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'rhe objective of this chapter is to introduce the student to phase-plane analysis, which is
one of the most important techniques for studying the behavior of nonlinear systems.
After studying this chapter, the student should be able to:

Usc eigeIlvalues and eigenvectors of the Jacobian matrix to dUlracterizc the phasc­
plane behavior

Predict the phase-plane behavior close to an equilibrium point, hased on the
linearit.ed model at that equilibrium point

Predict qualitatively the phase-plane behavior of the nonlinear system, when there
arc multiple equilibrium points

The major sections of this chapter arc:

(3.1 Background

13.2 Linear System Examples

13.3 Gcncralit,ation of Phase-Plane Behavior

13.4 Nonlinear Systems
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13.1 BACKGROUND

Phase-Plane Analysis Chap. 13

Techniques to find the transient (time domain) behavior of linear state-space models \verc
discussed in Chapter 5, Recall that the response characteristics (relative speed of re­
sponse) for unforced systems were dependent on the initial conditions. Eigellvalue/eigen­
vector analysis allO\vcd us to predict the fast and slow (or stable and unstable) initial COIl­

ditions. If we plotted the transient responses based on a number of initial conditions, there
would soon be an ovcnvhclming Ilumber of curves on the transient response plots. An­
other way of obtaining a fecI for the effect of initial conditions is to usc a pIUlS('~p/(/IiC

plot. A phase-plane plot for a two~slatc variable system consists of curvcs of OIlC-SUltC
variable versus thc state variable (xl(t) versus xi!)), where each curve is hased on a dif~

fercnt initial condition. A phase-space plot can also be made for three-state variahks.
where each curve in 3~spacc is based on a different initial condition.

Phase-plane analysis is one or the most important techniques for studying the be­
havior of nonlinear systems, since there is usually no analytical solution for a nonlinear
systcm. It is obviously important to understand phase-plane analysis for lincar sysll'!1E

before covering nonlinear systems. Section 13.2 discusses the phase-plane behavior of

linear systems and Section 13.3 covers nonlinear systems.

13.2 LINEAR SYSTEM EXAMPLES

Nonlinear systems often have multiple steady-state solutions (sec Modules X and l) for ex­
amples). Phase-plane analysis or nonlinear systcms provides an understanding oC \vhicll
steady-state solution that a particular set of initial conditions will converge to. The local

behavior (close to one of the steadY-SUite solutions) c,Im be understood from a lincar
phase~plane analysis of the particular steady-state solution (equilihriwIl point).

In this section \\le show tile different types of phase-plane behavior that can be CX~

bibilCcl by linear systems. The phase-plane analysis approach will be shown by \vay (ll' a
number of examples.

EXAJ\ilPLE 13.1 A Stable Etll1ilihrilllll Point (Node Sink)

Consider the system of equations:

(I '.1)

(11.2)

The reader should find lhat the solution [0 (13.1) and ( 13.2) is:

xl(r) = Xl" ('I

(13,4 )

i

5r.
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where xI" and x20 arc the initial conditions for xI and x2' We could plot Xl and x2 as a function of
time for a large Humber of initial conditions (requiring a large number of time domain plots), hut
the same information is contained 011 a pllase-plane plot as shown in Figure 13.1. Each curve
corresponds to a different initial condition. Notice that the solutions converge to (0,0) for all ini­
tial conditions. The point (0,0) is a stahle equilibrium poiot for the system of equations (13.1)
and (13.2)~thc plot shown in Figure 1:1.1 is often called a ,I'table node.

'1

FIGURE 13.1 Phase-plane plot for Example 13.1. The point J:T :;:: (0,0) is a
stable node.

EXAMPLEI3.2 An Unstable Equilibrium Point (Saddle)

Consider the system of equations:

X,
-tl = 4 Xl

'fhe student should find that the solution to (13.S) and (13.6) is:

X1(1) = x lo e
l

xit) x20 e"l

(13.5)

(13.6)

(13.7)

(13.8)

The phase~plane plot is shown in Figure 13.2. If the initial condition for the x2 state variable
was 0, thell it trajectory that reached the origin could be obtained. Notice if the initial condition
x2(1 is just slightly different than zero, then the solution will always leave the origin. The origin is
an unstable equilibrium point, and the trajectories shown in Figure 13.2 represent a saddle point.
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The x j axis represents a stahle subspace and the Xl axis represents an unstable subspace ["or Ihi\
problcrn. 'l'he term saddle can he understood if you view the x J axis as the line (ridge) hct\\ccn
the "horn" and rear of a saddlc. A baJJ starting at the horn could cOllceptually roll d(l\vn the sdd­

die and remain exactly on the ridge between the horn and the rear of the saddlc. In practice, d

small perturbation from the ridge would calise the ball to begin rolling to olle "stirrup" or [Ill'
other. Similarly, a small perturbation in the initial condition from the Xl axis in l~xal1lpk L\2

would cause the solution to diverge in the unstable direction.

FIGUnE 13.2 Phase-plane plot for Example 11.2. The point xl' ::::: (OJ)) is a
saddle point.

Figures 13.1 and 13.2 clearly show the idea of separaticcs. A separatrix is a line in the
phase-plane that is not crossed by any trajectory. In l-<'igure J3,1 the sepnF{/liccs are the C\l­

ordinate axes. A trajectory that started in any quadrant stayed in that quadrant. This is he
cause the eigenvectors arc the coordinate axes. Similar behavior is observed in Figure
13,2, except that the xJ coordinate axis is unstablc.

Solving the cquations for Examples 13.1 and 13.2 and the phase-plane lrajccl(ll'il's
were straight-forward and obvious, because the eigenvectors where simply the cnordin,th'
axes. [n general, eigenvalue/eigcnvector analysis must be llsed to determine the stahle dnd
unstable "suhspaccs." The eigenvectors arc the separaticcs in the general case,

Examplc 13.3 shows how eigenvaluc/eigenvector analysis is used to rind the swllie

and unstable subspaccs, ,md to define the separatices,
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EXAMPLE 13.3 AnothcrSHddle Point Problem

Consider the following system of equations:

i j = 2x1 + x2

i 1 = 2x l -X2

Using standard state-space notation:

x= Ax

The Jacobian matrix is:

the eigenvalues are:

(13.9)

(13.10)

(13.11 )

-1.5616

and the eigenvectors arc:

t

', ,0.27031
- 0.9628 1

0.8719
1

0.4896

Since A] < 0, ~I is a stable subspace; also, since 1..2 > 0, ~2 is an unstable subspace. A plot of the
stable and unstable subspaces is shown in Figure 13.3. These eigenvectors also define the sepa··
ratit:cs that determine the characteristic behavior of the state tn~jeetories.

Unstable Subspace

Stable Subspace

FIGlJRE 13.3 Stable and unstable subspaces for Example 13.3.
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'file lime domain solution to (13.11) is:

X(I) ~ eA
' x(O)

which is often solved as (sec Chapter 5):

x(l) ~ V e'\' V I x(O)

which yields the following solution for this system:

Phase-Plane Analysis Chap. 13

(JJ.12)

(13.13)

X(I ~ I 0.2703
) 0.9628

(U~Tl91 Ie LS(,I(,t

0.4896 0
011 0

.
5038

('2.561(;/ 0.9907
- o.81J721 x(O)
0.2782

Recall that the solution 10 (13.[4), if.\'(O) "" ~l,isx(l):::: ~Ie'\ll, so

if x(O) I
0.2703 I_ then

- 0.9628
( I 0.2703 ]xt)= ._ e

_- 0.9628

The phase-plane plot is shown in F'igure 13.4, where the separatrices clearly define the phasc­

plane behavior.

FIGURE 13.4 Phase-plane plot for Example 13.3,
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'fhe previous examples were for systems that exhibited stable node or saddle point
behavior. In either case, the eigenvalues and eigenvectors where real. Another type of be­
havior that can occur is a spiral focus (either stable or unstable), which has complex
eigenvalues and eigenvectors. Example 13.4 is an unstable focus.

EXA1VIPLE 13.4 lJn~tHhlc Focus (Spiral Source)

Consider the follO\ving system of equations:

XI =xl 1 2 x.,

Using standard state-space notation:

x= A x

The Jacobian matrix is:

I I
i\~

-- 2

( 13.15)

(13.16)

with eigellvalues I ± 2j. This systenl is ullsfablc because the real portion of the complex eigen­

values is positive.
'file phase-plane plot is shown in r:igufc 13.5.

FIGURE 13.5 Example l3.4, unstable focus (spiral source).
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Another type of linear system behavior occurs when the eigenvalues have a zero real portion.
That is, the eigenvalues arc on the real axis. This type of system leads 10 closed Cllnes in
the phase-plane, and is known as ccnter behavior. Example 13.5 illustrates center beha\'ior.

EXAMPLE 13.5 Center

Consider the following system of equations:

--Xl X(

The Jacobian matrix is:

I
~ I

;1~

_ 4

(1117 )

iLUS)

and the eigenvalues arc () ± 1.732 Ij. Since the real part of the eigenvalues is zero. there is a peri
odic solution (sine and cosine), resulting in a phase-plane plot where the equilibriul11 point j" ~\

cenlcr, as shown in Figure 13.6.

FIGURE 13.6 Example 13.5, eigenvalues with l,cro real portion arc centers.
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Examples 13.1 to 13.5 we have provided an introduction to linear system phase-plane be­
havior. We noted the important role of eigenvectors and eigenvalues, and how these relate
to the concept of a separatrix. Section 13.3 provides a generalization of these examples.

13.3 GENERALIZATION OF PHASE·PLANE BEHAVIOR

We wish now to generalize our results for second-order linear systems of the form:

where the Jacohian matrix is:

I
{[IIA=
an

Recall that the eigenvalues arc found by solving det(A./- A) = 0:

del(A! - A) = (A - ",,)(A - aD) - {/" a2l
CC

()

which can be \vrittcn as:

del(H-A) == A2 -1r(A)A + del(A) ()

The quadratic formula call be used to find the eigenvalues:

A = Ir(A)+ V(lr(A»' - 4 dellA)
2

or, expressing each eigenvalue separately,

(13.19)

(13.20)

( 13.21)

( 13.22)

( 13.23)

and.

A, =
lr(A) - v(lr(A»)2 - 4dcl(A)

2

tr(A) r \/(lr(A»)2 - 4 dellA)

2

V./c notice that at least one eigenvalue will be negative if 'r(A) < O. We also notice that the
eigenvalues will be complex if 4 de-teA) > tr(A)2.Remcmbcr that the different behaviors
resulting from Al and A2 are:

We can then usc Figure 13.7 to find the phase-plane behavior for second-order linear or­
dinary differential equations as a function of the trace and detenninanl of A. In Figure

Sinks (stable nodes):

Saddles (unstable):

Sources (unstable nodes):

Spirals:

Rc (A,) < 0 and Rc (A2 ) < ()
Rc (A,) < 0 and Rc (A2) > ()

Rc (A I) > 0 and Re (Az) > 0

Al and A2 arc complex complex conjugates. If Re(AI)
< 0 then stable, i r RC(A,) > () then unstable.
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node
sink

de1(A)

saddle

spiral
source

Center

node
source

(tr At= 4 det A

FIGURE 13.7 DYllarnic behavior diagram for second-order linear systems,
Thcx<lxis is tr(A) and the y-axis is dd(A).

13.7, the x-axis is the trace orA and the .v-axis is the determinant of A. For example, COlJ­

sider Example 13.1, where

A

tr(A)

dct(A)

1

- I
()

-'i

c= 4

°1-4

'fhe point (-5,4) lies in the second quadrant in the node sink sector, as expected. since the
two real eigellvalues arc negative (indicting stable node behavior).
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l<jgurc 13.8 shows the phasc~planc behavior as a function of the eigenvalue loca­
tions in the complex plane. For example, two negative eigenvalues lead to stable node be­
havior.

13.3.1 Slope Marks for Vector Fields

A qualitative assessment of the phasc~planc behavior can be obtained by plotting the
slope marks for the vector field. Consider a general linear 2-statc system

Eigenvalues

1m"" i .... ~ 3table node

iRe

Phase-Plane Plot

1m

xi.... ~ 3table fOCIJ3

~e

FIGlJRE 13.8 Phase-plane behavior as a function of Eigenvalue location.
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Eigenvalues

f~ ~ unstab1JJ tocos

~e

~
Jm

saddle
He

Phase-Plane Analysis

Phase-Plane Plot

Chap. 13

rm
_

~e
"

FIGURE 13.8 Continued

X2 = all x I + an x 2

We call divide (13.25) by (/3.24) to find how x2 changes with fCS]lcotto x,:

dX2 a21 Xl -I-

dx] al1xj+1l12X2

( /3.24)

( 13.25)

(/326)

±LA
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and we can plot "slope marks" for val lies of xl and x2 to determine an idea of how the
phase plane wil! look. Let us revisit Example 13.3. The slope marks can be calculated
from (13.27):

dX2

dXj

2x,

2 Xl + x 2
( 13.27)

Figure J3.9 shows the slope marks for Example 13.3. These arc generated by forming a
grid of points in the plane, and finding the slope associated with each point; short line seg~

mcnls with the slope calculated arc then plotted for each point. Notice that one can lise the
slope marks to help sketch state variable trajectories, as shown 111 Figure 13.10. Saddle
point behavior found in Example 13.3 is clearly shown in l<'igurc 13.10.

13.3.2 Additional Discussion

Phase-plane analysis can be used to analyze autonomous systcms with two statc variablcs.
Notice that state variable trajectories cannot "cross" in the plane, as illustrated by the fol­
lowing reasoning. Think of any point of a trajectory as being an initial condition. The
model, when integrated from that initial condition, must have a single tn~jectory. If two
tn~jcctories crossed, that would he the equivalent of saying that a single initial condition
could have two different tnyectories. If a system was nOlH1utonomous (for examplc, if
there was a forcing function that was a function of time) then state variable trajectories
could cross, because a model with the same initial conditions but a different forcing func­
tion would have different tn~jectories.

An autonomous (unforced) system with n stale variahles cannot have tn~jectories

that cross in n-space, hut may have trajectories that cross in less than n-space. For exam-

FIGURE 13.9 Slope marks for the vector field of Example 13.3.
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13.4

FIGIJRE 13.10 Slope marks with trajectories for Exarnplc 13.3,

pic, a third-order autonomous system cannot have trajectories that cross in 3-spacc, but
the trajectories Illay cross when placed in a two-dimensional plane.

NONLINEAR SYSTEMS

In the previous sections we discovered the types of phase-plane behavior that could be ob­
served in linear systems. In this chapter we will find that nonlinear systems v,'ill orten
have the same general phase-plane behavior as the rnodellincarizcd about the equilibrium
(steady-state) point, when the system is close to that particular equilibrium point.

In this section we study two examples. Example 13.6 is based on a simple bilinear
model, while Example 13.7 is a classical bioreactor model.

EXAMI'LE·13.6 Nonlinear (Bilinear) System

Consider the following system:

rtf
z,(z, + I) ( 13.28)

dZ 2

tit
(13.29)
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which has two steady-state (equilibrium) solutions:

F'rJllilihrillm I: trivial

Equilibrium 2: nontrivial

1. 2s 0

Linearizing (13.28) and (13.29), we find the following Jacobian matrix:

A Zl'~+ ]j
<-'1.1' ..

In the following, we i.lnaly/,c the stability of each equilibriulH point.

Equilibrium 1 (Trivial)

The Jacobian matrix is: A [~ (~]
and the eigenvalues arc: 11. 1 = -- v'3 11.) = \/3
We know from linear system analysis that equilibrium point one is a saddle poim, sillce one

eigenvalue is stable and the other is unstable.

The stable eigenvector is: I 0.5j
.0.866 _

I
0.5 IThe unstable eigenvector is: ~,

0.866
The phase-plane or the JincarJ/cd model around eqnilibriulll point one is a saddle, as shown in
I"igurc D.l I. The linearized model is

FIGlJH.E B.ll Phase-plane of the [~xample 13.6 model lillcarized around

trivial equibrium point. This point is a saddle point.
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where x = z - z,

Equilibrium 2 (Nontrivial)

x
1

0 11 x
3 0

Phase-Plane Analysis Chap. 13

'rhe Jacobian matrix is:

the eigenvalues arc:

-3 011;1 0
AI ·3 A2

So, we know from linear system analysis that equilibrium point [\\10 is a stable /lode, since both
eigenvalues arc stable.

The "fast" stable eigenvector is

The "slow" stahle eigenvector is

The phase-plane of the linearized model around cquilhrium point two is a stable node, as shown
in Figure 13.12.

FIGURE 13.12 Phase-plane of the EX<lmple U.6 nwdel linearizcd around
trivial cquibriulH poinL This point is a stable node.

The phase--plane diagram of the nonlinear model is shown in r;'igllrc /3.13. Notice h()\\,
the linearized models capture the behavior of the nonlinear model \Vhell close to one of the equi­
Ibrium points. Notice, however, that initial conditions inside the "right" saddle "blow up," while
initial condititllls inside the left saddle are attracted to the stable point. Slope-field marks are
shown in F'igurc 13.14.
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FI(;lJRE 13.13 Phase-plane of [~xaJnplc 13.6. Tn~jcclorics (except those of
the righl side of the saddle) leave the unstable point and arc "attracted" 10 the
stable point.

