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PHASE-PLANE ANALYSIS

The objective of this chapter is 1o introduce the student 10 phase-plane analysis, which is
one of the most important - techniques for studying the behavior of nonlinear systems,
After studying this chapter, the student should be able to:

» Use cigenvalues and eigenvectors of the Jacobian matrix to characterize the phase-
plane behavior

» Predict the phase-plane behavior close to an equilibrium point, based on the
linearized model at that equilibrium point

¢ Predict qualitatively the phase-plane behavior of the nonlinear system, when there
are multiple equilibrium points

The major sections of this chapter are:

3.} Background

13.2  Lincar System BExamples

133 Generalization of Phase-Prance Behavior
3.4  Nonlinear Systems

303
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BACKGROUND

Technigues to lind the transicnt (ime domain) behavior of Jinear staie-space models were
discussed in Chapter 5, Recall that the response characteristics (relative speed ol re-
sponse) for unforced systems were dependent on the initial conditions. Eigenvalue/eigen-
vector analysis allowed us to predict the fast and slow (or stable and unstable} initial con-
ditions. 1 we plotted the transient responses based on a number of initial conditions. there
would soon be an overwhelming number of curves on the transient response plots. An-
other way ol obtaining a feel for the effect of initial conditions is to use a phase-pluie
plot. A phase-plane plot for a two-state variable system consists of curves of one-state
variable versus the state varizble (x,(f) versus x,(1)), where cach corve is based on a dif-
ferent initiaf condition. A phase-space ploi can also be made for three-state variables.
where cach curve in 3-space is based on a dif{erent nitial condition.

Phase-plane analysis is one of the most important techniques for studying the be-
havior of nonlinear systems, since there is usually no analytical solution for a noniinear
system. It is obviously important to understand phase-plane analysis for tinear systems
before covering nonlinear systems. Section 13.2 discusses the phase-plane behavior of
linear sysiems and Section 13.3 covers nonlinear systems.

LINEAR SYSTEM EXAMPLES

Nonlincar systems often have multiple steady-state solutions (see Modules 8 and 9 for ex-
amples). Phase-planc analysis of nonlinear systems provides an understanding of which
steady-state solution that a particuiar set of initial conditions will converge to. The local
behavior {close (0 one of the steady-state sofutions) can be vnderstood from a linear
phase-plane analysis of the patticular steady-state solution (equilibrium point).

In this section we show the different types of phase-plane behavior that can be ex-
hibited by fincar systems. The phase-planc analysis approach will be shown by way ol a
number of examples.

EXAMPLE 13.1 A Stable Equilibrium Point (Node Sink)

Consider the system of equations:
i = X (1310
iy = —4dx, (13.2)

Fhe reader should find that the solation o (13, 1) and (13.2) is:

() =x,e’ (133

X1 = xy, 07 (13.4)
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where x|, and x,,, are the initial conditions for x; and x,. We could plot v; and x, as a function of
time for a large number of initial conditions (requiring a Farge number of tme domain plots), but
the same information is contained on a phase-plane plot as shown in Figure 13.1. Each curve
corresponds to a different initial condition. Notice that the solutions converge o (0,0) for all ini-
tial conditions. The point (L) is a stable equilibrium point for the system of equations (13.1)
and (£3.2)—the piot shown in Figure 3.1 is often called a sterble node.
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FIGURE 13.1  Phase-plane plot for Example 13.1. The point x¥ = (0,0) is a
stable node,

EXAMPLE 13.2  An Unstable Equilibrium Point (Saddle)

Consider the system of equations:

X o=k (§3.5)
& =4y, (13.6)
The student should find that the solution 1o (13.5) and (13.6) is:
(0 =x,e" (13.7
ot} = xy, €Y (13.8)

The phase-plane plot is shown in Figure [3.2. If the tnitial condition for the x, stale variable
wis 0, then a trajectory that reached the origin could be obtained. Notice if the initial condition
Xy, 18 just stightly different than zero, then the solution will always leave the origin, The origin is
an anstable equilibrium point, and the trajectories shown in Figure 13,2 represent a saddle point.
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The x; axis represents a stable subspace and the x, axis represents an unstable subspace Tor this
problem. The term saddle can be understood it you view the x; axis us the line (ridge) between
the “horn” and rear of a saddle, A ball starting at the born could conceptuaily roll down the sad-
die and remain exactly on the ridge between the hoen and the rear of the saddle. In practice, a
small perturbation from the ridge would cause the ball to begin rolling to one “stirrup™ or the
other. Similarly, a small perturbation in the initial condition from the ) axis in Example 13.2
would cause the solution 10 diverge in the unstable direction.

FIGURE 13.2  Phase-plane ploi for Example 13.2. The point x7 = (0.0) is a
saddle point.

Figures 3.1 and 13.2 clearly show the idea of separatices. A separatrix is a line in the
phase-plane that is not crossed by any trajectory. In Figure 13,1 the separatices are the co-
ordinate axes. A trajectory that starled in any quadrant stayed in that quadraut. Tihis 1s be-
cause the cigenvectors are the coordinate axes. Similar behavior is observed in Figwe
13.2, except that the x| coordinate axis is unstable.

Solving the equations for Examples 131 and 3.2 and the phase-plane tryjectories
were straight-forward and obvious, because the cigenvectors where simply the coordinate
axes. In general, cigenvalue/eigenvector analysis must be used (o determine the stable and
unstable “subspaces.” The eigenvectors are the separatices 1n the general case,

Example 13.3 shows how eigenvaluefeigenvector analysis is used 1o [ind the stable
and unstable subspaces, and to define the separatices.

e e e, P B T B B L



Sec. 13.2 Linear System Examples

307

EXAMPLE 13.3  AunotherSaddle Point Problem

Consider the following system of equations:
Y =2x +ux
X, =2x x5
Using standard state-space notation:
X = Ax

The Jacobian matrex is:

2 1
A= Iz 1
the eigenvalues are:
A = —1.5616 A,
and the eigenvectors are:
- T 0.2703 l )
N (X723

Since Ay < @, & is 1 stable subspace; also, since h; > 0, &, is an unstable subspace. A plot of the
. These etgenvectors also define the sepa-
rafices that determine the characteristic bebavior of the state trajectories.

stuble and unstable subspaces is shown in Figure 13.3

(13.9)
(13.10)

(i3.11y

2.5616

71(18719
04896

|

52

‘Unstable Subspace

FIGURE 133 Stable and unstable subspaces for Example 13.3.
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The time domain solation to (F3. 1) ts:

x(f) = " x{0) (1312
whicl is often sobved as (sec Chapter 5):

x(t) = VeV () (1313
which yields the following solution for this system:

_ S 02703 0 (.8719 "(’ 15630 0 HO.S(}QS - 0.R8972
{,Z,ibltif.

(1) = X 34
x( [ 0.9628 0.4896|1 0 0.9907 02782 "(”) (1314

Recall that the sofution o (13.14), if x(0) = &, is x() = £,e*, 50

S 02703 .2703 } £.5616r

if x(0) =
X0 = | ogos —09628] ¢

then  x(r) = ‘

The phase-plane plot is shown in Figure 3.4, where the separatrices clearly define the phase-
ptane behavior.

FIGURE 134 Phase-plane plot tor Example 3.3
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The previous examples were for systems that exhibited stable node or saddle point
behavior, In either case, the eigenvalues and cigenvectors where real. Another type of be-
havior that can oceur is a spiral focus (either stable or unstable), which has complex
cigenvalues and eigenvectors. Example 13.4 is an unstable focus.

EXAMPLE 13.4 Unstable Focas (Spiral Seurce)

Consider the following system of equations:

Xy =+ 2, (13.15)
.i‘z = =2 b o, {13.16)
Using standard state-space notation:
X = AX
The Jacobian matrix is:
A - { | 2"
-2 1

with eigenvaiues 1+ 27, This system is unstable because the veal poition of the complex cigen-

T
N

values 1s positive,
The phase-plane plot is shown in Figare 13.5.

FIGURE 13.5 Example 13.4, unstable focus {spiral source).
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Another type of lincar system behavior occurs when the eigenvatues have a zero real portion,
That is, the eigenvalues are on the real axis, This type of system leads 1o closed curves in
the phase-plane, and is known as center behavior. Example 13.5 illustrates center behavior.

EXAMPLE 13.5 Center

Consider the following sysiem of equations:
& |

R R T (13.17)
Xy = dx (13.1%)
The Jacobian matrix 1s;
v
A e
!_ 4 IJ

and the eigenvalues are 0 2 1.7321/. Since the real part of the eigenvalues is zero, Lhere is o pert-
odic solution {sine and cosine), resulting in a phase-plaie plot where the equilibrivm point 1s a
center, as shown in Figure 13,6,

\(e

®

FIGURVE 13.6 Example 13.5, cigenvalues with zero real portion are centers.
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Sec. 13.3 Generalization of Phase-Plane Behavior N

Examples 13.1 to 13.5 we have provided an introduction o Hnear sysiem phase-plane be-
havior. We noted the important role of eigenvectors and eigenvalues, and how these relate
to the concept of a separatrix. Section 13.3 provides a generalization of these examples.

GENERALIZATION OF PHASE-PLANE BEHAVIOR

We wish now to generalize our results for second-order finear systems of the form:
X=AX (t3.19
where the Jacobian matri is:

iy

{13.20)

KT 1y, |
Recall that the eigenvalues are found by solving det(Af — A) =0
det(hd — Ay = (N —a )N —ty) —dppay, =0 (1321)
which can be written as:
det(N = A) = N — tr(A)Y A A det(A) = 0 (13.22)
The guadratic formula can be used to lind the eigenvalues:

\ 2SSV~ det(a)

£3.23
5 { )

or, cxpressing cach cigenvalue separately,
tr{A) — V(ir(A) = 4 det(A)
and,

L (A) F V(A — ddet(A)

? 2

We notice that at least one eigenvalae will be negative it 1r{A)} < (. We also notice that the
eigenvalues will be complex if 4 det(A) > #(A)2. Remember that the different behaviors
resulting from A and A, are:

Sinks (stable nodes): Re (A <fand Re (\) <0
Saddles (unstable): Re(hy<0andRe(h)) >0
Sources (unstable nodes):  Re (M) > 0and Re (A} > 0
Spirals: A, and A, are complex complex conjugates. If Re(A )

< 0 then stable, il Re(X,) > 0 then unstabic,

We can then use Figure 3.7 to find the phase-plane behavior for second-order lincar or-
dinary differential equations as a function of the trace and determinant of A. In Figure
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N
\ spirel spiral / (WA =4detA
sink source
¢ center
node node
gink F0nurce
iy w(d)
seddle

FIGURE 13.7 Dyuamie behavior diagram for second-order Lincar systes.
The x-axis is tr{4) and the y-axis is det(4).

3.7, the x-axis is the trace of A and the y-uxis is the determinant of A. For example, con-
sider Example 131, where

A = ’ -1 {_)I
0 -4
tr{A) = =5
det(A) = 4
The point (=5.4) lies in the second quadrant in the node sink sector, as expected, since the

two real eigenvalues are negative {indicting stable node behavior).
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Figure 13.8 shows the phase-plane behavior as a function of the eigenvalue loca-

tions in the complex plane. For example, two negative eigenvalues Jead to stable node be-

havior.

13.3.1 Slope Marks for Vector Fields

A qualitative asscssment of the phase-plane behavior can be obtained by plotting the

stope marks for the vector field. Consider a general linear 2-state system

Eigenvalues Phase-Plane Plot

\;-., :
Im \ |
3table node ¢ + \?\ + $ 3

. N

. unstable node
Re

-

Im

steble focus
% Re

FIGURE 13.8  Phasec-plane behavior as 2 function of Eigenvalue location.
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Eigenvalues Phase-Plane Plot
ol
Im
X
wnFtable tocug
BT Re
Im
saddle
Re
5
Im
aenter n
ke
FIGURE 13.8 Continned
Xy =a,x bagx (13.24)
Xy =ty X+ dypy X, (13.25)

We can divide (13.25) by (13.24) to find how x, changes with respect to x;:

dy _ayx, toayx, (13.26)
dx; ay x, + dpx, N
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and we can plat “stope marks™ for values of x, and v, to determine an idea of how the
phase plane will look. Let us revisit Example 13.3. The slope marks can be calculated
from (13.27):
d"'z - 2 .X] .—.".&2 (qu']')
dyy  2x; +x,
Figure 13.9 shows the slope marks lor Example 13.3. These are generated by forming a
grid ol points in the plane, and finding the slope associated with each point; short line seg-
ments with the slope calculated are then plotted for each point. Notice that one can use the
slope marks fo help sketch state variable trajectories, as shown in Figure 13.10. Saddle
poird behavior found in Example 13,3 is clearly shown in Figure 13,10,

13.3.2 Additional Discussion

Phase-plane analysis can be used {0 analyze autonomous systems with two state variables.
Notice that state variable trajectories cannol “cross” in the plane, as illustrated by the fol-
lowing reasoning, Think of any point of a trajectory as being an initial condition. The
model, when integrated from that initial condition, must have a single trajectory. If two
trajectories crossed, that would be the equivalent of saying that a single nitial condition
could have two different trajectories. If a system was non-autonomous (for example, if
there was a forcing function that was a function of time) then state variable trajectories
could cross, becavse a model with the same initial conditions but a different forcing func-
tion would have different trajectories.

An autonomous {unforced) syslem with n stale variables cannot have trajectories
that cross in #-space, but may have (rajectories that cross in less than n-space. For exam-
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FIGURE 13.9  Slope inarks for the vector field of Example 13.3
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FIGURE 1310 Slope marks with trajectories for Example 3.3,

ple, a third-order autonomous system cannot have trajectorics that cross in 3-space, but
the trajectories may cross when placed in a two-dimensional plane.

13.4 NONLINEAR SYSTEMS

In the previous sections we discovered the types of phase-plane hehavior that coutd be ob-
served in linear systems. In this chapter we will find that nonlinear systems will olten
have the same general phase-plane behavior as the model linearized about the equilibrium
(steady-state) point, when the system is close 1o that particular equilibrium poing.

In this section we study two examples. Example 13.6 is based on a simple bilinear |
maodel, while Example 13.7 s a classical bioreactor model,

EXAMPLE 13.6  Nonlinear (Bilinear} System ]
Consider the following system:
dz .
il ZZ(Zi - i) (13.2%)
ot
dz, .
Sz {2y b 3) (13.29)

df
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which has two steady-state (cquilibrium) solutions:

Feguilibritun 12 trivial FANE 7g, = )
Equilibriten 2: nontrivial 2y = 4 Iy = =3

7, + 1']
RSN Zas

In the Tollowing, we analyze the stability of cach equilibrjum point.

Lguilibrium 1 (Trivial)

01
The Jacobian matrix is: A ==
) 300
and the cigenvalues are: Mom - V3 R, = V3

We know from Hnear system analysis that equilibricun poinl one is a saddie point, since one
eigenvalue is stable and the other is unstable.

Fhe stabl IS_’ veclor S ”

e stable cigenvector is: & ‘ (.866
Che unsts r eluenveolor 18 e

able eigenvect 0.866,

The phase-plane of the lincarized model around equilibrium point one i a saddle, as shown in
Figure 13.11. The lincarized model is

W/
J/A

FIGURE 13,81 Phase-plane of the Example 13.6 model linearized around
trivial equibrivim paint. This point is a saddie point,
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where x =7 — gz,

Equilibrium 2 (Nontrivial)

The Jacobian matrix is:

the eigenvalues are:

So, we know from linear system analysis that equilibrivan point two is a stable node, since both
eigenvakues are stuble.

The “fast” stable eigenvector is

Zass

il
——
o o=

The “slow™ stable eigenvecior i £y =

The phase-plane of the Tineavized model around eguilbrium point two is a stable node, as shown
in Figore 1312,

FIGURE 13.12 Phasc-plane of the Example 13.6 model fincarized around
riviat equibriunt point. This point is a stable node.

