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5.1 INTRODUCTION 

Modelling is one of the key tools at the disposal of 
modern wastewater treatment professionals, researchers 
and engineers. It enables them to study and understand 
complex phenomena underlying the physical, chemical 
and biological performance of wastewater treatment 
plants at different temporal and spatial scales. 

At full-scale wastewater treatment plants (WWTPs), 
mechanistic modelling using the ASM framework and 
concept (e.g. Henze et al., 2000) has become an 
important part of the engineering toolbox for process 
engineers. It supports plant design, operation, 
optimization and control applications. Models have also 
been increasingly used to help take decisions on complex 
problems including the process/technology selection for 
retrofitting, as well as validation of control and 
optimization strategies (Gernaey et al., 2014; Mauricio-
Iglesias et al., 2014; Vangsgaard et al., 2014; Bozkurt et 
al., 2015). 

Models have also been used as an integral part of the 
comprehensive analysis and interpretation of data 

obtained from a range of experimental methods from the 
laboratory, as well as pilot-scale studies to characterise 
and study wastewater treatment plants. In this regard, 
models help to properly explain various kinetic 
parameters for different microbial groups and their 
activities in WWTPs by using parameter estimation 
techniques. Indeed, estimating parameters is an integral 
part of model development and application (Seber and 
Wild, 1989; Ljung, 1999; Dochain and Vanrolleghem, 
2001; Omlin and Reichert, 1999; Brun et al., 2002; Sin 
et al., 2010) and can be broadly defined as follows:  

Given a model and a set of data/measurements from 
the experimental setup in question, estimate all or some 
of the parameters of the model using an appropriate 
statistical method. 

The focus of this chapter is to provide a set of tools 
and the techniques necessary to estimate the kinetic and 
stoichiometric parameters for wastewater treatment 
processes using data obtained from experimental batch 
activity tests. These methods and tools are mainly 
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intended for practical applications, i.e. by consultants, 
engineers, and professionals. However, it is also 
expected that they will be useful both for graduate 
teaching as well as a stepping stone for academic 
researchers who wish to expand their theoretical interest 
in the subject. For the models selected to interpret the 
experimental data, this chapter uses available models 
from literature that are mostly based on the Activated 
Sludge Model (ASM) framework and their appropriate 
extensions (Henze et al., 2000).  

The chapter presents an overview of the most 
commonly used methods in the estimation of parameters 
from experimental batch data, namely: (i) data handling 
and validation, (ii) parameter estimation: maximum 
likelihood estimation (MLE) and bootstrap methods, (iii) 
uncertainty analysis: linear error propagation and the 
Monte Carlo method, and (iv) sensitivity and 
identifiability analysis.  

5.2 THEORY AND METHODS 

5.2.1 Data handling and validation  

5.2.1.1 Systematic data analysis for biological 
processes 

Most activated sludge processes can be studied using 
simplified process stoichiometry models which rely on a 
‘black box’ description of the cellular metabolism using 
measurement data of the concentrations of reactants 
(pollutants) and products e.g. CO2, intermediate oxidised 
nitrogen species, etc. Likewise, the Activated Sludge 
Model (ASM) framework (Henze et al., 2000) relies on 
a black box description of aerobic and anoxic 
heterotrophic activities, nitrification, hydrolysis and 
decay processes. 

A general model formulation of the process 
stoichiometry describing the conversion of substrates to 
biomass and metabolic products is formulated below (for 
carbon metabolism):  

                 Eq. 5.1 

Equation 5.1 represents a simplification of the 
complex metabolic ‘machinery’ of cellular activity into 
one global relation. This simplified reaction allows the 
calculation of the process yields including YSO (yield of 
oxygen per unit substrate), YSN (yield of nitrogen per unit 

substrate), YSX (yield of biomass per unit substrate), YSC 
(yield of CO2 per unit of substrate), YSP1 (yield of 
intermediate product P1 per unit of substrate), and YSW 
(yield of water per unit of substrate). 

The coefficients of this equation are written on the 
basis of 1 C-mol of carbon substrate. This includes 
growth yield for biomass, YSX, substrate (ammonia) 
consumption yields, YSN, oxygen consumption yields, 
YSO, yield for production of CO2, YSC, and yield for 
water, YSW. The biomass, X, is also written on the basis 
of 1 C-mol and is assumed to have a typical composition 
of CHaObNc. The biomass composition can be measured 
experimentally, CH1.8O0.5N0.2 being a typical value. 
Some of the yields are also measured experimentally 
from the observed rates of consumption and production 
of components in the process as follows: 

                                 Eq. 5.2 

Where, qi refers to the volumetric 
conversion/production rate of component i, i.e. the mass 
of component i per unit volume of the reactor per unit 
time (Mass i Volume-1 Time-1), ri refers to the measured 
rate of the mass of component i per unit time per unit 
weight of the biomass (Mass i Time-1 Mass biomass-1) 
and Yji is the yield of component i per unit of component 
j. In the case of biomass, x, this would refer to the 
specific growth rate μ: 

                      Eq. 5.3 

One of the advantages of using this process 
stoichiometry is that it allows elemental balances for C, 
H, N and O to be set up and to make sure that the process 
stoichiometry is balanced. For the process stoichiometry 
given in Eq 5.1, the following elemental balance for 
carbon will hold, assuming all the relevant yields are 
measured: 

                  Eq. 5.4 

Similarly to the carbon balance, the elemental 
balance for N, O and H can also be performed. Usually 
in biological process studies, the yield coefficient for 
water, YSW, is ignored because the production of water is 
negligible compared with the high flow rates typically 
treated in WWTPs. For this reason, H and O balances and 
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process stoichiometry are usually not closed in 
wastewater applications. However, the balance for the 
degree of reduction is closed in wastewater treatment 
process stoichiometry. This is the framework on which 
ASM is based. The degree of reduction balance is 
relevant since most biological reactions involve 
reduction-oxidation (redox)-type chemical conversion 
reactions in metabolism activities. 

5.2.1.2 Degree of reduction analysis 

A biological process will convert a substrate i.e. the input 
to a metabolic pathway, into a product that is in a reduced 
or oxidized state relative to the substrate. In order to 
perform redox analysis on a biological process, a method 
to calculate the redox potential of substrates and products 
is required. In the ASM framework and other 
biotechnological applications (Heijnen, 1999; Villadsen 
et al., 2011), the following methodology is used: 

1) Define a standard for the redox state for the balanced 
elements, typically C, O, N, S and P.  

2) Select H2O, CO2, NH3, H2SO4, and H3PO4 as the 
reference redox-neutral compounds for calculating 
the redox state for the elements O, C, N, S, and P 
respectively. Moreover, a unit of redox is defined as 
H = 1. With these definitions, the following redox 
levels of the five listed elements are obtained: O = -2, 
C = 4, N = -3, S = 6 and P = 5.  

3) Calculate the redox level of the substrate and 
products using the standard redox levels of the 
elements. Several examples are provided below: 
a) Glucose (C6H12O6): 6 · 4 + 12 · 1 + 6 · (-2) = 24. 

Per 1 C-mol, the redox level of glucose becomes, 
γg = 24/6 = 4 mol e- C-mol-1.  

b) Acetic acid (C2H4O2): 2 · 4 + 4 · 1 + 2 · (-2) = 8. 
Per 1 C-mol, the redox level of Hac becomes,      
γa = 8/2 = 4 mol e- C-mol-1 

c) Propionic acid (C3H6O2): 3 · 4 + 6 · 1 + 2 · (-2) = 
14. Per 1 C-mol, the redox level of HPr becomes, 
γp = 14/3 = 4.67 mol e- C-mol-1. 

d) Ethanol (C2H6O): 2 · 4 + 6 · 1 + 1 · (-2) = 12. Per 
1 C-mol, the redox level of HAc becomes, γe = 
12/2 = 6 mol e- C-mol-1. 

4) Perform a degree of reduction balance over a given 
process stoichiometry (see Example 5.1).  

Example 5.1 Elemental balance and degree of reduction analysis 
for aerobic glucose oxidation  

General process stoichiometry for the aerobic oxidation 
of glucose to biomass: 

          Eq. 5.5 

Assuming the biomass composition X is 
CH1.8O0.5N0.2. The degree of reduction for biomass is 
calculated assuming the nitrogen source is ammonia 
(hence the nitrogen oxidation state is -3, γX: 4 + 1.8 + 0.5 
· (-2) + 0.2 · (-3) = 4.2 mol e - C-mol-1.  

Now C, N and the degree of reduction balances can 
be performed for the process stoichiometry as follows: 

Carbon balance:                         Eq. 5.6 

Nitrogen balance:                      Eq. 5.7 

Redox balance:  

 

In these balance equations, there are four unknowns 
(YSN, YSO, YSX, YSC). Since three equations are available, 
only one measurement of the yield is necessary to 
calculate all the others. For example, in ASM 
applications, biomass growth yield is usually assumed 
measured or known, hence the other remaining yields 
can be calculated as follows:  

CO2 yield: YSC = 1 - YSX        Eq. 5.9 

NH3 yield: YSN = 0.2YSX       Eq. 5.10 

O2 yield: g x SX SX
SO

O2

Y 4 4.2Y
Y

4

γ − γ ⋅ −= =
γ

              Eq. 5.11 

With these coefficients known, the process 
stoichiometry model for 1 C-mol of glucose 
consumption becomes as follows: 

( )

SX
2 2 SX 3

SX SX 2

4 4.2Y
CH O O 0.2Y NH

4
Y X 1 Y CO

−+ ⋅ + ⋅ →

⋅ + − ⋅
            Eq. 5.12 

In the ASM framework, the process stoichiometry is 
calculated using a unit production of biomass as a 
reference. Hence, the coefficients of Eq. 5.12 can be re-
arranged as follows:  

2 SO 2 SN 3 SX SC 2CH O Y O Y NH Y X Y CO+ + → +

SX SC1 Y Y 0− + + =

SN SXY 0.2 Y 0− + ⋅ =

g O2 SO NH3 SN X SX CO2 SC

g O2 SO SN X SX SC

1 Y Y Y Y 0

1 Y 0 Y Y 0 Y 0

γ γ γ γ γ
γ γ γ

− ⋅ − ⋅ − ⋅ + ⋅ + ⋅ =

− ⋅ − ⋅ − ⋅ + ⋅ + ⋅ =
Eq. 5.8. 
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             Eq. 5.13 

The unit conversion from a C-mol to a g COD basis, 
being the unit of ASM models, is defined using O2 as the 
reference compound. Accordingly, 1 g COD is defined 
as -1 g O2. From the degree of reduction of oxygen, the 
conversion to COD from one unit redox (mol e-) is 
calculated as follows: 

O22

2 O2

1 1

MWMolecular weight of O

Degree of reduction of O  γ

32
8 g COD L (mole )

4
− − −

= =

=

                 Eq. 5.14 

To convert a C-mol to a g COD basis, the unit redox 
needs to be multiplied with the degree of reduction of the 
substrate as follows:  

g

mol e g COD g COD
8

C mole mol e C mol

   ⋅ = γ ⋅  − −   
                   Eq. 5.15 

5.2.1.3 Consistency check of the experimental data 

The value of performing elemental balances around data 
collected from experiments with biological processes is 
obvious: to confirm the data consistency with the first 
law of thermodynamics, which asserts that energy (in the 
form of matter, heat, etc.) is conserved. A primary and 
obvious requirement for performing elemental balances 
is that the model is checked and consistent. Experimental 
data needs to be checked for gross (measurement) errors 
that may be caused by incorrect calibration or 
malfunction of the instruments, equipment and/or 
sensors.  

