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5.1INTRODUCTION

Modelling is one of the key tools at the disposal of
modern wastewater treatment professionals, researchers
and engineers. It enables them to study and understand
complex phenomena underlying the physical, chemical
and biological performance of wastewater treatment
plants at different temporal and spatial scales.

At full-scale wastewater treatment plants (WWTPs),
mechanistic modelling using the ASM framework and
concept (eg. Henze et al., 2000) has become an
important part of the engineering toolbox for process
engineers. It supports plant design, operation,
optimization and control applications. Models have also
been increasingly used to hel p take decisions on complex
problems including the process/technology selection for
retrofitting, as well as validation of control and
optimization strategies (Gernaey et al., 2014; Mauricio-
Iglesias et al., 2014; Vangsgaard et al., 2014; Bozkurt et
al., 2015).

Models have also been used as an integral part of the
comprehensive analysis and interpretation of data
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obtained from arange of experimental methods from the
laboratory, as well as pilot-scale studies to characterise
and study wastewater treatment plants. In this regard,
models help to properly explain various kinetic
parameters for different microbial groups and their
activities in WWTPs by using parameter estimation
techniques. Indeed, estimating parameters is an integral
part of model development and application (Seber and
Wild, 1989; Ljung, 1999; Dochain and Vanrolleghem,
2001; Omlin and Reichert, 1999; Brun et al., 2002; Sin
et al., 2010) and can be broadly defined as follows:

Given a model and a set of data/measurements from
the experimental setup in question, estimate all or some
of the parameters of the model using an appropriate
statistical method.

The focus of this chapter is to provide a set of tools
and the techniques necessary to estimate the kinetic and
stoichiometric parameters for wastewater treatment
processes using data obtained from experimental batch
activity tests. These methods and tools are mainly
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intended for practical applications, i.e. by consultants,
engineers, and professionals. However, it is aso
expected that they will be useful both for graduate
teaching as well as a stepping stone for academic
researchers who wish to expand their theoretical interest
in the subject. For the models selected to interpret the
experimental data, this chapter uses available models
from literature that are mostly based on the Activated
Sludge Model (ASM) framework and their appropriate
extensions (Henze et al., 2000).

The chapter presents an overview of the most
commonly used methodsin the estimation of parameters
from experimental batch data, namely: (i) data handling
and validation, (ii) parameter estimation: maximum
likelihood estimation (MLE) and bootstrap methods, (iii)
uncertainty analysis: linear error propagation and the
Monte Carlo method, and (iv) sensitivity and
identifiability analysis.

5.2 THEORY AND METHODS

5.2.1 Data handling and validation

5.2.1.1 Systematic data analysis for biological
processes

Most activated sludge processes can be studied using
simplified process stoichiometry models which rely on a
‘black box’ description of the cellular metabolism using
measurement data of the concentrations of reactants
(pollutants) and products e.g. COz, intermediate oxidised
nitrogen species, etc. Likewise, the Activated Sludge
Model (ASM) framework (Henze et al., 2000) relies on
a black box description of aerobic and anoxic
heterotrophic activities, nitrification, hydrolysis and
decay processes.

A genera model formulation of the process
stoichiometry describing the conversion of substrates to
biomass and metabolic productsis formulated below (for
carbon metabolism):

CH,O+ Yo,0, + Yg,NH,

Eq. 5.1
Yo X+ YoCO, + YauPr. + Yo H,0 q

Equation 5.1 represents a simplification of the
complex metabolic ‘machinery’ of cellular activity into
one global relation. This simplified reaction allows the
calculation of the process yields including Yso (yield of
oxygen per unit substrate), Y sn (yield of nitrogen per unit
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substrate), Ysx (yield of biomass per unit substrate), Y sc
(yield of COz per unit of substrate), Ysp1 (yield of
intermediate product P: per unit of substrate), and Y sw
(yield of water per unit of substrate).

The coefficients of this equation are written on the
basis of 1 C-mol of carbon substrate. This includes
growth yield for biomass, Ysx, substrate (ammonia)
consumption yields, Ysn, oxygen consumption yields,
Yso, yield for production of CO2, Ysc, and yield for
water, Ysw. The biomass, X, is aso written on the basis
of 1 C-mol and is assumed to have atypical composition
of CHaObNc. The biomass composition can be measured
experimentally, CH1800sNo2 being a typical value.
Some of the yields are also measured experimentally
from the observed rates of consumption and production
of components in the process as follows:

v, =5=% and v, =v? Eq. 5.2

Where, q refers  to the  volumetric
conversion/production rate of component i, i.e. the mass
of component i per unit volume of the reactor per unit
time (Massi Volume! Time?), ri refers to the measured
rate of the mass of component i per unit time per unit
weight of the biomass (Mass i Time! Mass biomass?)
and Yji istheyield of component i per unit of component
j. In the case of biomass, x, this would refer to the
specific growth rate p:

Eq.5.3

One of the advantages of using this process
stoichiometry is that it allows elemental balances for C,
H, N and O to be set up and to make sure that the process
stoichiometry is balanced. For the process stoichiometry
given in Eq 5.1, the following elemental balance for
carbon will hold, assuming al the relevant yields are
measured:

C-baance: -1+Y +Y +Y, =0 Eq. 5.4

Similarly to the carbon balance, the elemental
balance for N, O and H can & so be performed. Usually
in biological process studies, the yield coefficient for
water, Y sw, isignored because the production of water is
negligible compared with the high flow rates typically
treated in WWTPs. For thisreason, H and O balancesand



DATA HANDLING AND PARAMETER ESTIMATION

process stoichiometry are usually not closed in
wastewater applications. However, the balance for the
degree of reduction is closed in wastewater treatment
process stoichiometry. This is the framework on which
ASM is based. The degree of reduction balance is
relevant since most biological reactions involve
reduction-oxidation (redox)-type chemical conversion
reactions in metabolism activities.