The phase-plane diagram of the nondinear modet is shown in Figure 13,13, Notice how
the Hincarized wodels capture the behavior of the nenlincar model when close to one of the equi-
[brivin points. Notice, however, that iniiial conditiens inside the “right” saddlc “blow up,” while
initeal conditions inside the left saddle are attracted to the stable poinl. Slope-field marks are
shown in Figure 13.14.
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1\ Xy

FIGURE 1313  Phase-plone of Example 13,6, Trajectories (except those of
the right side of the saddle) leave the unstable point and are “attracted™ o the
stable point,
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FIGURE 13.14  Stope-fictd marks and some trajectories for Hxample 13.6.
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EXAMPLE 137 Bioreactor with Monod Kinetics

Consider a modet for a bioreactor with Monod kinetics {(see Module 8):

dx,

=Dy (13.30)
dx, : X,
= (57— ) 12 v (1331
X
o= :“"h: \7 (13.32)
i 2

where:
Popas — 0.53 k, =012
V=04 s =40
xy is the biomass concentration and ., is the substrate concentration. There are two steady-stale
(equilibrium) solutions for this set of parameters.
Equilibrivin |- trivial Xy, =0 Xy, = A0

0.3652

Egeeilibris 2: nontrivial Xy, = 14523 Xy, ==

v

Lincarizing (13.30) and (13.31) we find the following Jacobian matrix:

by — D, X,
A ey R
v b=y
di T

where we have defined ' = oo s 0 g
dx,  xa(k, +x)

Equilibrium 1 (Trivial)

The Facobi i | A | (.114563 0 ’
he Jacobian matrix is: = :
° ~LIBG40R - 0.4
with eigenvalues of: A, = (1114563 and A, = —(L4
indicating that the steady-state is unstable (it is a saddle point).
0.3714
The unstable eigenvector is: &, = |
he unstable eigenvector 1s: &, I B {].9235]
- . . , 0
Fhe stable eigenvector is: &, = )

This steady-state is known as the “wash-out” steady-state, because no biomass is produced and
the substrate concentration in the reactor is equal to the feed substrate concentration.

......... U — : EE- o -2
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Equilibrium 2 (Nontrivial)

The Jacobi trix 1 4 0 3215929J

» Jacobian ntateix 1s: A=

R -1 ~ 8.439832

with gigenvalues of A= 04 and A, = - 80398

indicating Lhat the steady-state is a stable node.

|' ().9‘)24"|

The “stow’” stable eigenvector is & = 011234

The “fast” stable eigenvector 1s

- (13714’
209285

321

The phase-plane plot of Figure 13.15 shows that the trajectories leave unstable point 1 (04) and
o (o stable poing 2 (1.4523,0.3692). More detadl of the phase-plane avound the unstable point is

shown in Figure 13.16, while Figure 13.17 shows more detail around the stable point.

S+
4.0 4
3.0 +
2.0 -+
1.0 1
] 1 o
T 3 Lf ¥
1.0 2.0

FIGURY 13.15  Phase-plane for bioreactor with Monod kinetics. x 1s biomass

concentration and s is substrate concentration.

ESCOLA DE ENCENHARIA
BIBLIOTECA
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4.1

&5
T

3.9

0.0 %y 0.05

FIGURE 13.16 Phase-plane behavior near the unstable point (0,4) (Bquili-
briwn 1).

0.4

0.3
1.4 %, L5

FIGURE 1317  Phase-plane behavior near the stable point (1.4523, 0.3692}
(BEquilibriuen 2}, :
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1.5 :

FIGURE 13.18  Exampic of center
Xa behavior.

In the previous examples the system trajectories “leflt” an unstable peint and were “al-
tracted” to a stable point. Another type of behavior that can oceur is limit cycle or peri-
odic behavior. This is ilfustrated in the following section.

13.4.1 Limit Cycle Behavior

In Section 13.2 we noticed that linear systems that had eigeavalues with zero real portion
formed centers in the phase plane. The phase-plane (rajectories of the systems with cen-
ters depended on the initial condition values. An example is shown in Figure 13.18. A
somewhal related behavior that can occar in nonlinear systems is known as himit cycle be-
havior, as shown in Figure 13.19.

'Fhe major difference in center (Figure 13.18) and Himit eycle (Figure 13.19) behav-
ior is that limit cycles are isolated closed orbits. By isolated, we mean that an inital per-

1.5

Xy

FIGURE 13.1%  Example of limit
X2 cycle behavior.
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turbation from the closed cycle eventually retnms to the closed cycle. Contrast that with
center behavior, where # perturbation leads to a different closed cycie.
Limit cycle behavior will be discussed in more detail in Chapter 16.

SUMMARY

As noted carlier, phase-plane analysis is a useful tool for observing the behavior of non-
Jmenr systems. We have spent time analyzing aulonomous linear systems, because the
nonlinear systems will behave like a linear systeny, in the vicinity of the equilibriam point
{where the linear approximation is most valid). A qualitative feel for phase-planc behav-
ior can be obtained by plotiing slope marks.

Notice that we have shown examples of nonlinear systems that have multipie equi-
librium points (steady-state solutions). Phase-plane analysis can be used o determine re-
gions of initial conditions where a system may converge to one (stable) equilbrium point
and regions where the initial conditions may converge to another (stable) equilibrizm
point.

By sketching the linear behavior around a particular equilibrivm point and by using
slope marks, we can qualitatively sketch the phase-plane behavior of a given nonlincar
system.

Clearly the phase-plane approach is limited to systems with two state variables,
Analogous procedures can be used to develop phase-space plots in three dimensions for
three-state systems. Lincarization and analysis of the locally linear behavior in terms of
cigenvalues and eigenvectors can still be used for higher-order systems, but the phase be-
havior cannot be viewed for these higher-order systems,

FURTHER READING

Strogatz, S H, (1994). Nonlinear Dynamics and Chaos. Reading, MA: Addison
Wesley.

STUDENT EXERCISES
Linear Problems

For the following linear systems, use Figure [3.7 to determine the phase-plane behavior.
Also, cateulate the eigenvalues and use Figure 13.8 to verily your results. Develop your
own phase-plane diagrams for any situations oot covered in Figures 13.7 and 13.8,

g 0

1. xn-‘--‘ [ _9
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5 -1 3
YT 2 2]t
1 3]
3- .....
X 2 2 X
I 0]
4. ¢
ERTEI
1 2
5 x= ! 5 X
6 . -1 —2}
hoOX = |2 X
. —1 =025 L T 025
7.  Compare x = X with x = X
! - 1 2
-1 —05
8 x-== 5 : x
9. x = -1 E.Jx
. X o
—1 0] ¥
10, x = 0 -2 ix
{ 0 -3
-1 0 0
1. x= 0 2 0ix
o o0 -3

12. A proc‘css engineer has lincarized a nonlinear process model to obtain the following
state-space model and given it to your boss. Your boss has forgotien everything he
learned on dynamic systems and has asked you to study this model using lincar
system analysis techniques.

X = AX

where:
e - 1.()’
110 00
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14.

5.
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with initial conditions x,(0) = 0.5 and x,(0) = - 0.25.

a. What are the eigenvalues of the A matrix? Use both MATLAB and your own an-
alytical sofution.

b. Show a phase-plane plot, placing x; on the x-axis and x, on the y-axis.

Consider a process with a state-space A (Jacobian) matrix that has the following

eigenvalues and eigenvectors. Draw the phase-planc plot, clearly showing the direc-

tion of the trajectories. The eigenvalues are:

A= —1 A, = ]
and the cigenvectors are:
V2 .
b=|yp| &7 I(E)l
Y%

An interesting example of phase-plane behavior is presented in the book by Stro-
gatz (1994). He develops a simple mode] for fove affairs, using Romeo and Juliet to
iHustrate the concepts. Consider the case where Romeo is in love with Julict, but
Juliet is fickle. The more that Romeo Toves her, the more that Juliet resists his love.
When Romeo becomes discouraged and backs off, Juliet becomes more attracted to
him. Let;

x; = Romeo’s love/hate for Juliet
x5 = Juliet’s love/hate for Romeo

where positive state variable values indicate love and negative values indicate hate.
The model for this relationship is:

dx,

= g x

ddt 2
dx,

et = by
et !

where a and b are positive parameters. Show that this model has center behavior
and discuss the meaning from a romance perspective.
Consider a more general formulation of the Romeo/luliet problem in 14 above. In
this case, let:
dx,
dt

it

a4y X + a5 Xo

dx,

=y Xy F lyy X
dt 21 2242
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where the parameters ay; can be either positive or negative. The choice of signs
specifies the romantic “styles.” For cach of the following cases (parameters a and b
arc positive), determine the phase-plane behavior. Interpret the meaning of the re-
sults in terms of romantic behavior.

dx

a. ~=ux; +bx
cdr ! :
dy,
e [)JC +ax
dt ! ’
dx

b, - - = X + b Xa
et
dx
S bx —ax,
ot )
dx,

c. =" +bx,
dt ‘ :
dx,

~= —bhx, ~ux

dt I ?

Nontinear Problems

6.

As a chemical engineer in the pharmaceutical industry you are responsible for a
process that uses a bacteria to produce an antibiotic, The reactor has been contami-
nated with a protozoan that consumes the bacteria. Assume that predator-prey equi-
trons are used to model the system (x; = bacteria {(prey), Xy = protozoa (predator)),
The time unit is days.

dx,

e I Xy — Y XX
dl 1 Y 12
dx,

""" = eyxx, -~ fBx,
At Y x, — B

a. Show that the nontrivial steady-state values are:

B o
Xy, =

5

5, =
&y Y

¥

b. Use the scaled variables, vy and y,,

X X

1 2
ye= o =
X5 g

1o find the scaled modeling equations:
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dy

Ywlewy,
dy,

S 1 v .
dr BU -yl

¢. Find the eigenvalucs of the Jacobian matrix for scale equations, evaluated al v s
and y,s. Realize that vis and vys are 1.0 by definition. Find the eigenvalues in
terms ol o and 3.

d. The parameters arc o = 3 = 1.0 and the mitial conditions are y,(0) = 1.5 and
¥l =0.75.

i. Plot the transient responsc of y; and v, as a function of time (plot these
curves on the same graph using MATLAB). Using your choice of intcgra-
fion methods, sunuelate o at least 1 = 20.

it. Show a phase-planc plot, placing y| on the x-axis and ¥, on the y-axis.

iil. What is the “peak-lo-peak™ time for the bacteria? By how much time does
the protorzoa “lag™ the bacteria?

e. Now consider the trivial sicady-state (x|, = x, = 0), Is it stable? Perform simafa-
tions when x () # 0 and x,(0) # 0. What do you find?

f. What if x,(0) % 0 and x,(0) = {1?

g What if x,{0) = 0 and x,(() = 0?

Consider the bioreactor model used in Example 13.7 with substrate inhibition rather

than Monod kinetics (see Module 8 For more detail)

x|

et = (g — ) x

e (. )4

dx, ( VD Ly
=g, —x) D -
dt ro Y
o= . P‘m;l\' .’(2

- ?
k, +x, + k!
where:

P = 053k, = 0.12

Ha
Vo= 04 s
k, = (14545

and x, is the biomass concentration and v, is the substrale concentration.

Assume that the steady-state dilution rale is 2 = 0.3,

a1, Find the steady-state {cquilibrium) solutions (Hint: There are three).

b. Analyze the stability of each steady-state. Find the Jacobian, the eigenvalues,
and the cigenvectors al each steady-stale.
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¢, Construct a phase plane plot. Whal do you observe about the unstable steady-
state?
d. What would you do if it was desirable o operate the reactor at an unstable
steady-state?
18. Perform some time domain plots related to the phase-plane plots for Example 13.7.
Discuss how these plots relate to the phase-planc results.
19. A chemical reactor that bas a single second-order veaction and has an outlet
flowrate that is a lnear function of height has the following model where the outlet
flowrate is linearly related to the volume of liquid in the reactor (F = V).

d¢  F

B Yo k(,‘z
di % (C )

dV

— = [, - BV

[Il' m [:,’

The parameters, variables and their steady-state values are shown below;

F,, = inlet Howrate (| liter/min)

¢, = infet concentration {1 gmol/liter)

C = veactor concentration (0.5 gmol/liter)

V =reacto volume (1 liter)

k = reaction rate constant (2 liter/(gmol min))

£ =1 min!
Perform a phase-plane analysis and discuss your resulls,

20, Consider two interacting tanks in series, with outlet flowrates thatl are a function of

the square root of tank height., The flow from tank 1 is a function of VA, ~ I, while
the flowrate out of tank 2 is a tunction of Vi,

.

iy I ! P f
L N

£

The following modeling equations describe this sysiem:

dh, L Iy—
dt fltphnty) | AT AT
I b N e R

ot




330

Phase-Plane Analysis

For the following parameter values
{‘LZ.S ] 5 H?‘: .
pom2s™ e 0 s
min © V6 min
- ) ft?
and the mput F o= 5o
mn

The steady-state height values are

hry, == 10 fy, = 6

Perform a phase-plane analysis and discuss your resulis.

A, = 1012

Chap. 13

> 2 B




INTRODUCTION TO
NONLINEAR DYNAMICS:
A CASE STUDY

OF THE QUADRATIC MAP

This chapter provides an introduction to bifurcation theory and cliaos. After studying this
chapter, the reader should be able to:

* Sce the similarity between discrete time dynamic models and numerical methods

+ Deiermine the asymptotic stability of a solution to the quadratic map

+ Understand the concept of a bifurcation
= Understand how to find period-2, period-4, . . ., period-n solutions

* Understand the significance of the universal number 4.669196223

When a parameter of a discrete-time model is varied, the number and character ol solu-
tions may change—Ilhe purameter that is varied is known as a bifurcation parameter. For
some values of the biftucation parameter, the dynamic model may converge to a single
value alter a long value of time, while a small change in the bifurcation parameler may
yield periodic (continuous oscillations) solutions. For some discrete equations, values of
the parameter may yield solutions that appear random—these are typically “chaotic” solu-
tions. Chaos can oceur in a single nonlincar discrete equation, while three autonomous
(no explicit dependence on time) ODEs are required for chaos in continuous models.
The major sections in this chapter are:

14.1  Background

14.2 A Simple Population Growth Model
[4.3 A More Realistic Population Modge]
144 Cobweb Diagrams

331
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145 Bifurcation and Orbit Diagrams

14,0 Stability ol Fixed-Point Solutions

14.7  Cascade of Period-Doublings

14,8 Further Comments on Chaotic Behavior

14.1 BACKGROUND

Many engineers and scientists have assumed (at teast, until roughly twenty years ago) that
simple models have simple solutions and simple behavior, and that this behavior is pre-
dictable. Indeed, the main objective for developing a model is usually to be able to predict
behavior or (o mateh observed behavior (measured data). During the past thirty years, a
number of scientists and engineers have discovered simple models where the short-term
behavior is predictable, but sensitivity to inttial conditions make the long-term prediction
impossibie. By inital conditions, we mean the value of the variables at the beginning of
the integration in lime. An example is the simple weather prediction model of Lorenz
{1963), which is a system of three aonlinear ordinary differential equations; the Loreny
model is covered in more detail in Chapter 17, Another example is the population growth
model used by May (1976), which is a single nonlincar discrete time equation, This popu-
[ation maodel is the topic of this chapter.

The commonly accepted term [or the dynamic behavior ol a system that exhibits
sensitivity to initial conditions is chaos. Terms for the branch of mathematics related (o
chaos include nenlinear dynamics, dynamical systems theory, or nonlinear science. New
chaos books, writien Tor a general audience, appear frequently; some of the more interest-
ing ones are referenced at the end of this chapter.

This chapter will not make you an expert on nonlinear dynamics, but it will help
you understand what is meant by sensifivity fo initial conditions and practical limits o
long-term predictability.

14.2 A SIMPLE POPULATION GROWTH MODEL

Assume that the popufation of a species during one time period s a function of the previ-
ous lime period. Perhaps we are interested i the number of bacteria cells that are growing
in a petri dish. or maybe we are concerned about the population of the United States. In
either case, the mathematical model ts:

My = A b byl (4.1
where  ng = population at the beginning of time period &
by = number of births doring time period &
d; = number of deaths during time period &

Now assume that the number of births and deaths during time period & is proportional Lo
the population at the beginning of time period £

P . WP T T
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by o= oy, ny (14.2)
dp = wyny {(14.3)

where o, and «; are birth and death constants. Then:

Py 5T B e, 1, (14.4)
which we can write as:

Aoy = i + (0, ~ o) ny (14.5)
or, e = (L4 ryn, (14.6)

where r=a, — a; Eqn. (14.6) can be simply writien as:
Hy = wn, (14.7)

where = 1+ r=1 + o, — o, (obviously, a >0 for a physical system)
The analytical solution to (14.7) is:

ny = ok oy (14.8)
where g is the initial condition.
From inspection of (14.8) we observe that
iFo <1 The poputation decreases during each time period (converging to 0).
ita>1 The population increases during each time period (— o).
if o= 1 The population remains constant during each time pertod.