Inconsistency in the data can be checked from the 
sum of the elements that make up the substrates 
consumed in the reaction (e.g. glucose, ammonia, 
oxygen, etc.). This should equal to the sum of the 
elements (products) produced in the reaction (therefore 
also see Eq. 5.4 for the carbon balance). Deviation from 
this elemental balance indicates an incorrectly defined 
system description, a model inconsistency and/or 
measurement flaws.  

In addition to the elemental balances, the degree of 
reduction balance provides information about whether 
the right compounds are included for a given pathway or 
whether a compound is missing in the process 
stoichiometry. Adding this check is helpful and provides 
consistency with the bioenergetic principles of biological 
processes (Roels, 1980; Heijnen, 1999; Villadsen et al., 
2011). 

The consistency checks and the elemental balances 
(in addition to the charge balances) are included in the 
ASM framework as a conservation matrix to verify the 
internal consistency of the yield coefficients (Henze et 
al., 2000). 

The elemental composition and degree of reduction 
can be performed systematically using the following 
generic balance equation in order to test the consistency 
of the measured data: 

   Eq. 5.16 

The equation above is formulated for a biological 
process with N substrates and M metabolic products. In 
the equation, e is the elemental composition (C, H, O and 
N) for a component, and q the volumetric production (or 
consumption) rate for substrates (qsj), biomass (qx) and 
metabolic products (qpj). Hence, the elemental balance 
can be formulated as follows: 

                                                 Eq. 5.17 

In this equation, E is the conservation matrix and its 
columns refer to each conserved element and property, 
e.g. C, H, O, N, γ, etc. Each row of matrix E contains 
values of a conserved property related to substrates, 
products and biomass; q is a column vector including the 
measured volumetric rates for each compound. This is 
substrate as well as products and biomass. 

The total number of columns in E is the number of 
compounds, which is the sum of substrates (N), products 
(M) and biomass, hence N + M + 1. The total number of 
constraints is 5 (C, H, O, N and γ). This means that N+M-
4 is the number of degrees of freedom that needs to be 
measured or specified in order to calculate all the rates.  

Typically, not all the rates will be measured in batch 
experiments. Therefore, let us assume qm is the measured 
set of volumetric rates and qu the unmeasured set of rates 

N M

sj sj x x pj pjj 1 j 1
e q e q e q 0

= =
+ + = 

E q = 0⋅
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which need to be calculated. In this case Eq. 5.17 can be 
reformulated as follows:  

( )
m m u u

-1

u u m m

E q + E q =0

q = E E q =0−
 

       Eq. 5.18 

Provided that the inverse of Eu exists (det(Eu) ≠ 0), 
Eq. 5.18 provides a calculation/estimation of the 
unmeasured rates in a biological process. These 
estimated rates are valuable on their own, but can also be 
used for validation purposes if redundant measurements 
are available. This systematic method of data consistency 
check is highlighted in Example 5.2. 

All these calculations help to verify and validate the 
experimental data and measurement of the process yield. 
The data can now be used for further kinetic analysis and 
parameter estimation.  

5.2.2 Parameter estimation  

Here we recall a state-space model formalism to describe 
a system of interest. Let y be a vector of outputs resulting 
from a dynamic model, f, employing a parameter vector, 
θ; input vector, u; and state variables, x:  

                                     Eq. 5.19 

The above equation describes a system (a batch setup 
or a full WWTP) in terms of a coupled ordinary 
differential equations (ODE) and algebraic system of 
equations using a state-space formalism.  

The problem statement for parameter estimation 
reads then as follows: for a given set of measurements, y, 
with its measurement noise collected from the system of 
interest, and given the model structure in Eq. 5.19, 
estimate the unknown model parameters (θ). 

The solution approaches to this problem can be 
broadly classified as the manual trial and error method, 
and formal statistical methods. 

5.2.2.1 The manual trial and error method 

This approach has no formal scientific basis except for a 
practical motivation that has to do with getting a good 
model fit to the data. It works as follows: the user 

chooses one parameter from the parameter set and then 
changes it incrementally (increases or decreases around 
its nominal value) until a reasonable model fit is obtained 
to the measured data. The same process may be iterated 
for another parameter. The fitting process is terminated 
when the user deems that the model fit to data is good. 
This is often determined by practical and/or time 
constraints because this procedure will never lead to an 
optimal fit of the model to the measured data. In addition, 
multiple different sets of parameter values can be 
obtained which may not necessarily have a physical 
meaning. The success of this procedure often relies on 
the experience of the modeller in selecting the 
appropriate parameters to fit certain aspects of the 
measured data. Although this approach is largely 
subjective and suboptimal, the approach is still widely 
used in industry as well as in the academic/research 
environment. Practical data quality issues do not often 
allow the precise determination of parameters. Also not 
all (commercial) modelling software platforms provide 
the appropriate statistical routines for parameter 
estimation. There are automated procedures for model 
calibration using algorithms such as statistical sampling 
techniques, optimization algorithm, etc. (Sin et al., 
2008). However, such procedures focus on obtaining a 
good fit to experimental data and not necessarily on the 
identifiability and/or estimation of a parameter from a 
data set. This is because the latter requires proper use of 
statistical theory. 

5.2.2.2 Formal statistical methods 

In this approach, a proper statistical framework is used 
to suggest the problem, which is then solved 
mathematically by using appropriate numerical solution 
strategies, e.g. minimization algorithms or sampling 
algorithms. Under this category, the following statistical 
frameworks are usually employed: 
a. Frequentist framework (maximum likelihood, least 

squares, non-linear regression, etc.). 
b. Bayesian framework (Metropolis-Hasting, Markov 

Chain Monte Carlo (MCMC), importance sampling, 
etc.). 

c. Pragmatic/hybrid framework (employing some 
elements of the two schools of thought above, e.g. the 
bootstrap method, Monte Carlo filtering, etc.). 

The above statistical methods are among the most 
commonly used and recommended here as well. In 
particular, we focus on the frequentist and bootstrap 
methods as they are more fit to the intended purpose of 
this chapter. 

( ) ( )

( )
0

dx
f x,θ,u, t ; x 0 x

dt
y g x,θ,u, t

= =

=
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Frequentist method - maximum likelihood theory 
In the parameter estimation problem we usually define 
parameter estimators, θ෠ , to distinguish them from the 
true model parameters, θ. In the context of statistical 
estimation, model parameters are defined as unknown 
and statistical methods are used to infer their true value. 
This difference is subtle but important to understand and 
to interpret the results of parameter estimation, 
irrespective of the methods used. 

Maximum likelihood is a general method for finding 
estimators, θ෠, from a given set of measurements, y. In 
this approach, the model parameters θ are treated as true, 
fixed values, but their corresponding estimators θ෠  are 
treated as random variables. The reason is that the 
estimators depend on the measurements, which are 
assumed to be a stochastic process: 

  Eq. 5.20 

Measurement errors, ε, are defined by a probability 
distribution, e.g. normal distribution, N, with zero mean 
and standard deviation (σ). With these assumptions, the 
likelihood function (L) for the parameter estimation 
becomes as follows (Seber and Wild, 1989): 

 

                   Eq. 5.21  

The most likely estimate of θ is found as those 
parameter values that maximize the likelihood function:  

( )θθ̂: min L y,θ                                   Eq. 5.22  

The solution to this problem setting (5.24) is often 
found by optimization algorithms such as simplex, 
interior point, genetic algorithms, simulated annealing, 
etc. The parameters obtained by calculating the 
maximum likelihood (Eq. 5.21) are the same as the 
parameters obtained by calculating the minimum cost 
function in Eq. 5.23. 

The least squares method 
This is a special case of the maximum likelihood method 
in which the measurements are assumed to be 
independent and identically distributed with white 
measurement errors having a known standard deviation, 
σ (Gaussian). The likelihood function becomes 

equivalent to minimizing the following cost (or 
objective) function, S(y,θ) (Seber and Wild, 1989):                                         

      

Eq. 5.23 
                  

Where, y stands for the measurement set, ݂(θ) stands 
for the corresponding model predictions, and Σ stands for 
the standard deviation of the measurement errors. The 
solution to the objective function (Eq. 5.24) is found by 
minimization algorithms (e.g. Newton’s method, 
gradient descent, interior-point, Nelder-Mead simplex, 
genetic, etc.). 

( )

( )

θ

θ̂

θ̂: min S y,θ

S y,θ  =0
θ

∂
∂

                   Eq. 5.24  

The solution to the above optimization problem 
provides the best estimate of the parameter values. The 
next step is to evaluate the quality of the parameter 
estimators. This step requires the estimation of the 
confidence interval of the parameter values and the 
pairwise linear correlation between the parameters.  

The covariance matrix of parameter estimators 
As a result of stochastic measurement, estimators have a 
degree of uncertainty. In the frequentist framework of 
thought, probability is defined in terms of the frequency 
of the occurrence of outcomes. Hence, in this method the 
uncertainty of the parameter estimators is defined by a 
95 % confidence interval interpreted as the range in 
which 95 times out of 100 the values of the parameter 
estimators are likely to be located. This can be explained 
as if one performs the same measurement 100 times, and 
then performs the parameter estimation on these 100 sets 
and observes the following: 95 occurrences of the 
estimator values lie in the confidence interval, while 5 
occurrences are outside this interval. 

In order to estimate the confidence interval, first the 
covariance matrix (cov൫θ෠൯), which contains complete 
information about the uncertainty of the parameter 
estimators of the estimators, needs to be estimated. One 
method to obtain cov൫θ෠൯ is to use a linear approximation 
method through estimation of the Jacobian matrix (F.) of 
the parameter estimation problem (Seber and Wild, 
1989): 

( ) ( )y f θ      where     N 0,   = + ε ε ∝ σ

( ) ( )( )2

2

y θ1
L y,θ = exp

2σσ 2π

 − −
 
 

f

( ) ( )( )2

2

y θ
S y,θ =

σ

−


f



DATA HANDLING AND PARAMETER ESTIMATION                                                                                                                                                                                           207                                               
 

 

     Eq. 5.25  

      Where, s2 is the unbiased estimation of σ2 obtained 
from the residuals of the parameter estimation:  

( )min2
ˆS y,θ

s =  
n p−

                                                Eq. 5.26  

Here, n is the total number of measurements, p is the 
number of estimated parameters, n-p is the degrees of 
freedom, Smin(y,θ෠)  is the minimum objective function 
value and F. is the Jacobian matrix, which corresponds to 
the first order derivative of the model function, f, with 
respect to the parameter vector θ evaluated at θ = θ෠. 

The covariance matrix is a square matrix with (p×p) 
dimensions. The diagonal elements of the matrix are the 
variance of the parameter estimators, while the non-
diagonal elements are the covariance between any pair of 
parameter estimators. 

The 95 % confidence interval of the parameter 
estimators can now be approximated. Assuming a large 
n, the confidence intervals (the difference between the 
estimators and true parameter values), follow a student t-
distribution, the confidence interval at 100 (1-α) % 
significance:  

( )α/2
1-α N-pθ = θ ± t cov θ  diag
  

                                 Eq. 5.27 

Where, tN-p
α/2 is the upper α/2 percentile of the t-

distribution with N-p degrees of freedom, and 
diag cov(θ෠)  represents the diagonal elements of the 
covariance matrix of the parameters.  