,~~

FIGURE 13.14 Slope-field marks and some trajectories for Example 13.6.
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EXAMPLE n.? Biorcactol' 'with Monod Kinctks

Phase-Plane Analysis

..._---~---~-

Chap. 13

D) x,

Consider a model for a bioreactor with MOllOd kinetics (sec rVIoduJe 8):

dx(

tit
03.3(1)

where:

(.'i - x,) IJ

JJ-m;nXI

k m + ~y!

/-lX 1

Y
(13.31 )

(13 ..J2)

/-tIll:)X == 0.53

y ~ 11.4

k", == 0.12

4.11

X j is the biomass concentration and x2 is the substrate concentration. There arc (wo steady-state

(equilibrium) solutions for this set of pararneters.

J:quililniulII I: trivial

L'quilibriu/II 2: nontrivial 1.4523

Xl.> = 4.0

x b 0.3692

Lineari/.ing (13.30) and (13.31) we find the following Jacohian matrix:

where we have defined I-l'

E()uilihrium t (Trivial)

The Jacobian matrix is:

/-L,\

X:!.\( kIll ·f x1.J

A ~ I 0.114563
- 1.286408

o I
-IIA

with eigenvalues of; ~l = 0.114563 and A] == -0.4
indicating that the steady-state is unstable (it is a saddle point).

The unstahle eigenvector is: Sl

The stable eigenvector is:

I
0.3714]

. - 0.9285

I~I
This steady-state is known as the "wash-out" steady-state, because no hiomass is produced and
the suhstrate concentralion in the reactor is equal to the feed suhstrate concentratioll.
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Equilibrium 2 (Nontrivial)

The Jacobian matrix is: A ~ 1 °- 1
3.215929]
8.439832

with eigenvalues of 0.4 and

indicating 1hal the stcady-state is a stable node.

The "slow" stable eigenvector is

The "fast" stable eigenvector is

1

0.99241
~, ~ - 0.11234

[.°.
3714

10.9285

The phasr>plunc plot of Figure 13.15 sbows that the trajectories leave unstable point I (0,4) and
go to stable point 2 (1.4523,0.3692). More detal! of the phase-plane around the unstable point is
sho\Vn in Figure 13. J 6, while Figure 13.17 shows more detail around the stable point.

s

4.0

3.0

2.0

1.0

1.0 2.0
x

FIGURE 13.15 Phase--planc for bioreactor with Monnd kinetics. x is biomass
concentration and s is substrate concelltration.

ESCOLA Dc ENCEi'JHARIA
BIB L 10 'I L '"" 1\
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0.0 ---------- --------- 0.05

FIGUIU~ 13.16 Phase~planc behavior ncar the unstable point (0,4) (L:quiJi­
britlln 1).

0.4

0.3
1.4 ---------- 1.5

FIGURE 13.17 Phase-plane behavior ncar the stable point (1.4523, 0.36(2)
(Equilibrium 2).
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0.5

x, 0

-0.5

·1

··1.5
··1 0

X2

323

FIGURE 13.18 Example of center
behavior.

In the previous examples the system trajectories "left" an unstable point and were "at~

tracted" to a stable point. Another type of behavior that call occur is limit cycle or peri­
odic behavior. This is illustrated in the following section.

13.4.1 Limit Cycle Behavior

In Section 13.2 we noticed that linear systems that had eigenvalues with zero real portion
formed centers in the phase plane. The plwsc-planc trajectories of the systems with cell­
tel's depended on the initial condition values. An example is shown in Figure 13.18. A
somewhat related behavior that can occur in nonlinear sYStCll1S is known as limit cycle be­
havior, as shown in Figure J3.19.

The major difference in center (Figure 13.1 R) and limit cycle (Figure 13.1 <)) hehav­
ior is that limit cycles are isolated closed orbits. By isolated, wc mcan that all inital pcr~

1.5 r-~------~--,

0.5
x,

o

0.5

-1

1.5 L- --'

1 0

x,
FIGlJRE 13.19 Example of limit
cycle behavior.
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wrbatiol1 from the closed cycle eventually returns to the closed cycle. Contrast that ,",vith
center behavior, where a perturbation leads to a different closed cycle.

Limit cycle behavior will he discussed in more detail in Chapter 16.

SUMMARY

As j10tcd earlier, phasc~plane analysis is a useful tool for observing the behavior or llOll~

linear systems. We have spent. time analyzing autonomous linear systems, because the
nonlinear systems will behave like a linear system, in the vicinity or the equilibriulll point
(where the linear approxiIl1ation is most valid). A qualitative feci for phasc~planc bdl<lv­
ior can be ohtained by plotting slope marks.

Notice that: we have shown examples of nonlinear systems that have multiple equi­
librium points (steady~state solutions). Phase-plane analysis can be used to determine re­
gions of initial conditions where a system Illay converge to one (stable) equilbrium point
and regions where the initial conditions Inay converge to another (stable) equilibriulll
point

By sketching the linear behavior around a particular equilibrium point and by using
slope marks, we can qualitatively sketch the phase-plane behavior of a given nonlinear
system,

Clearly the phase~planc approach is limited to systems with two state variables.
Analogous procedures can be used to develop phase-space plots in three dimensions for
threc~state systcllls.Linearization and analysis of the locally linear behavior in terms of
eigcnvalues and eigenvectors can still be used for higher~ordersystems, but the phase be­
havior cannot be viewed for these higher-order systems.

FURTHER READING

Strogatz, S.ll. (1994). Nonlinear Dynmnics and Chaos. Reading, MA: Addisoll
Wesley.

STUDENT EXERCISES

linear Problems

r~<or the following linear systems, usc l'igurc 13.7 to determine the phasc~planc bchaviOl
Also, calculate the eigenvalues and lise Figure 13.8 to verify your results. Develop your
own phase-plane diagrams for any situations not covered in Figures 13.7 and 13.8.

1. x
~I

l °1_ 2 x
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I·· ~ 312. x x
-2

3. x I~ ~IX

4. x I: ~] x

5. x=
1: ~IX

-I -2J6. x ,::.~.

1 -2 x

x··· [ -: -.0.251 .
I~

-0.25 17. Compare x with x ,,-- 2 x-2

1

-I -OSI8. x x
2 1

~I
-I

_~] x9. x
2

r; 0

":10. x 2 o x
0 0 -3

r: ]0 0

It. x =:- 2
_~ x

0 0
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12. A process engineer has linearizcd a nonlinear process model to obtain the following
state-spacc model and given it to your boss. Your boss has forgotten everything he
learned on dynarnic systcms and has asked you to study this modcl using linear
systcm analysis techniques.

x Ax

where:

1 0 - 1.0 1A
1.0 0.0 .
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with initial conditions x,(O) ~ 0.5 and x2(0) ~ - 0.25.

3. What are the eigenvalues of the A matrix? Use bothMATLAB and your own an­
alytical solution.

b. Show a phase-plane plot, placing xl on the x-axis and x2 on the y-axis.

13. Consider a process with a state-space A (Jacobian) matrix that has the following
eigenvalues and eigenvectors. Draw the phase-plane plot, clearly showing the direc~

tion of the trajectories. The eigenvalues arc:

and the eigenvectors are:

14. An interesting example of phase-plane behavior is presented in the book hy S(ro~

gatz (1994). He develops a simple model for love affairs, using Romeo and Juliet to
illustrate the concepts. Consider the case where Romco is in love with Juliet, but
Juliet is fickle. The more that Romeo loves her, the more that Juliet resists his love.
When Romeo becomes discouraged and backs off, Juliet becomes more attracted to
him. Let:

J.:! = Romeo's love/hate for Juliet

x2 = Juliet's love/hate for Romeo

where positive state variable values indicate love and negative values indicate hate.
The model for this relationship is:

'itlcit = axz

dx_____ f. = ~ b x
dt '

where a and b arc positive parameters. Show that this model has center behavior
and discuss the meaning from a romance perspective.

15. Consider a more general formulation of the RomcolJuliel problem in 14 above. In
this case, let:

dX J

dt

Hf
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a.

wherc the paramcters lljj can bc either positive or negative. The choice of signs
specifics the romantic "styles." For each of the following cases (parameters a and b
arc positive), determine the phase-plane behavior. Interpret the meaning of the re­
sults in terms of romantic behavior.

(i~L
::0; a x] + b x 2ill

dx, ~ b x
dl t

b.

e.

dx]
::o;~ax]+hx2

ill

dx')
4::o;bx-ax

dt 1 2

dx]
ilt

(L'lz
rll

Nonlinear Problems

1(). As a chemical engineer in the pharmaceutical industry you are responsible for Ii

process that uses a bactcria to produce an antihiotic. The reactor has been contami­
nated with a protozoan that consumes the bacteria. Assume that predator-prey equa­
tions are used to model the system (x1 ~ bacteria (prey), x2 ~ protozoa (predator)).
The time unit is days.

=axI-'YxIXZ

a. Show that the nontrivial steady-state values are:

h. Use the scaled variahles, YI and Y2'

= -~Yt Y ~
2 X

Z,

to find the scaled modeling equations:
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dh,11= ~13(I-y,)y?

c. l·'ind the eigenvalues of the Jacobian matrix for scale equations, evaluated at YJs

and Yzs. Rcali:r,c that Yt.v and Y2s arc 1.0 by definition. [,'inc! the eigenvalues in
teflllS of (X and ~3.

d. The parameters are (X :;::: ~1 ::::: 1.0 and the initial conditions arc )'1 (0) ::::::; 1.5 and

Y2(0) = 0.75.
i. Plot the transient response of)'J and )'2 as a function of time (plot these

curves on the same graph using MA'l'LAB). Using your choice of integra­
tion methods, simulate to at least ( ::::: 20.

ii. Show a phase-plane plol, placing)'1 on the x-axis and)'2 011 the y-axis.
iii. \Vhal is the "peak-tn-peak" lime for the bacteria? By how much time docs

the protozoa "lag" the bacteria?

c. Now consider the trivial sleady-state (xis::: -r2.1':;:::: 0). Is it stable? Pcrfonn simula­

tions when xj(O) * 0 and x2CO)"* 0, What do yOll find?

f. What if" (0) " 0 and x2(O) = 0'1

g. What if,,(O) = 0 and '2(0)" 0'1

17. Consider the bioreactor Illodelused in Example 13.7 with substrate inhihition rather
than MOllod kinetics (sec Module 8 I'or more detail)

"X.' ( I )• = iL~ ) X"I '

where:

J-Lma\:
'-'- 0.53 km 0.12

y 0.4 Sf 4.0

k, 0.4545

and Xl is the biomass concentration and Xl is the substrate concentration.

Assumc- that the steady-slate dilution rate is D.
I
,::: 0.3,

a. J"ind the steady-state (equilibrium) solutiOllS (Hint: I'here arc three).

h. Analyze the stahility of each steady-state, l·'ind the Jacohian, the eigenvaluc-s,
and the eigenvectors at each steady-state.
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c. Construct a phase plane plot. What do you observe about the unstable steady­
stale?

d. What would you do if it was desirable to operate the reactor at an unstable
steady-state?

18. Perform some time domain plots related to the phase-plane plots for Example 13.7.
Discuss how these plots relate to the phase-plane results.

19. A chemical reactor that bas a single second-order reaction and has an outlet
f10wrate that is a linear function of height has the following model where the outlet
f10wrate is linearly related to the volume of liquid in the reactor (F:;:; f3 \I).

dC

dl

F
~'(Ci" ~ C) ~ kC'

dV
= F ~ '"VLit 1/1 t-'

The parameters, variables and their steady-state values arc shown below:

Fill :;;: inlet flowrate (I liter/min)
('ill = inlet concentration (I gmollliter)
C::::: reactor concentration (O.S gllloi/liter)
V = reacto volume (I liter)
k = reaction rate constant (2 Iiter/(gmol min))
f3:;:: I min-]

Perform a phase-plane analysis and discuss your results.

20. Consider two interacting tanks in series, with outlet flowrates that arc a fUllction of
the square root of tank height. The flow from tank I is a function of \/h l -ill' while
the tlowrate out of tank 2 is a function of \Ih}

F

The following modeling equations describe this system:

I
dh' .dl f,(h"h,,!'}
dh, = IMh' ,h,,Ii) I
dl
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Perform a phase-plane analysis and discuss your results.

Chap_ 13

A cclOlt'2
= 5 [(2

10

5
13 =

2 V6
ft25

13, c_ 2-5 _
mill

I-'or the following parameter values

[('
and the input F -~~ 5

111m

The steady-slale height values arc

hJs
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INTRODUCTION TO 14
NONLINEAR DYNAMICS:
A CASE STUDY
OF THE QUADRATIC MAP

''['his chapter provides an introduction to bifurcation theory and chaos. After studying this
chapter, the reader should be able to:

Sec the similarity between discrete time dynamic models and lluillcric;:1! methods

Dctcnninc the asymptotic stability of a solution to the quadratic map

Unclcrstand the concept of a hi fllrcation

Understand how to find pcriod-2, pcriodA, .. _, period-a solutions

• Understand the significance or the universal number 4.6691 96223

When a parameter of a discrclc~timc model is varied, the llUlnbcr and character of solu~

lions may changc---lhc parameter that is varied is known as a bU;tfcutiol1 parameter. For
some values of the bifurcation parameter, the dynamic model may convcrgc to a singlc
valuc aftcr a long valuc of timc, while a slnall change in the bifurcation parameter may
yield periodic (continuous oscillations) solutions. For some discrete equations, valucs of
the parameter may yield solutions that appear random --these are typically "chaotic" solu­
tions. Chaos can occur in a single nonlincar discrete equation, whilc threc autonomous
(no explicit depcndencc Oil time) ODEs arc required for chaos in continuous models.

The major sections in this chapter arc:

14.1 Background

14.2 A Simple Population Growth Modcl

14.3 A More Rcalistie Population Model

14.4 Cobweb Diagrams

331
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14.5 Bifurcation and Orbit Diagrams

14.6 Stability of l'"ixed-Point Solutions

14.7 Cascade ofPeriod-Doublings

14.8 Purthcr Comments on Chaotic Behavior

Chap. 14

14.1 BACKGROUND

Many engineers and scientists have assumed (at least. until roughly twenty years ago) [hill

simple models have simple solutions and simple behavior, and lhat Ihis behavior is pre­
dictable.lndeed, the main objective for developing a rnodel is Llsually to be able to predict
behavior or to match observed behavior (measured data). During the past thirty years, a
nurnhcr of scientists and engineers have discovered simple 11lOLlcis \v!lerc the short-term
behavior is predictable, hut sensitivity to initial conditions make the long~tertlJ predictillil

impossible. By initial conditions. \\,ie mean the value of the variables at the beginnillg of
the integration in time. All example is the simple weather prediction model of Loren/.

(1963). which is a system of three nonlinear ordinary differential equations; the Lorell/.
1l1Odcl is covered in more detail in ChaptGr 17. Another example is the population grO\vth
model used by May (1976), which is a single nonlinear discrete time equation. ·fhis popu­

lation lllodel is the topic of this chapter.
The cOllllllonly accepted term for the dynamic hehavior or a system that exhibits

sensitivity to initial conditions is clwos.Tcrms for the branch of mathematics related to

chaos include nonlinear dynamics, dynamical systems theory. or nonlinear science. \in\'
chaos books, written for a general audience, appear frequently: some of the more interest­

ing olles arc referenced at the end of this chapter.

This chapter will not make you an expert on nonlinc.'lr dyn<1111ics, but it will help
you understand what is meant by sCl1sitil'itr to initiol ("ollditiollS and practical limits to
long-term [Jredictability.

14.2 A SIMPLE POPULATION GROWTH MODEL

Assume that the population of a species during one time period is a functioll of the prcvi~

nus time period. Perhaps we are interested ill the number of bacteria cells that arc gnnving
in a petri dish. or mayhe we arc concerned ahout the population of the United States. In

either case. the Inathematical model is:

(14.1 )

wherc Ilk ~

hk

die. ~

population at the beginning of tilne period k

number of births during tinlc period k
number of deaths during time period k

Now assume that the number of births and deaths during tillle period k is proportional to

the population at the beginning of time period k.
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( 14.2)

(14.3)

where (Xli and (Xd arc birth and death constants. Then:

llk+1

which \ve call write as:

or, (l+r)II,

(14.4)

(14.5)

(14.6)

where r;::: (Yb ~ eXd' Eqn. (14.6) call be simply written as:

Ilk I I = 0' fl k

where ex ::::; I + r;::: I + ex/} - c"-r/ (obviously, 0' > 0 for a physical system)
The analytical solution to (14.7) is:

where /lois the initial condition.
1"1'0111 inspection of (14.8) we observe lhal

( 14.7)

( 148)

if (X < 1

if (X > I

if ex;::: I

The population decreases during each lime period (converging to 0).

The population increases during each time period (-----+ 00).

The population remains constant during each time period.

These results arc also shown in Figure 14.1

3

2.5

D
<D 2<ii
0

~

c 1.5
0

~
"3
0-
0
0-

0.5

0
0

+

alpha 1.1 +
+

+
+

+
+

+ alpha 1 0+

alpha

2 4 6 8 10

time step

FIGURE 14.1 Simple population growth model.
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These results arc easily rationalized, since births<dcaths, births>dcalhs, and births ==
deaths for the three cases. The result for 0: > I is consistent with Malthus. who in the nine­
teenth century predicted an exponential population growth.