These results are also shown in Figure 14.1

3. ! "
25 L F
+
3z | =11 *
_% ol alpha 1
3 +
— +
= 1.5 +
2 . +
IR U T ) ... dpha = 10
[e]
[»1
alpha = 0.9 )
0 2 4 6 8 10
time step

FIGURE 14.1  Simple population growth model.
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These results are easily rationalized, since births<deaths, births>deaths, and births =
deaths for the three cases. The result for e > 1 1s consistent with Malthus, who in the nine-
leenth century predicted an exponential population growih.

The result that the population increases 1o o= for « > 1 js a bit onrealistic. In prac-
tice, the amount of natural resources available will Himit the total population (for the bac- :
leria case, the amount of nutrients or the size of the Petrn dish will limit the maximum
number of bacteria that can he grown). In the next example, we show a simple maodel] that
“constrains” the waximum poputation.

14.3 A MORE REALISTIC POPULATION MODEL

A commeoen model that has been used to predict population growih is known as the logistic
cquation or the guadratic map (May, 1976).

Yo = ax (- x) (14.9)

Here, x, represcids a scaled population variable (see student exetcise 3).
Note the similarity of {[4.9) with the numerical methods presented in Chapter 3:

Xy = &) (14.10)

Recall that divect substitution is sometimes used to solve a nonligear algebraic equation,
The next guess (tteration &+1) for the variable that is being sofved {or (x) is a [unction of
the current guess (teration k). Equation (14.9) shows how the population changes {rom
lime period to tine period—-that is, it is a discrete dynamic equation. Since (14.9) is the
same form as (14.10), we will learn a lot about the quadratic map from analysis of the di-
rect substitution technique and vice versa. You will also note that many numerical inte-
gration techniques (Huler, Runge-Kutla) have the form of (14.10).

Since (14.9) is a discrete dynaniic equation, we can determine the steady-state be-
havior by finding the solution as k — o, Writing (14.9) in a more explicit form,

Ny =X, ek’ (14.11)

as we approach a steady-state (fixed-poin) solution, x,, | = x,, 0 we can write:

X, —ax” T(14.12)

5
which can be writlen:

ax)— (o0 — Dx, =0 (14.13)

¥

We can use the quadratic Tormula to find the steady-state (fixed-point) solutions:

o
x, = 0and (14.14)
: o
Itis easy to see from (14.9) that if the inilial population is zero, it will remain at zero. For
a noti-zero initial condition, one would expecl convergence (steady-state) of the popula-
tion to (o — 1)/, We will use a case study approach to show that the actual long-term
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TABLE 14.1 Parameters and Non-
zero Solutions for Four Cases

Case o Xy
1 2,95 0.6610
2 320 0.6875
3 .50 (7143
4 375 0.7333

{(steady-state) behavior can be guite complex. Table 14.1 shows the o purameter and the
non-zero steady-state that is expected from (14.14).

14.3.1 Transient Response Results for the Quadratic (Logistic) Map

Each cuse presented in Table 14.1 has distinetly different dynamic behavior. As shown in
the folowing sections, case 1 lustrates asymptoticatty stable behavior, cases 2 and 3 il-
lastrate periodic behavior, and case 4 illustrates chaotic behavior.

ASYMPTQTICALLY STABLE BEHAVIOR

Let x; represent the initial condition (the value of the population at the initial time) and x,
represent the population value at time step k. For case | we find the following values,
using the relationship s, = 2.95 1, (1 —x):

Step k ' x, o
0 0.1 0.2655
1 0.2655 0.5753
2 0.5753 0.7208
3 0.7208 0.5937
4 0.5037 0.7H106
5 0.7116 0.6054
oo 0.6610 0.6610

The transient response for case 1 is plotted in Figure 14.2 for an initial condition of 0.1
Notice that the response converges to the predicted steady-state of 0.6610. This type of re-
sponse for continious models is usually called asymptosically stable behavior since the
oulput converges to the steady-state ({ixed-point) solution.

PERIODIC BEHAVIOR

The transient response curve for case 2 is shown in Figure 14.3. The curve oscillates be-
tween (0513 and 0.800, while the predicted result (equation 14.14 and Table 14.1) is
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dimensicniess population

dimensionless population
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populatios model, alpha = 2.95

08

0.7 -

0.6
05 bk !
0.4

0.3

02

0 10 20 30 40 50
time step
FIGURE 14.2 Transient population response, case 13 converges to single

steady-state.

population model, alpha = 3.2
0.8 - o ' '_t: FR i i i s ) i =§ ! i 1 N !

0.7

06

0.5
G4
0.3 -
0.2
0.1 ; . e P . B .
0 10 20 30 40 50

time step

FIGURE 143  Transieni population response, case 2; oscillates between two
values (period-2 behavior).
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0.6875. This type of response is known as period-2 behavior, In case 3 the transient re-
sponse oscillates between 0.383, 0.827, 0.501, and 0.875 as shown in Figure 14.4. This is
known as period-4 behavior, since the system returns 1o the same state value every fourth

fime step.

CHAQTIC BEHAVIOR

For Case 4, the transient response never seitles (0 a consistent set of values, as shown in
Figure 14.5; rather the vatues appear to be somewhat “random” although a deterministic
equation has been used to solve the problem. Figure 14.6 shows that a slight change in
initial condition from 0.100 t 0.101 leads to a significantly different point-to-point re-
sponse—this is known as sensitivity to initial conditions and is characteristic of chaotic

systems.

WHERE WE ARE HEADING

At this point, you are probably wondering how to predict the type of behavior that the
quadratic map is going to have. Changes in the o parameter have led to many different
types of behavior. The purpose of Section 14.4 is 10 show how (o predict the type of be-
havior that will be observed using cobweb diagrams. Section 14.5 will then introduce bi-
furcation plots, which reduce the long-term results from many transient plots to a single
plot. Section 14.6 introduces linear stability theory for discrete systems. Scetion 14.7
shows how to find the period-r points.

population model, alpha = 3.5

0.9~

o8

0.7 |-

06 |

0.5

0.4

0.3

dimensioniess population

0.2 i

time step

FIGURE 14.4 Transient population response, case 3; oscitlates between four
values (period-4 behavior).
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population model, alpha = 3.75

20 40 60 80 100

time step

FIGURE 14.5 Transient population response, case 4; chaotic behavior,

population model, alpha = 3.75%

0.8
0.6

04}

0.2

75 80 85 90 95 100
time step
FIGURE 14.6  Transient population response, case 4; chaotic behavior (Solid

Line——initial condition of x; = 0.1, Dashed line—4initial condiion of x, =
0.101). This illustrates the sensitivity to initial conditions.
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Xn+ 1
1
0.73 b
0.5 F
0.23 F
FIGURE 14.7 Cobweb diagram for
o ! 1 1 %,  the quadratic map problem. The initial
0 0.25% 0.5 0.75 1 point is v, = (1L,

14.4 COBWEB DIAGRAMS

insight to the behavior of discrele single-variable systems can be obtained by constructing
cobweb diagrams. Cobweb diagrams are generated by plotting two curves: (i) g(x) versus
xand (i1) x versus x; the solution (fixed-point) is at the intersection of the two curves, For
example, consider the case 1 parameter value of o = 2,95 and an initial guess, v, = 0.1,
The x, | = g(x) = 2.95 x, {1 — x,) curve is shown as the inverted parabola in Figue 4.7,
Since the x, value is 1, the x) vatue is oblained by first drawing a vertical line to the g(x)

Xn+1
1
0.75
0.5
0.25
FIGURE 148 Cuse | {o=2.95)
map, convergence o a single solution
0 i {x =0.661); corresponds Lo the transient

0] 0.25 6.3 0.7 1 response in Figure 14.2.
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Xt 1 1
’ |
0.75 23
LM H
N
0.5 - L
o2 / FIGURE 149 Case 2 (w = 3.20)
map, oscitlates between x = 0.5130 and
0.7995 after initial transicot; initial
0 1 1 1 Xy condilien of 3 = 0.1--corresponds (o
o 0.25 c.5 0.75 1 the transient vesponse in Figure 143,

curve to lind glx,) = 0.265, then drawing a horizontal line to the x = x curve {since
X = glgh therefore, v = €.205). A veetical Jine is drawn (o the g(x) curve (Lo obtain
g(x;) = 0.575), then a horizontal line is drawn 1o the x = x curve (so, ¥y = 0.575) Thesc
initial steps wre shown in Figure 14.7.

Figure (4.8 shows that this process converges to the fixed-point of x_ = 0.661, for
the case | parameter value of o = 2.95. Figure 14.9 shows that the iterative process even-
tually “bounces™ between two solutions for the case 2 parameler value of o = 3.2, This is :
shown more clearly in Figure 14,80 where an initial guess of x, = 0.5130 leads 10 solu-
tions of (.5130 and (.7995 (period-2 behavior). Case 3 has period-4 behavior, as shown in
Figures 1411 and 14.12. Case 4 (Figure 14.13) is an example of chaotic behavior, where

the sequence of iterates never repeats,
x-n+ | i
1
0.75 F <
4 %
|
0.5
1
0.25
FIGURE 14.10  Case 2 (o = 3.2 '{
map, oscillates between v = 0.5130 and .
£ ! 1 (.7995; mitial condition of x, =0.5130 ;
o Xn s 0
0 0.25 0.5 0.75 1 (period-2 behavior). i




Xn+t
1

0.75 F > -
) A
0.5 F - o
0.25 |
O 1 I | Xh
¢] .25 0.5 0.75 1
Xp 1
1
N —
i | Xn
0.5 0.735 1
Xpvt g
1
-
0.75 F A k’ Bt
ﬁ s‘i N
0.5 ) <
e -
0.25 |
0 ). i 1 X
0 0.25 0.5 0.73 i

ESCOLA DI ENGENHARIA
BIBLIOTECA

FIGURE 14.11  Case 3 (= 3.50)
map, oscillates between v = 03828,
0.8269, 0.5009, and (18750, The initial
condition is xg = 0.1, This corresponds
te the transient response in Figure 14.4
(period-4 behavior).

FIGURE 14.12  Case 3(c = 3.50)
map, oscillates between (L3828,
0.8269, 0,5009, and (.87 30, initial
condition of x, = 0.3828 (period-4
hehavior).

FIGURE 14,13  Case 4 (¢ = 3.75)
nap, chaotic behavior; corresponds o
the transient response in Figure 14.5.
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14.5 BIFURCATION AND ORBIT DIAGRAMS

When a parameter of a discrete-time model is varied, the number and characier of solu-
tions may change; the parameter that is varied is known as a bifurcation parameter. For
the quadratic map, o is a bifurcation parameter. We have seen that somewhere between
o = 2.95 and 3.2, the behavior of the quadratic map changes from asymplotically stable 1o
period-2 behavior.

A single diagram can be developed that represents the solutions for a large range of
o values, We are most interested in the long-term behavior of a system, so for a single o
value, we can run a simulation and throw out the initial transient data points (say, the first
250 points). The next points (say, the next 250) should then adequately represent the long-
term behavior of the system. We can then move on to another value of « and do the same.
This is exactly the technique used to generate Figure 14,14, which is an orbir diagram for
the quadratic map (see student exercise 7).

14.5.1 Observations from the Orbit Diagram (Figure 14.14)

There is a single steady-state solution until e = 3, where a bifurcation {o two solutions oc-
curs. The next bifurcation point is « = 3.44949, where four solutions emerge. A peried-8
bifurcation occurs at o = 3.544090, period-16 at « = 3.564407, period-32 at « =
3.568759, and period-64 at o = 3.569692. Chaos oceurs at o = 3.56995. Notice that there
are some ieresting “windows” of periodic behavior, after the onset of chaos. For exam-
ple, at o = 3.83 we find a window of period-3 behavior. The period-3 behavior occurs
after approximalely 60 time steps, with an initial condition of 0.1, as shown in Figure
14.15, This behavior is shown more clearly in Figure 14.16 which is simply the data from

[our s Y T o S e o N v N
L T L = LN B < =]

[0~

FIGURE 14.14  Orbit diagram for the quadratic map. e is the biturcation parameter,

s e gt b 5 TR
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populaticr model, alpha = 3.83

dimensionless population

time step

FIGURE 14.15 Period-3 behavior (afier initial transient) for o« = 3,83, tnital
condition = 0.1, Pertodic values are x = (L15615, 0.50466, and 0.957417,
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FIGURE 14.16  Period-3 behavior for o = 3.83. Values arc 1 = 0.15615,
0.50466, and 0957417,
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Xt 1
1
Q.79 +
0.5 >
0.25 |
\ FIGURE 14.17 Period-3 behavior at
0 ! ! b X, 0= 383, Values are v = 0.15615,
0 0.25 0.5 0.75 1 (3.50466, and 0.957417.

Figure 14.15 plotted between 75 and H0 time steps. The cobweb diagram of Figure 14.17
also shows the period-3 behavior. Research has shown thatl period-3 behavior implies
chaotic behavior.

STABILITY OF FIXED-POINT SOLUTIONS

When we performed our case study, we found that case 1 converged to the predicted fixed
point, while the other cases had periodic (or chaotic) solutions that were not attracted o
the fixed points. We wish now to use an analytical method to determine when the solu-
tions will converge to the lxed-point solution--that is, when is a fixed-point stable? The
following stability theorem is identical to the stability theorem used for the numerical
analysis in Chapter 3.

Definition Lot x* represent the fived-point solution of x¥ = g(x*), or g(a¥) - x* = 0.

og

Theorem x* is o stable solution of x* = g(x*), il |7 | <7 1 when evalvated at ™.

14.6.1 Application of the Stability Theorem to the Quadratic Map

Here we will make use of this theorem to determine the stability of a solution o the qua-
dratic map:

glx) = ax(l —x) = o — a’ (1415

i
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So,
3‘{5 =oa— 2ax = o (l ~ 2x)
For simplicity in notation, we will use g’ to represent dg/ix. Fvaluated at x#, we have:
gt) = a = 2" = @ (1~ 24%) {14.16)
Therefore, from (14.16) and the stability theorem, if the following condition is satis{ied:
oo (1~ 20%) | = 1 (14.17

Then: x* is a stable solution.
Remember from (14.14) that there are two solutions o x* = a1 —x#):

L]

x# =) or x® =
(83

Momentarily we will generalize the stability results lor any value of «. Firsl, we will
study the four specific cases,
CASE 1 o =295
Atone fixed point solution, v = (0, we find;
|8 ()| = e (1 — 22%) | = 295 = |
which indicates that the fixed point is unstable,

At the other fixed point solution, x% = o — e = 2.95 — 1/2.95 = 0.6610, we find:

il

Lo (1 20%)] = ] 2.95 (1 - 2(0.6610)) | = |- 0.9499 |
0.9499 < 1

g (x|

I

which assures that the second fixed-point is stable.
For e = 2.95, we expect the numerical solution to converge to (he stable fixed point,
= 0.6610, since the other fixed point (x* = (0} is unstable.
The stability results for cases | through 4 arc compared in Table 14.2. Notice that
case | is the only one of the four cases where there exists a stable solution. The reader
- should verify that an initial guess of x arbitrarily close to zero (but not exactly 0), will not
converge to zero for any of the four cases.

TABLE 14.2  Stability Results for Cases 1-4

Case « X* i 2’ (vF) f condition X i g’(_\_'*) | condition
| 2.95 {0 2.95 unstable 0.6610 0.9499 stable
2 3.20 0 3.20 unstable 0.6875 1.2000 usnstable
3 3.50 §] 3.530 unstzble 07143 [.5000 uastable
4

3.75 0 3.75 unstable 0.7333 1.7500 unstable
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14.6.2 Generalization of the Stability Results for the Quadratic Map
Notice that we have been quite limited in our study, since we have only considered [our

cases with 2.95 = o = 3.75. Now we will consider the general results for any o > 0.
Again, recall that there are two fixed-point solutions for a given value of o

ool
x¥ =19 or X = :
o
At the risk ol complicating our notation, fet
. .o — 1
xp=10 and X§=
o

Our goat is to determine how the stability of x{j or x7§ changes as a function of «,

STABILITY OF xj AS A FUNCTION OF «

Since xf=0and gxf) = - 2al = a
then |g’ (¥%)
Also, since 1g7l < 1 s required for stability, then x§ is a stable solution only as long

as —F < < |, Otherwise, \{) is unstable (recall that o < 0 does not make physical sense).