The pairwise linear correlation between the 
parameter estimators, Rij, can be obtained by calculating 
a correlation matrix from unit standardization of the 
covariance matrix as follows: 

( )
i j

i j

ij
θ θ

cov θ ,θ
R =

σ × σ
                                                   Eq. 5.28 

This linear correlation will range from [-1 1] and 
indicate whether or not he parameter estimator is 

uniquely identifiable (if the correlation coefficient is 
low) or correlated (if the correlation coefficient is high).  

The bootstrap method 
One of the key assumptions for using the maximum 
likelihood estimation (MLE) method as well as its 
simplified version, the nonlinear least squares method, is 
that the underlying distribution of errors is assumed to 
follow a normal (Gaussian) distribution. 

In many practical applications, however, this 
condition is rarely satisfied. Hence, theoretically the 
MLE method for parameter estimation cannot be applied 
without compromising its assumptions, which may lead 
to over or underestimation of the parameter estimation 
errors and their covariance structure. 

An alternative to this approach is the bootstrap 
method developed by Efron (1979), which removes the 
assumption that the residuals follow a normal 
distribution. Instead, the bootstrap method works with 
the actual distribution of the measurement errors, which 
are then propagated to the parameter estimation errors by 
using an appropriate Monte Carlo scheme (Figure 5.1).   

The bootstrap method uses the original data set D(0) 
with its N data points, to generate any number of 
synthetic data sets DS(1);DS(2);…., also with N data 
points. The procedure is simply to draw N data points 
with replacements from the set D(0). Because of the 
replacement, sets are obtained in which a random 
fraction of the original measured points, typically 1/e = 
37 %, are replaced by duplicated original points. This is 
illustrated in Figure 5.1. 

The application of the bootstrap method for 
parameter estimation in the field of wastewater treatment 
requires adjustment due to the nature of the data that is 
in the time series. Hence, the sampling is not performed 
from the original data points (which are the time series 
and indicate a particular trend). Instead, the sampling is 
performed from the residual errors and then added to the 
simulated model outputs (obtained by using reference 
parameter estimation) (Figure 5.1). This is reasonable 
because the measurement errors are what is assumed to 
be stochastic and not the main trend of the measured data 
points, which are caused by biological 
processes/mechanisms. Bearing this in mind, the 
theoretical background of the bootstrap method is 
outlined below. 

 

( ) ( ) ( )12

θ θ

θˆcov θ F.' F.      where F.   
θ

f
s

−

=

∂
= ⋅ =

∂ 
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Figure 5.1 Illustration of the workflow for the bootstrap method: synthetic data sets are generated by Monte Carlo samples (random sampling with 
replacement) from the reference MLE. For each data set, the same estimation procedure is performed, giving M different sets of parameter estimates: θS

(1), 
θS

(2), … θS
(M). 

 

Let us define a simple nonlinear model where yi is the 
ith measurement, fi is the ith model prediction, θ is a 
parameter vector (of length p), and εi is the measurement 
error of yi: 

( )i i i iy = f θ + ε      where     ε F ∞                             Eq. 5.29 

The distribution of errors, F, is not known. This is 
unlike in MLE, where the distribution is assumed a 
priori. Given y, use least squares minimization, to 
estimate θ෠: 

( ) 2

θθ̂ : min y f θ  −                                               Eq. 5.30 

The bootstrap method defines F෠  as the sample 
probability distribution of εො as follows: 

( )( )i i i

1
F̂ = (density) at ε  = y f θ     i =1,2,…n 

n
−  

The density is the probability of the ith observation. 
In a uniform distribution each observation (in this case 
the measurement error, εi) has an equal probability of 
occurrence, where density is estimated from 1/n. The 
bootstrap sample, y*, given (෠, F෠), is then generated as 
follows: 

( )* * *
i i i

ˆ ˆy θ ε         where  ε F  if= + ∝                        Eq. 5.32  

The realisation of measurement error in each 
bootstrap method,	ε∗, is simulated by random sampling 
with replacement from the original residuals, which 
assigns each point with a uniform (probability) weight. 
By performing N random sampling with a replacement 
and then adding them to the model prediction (Eq. 5.31), 
a new synthetic data set is generated, Ds(1) = y*. 

By repeating the above sampling procedure M times, 
M data sets are generated: Ds(1), Ds(2), Ds(3), … Ds(M). 

Each synthetic data set, Ds(j), makes it possible to  
obtain a new parameter estimator θ෠(j) by the same least 
squares minimisation method which is repeated M times: 

 ( ) ( ) 2s
j θθ̂ : min D j f θ  where j = 1,2…M−                   

The outcome from this iteration is a matrix of 
parameter estimators, θ෠(M	×	p)  (M is the number of 
Monte Carlo samples of synthetic data and p is the 
number of parameters estimated). Hence, each parameter 
estimator now has a column vector with values. This 
vector of values can be plotted as a histogram and 
interpreted using common frequentist parameters such as 
the mean, standard deviation and the 95 % percentile. 
The covariance and correlation matrix can be computed 
using 	θ෠ (M×p) 	itself.  This effectively provides all the 
needed information on the quality of the parameter 
estimators. 

Experimental 
Data Set, y 

Reference Parameter
Estimation, θ ^
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^

^

^

^

^

^

^

^

^

Synthetic data y1   

^Synthetic data y2   

^Synthetic data y3   

^Synthetic data y4   

^
Monte Carlo Parameter θ1

     
Random sampling from
residuals, e 

s

^
Monte Carlo Parameter θ2

s

^
Monte Carlo Parameter θ3

     s

^
Monte Carlo Parameter θ4

     s

Eq. 5.31 

Eq. 5.33 
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For measurement errors that follow a normal 
distribution, both MLE and the bootstrap method will 
essentially provide the same results. However, if the 
underlying distribution of the measurements 
significantly deviates from a normal distribution, the 
bootstrap method is expected to provide a better analysis 
of the confidence interval of the estimators.  

5.2.3 Uncertainty analysis  

5.2.3.1 Linear error propagation 

In linear error propagation, the covariance matrix of the 
parameter estimators, cov(θ), is used to propagate 
measurement errors to model prediction errors and to 
calculate standard errors and confidence intervals of the 
parameter estimates. Therefore, the covariance matrix of 
model predictions, cov(y), can be estimated using 
cov൫θ෠൯ as follows (Seber and Wild, 1989): 

( ) ( ) ( ) ( ) 1ˆcov y F.' F. cov θ F.' F.  
−= ⋅ ⋅                       Eq. 5.34  

In a similar fashion, the 1-α confidence interval of the 
predictions, y, can be approximated as follows: 

( )α/2
1 N-py y t cov y  diag− = ±α                                Eq. 5.35 

This concludes parameter estimation, confidence 
intervals and prediction uncertainty as viewed from the 
point of view of the frequentist analysis. 

5.2.3.2 The Monte Carlo method 

The Monte Carlo (MC) method was originally used to 
calculate multi-dimensional integrals and its systematic 
use started in the 1940s with the ‘Los Alamos School’ of 
mathematicians and physicists, namely Von Neumann, 
Ulam, Metropolis, Kahn, Fermi and their collaborators. 
The term was coined by Ulam in 1946 in honour of a 
relative who was keen on gambling (Metropolis and 
Ulam, 1949). 

Within the context of uncertainty analysis, which is 
concerned with estimating the error propagation from a 
set of inputs to a set of model outputs, the integral of 
interest is the calculation of the mean and variance of the 
model outputs which are themselves indeed 
multidimensional integrals (the dimensionality number 
is determined by the length of the vector of input 
parameters): 

                 Eq. 5.36 

Authors consider the integral of a function f(x) with 
x as the input vector x = (u1,…ud). Hence, the integral is 
taken on the d variables u1, .., ud over the unit hypercube 
[0, 1]d. In the parameter estimation, these input variables 
are parameters of the model that have a certain range 
with lower and upper bounds. We assume that f is 
square-integrable, which means that a real value solution 
exists at each integration point. As a short-hand notation 
we will denote a point in the unit hypercube by x = (u1, .. 
ud) and the function evaluated at this point by f(x) = f(u1, 
.. ud), and then the multidimensional integration 
operation is given by:  

   

  

    The law of large numbers ensures that the MC 
estimate (E) converges to the true value of this integral. 
However, as most of the time N is finite (a sampling 
number from input space u with dxd dimension), there 
will be an error in the Monte Carlo integration of 
multidimensional functions. This Monte Carlo 
integration error is scaled like 1/√N. Hence, the average 
Monte Carlo integration error is given by 
MCerr	=	(f)/√N, where σ(f) is the standard deviation of 
the error, which can be approximated using sample 
variance: 

  

 

For notational simplicity, we consider the following 
simple model: y	=	f(x), where the function f represents 
the model under study, x:[x1;… xd] is the vector of the 
model inputs, and y:[y1;… yn] is the vector of the model 
predictions. 

The goal of an uncertainty analysis is to determine 
the uncertainty in the elements of y that results from 
uncertainty in the elements of x. Given uncertainty in the 
vector x characterised by the distribution functions 
D=[D1,… Dd], where D1 is the distribution function 
associated with x1, the uncertainty in y is given by: 

         

                                                                                                                        

Eq. 5.37 

Eq. 5.38 

( ) ( ) d
1 d= x dx u …u d xI f f= 

( )
N

N
1

1
E = x

N
f ( )

N

N
N

1

1
lim x = I

N
f

→∞ 

( ) ( ) ( )( )
N

22 2
N

1

1
σ s = f x E

N 1
f f≈ −

− 

( ) ( ) ( )( )
( ) ( )

2
var y y x dx

E y x dx

f

f

= −

=


 Eq. 5.39 
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Where, var(y) and E(y) are the variance and expected 
value respectively of a vector of random variables, y, 
which are computed by the Monte Carlo sampling 
technique. In addition to the variance and mean values, 
one can also easily compute a percentile for y including 
the 95% upper and lower bounds. 

5.2.4 Local sensitivity analysis and 
identifiability analysis  

5.2.4.1 Local sensitivity analysis  

Most of the sensitivity analysis results reported in the 
literature are of a local nature, and these are also called 
one factor at a time (OAT) methods. In OAT methods, 
each input variable is varied (also called perturbation) 
one at a time around its nominal value, and the resulting 
effect on the output is measured. The sensitivity analysis 
results from these methods are useful and valid in close 
proximity to the parameters analysed, hence the name 
local. In addition, the parameter sensitivity functions 
depend on the nominal values used in the analysis. 
Alternative methods, such as regional or global methods, 
expand the analysis from one point in the parameter 
space to cover a broader range in the entire parameter 
space but this is beyond the scope of this chapter 
(interested readers can consult literature elsewhere such 
as Saltelli et al., 2000; Sin et al., 2009). 

The local sensitivity measure is commonly defined 
using the first order derivative of an output, y = f(x), with 
respect to an input parameter, x:  

Absolute sensitivity: sa = 
 ∂y

∂x
                                  Eq.5.40 

(effect on y by perturbing x around its nominal value x0). 

Relative sensitivity: sr = 
 ∂y

∂x
	x°

y°
   																													Eq. 5. 41 

(relative effect of y by perturbing x with a fixed fraction 
of its nominal value x0). 

The relative sensitivity functions are non-
dimensional with respect to units and are used to 
compare the effects of model inputs among each other.  