The result that the population increases to ex) for (X > J is a bit unrealistic. In prac­
tice, the amount of natural resources available will limit the total population (for the bac­
teria case, the mnounl of nutrients or the size of the Petri dish will limit the maximum
number of bacteria that can be grown). In the next example, we show a simple model that
"constrains" the maximum population.

14.3 A MORE REALISTIC POPULATION MODEL

A common model that has been used to predict population growth is known as the logistic
equation or the quadratic map (May, 1976).

( 14.9)

Here, .r" represcnts a scaled population variablc (sec student excrcise 3).
Note the similarity of (14.9) with the numerical methods presented in Chapter 3:

X k , I ~ g(xk ) ( 14.10)

Recall that direct substitution is sometimes used to solve a nonlinear algebraic equation.
The next guess (iteration k+ 1) for the variable that is being solved for (x) is a funetioll of
the current guess (iteration k). Equation (14.9) shows how the population changes from
time period to time period--·--that is, it is a discrete dynamic equation. Since (J4.9) is the
same f011n as (14.10), we will learn a lot about the quadratic map frOTH analysis of the di­
rect substitution technique and vice versa. You will also note that many numerical inte­
gration techniques (Euler, Rungc-Kutla) have the fOHn of (14. [0).

Since (14.9) is a discrete dynamic equation, we can determine the steady-state be­
havior by finding the solution as k ------;. 00. Writing (14.9) ill a more explicit form,

(X xlc.

as we approach a steady-state (/Lred-poillt) solution, xk+l ::::: xk- so we can write:

X s 0' .:r, - (X .Y./"

which can be written:

"X,' - (" - I) x, ~ (J

We can use the quadratic formula to find the steady-state (fixed-point) solutions:

(14.11 )

(14.12)

(14.13)

u
x, ~ 0 and

(y

1
(14.14)

It is easy to see from (14.9) that if the initial population is zero, it will renwin at zero. For
a n0I1-2erO initial condition, one would expect convergence (steady-state) of the popula­
tion to (0.' - l)/cl'_. We will use a case study approach to show that the actual long-term
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TABLE 14.1 Parameters and Non·
zero Solutions for Four Cases

Case " X I,-

I 2.95 0.6610
2 3.20 0.6875
3 3.50 0.7143
4 3.75 O.n33

335

(stcady~statc) behavior can be quite complex. Table 14.1 shows the (X parameter and the
non-zero stcady~stalc that is expected from (14.14).

14.3.1 Transient Response Results for the Quadratic (Logistic) Map

Each case presented in Table 14.1 has distinctly different dynamic behavior. As shown in
the following sections, case 1 illustrates asymptotically stable hehavior, cases 2 and 3 il­
lustrate periodic behavior, and case 4 illustrates chaotic behavior.

ASYMPTOTICALLY STABLE BEHAVIOR

Let Xo represent the initial condition (the value of the population at the initial time) and .tk

represent the population value at time step k. For case I we find the following values,
using the relationship xk+l := 2.95 -'-"k (1 - ·l"k):

Stepk xk Xk+!

0 0.1 0.2655
1 0.2655 0.5753
2 0.5753 0.7208
3 0.7208 0.5937
4 0.5937 0.7116
5 0.7116 0.6054

w 0.6610 0.6610

The transient response for case 1 is plotted in Figure 14.2 for an initial condition of 0.1.
Notice that the responsc converges to the predicted steady-state of 0.6610. This type of rc­
sponse for continuous models is usually called asymptotically stable hehavior since the
output converges to the steady-state (fixed-point) solution.

PERIODIC BEHAVIOR

The transient response curve forcase 2 is shown in Figure 14.3. The curve oscillates be­
tween 0.513 and 0,800, while the predicted resull (equation 14.14 and Table 14.1) is
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population model, alpha 2.95
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FIGlJllE 14.2 crransicnt population response, easel; cOllverges to single
steady-state.
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FIGURE 14.3 Transienlpopulation response, case 2; oscillates between (\\,0

values (pcriod-2 hehavior).
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0.6875. 'This type of response is known as pcriod-2 behavioL In case 3 the transient re­
sponse oscillates between 0.383, 0.827, 0.501, and runs as shown in r'igurc 14.4. This is
known as pcriod-4 behavior, since the system returns to the same slale value every fourth
time step.

CHAOTIC BEHAVIOR

For Case 4, the transient response never settles to a consistent set of values, as shown in
Figure 14.5; rather the values appear to be somewhat "random" although a dctcnninislic
equation has been used to solve the problem. Figure 14.6 shows that a slight change in
initial condition from 0.100 to O. J0 J leads to a significantly different poinHo-poinl rc­
sponsc--this is known as sensitivity to initial conditions and is characteristic of chaotic
systems.

WHERE WE ARE HEADING

At this point, you arc probably wondering how to predict the type of behavior that thc
quadratic map is going to have. Changes in the (X parameter have led to many different
types of behavior. The purpose of Section J4.4 is to show how to predict the type of bc~
haviorthat will he observed using cobweb diagrams. Section 14.5 will thcn introduce bi­
furcation plots, which reduce the long-term result.s from many transient plots to a single
plot. Section 14.6 introduces linear stability theory for discrete systems. Section 14.7
shows how to find the period~l1 points.

population model, alpha == 3.5
0.9

0.8

co 0.70.
.~

"5 0.60.
0.
0.

w 0.5w

'"C
0. 0.4.~

co

'"E 0.3
'6

0.2

0.1
0 10 20

time step

30 40 50

FIGURE 14.4 Transient population responsc,case 3; oscillates between four
values (periodA belmvior).



338 Introduction to Nonlinear Dynamics: A Case Study

population model, alpha:o= 3.75
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FIf;LJRE 14.5 Transient population response, case 4; chaotic behavior,
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FIGURE 14.(j Transient population response, case 4; chaotic behavior (Solid
Line-- -initial condition of Xo ;:;:: O. L Dashed Iinc----initial condition of Xo ::;0;

0.10 I). 'This illustrates the sensitivity to initial conditions.
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0,75

° 5

0,25

°"'- -L --'- -' --' x
n° 0,25 ° 5 0,75 1

14.4 COBWEB DIAGRAMS

FIGlJRE 14.7 Cobweb diagram for
the quadratic map problem. The initial
point is -'0::;:;; 0.1.

Insight to the behavior of discrete singlc~variablc systems can be obtained by constructing
cobweb diagrams. Cobweb diagrams are generated by plotting two curves: (i) g(x) versus
.r and (ii) x versus x; the solution (fixed-point) is at the intersection of the two curves. For
exampic, consider the case 1 parameter value of (y ::::: 2.95 and an initial guess, ):0 ::: 0, I,
The xlI+1 = g(x) = 2.95 .tll (I -.1:) curve is shown as the inverted parabola in I<'igurc 14.7.
Since the Xo value is 0.1, the x

J
value is obtained by first drawing a vertical line to the g(x)

Xn+l
1

0,75

0,5

0,25

FIGlIlU: 14.8 C"se I (n ~ 2,95)
rnap, convergence to a single solution

o i<:: --'- -' "- --l x
n

(x = 0.6(1); corresponds to the transient
o 0.25 0.5 0.75 1 response in Figure 14.2.
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i
i

0.750.50.25

FIGORE 14.9 Case 2 (LV:::: 3.20)
map, oscillates between x:::: 0.5130 'Illd
0.7995 after initial transient; initial

"- -'- -' '- -' x
n

condition ol'xo:::: 0.1- -corresponds to

1 the transient response in figure 14.3.

Xn +l
I

0.5

0.75

025

curve to rind g(.ro) :::: 0.265, then drawing a horizontal line to the x :;:;; .·r curve (since
xI :::; g(xo); therefore, ·-tt :::: 0.2(5). A vertical line is drawn to the g(x) curve lto obtain
g(x t ):::: 0.575), then a horizontal line is drawn to the x:::: X curve (so, xl:::: 0.575), "fhcsc
initial steps arc shown in Figure 14.7.

l'igurc 14.8 shows that this process converges to the fixed-point of x,~, :::: 0.661, for
the case 1 parameter value of 0' :::: 2.95. Figure 14.9 shows that the iterative process even­
tually "bounccs" between two solutions for the case 2 paramctcr value of a;:;;:; 3.2. This is
shown more dearly in Figure 14.10 where an initial guess of Xo = 0.5130 leads to solu·
tions of 0.5130 and 0.7995 (pcrioet-2 behavior). Case 3 has pcriod-4 behavior. as shown in
Figurcs 14.11 and 14.12. Case 4 (Figure J4. J3) is an example of chaotic behavior. where
the sequence of iterates never repeats.

)i

Xn +l
1

0.75

0.5

0.25

o "-----'-----'-----"'-----' xno 0.25 0.5 0.75 1

FIGlJRE 14.10 Case 2 (0 ~ 3.201
map, oscillates het\Vccll x = 0..') l_lO and

0.7995; initial condition or Xo = n.5130
(period-2 behavior).
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FIGURE 14.11 Case 3 (n ~ 3.50)
map, oscillates between x:;:;o 0.3828,
0,8269,0.5009, and 0.8750, The initial
condition is xo:;: 0.1. This COITcsponds
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to the transient response in Figure 14.4

o 0.25 0.5 0.75 1 (pcriod-4 behavior),
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FIGURE 14.12 Case 3(n ~ 3.50)
map, oscillates between 0.3828,
0.8269,0.5009, and 0.8750, initial

o "'- -'- -' '--__--' x
n

condition of Xo :;: 0.3828 (period-4

o 0 _25 0.5 0.75 1 behavior).

FIGURE 14.13 Case 4 (" ~ 3.75)
o ~ ...L -' .L.. .J x

n
l.nap, chaotic behavior; corresponds to

o 0.25 0.5 0.75 1 the transient response in Figure 14.5.
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14.5 BIFURCATION AND ORBIT DIAGRAMS

vYhcn a parameter of a discrete-time model is varied, the number <ind character of solu­
tions may change; the parameter that is varied is known as a bUilrcatioll parameter-For
the quadratic map, ex is a bifurcation parameter. We have seen that somewhere between
CI' = 2.95 and 3.2, the behavior of the quadratic map changes from asymptotically stable to
period-2 behavior.

A single diagram can be developed that represents the solutions for a large range of
0: values, We arc most interested in the long-IeI'm behavior or a system, so for a single (Y

value, we call run a simulation and throw out the initial transient data points (say, the first
250 points). '['he next points (say, the next 250) should then adequately represent the long­
term behavior of the system. We can then move on to another value of (Y and do the same.
This is exactly the technique used to generate Figure 14.14, which is an orbit diagram for
the quadratic map (sec student exercise 7).

14.5.1 Observations from the Orbit Diagram (Figure 14.14)

There is a single steady-state solution untillY::;:: 3, where a bifurcation to two solutions oc­
curs. 'fhe next bifurcation point is {Y ;:: 3.44949, where four solutions emerge. A period~X

bifurcation occurs at 0' ::: 3.544090, period-J6 at (X ::: 3.564407, j"Jeriod-32 (:It Ct :::

3.568759, and period-64 at (X ;:: 3.569692. Chaos occurs at 0'. :::;; 3.56995. Notice that there
are some interesting "windows" of periodic behavior, after the onset of chaos. For exam­
ple, at (X ;:: 3.83 we find a window of period-3 behavior. The period-3 behavior occurs
after approximately 60 time steps, with an initial condition of 0.1, as shown in Figure
14.15. This behavior is shown more clearly in Figure 14.16 which is simply the data from

43.83.63 4

U.

3.23

/-~/'---~~
1----.

' .....--.......--.......

~ -----~---------./
'~-

0 9

o. 8

0 .7

o. 6

x 0 .5

0 .4

o. 3

0.2

o.

0
2 9

FIGURE 14.14 Orbit diagram for the quadratic map. 0' is the bifurcation parametcl".
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populatfon model, alpha ;:= 3.83
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FIGURE 14.15 Period-3 behavior (after inllial transient) for Ci. =0 3.83, initial

condition;;:;; 0.1. Periodic values are x;:;;: 0.15615,0.50466, and 0.957417.
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Xn +l
1

0.75

05

0.25

o &L__--' -'- -'-__---' X
no 0.25 05 0.75 1

FIGURE 14.17 Pcriod-J bclwvior at
(X 0;:: 3.83. Values arc x:;:::; 0.156\ S.

0.50466. and 0.957417.

Figure 14.15 plotted between 75 and 100 time ;.;tcps. The cobweb diagranl of Figure 14.17
also shows the pcriod-3 behavior. Research has shown that pcriod-:, behavior implies
chaotic hehavior.

14.6 STABILITY OF FIXED·POINT SOLUTIONS

When we performed our case study, we found that case I converged to the predicted fixed
point, while the other cases had periodic (or chaotic) solutions that were not attracted to
the fixed points. We wish now to usc an analytical method to determine when the solu­
tions will converge to the fixed-point solution ~ -that is, when is a fixed-point stable? The
follo\ving stability theorem is identical to the stability theorem used for the numerical
analysis in Chapter 3.

'~~"'-'--"

Definition Let x'~ represent theJixed-fJoillf solution of x'o: :;::: g(x*'), or g(x''') -- x~':;::: O.

Theorem I
ilg I.:r* is a stable solution of x* :;::: g(x*), if _ <~
dx

1 whcn evaluatcd at ).:* .

14.6.1 Application of the Stability Theorem to the Quadratic Map

Here we will make lISe of this theorem to determine the stability or a solution to the qua­
dratic map:

g(x) ~ (XX( I - x) = (l'X - (U' (14.15)
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For simplicity in notation, we will usc g' to represent i)g/(Jx. r~valLJatcd at x*, we have:

g'(x*) = <Y - 2exx* = ev (1 2x*) (14.16)

Therefore, from (14.16) and the stability theorem, if the following condition is satisfied:

I,x (1 2x*) I < I ( 14.17)

Theil'. x* is a stable solution.
Remember from (J 4.14) that there arc two solutions to x* :::: t¥x*(l-.-t*):

x* c. 0 or
<¥

x* =

Momentarily we will generalize the stability results !()r any value of cc First, we will
study the four specific cases.

CASE 1 (Y = 2.95

At one fixed point solution, x* := 0, we find:

Ig'(x··) 1·1 <¥ (I - 2x*) I····· 2.95 > I

which indicates that the fixed point is unstable.

At the other fixed point solution, x*:::: 0' - I/O':::: 2.95 - 112.95 = 0.6610, we find:

Ig'(x*)1 = I<Y (1 - 2x*)I··12.95 (I - 2(0.6610» 1= 1-0.9499 I
= 0.9499 < 1

\vhich assures that the second fixed-point is stable.
1;'01' 0' := 2.95, we expect the numerical solution to converge to the stable fixed point,

x*:= 0.6610, since the olher fixed point (x*;:;;;; 0) is unstable.
The stability results for cases I through 4 are compared in Table 142. Notice thaI

case I is the only one of the four cases where lhere exists a stable solution. The reader
. should verify that an initial guess ofx arbitrarily close to zero (but not exactly 0), will not

converge to zero for any of the four cases.

TAIlLE 14.2 Stability Results for Cases 1-4

Case (Y r"' Ig'(x*) I condition x'~ Ig'(x*) I conclition
~-~.

2.95 0 2.95 unstable 0.6610 0.9499 stable
2 l.20 0 3.20 unstable 0.6875 1.2000 unstable
3 3.50 0 3.50 unstable 0.7143 1.5000 unstable
4 3.75 0 3.75 unstable 0.73" 1.7500 unstable
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14.6.2 Generalization of the Stability Results for the Quadratic Map

Notice thai we have been quite limited in our study, since we have only considered four
ca~:;cs with 2.95 S ex :S. 3.75. Now we will consider the general results for any ('( > O.

Again, recall that there arc two fixed-point solutions for a given value of (X

x* ~ () or x*

At the risk of complicating our notation, let

and
(X-

xI =
lX

Our goal is to determine how the stability of x{~ 01 .'.:;" changes as a function of 0',

STABILITY OF x'o AS A FUNCTION OF lY

Since x(~:::: 0 and g'(xfj) = (X - 2nO ::::: (X

then Ig' (x~)1 Iex I
Also, since III < 1 is required for stability, then x{~ is a stable solution only as long

as -1 < 0' < J. Otherwise, x('; is unstable (rccalIthal Ci < 0 docs not make physical sense).

STABILITY OF x~ AS A FUNCTION OF lX

SincexT~(lX-I)/lxandg'(xT~lX-ZlY(lX-I)lcx~lY-Z(lY-I)~-lX+Z

then Ig' (x'DI , I-c, + zi
which indicates stability for I < (X < 3. Otherwise, x1' is unstable.
These results arc shown on the bifurcation diagram of Figure 14.18 for 0 < (X < 4.

Generally, solid lines will be Llsed to represent stable solutions and dolled lines will be
used to represent unstable solutions. As discussed above, a change of stability for x;j oc­
curs at 0' ::::;: I. Also, changes of stability for x't occur at 0' ;:::: I and (Y :::: 3. The values of 0'

where the stability characteristics change arc known as bifurcation points. The bifurcation
that occurs at 0' = 1 is commonly known as a ';lranscritical" bifurcation (sec Chap­
ter 15)-an exchange of slability between the two solutions has occurcd.