= | (1|

STABILITY OF x7 AS A FUNCTION OF «

Since wf=(a~ Yo and gxf=a-20 (e~ Da=a-20a-1)=—a+2

then g’ (v¥)] = |« + 2]

which indicaltes stability for | < a < 3. Otherwise, x7 is unstable.

These results are shown on the bifurcation diagram of Figure 1418 for 0 < o < 4.
Generally, solid lines will be used to represent stable solutions and dotted lines will be
used (o represent unstable solutions. As discussed above, a change of stability for x} oc-
curs at oo = 1. Also, changes of stability for 7 ocewr at oo = | and « = 3. The vatues of «
where the stability characteristics change are known as bifurcation points. The bifurcation
that ocewrs at o = 1 is commonly known as a “transcritical” bifurcation (see Chap-
{er 15)—an exchange of stability between the two solutions has occured.

Notice that Figure 1418 is a bifurcation diagram based on a linear stability analy-
sis. It differs from an orbit diagram (such as Figure 14.14), because it does not show the
periodic behavior obtained from solving the nenlinear algebraic equation for the popula-
tion growth model. An orbit diagram cannot display unstable solutions, however.

14.6.3 The Stability Theorem and Qualitative Behavior

The theorem states that if [dg/dx] at the fixed point, the fixed point is stable. Further, if

dg/dx is negative, then the fixed point solution is oscillatory. 10 dg/dx is positive, the be-
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. bifurcation diagram
*® /,_.. _u;a.;ébls
05} *1 }
swable
* >
X X
0
x 0 e N
stable / unsteble
l;
/
05} ; A
! unstable
i
Ix*
;X1
[
-1 Il : L : ' " 1
0 0.5 1 1.5 2 25 3 35 <

FIGURE 14.18  Bifurcation diagram based on linear stability analysis.

havior is monotonic. We can then develop the lTollowing table of results From the stability
theorem

dg
ix stability response
<1 unstable oscillatory
ag .
e | stable oscillatory
ox -
_dg Lo
() <2 %} stable monotonic
dx
1 unstable monotonic

Although the linear stability analysis s uselul for determining if a lixed-point is stable, 1t
cannot be used directly to understand possible periodic behavior. This is the topic of the
next section. -
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14.7 CASCADE OF PERIOD-DOUBLINGS

We have voted that there appears to be a serics of period doublings in route to chaos. The
Hmitation to the method presented in Section 14.6 showed that it could predict that a par-
ticular fixed point was unstable, but could not identify the type of periodic behavior that
might occur. In Lhis section we will show how to find these period-doubling bifurcation
points and the respective branches shown in Figure 14.13.

14.7.1 Period-2

When period doubling occurs, the population value at time step & 1s equal o the value at
time step & — 2. This can be represented by

Xp 7 Xpa (14.18)

Or

Apaz = A
using the notation

Koy = 8{xg) (£4.19)
then

Yeen = 8l y) {14.20)

Yery = 8(8(x)) (14.21)

Xpaz = g7(6,) (14.22)

Werrning: Do not confuse the g2(x,) notation with that of the square of the operator eIk

For the quadratic map, we can develop the relationship shown in (14.22):
Kpr = aX o (T—x, ) (14.23)
and substituting x, ; = o x (1 — ) into (14.23), we find:
Xp,s = oy, (1 — )] [T~ (o x,(1—x,1)] (14.24)
Since {from 14.19):
Apez T X
we can wrile (14.24) as
¥, = afax, (1 —x )] [~ (ax (1 = x.))] (14.25)

Ay e R BT 2R 2




X or ge(x)
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Expanding (14.25},
= —axt+2ax’ - (1 + o)x? + 1 (14.26)
Or
Sl = [axt + 2ax (1 + e+ ] (14.27)
Notice that there are lour solutions to the fourth-order polynomial. We can find the solu-
tions graphically by plotting ¢?(x) versus x, as shown in Figure 14.19 (for a = 3.2).

If you closely observe the plot, you will find the following four solutions for period-
2 behavior:

¥ =

(3, 0.5130, 0.6875, and 0.7995

We can sec graphically that the solutions x* = 0 and 0.6875 are unstable, since ihe slope
of g2(x*) is greater than [, (A period-2 solution is stable if 1d(g(x))/dx] < 1.) Also, notice
that the solution for x = g(x) will always appear as one of the solutions for x = g2(x). If a
solution for x = g(x) is unstable, it will also be unstable for g%(x). We can see that
x = 0.6875 is the solution for both x = g(x) and x = g*(x), by observing Figure 14.20.
At this point it is worth showing the results of x versus g(g(x)) for case I, which we
know has a single, asymptotically stable solution. Figure 14.2) shows that there is a sin-
gle stable solution of x = 0.6610. This makes sense, because as £ - oo, we know that
X, = 0.6610; this means that v, = x;, = x, = 0.6610.
We can see from Figure 14.22 that o = 3.0 is a bifurcation poigt, since absojute val-

ues of the slope of g(x) and g2(x) = 1 at x = 0.66667. Figure 14.22 is cleary a iransition
point between Figure 14.21 and Figure 14.20.
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FIGURE 14.19  Plot of g(glx)
versus x to find the period-2 values for
X a =32
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08|

o
™

o
e
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FIGURE 14.20  Plots of g(x) and
,_qz{.\') versus x for o = 3.2,

FIGURE 14.21  Plots of g(x) and
gle(x)) versus x for e =295, No
period-2 behavior.
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T BIGURE 1422 Plot of g(x) and g2(x)
X versus v for a = 3.0,

14.7.2 Period-4

When period-4 behavior occurs, the population vakue at time step k is equal to the value at
time step k - 4. This can be represented by:

Sppq = X (14.28)

Using the same arguments that we used for period-2 behavior, we can find that since
X1 = 8L,

Kpaa = 8lXs) (14.29)
= g(g(xp.2))
= g(g(glxer 1))
= glg(ggx )

Xaq = 8100 (14.30)

We can obtain the solutions to (14.30) by plotting g*(x) versus x as shown in Figure 14.23

for o = 3.5. Again, do not confuse g*(x) with [g(x)]*. g*(x) is an eighth-order polynomial
with eight solutions as shown in Figure 14,23,

Figure 14.24 shows that the solutions for x = g{x} and x = £2(x) are also solutions
(although unstable) for x = gH(x).
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FIGURE 14.23  Plots of g%x) versus x to find the period-4 values for o = 3.5.
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FIGURE 14.24 Plots of g(x), £2(x) and g*(x) versus x for ¢ = 3.5,
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14.7.3 Period-n

By analogy to the period-2 and period-4 behavior, we can see that for any period n, we
have the following relationship

Kpn = Xy {E431)
Xey, = £1(x) (14.32)

Note that g#(x,) will be a polynomial that is order 2n, and there will he 2n solutions, n ol
which are stable.

14.7.4 Feigenbaum’s Number

The quadratic map exhibits a period doubling route to chaos. As the bifurcation parameter
o is mereased, model goes through a series of period doublings (period-2, period-4,
period-8, period- 16, elc.). Feigenbaum noticed that the quadratic map had a consistent
change in the bifurcation parameter between each period doubling. Indeed, he found that
any “one-hump™ (see any plot of g(x) for the gquadratic map) model will have a cascade of
bifurcations which will yield the Feigenbaum number. The Feigenbaum number is calcu-
fated by comparing o vadues at each successive bifurcation pointin the following fashion
®

lim ML = 4669196223 (14.33)

R

where «; represents the parameter value at the it period doubling point, where the period
is 1 = 24 To obtain a rough estimate of the Feigenbaum number, use the valaes of o for
period-16 (24), pertod-32 (2°) and period-64 (2°)

o5 — oy 3568759 — 3.564407
a — o 3569692 ~ 3.568759

h

= 4.6645

which is close to 4.6692
A summary of the bifurcation points is provided in Table 14.3.
Chaos occurs when the period is oo (state sequence never repeated) al o = 3.56995.

TABLE 14.3  Values of « at Bifurcation Points

i period o

1 2 3.0

2 4 3.44949
3 g 3.544090
4 118 3.564407
5 32 3568759
6 64 3.560692

o o 3.56995
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FURTHER COMMENTS ON CHAOTIC BEHAVIOR

We have used the quadratic map (a wodel of population grewth) to introduce you to non-
linear dynamic behavior, This model consisted of a single discrete nonlinear equation.
Dyynantic behavior similar to period-2 can result from a set of two nonlinear ordinary dif-
ferential equations. BExamples of period behavior in comtinuous systems include the
otka-Vaolterra model used to predict the populations of predator and prey species. The
change in a bifurcation paramcter that causes a limit-cycle to form in a 2 ODE system is
known as a Hopf bifurcation, and will be covered in Chapter 16. Chaos is possible ina set
of three autonomous nondinear ordinary differential equations. This behavior was discov-
ered by Lorenz in a simple (reduced-order) model of a weather system (really a model of
natural convection heat transfer) and will be detailed in Chapter t7. Lorenz coined the
phrase “butterfly etfect” to describe a sysiem of equations that is sensitive to initial condi-
ticas (hence chaotic). He stated conceptually that a butterfly flapping its wings in Troy.
New York could cause a monsoon in China several months later (or something similar!).

Some of the earliest results of what is now known as chaos were really discovered
by Poincaré in the lale nineleenth centtury, invelving the three-body problem. He found
that it was easy to determine the planetary motions due to gravity in a system with two
hodies, but when three bodies were considered, the system of equations became noninte-
leading to the possibility of chaos.

We see tucbulence throughout our daily lives, from the water flowing [rom our
faucets, to the effect of wind blowing through our hair as we ride our bicycles, to the boil-
ing water on our stoves. Many researchers have tried 1o model turbulence by adding sio-
chastic (random) terms to our models of physical behavior. It has only been realized in the
pasi three decades that a good physical (nonlinear) model can stimulate the effects of tur-
bulence through chaos.

Numerical methods are used 1o solve the vast majority of chemical process models.
Angelo Lucia {see references) has found that chaos can occur in the solution of some ther-
madynamic equations ol stale il the numerical methods are pot formulated cavelully. 1Uis
likety that many people have obtained similarty bad sotutions before reformulating them
correctly.

grable

SUMMARY

A ot of material has been presented in this chapter. You may be wondering how discrete
maps and bifurcation theory ties in with applications in chemical engineering. There are al
least two importang reasons for studying this material:

* We have showl that the guadsatic map problem is corceptually identical to numeri
cal methods that can be used to solve a nonlinear algebraic equation. Since the qua-
dratic map problem exhibits exotic behavior under certain values of the parameter «.
this tebls us that a poorty posed numerical methed may have similar problems. fe
careful when using momerical methods!
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+ We noliced that a discrete population growth model is represented by the quadratic
map problem. This population growth model is a simple example of a discrete dy-
namic system, which was modeled by a nonlinear algebraic equation. In the future,
we will be studying continuous dynamic systems, that is, systems that are modeled
by ordinary differential equations (ODEs). It turns out that nonkinear ODEs can
have dynamic properties that are similar to the discrete population model. For ex-
amiple, exothormic chemical reactors can exhibit bifurcation hehavior and continu-
ous oscillations in temperature and composition. One main difference is (hat a sys-
tem modeled by a set of autonomous ODEs must have at least three equations
before chaotic behavior occurs. Chaotic behavior can occur in a discrete model with
only one equation,
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Wesley,

STUDENT EXERCISES

Why are the results for the simple quadratic map problem impodtant to understand,
when chemical and environmental process models are obviously much more com-
plex {based on ODES)?

Use MATLAB {0 generate fransient responses for the quadratic map, for various
values of o, Explore regions of single steady-state solutions, as well as regions of
periodic and chaotic behavior. Use Figure 14.14 to try and find regions of periodic
hehavior in the midst of chaotic behavior,

Derive the scaled logistic equation {14.9) from the following unscaled maodel for
population growth.

T
My = m bl - ;)

where r and £ are constants (Hint: Define the scaled variable, x = nef(1 + r)L). What
is the physical significance of L?
Consider the “constant harvesting™ model for population growth, where v is a term
that accounts for 4 constant removal rate per unit tme period (e.g., hunting deer or
removing cells from a petri dish),

Xpoq =oax, (I —x)—vy

How does v effect the equilibrium population values? (Show calealation, and con-
sider stability of the equilibriumn.)

Let ¢ = 3.2, What -y values are required for  (the trivial solution) 1o be a sta-
ble equibrium solution? What v values are required for a stable nontrivial selution?
Consider the “proportional harvesting” model for population growth, where the re-
moval rate per il time period is proportionat to the amount of population

Yoy = wx (F=x) =y x,

How does vy effect the equilibrium population values? (Show caleuiation, and con-
sider stability of the equilibrivumn.)

Let o = 3.2, What vy values are required for O {the trivial solution) to be a sta-
ble equibrium solution? What v values are required for a stable nontrivial solution?
Consider the period-2 behavior that occurs at a value of @ = 3.2, Show that the val-
ues of x = 0 and x = 0.6873 are unstable. (Hint: Let A(x) = gg(x)) and show thal
[/ (x)y 12 T at those values.)




Student Exercises 357

7. Using MATLAB constract the orbit diagram (Figure 14.14) for the quadratic map,

8. Find the (real) fixed points of v, | = Vix, and analyze their stability. Also, develop a
cobweb diagram for this problem.

9. Consider the nonlinear algebraic equation, fix) = —x2 — x + 1 = 0. Using the direct
substitution method, formulated as x = -2 + | = g(v}, the iteration sequence is

Ky = glx) = x4

Try several different initial conditions and show whether these converge, diverge or

osciflate between vatues, Discuss the stability of the two solutions x* = 0.618 and
¥ = 1618, based on an analysis of g"(r*). Develop a cobweb diagram [or this systen.

18. Consider the nonlincar algebraic equation, f{x) = —x? — x + | = 0. Using Newton's
method,

M)
Fx)

write the iteration sequence in the form of:

Xpg) = A —

X 7 glxy)

Try scveral difterent initial conditions and show whether these converge, diverge,
or oscillate between values. Discuss the stability of the two solutions v# = 0,618 and
¥ = 618, based on an analysis of g(+*). Develop a cobwel diagram for this system.

11. Consider the scaled Lotka-Volterra (predator (y,)-prey {y|)) equations, where

dy

dl} = (E - }’g) Yy
dy,

e = (] — )y
dt B s

The paramcters are o = [ = 1.0 and the mitial conditions are y,(0) = 1.5 and
(0} = 075 The time unit is days. Integrate these equations numerically (using
oded 5, for example) 1o show the periodic behavior.,

12, The Henon map is a discrete model that can exhibit chaos:

Xk + 1) = b x (k)

For a value of b = 0.3, perform numerical simudations for various values of a. Try o
find vatues of & (ry a > (0.3675) that yield stable period-2 behayvior. Show that
chaos oceurs at approximately a = .06,

13. Read the paper by Lucia et al. (1990} and use cobweb diagrams to show different
types of periodic behavior that can occur when direct substitution is used to find the
volume roots of the SRK equation-of-state for the multicomponent mixture (CHy,
CyHy, and C;H0).
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APPENDIX: MATLAB M-FILES USED
IN THIS MODULE

function [time,x] = pmod{alpha,xinit,n)
population model (quadratic map), pmod.m
29 August 1993 (¢} B.W Bequette
revised 20 Dec 96
input data:
alpha : growth parameter (between ¢ and 4)
n : number of time steps
xinit : initial population (between 0 and 1}

of

P gF of

P

g° o

P

clear x; clear k; clear time;
*x{1) = =init;
time(i)= 0;
for k = 2:n+1l;
time(k) = k-1:
*{k) = alpha*x{k-1}*{1-x{k-1)};
end
run this file by entering the following in the command
window
[£ime,x] = pmod(alpha,xinit,n);
with proper values for alpha, xinit and n
then enter the following
plof (time, x)

af

dé o

e

ae

function [x,9,¢2.93,94] = gn_gmap{alpha};

ae

9

finds g(x), g™2{x), g~3(x) and g4 (x) functions for
the guadratic map problem

98 of

40

(¢} B.W. Begueotte
23 quly 93

modified 12 Aug 93
revised 20 Dec 96

g° of o of

i

zeros (201,11} ;
¥, g2 = x; g3 = x; g4 = x;

X
e

i

P

for 1=1:201;

x(1i) = {(i-1}*0.005;

g(i} = alpha*x(i)*{l-x(i})});
gZ(i) = alpha*g{i)*(l-g(i)};
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g3(i) = alpha*g2(i}*(l-g2(1i));

gd {1i) alpha*g3 (i) * (1-g3(i));
end

o

can plot, for example
plot(x,x,x,g,x,g2,'—",x,gd, "-.")

oo




BIFURCATION BEHAVIOR
OF SINGLE ODE SYSTEMS

15.1

The goal of this chapler is to introduce the student o the concept of bifurcation behavior,
applied to systems modeled by a single ordinary ditferential equation, Chapters 16 and |7
will involve systems with more than one state variable.