These first-order derivatives can be computed 
analytically, for example using Maple or Matlab 

symbolic manipulation toolbox software. Alternatively, 
the derivatives can be obtained numerically by model 
simulations with a small positive or negative 
perturbation, Δx, of the model inputs around their 
nominal values, x0. Depending on the direction of the 
perturbation, the sensitivity analysis can be 
approximated using the forward, backward or central 
difference methods:  

Forward perturbation:  

( ) ( )0 0x +Δx x

Δx

f fy

x

−∂ =
∂

                   Eq. 5.42  

Backward perturbation:  

 
( ) ( )0 0x x Δx

Δx

f fy

x

− −∂ =
∂

                                       Eq. 5.43 

Central difference: 

( ) ( )0 0x +Δx x Δx

2Δx

f fy

x

− −∂ =
∂

                                Eq. 5.44 

When an appropriately small perturbation step, Δx, is 
selected (usually a perturbation factor, ε = 10-3 is used. 
Hence Δx = ε · x), all three methods provide exactly the 
same results.  

Once the sensitivity functions have been calculated, 
they can be used to assess the parameter significance 
when determining the model outputs. Typically, large 
absolute values indicate high parameter importance, 
while a value close to zero implies no effect of the 
parameter on the model output (hence the parameter is 
not influential). This information is useful to assess 
parameter identifiability issues for the design of 
experiments. 

5.2.4.2 Identifiability analysis using the 
collinearity index 

The first step in parameter estimation is determining 
which sets of parameters can be selected for estimation. 
This problem is the subject of identifiability analysis, 
which is concerned with identifying which subsets of 
parameters can be identified uniquely from a given set of 
measurements. Thereby, it is assumed a model can have 
a number of parameters. Here the term uniquely is 



DATA HANDLING AND PARAMETER ESTIMATION                                                                                                                                                                                           211                                               
 

 

important and needs to be understood as follows: a 
parameter estimate is unique when its value can be 
estimated independently of other parameter values and 
with sufficiently high accuracy (i.e. a small uncertainty). 
This means that the correlation coefficient between any 
pair of parameters should be low (e.g. lower than 0.5) 
and the standard error of parameter estimates should be 
low (e.g. the relative error of the parameter estimate, σθ 
/θ, lower than e.g. 25%). As it turns out, many parameter 
estimation problems are ill-conditioned problems. A 
problem is defined ill-conditioned when the condition 
number of a function/matrix is very high, which is caused 
by multicollinearity issues. In regression problems, the 
condition number is used as a diagnostic tool to identify 
parameter identifiability issues. Such regression 
diagnostics are helpful in generating potential candidates 
of the parameter subsets for estimation which the user 
can select from. 

There are several identifiability tests suggested in 
literature that are entirely based on the sensitivity 
functions of the parameters on the outputs. Here we are 
using the two-step procedure of Brun et al., 2002. 
Accordingly, the procedure works as follows: (i) 
assessment of the parameter significance ranking, (ii) 
collinearity analysis (dependency analysis of the 
parameter sensitivity functions in a parameter subset):  

Step 1. Rank the significance of the parameters: δmsqr 

δ
msqr

  =ට1

N
∑ (sri)N

i   

Where, sr is a vector of non-dimensional sensitivity 
values, sr = i...N values. 

Step 2. Calculate the collinearity index of a parameter 
subset K, γK.  

γ୏ 		= 1ඥminλ୏	 
λK	=	eigen(snormK

T  snormK)  
snorm	=	 sr‖sr‖ 

Where, K indicates a parameter subset, snorm is the 
normalized non-dimensional sensitivity function using 
the Euclidian norm, and λ୏ represents the  eigenvalues of 
the normalized sensitivity matrix for parameter subset K. 

In Step 1, parameters that have negligible or near-
zero influence on the measured model outputs are 
screened out from consideration for parameter 
estimation. In the second step, for each parameter subset 
(all the combinations of the parameter subsets which 
include 2, 3, 4,…m parameters) the collinearity index is 
calculated. The collinearity index is the measure of the 
similarity between any two vectors of the sensitivity 
functions. Subsets that have highly similar sensitivity 
functions will tend to have a very large number (γK ~ inf), 
while independent vectors will have a smaller value γK ~ 
1 which is desirable. In identifiability analysis, a 
threshold value of 5-20 is usually used in literature (Brun 
et al., 2001; Sin and Vanrolleghem, 2007; Sin et al., 
2010). It is noted that this γK value is to be used as 
guidance for selecting parameter subsets as candidates 
for parameter estimation. The best practice is to iterate 
and try a number of higher ranking subsets. 

5.3 METHODOLOGY AND WORKFLOW 

5.3.1 Data consistency check using an 
elemental balance and a degree of 
reduction analysis  

The following workflow is involved in performing an 
elemental balance and a degree of reduction analysis: 

Step 1. Formulate a black box process stoichiometry for 
the biological process. 

In this step, the most relevant reactants and products 
consumed and produced in the biological process are 
identified and written down. The output is a list of 
reactants and products for Step 2. 

Step 2. Compose the elemental composition matrices (Em 
and Eu). 

First establish which variables of interest are measured 
and then define the matrices as follows: Em includes the 
elemental composition and the degree of reductions for 
these measured variables, while Eu includes those of 
unmeasured variables. To calculate the degree of 
reduction, use the procedure given in Section 5.2.1.2. 

Step 3. Compute the unmeasured rates of the species (qu).  

Using Em and Eu together with the vector of the measured 
rates (qm), the unmeasured rates (qu) are estimated from 
the solution of the linear set of equations in Eq. 5.18.  

Eq. 5.45 

Eq. 5.46

Eq. 5.47 

Eq. 5.48 
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Step 4. Calculate the yield coefficients. 

In this step, since all the species rates of 
consumption/productions are now known, the yield 
coefficients can be calculated using Eq. 5.2 and the 
process stoichiometry can be written using the yield 
coefficient values. 

Step 5. Verify the elemental balance. 

In this step, a simple check is performed to verify if the 
elemental balance and degree of reduction balance are 
closed. If not, the procedure needs to be iterated by 
assuming a different hypothesis concerning the 
formation of by-products. 

5.3.2 Parameter estimation workflow for 
the non-linear least squares method 

This workflow assumes that an appropriate and 
consistent mathematical model is used to describe the 
data. Such a model confirms the elemental balance and 
degree of reduction analysis (see the workflow in Section 
5.3.1). Usually these models are available from 
literature. Most of them are modified from ASM models 
with appropriate simplifications and/or additions 
reflecting the conditions of the batch experiment. 

Step 1. Initialisation. 

In this step, the initial conditions for the model variables 
are specified as well as a nominal set of parameters for 
the model. The initial conditions for the model are 
specified according to the experimental conditions (e.g. 
10 mg NH4-N added at time 0, kLa is a certain value, 
oxygen saturation at a given temperature is specified, 
etc.). An initial guess of the model parameters is taken 
from literature. 

Step 2. Select the experimental data and a parameter 
subset for the parameter estimation. 

In this step, the experimental data is reviewed for the 
parameter estimation and which parameters need to be 
estimated is defined. This can be done using expert 
judgement or, more systematically, a sensitivity and 
identifiability analysis (see Section 5.3.4). 

Step 3. Define and solve the parameter estimation 
problem.  

In this step, the parameter estimation problem is defined 
as a minimization problem and solved using optimization 
algorithms (e.g. fminsearch in Matlab)  

Step 4. Estimate the uncertainty of the parameter 
estimators and model outputs. 

In this step, calculate the covariance matrix of the 
parameter estimators and compute the parameter 
confidence intervals as well as the parameter correlation 
matrix. Given the covariance matrix of the parameter 
estimators, estimate the covariance matrix of the model 
outputs by linear error propagation. 

Step 5. Review and analyse the results.  

In this step, review the values of the parameter values, 
which should be within the range of parameter values 
obtained from the literature. In addition, inspect the 
confidence intervals of the parameter estimators. Very 
large confidence intervals imply that the parameter in 
question may not be estimated reliably and should be 
excluded from the subset. 

Further, plot and review the results from the best-fit 
solution. Typically, the data and model predictions 
should fit well.  

If the results (both parameter values) and the best fit 
solution to the data are not satisfactory, iterate as 
appropriate by going back to Step 1 or Step 2. 

5.3.3 Parameter estimation workflow for 
the bootstrap method 

The workflow of the bootstrap method follows on from 
Step 1, Step 2 and Step 3 of the non-linear least squares 
method.  

Step 1. Perform a reference parameter estimation using 
the non-linear least squares method.  

This step is basically an execution of steps 1, 2 and 3 of 
the workflow in the non-linear least squares technique. 
The output is a residual vector that is passed on to the 
next step. The residual vector is then plotted and 
reviewed. If the residuals follow a systematic pattern (it 
should be random) or contain outliers, this is a cause for 
concern as it may imply the bootstrap method is not 
suited for this application.  
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Step 2. Generate synthetic data by bootstrap sampling and 
repeat the parameter estimation. 

Synthetic data is generated using Eq. 5.29-5.32 by 
performing bootstrap sampling (random sampling with 
replacement) from the residual vector and adding it to the 
model prediction obtained in Step 1. For each synthetic 
data, the parameter estimation in Step 1 is repeated and 
the output (that is, the values of the parameter estimators) 
is recorded in a matrix.  

Step 3. Review and analyse the results. 

In this step, the mean, standard deviation and the 
correlation matrix of the parameter estimators are 
computed from the recorded matrix data in Step 2. 
Moreover, the distribution function of the parameter 
estimators can be estimated and plotted using the vector 
of the parameter values that was obtained in Step 2.  

As in Step 5 of the workflow in the non-linear least 
squares method, the results are interpreted and evaluated 
using knowledge from literature and process 
engineering.  

5.3.4 Local sensitivity and identifiability 
analysis workflow 

The workflow of this procedure starts with the 
assumption that a mathematical model is available and 
ready to be used to describe a set of experimental data. 

Step 1. Initialisation. 

A framework is defined for the sensitivity analysis by 
defining the experimental conditions (the initial 
conditions for the batch experiments) as well as a set of 
nominal values for the model analysis. The model is 
solved with these initial conditions and the model outputs 
are plotted and reviewed before performing the 
sensitivity analysis. 

Step 2. Compute the sensitivity functions. 

Define which outputs are measured and hence should be 
included in the sensitivity analysis. Define the 
experimental data points (every 1 min versus every 5 
min). 

Compute the sensitivity functions of the parameters 
on the outputs using a numerical difference, e.g. using a 

forward, backward or central difference. Plot, review and 
analyse the results. 

Step 3. Rank the parameter significance.  

Calculate the delta mean-square measure, δmsqr, and rank 
the parameters according to this measure. Exclude any 
parameters that have zero or negligible impact on the 
outputs. 

Step 4. Compute the collinearity index.  

For all the parameter combinations (e.g. subset size 2, 3, 
4….m), the collinearity index, γK, is calculated. Each 
parameter subset is ranked according to the collinearity 
index value. 

Step 5. Review and analyse the results. 

Based on the results from Step 3 and Step 4, identify a 
short list of candidates (parameter subsets) that are 
identifiable. Exclude these parameters from any 
parameter subset that has near-zero or negligible 
sensitivity on the outputs.  

5.3.5 Uncertainty analysis using the Monte 
Carlo method and linear error propagation  

The workflow for the Monte Carlo method includes the 
following steps: 

Step 1. Input the uncertainty definition. 