5.2.1.2 Degree of reduction analysis

A biological processwill convert asubstratei.e. theinput
to ametabolic pathway, into aproduct that isin areduced
or oxidized state relative to the substrate. In order to
perform redox analysis on abiological process, amethod
to calculate the redox potential of substrates and products
is required. In the ASM framework and other
biotechnological applications (Heijnen, 1999; Villadsen
et al., 2011), the following methodology is used:

1) Defineastandard for the redox state for the balanced
elements, typically C, O, N, Sand P.

2) Select H20, COz, NHs, H2SOs, and HsPO4 as the
reference redox-neutral compounds for calculating
the redox state for the elements O, C, N, S, and P
respectively. Moreover, a unit of redox is defined as
H = 1. With these definitions, the following redox
levelsof thefivelisted elementsare obtained: O =-2,
C=4,N=-3,S=6andP=5.

3) Cdculate the redox level of the substrate and
products using the standard redox levels of the
elements. Several examples are provided below:

a) Glucose (CeH1206): 6-4+12 -1+ 6 - (-2) = 24.
Per 1 C-mol, the redox level of glucose becomes,
Y= 24/6 = 4 mol & C-moal ™.

b) Aceticacid (CoH402):2-4+4-1+2-(-2) =8.
Per 1 C-mol, the redox level of Hac becomes,
Ya= 8/2=4mol & C-mol*

c) Propionicacid (CsHeO2): 3:4+6-1+2-(-2) =
14. Per 1 C-mol, the redox level of HPr becomes,
yp=14/3 = 4.67mol & C-mol .

d) Ethanol (C2HeO):2-4+6-1+1-(-2) =12. Per
1 C-mol, the redox level of HAc becomes, ye =
12/2 =6mol & C-mol™.

4) Perform a degree of reduction balance over a given
process stoichiometry (see Example 5.1).

Example 5.1 Elemental balance and degree of reduction analysis
for aerobic glucose oxidation

General process stoichiometry for the aerobic oxidation
of glucose to biomass:
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CH,O + Y0, + Yo NH, = Yo X + Y. CO, Eqg. 5.5

Assuming the biomass composition X is
CH1.8005No.2. The degree of reduction for biomass is
calculated assuming the nitrogen source is ammonia
(hence the nitrogen oxidation stateis-3, yx: 4+ 1.8+ 0.5
+(-2)+0.2-(-3) =4.2 mol e C-mol ™.

Now C, N and the degree of reduction balances can
be performed for the process stoichiometry as follows:

Carbon balance: -1+ Y, + Y, =0 Eq. 5.6

Nitrogen balance: —Yg, +0.2- Yy =0 Eq.5.7

Redox balance:

_1'7g_702'Yso_7NH3'YSN+7x 'st+7coz'Ysc:O
L Y= Yor Yo =0 Ygu + 7 Ye +0- Yo =0
Eq. 5.8.

In these balance equations, there are four unknowns
(Ysn, Yso, Ysx, Ysc). Sincethree equations are available,
only one measurement of the yield is necessary to
caculate al the others. For example, in ASM
applications, biomass growth yield is usualy assumed
measured or known, hence the other remaining yields
can be calculated as follows:

COzyield: Ysc = 1- Ysx Eq.5.9

NHs yield: Ysn = 0.2Y sx Eq.5.10
— -Y, _

O:yidld: Yo Yo Yoo 4742y Eq.5.11

4

02

With these coefficients known, the process

stoichiometry model for 1 C-mol of glucose
consumption becomes as follows:
CHZO+%OZ+O.2YSX-NH3%

Eq.5.12

Yoo - X +(1-Yg )-CO,

In the ASM framework, the process stoichiometry is
calculated using a unit production of biomass as a
reference. Hence, the coefficients of Eq. 5.12 can be re-
arranged as follows:
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i~CHZO+%.OZ+O.zNH3—>
X SX
L Eq.5.13
X +[—YSX]-CO2
YSX

The unit conversion from a C-mol to ag COD basis,
being the unit of ASM models, isdefined using Oz as the
reference compound. Accordingly, 1 g COD is defined
as -1 g Oz. From the degree of reduction of oxygen, the
conversion to COD from one unit redox (mol €) is
calculated as follows:

Molecular weight of O, ~ MW,

02 _
Degree of reduction of O, Yoz

%2 =8gCOD L (mole)™

Eq.5.14

To convert aC-mol to ag COD basis, the unit redox
needs to be multiplied with the degree of reduction of the
substrate as follows:

( mol € J gCoD
. — |=Y .8
C-mole) | mol & g

5.2.1.3 Consistency check of the experimental data

gCOD
C-mol

Eq. 5.15

The value of performing elemental balances around data
collected from experiments with biological processes is
obvious: to confirm the data consistency with the first
law of thermodynamics, which assertsthat energy (in the
form of matter, heat, etc.) is conserved. A primary and
obvious requirement for performing elemental balances
isthat the model is checked and consistent. Experimental
data needs to be checked for gross (measurement) errors
that may be caused by incorrect calibration or
malfunction of the instruments, equipment and/or
Sensors.