Notice that Figure 14.18 is a h(fl-lrcatioll diaRrarn based on a linear stability analy­
sis. It differs frol11 an orhit diagram (sllch as Figure 14.14), because it docs not show the
periodic behavior obtained from solving the nonlinear algebraic equation for the popula~

tion growth model. An orbit diagram cannot disp(ayullstable solutions, however.

14.6.3 The Stability Theorem and Qualitative Behavior

The theorem states that if lag/ax I at the fixed point, the fixed point is stahle. Further, if
ag/ox is negative, then the fixed point solution is oscillatory. If dg/ax is positive, the be~
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bifurcation diagram
lr---r---,----r---.-----,----.---~-...._,

.. ..
Xo Xo1---------------------------------

stable 1 UIlBtable
I

f
I

I
I

I UIlBtable
I ..
IXI

I
I

0.5

x 0

-0.5

..
"I

stable

---...------- UIlBtable

43.53
-11..---'---~--~-~~-~--~--~---'

o 0.5 1 1.5 2 2.5

FIGlJRE 14.18 Bifurcation diagram based on linear stability analysis.

havior is monotonic. We can then develop the fo]Jowing table of results from the stability
theorem

i)g

itr stability response

<~l unstable oscillatory

- 1 <
Dg

<.: 0 stable oscillatoryax

0<
ilf;

I stable monotonic<a.r
> I unstable monotonic

Although the linear stahility analysis is useful for determining if a fixed-point is stable, it
cannot he used directly to understand possible periodic behavior. This is the topic of the
next section.
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14.7 CASCADE OF PERIOD-DOUBLINGS

We have noted that there appears to be a series of period doublings in route to chaos. The
limitation to the method presented in Section 14.6 showed that it could predict that a par­
ticular fixed point was unstable, but could not identify the type of periodic behavior that
might occur. In this section we will show how to find these period-doubling bifurcation
points and the respective branches shown in Figure 14.13.

14.7.1 Period-2

When period doubling occurs, the [lopulation value at time step k is equal to the value at
time step k -- 2. This can be represented by

(141 X)

or

using the notation

( 14.19)

then

(14.20)

(14.2 I)

(14.22)

Warning: Do not confuse the g2(rk) notation with that or the square of the operator Ig(xk )]2.

r:or the quadratic map, we call develop the relationship shown in (14.22):

X k + 2 = aXkl1 (1 ~xk\l)

and substituting xk-tl := a ·X"k (I ~ J.~k) into (14.23), we find:

Since (from 14.19):

we can write (14.24) as

(14.23)

(14.24)

( 1425)
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Expanding (14.25),

or

g'(x,) ~ a' [---a x/ + 2ux", - (1 + u)x,' + x,l

( 14.26)

(1427)

Notice that there arc four solutions to the fourth-order polynomial. We can find the solu­
tions graphically by plotting g2(x) versus x, as shown in Figure 14.19 (for (X ;:0;; 3.2).

If you closely observe the plot, you will find the following four solutions for pcriod­
2 behavior:

x" ~ 0,0.5130,0.6875, and 0.7995

We can sec graphically that the solutions x* ::::: 0 and 0.6875 arc unstable, since the slope
of g2(x*) is greater than L (A period-2 solution is stable if 1()(;;2(x»/d.\:1 < 1.) Also, notice
that the solution for x ::::: g(x) will always appear as one of the solutions for x ::: g2(x). If a
solution for x ::::: g(x) is unstable, it will also be unstable for g2(x). We can sec that
x ;::; 0.6875 is the solution for both .Y ::::;; g(x) and x ::::;; g2(x), by observing [!igure 14.20.

At this point it is worth showing the results of x versus g(g(.:r) for case I, which we
know has a single, asymptotically stable solution. Figure 14.21 shows that there is a sin~

gle stable solution of X ::::;; 0.6610. This makes sense, because as k -) 00, we know that
x k :::: 0.6610; this Illeans that xk+2 -= x k+1 -= :rk ::::: 0.6610.

We can sec fromF'igure 14.22 that n ;;;;; 3.0 is a bifurcation point, since absolute val­
ues of the slope of g(x) and g2(J::) ::::: I at x::::: 0.66667. Figure 14.22 is clearly a transition
point between l<'igurc 14.21 and Figure 14.20.

1 , /.

08! (' A /f\
,"" I ~ j1"..,"\
~ 0.4' I / /Vi unstable \

I ./ stable \ !
. I //~ I I

X / i'
0.2;J / Iiil //~ unstable \!

i /v Ii
oV
o 02 OA OB DB

x

VlGlJRE 14.19 Plo! of g(K(X))

versus.r 10 find the period-2 values for
0';::;: 3.2.
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FIGURE 14.20 Plots of g(x) and
gl(x) versus.x for (t "" J.2.
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FIGtJRE 14.21 Plots of g(x) and
g(g(x» versus x for 0:;;;:; 2.95. No
pcriod-2 behavIor.
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0.8

FIGURE 14.22 Plot of g(x) aod g'(x)
ven,lIs x for n "'" 3.0.

s: 0.6

'&
0

" 0.40;

"
0.2

0
0 0.2 0.4 0.6 0.8

x

14.7.2 Period-4

When pcriodA behavior occurs, the population value at time step k is equal to the value at
lime step k - 4. This can be represented by:

X k +4 = xk (14.28)

Using the same arguments that we used for pcriod-2 behavior, we can find that since
xk+ I :;;;; g(..rk),

(14.29)

~ g(g(xkU»

~ g(g(g(xk+'»)

= g(g(g(g(xk))))

. _ '( )Xk-I-4 -- g x k ( 14.30)

We can obtain the solutions to (14.30) by plotting g4(x) verSllS x as shown in Figure 14.23
for C/. = 3.5. Again, do not confuse g4(x) with Ig(x)]4 g4(x) is an eighth-order polynomial
with eight solutions as shown in Figure 14.23.

Figure 14.24 shows that the solutions for x:::: g(x) and x :::;: g2(x) arc also solutions
(although unstable) for x = g4(x).



Chap. 14

,
"

'\ ::.,.,
\ .,, ,
'~; :'\ : I

\. \.. ,.;, \."•
V\

0.8

0.8

______ ___L._

0.6

0.6
x

x

~-x

-g(x)
·••••..·9'(x)
._-- 9"(x)

u

s

u
s

alpha = 3.5

u

alpha:= 3.5

s

0.4

0.4

0.2

0.2

Introduction to Nonlinear Dynamics: A Case Study

FIGURE 14.24 Plot.s of R(X), !,:lex) and ,t,JA-(x) versus x for (.~ 0::: 3.5.

FIGURE 14.23 Plots of g4(x) versus x to find the pcriod-4 values for Ci "" 3.5.
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14.7.3 Period-n

By analogy to tnc pcriod-2 and pcriod-4 hehavior, we call sec that for any period 1/, we
have the following relationship

v .~ ""(.",.)Ak -lll () ./i

(14.31 )

( 14.32)

Note that gll(Xk) will he a polynomial that is order 2n, and there will be 2n solutions, n of
which arc stable.

14.7.4 Feigenbaum's Number

where C'ii represents thc parameter value at thc i th period doubling point, where the period
is 11 ::::: 2i . To obtain a rough cstimate of the Feigcnbaum number, usc thc valucs of (X for
period-16 (24), pcriode 32 (25) and pcriod-M (26)

The quadratic map exhihits a period doubling route to chaos. As the hifurcation paralnetcr
0'. is increased, model goes through a series of period doublings (IJcriod-2, perindA,
period-S, period-16, etc.). Feigenbaum noticed that the quadratic map had a consistent
change ill the bifurcation parameter between each period doubling. Indeed, he found that
any "one-hump" (sec any plot of g(x) for the quadratic map) model will have a cascade of
bifurcations which will yield the /"'·eif;cn!Jaum nurnbcr. The r"eigenbaum Humbcr is calcu­
latcd by comparing (X valucs at each sllccessivc hifurcation point in the following fashion

lim
-" Ct

'1 ~ 4.669196223
C'ii+ [ - O:i

( 14.33)

3.56R759 ~ 3.5044IJ7
~ 4.6045

3.569692 ~ 3.56R759

which is close to 4.6692
A summary of thc bifurcation points is providcd in 'fablc 14.3.
Chaos occurs when the pcriodis 00 (state sequcnce never repcated) at 0' ::::: 3.56995.

TABLE 14.3 Values of (\~ at Bifurcation Points

period "
I 2 3.0
2 4 3.44949
3 8 3.544090
4 16 3.564407
5 32 3.568759
6 64 3.569692
,j'j oc 356995



SUMMARY

A lot of material has been presented in this chapter. You may be wondering how discretc
maps and bifurcatiolltheory tics in with applications in chemical engineering. There arc at
leastlwo important reaSOns for studying this material:

Chap. 14Introduction to Nonlinear Dynamics: A Case Study354

We have llsed the quadratic map (a model of population growth) to introduce you to non­
linear dynamic behavior. This model consisted of a single discrete nonlinear equation.
Dynamic behavior similar to period-2 call result from a sct of two nonlinear ordinary dir~

fcrential equations. Exanlplcs of period behavior in continuous systems include the
Lotka-Voltcrra model used to predict the populations of predator and prey species. The
change in a bifurcation parameter that causes a limit-cycle to form in a 2 OIJE system is
known as a !ioplb{fllrcatiOIl, and will be covered in Chapter 16. Chaos is possible in a sd

of three autonomous nonlinear ordinary difJcrcntial equations. This behavior was discov­
ered by Lorenz in a simple (reduced~order)model of a \veather system (really a model of
natural convection heat transfer) and will he detailed in Chapter 17. Lorenz coined the
phrase "butterfly effect" to describe a system of equations that is sensitive to initial condi­
lions (hence chaotic). He stated conceptually that a butterfly flapping its wings in ·froy.
New York could cause a monsoon in China several months later (<Jr something similar~l.

Some of the earliest results of what is now known as chaos were really discoverclJ
by Poincare in the late nineteenth century, involving the three-body problem. He found
that it was easy to determine the planetary motions due to gravity in a system \\lith t\VO
bodies, but when three bodies were considered, the system of equations became nonintc­
grable-leading to the possibility of chaos.

We sec turbulence throughout our daily lives, from the waleI' flowing from our
hlUcels, to the effect of wind blowing through our 11;:\ir as we ride our bicycles. to the boil,
ing \vater on our stoves. Many researchers have tried to model turbulence by adding sto­
chastic (random) terms to our models of physical behavioL It has only been realized in the
past three decades that a good physical (nonlinear) model can simulate the effects of tur
hulence through chilDS.

Nwnerical mcthods arc used to solve thc vast majority of chemical process models.
Angclo Lucia (sec references) has found that chaos can occur in the solution of some tiler
Inodynamic equations of state if the numerical lllethods arc not formulated carefully. It is
likely that many people have obtained similarly bad solutions before reformulating thcll1
correctly.

We have shown that the quadratic map problem is conceptually identical [0 numer!
cal methods that can be used to solve a nonlinear algcbraic equation. Since lhe qua
dratic map problem cxhibits exotic behavior undcr certain values of the paramcter n.
this tells liS that a poorly posed I1lHllerieal method lllay have silnilar problcms. f3c

can~/ltl when llsing J/umerical methods.'

FURTHER COMMENTS ON CHAOTiC BEHAVIOR
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We noticed that a discrete population growth model is represented by the quadratic
map problem. This population growth lnodel is a simple example of a discrete dy­
n,<lmic system, which was modeled by a nonlinear algebraic equation. In the future,
we will be studying continuous dynamic systems, that is, systeills that arc modeled
by ordinary differential equations (ODEs). It turns out that nonlinear OI)Es can
have dynamic properties that are similar to the discrete population tllodel.For ex­
ample, exothermic chemical reactors can exhibit bifurcation behavior and continu­
ous oscillations in temperature and composition. One lnain difference is that a sys­
tem modeled by a set of autonomous ODI~s must have at least three equations
before chaotic behavior occurs. Chaotic behavior can occur in a discrete lnode! with
only one equation.

REFERENCES AND FURTHER READING

The prinlary reference for the behavior of the quadratic map is (this has been reprinted in
a number of sources) is by -May.

May, R.M. (1976). Simple mathematical models with vcry complicated dynamics,
Nalure 261: 459-467.

'rhe general field of chaos theory was introduced to much of the public in thc popular
hook hy Gleick:

Glcick, J. (1987). Chaos: MakinR a lYeH' .')'ciencc. New York: Viking.

Lorenz is given credit for the discovery of "sensitivity to initial conditions":

Lorenz, E,N. (1963). Deterministic non periodic flows. }ourJ/o! (!{ Atmospheric Sci­
ellce. 20: 130-141.

Software for the MacintosllO that was packaged with the following hook was used to gen­
erate some of the quadratic map diagrams. ·fhis book also docs an excellent job of dis­
cussing tbe quadratic map and dynamical systcms theory.

TufiUaro, N.B., T. Abbott, & J. ReiJly. (1992). An I,,);pcrimefltal Approach to NO/l­

linear DYllarnics and Chaos. Redwood City, CA: Addison-Wesley.

Chaos can appear in numerical solutions to chemical engineering problems, such as phasc
equilibrium calculations, as shown in the following paper:

I.ucia, A., X. Guo, PJ. Richey, & R. Dercbail. (1990). Simple process equatiot/s.
.fixed [Join! methods, and chaos. American Institute of Chemical Engincers Jour­
nal (lIICI1£.I.), 36(5): 641~654.
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The book by Strogatz is an excellent introduction to nonlinear dyiHunics:

Strogatz, S.H. (1994). Nonlinear Dynamics and Chaos. Reading, MA: Addison
Wesley.

STUDENT EXERCISES

I. \Vhy arc the results for the simple quadratic map problem important to understand,
when chemical and environmental process models arc obviollsly much more com­
plex (hascd 011 ODEs)')

2. Usc MATLAB to generate transient responses for the quadratic map, for various
values of n. Explore regions of single st:cady~statc solutions, as well as regions of
periodic and chaotic behavior. Use Figure 14.14 to try and find regions of periodic
behavior in the midst of chaotic behavior.

3. Derive the scaled logistic equation (14.9) from the following unscaled model for
population growth.

where r and I. arc constants (Hint: [)efinc the scaled variablc, x::::: nr/( I + 1')1.). What
is the physical significancc of L'!

4. Consider the "constant harvesting" model for population growth, where 'Y is a term
that accounts for a constant removal rate per unit timc period (e.g., hunting deer or
removing cells from a petri dish),

How docs 'Y effect the cquilibrium population values? (Show calculation, and COll­

sider stability of the equilibrium.)
tAct tV ::::: 3.2. What 'Y values <Irc required for () (the trivial solution) to be a sta­

hlc cquibrium solution? What 'Y valucs are required for a stablc nontrivial solution'?

5. Consider the "proportional harvesting" model for population growth, whcre the re­
moval rate per unit timc pcriod is proportional to the amount of population

How docs 'Y cffect the equilibrium population values? (Show calculation, and con­
sider stahility of the cquihbriuln.)

Let (\' ::::: 3.2. What 'Y valucs arc required for 0 (the trivial solution) to bc a sta­
ble equibriul11 solution? What 'Y valucs are required for a stable nontrivial solution'?

6. Consider the pcriod-2 behavior that occurs at a value of 0' ;:::: 3.2. Show that the val­
ues of x ~ 0 and x ~ 0.6875 are unstahle. (flint: Let h(x) ~ X(X(x» and show thai
I/{(x) I ;:> I at those values.)
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7. Using MATLAB construct the orbit diagram (Figure 14.14) for the quadratic map.

S. F'ind the (real) fixed points 01'.\""+1::: \/t/,' and analyze their stability. Also, develop a
cobweb diagram for this problem.

9. Consider the nonlinear algebraic equation, .f(x) ::: _.1;2 - X + I ::: O. Using the direct
substitution method, formulated as x::: _.r2 + I ::: g(x), the iteration sequence is

xkl J ::0::: g(xk ) = - xl --j- 1

Try several different initial conditions and show whether these converge, diverge or
oscillate between values. Discuss the stability of the two solutions x';: ::: 0.618 and
x* :::;; 1.618, based on an analysis Of{I,/(x~:).Deveiop a cobwcb di<-:tgram for this SYStCllL

10. Consider the nonlinear algebraic equation,f(x)::: -x2 - x + I ::: O. Usillg Newton's
method,

write the iteration sequence in the form of:

Try several different initial conditions and show whether these converge, diverge,
or oscillate between values. Discuss the stability or the two solutions .r:t: ::: 0.618 and
x":::: 1.618, based on an analysis ofg'(x*'). Develop a cobweb diagranl for this system.

11. Consider the scaled Lotka-Volterra (predator (Y2)-prey (VI» equations, \vhere

dv
•• , = a (I ~ v») V,til . - .

The parameters are O~ ::: ~ ::: 1.0 and the initial conditions arc Yj(O) ::: 1.5 and
YiO) ::: 0.75. The time ullit is days. Integrate these equatioJls lll11ncrically (using
odc4 5, for example) to show the periodic behavior.