Identify which inputs (parameters) have uncertainty. 
Define a range/distribution for each uncertainty input, 
e.g. normal distribution, uniform distribution, etc. The 
output from the parameter estimators (e.g. bootstrap) can 
be used as input here. 

Step 2. Sampling from the input space. 

Define the sampling number, N, (e.g. 50, 100, etc.) and 
sample from the input space using an appropriate 
sampling technique. The most common sampling 
techniques are random sampling, Latin Hypercube 
sampling, etc. The output from this step is a sampling 
matrix, XNxm, where N is the number of samples and m is 
the number of inputs. 
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Step 3. Perform the Monte Carlo simulations. 

Perform N simulations with the model using the 
sampling matrix from Step 2. Record the outputs in an 
appropriate matrix form to be processed in the next step. 

Step 4. Review and analyse the results. 

Plot the outputs and review the results. Calculate the 
mean, standard deviation/variance, and percentiles (e.g. 
95 %) for the outputs. Analyse the results within the 
context of parameter estimation quality and model 
prediction uncertainty. Iterate the analysis, if necessary, 
by going back to Step 1 or Step 2.  

The workflow for linear error propagation: 

The workflow is relatively straightforward as it is 
complementary to the covariance matrix of the parameter 
estimators and should be performed as part of the 
parameter estimation in the non-linear least squares 
method. It requires the covariance matrix of parameter 
estimators as well as the Jacobian matrix which are both 
obtained in Step 4 of the non-linear least squares 
methodology. 

5.4 ADDITIONAL EXAMPLES 

Example 5.2 Anaerobic fermentation of glucose  

In this example, anaerobic fermentation of glucose to 
ethanol and glycerol as metabolic products is considered.  

Step 1. Formulate the process stoichiometry. 

Ammonia is assumed to be the nitrogen source for 
growth. The biomass composition is assumed to be 
CH1.6O0.5N0.15. All the substrates are given on the basis 
of 1 C-mol, whereas nitrogen is on the basis of 1 N-mol. 
In this biological process, the substrates are CH2O 
(glucose) and NH3. The products are CH1.61O0.52N0.15 

(biomass), CH3O0.5 (ethanol), CH8/3O (glycerol) and CO2. 
Water is excluded from the analysis, as its rate of 
production is not considered relevant to the process. This 
means that the H and O balances will not be considered 
either. 

Step 2. Compose the elemental composition matrices (Em 
and Eu). 

As the process has six species (substrates + products) and 
three constraints (two elemental balances for C and N 

plus a degree of reduction balance), measurement of 
three rates is sufficient to estimate/infer the remaining 
rates. 

To illustrate the concept, the measured rates are 
selected as the volumetric consumption rate of substrate 
(-qs), the biomass production rate (qx), and the glycerol 
production rate (qg) hence the remaining rates for 
ammonia consumption as well as the production of 
ethanol and CO2 need to be estimated using Eq. 5.18. In 
the measured rate vectors, a negative sign indicates the 
consumption of a species, while a positive sign indicates 
the production of a species. 

Step 3 Compute the unmeasured rates of the species (qu). 

Recall Eq. 5.18, which is solved as follows: 

m m u

3 2

ns

ex

g c

E q  E q = 0

  S   X Gly                NH Eth CO

-qC 1 1 1 -q 0 1.0 1.0
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γ . .
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      
      ⋅ + ⋅ =      

           

 

( ) 1

u m m

1

n s

e x

c g

q E E q

-q 0 1.0 1.0 1 1 1 -q

q 1 0 0 0 0 15 0 q

q 0 6 0 4 4 12 4 67 q

u

.

. .

−

−

= − ⋅ ⋅

       
       = − ⋅ ⋅        
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Solving the system of linear equations above yields 
the following solution where the three unmeasured rates 
are calculated as a function of the measured rates qs, qg 
and qx: 

xn

e s g x

c s g x

0 15q-q

q 2q 3 467q 600 103q / 150

q q 3 133q 600 47q 150

 .

 / /

/ / /

 − 
   = − −  
    − −   

 

Step 4. Calculate the process yields. 

Once the rates of all the products and substrates are 
estimated, one can then calculate the yield coefficients 
for the process by recalling Eq. 5.2 as follows: 
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With these yield coefficients estimated, the 
simplified process stoichiometry reads as follows: 

2 sx 3

sx 1.61 0.52 0.15 sg sx 3 0.5

sg 8/3 sg sx 2

0 = CH O 0.15Y NH …

2
+ Y CH O N  + 0.7783Y 0.6867Y CH O +

3

1
Y CH O + 0.2217Y 0.3133Y CO

3

− − ⋅

 ⋅ − − ⋅ 
 

 ⋅ − − ⋅ 
 

 

Step 5. Verify the elemental balance.  

From the process stoichiometry, it is straightforward to 
verify that the elemental and degree of reduction 
balances are closed: 

sx sg sx sg

sg

2
1 Y 0 7783 Y 0 6867 Y Y

3

1
0.2217 Y 0 3133 Y 0

3 sx

. .

.

 − + + − ⋅ − ⋅ + + 
 

 − ⋅ − ⋅ = 
 

 

The nitrogen balance: 

sx sx0 0.15 Y 0.15 Y 0 0 0 0− − ⋅ + ⋅ + + + =  

The degree of reduction balance: 

sx sg sx

sg

2
1 4 Y 4.12 0 7783 Y 0 6867 Y 6

3

Y 4.67 0

. .
 − ⋅ + ⋅ + − ⋅ − ⋅ ⋅ + 
 

⋅ =
 

 

In the above example, three measured rates were 
assumed available as a minimum requirement to identify 
the system of linear equations. In practical applications, 
there might be two other situations: (i) redundant 
measurements: measurements of most or perhaps all of 
the species rates of production/consumption are 
available. In this case, the additional rate measurements 
can be used for data quality check and validation (where 
some of the measured rates could be used as a validation 
of the estimated coefficients from the balance analysis); 
(ii) a limited set of measurements: in this case too few 
rates measurements are available to uniquely estimate 
the unmeasured rates. If data from enough variables is 
not available, some variables should be fixed (e.g. this 
could be done iteratively in a search algorithm) to reduce 
the degrees of freedom. If not, there are infinite solutions. 
Further discussion of these techniques can be found 
elsewhere in relevant literature (Villadsen et al., 2011; 
Meijer et al., 2002; van der Heijden et al., 1994).  

Example 5.3 Estimate the parameters of the ammonium and 
nitrite oxidation processes using data from batch tests: the non-
linear least squares method 

Aerobic batch tests with a sludge sample from a pre-
denitrification plant are performed to measure the 
parameters of the nitrifying bacteria, in particular the 
ammonium-oxidizing organisms (AOO) and nitrite-
oxidising organisms (NOO). Following the 
recommended experimental procedure in literature 
(Guisasola et al., 2005), two separate batch tests were 
performed as follows: (i) batch test 1 with added 
ammonium of 20 mg NH4-N L-1 and an inhibitor (sodium 
azide) to suppress NOO activity, (ii) batch test 2 with 
added ammonium of 20 mg NH4-N L-1 without any 
inhibitor addition. In both tests, both the pH and 
temperature are controlled at 7.5 and 25 ºC respectively. 
During both the batch tests, ammonium, nitrite and 
nitrate are measured every 5 minutes, while dissolved 
oxygen is measured every minute. The data collected is 
shown in Figure 5.2. For the sake of simplicity and to 
keep the focus on the demonstration of the methods and 
their proper interpretation, these examples use synthetic 
data with random (white-noise) addition. 

Part 1. Estimate the parameters of the ammonium oxidation 
process.  
Several models are suggested in literature reviewed in 
Sin et al., 2008. We use the following mathematical 
model given in Table 5.1 to describe the kinetics of 
ammonium and nitrite oxidation. For the sake of 
simplicity, the following is assumed: (i) endogenous 
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respiration related to heterotrophic biomass is constant 
(hence not modelled), (ii) the inert fraction of the 
biomass released during decay is negligible (hence not 
modelled), and (iii) the ammonium consumed for 
autotrophic growth of biomass is negligible. It is noted 

that for the sake of completeness all of the above 
phenomena should be described which makes the 
analysis more accurate. However, here the model is kept 
simple to focus the attention of the reader on the 
workflow of parameter estimation. 

 

Table 5.1 The two-step nitrification model structure using matrix representation (adopted from Sin et al., 2008) 

Variables→Ci 
Processes ↓j 

SNH 
mg N L-1 

SO 

mg O2 L-1 

SNO2 

mg N L-1
 

SNO3 

mg N L-1
 

XAOO 

mg COD L-1 
XNOO 

mg COD L-1 
Rates  
qj 

AOO growth 
‒1

YAOO
 1‒

3.43

YAOO
 

1

YAOO
  1  µmax

AOO · MNH · MO,AOO · XAOO 

AOO decay  1   ‒1  bAOO · XAOO  

NOO growth  1‒
1.14

YNOO
 

‒1

YNOO
 

1

YNOO
  1 µmax

NOO · MNO2 · MO,NOO · XNOO 

NOO decay  1    ‒1 bNOO · XNOO 

Aeration  1     kLa·(So
sat ‒ So) 

MNH:
SNH

SNH+Ks,AOO ; MO,AOO:
SO

SO+Ko,AOO
; MO,NOO:

SO

SO+Ko,NOO
; MNO2:

SNO2

SNO2+Ks,NOO
 

 

The model has in total six ordinary differential 
equations (ODE), which corresponds to one mass 
balance for each variable of interest. Using a matrix 
notation, each ODE can be formulated as follows: 

i
ij j

dC
ν q

dt j

= ⋅                                                Eq. 5.49                                

The model is implemented in Matlab and solved 
using a standard differential equation solver (ODE45 in 
Matlab). 

%% solve the ODE model:  

%[time,output] = ODEsolver('Model',[starttime 

simulation  endtime simulation],Initial conditions for 

model variables,simulation options,model parameters); 

options=odeset('RelTol',1e-7,'AbsTol',1e-8); 

[t,y] = ode45(@nitmod,t,x0,options,par); 

Step 1. Initialisation. 

The model has in total 12 parameters. The nominal 
values as well as their range are taken from literature (Sin 
et al., 2008) and shown in Table 5.2 

The model has six state variables, all of which need 
to be specified to solve the system of the ODE equations. 
The initial condition corresponding to batch test 1 is 
shown in Table 5.3. 

Step 2. Select the measurements and parameter subset for 
parameter estimation. 

We used data collected from batch test 1 which includes 
ammonium, nitrite and dissolved oxygen measurements. 
Due to the suppression of NOO activity, no nitrate 
production is observed. Since batch test 1 is not designed 
for decay rate coefficient estimation, we consider all the 
parameters of AOO except bAOO for estimation. Hence, 
the following is our selection: 

• Y = [NH4 NO2 DO]; selected measurement set, Y. 
• θ = [YAOO µmax

AOO Ks,AOO Ko,AOO]; parameter subset 
for the estimation. 

Step 3. Solve the parameter estimation problem. 

The parameter estimation is programmed as a 
minimization problem using the sum of the squared 
errors as the cost function and solved using an 
unconstrained non-linear optimisation solver 
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(fminsearch algorithm in Matlab) using the initial 
parameter guess given in Table 5.2 and initial conditions 
in Table 5.3. To simulate the inhibitor addition, the 

maximum growth rate of NOO is assumed to be zero in 
the model simulations. The best estimates of the 
parameter estimators are given in Table 5.3. 