After studying this chapter, the student should be able to

« Determine the bifurcation point for a single ODE
+ Determine the stability of each branch of a hifurcation dingram

« Determine the aumber of steady-state solutions near a bifurcation potnt
The major sections in this chapter are:

15.1 Motivation
152 [Huestration of Bifurcation Behavior
15.3  Types of Bifurcations

MOTIVATION

Nonlinear systems can have “exotic” behavior such as multiple sicady-states and transi-
tions from stable conditdons o unstable conditions. In Chapter 14 we presented the grea-
dratic map (logistic map or popuiation model), which showed how a discrete-time syslem
could move from a single stable steady-state o periodic behavior as a single parameter
was varied. This would be considered a dynamic bifurcation of a discrete-lime system,
where the hehavior changed from asymptotically stable to periodic.

360
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Sec. 15.2 Hlustration of Bifurcation Behavior 361

[ thus chapter we introduce bifurcation behavior of continuous-lime systems. A
steady-state bifurcation occurs if the number of steady-state solutions changes as a systen
parameter is changed. If the qualitative (stable vs. unstable) behavior of a system changes
as a function of a parameter, we also refer to this as bifurcation behavior. This chapter
deals with systems modeled by a single ordinary differential equation.

Bifurcation analysis is particolarly important for complex systems such as chemical
and biochemical reactors. Although only single variable examples are used in this mod-
ule, the same types of bifurcation behavior are also observed in chemical and biochemical
reactors,

ILLUSTRATION OF BIFURCATION BEHAVIOR

Here a simple polynomial equation will be used to illustrate what is meant by bifureation
behavior. Assume that the following cubic polynomial equation describes the steady-stale
behavior of a system.

flop) = —x* =0

The solution can be obtained by plotting the function and finding the values of x
where fle.p) = 0. A plot of this {unction for p. = ~1, 0 and | is shown in Figure 15.1
below. We see that the number of real solutions (fle,) = 0} for p = —¥ is one, while the
number of reat solutions for p. =1 is three, The curve for = (0 is a transition between the
two cascs, We say that p = 0 is a bifurcation point for this system, because the number of
real solutions changes {rom one to three at this point.

We will scc in the next scction that this behavior is characteristic of a pitchfork bi-
furcation. We will also [ind that the number of solutions is always theee for this problem;
sometimes two of the solutions are complex, and other times the solutions are all the same
value,

fix)

FIGURE 15.1 Polynomial behavior as a function of .

ESCOLA DE ENCENHARIA
BIBLIOTECA
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15.3 TYPES OF BIFURCATIONS

The types of bifurcations that will be presented by way of examples include: (i) pitchfork,
(i) saddle-node, and (iti) tanscritical. We will also cover a form of hysreresis behavior
and show that it involves two saddle-node bifurcations. Before we cover these specific bi-
{urcations, we will present the general analysis approach.

Consider the general dynamic cquation:

£ = f(up) (15.1)

wlhiere v is the siaie variable and p is the bifurcation parameter. The steady-staic solution
(also known as an equilibrium pointy of (15.1) is:

0 = fla,w) (15.2)
A biturcation point is where the both the function and its first derivative are zevo:

A+ (15.3)
ax
Notice that the first-derivative is also the Jacobian Tor the single-cquation model. Also,
the eigenvaluc is simply the Jacobian for a single equation system, so the eigeavalue is 0
at a bifarcation potnt. The number of solutions of (15.2) can be determined from catastro-
phe theory, Tguation (15,2} has & solutions, if the following criteria are satisfied:

fep) =

. af  If ok
flap)=0= 30 = 3t E P ={} (15.4)
and '
A '
L0 (15.5)

In Example 15.1 this methed is applied to a system that exhibits a pitchfork bifwreation.

EXAMPLE 5.1 Pitchfork Bifarcation
Cousider the single variable system shown previously m Section 15.2.
1= flep) = px - x° (15.6)
The equilibrivm peiat is:
Flegp) =0 = px, - x}

the solutions to fliv,u) = 0 are

v = O
vo= Vi
X,y = -\/;

TR AR -2 o T e o
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Notice that if = < 9, then x, = 0 is the only physically meaningtul (real) solution, since Vi is
complex if g < 0.
The Jacobian is
if

_ a2
N = —da o,
L

L.
Since the Jacobian is a scalar, then the cigenvalue is equal 1o the Jacobian:
L R
If A =< O, then the systen is stable. A = 0, ther the system is unstable. Now, we can find the sta-
bility of the system, as a function of the bifurcation parameter, p.
L <0 The only real equilibrium solution is v, = 0, so Lhe vaive of the eigenvalue is:

AR,

which i stable, since p < (.

I u.> 0. Forthis case, there are three real solutions; we will anatyze each onc separately. We
use the notation g, 1, und x5 to indicate the three different solutions.

a x, 0
Ao 3x] b p =g = unstable
b v, = Vi

AN =3l
=-3p, t+p, = ~2p, = stable

X, T —Vp
A 3] b,
= o 3, b -2 = stable

Itis common to plot the equilibrivm sofutions on a bifurcation diagram, as shown in Figure 5.2,
For p <0, there is a single real solution, and it is stable. For . > 0 there are three real sofuticns:
two are stable and one is wastable. A solid Hne is used to represent the stable solutions, white a
dashed line indicates the unstable soletion. Notice that 3 change in the number of equilibrivm so-
lutions and the type of dynamic bebavior ocenred at p = O-—the bifircation point. The bifarca-
tion poing satisfics the conditions in (15.3):

fleamw) = pox, - x) =0
and

o f

dx [T
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The state and parameter values that satisfy these conditions simultancousty are:

m, =0
and
X =0
The higher-order derivatives at the bifurcation point are:
PRrs
°
: {, = O =)
[ER  ONTH
and
ar
-5 =0 # ()
[Ch P

Chap. 15

- This analysis indicates that the number of solutions is thiee in the vicinity of the bifurcation

point (see ([5.4) and (15.5)).

FIGURE 15.2 Pitchfork Bifurcation Diagram-—Example 15.1.

It should be noted that there are actually three solutions to the steady-stale equation
throughout the entire range of . values. For . < 0, two of the solutions for x, are complex
and one is real. For po= 0, all three solutions for x, are zero. For p > 0, all three solutions

for x, are real,
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Example ], J=-1

4 5  FIGURE 153 Transient response for
Fxample 151, p.=—1.

15.3.1 DBynamic Responses

Figare [5.3 shows the transicut response for p = —1 for two different initial conditions;
both initial conditions converge to the equilibrium solution of x = I. Figure 15.4 shows
the transient response for p = 1 for two different initial conditions: the final steady-state
obtained depends on the intial condition. Notice that an initial condition of x, = 0 would
theoretically stay at x = 0 for all time, however, 2 small perturbation (say 10°%) would
eventually cause the solution to go to one of the two stable steady-states.

Bxample 15.1 iltustrates pitchfork bifurcation behavior, where a singie real (and sta-
ble) solution changes to three real solutions. Two of the solutions are stable, while one is
unstable. 1t is easy to find cases where a (subcritical) pitchfork occurs, that is, where a sin-
gle unstable solution branches to two unstabie and one stable solution. For example, con-
sider the system

&= flop) = px + 2

Exemplel. } =1

%= 0.01

=~ 0.01 FIGURE 154 Transient response tor

Example 15.1, p = I. The final steady-
state reached depends on the initial
time condition.
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The reader is encouraged to find the bifurcation behavior of this system shown below (see
student exercise 3).

2
11 .
» 0 PR _ - .k\,‘, PR .
,/
7§ i

mu

Also, a perturbation of the pitchfork diagram can occur with the following system:

¥ o= fmad) = o+ opx - x°

which can have a diagram of the form shown below (see student exercise 7).

4 v=1

, B e
x 0k - )

oL e . -

4

T T T S TR T o

EXAMPLE 15.2  Saddle-Node Bifurcation (Turning Peint)
Consider the single variable system:
o= flop) = op- 0 (15.7)
The equilibrium point is:

” 2
j(X,l-L) =0=p - X
The two sofutions are:

X, = Vi
Xep = \/p"
The Jacobian (and eigenvalue) is:
G
) BN
ax o,

The bifurcation conditions, (15.4) and {15.5), are satistied for:

be =%, = 0
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The second derivative is:

a*f
7 as0
ax”

which indicates that there are two solutions in the vicinity of the bifurcation point. Now, we can
find the stability of the system, as & function of the hifurcation parameter, .

Ly<@ Fromx, =% V., we see that there is no real solution for p < 0.

N, > 0. There are now two real solutions; we will analyze the stability of each one.

a. For solution §;
the eigenvalue is

which is stable.
b. For solution 2:

the eigenvalue is

A= —2x, = ~2(~Vi) = 2Vp,
which 1s unstable,
The bifurcation diagram {saddle-ncede) is shown in Figure 15,5,

X

FIGURE 15.5 Saddle-node bifurcation diagram, Example 15.2.
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Notice that there are actually two steady-state solutions for x, throughout the entire range ol p.
For < 0 both solutions for x, are complex; for p. = 0 both solutions for x, are {; for . > 0 both
sotutions for x, ate real,

Dynamic Responses. Transient response carves for o= | are shown in Figure 15.6, for two
different initial condisions. Initial conditions x, > —1 converge to a steady-state of x = 1, while
%y < =1 approach x = —eo, I should be noted that a consistent physical (or chemical) -based
model with not exhibit this sort of unbounded behavior, since the variables will have some physi-
cal meaning and will therefore be bounded.

1 Exsmple2. p=1

%= 0.99

!

FIGURE 15.6 Transient response for Example 15.2, po= 1. Initial conditions
of x, » —1 converge Lo a steady-state of x = |, while xy <~ “blows up”,

EXAMPLE 153 ‘Franscritical Bifurcation
Consider the single variable system:
i = flep) = px - &7 (15.8)
The equilibrinm point is:
flrop) =0 = px, - 22

The sofutions are

x, =0
Xep = M
The Jacobian is
o
L .
OX {ep,

s e e s 5
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The eigenvalue is also
A=p—2x,

The bifurcation point is f(x,]) = dffdx = 0, which occurs at p = x, = 0. The second derivative is:

')2
T as0
x

which indicates that there are two equilibrium solutions. Now, we can find the stability of the
system, as a function of the bifurcation parameter, .
Lp<0
a. One solution is:
X =0
with an eigenvalue;
A=p~-2x, =,
which is stable (since p, is negative).
b. 'This equilibrivm solution 1s:
er = My
which has the eigenvatue:
A= ].L"-ZX“ = l'"e—2p‘u = *"2].4.\,?
which is unstable (since p., is negative).
il >0
a. One solution is
el
which has the eigenvalue:
A=p-2x, =,
which is unstable.
b. Amnother solution is:
X2 = M
which has the eigenvalue
A=p-2x, = p, -2, = -2,
witich is stable.
These results are shown in the bifurcation diagram of Figure 15.7, which iilustrates that the num-

ber of real solutions has not changed; however, there is an exchange of stability at the bifurca-
tion point.
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P
A= Ao
stable e unstable
/// y'=0
,’A=wp
unstable

FIGURE 15.7  Franscritical bifurcation, Example 15.3.

Dynamic Responses. Transient responsc curves for the transeritical bifurcation are shown
in Figures 15.8 and 15.9. Notice that the transient behavior is a strong function of the initial con-
dition for the state variable. For some initial conditions the state variable eventually scttles al a
stable steady-state, while for other initial conditions the state variable blows up,

tme

FIGURE 158 Transient response for Example 153, p = —|. Notice the
importance of initial conditions.

et i e — - . . r— - ererm e : o e, B e e T SR D
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Example 3. J=1

%= 0.01

| !

FIGURE 159 Transient response for Example 15.3, = 1. Natice the im-
portance of intital conditions.

The next example is significantly different from the previous examples. Here we allow two para-
meters to vary and determine their effects on the system behavior,

EXAMPLE 15.4 Hysteresis Behavior
Consider the system:
= flap) =+ opy - x0 (159

which has two parameters (i and ) that can be varied. We think of  as an adjustable input
(manipudated variable) and p as a design-related parameter. We will construct steady-state
input-output curves by varying u and maintainiog p, constant. We will then change p. and see if
the character of the input-output curves (v versus «) changes. We fst work with the case
po=-—1.

I p=—1 The equilibriunt point (steady-state solution) is:
) =0=u—x, ~x) (15.10)
The steady-state input-output diagram, obtained by solving (15.10) is shown in Figure 15,10,
This curve is generated easily by fivst generating un x, vector, then solving & = x, + x .
The stability of cach point is found from:
af
dX |v.u,

which is always negative, indicating that there are no bifurcation points and that alk equilibrinm
points are stabie for this system. Contrast this result with that for p. = 1, shown next.
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ple3 p=1

0t

/w |

FIGURE 15.10  Input-output diagram for Example 15.4 for p = - 1.

. w=1 The equilibrium point (steady-state solution) is:
fouy =0=u+x, —x] (15.1 1)
Notice that this is a cubic equation that has three solutions for x, for each value of «. For exam-

ple, consider u = 0.

Atu=(0:

50,
x, = L0,orl.
The stability of each solution can be determined from the Jacobian:

af

ax LgRTR

=1-3x2

The eigenvatue is then A = 1 ~ 3 x2 For the three solutions, we find:

x, =1, A=1-3=-2 which is stable.
x, =1, A=1 which is unstable.
x. =1, A=l —3=-2 wltich is stable.

Now we can vary the imput, #, over a range of values and construct a steady-state input-output
curve. These results are shown on the diagram of Figure 15,10 (the casiest way to generate this
figure s to create an x, vector, and then solve 1, = —x, + x2. Sce student exercise 2).
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M = 1
2 " T T 3 F T T F
Hr___,—f"fii
1+ ]
x 0 \ :
N
‘f N
_2 ] 1 L 1 kil i 1
-4 -3 - -1 0 1 2 3 4

FIGURE 15.11 - htput-output diagram for Example 15,4 with p = [

Notice that Figure 15.11 contains twa saddle-node (or turning point) bifurcation points
(sce Example 15.2). The bifurcation {singular) points can be determined from the solution of:
af
R = =1-3x} (15.123
dx ’

The bifurcation points are then:

R 15.13
ol X v ( }

which can be seen to be the x values at the upper and lower turning points. ‘§ub~.{iiu[ing (F'i 13)
into (15.113, we find that the bifurcation points occur at the input values ol u, = & 2/3V3, ag
shown i Figure 15,10, Notice that for u< =23 V3 or 1> 213V3 there is :mEy a single,. stable
solution, while for —2/3V3 < & < 2/3V3 there are three sohitions; two are stable and one is un-
stable.

We have referred 4o the behavior of this cxample as hystleresis behavios -now let us show
why. ’

Starting at Low Values ofu. Notice that if we begin with a low value of i (say, —3) a sin-
gle, stable, steady-state value is achicved. If we increase « a slight amount (o say, =2.9), we will
achieve a slightly highee \[c_(u,!y state value for 1. As we keep increasing o, we will continue o
achicve a new stable steady-state value For x for each «. This continues until # = 2/3\/3 where
we find that the stable sotution “jumps™ to the top curve, Again, as we slowly incresse i, the sta-
ble steady-state solulion remains on the top curve,
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Starting at High Values of u. Notice that il we begin with a high value of i (say, 3) asin-
gle stable steady-state vatue is achieved. If we decrease w a slight amount (to say, 2.9), we will
achieve a slightly lower steady-state value for x. As we keep decreasing 1, we will continue io
achieve a new stable steady-state value for x for each w. This continues until &« = ~2/3V3 where
we find that the stable solution “jumps” to the bottom curve. As we slowly decrease « further,
the stable steady-state solution remains on the bottom curve.

