model must have a magoitude less than one to be stable. Also, the
poles of a discrete transfer function model must have magnitudes fess than one to be
stable.

Conlinuons-time input/output (transfer function) maodels with zeros that are posilive
exhibit inverse response. Similarly, discrete transter lunction models with zeros that have
a magnitude greater than one (yet have a negative real portion) exhibil inverse response.
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System identification (model parameter estimation) is covered in the text by 1jung
Ljung, L. (1987). System Identification—Theory for the User. Englewood Cliffs,
NJ: Prentice-Hall.
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STUDENT EXERCISES

1. Consider the following second-order boundary value problem:

o’y dy 7
IS N |
dz? dz 4
where:
x(z =) =2
-’(-(Z - ]) S |
Show that, by defining x| = x and v, = dv/dz, the following equations are oblained:

dx,/dz = x,

7
dx,fdz = — il 4 x,

and that one of the intiad concitions is:
x(z=0)=12

We see that vo{z = 0) must be “guessed,” then the two equations can be inlegrated
(using odeds) from z = 0 w0 z = 1. The value of x) at z = 1 is then checked: it
xy{z = 1) is not equal o (within an acceptable tolerance) then values of v,z = 1)
are iteratively guessed until the final value is satisfied. This method is known as the
“shooting method”. Use fzero o solve for the initial condition that satisfies the
end houndary valuc.

2. Consider the reaction/dispersion equation

ac, aC,  ~  9°C, .
: A= - Ay D, - :l —k (/A
N vz CoazT
. €, , . .
let: C = -~ = dimensionless concentration
("/1()
Z . . . .
and: Y=y = dimensionless axial distance
. Dy . . .
define: T ]2 - = dimensionless fime
v, L
P, =z = Peclet number
1)/17.
I
and: D, = - = Damkohler number
Dyz
aC aCc dc
to show that; e + oy = DO (122

aT “ay 0y’
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Find the dimensionless form of the Danckwerts boundary conditions at steady-state:

dc,(07)

v, Cap =0, C4(07) ~ f)Az dz

dC, (1)
dz

a. Perform steady-state calculations (analytically) using the Danckwerts houndary
conditions for:

and:

iP=1, £ =1, 10, 25 (compare on satne plot)
il P,=10,D,=1, 10,25, 100 (compare on same plot)
iif. Po=25, £3,=1,10, 25, 100 {compare on same plot)
iv. =100, D, =1, 10,25, 100 (compare on same plof)
3. Consider the following continuous state-space model:

| 3623 0
27 08333 29588
5.5051°

B =

l_ 12660
=10 1]
D=0

a. Find the continuous transter function model,
b. For a sample time of 0.25, lind the discrete state-space and transfer function
models.
¢. Compare the step responses of the continuous and discrete models. What do you
observe?
4. Consider a unit step change made at k=0, resulting in the output response shown in
the plot and table befow.

1.2 r : TEe
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300
0
0

12
1.0023

] 2 3 4 5
01044  0.3403 0.6105 0.8494 1.023
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Linear Systems Summary Chap. 12
0 7 8 9 10 Hi
4 1.1244 11616 11531 11184 L0746 1.0336
18 19 20
1.6022

0.9828 0.9744 09742 09790 0.9860 0.9929 0.9985
Hstimate the parametess for a discrete linear model with the forn

8(z) =

b+ by’

(2 e agz”
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