 

Table 5.2 Nominal values of the model parameters used as an initial guess for parameter estimation together with their upper and lower bounds.  

Parameter Symbol Unit Nominal value Range
Ammonium-oxidising organisms (AOO)  
Biomass yield YAOO mg COD mg N-1 0.15 0.11 - 0.21
Maximum growth rate  μmax

AOO d-1 0.8 0.50 - 2.10
Substrate (NH4) affinity  Ks,AOO mg N L-1 0.4 0.14 - 1.00
Oxygen affinity Ko,AOO mg O2 L-1 0.5 0.10 - 1.45
Decay rate coefficient bAOO d-1 0.1 0.07 - 0.30
Nitrite-oxidising organisms (NOO)  
Biomass yield YNOO mg COD mg N-1 0.05 0.03 - 0.09
Maximum growth rate  μmax

NOO d-1 0.5 0.40 - 1.05
Substrate (NO2) affinity  Ks,NOO mg N-1 1.5 0.10 - 3.00
Oxygen affinity Ko,NOO mg O2 L-1 1.45 0.30 - 1.50
Decay rate coefficient bNOO d-1 0.12 0.08 - 0.20
Experimental setup 
Oxygen mass transfer kLa d-1 360 *
Oxygen saturation  SO,sat mg O2 L-1 8 *

            * Not estimated in this example but assumed known.  

Table 5.3 Initial condition of the state variables for the model in batch test 1. 

Variable Symbol Unit Initial value Comment 
Ammonium SNH mg N L-1 20 Pulse addition 
Oxygen SO mg O2 L-1 8 Saturation 
Nitrite SNO2 mg N L-1 0 Post denitrified 
Nitrate SNO3 mg N L-1 0 Post denitrified 
AOO biomass XAOO mg COD L-1 75 Ratio of AOO to NOO reflects ratio of their yields 
NOO biomass XNOO m COD L-1 25

 

 

Figure 5.2 Data collected in batch test 1. NH4, NO2 and DO are used as the measured data set. 
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%%step 3 define and solve parameter estimation 
problem (as a minimization problem) 
options =optimset('display', 
'iter','tolfun',1.0e-06, 'tolx',1.0e-5, 
'maxfunevals', 1000); 
[pmin,sse]=fminsearch(@costf,pinit,options,td,yd
,idx,iy); 

Step 4. Estimate the uncertainty of the parameter 
estimators and the model prediction uncertainty. 

In this step, the covariance matrix of the parameter 
estimators is computed. From the covariance matrix, the 
standard deviation, 95 % confidence interval as well as 
the correlation matrix are obtained. The results are 
shown in Table 5.4.  

Table 5.4 Optimal values of the parameter estimators after the solution of 
the parameter estimation problem.  

Parameter Initial guess,	θ° Optimal values, θ෠  
YAOO 0.1 0.15 
μmax

AOO 0.8 1.45 
Ks,AOO 0.4 0.50 
Ko,AOO 0.5 0.69 

 

%% get the Jacobian matrix. use built-in 
"lsqnonlin.m" but with no iteration. 
options =optimset('display', 
'iter','tolfun',1.0e-06, 'tolx',1.0e-5, 
'maxfunevals', 0); 
[~,~,residual,~,~,~,jacobian]=lsqnonlin(@costl,p
min,[],[],options,td,yd,idx,iy); 
j(:,:)=jacobian; e=residual; 
s=e'*e/dof; %variance of errors 
%% calculate the covariance of parameter 
estimators 
pcov = s*inv(j'*j) ; %covariance of parameters 
psigma=sqrt(diag(pcov))'; % standard deviation 
parameters  
pcor = pcov ./ [psigma'*psigma]; % correlation 
matrix 
alfa=0.025; % significance level 
tcr=tinv((1-alfa),dof); % critical t-dist value 
at alfa  
p95 =[pmin-psigma*tcr; pmin+psigma*tcr]; %+-95% 
confidence intervals 
 
 
 
 
 

 

Table 5.5 Parameter estimation quality for the ammonium oxidation process: standard deviation, 95% confidence intervals and correlation matrix.  

Parameter Optimal value, θ෠  Standard deviation, ஘ 95 % confidence interval (CI) Correlation matrix 
     YAOO μmax

AOO Ks,AOO Ko,AOO 
YAOO 0.15 0.0076 0.130 0.160 1 0.96 0.0520 0.17 
μmax

AOO 1.45 0.0810 1.290 1.610  1 0.0083 0.42 
Ks,AOO 0.50 0.0180 0.470 0.540   1 -0.26 
Ko,AOO 0.69 0.0590 0.570 0.800    1 

 

 

Using the covariance matrix of the parameter 
estimators, the uncertainty in the model prediction is also 
calculated and the results are shown in Figure 5.3. 

 
 
 

%% calculate confidence intervals on the model 
output 
ycov = j * pcov * j'; 
ysigma=sqrt(diag(ycov)); % std of model outputs 
ys=reshape(ysigma,n,m); 
y95 = [y(:,iy) - ys*tcr y(:,iy)+ys*tcr]; % 95% 
confidence intervals 
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Figure 5.3 Model outputs including 95 % confidence intervals calculated using linear error propagation (red lines). The results are compared with the 
experimental data set. 

 

Step 5. Review and analyse the results.  

The estimated parameter values (Table 5.5) are found to 
be within the range reported in literature. This is an 
indication that the parameter values are credible. The 
uncertainty of these parameter estimators is found to be 
quite low. For example, the relative error (e.g. standard 
deviation/mean value of parameter values) is less than 10 
%, which is also reflected in the small confidence 
interval. This indicates that the parameter estimation 
quality is good. It is usually noted that relative error 
higher than 50 % is indicative of bad estimation quality, 
while relative error below 10 % is good.  

Regarding the correlation matrix, typically from 
estimating parameters from batch data for Monod-like 
models, the growth yield is significantly correlated with 
the maximum growth rate (the linear correlation 
coefficient is 0.96). Also notable is the correlation 
between the maximum growth rate and the oxygen 
affinity constant. This means that a unique estimation of 
the yield and maximum growth rate is not possible. 
Further investigation of the correlation requires a 
sensitivity analysis, which is demonstrated in Example 
5.5. 

Since the parameter estimation uncertainty is low, the 
uncertainty in the model predictions is also observed to 
be small. In Figure 5.3, the mean (or average) model 

prediction and the 95 % upper and lower bounds are quite 
close to each other. This means that the model prediction 
uncertainty due to parameter estimation uncertainty is 
negligible. It is noted that a comprehensive uncertainty 
analysis of the model predictions will require analysis of 
all the other sources of uncertainty including other model 
parameters as well as the initial conditions. However, 
this is outside the scope of this example and can be seen 
elsewhere (Sin et al., 2010). Measurement error 
uncertainty is considered in Example 5.6. 

This concludes the analysis of parameter estimation 
using the non-linear least squares method for the AOO 
parameters. 

Part 2. Estimate the parameters for the NOO step. 

Steps 1 and 2. Initial conditions and selection of data and 
parameter subsets for the parameter estimation.   

The same initial condition for batch test 1 is used in batch 
test 2 but without any inhibitor addition, meaning that in 
this example the nitration is active. The data collected 
from batch test 2 is shown in Figure 5.3, which includes 
ammonium, nitrite, nitrate and DO measurements.  

• Y2 = [NH4 NO2 NO3 DO]; selected measurement set, 
Y. 
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The parameter values of AOO were set to the 
estimated values (Table 5.4) in the first part and are 
hence known, while the yield and kinetic parameters of 
NOO can be identified from the data: 

• θ2 = [YNOO µmax
NOO Ks,NOO Ko,NOO]; parameter subset 

for the estimation. 
 
 

 

 

Figure 5.4 Measured data from batch test 2. 

 

Steps 3 and 4. Solve the parameter estimation problem and 
calculate the parameter estimation uncertainties. 

The AOO parameters are previously estimated in Part 1. 
The results of the solution of the parameter estimation 

problem as well as the parameter uncertainties for NOO 
are shown in Table 5.6. 

. 

 

Table 5.6 Optimal values of the parameter estimators after solution of the parameter estimation problem. 

Parameter Optimal values, θ෠  Standard deviation, ஘ 95 % confidence interval (CI) Correlation matrix 
   Lower bound Upper bound YNOO μmax

NOO Ks,NOO Ko,NOO

YNOO 0.04 0.01 0.01 0.07 1.00 1.00 0.54 -0.86
μmax

NOO 0.41 0.13 0.15 0.66 1.00 0.55 -0.86
Ks,NOO 1.48 0.03 1.42 1.55  1.00 -0.37
Ko,NOO 1.50 0.05 1.39 1.60   1.00

 

The linear propagation of the parameter estimation 
error (covariance matrix) to the model prediction 
uncertainty is shown in Figure 5.5. 
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Figure 5.5 Model outputs including 95 % confidence intervals compared with the experimental data set. 

 

Step 5. Review and analyse the results 

The estimated parameter values are within the range 
reported for the NOO parameters in literature, which 
makes them credible. However, this time the parameter 
estimation error is noticeably higher, e.g. the relative 
error (the ratio of standard deviation to the optimal 
parameter value) is more than 30%, especially for the 
yield and maximum growth rate. This is not surprising 
since the estimation of both the yield and maximum 
growth rate is fully correlated (the pairwise linear 
correlation coefficient is 1). These statistics mean that a 
unique parameter estimation for the yield, maximum 
growth rate and oxygen half-saturation coefficient of 
NOO (the pairwise linear correlation coefficient is 0.86) 
is not possible with this batch experiment. Hence, this 
parameter subset should be considered as a subset that 
provides a good fit to the experimental data, while 
individually each parameter value may not have 
sensible/physical meaning. 

The propagation of the parameter covariance matrix 
to the model prediction uncertainty indicates low 
uncertainty on the model outputs. This means that 
although parameters themselves are not uniquely 
identifiable, they can still be used to perform model 

predictions, e.g. to describe batch test data. While 
performing simulations with the model, however, one 
needs to report the 95% confidence intervals of the 
simulated values as well. The latter reflects how the 
covariance of the parameter estimates (implying the 
parameter estimation quality) affects the model 
prediction quality. For example, if the 95% confidence 
interval of the model predictions is low, then the effect 
of the parameter estimation error is negligible.  

Part 1 and Part 2 conclude the parameter estimation 
for the two-step nitrification step. The results show that 
the quality of the parameter estimation for AOO is 
relatively higher than that of NOO using batch data for 
these experiments. This poor identifiability will be 
investigated later on, using sensitivity analysis to 
improve the identifiability of individual parameters of 
the model. 

Regarding the model prediction errors, the 95% 
confidence interval of the model outputs is quite low. 
This means that the effects of the parameter estimation 
errors on the model outputs are low.  
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Example 5.4 Estimate the parameters of ammonium oxidation 
using data from the batch test – the bootstrap method 

In this example, we investigate the parameter estimation 
problem in part 1 of Example 5.3. We used the data from 
batch test 1 to estimate the parameters of AOO.  

Step 1. Perform a reference parameter estimation using 
non-linear least squares. 

The workflow in this step is exactly the same as the steps 
1, 2 and 3 in Example 5.3. The output from this step is 
the best fit to the data and the distribution of residuals 
(Figure 5.6).

 

 

Figure 5.6 Residuals from the reference parameter estimation. 