This is termed hysteresis behavior, because the trgjectory (path) taken by the state vavi-
sble (x) depends on how the system is started-up. A jump discontinuity occurs at each “limit” or
“turning” point (the saddle-node bifurcation points).

Disecussion. Notice that there is a significant difference between the input-cutput behavier
exhibited in Figures 15,10 and 15.11. For . = —1 (Figure 15.9), there is monotonic relationship
between the input (1) and the output {x). For . = 1 {Figure 15.10), there is a region of multiplic-
ity behavior, where there are three values of the output (x) for a singie value of the input (u).
There has been a qualitative change in the behavior of this system as i varies from —f to L. The
value of . where this occurs is a hysrersis bifurcation point. At this point the following condi-
tions are satisfied (since there are three solutions in the vicinity of the bifurcation point):

gl O
f(xap") =0= Ay - o =0
anrd
3
3‘/; # 0
The equations are:
X =flep)=u+pr—x =0
a> oL , -
ax | B — 3x; 0
3
ax2 X, h fﬁxe B 0
or
L - - 0
8x3 0, 6 *

Tt is easy to shaw that, for a value of u = 0, the bifurcation conditions are satistied at:
x(f = }Lﬂ = ()
‘The steady-state input-output curve for this situation is found by solving:
Flx ) =0 = u—x,

which yields the plot in Figure 15.12, which is clearly a transition between Figures 15.10
and 15,11

A three-dimensional plot of x versus u as a function of p is shown in Figure 15.13. The
behavior represented by this diagram is commonly known as a cusp catastrophe. At low values
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FIGURE 15.12  Input-output diagram for Example 15.4.

of b we observe monotonic input-output behavior, with a transition to multiplicity {(hysteresis)
behavior at i = 0.

The turning points in Figure 15.13 can be projected to the p-u plane to find the bifurca-
tion diagram shown in Figure 15.14. A saddle-node {turning point) bifurcation occurs all along
the boundary of the regions, except at the “cusp point” (i = 0, it = 0), where a codimension-2 bi-
furcation occurs, The term “codimension-2” means that two parameters () are varied to

20
mu 2 "_og -10 10

u

FIGURE 15,13 “Cusp catastrophe” diagram for Example 15.4,
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aclieve this bilwreation {Strogatz, 1994), The reader 1s encouraged (o construcet this diagram (sec
student exercise 6}.

1.5 o

one fixed-point
0.5 . e

three iixed-points

-1 -0.5 0 0.5 1 1.5 2

mir

- FIGURE 15.14  Two-parameter (p,0) bifurcation diagram {or Example 154,

SUMMARY

We have studied the bifurcation behavior of some example single nonlinear ordinary dif-
ferential equations of the form X = f(x,1u), where x is the state variable and . is the bilur-
cation paramcter. The equilibrium (steady-state) points are found by solving flx ) = 0.
The stability is determined by [inding the eigenvalue, X, which is simply the Jacobian.
dffax i, |, . for a single equation system. If X is negative, the equilibrium point is stable. 11
A is positive, ihe equitibrivm poind s unstable.

A bifurcation diagram is drawn by plotting ihe equilibtium value of the state variahle
as a function of the bifurcation parameter. I the equilibrium point is stable (A = dffox |, |
< 03, a solid ling is drawn. If the equilibrium peint is unstable, a dashed line is drawn.
The bifurcation points can be found by solving for dffdx |, | =0 where f{x,p,) = 0.

These same techniques can also be applied to systems of several equations, particularly
if the equations can be reduced to a single steady-state algebraic equation (in a single state
variable). This can be done {for many simple chemical and biochemical reactor problems.

REFERENCES AND FURTHER READING
The following fexts provide nice introductions 1o bifurcation behavior:
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Jackson, LA, (1991). Perspectives of Nonlinear Dynamics, Cambridge, UK: Cam-
bridge University Press.

Strogatz, S.H. (1994), Nonlinear Dynamics and Chaos. Reading, MA: Addison-
Wesley.

STUDENT EXERCISES

For the system in Example 15.4:
X=flep) =u+ px~x°
with ¢ = 0 and p. = |, perform transicnt response simulations (using MATLAB) to
show that the final steady-state obtained depends on the initial condition,
For the system in Example 15.4, we found that there are ranges of 4 where there are

three equilibrium solutions for x (when p = 1). When solving for the roots of a
cubic polynomial, either a complex analytical solution (see any math handbook) or

-4 root solving routine (such as the MATLAB routine roots} must be used. Show

how x can be considered the independent variable and u the dependent variable to
obtain an easier analysis of this problem. Then, simply plot x versus u.

For the system in Example 15.4:
&= flep) = u+ px -2

with w = 1, show that the saddle-node bifurcation conditions are satisfied at the

“turning points.”
Consider the constant harvesting model of population growth (Hale & Kocak, 1991):

i=flxkeh) =kx—cx'—h

where all of the parameters are positive. £ is the rate of harvesting, while k and ¢ are

intrinsic growth rate parameters,

The problem is, for fixed & and ¢, to determine the effect of the harvesting on
the population. Since the population density cannot be negative, we are interested in
solutions where x 2 0. For a positive initial population density (x) the population is
exterminated if there is a finite value of ¢ such that x = 0. Without finding explicit
solutions of the differential equation, show the following:

a. 1f 4 satisfies 0 < i < K2f4c, then there is a threshold value of the initial size of the
population such that if the initial size is below the threshold value, then the pop-
ulation is exterminated. If the initial size is above the threshold value, then the
population approaches an equilibrium (steady-state) point.

b. If ki satisfies h > k3/4c, then the population is exterminated regardless of its ini-
tial size.

¢. Comment on the physical ramiftcations of parts a and b. Should models be used
by State Fish and Game authorities to determine proper hunting and fishing lim-
its?
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5. Show that the following system cxhibits a pitchfork bifucation, with three real
solutions (one stable, two unstable) for < 0 and a single unstable real solution for

o>,
X = flx) = p + o
2
1 h ~
\'\
> 4] _____.....,),A%Aﬁffffkffll ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
/
11 . " i
2 . . L i
2 1.8 -1 0.5 0 0.5 1 1.5 2
miu

6. Consider the system shown in Example 15.4:

x= o) =t opx - )

Deveclop the cusp bifurcation diagram shown below. Find the values of 1 and p on
the boundaries between the one and three fixed-point solution behavior,

1.5

one fixed-point ~
0.5 P e -

f T

g
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7. Consider the system shown in Example 15.4:
= flepu)=u+ px—x°
For a value of 1 = 1, develop the steady-state bilurcation diagram shown below,
Find the valaes of x and . where the saddle-ntode (turning point) bifurcation occurs.
Notice that this is a perturbation ol a pitchfork bifurcation. This type of behavior
can occur, for example, in exothermic chemical reactors when the feed owrate is
varied while maintaining a constant jacket temperature (a so-called isola forms).
4 =1
2 ) -
e 7
x 0
.
AN
.
—_
-2
~4 -2 0 2 4 6 8 10
e
APPENDIX
% cusp diagram
% b.w. heguette
% 1h dec 96
%
% solves the problem
% Flx,u,mu) = u + mu*x - ¥"3 0
% with ® varying between -2 and 2
% mu varying from -2 to 2 and
% whatever u's result
clear x;
clear u;
clear muo;
¥ o= =2:0.05:3;
S S B YA &
plot3{u,~-2*ones(sizelu)),x, 'w'")

hold on
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myl = -1.875:0.125:2;
for i = 1:32;
2 o= x5 - muli).re;
plot3 (u,mu{i})*ones(size{u)),x, 'w'}
end
hold off
»view (15, -30)

Chap. 15




BIFURCATION BEHAVIOR
OF TWO-STATE SYSTEMS

The goal of this chapter 1s to introduce the reader to limid cycle behavior and the Hopft bi-
furcation. After studying this chapter, the reader should be able

» Find that many of the same {ypes of bifurcations that occur in single-state systems
also occur in iwo-stale systems (pitchlork, saddle-node, transcritical)

+ Understand the difference between limit cycles {(nonlincar behavior) and centers
(linear behavior)

* Distinguish between stable and unstable limit cycles

* Deterimine the conditions lor a Flopf bilurcation (formation of a limii cycle)

» Discuss the differences between suberitical and supercritical Hopl bifurcations

The major sections in this chapter are:
16.1  Background
16.2  Single-Dimenstonal Bifurcations in the Phase-Plane
163  Limit Cycle Behavior
6.4 The Hopt Bifurcation
16.1 BACKGROUND
In Chapter 15 we presented the bifurcation behavior of single-state systems. We found

that a number of mleresting bifurcation phentomena could occur in these systems, includ-
ing transcritical, pitchlork, and saddle-node bifurcations. We [ind in this chapter that these

g
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types of bifurcations can also occur in higher-order systems. This is the subject of Section
16.2. Tn Section 16.3 we review limit cycle behavior, which was initially presented in
Chapter 13 {phase-plane analysis). In Section 16.4 we present a type of bifurcation that
can only occur in second- and higher-order systems. In a Hopt bifurcation, we find that a
stable node can bifircate 1o a stable Hmit cycle if a parameter is varied; this is an example
of a supercritical Hopf bifurcation. This phenomena has been shown to oceur in a number
of chemical and biochemical reactors. Before turning to the interesting Hopf bifurcation
phenomena, we will discuss single dimensional bifurcations in the phase plane,

16.2 SINGLE-DIMENSIONAL BIFURCATIONS IN THE PHASE-PLANE

Consider the two-variable system (notice that the two equations are decoupled):
Xy = Al = px - x (16.1)
X, = Hlap) = —x, (16.2)

The equilibrium (steady-state or fixed-point) sofution is:

‘U“xief - x‘;e-J . O—I
. X (}

There are three solutions to f(x,p) = 0. The trivial solution is:

o
“[e]=T]

% = [xch — [ - \/;J"
¢ X2 - 0 .
Notice that only the trivial solution exists for p < 0, since we will assume that equilibrium

values must be real (not complex).
We can determine the stability of each equilibrium point from the Jacobian,

which is:
e 3, 0
A [ 0 -1

f(x,11) =

X = Xle

14

Ko

and the two nontrivial solutions are:

-

and

which has the following eigenvalues:
?\'l =K 3x%c
A= 1

LR e R s
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Since the sccond eigenvalue 15 always stable, the stability of each equilibrium point is de-
termined by the first cigenvalue. Here we consider three cases, <0, o =0, and & > 0.
I p<0
The only equilibrium solution is the trivial solution {x,, = 0), so:
- 2
A= -3y, T o

which is stable, since p. < 0.

I pn=20
The equilibriam solution is x|, = 0, so:
o
ANo=p-3x,=0
which is stable; the system can be shown to exhibit a slow approach to equilibrium by ob-
serving the analytical solution to the differential equations.
M >0
The eigenvalue for the trivial solation {x;, = 0):
_ 2
)\] - p‘~3xlﬁ = M

is upstable since > 0. )
The eigenvalues for the nontrivial selutions (£V) are:

(forx,, = VA, = p-3x%, = p-3u= -2
and
(forx, = Vip)n = =307, = p-3p = -2p

So the nontrivial solutions are stable for > 0. This means that a saddle point (trivial so-
lution) is bounded by two stable nodes for this case, since the three solutions are:

x| [-V N -2
x, = Fiel ﬂ with A = { = { _M] = stable node
X2e. E 0 - )\2' - -1 -
e O . A ) .
x, = M = ‘ Wlth A= ! ] = [ }L —l = gaddle pomi
) X2 U }\2 - ;
: e , o
x, = Fref N “’] with A = F‘i} = ’ 2 M‘ = stable node
2 0 Al -1

We notice the following phase-plane diagrams (Figure 16.1) as 1o goes from negative to
positive.
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FIGURE 16.1 Pitchfork bifurcdtion behavior in the plane. There ts a single
stable node for i <0, and two stable (o) nodes and a saddle point (+, unstable)
for w >0,

LIMIT CYCLE BEHAVIOR

In Chapter 13 we noticed that linear systems that had eigenvalues with zero real portion
formed centers in the phase-plane. The phase-plane trajectories of the systems with cen-
ters depended on the initial condition valves, as shown in Figure 16.2 below. Different
imitial conditions lead to different closed-cycles.

In this section, and the rest of this chapter, we are interested in limit cycle behavior,
as shown in Figure 16.3. The major difference in center (Figure 16.2) and limit cycle

1.5 . T

FIGURE 16.2  Example of center be-
Xz havior.
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15 : . s

-1 0 1 FIGURE 16.3  Example of [mit
Xy cycle behavior,

(Figure 16.3) behavior is that fimit cycles are isolated closed orbits. By isolated, we mean
that a perturbation in initial conditions from the closed cycle eventually refurns to the
closed cyele (if it is stable). Contrast that with center behavior, where a perturbation in
initial condition leads to a different closed cyele.

EXAMPLE 16.1 A Stable Limit Cycle
Consider the following system of equations, based on polar coordinates:
Fe=r (- (16.3)
0= 1 (16.4)

Notice that these equations are decoupled, that is, the value of #{#) is not required to find 0(r) and
vice versa. The second equation indicates that the angle is constantly decreasing. The stability of
this system is then determined From an anafysis of the first equation.
The steady-state solution of the first equation yields two possible values for r. The trivial
solution is r = O and the rontrivial solution is r = 1,
The Jacobian of the first equation is:
ﬂl =1-3r
dr
We see then that the trivial solution (r = §) is unstable, because the eigenvalue is positive (+1).
The nontrivial solution is stable, because the eigenvalue is —2. Any trajectory that starts out
close to r= 0 will move away, while any solution that starts out close to r= 1 will move towatds
#= 1. The time domain behavjor for x| 1s shown in Figure 160.4. Notice that we have converted
the states to rectangular coordinates (x; = r cos 0, x, = £ sin 0). The phase-plane behavior is
shown in Figure 16.5. Initial conditions that are cither “inside” or “outside” the limit eycle con-
verge to the limit cycle.
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X4
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FIGURE 16.4 Stable limit cycle behavior (Example 16.1).
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FIGURE 16.5 Stable limit cycle
behavior (Example $6.1).

Chap. 16

The previous example was lor a siable limit cycle. 1t is also possible for a limit cycle to be

unstable, as shown in Example 16.2,

EXAMPLE 16.2  An Unstable Limit Cycle

Consider the following system of equations, based on cylindrical coordinaies

0=

Again, notice that these equations are decoupled. The second equation indicates that the angle is
constantly decreasing, The stability of this system is then determined from an analysis of the

first equation.

—r(l =57
|

(16.5)
(16.6)

e S R R R
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FIGURE 16.6  Phase-plane behavior for an unstable lmit cycle.

The steady-state solution of the first equation yields two possible values for r. The trivial
sofution is r = 0 and the nontrivial solulion is r = 1.
The Jacobian of the first cquation is:

We sec then that the trivial solution is stablke, because the eigenvalue is negative {(—1), The non-
trivial solution is unstable, because the eigenvalue is positive (+2), Any trajectory that starts out
fess than r = | will converge to ihie origin, while any solution that starts out greater than r = |
will increase at an exponential rate. This teads to the phase-plane behavior shown in Figure 16.6,
The time domain behavior is shown in Figure [6.7.

1 5 T T T T LI
fr E
05 F 4
0 1 R | L R —r e R
0 1 2 3 4 5 6
time

FIGURE 16.7 Time domain behavior for an unstable fimit cycle, An initial
condition of #(1} = 0.9 converges 1o 0, while an initial condition of () = 1,03
blows up.
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Examples 16, and 16.2 have shown the existence of two different types of limit cycles.
In the first case (16.1) the lunit cycle was stable, meaning that all trajectories were “at-
tracted” to the limit cycle. In the second case (16.2) the limit cycle was stable, and all tra-
Jectories were “repelled” from the limit cycle. Although both of these examples yielded
limit cycles that were circles in the plane, this will not normally be the case. Usually the
limit cycle forms more of an ellipse. Now that we have covered limit cycle behavior, we
are ready to determine what types of system parameter changes will cause limit cycle be-
havior to occur. That is the subject of the next section.