12. The I--Icnon Inap is a discrete model that can exhibit chaos:

x, (k + I) x)(k) -j I ~ax,(k)'

x,(k + I) h x,(k)

For a value of!J::: 0.3, perform numerical simulations for various values of u. Try to
rind values of a (try a > 0.3(75) that yield stahle period-2 behavior. Show that
chaos occurs at approximately a:= 1.06.

13. Read the paper by Lucia ct al. (1990) and use cobweb diagrams to show different
types of periodic behavior that can occur when direct substitution is llsed 10 find the
volume roots of the SRK equation-of-stale for the multicomponent mixture (CH"I'
CZH4, and C,H(,(J).
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APPENDIX: MATLAB M-FILES USED
IN THIS MODULE

function rtime,x] ~ pmod(alpha,xinit,n)
% population model (quadratic map), prnod.m
% 29 August 1993 (e) B.W Bequette
% revised 20 Dec 96
% input data:
% alpha: growth parameter (between 0 and 4)
% n: nUlnber of time steps
% xinit: initial population (between 0 and 1)
%

Chap. 14

clear x; clear k; clear time;
x(l) ~ xinit:
time (1) ~ 0:
for k ~ 2:n+1;

time(k) ~ k-1:
x(k) ~ a1pha*x(k-1)*11-x(k-1)):

end
% run this file by entering the following in the command

window
% [time/x] ~ pmod(alpha,xinit,D);
% with proper values for alpha, xinit and n
% then enter the following
% plotltime,x)

function [x,g,g2,g3,g4j ~ gn_qmapla1pha):
%

% finds g(x), g"2(x), gA3(x) and g"4Ix) functions for
% the quadratic map problem
%

% Ie) B.W. Bequette
% 23 july 93
% modified 12 Aug 93
% revised 20 Dec 96
%

%

x
g

zeros (201, 1):
x: g2 ~ x: g3 x: g4 x:

for i~1:201:

xli) ~ (i-1) *0.005:
gli) ~ a1pha*x(i)*(1-x(i)):
g2li) ~ a1pha*gli)*11-g(i)):



Student Exercises

g3(i) ~ alpha*g2(i)*(1-g2(i));

g4(i) - alpha*g3(i)*(1-g3(i));

end
% can plot, for example
% plot(x,x,x,g,x,g2, 1~I,x,g4, '_, ')
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BIFURCATION BEHAVIOR
OF SINGLE ODE SYSTEMS

15

The goal of this chapter is to introduce the student to the concept of bifurcation behavior.
applied to systems modeled by a single ordinary differential equation, Chapters 16 and 17
will involve systems with more than one state variable.

After studying this chapter, the student should be able to

DClcnnine the bifurcation }Joint for a single ODE

Determine the stability of each branch of a bifurcation diagram

Determine the numher of stcady~statcsolutions near a bifurcation point

'fhcmajor sections in this chapter afC:

15.1 Motivation

15.2 [IIustratioll of Bifurcation Behavior

15.3 Types of Bifurcations

15.1 MOTIVATION

Nonlinear systems can have "exotic" 11chaviof such as multiple stcady~statcs'and transi­
tions from stable conditions to unstahle conditions. In Chapter 14 we presented the qua­
dratic map (logistic map or population model), which showed how a discrete-time systeln
could move from a single stable steady-state to periodic hehavior as a single parameter
was varied. This would he considered a dynamic bifurcation of a discretc-tinle system,
where the behavior changed from ()symptotically stable to periodic.

360
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15.2

In this chapter we introduce bifurcation behavior of conLinllous~timc systems. A
steady-stale bifurcation occurs if the number of steady-state solutions changes as a system
parameter is changed. If the qualitative (stable ys. unstable) behavior of a system changes
as a function of a parameter, we also refer to this as bifurcation behavior. This chapter
deals with systems modeled by a single ordinary differential equation.

Bifurcation analysis is particularly important for complex systems such as chemical
and biochemical reactors. Allhough only single variable examples arc used in this l1lod~

ule, the same types of bifurcation behavior afC also observed in chemical and biochemical
reactors.

ILLUSTRATION OF BIFURCATION BEHAVIOR

Here a simple polynomial equation will be used to illustrate what is meant by h(jllrcafio!l
behavior. Assume that the following cubic polynomial equation describes the steady-state
behavior of a system.

f(x.[L) = [Lx - x' = 0

The solution can be obtained by plotting the function and finding the valucs of or
where fCql,) :;;:: O. A plot of this function for fL :;;:; ~ I, 0 and J is shown in Figure 15.1
below. We sec that the number of real solutions (f(.q..L) :;;:; 0) for fL = -I is one, while the
number of real solutions for f.L = 1 is three. The curve for fL :;;:: 0 is a transition between the
two cases. We say that: f.L = 0 is a bifurcation point for this system, because the number of
real solutions changes from one to three at this point.

We will see in the next section that this behavior is characteristic of a pitchfork bi~

furcation. We will also fino that the number of solutions is always three for this problcln;
somctimes two of the solutions are complex, and other timcs thc solutions arc all thc samc
value.

x

FIGURE 15.1 Polynomial behavior as a function of /L.

ESCOLA Dc ENGENHARIA
GIBLIOrLCA
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15.3 TYPES OF BIFURCATIONS

1'he types of bifurcations that will be presented hy way of examples include: 0) pitchfork,
Oi) saddle-node, and (iii) transcritical. We will also cover a form of h.vsteresis behavior
and show that it involves two saddle-node hifurcations. Before we cover these specific hi­
furcations, we will present the general analysis approach.

Consider the general dynamic equation:

(15.1 )

where x is the slale variable and !.L is the bifurcation parameter. The steady-slale solution
(also known as an equilibriulll point) of (15.1) is:

() f(.qL)

A bifurcation point is where the both the function and its first derivative are zero:

iJf
I(X,fL) = = (). iJx

( 15.2)

(15.3 )

Notice that thcrirst-dcrivalivc is also the Jacobian for the single-equation model. Also,
the eigenvalue is simply the Jacobian for a single equation syslem, so the eigenvalue is ()
at a bifurcation point. The number of solutions of (15.2) can be determined from cafastm­

ehe t!lcory. [~quatioll (15.2) has k solutions, if the following criteria arc satisfied:

and

f(X,fL) = ()
af ... a'f
()x - ax? (15.4)

( 15.5)

In Example 15.1 this method is applied to a system thaI exhibits a pitchfork bifurcation.

EXAl\lPLE 15.1 Pitchfork BiflHTation

Consider the single variable system shown previously ill Section 15.2.

x f(X,fL) ~ fLx- x-'

The equilibrium point is:

the solutions to.f(x,p~);:;;: 0 are

-r,,() = 0

x,.j = V;~

x,<! = V~

(15.6)
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Notice that if 11, < 0, then xl' ;;::: 0 is the only physically meaningful (real) solution, since \/~ is

complex if fJ. < O.
The Jacobian is

Since the Jacobian i.o, a scahH, then the eigenvalue is equal to the Jacobian:

If Po. < 0, then the systcm is stahle. If Po. > 0, then the systcm is unstahle. NO\v, we can find the sta
bility of the system, as a function of the hifureation panunetcr, /-L.

I. ~ < O. The only real equilibrium solution is '\,0;;::: 0, so the value of the cigenvalue is:

A - fL"

which is stahle, since fJ. < O.

II. ~ > O. POI' this case, there are threc real solutions; we will analyze each one separately. We

lise the notation X/'ll' X;'I' ami xe2 to indicate the three different solutions.

3 x?: -1 /J." I-lc lIllstahlc

\1 fJ'

-:1 r 2
- . e

- VfL

-3 -+- IL,.

.J I-l" -+- ~,.

2 I-l" - stable

2 J.-l" - stable

It is eomOlon to plot the equilihriulll solutions on a bifurcation diagram, as shown in Figure 15.2.

For I-l <0, therc is a single real solution, and it is stable. r"m I-l > 0 there arc three real solutions;
two arc stablc and one is unstable. A solid line is used to represent the stable solutions, while a
dashed line indicates the unstable solution. Notice that a change ill the number of equilibrium so­
lutions and the type of dynamic behavior oecured at 1.L;::;: O--the hUim'atioll poinl. The bifurca­
tion point satisfies the conditions in (15.3):

!(X"fL,.) 1.L;x,. x',: - 0

{lnd

iJ/1 j -I 0
ax \,.l'

1.L"
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The slalc and parameter values that satisfy these conditions simultaneollsly are:

fl.,. ()
and

X" = 0

The higher-order derivatives at the bifurcation point are:

a'I I? =6x""'0
ax""!,,

and

alII
ax}~",l'~

(, I ()

This analysis indicates that the mnnber of solutions is three in the vicinity of the bifurcation
point (sec (15.4) and (15.5)),

x

stable

x~ /.5
A~ -21'

x~ 0
-----+---- -------------- ---- -- -- ---- --- --- ------ -- - I'

A ~ I' unstable A = I'

stable

FIGlJRE 15.2 Pitchfork Bifurcation Diagram---Example 15.1.

It should be noted that there arc actually three solutions to the steady-state equation
throughout the entire range of l..L values. For fJ... < 0, two of the solutions for Xc arc C'Hllplcx
and uncis real. r:or fJ.. = 0, all three solutions for J:e arc zero. For f.L > 0, all three solutions
for Xc are real.
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2 r-__~_-=E:::xam=p<.:le:..l:..:.~)l'-...-=_-..:l__~__...,

-2 L-_-~----....-.,---:-----,J
o 2 3 4 5

time

15.3.1 Dynamic Responses

FIGURE 15.3 Transient response for
Example 15.1, /.L::::-1.

Figure 15.3 shows the transient response for fJ,::;;: -I for two different initial conditions;
both initial conditions converge to the equilibrium solution of x = I. Figure 15.4 shows
the transient response for JJ, = 1 for two different initial conditions; the final steady-state
obtained depends on the inlial condition. Notice that an initial condition of Xo :::: 0 would
theoretically stay at x = 0 for all time, however, a small perturbation (say J0--9) would
eventually cause the solution to go to onc of the two stable steady-states.

Example 15.1 illustrates pitchfork bifurcation behavior, where a single real (and sta­
ble) solution changes to threc real solutions. Two of the solutions are stable, whilc one is
lln~table, It is easy to find cases where a (subcritical) pitchfork occurs, that is, where a sin­
gle unstable solution branches lo two unstable and OIlC stable solution. For example, con­
sider the system

j: j(x,!-'l = fL< + x3

0.5

x 0

-0.5

-I

-1.5
0

Example 1 J' = I

"0 = 0.Q1

1

i
"0 = - 0.01

2 ~ 6 8

time

10

FIGlJRJ1: 15.4 Transient response for
Example 15.1, IJ. =: l. The final steady­
state reached depends ()n the initial
condition.
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The reader is encouraged to find the bifurcation behavior of this system shown below (see
student exercise 5).

2 r-----.,-

~ 0

--1

2
-21.5 --1 ·0,5 0 0.5

rou
1.5 2

Also, a perturbation of the pitchfork diagram can occur with the following system:

i "0 f(x,/L,u) ,~ u + /LX -- x3

which can have a diagram of the form shown below (see student exercise 7).

4

2

~ 0

2

4

u;;:: 1

rou
6 o

EXAMPLE 15.2 Saddle-Node Bifurcation (Turning Point)

Consider the single variable system:

The equilibrium point is:

The two solutions are:

XI'! = \/;J:

x,,): = -- YJJ.
The Jacobian (and eigenvalue) is:

The bifurcation conditions, (15.4) and (15.5), are satisfied for:

IJ.,. = x" = 0

( 15,7)
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The second derivative is:

which indicates that there are two solutions in the vicinity of the bifurcation point. Now, we can
find the stability of the system, as a function of the bifurcation parameter, j..t,

I. /.l < O. From Xci = ± V~, we see that there is no real solution for !J- < O.

II. !J- > O. There are now two real solutions; we will analyze the stability of each one.

a. For solution J;

the eigenvalue is

which is stable.

b. For solution 2:

the eigenvalue is

FIGURE 15.5 Saddle-node bifurcation diagram, Example 15.2.

X= JlO.~

> - 2 0.5,,-- Jl

uns1l>.ble

.1l>.ble

,
Jl = a

which is unstable.

x

L,
The bifurcation diagram (saddle-node) is shown in Figure 15.5.
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Notice that there are actually two steady-state solutions for .:re throughout the entire range of f.-l'

For f.-l < 0 both solutions for xI' arc complex; for f.-l;;;; 0 both solutions for xI' flrc 0; for f.-l > () both
solutions for xl' arc real.

Dynamic Responses. Transient response curves for /L:= 1 are shown in Figure 15.6, for two
different initial conditions. Initial conditiolls .ro > -1 converge to a steady-slate of x;;;; I, \vhilc
.:ro < ~-1 approach x = ~oo. It should he noted that a consistent physical (or chemit:al) ~bascd

model will not exhibit this sort of unbounded hehavior, since the variables will have some physi­
cal meaning and will therefore be bounded.

Example 2. Jl = 1

"0= - 0.99

0 1
• _I

-2 i
"0=- 1.01

-3
0 2 3 4 5

time

FIGURE 15.6 Transient response for Example 15.2, !L;;;: 1. Initial conditions
or Xo > -I converge to a steady-state of x;;;: 1, while Xo < -I "blows up",

EXAIVIl']"E 15.3 Transcritical Bifurcation

Consider the single variable system:

.r ~ !(x,p.) ~ p.x - x'

The equilibrium point is:

The solutions arc

The Jacobian is

( loY)



The eigenvalue is also

A ~ jJ.-2x,.

The bifurcation point is !(x, .....) = df/dx = 0, which occurs at fJ, = xe = O. The second derivative is:

Sec. 15.3 Types of Bifurcations 369

-2 * 0

which indicates that there are two equilibrium 1'>0Iu60I1s. Now, we can find the stabil1ty of the
system, as a function of the bifurcation parameter, IJ-.

a. One solution is:

with an eigenvalue:

A = fl. - 2 x,. fl.,

which is stable (since IJ-" is negative).

b. This equilibrium solution is:

which has the eigenvalue:

A = IJ- - 2x" = J...le - 2IJ-e = -2!J..e

which is unstable (since I-te is negative).

II. jJ. > 0
a. One solution is

which has the eigenvalue:

which is unstable.

b. Another solution is:

which has the eigenvalue

A = JJ.. - 2 x" = fJ.,. - 2 IJ-"

which is stable.

-2 }L"

These results are shown in the bifurcation diagram of Figure J5.7, which illustrates that the num­
ber of real solutions has not changed; however, there is an exchange of stability at the bifurca­
tion point.
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x

L, x= j!,

,\ =-j!,

stable

x=o x=o

UIl.'ltable

,\=j!,

stable

----------of------------------
,\=j!,

,\ =-j!,

UIl.'ltable

FIGIJRE 15.7 Transcritical bifurcation, Example 15.3.

Dynamic Responses. Transient response curves for the transcritical bifurcation arc shown
in Figures 15.g and 15.9. Notice that the transient behavior is a strong function of the initial con­
dition for the slate variable. For some initial conditions the state variable eventually settles at a
stable steady-state, while for other initial conditions the state variable blows up.

Example 3. j!, = -I

i

"0=- 0.99

1-0.5

-1

X -1.5

-2

-2.5

-3
0

"0 = - 1.01

2 6 8 10
time

Flf;(JRE 15.8 Transient response for Example 15.3, J.-L

importance of initial conditions.
---I. Notice the
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time

-1
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FIGUH.E 15.9 Transient response for Example 15.3, fJ. ;:;;; 1. Notice the im­
portance of initial conditions.

Sec. 15.3

The next example is significantly dille-rent from the previolls examples. Here we allow Iwo para­
meters to vary and determine their effects on the system behavior.

EXAMPLE 15.4 Hysteresis Behavior

Consider the system:

( 15.9)

which has Iwo parameters (u and /1-) that can be varied. We think of If as an adjustable input
(manipulated variable) and f.L as a design-related parameter. We will construct steady-state
input-output curves by varying II and maintaining /1. constant. We will then change /L and see if
the character of the input-output curves (x versus II) changes. We first work with the case
fL ~-1.

I. fJ-;:;;; -1. The equilibrium point (steady-state solution) is:

!(X,•. fL) ~ 0 ~ II - x,. - x,: (15.10)

The steady-state input-output diagram, obtained by solving (15.10) is shown in Figure 15.10.
This curve is generated easily by first generating an x" vector, then solving If = xl' ,I x~.

The stability of each point is found from:

ill I
ax XJlc

which is always negative, indicaling that there arc no bifurcation points and that all equilibrium
points are stable for this system. Contrast this result with that for /L 0;;; I, shown next.
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,pie 3. )l = 1

01

Chap. 15

time

6 8 10

FIGURE 15.10 InpllHJUtput diagram 1\,[ Example 15.41\"·,, =-1.

II. IJ-;:;;; 1. The equilibrium point (steady-state solution) is:

f(X,,,ll) ~ 0 ~ II + x, - x; (15.11)

Notice that this is a cubic equation that has three solutions for xI' for each value of ll. For exam­

ple, consider u ;:;;; O.

At u;:;;; 0:

so,

x" = 1,0, or I.

The stability of each solution can be determined from the Jacobian:

The eigenvalue is thcn A = 1 - 3 x;. For the three solutions, we find:

XI';:;;; "-I,
XC = 0,
x,,= 1,

A= 1-3=-2
A=I
A= 1-3=-2

which is stable.
which is unstable.
which is stable.