 

Step 2. Generate synthetic data by bootstrap sampling and 
repeat the parameter estimation. 

In this step, bootstrap sampling from residuals is 
performed.  

nboot=50; % bootstrap samples 
for i=1:nboot 
  disp(['the iteration number is : 
',num2str(i)]) 
  onesam =ceil(n*rand(n,m)); % random sampling 
with replacement 
  rsam  =res(onesam); % measurement errors for 
each variable 

  ybt = y(:,iy) + rsam ; % synthetic data: error 
+ model (ref PE) 
  options 
=optimset('display','iter','tolfun',1.0e-
06,'tolx',1.0e-5,'maxfunevals',1000); 
[pmin(i,:),sse(i,:)]=lsqnonlin(@costl,pmin1,plo,
phi,options,td,ybt,idx,iy); 
  bootsam(:,:,i)=ybt; % record samples 
end 

Fifty bootstrap samples from residuals (random 
sampling with replacement) are performed and added to 
the model, thereby yielding the 50 synthetic 
measurement data sets shown in Figure 5.7.
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Figure 5.7 Generation of synthetic data using bootstrap sampling from the residuals (50 samples in total). 

 

For each of this synthetic data (a bootstrap sample), 
a parameter estimation is performed and the results are 
recorded for analysis. Because 50 synthetic data sets are 

generated, this means that 50 different estimates of 
parameters are obtained. The results are shown as a 
histogram for each parameter estimate in Figure 5.8.  

 

 

Figure 5.8 Distribution of the parameter estimates obtained using the bootstrap method (each distribution contains 50 estimated values for each 
parameter).
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Step 3. Review and analyse the results. 

Step 2 provided a matrix of the parameter estimates, 
θ50x4. In this step, the mean, standard deviation and 
correlation matrix properties of this matrix are evaluated. 
The results are shown in Table 5.7. 

 

 

.%step 3 Evaluate/interpret distribution of theta  
disp('The mean of distribution of theta are') 
disp(mean(pmin)) 
disp('The std.dev. of distribution of theta 
are') 
disp(std(pmin)) 
disp('') 
disp('The correlation of parameters') 
disp(corr(pmin)) 

Table 5.7 Optimal values of the parameter estimators after solving the parameter estimation problem. 

Parameter Optimal value, θ෠  Standard deviation, ஘  Correlation matrix 
   YAOO μmax

AOO Ks,AOO Ko,AOO 
YAOO 0.14 0.01 1.00 0.97 -0.03 0.20 
μmax

AOO 1.40 0.11  1.00 -0.07 0.41 
Ks,AOO 0.50 0.02   1.00 -0.28 
Ko,AOO 0.68 0.07    1.00 

 

 
All the results, including the mean parameter 

estimates, their standard deviation and the correlation 
matrix are in good agreement with the parameter 
estimates obtained from the non-linear least squares 
method (compare with Table 5.6.). This is expected, 
since the distribution of residuals is found to be quite 
similar to a normal distribution (Figure 5.6). In this case, 
both the non-linear least squares (and the linear 
approximation of covariance matrix estimation) as well 
as the bootstrap method will obtain statistically similar 
results.  

Also the model simulation with the mean values 
obtained from the bootstrap samples provided similarly 
good fit to the measured data, as shown in Figure 5.3. 

Because the bootstrap method is intuitively simple 
and straightforward and does not require a calculation of 
the Jacobian matrix, we recommend it for practical use. 
However, a reservation on using this method is that the 
distribution of the residuals should be inspected and 
should not contain any systematic pattern (indicating 
model structure or systematic measurement issues). 

%% get the Jacobian matrix. use built-in 
"lsqnonlin.m" but with no iteration. 
options =optimset('display', 
'iter','tolfun',1.0e-06, 'tolx',1.0e-5, 
'maxfunevals', 0); 

[~,~,residual,~,~,~,jacobian]=lsqnonlin(@costl,p
min,[],[],options,td,yd,idx,iy); 
j(:,:)=jacobian; e=residual; 
s=e'*e/dof; %variance of errors 
%% calculate the covariance of parameter 
estimators 
pcov = s*inv(j'*j) ; %covariance of parameters 
psigma=sqrt(diag(pcov))'; % standard deviation 
parameters  
pcor = pcov ./ [psigma'*psigma]; % correlation 
matrix 
alfa=0.025; % significance level 
tcr=tinv((1-alfa),dof); % critical t-dist value 
at alfa  
p95 =[pmin-psigma*tcr; pmin+psigma*tcr]; %+-95% 
confidence intervals 

Example 5.5 Sensitivity and identifiability analysis of the 
ammonium oxidation process parameters in batch tests 

Here the ammonium oxidation process is used as 
described in Example 5.3. The objective of this example 
is twofold: in the first part, we wish to assess the 
sensitivity of all the AOO parameters to all the model 
outputs under the experimental conditions of batch test 
1. In the second part we wish to examine, given the 
measured data set, which parameter subsets are 
potentially identifiable and compare them with the 
parameter subset already used in the parameter 
estimation in Example 5.3. 
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Step 1. Initialisation. We use the initial conditions of 
batch test 1 as described in Table 5.3 as well as the 
nominal values of AOO model parameters as given in 
Table 5.2. 

The model outputs of interest are:  

• y = [NH4 NO2 NO3 DO AOO NOO] 

The parameter set of interest is:  

• θ = [YAOO µmax
AOO Ks,AOO Ko,AOO bAOO] 

Step 2. Compute and analyse the sensitivity functions. 

In this step, the absolute sensitivity functions are 
computed using numerical differentiation and the results 
are recorded for analysis. 

for i=1:m; %for each parameter 
  dp(i) = pert(i) * abs(ps(i)); % parameter 
perturbation 
  p(i)  = ps(i) + dp(i);    % forward 
perturbation 
  [t1,y1] = ode45(@nitmod,td,x0,options,p); 
  p(i) = ps(i) - dp(i); %backward perturbation 
  [t2,y2] = ode45(@nitmod,td,x0,options,p);  
  dydpc(:,:,i) = (y1-y2) ./ (2 * dp(i)); 
%central difference 
  dydpf(:,:,i) = (y1-y) ./ dp(i); %forward 
difference  
  dydpb(:,:,i) = (y-y2) ./ dp(i); %backward 
difference  
  p(i)=ps(i); % reset parameter to its reference 
value 
end 

The output sensitivity functions (absolute) are 
plotted in Figure 5.9 for one parameter, namely the yield 
of AOO growth for the purpose of detailed examination. 
The interpretation of a sensitivity function is as follows: 
(i) higher magnitude (positive or negative alike) means 
higher influence, while lower or near zero magnitude 
means negligible/zero influence of the parameter on the 
output, (ii) negative sensitivity means that an increase in 
a parameter value would decrease the model output, and 
(iii) positive sensitivity means that an increase in a 
parameter value would increase the model output. 
With this in mind, it is noted that the yield of AOO has a 
positive effect on ammonium and an equally negative 
impact on nitrite. This is expected from the model 
structure where there is an inverse relationship between 

the yield and ammonium (substrate) consumption. A 
higher yield means less ammonium is consumed per unit 
growth of biomass, and hence it would also mean more 
ammonium present in the batch test. Since less 
ammonium is consumed, less nitrite would be produced 
(hence the negative correlation). 

On the other hand, it is also noted that the sensitivity 
of the yield parameter increases gradually during the 
linear growth phase and starts to decrease as we are 
nearer to the depletion of ammonium. Once the 
ammonium is depleted, the sensitivity becomes nil as 
expected. As predicted, the yield has a positive impact 
on AOO growth since a higher yield means higher 
biomass production. Regarding oxygen, the yield first 
has a positive impact that becomes negative towards the 
completion of ammonium. This means there is a rather 
non-linear relationship between the oxygen profile and 
the yield parameter. As expected, the yield of AOO has 
no impact on the nitrate and NOO outputs in batch test 1, 
because of the addition of the inhibitor that effectively 
suppressed the second step of nitrification. 

In the sensitivity analysis, what is informative is to 
compare the sensitivity functions among each other. This 
is done in Figure 5.10 using non-dimensional sensitivity 
functions, which are obtained by scaling the absolute 
sensitivity function with their respective nominal values 
of parameters and outputs (Eq. 5.41). Figure 5.10 plots 
the sensitivity of all the model parameters with respect to 
the six model outputs. Each subplot in the figure presents 
the sensitivity functions of all the parameters with 
respect to one model output shown in the legend. The y-
axis indicates the non-dimensional sensitivity measure, 
while the x-axis indicates the time during the batch 
activity. For example, we observe that the sensitivity of 
parameters to nitrate and NOO is zero. This is logical 
since NOO activity is assumed to be zero in this 
simulation.  

For the model outputs for ammonium, nitrite and 
oxygen, the sensitivity functions of the yield and 
maximum growth rate for AOO follow an inversely 
proportional trend/pattern. This inversely proportional 
relation is the reason why the parameter estimation 
problem is an ill-conditioned problem. This means that if 
the search algorithm increases the yield and yet at the 
same time decreases the maximum growth rate with a 
certain fraction, the effect on the model output could be 
cancelled out. The result is that many combinations of 
parameter values for the yield and maximum growth rate 
can have a similar effect on the model output. This is the 
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reason why a high correlation coefficient is obtained 
after the parameter estimation has been performed. This 
means that for a parameter to be uniquely identifiable, 

their sensitivity functions should be unique and not 
correlated with the sensitivity function of the other 
parameters. 

 

 

Figure 5.9 Absolute sensitivity of the AOO yield on all the model outputs. 

 

Another point of interest regarding these plots is that 
the relative effect (that is, the magnitude of values on the 
y-axis) of the parameters on ammonium, oxygen and 
nitrite is quite similar. This means that all three of these 
variables are equally relevant and important for 
estimating these parameters. 

Step 3. Parameter-significance ranking. 

In this step the significance of parameters is ranked by 
summarizing the non-dimensional sensitivity functions 
of the parameters to model outputs using the δmsqr 
measure. The results are shown in Figure 5.11. 

The results show that the decay rate of AOO has 
almost zero effect on all three of the measured variables 
(ammonium, nitrite and oxygen) and therefore cannot be 
estimated. This is known from process engineering and 
for this reason, short-term batch tests are not used to 
determine decay constants. This result therefore is a 
confirmation of the correctness of the sensitivity 
analysis. With regards to the maximum growth rate and 
yield, these parameters are equally important followed 
by the affinity constant for oxygen and ammonium. This 
indicates that at least four parameters can potentially be 
estimated from the data set.
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Figure 5.10 Relative sensitivity functions of the AOO parameters on the model outputs. 

  

Step 5. Identifiability analysis. 