THE HOPF BIFURCATION

in Chapter 15 we studied systems where the number of steady-state solutions changed as
a parameter was varied. The point where the number of solutions changed was called the
bifurcation point. We also found that an exchange of stability generally occurred at the bi-
furcation point.

A Hopf bifurcation occurs when a limit eycle forms as a parameter is varied. In the
next example we show a supercritical Hopt bifurcuation, where the system moves from a
stable steady-state af the origin to a stable limit cycle (with an unstable origin) as a para-
meter is varied,

EXAMPLE 16.3 Supercrifical Hopf Bifurcation

Consider the system:

Ky = (o x? - x2) (16.7)
= —xyp o (k- xf - x)) (16.8)
This can i)e written (see student exercise 4} in polar coordinates as:
F=r{n-r9) (16.9)
0= -1 (16.10)

Since these equations are decoupled, the stability is determined from the stability of:
F=10) = (=)
the Jacobian is:

i)
a w37
ar

The equilibrinn (steady-state) point is f{r) = 0, which yields,

rp—rt) =10
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which has three solutions:
¥ = (trivial solution’}
o= \/Ij.l,
r= ~ Vu (nol physically realizable)
For <€), only the trivial solution (r = 0) exists, Fovr w <0,
af
v

which ts stable, since p < 0.
For = (), all of the steady-state solutions are ¥ =), and the Jucobtan is:
af .
or
which is stable, but has slow convergence to r=0,
For = 0, the trivial solution (r = () is uastable, becavse:
af
A
aF
The nontrivial sofution (r = V) is stable becatse:

af , _
N VR R T)
or

and we [ind the following phase-piane plots shown in Figare 16.8.
The bifurcation-diagram for this system is shown in Figure 16.9.

D ]
Xy

a p=-1 b.op=t

FIGURI 16.8  Phase-plane plots. As . goes from —1 o 1, the behavior changes from

stable node to a stable limit eycle.

389
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FIGURE 16.9 Bifurcation diagram. Indicates that the origin (r = (}) is stable

when < 0. When o > (} the origin becomes unstable, but a stable limit cyvcle
{with radius » = V/JL) emerges.

Here we analyze this system in rectangular (x; — x,) coordinates. The only steady-state ([ixed
point or equilibrium) solution to (16,7} and (16.8) 15

Linearizing (16.7) and (16.8):

i . af
—imu—s.xf—xg = -2
ax, X,
af, (’if, .
f‘ :*}sz]x; :‘":":P-“X]-_W“‘-_
ax, . Y,

We find the Jacobian matrix:
4 7 2
A = Po= DX, X, -2 T X
=2, x, pmx, -3,

which is, for the equilibrium solution of the origin:

S

The characteristic pelynomial, from det(Al — A) = 0, 15

M- ZpA it 1 =0
which has the eigenvalues (roots):

VA - A 4 1)

A= px 5 g
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We see that when . <4, the complex eigenvalues are stable (negative real portion); when p = 0,
the eigenvalues lie on the imaginary axis; and when > (), the complex cigenvalues are unstable
{positive real portion). The transition of eigenvalues from the left-half plane to the right-half
plane is shown in Figure 16.10.

<0 u=20 u=20

FIGURE 16.10 Location of eigenvalues in complex plane as a function of p.
A Hopf bifurcation occurs as the eigenvalues pass from the lefthand side to the
righthand side of the complex plane.

Example 16.3 was for a supercritical Hopf bifurcation, where a stable limit cycle was
formed. We leave it as an exercise for the reader (student exercise 6) to show the forma-
tion of a subcritical Hopf bifurcation, where an unstable limit cycle is formed.

We have found that the Hopt bifurcation occurs when the real portion of the com-
plex eigenvatues became zero. In Example 16.3 the eigenvalues crossed the imaginary
axis with zero slope, that is, parallel to the real axis. In the general case, the eigenvalues
will cross the imaginary axis with non-zero stope.

We should also make it clearer how an analysis of the characteristic polynomial of
the Jacobian (A) matrix can be used to identify when a Hopf bifurcation can occur. For a
two-state system, the characteristic polynomial has the form:

a(p) N+ @ (W) N+ ay(p) =0

where the polynomial parameters, g, are shown to be a function of the bifurcation para-
meter, . (It should also be noted that it is common for a, = 1). Assume that the a(p) pa-
rameters do not become O for the same value of . It is easy to show that a Hopf bifurca-
tion occurs when ¢, () = 0 (see student exercise 7).

16.4.1 Higher Order Systems (n > 2)

Thus far we have discuss Hopf bifurcation behavior of two-state systems. Hopf bifurca-
tions can occur in any order system (n 2 2); the key is that two complex eigenvalues cross
the imaginary axis, while all other eigenvalues remain negative (stable). This is shown in
Figure 16.11 for the three state case.
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<0 =0 w0
FIGURE 16.11 Location of gigenvalues in complex plane as a function of .

A Hopl bifurcation oceurs as the eigeavalues pass from the lefiband side o the
righthand side of the complex plane.

SUMMARY

In this chapter we have shown that the same bifurcations that occured in single-state sys-
tems {saddle-node, transcritical, and pitchfork) also occur in systems with two or more
states. We have also introduced the Hopf bifurcation, which occurs when complex cigen-
vatues pass {rom the lefe-half plane to the right-half plane, as ibe bifurcation parameter is
varied. A Hopf bifurcation can also occur in systems with more than two sfates. For a su-
percritical Hopf bifurcation, two complex conjugate cigenvalues cross from the left-hall o
the righi-half plane, while all of the other cigenvalues remain stable (in the lef-halt plane).

FURTHER READING
The following sources provide general introductions to bifurcation theory:

Hale, 1., & H. Kocuk (1991, Dynamics and Bifureations. New York: Springet-
Verlag.

Strogaty, S.H. (1994). Nanlinear Dynamics end Chaos. Reading, MA: Addison-
Wesley.

The following textbook shows a complete example of the occurance of Hopt bifurcations
in a 2-state exothermic chemical reactor modet:

Varma, A., & M. Morbidelli, (1997). Mathematical Methads in Chemical Engineer-
irg. New York: Oxford University Press.

STUDENT EXERCISES

1. Show that the two-variable system
b= filv) = -y
By = Hlop) = —x

exhibits saddle-node behavior in the phase plane.

sl oo e T o e S — e —— e ol R R e, S SR A B
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2. Show that the two-variable system
k= flep) = px; —
5:2 = fy_(x,}l‘) =~

exhibits transcritical behavior in the phase plane.
3. Show that the two-variable system:

£ = filom) = u - x)
Xy = Hlaop) = —x,

exhibits hysteresis behavior in the x| state variable. This means that, as u is varied,
Xy, follows an S-shaped curve, which exhibits the ignition/extinction  behavior
shown in Chapter 15.

4. Show that:

X =0y by (- xi - x3)

Xy = xp+oxy (o x] - xd)
can be written:
P )
f=—1

if ) = rcos 6 and x, = r sin 6,
5. Consider a generalization of Example 16.3, which was a supercritical Hopf bifurca-
tion (a stable Hmit cycle);
F=rin )
B =w+br

]

Discuss how w affects the direction of rotation, Also, discuss how b relates the fre-
quency and amplitude of the oscilfations,
6. Consider the following system, which undergoes a subcritical Hopf bifurcation:
F=wr +riop?
9=+ bhr
Show that, for @ < 0 an unstable limit cycle lies in between a stable limit cycle and
4 stable attractor at the origin. What happens when p, = 0 and B> 07
7. Show that the condition for a Hopf bifurcation for the following characteristic equa-
tion

aQ(M) A+ ﬂl(}b) A+ a(}(p,) =()

is al(p) = 0. This is easy to do if you realize that a Hopf bifurcation occurs when
the roots have zero real portion and write the polynomial in factored form.
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Retate this condition to the Jucobian matrix, A(p), realizing that:
A2 — {A(L) A+ det(A(p)) =0

8. Consider a Hopf bifurcation of a three-state system. Realizing that one pole is nega-
tive (and real) and that the other Lwo poles are on the imaginary axis, relate the Hopf
bifurcation Lo the coefficients of the charvacteristic polynomial of the Jacobian ma-
trix are:

a{p} N+ a(p) A2+ o () + ay(p) =0

You can assume, without loss of generality, that «3(p) = 1. How do the conditions
on the polynomial coefficients relate to the conditions on the Jacobian matrix (trace,
determinant, ete.)?

R



INTRODUCTION TO CHAOS:
THE LORENZ EQUATIONS

The objective of this chapter is to present the Lorenz, equations as an example of a system
that has chaotic behavior with certain parameter values. Alter studying this chapter, the
reader should be able to:

* Understand what is meant by chaos (extreme sensilivity to mitial conditions)

* Undersiand conceptually the physical system that the Lorenz cquations attlempt to
maodel. '

* Understand how the system behavior changes as the parameter r is varied.
The major sections in this chapter are:

171 Introduction
172 Background
7.3 The Lorenz Equations

17.4 Stability Analysis of the Lorenz, Equations
17.5  Numerical Study of the Lorenz Hquations
7.6 Chaos in Chemical Systems

177 Other Issues in Chaos

395
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17.1 INTRODUCTION

In Chapter 14 we presented the quadratic map (logistic equations) and found that the tran-
sient behavier of the population varied depending on the growih parameter. Recalt that
when the gualitative behavior ol a system changes as a function of a certain parameter, we
refer to the parameter as a bifurcarion parameter. As the growth parameter was varied, the
population model went through a series of period-doubling behavior, finally becoming
chaotic at a certain value of the growth parameter. At that time we noted that chaos is pos-
sible with one discrete nonlinear equation, but that ¢haos could only occur in continuous
(ordinary differential equation) madels with three or more equations (assuming the model
is autonomous). In this chapter we study a continuous model that has probably received
the most atiention in the study of chaos—the Lorenz equations. Before we write the equa-
tions, it is appropriate to give a briel historical perspective on the Lorenz model. For a
more complete history, see the book Chaos by James Gleick (1987).

17.2 BACKGROUND

In 1961, Edward Lorenz, a professor of Meteorology at MIT, was simulating a reduced-
order model of the atmosphere, which consisted of twelve equations. Included were
functional relationships between temperature, pressure, and wind speed (and direction)
among others. He performed numerical simulations and found recognizable patterns to
the behavior of the variables, but the patterms would never quite repeat. One day he de-
cided to examine a particutar set of conditions {parameter values and initial conditions)
for a longer period of time than he had previously simulated. Instead ol starting the cn-
tire simulation over, he typed in a set of inittal conditions based on results from midway
through the previous run, started the simulation and walked down the hall for a cup of
coffee, When he returned, he was shocked to find that his simulation results tracked the
previous run for a period of time, but slowly began 1o diverge, so that after a long period
of time there appeared to he no correlation between the runs, His {irst instinet was to
check for a computer error, when he found none, he realized that he had discovered a
very important aspect of certain types of nonlinear systems——that of extreme sensitivity
to initial conditions. When he had entered the new mital conditions, he bad done so
only to a few decimal places, whereas several more decimal places were carried inter-
nally in the calculations. This small difference in the initial conditions built up over a pe-
riod of time, to the point where the two runs did not look similar. This discovery led to
the realization that long-term prediction of certain systems (such as the weather) will
never be possible, no matter how many equations are used and how many variables are
measured,

In order to learn more about the behavior of these types of systems, he reduced his
model of the atmosphere to the fewest equations that could describe the bare essentials—
this required three equations. Here we discuss the “physics”™ of the three equations, while
Section 17.3 presents the equations and discusses the equilibrium solutions and stabilty of
the equations.

ESEEE E




Sec. 17.3 The Lorenz Equations 397

Lp;
FIGURE 17.1 Convection rolls due
to a temperature gradient in a fluid
__________________________ where density decreases as a function
T of temperature (T, > 73,).

Consider a fluid maintained between two parallel plates, as shown in Figure 17.1.
When the top plate temperature (T,) is equal 1o the bottom plate temperature (T,), there is
no flow and the system is in equilibrium. Now, slowly increase the bottom temperature.
Atlow temperature differences, there is still no flow because the viscous forces are greater
than the buoyancy forces {the tendency for the less dense uid at the bottom to move to-
ward the top and the more dense fluid to move toward the bottom). Finally, at some criti-
¢al temperature difference, the buoyancy forces overcome the viscous forces and the fluid
begins to move and form convection rolls. As the temperature difference is increased, the
fluid movement hecomes more and more vigorous. Although the following point may be
less clear to the reader, for some systems there is a value of temperature difference that
will cause the smooth convection rolls to break up and become rarbulent or chaotic.

One can think of the speed of these convection rolls as wind speed in a miniatare
“weather mode{” and the direction of the convection rolls as wind direction.

In the next section, we analyze the Lorenz equations, which attempt to mode] the
{low puttern of Figure 17.1,

17.3 THE LORENZ EQUATIONS

The Lorenz equations are:

i = ol - x,) (17.1)
Xy = PXp Xy KX (17.2)
Xy = bxy + x.x, (17.3)

Notice that the only nonlincar terms are the bilinear terms xjx; in (17.2) and xx, in
(17.3).
The state variables have the following physical significance:

H

x; = proportional to the intensity (speed) of the convective rolls

]

Ay

proportional to the temperature difference between the ascending and de-
scending currents
proportional to distortion of the vertical temperature profile from linearity

i

,’53
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Three parameters, , r, and b have the following physical significance:

o = Prandtl number (ratio of kinematic viscosity to thermal conductivity)

r = ratio of the Rayleigh number, Ra, to the critical Rayleigh number, Ra,
p = ageometic factor related to the aspect ratio (height/width) of the convection
roll
N o4y
The Rayleigh number is: Ra = gl LAt
vk
where:

« = coefficient of expansion

H = distance between plates

g = gravitational acceleration
AT = temperature difference between the plates (T| —T)
v = kinematic viscosily

k = thermal conductivity

For a fixed geometry and fluid, Ra is a dimensionless measure of the temperature
difference between the plates. For 0 € r < | (Ra < Ra,) the temperature difference is not
large encugh for the buoyancy forces to overcome the viscous forces and cause motion.
For r > 1 (Ra > Ra,} the temperature difference is large enough o cause motion.

17.3.1 Steady-State (Equilibrium) Solutions
The Lorenz equations have three steady-state (equilibrium) solutions under certain condi-
tions. First, we present the trivial solution, then the nontrivial solutions. In Section 7.4

we will determine the stability of each equilibrium solution.

TRIVIAL SOLUTION
By inspection we find that the trivial solution to (17.1)-(17.3) isx, =i, =Xy, =0 (174)

The trivial condition corresponds to no convective flow of the fluid.

NONTRIVIAL SOLUTIONS
From (17.1) we find that:

Ky = Xy {17.5)
e . - 1 o
Substituting (17.5) into (17.3), we {ind that x;, = b Xy, Or

X, = £ Vb xy, (17.6)

e A W B B 20 B RS
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TABLE 17.1  Summary of the Equilibrium Solutions -

Noutrivial | Nontbrivial 2
State Variable : Trivial Solution (> O required) (> O required)
X, 0 Vbi(r-1) Vb (r-1)
0 Vo= 1) VBT
Xy, 0 1 re

Substiluting (17.6) inta (17.2} at steady-state, we find;
X, =1 -1 (17.7;
and substituting (17.7) into (}7.6) and using the results of {(17.5);
X = x5, =tV (r= 1) (17.8)
For real solutions to (17.8), condition r 2 1 must be satisfied. This means that for r < 1,
there is only one real solution {the trivial solution), while for r > 1 there are three real so-

lutions. This is an example of a piichfork hifurcation. For Ra < Ra,, there is no convective
flow. The equilibrium behavior is summarized in Table 17.1.