Now we can vary the input, If, ovcr a range of values and construct a steady-state input-output
curve. These results are shown on the diagram of Figure 15.10 (the easiest way to generate this
figure is to create an Xc vector, and then solve Itt' = ~xc + x;. See student exercise 2).
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mu ~ 1
-~-- ---- ---,. r----------T---- - --------.------- .. - ----,----- .. - ~------- ....-.-----.--------
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'" O· \
\

-1 /
~~

-2 .~

-4 -3 -2 -1 0 2 3 4
u

FIGUrU~ 15. t I Input-output diagram for Example 15.4 with l-t 0= r.

Notice that r<'igurc 15.11 cOiltains two saddle-node (or turning poioI) bifurcatio!l points

(sec Example 15.2), The bifurcation (singular) points can be determined frolll the solution of:

( 15.12)

'fhe bifuf(.:atioll points arc theu:

1
3

or, x" = :!.:: (15.13)

whicll call he seen to be the x values at the upper and lower fuming points. Substituting (1:=;,13)

into (15.11), we find thal the bifurcation points oc;_<;ur at the inp~!! values of lie ::::; ± 2/3\1\ as
shown in Figure 15.10. N~)lice that for II. < -2/3V3 or II > 213\/3 there is only a single,. stable
solution, while for -2/3"'/3 < II < 213Y'3 there arc three solutions; two arc stable and one is Ull­

stable.
We have referred to the behavior of this cxarnplc as hysteresis behavior now let us show

why.

Starting at Low Values ofu. Notice that if we begin with a low value of If (say, -3) a sin­

gle, stable, steady-state value is achieved. If we increase II a slight amount (to say, -2.9), we will
achieve a slightly higher steady-state value for x. As we keep increasing It, we will cO!l.!illue to

achieve a new stahle steady-state valuc for x for each u. This continues untilll :::0 213V3, where
we find that the stable solution "jumps" to thc top curve. Again, as we slowly increase II, the sta­

ble steady-state solution remains on the top eurvc.
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Starting at High Values of u. Notice that if we begin with a high value of u (say, 3) a sin­
gle stable steady-state value is achieved. If we decrease Ii a slight amount (to say, 2.9), we will
achieve a slightly lower steady-state value for x. As we keep decreasing Il, we will con~inuc to
achieve a new stable steady-state value for x for each u. This continues until /l = -2/3Y...1 where
we find that the stable solution "jumps" to the bottom curve. As we slowly decrease Ii further,
the stable steady~state solution remains on the bottom curve.

This is termed hysteresis behavior, because the trajectory (path) taken by the state vari­
able (x) depends on how the system is statted-up. Ajump discontinuity occurs at each "limit" or
"turning" point (the saddle-node bifurcation points).

Discussion. Notice that there is a signific.1I)t difference between the inpUH)utput behavior
exhibited in Figures 15.10 and 15.11. For fJ.'::::: ~1 (Figure 15.9), there is monotonic relationship
between the input (Ii) and the output (x). For fJ.:::: 1 (Figure 15.10), there is a region of multiplic­
ity behavior, where there are three values of the output (x) for a single value of the input (u).
There has been a qualitative change in the behavior of this system as fJ. varies from ~ I to L The
value of fJ. where this occurs is a hystersis bifurcation point. At this point the following condi­
tions are satisfied (since there are three solutions in the vicinity of the bifurcation point):

aff(x,l") ~ 0 ~ .•) .. ~
<X

and

a'f
iJ.tj * 0

The equations are:

fJ. ~ 3x~ ~O

~6xe ~ 0

-6 * 0

It is easy to show that, for a value of Ii :::: 0, the bifurcation conditions are satisfied at:

x" = /L" = 0

The stcitdy-statc input-output curve for thi.<; situation is found by solving:

which yields the plot in Figure 15 12, which is clearly a transition between Figures 15.10
and 15.1 L

A three~dimensional plot of x versus u as a function of /L is shown in Figure 15.13. The
behavior represented by this diagram is commonly known as a cusp catastrophe. At low values
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mu= 0
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FIGURE 15.12 Input-output diagram for Example 15.4.

of /L we observe monotonic input-output behavior, with a transition to multiplicity (hysteresis)
behavior at JL :::: O.

The turning points in Figure 15.13 can be projected to the /J--Il plane to find the bifurca­
tion diagram shown in Figure 15.14. A saddle-node (turning point) bifurcation occurs all along
the boundary of the regions, except at the "cusp point" (J.L:::: 0, u:::: 0), where a codimcnsion-2 bi­
furcation occurs. The term "codimensioll-2" meal1~ that two parameter.~ (/J-,u) are varied to

2

1

" 0

-1

-2
-2

o

mu
u

:FIGURE 15.13 "Cusp catastrophe" diagram for Example 15.4.
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achieve this hifurcation (Stwgatz, 19(4). The reader is encouraged to construct this diagrmn (sec
student exercise 6).

1.5

one fixed-point

FIGURE 15.14 Two~pannnctcr (f.-l,1I) bifurcation diagram for Example 15.4.

0.5

~ a

0.5

-1

-1.5
-1 -0.5 a 0.5

mu

three fixed-points

1.5 2

I
SUMMARY

We have studied the bifurcation behavior of some example single nonlinear ordinary dir~

ferential equations of the form.i: c= f(x,f.l), where x is the state variable ancl f.l is the bil'llr­
cation parameter. The equilibrium (steady-slate) points afC found by solving ./(X,.,/-L,.) = O.
The stability is determined by finding the eigenvalue, 'A, which is simply the Jacobian,
~flax lx,,,tLe' for a single equation system, JJ A is negative, the equilibrium point is stable. If
"A.. is positivc, thc equilibrium point is unstable.

A bifurcation diagram is drawn by plolting the equilibrium value of the state variahle
as a function of the 11ifurcation parameter. [rthc c(]uilibrium ])oint is stable ("A..;:o;: D//fh I. .r,_·I.\·(

< 0), a solid line is drawn. IT the equilibrium point is unstable, a dashed line is dr;'l\vn.
The bifurcation points can be found by solving for i)/IJx.I.Y,.,jL" = 0 where l(x",J.-l,,) O.

Thcse same techniques can also be applied to systems of several equations, particularl)
if the cquations can be reduced to a single steady~slatealgebraic equation (in a single stale
variable). This can he done for many simple chemical and hiochemical reactor problems.
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STUDENT EXERCISES

1. r'or the system in Exmnple 15.4:

x~ f(X,fL) .~ II + [LX - x'
with II ::::: 0 and fL = I, perform transient response simulations (using MATLAR) to
show that the final steady-state obtained depends on the initial condition.

2. For the system in Example 15.4, we found that there are ranges of u where there are
three equilibrium solutions for x (when fL =1). When solving for the roots of a
cubic polynomial, either a complex analytical solution (see any math handbook) or
a root solving routine (such as the MATLAR routine roots) must be used, Show
how .t' can be considered the independent variable and u the dependent variable to
obtain an easier analysis of this problem. Then, simply plot x versus u.

3. For the system in Example 15.4:

x~ f(X,fL) ~ II + [LX - x'
with fL ::::: 1, show that the saddle~node bifurcation conditions are satisfied at the
"turning points."

4. Consider the constant harvesting model of population growth (Hale & Kocak, 1991):

.r ~ f(x,k,c,h) ~ k x - C x2
- h

where all of the parameters are positive. h is the rate of harvesting, while k and care
intrinsic growth rate parameters,

The problcm is, for fixed k and c, to determine the effect of the harvesting on
the population. Since the population density cannot be negative, we are interested in
solutions where x 2:: O. For a positive initial population density (xo) the population is
exterminated if therc is a finite value of t such that x::::: O. Without finding explicit
solutions of the differential equation, show the following:
a. If h satisfies 0 < h <; k2/4c, then there is a threshold value of the initial size of the

population such that if the initial size is below the threshold value, then the pop­
ulation is exterminated, If the initial size is above the threshold value, then the
population approaches an equilibrium (steady-state) point.

b. If h satisfies h > k2!4c, then the population is exterminated regardless of its ini­
tial size,

c. Comment on the physical ramifications of palis a and b. Should models be used
by State Fish and Game authorities to determine proper hunting and fishing Iim~

its?
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S. Show that the following system exhibits a pitchfork bifucation, with three real
solutions (one stable, two unstable) for iJ- < 0 and a single unstable real solution for
fL > O.

.< = f(X,fL) = fLx + x'

2

o

-1

, ,
-------~-------------,---------------------

-2
2 1.5 -1 -0.5 o

mu

0.5 1.5 2

6. Consider the system shown in Example J5.4:

x= f(X,fL) = II + [LX - xJ

Develop the cusp bifurcation diagram shown below. Find the values of if and /L on
the boundaries between the one and three fixed-point solution behavior.

.5

0.5

" 0

-0.5

one fixed-point

three fixed-points

-1.5
1 -0.5 o 0.5

mu

1.5 2

. ~~~_•.••_-. >r,__lIIIblllll.



For a value of u :::: 1, develop the steady-state bifurcation diagram shown below.
Find the values of x and jJ. where the saddle-node (turning point) bifurcation occurs.
Notice that this is a perturbation of a pitchfork bifurcation. This type of behavior
can occur, for example, in exothermic chemical reactors when the feed llowrate is
varied whilc maintaining a constant jacket temperature (a so-ca.lled isola forms).

Student Exercises

7. C\)llsiderthe systcm shown in Example 15.4:

"" .~ f(X,fL,U) ~ U + fU - x'

379
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APPENDIX

4

2

~ 0

-2

-4
·4 -2 0

h cusp diagram

% b.w. bcqucLtc
'I. 1~ dec 96

90 ~;olvcs the problem
'f; f(x,u,mu) ::;: u + mu"'x x"3 0

" with x varying between -2 and 2
'1 mu varying from -2 to 2 and
'!, whatever u' s r,<~ul t

clear x;

clc,ar u;
clear rnu;
x -2;{)'05:2;

u x. "3 +2*x;

plot3 (u, - 2 "'ones (size (u)) ,x, 'w' )

hold on

u ::;: 1

2 4 6 8 10
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mu ~ ~1.875:0.125:2;

for i "" 1:32;
u = x. A 3 - mu(i) .*x;
plot3(u,mu(i)*ones(size(u») ,x, 'w'}

end
hold off

»view(15,-30)



BIFURCATION BEHAVIOR
OF TWO-STATE SYSTEMS

16

The goal of this chapter is to introduce the reader to limil cycle behavior and the HopI" bi­
furcation. After studying this chapter, the reader should be able to

Find that many of the same types of bifurcations that occur in single-state systems
also occur in two-state systems (pitchfork, saddle-node, transcritical)

Understand the difference between limit cycles (nonlinear behavior) and centers
(linear behavior)

Distinguish between stable and unstable limit cycles

Determine the conditions for a Hopfbifurcation (formation of a limit cycle)

Discuss the differences between suhcritical and supcrcritica.1 HopI' bifurcations

'1'he major sections in this chapter are:

16.1 Background

16.2 Single-Dimensional Bifurcations in the Phase-Plane

16.3 Limit Cycle Behavior

16.4 The Hopf Bifurcation

16.1 BACKGROUND

In Chapter 15 we presented the bifurcation behavior of single-state systems. 'A'e found
that a number of interesting bifurcation phenomena could occur in these systems, includ­
ing transcritical, pitchfork, and saddle-node bifurcations. We find in this chapter that these

381



382 Bifurcation Behavior of Two-State Systems Chap. 16

types of bifurcations can also occur in highcr~order systems. This is the subject of Section
16.2. In Section 16.3 we review limit cycle behavior, which was initially presented in
Chapter 13 (phase-plane analysis). In Section 16.4 we present a type of bifurcation that
can only occur in second- and higher-order systems. In a Hopi' bifurcation, we find that a
stable node can h(furcate to a stahle limit cycle if a parameter is varied; this is an example
of a supercritical Hopf bifurcation. This phenomena has been shown to occur in a number
of chemica! and biochemical reactors. Before turning to the interesting Hopf bifurcation
phenomena, we will discuss single dimensional bifurcations in the phase plane.

16.2 SINGLE·DIMENSIONAL BIFURCATIONS IN THE PHASE·PLANE

Consider the two-variable system (notice that the two equations are decoupled):

XI = f,(X,fL) = fLXI - xi
x, = f2(X,fL) = -x,

The equilibrium (steady-state or fixed~point) solution is:

f(X,fL) = IfLX~:,:t:,] = [~]

There are three solutions to f(x,f,t) ::::: O. The trivial solution is:

and the two nontrivial solutions arc:

(16.1 )

(16.2)

XI' =

and

Xc = [~;:] = [ - :~I
Notice that only the trivial solution exists for j.J.. < 0, since we will assume that equilibrium
values must be real (not complex).

We can detenninc the stability of each equilibrium point from the Jacobian,
which is:

°1-I

which has the following eigenvalues:

Al = fL - 3xj"

A2 = -I



Since the second eigenvalue is always stable, the stability of each equilibrium point is de~

termincd by the first eigenvalue. Here we consider three cases, fJ, < 0, f.L:::::: 0, and fJ, > o.

Sec. 16.2 Single~Dimensional Bifurcations in the Phase~Plane 383

J.L<O

The only equilibrium solution is the trivial solution (xli'::::: 0), so:

Al = /-L - 3x1e = f.L

which is stable, since J.L < O.

II J.L =0

The equilibrium solution is x k ::::: 0, so:

~I = J.L - 3xt = 0

which is stable; the system can be shown to exhibit a slow approach to equilibrium by ob­
serving the analytical solution to the differential equations.

III J.L > 0

The eigenvalue for the trivial solution (xl e ::::: 0):

is unstable since p.. > O.
The eigenvalues for the nontrivial solutions (±\Iii) are:

and

So the nontrivial solutions arc stable for f.L> O. This means that a saddle point (trivial so­
lution) is bounded by two stable nodes for this case, since the three solutions are:

x, = [:;;] = [ - :~] with ~ = [~;] = [ ~2tj = stable node

x =,. Ix"1 IOJ·1 I~'J [J.L] .x" = 0 WIt 1 ~ =~2 = _I, = saddle pomt

IX".j IV~]. [~11 I' -2J.L1., = WIth A = ,= _ = stable node
x 2,< 0 ~2, I

We notice the following phase-plane diagrams (Figure 16.1) as f.L goes from negative to
positive.
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mu= --1 mu= 1

0.5 0.5

~~ a ~~ a

-0.5 -0.5

-1 -1

x, x,

a. IJ < a b. u > a

FIGURE 16.1 Pitchfork bifurcation behavior in the plane. There is a single
stahle node for /L < 0, and two stable (0) nodes and a saddle point (+, unstable)
for 1-1 > 0,

16.3 LIMIT CYCLE BEHAVIOR

In Chapter 13 we noticed that linear systems that had eigenvalues with zero real portion
formed centers in the phase-plane. The phase-plane trajectories of the systems with cell­
ters depended on the initial condition values, as shown in Figure 162 below. Different
initial conditions lead to different closed-cycles.

In this section, and the rest of this chapter, we are interested in limit cycle behavior,
as shown in Figure 16.3. The major difference in conter (Figure 16.2) and limit cycle

0.5

x,

-0.5

-1

-1.5
-1 a

x,
FIGURE 16.2 Example of center be­
havior.
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0.5
x,

0

-0.5

-1

-1.5
1 0

x,
FIGURE 16.3 Example of limit
cycle behavior.
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(Figure 16.3) behavior is that limit cycles are isolated closed orbits. By isolated, we mean
that a perturhation in initial conditions from the closed cycle eventually returns to tbe
closed cycle (if it is stable). Contrast that with center behavior, where a perturhation in
initial condition leads to a different closed cycle.

EXAMPLE 16.1 A Stable Limit Cycle

Consider the following system of equations, based on polar coordinates:

j. ~ ,. (I - ,.')

II ~

(16.3)

(16.4)

Notice that these equations are decoupled, that is, the value of ret) is not required to find OCt) and
vlee versa. The second equation indicates that the angle is constantly decreasing. The stability of
this system is then determined frotH an analysis of the first equation.

The steady-state solution of the first equation yields two possible values for r. The trivial
solution is r;o;; () and the nontrivial solution is r"'" 1.

The Jacobian of the first equation is:

of
ar I - 3 r'

We see then that tbe trivial solution (r:::;: 0) is unstable, because the eigenvalue is positive (+1).
The nontrivial solution is stable, because the eigenvalue is -~2. Any trajeeto'·y that starts out
close to r"'" 0 will move away, while any solution that starts out close to r;o;; I wiH move towards
r;o;; I. The time domain behavior for x [ is shown in Figure 16.4, Notice that we have convelicd
the states to rectangular coordinates (XI ;0;; r cos 0, x2 "'" r sin 0). The phase-plane behavior is
shown in Figure 16.5. Initial conditions that are either "inside" or "outside" the limit cycle con­
verge to the limit cycle.
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FIGVRl\ 16.4 Stable limit cycle behavior (Example 16.1).

X,

F1GUH.E 1().5 Stahle limit cycle
behavior (Exi1mpleI6.1).

The previous example was for a stable limit cycle. It is also possible for a limit cycle to be
unstable, as shown in Example 16.2.