In this step, normalized sensitivity functions are used to 
assess which parameter subsets have a small collinearity 
index. The collinearity index is a measure of how two 
sensitivity functions are aligned together, therefore 
implying linear dependency.  

for i = 2:subset 
    combos = combnk(set,i); % all possible 
parameter combinations of different subset size 
(2,3,4...) 
    for j=1:n 
        tempn   = snormy(:,combos(j,:)) ; 
        tempa   = say(:,combos(j,:)) ; 
        nsm     = tempn'*tempn;  % normalized 
sensitivity matrix 
        asm     = tempa'*tempa;   % absolute 
sensitivity matrix, fim 

        dtm     = sqrt(det(asm))^(1/(i*2)); 
%determinant index 
        col     = 1/sqrt(min(eig(nsm))); % 
collinearity index 
        subs(j,:)    = [k i col dtm] ; 
     end 
end 

The identifiability analysis indicates that there are 26 
different combinations of the parameter subsets that can 
potentially be used for parameter estimation using the 
ammonium, nitrite and oxygen measurements (Table 
5.8). The collinearity index value was changed from 1.2 
to 53 and in general tends to increase for larger parameter 
subset sizes. The parameter subset K#21 is the one used 
in the parameter estimation above (see examples 5.3 and 
5.4). This subset has a collinearity index of 45, which is 
far higher than typically considered threshold values of 
5-15 for a subset to be considered practically identifiable 
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(Brun et al., 2002; Sin et al., 2010). As shown here, the 
analysis would have diagnosed the issue before 
performing the parameter estimation (PE) and this would 

have indicated that this subset was not suitable for the 
estimation.  

  

 

Figure 5.2 Significance ranking of the AOO parameters with respect to the model outputs. 

 

However, given that the sensitivity of bAOO was not 
influential on the outputs (see Step 3), any subset 
containing this parameter would not be recommended for 
parameter estimation. Nevertheless there remain many 
subsets that meet a threshold of 5-15 for γK that can be 
considered for the parameter estimation problem. The 
parameter subsets shaded in Table 5.8 meet these 
identifiability criteria, and therefore can be used for 
parameter estimation. The best practice is to start with 
the parameter subset with the largest size (of parameters) 
and lowest γK. Taking these considerations of the 
sensitivity and collinearity index of the parameter 
subsets into account helps to avoid the ill-conditioned 
parameter estimation problem and to improve the quality 
of the parameter estimates.  

Example 5.6 Estimate the model prediction uncertainty of the 
nitrification model – the Monte Carlo method 

In this example, we wish to propagate the parameter 
uncertainties resulting from parameter estimation (e.g. 
Example 5.3 and Example 5.4) to model output 
uncertainty using the Monte Carlo method. 

For the uncertainty analysis, the problem is defined 
as follows: (i) only the uncertainty in the estimated AOO 
parameters is considered, (ii) the experimental 
conditions of batch test 1 are taken in account (Table 
5.3), and (iii) the model in Table 5.1 is used to describe 
the system and nominal parameter values in Table 5.2. 
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Table 5.8 The collinearity index calculation for all the parameter combinations. 

Subset K Subset size Parameter combination γK 

1 2 Ko,AOO bAOO      1.32 

2 2 Ks,AOO bAOO      1.26 

3 2 Ks,AOO Ko,AOO      2.09 

4 2 μmax
AOO bAOO      1.30 

5 2 μmax
AOO Ko,AOO      13.92 

6 2 μmax
AOO Ks,AOO      2.03 

7 2 YAOO bAOO      1.28 

8 2 YAOO Ko,AOO      12.55 

9 2 YAOO Ks,AOO      2.02 

10 2 YAOO μmax
AOO      42.93 

11 3 Ks,AOO Ko,AOO bAOO    2.10 

12 3 μmax
AOO Ko,AOO bAOO    14.05 

13 3 μmax
AOO Ks,AOO bAOO    2.03 

14 3 μmax
AOO Ks,AOO Ko,AOO    14.23 

15 3 YAOO Ko,AOO bAOO    13.09 

16 3 YAOO Ks,AOO bAOO    2.02 

17 3 YAOO Ks,AOO Ko,AOO    12.89 

18 3 YAOO μmax
AOO bAOO    51.25 

19 3 YAOO μmax
AOO Ko,AOO    45.87 

20 3 YAOO μmax
AOO Ks,AOO    43.37 

21 4 YAOO μmax
AOO Ks,AOO Ko,AOO  45.91 

22 4 YAOO μmax
AOO Ks,AOO bAOO  51.25 

23 4 YAOO μmax
AOO Ko,AOO bAOO  53.01 

24 4 YAOO Ks,AOO Ko,AOO bAOO  13.30 

25 4 μmax
AOO Ks,AOO Ko,AOO bAOO  14.30 

26 5 YAOO μmax
AOO Ks,AOO Ko,AOO bAOO 53.07 

 

Step 1. Input uncertainty definition. 

As defined in the above problem definition, only the 
uncertainties in the estimated AOO parameters are taken 
into account: 

• θinput = [YAOO µmax
AOO Ks,AOO Ko,AOO].  

Mean and standard deviation estimates are taken as 
obtained from the bootstrap method together with their 
correlation matrix (Table 5.7). Further it is assumed that 
these parameters follow a normal distribution or 
multivariate normal distribution since they have a 
covariance matrix and are correlated. This assumption 

can be verified by calculating the empirical density 
function for each parameter using the parameter 
estimates matrix (θ50x4) and shown in Figure 5.12. 

figure 
labels=['\theta_1';'\theta_2';'\theta_3';'\theta
_4']; %or better the name of parameter 
for i=1:4 
    subplot(2,2,i) 
    [f xi]=ksdensity(pmin(:,i)); 
    plot(xi,f) 
xlabel(labels(i,:),'FontSize',fs,'FontWeight','b
old') 
end
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Figure 5.12 Empirical probability density estimates for the AOO parameters as obtained by the bootstrap method. 

 

Step 2. Sampling from the input space 

Since the input parameters have a known covariance 
matrix, any sampling technique must take this into 
account. In this example, since the parameters are 
defined to follow a normal distribution, the input 
uncertainty space is represented by a multivariate normal 
distribution. A random sampling technique is used to 
sample from this space: 

%% do random sampling 
N= 100; %% sampling number 
mu=mean(pmin); %% mean values of parameters 
sigma=cov(pmin); %% covariance matrix (includes 
stand dev and correlation information)  
X = mvnrnd(mu,sigma,N); % sample parameter space 
using multivariate random sampling 

The output from this step is a sampling matrix, XNxm, 
where N is the sampling number and m is the number of 
inputs. The sampled values can be viewed using a matrix 
plot as in Figure 5.13. In this figure, which is a matrix 
plot, the diagonal subplots are the histogram of the 
parameter values while the non-diagonal subplots show 
the sampled values of the two pairs of parameters. In this 

case the most important observations are that (i) the 
parameter input space is sampled randomly and (ii) the 
parameter correlation structure is preserved in the 
sampled values. 

Step 3. Perform the Monte Carlo simulations. 

In this step, N model simulations are performed using the 
sampling matrix from Step 2 (XNxm) and the model 
outputs are recorded in a matrix form to be processed in 
the next step. 

%%step 2 perform monte carlo simulations for 
each parameter value 
% Solution of the model 
initcond;options=odeset('RelTol',1e-
7,'AbsTol',1e-8); 
for i=1:nboot 
    disp(['the iteration number is : 
',num2str(i)]) 
    par(idx) = X(i,:) ; %read a sample from 
sampling matrix 
    [t,y1] = ode45(@nitmod,td,x0,options,par); ;  
%solve the model  
     y(:,:,i)=y1; %record the outputs  
end
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Figure 5.13 Plotting of the sampling matrix of the input space, XNxm – the multivariate random sampling technique with a known covariance matrix.

 

Figure 5.14 Monte Carlo simulations (N = 100) of the model outputs.
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Step 4. Review and analyse the results. 

In this step, the outputs are plotted and the results are 
reviewed. In Figure 5.14, Monte Carlo simulation results 
are plotted for four model outputs. 

As shown in Figure 5.15, the mean, standard 
deviation and percentiles (e.g. 95 %) can be calculated 
from the output matrix. The results indicate that for the 
sources of uncertainties being studied, the uncertainty in 

the model outputs can be considered negligible. These 
results are in agreement with the linear error propagation 
results shown in Figure 5.5. 

This means that while there is uncertainty in the 
parameter estimates themselves, when the estimated 
parameter subset is used together with its covariance 
matrix, the uncertainty in the model prediction is low. 
For any application of these model parameters they 
should be used together as a set, rather than individually. 

 

 

Figure 5.15 Mean and 95 % percentile calculation of the model output uncertainty. 

 

Another point to make is that the output uncertainty 
evaluated depends on the input uncertainty defined as 
well as the framing, e.g. initial conditions of the 
experimental setup. For example, in the above example 
what was not considered is the measurement uncertainty 
or uncertainty due to other fixed parameters (decay) and 
initial conditions (the initial concentration of autotrophic 
bacteria). Therefore these results need to be interpreted 
within the context where they are generated. 

5.5 ADDITIONAL CONSIDERATIONS 

Best practice in parameter estimation 
In practice, while asymptotic theory assumption gives 
reasonable results, there are often deviations from the 
assumptions. In particular: 
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• The measurement errors are often auto-correlated, 
meaning that too many observations are redundant 
and not independent (non-independently and 
identically distributed (iid) random variables). This 
tends to cause an underestimation of asymptotic 
confidence intervals due to smaller sample variance, 
σ2. A practical solution to this problem is to check the 
autocorrelation function of the residuals and filter 
them or perform subsampling such that 
autocorrelation is decreased in the data set. The 
parameter estimation can then be redone using the 
subsample data set. 

• Parameter estimation algorithms may stop at local 
minima, resulting in an incorrect linearization result 
(the point at which the non-linear least squares are 
linearized). To alleviate this issue, parameter 
estimation needs to be performed several times with 
either different initial guesses, different search 
algorithms and/or an identifiability analysis. 

Afterwards it is important to verify that the minimum 
solution is consistent with different minimization 
algorithms. 

Identifiability or ill-conditioning problem: Not all the 
parameters can be estimated accurately. This can be 
caused by a too large confidence interval compared to the 
mean or optimized value of the parameter estimators. 
The solution is to perform an identifiability analysis or 
re-parameterisation of the model, so that a lower number 
of parameters needs to be estimated. 

While we have robust and extensive statistical 
theories and methods relevant for estimation of model 
parameters as demonstrated above, the definition of the 
parameter estimation problem itself, which is concerned 
with stating what is the data available, what is the 
candidate model structure, and what is the starting point 

for the parameter values,  is taken for granted. Hence a 
proper analysis and definition of the parameter 
estimation problem will always require a good 
engineering judgment. For robust parameter estimation 
in practice, due to the empirical/experiental nature of 
parameter definition, the statistical methods (including 
MLE estimates) should be treated within the 
context/definition of the problem of interest.  

With regards to bootstrap sampling, the most 
important issue is whether or not the residuals are 
representative of typical measurement error. For a more 
detailed discussion of this issue, refer to Efron (1979).  

Best practice in uncertainty analysis 
When performing uncertainty analysis, the most 
important issue is the framing and the corresponding 
definition of the input uncertainty sources. Hence, the 
outcome from an uncertainty analysis should not be 
treated as absolute but dependent on the framing of the 
analysis. A detailed discussion of these issues can be 
found elsewhere (e.g. Sin et al., 2009; Sin et al., 2010).  

Another important issue is the covariance matrix of 
the parameters (or correlation matrix), which should be 
obtained from a parameter estimation technique. 
Assuming the correlation matrix is negligible may lead 
to over or under estimation of the model output 
uncertainty. Hence, in a sampling step the appropriate 
correlation matrix should be defined for inputs (e.g. 
parameters) considered for the analysis. 

Regarding the sampling number, one needs to iterate 
several times to see if the results differ from one iteration 
to another. Since the models used for the parameter 
estimation are relatively simple to solve numerically, it 
is recommended to use a sufficiently high number of 
iterations e.g. 250 or 500. 
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