STABILITY ANALYSIS OF THE LORENZ EQUATIONS

Linearizing (17.1)—(17.3) around the steady-state, we find the following Jacobian matrix;

- ¥ o 0]
A=lr—xy, -1 —x, ' (17.9)
Koy Ty b

which we will analyze to determine the stability of the equilibrium solution,
17.4.1 Stability of the Trivial Solution

For the trivial solution, x;, = xy, = xy, = 0, the Jacobian matrix is:

- (5 T §]
A= r -1 0 (1710}
0 0 - b

and the stability 1s determined by finding the roots of det(Af — A) = (.
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A+ o .('r 0

AM-—A = ~r At 0
0 0 A+ B
At o -
fetihd — Ay = (A + 1 (17.11
deih=A) = s 17 T 7.1
=+ [+ odn + 1) —or]
det(hM =AYy = (A + BY[M + (o + DA+ o(l - 1)
and we see from (17.11) that the eigenvalues are
A= b (17.12)
(o D)= V(o + 1 —dc(l - r
2
—( 4 1) V(o + 1) —do(] — ¢
}\3 = (ﬂ- ) (”:2 ) . U"(] 'f) (]_7_;4)

Clearly, the first eigenvalue is always stable, since b > (. It is also easy to show that the
second and third eigenvatues can never be complex. The second cigenvalue is always
negative and the third eigeavalue is only negative for » < |. We then see the following
eigenvalue structure for the trivial (no tlow) solution

r< 0 all eigenvalues are negative, trivial solution 1 stable
> 0: saddle point {one unstable eigenvalue), trivial solution is unstable

For r> I, then Ra > Ra,, which means that flow will occur. Notice that Ra is proportional
to AT. This means that once AT is increased bevond a certain critical AY,, convective
flow will begin.

17.4.2 Stability of the Nontrivial Sclutions

Here we find the roots of det(AJ — A) = 0 for the nontrivial solutions. Starting with:

A+ - 0
M—A=lx, —r A+1 Xy, (17.15)
- X, ~X, A+

and solving det{z — A) = 0, you should find:

N DN+ DN+ by (17.16)
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where:
by = —tr(A) = o + b+ 1 (17.17)
by={(r+ o) (17.18)
by = —det{A) = 2ob(r - 1) (17.19)

Recall that real nontrivial solutions only exist for ¥ > 1.The cocfficients by, b, and by, are
then all positive, satislying the necessary condition for stability. The Routh array must be
used to check the sufficient condition for stability. As dertved in the appendix, the critical
r for stability is:
- o{v+h+3)
L (PO

It r > #y, then the stability condition is not satisfied, This is an interesting result, because
it means that none of the equibrium solutions (trivial, nontriviad 1, nontriviad 2) is stable
for v r; The subseript H s used in (17.20), because a Hopf bifurcation forms at that
value (see studeit exercise 1), If a supercritical Hopf bifurcation oceurred, a stable limit
cycle would form, yielding periodie behavior for the nontrivial solutions. It turns out that
a subcritical Hopt birfurcation is formed, that is, the Hmit cycle is unstable (sce Strogatz
for a mee discusston). Since there are no stable equilibrium points for r > ryy, and no sta-
ble limit ¢cycles, the sohution “wanders™ in phase space, never repeating the same trajec-
tory. This behavior is known as chaos and the solution is said to be a sfrange attractor.

(17.20)

17.4.3 Summary of Stability Results

We have seen that for r < 1 there is only one real solution, the trivial solution, and it is sta-
ble. When = | there is a pitchfork bifurcation, yielding three real solutions for r> 1. The
trivial solution is unstable for r> I, while the nontrivial solutions are stable for I <r < ry.
This behavior is shown clearly by the bifurcation diagram shown in Figure 17.2, The for-
mation of the unstable limit cycle at r = ry; is discussed by Strogatz.,

unstable limit cycle
10 T
PR
5 T
= O e ———
5 - -
s S
~10 e
unstabfe limit cycle
B gy 16 15" 20 25 30

r

FEGURE 17.2  Bifurcation diagram for the Lorenz equations. Based on para-
meters in Section 17.5.
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NUMERICAL STUDY OF THE LORENZ EQUATIONS

tntroduction to Chaos: The Lorenz bquations

Chap. 17

Lorenz used the following values to illustrate the chaotic nature of the equations

a= 10

8
b = 2
=28

from {17.22) we caleulate that rpy = 470/19 = 2474, indicating that abl ol the equilibriwm
points are unstable, since the value of r= 28 is greater than ry,.

Before we continue with the set of parameters that Lorenz used to illustrate chaotic
behavior, we will {irst perform simuations for two other cases. In the [irst, we show a set
of conditions where the trivial sotution is stable. In the second, we show a sct of condi-
tions where the nontrivial solutions are stable.

17.5.1 Conditions for a Stable Trivial (No Flow) Solution

We have found that the trivial steady-state is stable for 0 < » < 1. Here we use the o and b

parameters used by Lorenz, but set » = (.5 for a stable trivial steady-state,
]
=10 b= =05
3

As in future simulations, we assuine an initial condition of x, = [0 1 017, A time domain
plot for al three-state variables is shown in Figure 17.3, and a phase-plane plot (x4 vs. x))
is shown in Figure 17.4. The convergence to equilibrium occurs rapidly.

Lorenz Equations, r = 0.5

1
Xz
061 ix
5 : :
04
02! T
e X .,
I “\3_
/ .
JI - T
0: S
0 2 4 6 8 10

t

FIGURE 17.3  Lorenz equations under conditions for a stable trivial solution.
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Lorenz qu__aﬁons, r=0.5

0.2 oo
0.15 P ™
."/
£ 04 !
x / ;
rd //
0.05 e
A
0 -

CSEGd oS 6 07 08 oo
X1

FIGURE 174 Phase-plane under stable conditions for the trivial solation
(x) ~ x5 plane}.

17.5.2 Stable Nontrivial Solutions

We have found that the nontrivial steady-states are stable for | < < r,,. Here we use the
o and b parameters used by Lorenz, but set » = 10 (recall that ry, = 24.74 for these values
of o and 5) to show that the nontrivial steady-states are stable,

8
g =10 b:% r= 21

For the tivial steady-state, x = [} 0 07, the eigenvalues are:

A, = 2.67
N, = —20.67
Ny= 967

as expected, the trivial steady-state 15 unstable (a saddle point). ‘ -
The nontrivial steady-states, x = {\/'160/3 V1 60/3 201" andx = [~ vV 160/3
~V160/3  20]", have cigenvalues of:

A, = —13.4266
N, = —0.1200 + 89123 )
Ay = —0.1200 - 8.9123

verifying that the nontrivial steady-states are stable.

Time domain plots for x| are shown in Figure 17.5, for r = 21 and two diffcrent ini-
tiad conditions, Notice that convergence to a particular equilibrium point depends on the
initial condition, that is, plot a converges to one equilibrium point, while plot b converges
to a different equilibrium point. Also notice that plot b exhibits what is known as fransient
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r=21, x5 = {0;-1,0]
20 . . g et S

0 TH TS 20 2530 35 40
time
a.r=21,x=[0C -t 0T

r=21, % = [-20;10;10]
20 . : : R e

S S —

0 5 10 15 20 257730 735 40 FIGURE17.5 Lowens equations
time under conditions for stable nontrivial
b.r=21,x=[20 10 10]T. solutions.

chaos. The initial trajectory appears chaotic, but eventually the trajectory converges to an
equilibrium point. In other systems the system can exhibil transient chaos and settle into
periodic behavior.

The phase plane diagram of Figure 17.6 also clearly shows the effect of two dif-
ferent initial conditions. In curve a the trajectory almost immediately goes to the equili-
brium point on the right (positive value of x;). In curve b the trajectory first winds
around the left equilibrivan point, switches to the right equilibrium point, and (after
going back and forth a few times) eventually winds around the left equibrium point,
slowly converging.

A AT S



r=21, x5 = {0,-1;0]

S — .y

20 15 -10 5 0 5 10
ar=21,x=[0 -1 0

r=21, xy = [-20;10;10]

X4

bor=21,x=[-20 10 10|

17.5.3 Chaotic Conditions

The parameters used for this case are

than ry,.
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FIGURE 17.6  Phase plase uader sta-
ble conditions {or the nontrivial
solutions,

r=28

Recall that all of the equilibrivm points are unstable, since the vadue of r = 28 is greater
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For the trivial steady-state, x = [0 0 0]7, the cigenvalues are:

N = - 267
N, = —22.83
N, o= 1183

as expected, the trivial steady-state is unstable (a saddle point).
For the nontrivial slcady-states, X = ['\/72 V72 271" and x = [-V72
~V72 271", the eigenvalues are:
A, = —13.8546
Ay = 0.0940 - 11945/
Ay o= 00940 + 1019455

indicating that the nontrivial steady-states are upstable. Notice that alt of the steady-state
operating points are unstable. ‘This means that the curves in the three-dimensional “phase-
cube” plots will not asymptotically approach any single equilibritim point. The curves
may exhibit periodic-type behavior, where the three-dimensional cquivalent of a limit
cycle is reached. The curves could even have “quasi-periodic” behavior, where the oscilla-
tions appear 1o have two frequency components. Tt turns out for this set of paramelters that
the curves never repeat. The curves have a strange attractor because they stay in a certain
region of three-space, but never intersect or repeat. This is known as chaotic behavior.

Figare 17,7 shows the Lorenz behavior for the x| variable under unstable (chaotic)
conditions. The initial condition is x, = [0 1 0}, Plots of the other states (x, and x,) are
similiar,

Figure 17.7 was a time domain plot for x; under chaotic conditions. Mote inlerest-
ing results are also shown in the following phase-plane diagram (Figore 17.8). Notice that
the trajectory will spend some time “winding around” one equilibrium point, before jump-
ing to the other side and winding around the other equilibrium point for a while. This
process goes on forever, with the trajectory never crossing itself (in 3-space).

50 Lorenz Equations, f = 0 to ¢ = 50

15
10

time

FIGURE 17.7 Transient tesponse of x; ander chaotic conditions,
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FIGURFE 17.8  Phase-plane of Lorenz equations under chaotic conditions.

The development of the curve 1 Figare 17.8 is shown more clearly in the phase-
planc plots in Figure 17.9, which show varies “pieces” of time,

A three-dimensional plot (phase cube) of this trajectory is shown in Figure 17.10.

The reader 1s encouraged to perfonm simulations of the Lorenz equations, 10 be un-
derstand concepls such as sensitivity to initial conditions. MATLAB has a demo titded
Lorenz.m (stmply enter Lorenz in the command window) that traces a three-dimen-
sional plot of soluttons to the Lorenz equations. Each new run uses a new set of random
imtial conditions. I you write an m-file to simulate the Lorenz equations using oded5,
remember to use a name that is different than lorenz .m, (o avoid conflicts with the
MATLAB demo.

17.6 CHAOS IN CHEMICAL SYSTEMS

The Lorenz equations provide a nice example of chaos, because the equations are reason-
ably simple to analyze. An even simpler set of equations was developed by Rossler to
demonstrate chaotic behavior (see student exercise 3). Chaos has also been shown Lo ap-
pear in models of chemical process systems, particularty exothermic chemical reactors.
Reactors that are forced periodicatly (jacket temperature js a sine wave, for example)} have
been shown to exhibit chaos. Also, a series of reactors with heat integration can exhibit
chaotic behavior, It appears that chaotic reactors may have had tow ampiitude “oscilla-
tions” (say in temperature) that may have been interpreted as measwrement and process
rotse in the past. A comprehensive review of nonlinear dynamic hehavior in chemical re-
actors is provided in the article by Razon and Schmitz (1987).
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OTHER ISSUES IN CHAOS

Chaos 15 a complex ficld with many books and conferences devoted to this sitmple topic.
Clearly, it 1s impossible to give this topic adequate coverage in a single chapter. Qur goal
is to provide an introduction to, and motivation for, the topic. The reader is encouraged to
consult the many books and articles avaitable on the lopic.

r=28, x5 = [0;1,0]

60

40 -

X3

20 +

=50

FIGURE 17.10  Three-dimensional phase space plot of Lorenz equations under
chaotic conditions.
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Issues that may be of particular interest include:

« How does one detect chaos experimentally? One method is to use experimental data
to caleulate Lyapunov exponents. See Strogatz for example.

¢ Chaos can be used to encode secret messages. Sce Cuomo and Oppenheim {1993),
who used ideas presented by Pecora and Carroll (19903,

SUMMARY

We have presented an introduction to chaotic behavior by studying the Lorenz convective
flow cquations. A number of chemical processes have been shown to exhibit similar be-
havior. It is necessary to have three nonlinear autonomous dilferential equations before
chaos can occur. Although not shown here, chaos can occur in a system of two nonlincar
nonautonomous equations (that is, if some type of periodic input forcing is used). Also,
we saw in Chapter 14 that chaos can oceur in a single discrete nonlinear equation (the
quadratic map, or logistic equation).

REFERENCES AND FURTHER READING
A nice book on the history of chaos, written for the general public, is by Gleick,
Gleick, J. (1987). Chaos: Making a New Science. New York: Viking.
The Tirst paper to develop the notion of sensitivity to initial conditions is by Lorenz.

Lorenz, BN, {1963). Deterministic nonperiodic flow. Journal of Afmospheric Sci-
ences, 20: 130-141.

A number of introductory-level textbooks provide nice Introductions to chaos. These in-
clude:

Strogatz, S.H. (1994). Nonlinear Dynainics and Chaos. Reading, MA: Addison-
Wesley.

A review ol nonlinear dynamic behavior (including Chaos) of chemical reactors is pro-
vided by:

Razon, LI, & R.A. Schmitz. (1987). Muktiplicitics and instabilities in chemically
reacting systems—aA Review. Chem. Eng. Sci., 42(5): 1005-1047.

A large number of papers on chaos have been collect in the following book:

Hao, Bai-Lin. (Ed.). (1990), Chaos {f. Singapore: World Scientific Press.
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Papers that develop a way of encoding secret messages using chaos are:

Pecora, .M., & T.L. Carroll. (1990). Synchronization in chaotic systems. Physical
Review Letters, 64: 821.

Cuomo, K.M., & A V. Oppenheim. (1993). Circuit implemetation of synchronized
chaos, with applications to communications, Physical Review Letters, T1: 65,

STUDENT EXERCISES

Consider the following parameter values lor the Lorenz egquations:

ag = 10
r=r,=470/19 = 2474
b= 8
73

For the nontrivial solution, show thal a supercritical Hopf bifurcation occurs at this

value of r. That is, for r < r,, all eigenvalues are stable, for r = r , two eigenvalues
are on the imaginary axis, and for r > r,, two eigenvalues have crossed into the right
half plane.

Show the sensitivity to initial conditions of the Lorenz equations. Run two simula-
tions with the parameter vaiues shown in the numerical study

o = 10
r =28
b = 8/3

For the first simulation use the initial condition xy = [0 | 0]7. For the second sim-
alation use the initial condition xy = [0 1.01 0]7. When do the simulations begin
to diverge? :

Run some more simulations with smaller perturbations in the initial condi-
tions, Also, make perturbations in the initial conditions Tor the other state variables.
What do you find?

Consider the Rossler equations (see Strogatz, for example):

X = XX
X=X tax,
X, = bt a0

which have a single nonlinear term. Let the parameters ¢ and £ be constant with a
value of (1.2, Use simulations to show that this system has period-1 (Jimit cycle), pe-
riod-2, and period-4 behavior for ¢ = 2.5, 3.5, and 4, respectively. Show that chaotic
behavior occurs for ¢ = 5.
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4. The Henon map is a discrete model that can exhibit chaos:

Xk 1) = (k) + 1 —ax, (k)
Ntk + 1y = bx (k)

For a value of b = 0.3, perform numerical simufations for various values of a. Try (o
find values of a {try a > 0.3675) that yicld stable period-2 behavior. Show that
chaos oceurs at approximately a = 1.06.

APPENDIX

Stability analysis of the nontrivial steady-state using the Rowth array:

Row
1 1 b
2 by by
3 [}l.b..f.._.. .b(?. 0
b,
4 . Dy
Where bo=2ab{r-1) by=(r+o)b by=a+b+1

Since the nomrivial steady-state only exists for » = 1, then by is always positive. 1t also
follows that b and b, will always be positive. The only entry from the Routh array that
we must check is the first column in row 3, This entry will be positive if:

by = by =0 or bbby {A-1)

Making the substitutions for parameter values in the cocfficients:

{0+ b+ 1)r+ o)b > 20b(r—1) (A-2)
After some algebra, this can be writlen:
(=a-+b+Dr>—-olect+b+3) (A-3)
or,
fo—b~Dr<<o(oc+b+3) {A-4)

and, assuming that ¢ > b + |, the condition on r for stability is:
_of{o+hb+3)
{fo-b-1)
Notice from (A-3) that if @ < & + 1, then any » satislies the requirement for stability. We
will often define the critical value, r:

(A-5)

L oo+ b +3) (A€
T o—b-1) A

If r > r,, then the system is unstable.