EXAMPLE 16.2 An Unstable Limit C)'cle

Consider the following system of equations, based on cylindrical coordinates

r

(j

···r(l-r')

I

(16.5)

(16.6)

Again, notice that these equations are decoupled. The second equation indicates that the angle is
constantly decreasing. The stability of this system is then determined 0"0111 an analysis of the
first equation.
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FIGURE 16.6 Phase~plancbchaviorfor all unstable limit cycle.

The steady-state solution of the first equation yields two possible values for r. The trivial
solution is r ::;: 0 and the nontrivial solution is r::;:: I.

The Jacobian of the first equation is:

iif

()r
~1+3r2

We sec then that the trivial solution is stable, because the eigenvalue is negative (--1). The non­
trivial solution is unstable, because the eigenvalue is positive (+2), Any trajectory that stalts oul
less than r = I will converge 10 the origin, while any solution that starts out greater than r ::::1
will increase at an exponential rate. This leads to the phase~planc behavior shown in Figure 16.6.
The time domain behavior is shown in Figure 16.7.

1.5 --

0.5

o
o

_-------1...--._ .. L L..

2 3
time

4 5 6

FIGURE 16.7 Time domain behavior for an ullstable limit cycle. An initial
condition of 1'(0) = 0.9 converges 10 0, while an initial condition of r(O) = 1.05
blows up.
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Examples 16.1 and 16.2 have shown the existence of two different types of limit cycles.
Tn the first case (16.1) the limit cycle was stahle, meaning that all trajectories were "at­
tracted" to the limit cycle. In the second case (16.2) the limit cycle was stahle, and all tra­
jectories were "repelled" from the limit cycle. Although hoth of these examples yielded
limit cycles that were circles in the plane, this will not normally be the casco Usually the
limit cycle forms morc of an ellipse. Now that we have covered limit cycle behavior, we
arc rcady to determine what types of system parameter changes will cause limit cycle be­
havior to occur. That is the subject of the next section.

16.4 THE HOPF BIFURCATION

In Chapter 15 we studied systems where the number of steady-state solutions changed as
a parameter was varied. The point where the number of solutions changed was called the
bifurcation point. We also found that an exchange of stability generally occurred at the bi~

furcation point.
A Hop/hifurcation occurs when a limit cycle forms as a parameter is varied. In the

next example we show a supercritical Horf bifurcation, where the system moves from a
stahle steady~slatc at the origin to a stable limit cycle (with an unstable origin) as a para­
mcter is varied.

EXAMPLE Hi.3 SupercriticallIopf Bifurcation

Consider the systern:

i] = Xl + Xl (p" - xf - xi)

.<,= -x, +x2(/L-X;-xi)

This can be written (see student exercise 4) in polar coordinates as:

i· ~ r (fJ. - r 2)

o ~ -I

Since these equations are decoup1cd, thc stability is dctcrmined from the stability of:

;. = fer) = r (fJ. - ,2)

the Jacobian is:

( 16.7)

( 16.8)

(16.9)

(16.10)

af
ar

/.L - 3,.2

The equilibrium (stcady-statc) point is/{r):;;:; 0, which yields,

r(fJ.-r 2
) = ()
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which has three solutions:

r ,= 0 (trivial solution)

r \ifL (not physically realizable)

For /-L < 0, only the trivial solution (r:;::: 0) exists. For I-l < 0,

which is stable, since /-L < O.
1<'01' /-L::::O 0, all of the steady-slale solutions ,lrC r:;::: 0. aod tbe Jacobian is:

·3 r'

which is stable, but has slow convergence to r";=: O.
For 11, > 0, the trivial solution (r::::o 0) is unstable, because:

The nontrivial solution (r:;::: \/f-L) is stable because:

iJ{ "
.'= p, -- 3 r' -2f-L
(),.

and we find the following phase-plane plots shown in Figure 16.8.

The bifurcation-diagram for this system is shown in Figure 16.9.

F1G-lJRE 16.8 Phase-plane plots. As J.-l goes from -1 to I, the behavior changes from
stable node to a stahle limit cycle.

a. f"~-1 b'I.c~ 1

1 0
x,

1.5~~······

-1.5
·1 0

x,

~\.

-~)/

1.5

0.5

1.5

-0.5
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1.5

l.... 0.5

o··_~-~- -----------------------

-0.5

4321
mu

~-1 ~~~~- --.l---~--~---~---~--

-2 -1 0

FIGURE 16.9 Bifurcation diagram. Indicates that the origin (r :;:;;0 0) is stahle

when I-l < O. When I-l > 0 the origin becomes unstable, but a stable limit cycle

(with radius r::::: \/iL) emerges.

Here we analyze this system ill rectangular (xI - coordinates. The only' steady~stalc (fixed-
point or equilibrium) solution to (16.7) and (16.8) 15:

Linearizing (16.7) and (16.8):

atl _ 2 2
__~~1-l-3Xl-X2
dX j ax,

~ 2 Xl {,

=-1-2x
J
x;

dX)

We find the Jacobian matrix:

[ ~-' -xL
-1-2\:I,X'1

J -2xl"X2,

l-l-x~,.--3

which is, for the equilibrium solution of the origin:

The characteristic polynomiaL from det(,\l- A) ::: 0, is:

,'- 2~' + ~' + 1 ~ 0

\\lhich has the eigenvalues (roots):

2



FIGURE 16.10 Location of eigenvalues in complex plane as a function of fL.

A Hopf bifurcation occurs as the eigenvalues pass from the lefthand side to the
righthand side of the complex plane.

We see that when ~ < 0, the complex eigenvalues are stable (negative real portion); when f.L::::: 0,
the eigenvalues lie on the imaginary axis; and when f.L> 0, the complex eigenvalues are unstable
(positive real portion). The transition of eigenvalues from the left~half plane to the right-half
plane is shown in Figure 16.10.

where the polynomial parameters, ai' are shown to be a function of the bifurcation para­
meter, fl. (It should also be noted that it is common for a2 = I). Assume that the a/fl.) pa­
rameters do not become 0 for the same value of fl.. It is easy to show that a Hopf bifurca­
tion occurs when a,(fl.) = 0 (see student exercise 7).
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~ > 0~ = 0~ < 0
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Example 16.3 was for a supercritical Hopf bifurcation, where a stable limit cycle was
formed. We leave it as an exercise for the reader (student exercise 6) to show the forma­
tion of a subcritical Hopt" bifurcation, where an unstable limit cycle is formed.

We have found that the Hopf bifnrcation occurs when the real portion of the com­
plex eigenvalues became zero. In Example 16.3 the eigenvalues crossed the imaginary
axis with zero slope, that is, parallel to the real axis. In the general case, the eigenvalues
will cross the imaginary axis with non-zero slope.

We should also make it clearer how an analysis of the characteristic polynomial of
the Jacobian (A) matrix can be used to identify when a Hopf bifnrcation can occur. For a
two-state system, the characteristic polynomial has the form:

a2(fl.) ),,2 + a,(fl.) )" + ao(fl.) = 0

16.4.1 Higher Order Systems (n > 2)

Thus far we have discuss Hopf bifurcation behavior of two-state systems. Hopf bifurca­
tions can occur in any order system (n ;:::: 2); the key is that two complex eigenvalues cross
the imaginary axis. while all other eigenvalues remain negative (stable). This is shown in
Figure 16.11 for the three state case.



FIGURE 16.U Locatioll of eigenvalues in complex plane as a function of /-L.

A Ilop!" bifurcation occurs ns the eigenvalues pass from the lefthand side 10 the
righthand side of the complex plane.
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p > 0~t := a

o

o

p < 0
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SUMMARY

In this chapter we have shown that the same bifurcations that oeemed in single-state sys~

tems (saddle-node, transcritical, and pitchfork) also occur in systems with two or more
states. We have also introduced the Hopf bifurcation, which occurs when cmnplcx cigcn~

values pass from the left-half plane to the right-half plane, as the bifurcation parameter is
varied. A HopI' bifurcation can also occur ill systems with more than two stales. F,'or a Sll­

pcrcriticalHopf bifurcation, two complex conjugate eigenvalues cross from the left-hall' to
the right-hall' plane, while all of the other eigenvalues remain stable (in the left-half plane).

FURTHER READING

The following sources provide general introductions to bifurcation theory:

Hale, 1., & H. Kocak (1991). DYl/mnics and H{flfrcatiol1s. Nc\v York: Springer­
Verlag.

Strogatz, S.H. (1994). Nonlinear Dynamics and Chaos. Reading, MA: Addison­
Wesley.

'I'he following textbook shows a complete exmnplc of the occurance of I[opf bifurcations
in a 2-state exothermic chemical reactor model:

Varma, A., & M, Morhidclli. (1997). Mathematical Methods in Chemical Engineer­
ing. New York: Oxford University Press.

STUDENT EXERCISES

1. Show that the two-variable system

·\1 ~ J;(x,f.l-) IL - xi
.r, ~t;(x,f.l-) - -x,

exhibits saddle-node behavior in the phase plane.



Student Exercises

2. Show that the two-variable system

x, = f,(x,fL) = /LX, - xl

x, = f,(x,fL) = -x,

exhibits tnmscritical behavior in the phase plane.

3. Show that the two-variable system:

x, = f,(x,fL) = Ii + x, - xi
x, = J;(X,fL) = -x,

393

exhibits hysteresis behavior in the xl state variable. This means that, as u is varied,
x\e folJows an S-shaped curve, which exhibits the ignition/extinction behavior
shown in Chapter 15.

4. Show that:

can be written:

;. = ,. (fL - r')

0=-1

if Xl = r cos () and x2 = r sin O.

5. Consider a generalization of Example 16.3, which was a supercritical HopI' bifurca­
tion (a stahle limit cycle);

;. = r (fL - r')

e= (f) + b r 2

Discuss how w affects the direction of rotation. Also, discuss how b relates the fre­
quency and amplitude of the oscillations.

6. Consider the following system, which undergoes a subcritical Hopi' bifurcation:

r = /-L r + ,3 - r5

Ii = w + b,.'
Show that, for IJ- < 0 an unstable limit cycle lies in between a stable limit cycle and
a stahle attractor at the origin. What happens when fL = 0 and fL > O'!

7. Show that the condition for a HopI' bifurcation for the f()Uowing characteristic equa­
tion

is a l (!J-) = O. This is easy to do if you realize that a HopI' bifurcation occurs when
the roots have zero real portion and write the polynomial in factored t~)rll1.
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Relate this condition to the Jacobian matrix, A(/-t), realizing that:

),2 _ tr(A(fL») ), + dct(A(fL» = 0

Chap. 16

s. Consider a Hopf bifurcation of a three-state system. Realizing that one pole is nega­
tive (and rcal) and that the other two poles arc on the imaginary axis, relate the Hopf
bifurcation to the coefficients of the characteristic polynomial of the Jacobian ma­
trix arc:

You can assume, without loss of generality, that a3(/-L) = 1. How do the conditions
on the polynomial coefficients relate to the conditions on the Jacobian matrix (trace,
determinant, etc.)?



INTRODUCTION TO CHAOS:
THE LORENZ EQUATIONS

17

The objective of this chapter is to present the Lorenz equations as an example of a system
that has chaotic behavior with certain parameter values. After studying this chapter, the
reader should be able to:

Understand what is meant by chaos (extreme sensitivity to initial conditions)

• Understand conceptually the physical system that the Lorenz equations attempt to
model.

Understand how the system behavior changes as the parameter r is varied.

'fhe major sections in thi:-; chapter arc',

17.1 Introduction

17.2 Background

J7.3 The Lorenz Equations

J7.4 Stability Analysis of the Lorenz Equations

J7.5 Numerical Study of the Lorenz Equations

(7.6 Chaos in Chemical Systems

17.7 Other [ssucs in Chaos

395
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17.1 INTRODUCTION

Introduction to Chaos: The Lorenz Equations Chap. 17

In Chapter 14 we presented the quadratic ll1i:lp (logistic equations) and found that the tran~

sient behavior of the population varied depending on the growth parameter. Recall that
when the qualitative behavior of a system changes as a function of a certain parameter, we
refer to the parameter as a b(lurcalion parameter. As the growth parameter was varied, the
population model went through a series of period-doubling behavior, finally becoming
chaotic at a certain value of the growth parameter. At that time we noted that chaos is pos~

sible with onc discrete nonlinear equation, but that chaos could only occur in continuous
(ordinary differential equation) models with three or more equations (assuming the model
is autonomous). In this chapter we study a continuous model that has probably received
the most attention in the study of chaos-the Lorenz equations. Before we write the equa­
tions, it is appropriate to give a brief historical perspective on the Lorenz model. For a
more complete history, sec the book Chaos by James Cjlcick (1987).

17.2 BACKGROUND

In 1961, Edward Lorenz, a professor of Meteorology at MIT', Was simulating a reduced­
order model of the atmosphere, which consisted of twelve equations. Included were
functional relationships between temperature, pressure, and wind speed (and direction)
among others. He performed numerical simulations and found recognizable patterns to
the behavior of the variables, but the pattel11s would ncver quite repeat. One day he de~

cided to examine a particular set of conditions (parametcr values and initial conditions)
for a longer period of time than he had previously simulated. Instead of starting the en­
tire simulation over, he typed in a set of initial conditions based on results from midway
through thc previous run, started the simulation and walked down the hall for a cup of
coffee. When he returned, he was shocked to find that his simulation results tracked the
previous run for a period of time, but slowly began to diverge, so that after a long period
of time there appcnred to be no con·clation between the runs. His first instinct was to
check for a computer error; when he found none, he realized that he had discovered a
very important aspect of certain types of nonlinear systems~-thatof extreme sensitivity
to initial conditions. When he had entered the new initial conditions, he had done so
only to a few decimal places, whereas several more decimal places were carried inter~

nally in the calculations. This small difference in the initial conditions built up over a pe­
riod of time, to the point where the two fUllS did not look similar. This discovery led to
the realization that long-term prediction of certain systems (such as the weather) will
never bc possible, no matter how many equations are used and how many variables are
measured.

In order to learn more about the behavior of these types of systems, he reduced his
model of the atmosphere to the fewest equations that could describe the bare essel1tials~

this required three equations. Here we discuss the "physics" of the three equations, while
Section 17.3 presents the equations and discusses the equilibrium solutions and stabilty of
the equations.



Consider a Huid maintained between two parallel plates, as shown in Figure 17.1.
When the top plate temperature (T2) is equal to the hottom plate temperature (T,), there is
no flow and the system is in equilibrium. Now, slowly increase the bottom temperature.
At low temperature di ffcrcnces, there is still no llow because the viscous forces are greater
than the buoyancy forces (the tendency for the less dense Huiet at the bottom to move to­
ward the top and the more dense lluid to move toward the bottom). Finally, at some criti­
(al temperature difference, the buoyancy forces overcome the viscous forces and the nuid
begins to move and form convection rolls. As the temperature difference is increased, the
fluid movement becomes more and more vigorous. Although the following point may be
less clear to the reader, for some systems there 1sa value of temperature difference that
will cause the smooth convection rolls to break up and become turbulent or chaotic-.

One can think of the speed of these convection rolls as wind speed in a miniature
"weather model" and the direction of the convection rolls as wind direction.

In the next section, we analyze the Lorenz equations, which attempt to model the
ilow pattern of Figure 17.1.

FIGURE 17.1 Convection rolls due
to a temperature gradient in a fluid
where density decreases as a function
of temperature (1'1 > 72),
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17.3 THE LORENZ EQUATIONS

The Lorenz equations are:

x, = <r(x, ~ Xl)
X 2 = r Xl - X 2 - X IX 3

X3 = hx] + X lX 2

(17.1)
(17.2)
(17.3)

Notice that the only nonlinear terms are the bilinear terms x Jx 3 in (17.2) and xlx2 in
( 17.3).

The state variables have the following physical significance:

XI

x2 =

x3 =

proportional to the intensity (speed) of the convective rolls

proportional to the temperature difference between the ascending and de­
scending currents

proportional to distortion of the vertical temperature profile from linearity
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Three parameters, (T, r, and b have the following physical significance:

(J :::::: Prandtl number (ratio of kinematic viscosity to thermal conductivity)

r ::::: ratio of the Rayleigh number, Ra, to the critical Rayleigh number, Rae

b a geomctic factor related to the aspect ratio (height/width) of the convection
roll

The Rayleigh number is:
galP!::.T

Ra =
vI<

where:
a =
11 =
g

!::.T =
v =
I< =

coefficient of expansion
distance between plates
gravitational acceleration
temperature difference between the plates (T 1 ~ T2)

kinematic viscosity
thermal conductivity

For a fixed geometry and tluid, Ra is a dimensionless measure of the teo1peraturc
difference between the plates. For 0 ::; r < I (Ra < RaJ the temperature difference is not
large enough for the buoyancy forces to overcome the viscous forces and cause motion.
['or r> 1 (Ra> Rae) the temperature difference is large enough to cause motion.

17.3.1 Steady-State (Equilibrium) Solutions

The Lorenz equations have three steady-state (equilibrium) solutions under certain condi~

tions. First, we present the trivial solution, then the nontrivial solutions. In Section 17.4
we will determine the stability of each equilibrium solution.

TRIVIAL SOLUTION

By inspection we find that the trivial solution to (17.1 )-(17.3) is XL, = x2, = Xl.> = 0 (17.4)

The trivial condition corresponds to no convective flow of the fluid.

