PRÁCTICO 6

Sucesiones definidas por relaciones de recurrencia (Secciones 10.1, 10.2 y 10.3)

Ejercicio 1. Expresar a_n en función de los términos anteriores $a_0, a_1, \ldots, a_{n-1}$, siendo a_n :

- (a) La cantidad de saludos entre las primeras n personas que llegan a una reunión.
- (b) El número de secuencias de ceros y unos de largo n en las cuales no aparecen dos ceros seguidos.
- (c) El número de secuencias de largo n de letras A, B y C que no tienen la letra A dos veces seguidas.
- (d) La cantidad de formas de subir una escalera de n escalones si se pueden subir de a uno o de a dos escalones en cada paso.
- (e) Lo anterior pero sin que se puedan saltar dos veces seguidas un escalón (o sea, que si se saltea un escalón, entonces el siguiente no se saltea).
- (f) El número de secuencias de unos y doses que suman n. Por ejemplo, para n=3 hay exactamente 3 secuencias: 111, 12 y 21.

Ejercicio 2. Para un campeonato de ajedrez se tiene una cantidad par de ajedrecistas. Se quiere armar la primera fecha (en una fecha todos los ajedrecistas juegan exactamente un partido). Sea a_k la cantidad de formas de armar la primera fecha de un campeonato con 2k ajedrecistas.

- (a) Calcular a_1 , a_2 y a_3 .
- (b) Deducir que para todo entero positivo k se cumple que $a_{k+1} = (2k+1)a_k$.
- (c) Probar que para todo entero positivo k se cumple que $a_k = (2k-1) \times (2k-3) \times ... \times 3 \times 1$.

Ejercicio 3. Se pretende diseñar una bandera con n franjas horizontales, cada una de las cuales puede ser de color rojo, azul, verde o amarillo. Hallar la cantidad de banderas posibles en cada una de las siguientes situaciones:

- (a) No hay restricciones sobre el color de cada franja.
- (b) Dos franjas advacentes nunca pueden ser del mismo color.
- (c) Dos franjas adyacentes nunca pueden ser del mismo color, como tampoco pueden serlo la primera y la última franjas.

Ejercicio 4. Consideremos la sucesión $(a_n)_{n\in\mathbb{N}}$ definida por $a_n=(\frac{1+\sqrt{5}}{2})^n+(\frac{1-\sqrt{5}}{2})^n$.

- (a) Mostrar que a_n verifica una relación de recurrencia de orden 2, homogénea, a coeficientes constantes.
- (b) Probar que a_n es un entero positivo para todo natural n.

Ejercicio 5. En cada caso hallar el término a_{100} :

- (a) $a_{n+1} 3a_n = 0$, $\forall n \in \mathbb{N}$, con $a_{50} = 2 \cdot 3^{-8}$.
- (b) $a_{n+2} + 4a_n = 0$, $\forall n \in \mathbb{N}$, con $a_0 = a_1 = 1$. Sugerencia: emplear el cambio de variable $b_n = a_{2n}$.

Ejercicio 6. Resolver las relaciones de recurrencia:

- (a) $a_{n+2} = 5a_{n+1} 6a_n$, $\forall n \in \mathbb{N}$, con $a_0 = 1, a_1 = 3$.
- (b) $b_{n+2} 6b_{n+1} + 9b_n = 0$, $\forall n \in \mathbb{N}$, con $b_0 = 5, b_2 = 27$.

Ejercicio 7. Resolver las relaciones de recurrencia:

- (a) $c_{n+1} = c_n + n2^{n-1}$, $\forall n \in \mathbb{N}$, con $c_0 = 0$.
- (b) $d_n = \frac{1}{2}d_{n-1} + \frac{1}{2}d_{n+1} + 1$, $\forall n \in \mathbb{Z}^+$, con $d_0 = d_{100} = 0$.
- (c) $e_{n+1}=2e_n+2^n$, $\forall n\in\mathbb{N}$, con $e_0=0$.
- (d) $f_{n+2} = f_{n+1} + f_n$, $n \in \mathbb{N}$, con $f_0 = f_1 = 1$.

Ejercicio 8. Aplicar cambios de variables para resolver las cada una de las siguientes recurrencias:

- (a) $a_n na_{n-1} = 0$, $\forall n \in \mathbb{Z}^+$, con $a_0 = 1$.
- (b) $na_n (n-1)a_{n-1} = 0, \forall n \in \mathbb{Z}, n > 2.$
- (c) $a_n/a_{n-1}^p=2$, $\forall n\in\mathbb{Z}^+$, siendo $a_0=1$ y p un entero mayor que 1.
- (d) $a_{n+2} = 4a_{n+1}^2/a_n$, $\forall n \in \mathbb{N}$, siendo $a_0 = a_1 = 1$

Ejercicio 9. (Primer Parcial 2009)

Sabemos que $a_0=1$ y que para cada entero positivo n se cumple que $a_n-2a_{n-1}=3\times 2^n$. Indicar la opción correcta: (a) $a_{50}=2^{50}$; (b) $a_{50}=50\times 2^{50}$; (c) $a_{50}=150\times 2^{50}$; (d) $a_{50}=151\times 2^{50}$.

Ejercicio 10. Se considera la siguiente recurrencia: $a_n + \alpha a_{n-1} + \beta a_{n-2} = 2^n$, $\forall n \geq 2$. Hallar α , β y a_{100} sabiendo que: $a_0 = 1$, $a_1 = 5$, $a_2 = 1$ y $a_3 = 17$.