NONTRIVIAL SOLUTIONS

From (17.1) we find that:

(175)

Substituting (17.5) into (17.3), we find thatx" = ~ xi" or:

(17.6)
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TABLE 17.1 Summary of the Equilibrium Solutions

State Variable Trivial Solution

o
o
o

Nontrivial I
(r> 0 required)

Vb (r ~ I)

Vj)~
r -- I

Nontrivial 2
(I' > 0 required)

Vh(r~ 1)

-Vb(~-~ I)
r 1

For rcal solutions to (17.8), condition r ~ I must be satisfied. This Incans that for r < 1,
there is only one real solution (the trivial solution), while for r > I there arc three rcal so­
lutions. This is an example or a pitchfork bifurcation. For Ra < Rae' there is no convective
flow. The equilibrium behavior is slIlllllwrizcd in Table 17.1.

Substituting (17.6) into (17.2) at steady~statc, we find',

and substituting (17.7) into (17.6) and using tbe results of (17.5):

x,," x2, =1 V';(r - I)

(17.7)

(17.8)

17.4 STABILITY ANALYSIS OF THE LORENZ EQUATIONS

Linearizing (17.1 )-(17.3) around the stcady-statc j we find the following Jacobian matrix:

( 17.9)

which we will analyze to determine the stability of the equilibrium solution.

17.4.1 Stability of the Trivial Solution

For the trivial solution, XIs = x2.\,:::: x:h:::: 0 , the Jacobian matrix is:

(17.10)

and the stability is determined by finding the rooIs of dCl(A1 ~ A):::: O.
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(17.11 )

I

o
o

A+h

--- <f

A+
o"-A I' :,"

del(A/- A) cc (A + h) IA.+ <r -<rl
--I' A + 1

~ (A + h) [(A + <r)(A + 1) ~ <r1'1

dCl(A/- A)= (A + h) [A2 + (IF + I) A + <r(1 -1')1

and we sec from (17.11) that the eigenvalues are

( 17.12)

A
2
~

+ 1 - V(<r j 1)2 - 4<r(1 ---1')

2
( 17.13)

(17.14)

Clearly, the first eigenvalue is always stable, since b > O. It is also easy to show that the
second and third eigenvalues can never he complex. The second eigenvalue is always
negative and the third eigenvalue is only negative for r < I. We then sec the following
eigenvalue structure for the trivial (no flow) solution

r < 0: all eigenvalues are negative, trivial solution is stahle

r> 0: saddle point (one unstahle eigenvalue), trivial solution is unstable

For,. > I, then f{o > Rae' which means that flow will occur. Notice that Ra is proportional
to b.T. This mcans that once fj,T is increased beyond a certain critical fj,1~:, convective
flow \vill begin.

17.4.2 Stability of the Nontrivial Solutions

Here we find the roots of det(AJ - A) = 0 for the nontrivial solutions. Starting with:

I:,' '; -<r
o ]AI- A A+ I XIs

-- ):2s ~XIs A + h

( 17.15)

and solving det(AJ - A):;:: 0, you should find:

A' + "21\.2 + hi A + IJo (17.16)



Recall that real nontrivial solutions only exist for r > I.Thc coefficients b2, hi' and ho arc
then all positive, satisfying the necessm)' condition for stability. The Routh array must be
lIsed to check the sl{1I1Cienf condition for stability. As derived in the appendix, the critical
r for stability is:

If r > /)/, then the stability condition is not satisfied. This is an interesting result, because
it Incal1s that nOlle of the cquibrium solutions (trivial, nontriviall, nontrivial 2) is stable
for r> rl!- The subscript His llsed in (17.20), because a Hopf bifurcation forms at that
value (sec student exercise 1). If a supercritical Hapf bifurcation occurred, a stable limit
cycle would form, yielding periodic behavior for the nontrivial solutions. It turns out that
.<1 suhcrificalllopf birfurcation is formed, that is, the limit cycle is unstable (sec Strogatz
for a nice discussion). Since there arc no stable equilibrium points for r > 1'/1, and no sta­
hle limit cycles, the solution "wanders" in phase space, never repeating the same trajec­
tory. This behavior is known as chaos and the solution is said to be a strange atfracfor.
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( 17.17)
(17.18)
( 1719)

(17.20)
<T + h +

(IT ~ b - I)
r· =­11

b2 -lr(A) IT+b+1
b,'··(r+lr)b
bo = ~- det(A) = 2lrb(r - I)

where:
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15
unstable limit cycle

17.4.3 Summary of Stability Results

30
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5
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-10

" 0

FIGURE 17.2 Bifurcation diagram for the Lorenz equations. Based on para­
meters in Section 17.5.

We have seen that for r < 1 there is only one real solution, the trivial solution, and it is sta­
ble. When r =1 there is a pitchfork bifurcation, yielding three real solutions for r> 1. The
trivial solution is unstable for r > 1, while the nontrivial solutions arc stable for 1< r < rHo

This behavior is shown clearly by the bifurcation diagram shown in 1,'igurc 17.2. The for­
mation of the unstable limit cycle at I' = 1'/1 is discussed by Strogatz.
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17.5 NUMERICAL STUDY OF THE LORENZ EQUATIONS

Lorenz used the following values to illustrate the chaotic nature of the equations

IT ~ ]()

8
b~

3
r c. 28

from (17.22) we calculate that I'll ::;: 470/19 ;;::::; 24.74, indicating that all of the equilibrium
points arc unstable, since the value of r::::: 2S is greater than rJl"

Before we continue with the set of parameters that Lorenz used to illustrate chaotic
behavior, we will first pcrfonn sinlulations for two other cases. ]n the first, we show a set
of conditions where the trivial solution is stahle. In the second, we show a set of condi­
tions where the nontrivial solutions are stable.

17.5.1 Conditions for a Stable Trivial (No Flow) Solution

We have found that the trivial steady-state is stable for 0 s: r < I. l-lerc we use the u and b
parameters used by Lorenz, but set r:::: 0.5 ror a stable trivial steady~state.

(J ~ 10
X

/, ~
3

r ~ 0.5

As in future simulations, we assume an initial condition oLto ;;;: 10 1 Ol"r, A time dornain
plot for all three-state variables is shown in Figure 17.3, and a phase-plane plot (x3 vs. tl)
is shown in r<'igure J7.4. The convergence to equilibrium occurs rapidly.

Lorenz Equations, r "" 0.5

0.8

0.6

~

0.4

0.2

0
0 2 4 6 8 10

FIGURE 17.3 Lorenz equations under conditions for a stable trivial solution.
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FIGURE 17.4 Phase-plane under stable conditions for the trivial solution
(x] - xJ plane).

17.5.2 Stable Nontrivial Solutions

We have found that the nontrivial steady-states arc stable for 1 < r < rl1 " I-Icrc we use the
IT and b pannnctcrs used by I"orenz, but set r::: 10 (recall that r ll ::: 24.74 for these values
of (J and b) to show that the nontri vial steady-states arc stable.

iT = to
8

h=
3

r = 21

For the trivial steady-state, x::;:; 1000F', the eigenvalues arc:

A,·e - 2.67
A} =- 20.67
A, = 9.67

as expected, the trivial steady-state is unstal?h.:~(~saddlc_l?9Jrlt).

The.nontrivial steady-slates, x = lV160/3 V160/3 201 1 and x = [- V160/3
-- vu,0/3 20r', have eigenvalues of:

A, = - 13.4266
1..2 = --0.1200 + 8.9123j
A; -O.l200-8.9123j

verifying that the nontrivial steady-states are stable.
Time domain plots for x J are shown in Figure 17.5, for r:::; 21 Hnd two difTerent ini­

tial conditions. Notice that convergence to a particular equilibrium point depends on the
initial condition, that is, plot a converges to one equilibrium point. while plot h converges
to a different equilibrium point. Also notice that plot b exhibits what is known as transient
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40 FIGURE 17.5 Lorcnz cquations

under conditions for stable nontrivial
solutions.

chaos. Thc initial trajcctory appears chaotic, but eventually the tr(~jectory converges to an
equilibrium point. In othcr systems thc systcm can exhibit transient chaos and settle into
periodic behavior.

The phase plane diagram of Figure 17.6 also clearly shows the effect of two dif­
ferent initial conditions. In curve a thc trajectory almost immediately goes to the equili­
brium point on the right (positive value of xl)' In curve b the trajectory first winds
around the left equilibrium point, switches to the right equilibrium point, and (after
going back and folth a fcw times) evcntually winds around the left equibriulll point,
slowly converging.
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17.5.3 Chaotic Conditions
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The parameters used for this case are

(f ~ lO
8

b~

3
r ~ 28

Recall that all of the equilibrium points are unstable, since the value or r::::: 2X is greater
than FJ!>
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For the trivial stcady~state, x -;;:; 10 0 OfT, the eigenvalues arc:

/.., == 2.67
/.., =-22.83
/..3 co 11.83

as expected, the trivial stcady~statc is unstable (a sa441c poiJlt).
Xor the nontrivial steady-states, x =- [Vn vn 271' and x

= vn 27]1', the eigenvalnes are:

/.., - - 13.8546
/..2 = IW940 =- 10. I945j
/..3 (W940 + H1l945j

[- V72

indicating that the nontrivial stcady~slatcs arc unstable. Notice that all of the steady-state
operating points are unstable. '{'his means that the curves in the three-dimensional "phase­
cube" plots will not asymptotically approach any single equilibriulll point. The curves
may exhibit periodic-type behavior, where the three-dimensional equivalent of a limit
cycle is reached. The curves could even have "quasi-periodic" behavior, where the oscilla­
tions appear to have two frequency componcnts. It turns out for this set or parameters that.
the curves ncver repeat. The curves have a strange affractor because they stay in a certain
region of three-space, but never intersect or repeat. This is known as chaotic I)chavior.

Figure I?? shows the Lorenz behavior for the "Yr variable under unstable (chaotic)
conditions. The initial condition is xo :::: [0 1 Orr. Plots of the other states (x2 and ''\:3) arc
similiar.

Figure 17.7 was 11 time domain plot for Xl under chaotic conditions. More interest­
ing results arc also shown in the following phase-plane diagram (Figure 17.8). Notice that
the trajectory will spend some time "winding around" one equilibrium point, before jump~
ing to the other side and winding around the other equilibrium point for a while. This
process goes on forever, with the trajectory never crossing itself (in 3-space).

20

15

10

5

" a
5

10

-15

20 a

Lorenz E<lualiOllS,I =a 10 I = 50

40 50

time

FJGllRE 17.7 Transient response ofx j under chaotic conditions.
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Lorenz Equations, t", 0 to t:= 50
50
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o
20 --15 --10 -5 a
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5 10 15 20

FIGlJRE 17.8 Phas<>plane or Lorenz equations under chaotic conditions.

'rhe development of the curve in FigUfC17.8 is shown more clearly in the phase­
plane plots in Figure 17.9, which show varies "pieces" of time.

A three-dimensional plot (phase cube) of this trajectory is shown in Figure 17.10.
The reader is encouraged to perform simulations of the Lorenz equations, to be un­

derstand concepts such as sensitivity to initial conditions. MATI,AB has a demo titled

lorenz. m (simply enter lorenz in the command window) that traces a three-dimen­
sional plot of solutions to the Lorenz equations. Each new run uses a new set of random
initial conditions. If you write an m-file to simulate the [,orenz equations using ode45,
remember to use a name lhat is different than lorenz .m, to avoid conniels with the
MATLAB clemo.

17.6 CHAOS IN CHEMICAL SYSTEMS

The Lorenz equations provide a nice example of chaos, because the equations arc reason­
ably simple to analyze. An even simpler set of equations was developed by Rossler to
demonstrate chaotic behavior (sec student exercise 3). Chaos has also been shown to ap­
pear in models or chemical process systems, particularly exothermic chemical reactors.
Reactors that arc forced periodically Uacket temperature is a sine wave, for example) have
been shown to exhibit chaos. Also, a series or reactors with heat integration can exhibit
chaotic behavior. [t appears that chaotic reactors may have had low amplitude "oscilla­
tions" (say in temperature) that may have been interpreted as measurement and process
noise in the past. A comprehensive review of nonlinear dynamic behavior in chemical re­
actors is provided in the article by Razoll ami Schmitz (1987).
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FIGURE 17.9 C'ol/iit/lled

17.7 OTHER ISSUES IN CHAOS

"
t = 45 to 50

Chaos is a complex field with ITiany books and conferences devoted to this simple topic.
Clearly, it is impossible to give this topic adequate coverage in a single chapter. Our goal
is to provide an introduction {tl, and motivation for, the topic. 'rhe reader is encouraged to
consult the many books and articles available 011 the topic.

FIGURE 17.10 Three-dimensional phase space plot of Lorenz equations under
chaotic conditions.
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[ssucs that may be of particular interest include:

Chap. 17

How docs onc detect chaos experimentally? One method is to lise experimental data
to calculate Lyapwwv exponents. See Strogatz for example.

Chaos can be used to encode secret messages. See Cuomo and Oppenheim (199.)).
who used ideas presented by Pecora and Carroll (1990).

SUMMARY

We have presented an introduction to chaotic behavior by studying the Lorenz convective
flow equations. A number of chemical processes have been shown to exhibit similar be~

havior. It is necessary to have three nonlinear autonomous differential equations before
chaos can occur. Although not shown here, chaos call occur in a system of two nonlinear
IlOIl(lutonO!1lOUS equations (that is, if some type of periodic input forcing is used), Also.
we saw in Chapter 14 that chaos can occur in a single discrete nonlinear equation (the
quadratic map, or logistic equation),
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ences, 20: 130-141.
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A review of nonlinear dynamic behavior (including Chaos) of chemical reactors is pro­
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Razon, L.l'., & R.A, Schmitz. (1987). Multiplicities and instabilities in chemically
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Student Exercises

Papers that develop a way of encoding secret messages using chaos arc:
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Pecora, L.M., & T.L. Carroll. (1990). Synchronization in chaotic systems. Physical
Neview Leflers, 64: 821.

Cuomo, K.M., & A,v. Oppenheim. (1993). Circuit implementation of synchronized
chaos, with applications to communications. Physical ReviellJ Leflers, 71: 65.

STUDENT EXERCISES

1. Consider the following parameter values for the Lorenz equations:

" ~ 10
r ~ f, ~ 470/19 ~ 24.74

8b ~--

3

For the nontrivial solution, show that a supercritical Hopf bifurcation occurs at this
value of r. That is, for r < r e, all eigenvalues arc stahle, for r::::: r c' two eigenvalues
arc on the imaginary axis, and for r > rc' two eigenvalues have crossed into the right
half plane.

2. Show the sensitivity to initial conditions of the Lorenz equations. Run two simula­
tions with the parameter values shown in the numerical study

" ~ .10
r ~ 28
b ~ 8/3

For the first simulation use the initial condition xo ;;::; [0 I OIT, For the second sim­
ulation lise the initial condition Xo ::::: [0 1.0 I Orr. When do the simulations begin
to diverge?

Run some more simulations with smaller perturbations in the initial concli­
tions, Also, make perturbatiollsin the initial conditions for the other state variables.
What do you find?

3. Consider the Rossler equations (see Strogatz, for example):

Xl = -x2 - xJ
x2 = x l +ax2

x, = b + x,(x\ ~ c)

which have a single nonlinear terlll. Let the parameters a and h be constant with a
value of 0.2. Usc simulations to show that this system has period-I (limit cycle), pc­
riod-2, and periodA behavior for c::::: 2.5, 3.5, and 4, respectively. Show that chaotic
behavior occurs for c :::: 5,
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4. The Henon map is a discrete model that can exhibit chaos:

xi(k +- 1) ~ x2(k) +- 1 - a xi(k)"'
x2(k -I- I) ~ bxi(k)

For a value of b ~ 0.3, perform nUlllerical simulations for various values of a. Try to
find values of a (try a > 0.3(75) thai yield stahle pcriocl-2 behavior. Show that
chaos occurs at approximately a ;::;: I '()6.

APPENDIX

Stability analysis of the nontrivial steady-state using the Routh array:

Row
I
2

3

4
Where

I

"2
hi)] - bo

h,l.

"0
"0 =2 ,,"(r - I)

()

hi ~(r+,,)" b2 =<r+h+1

Since the nontrivial steady-state only exists for 1';:: I, then bo is ahvays positive. It also
follows that hi and b2 will always he positive. The only entry from the Routh array that
we must check is the first column in row 3. This entry will he positive if:

h2h J - bo > 0 or h2b 1 > bo

Making the substitutions for parameter values in the coefficients:

(<r +- b +- I )(r -I- <r)h > 2 <rb(r - I)

After some algebra, this can be written:

'T +- h+-I) r--- -- ,,( 'TI h -I- 3)
or,

('T - b - I) r < "(<r +- h +- 3)

and, assuming that (J > h + I, the condition on r for stability is:

,,(,,+-h+­
r<

('T - h- I)

(A-2)

(Al)

(A 4)

(A-5)

Notice from (A-3) that if (J < b + I, then any,. satisfies the requirement fl.)!" stability. We
will often define the critical value, rc:

If r > rc' then the syslem is unstable.

" (" +- h +­
(" - {) - J)

(A-6)

..~________________~~~__~_~_~ • __.......A