Inconsistency in the data can be checked from the
sum of the elements that make up the substrates
consumed in the reaction (e.g. glucose, ammonia,
oxygen, etc.). This should equal to the sum of the
elements (products) produced in the reaction (therefore
also see Eq. 5.4 for the carbon balance). Deviation from
this elemental balance indicates an incorrectly defined
system description, a model inconsistency and/or
measurement flaws.
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In addition to the elemental balances, the degree of
reduction balance provides information about whether
the right compounds are included for a given pathway or
whether a compound is missing in the process
stoichiometry. Adding this check is helpful and provides
consistency with the bioenergetic principles of biological
processes (Roels, 1980; Heijnen, 1999; Villadsen et al.,
2011).

The consistency checks and the elemental balances
(in addition to the charge balances) are included in the
ASM framework as a conservation matrix to verify the
internal consistency of the yield coefficients (Henze et
al., 2000).

The elemental composition and degree of reduction
can be performed systematically using the following
generic balance equation in order to test the consistency
of the measured data:

N M
Zj:leﬁqﬁ + quX +ijlequpj = 0 Eq 5.16

The equation above is formulated for a biological
process with N substrates and M metabolic products. In
the equation, eisthe elemental composition (C, H, O and
N) for a component, and q the volumetric production (or
consumption) rate for substrates (gs), biomass (gx) and
metabolic products (qy). Hence, the elemental balance
can be formulated as follows:
E-q=0 Eq. 5.17

In this equation, E is the conservation matrix and its
columns refer to each conserved element and property,
eg. C, H, O, N, y, etc. Each row of matrix E contains
values of a conserved property related to substrates,
products and biomass; g is a column vector including the
measured volumetric rates for each compound. This is
substrate as well as products and biomass.

The total number of columnsin E is the number of
compounds, which isthe sum of substrates (N), products
(M) and biomass, hence N + M + 1. The total number of
constraintsis5 (C, H, O, N and y). Thismeansthat N+M-
4 is the number of degrees of freedom that needs to be
measured or specified in order to calculate all the rates.

Typically, not al the rates will be measured in batch
experiments. Therefore, let us assume gm isthe measured
set of volumetric rates and qu the unmeasured set of rates



DATA HANDLING AND PARAMETER ESTIMATION

which need to be calculated. In this case Eq. 5.17 can be
reformulated as follows:

E,d,,*+ E,d,=0 Eq.5.18

q,=- ( Eu )-l qum =0

Provided that the inverse of Eu exists (det(Eu) # 0),
Eq. 5.18 provides a calculation/estimation of the
unmeasured rates in a biological process. These
estimated rates are valuable on their own, but can also be
used for validation purposes if redundant measurements
areavailable. This systematic method of data consistency
check is highlighted in Example 5.2.

All these calculations help to verify and validate the
experimental dataand measurement of the processyield.
The data can now be used for further kinetic analysis and
parameter estimation.

5.2.2 Parameter estimation

Herewerecall astate-space model formalism to describe
asystem of interest. Let y be avector of outputsresulting
from adynamic model, f, employing a parameter vector,
0; input vector, u; and state variables, x:

dx

—=f(x,0,u,t); x(0)=x

dt ( )i X(0)=x, Eq. 5.19
y=9g(x,0,u,t)

The above equation describes a system (abatch setup
or a full WWTP) in terms of a coupled ordinary
differential equations (ODE) and algebraic system of
equations using a state-space formalism.

The problem statement for parameter estimation
reads then asfollows: for agiven set of measurements, y,
with its measurement noise collected from the system of
interest, and given the model structure in Eg. 5.19,
estimate the unknown model parameters (6).

The solution approaches to this problem can be
broadly classified as the manual trial and error method,
and formal statistical methods.

5.2.2.1 The manual trial and error method
This approach has no formal scientific basis except for a

practical motivation that has to do with getting a good
model fit to the data. It works as follows: the user
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chooses one parameter from the parameter set and then
changes it incrementally (increases or decreases around
itsnominal value) until areasonable model fitis obtained
to the measured data. The same process may be iterated
for another parameter. The fitting process is terminated
when the user deems that the model fit to data is good.
This is often determined by practica and/or time
constraints because this procedure will never lead to an
optimal fit of the model to the measured data. In addition,
multiple different sets of parameter values can be
obtained which may not necessarily have a physica
meaning. The success of this procedure often relies on
the experience of the modeller in selecting the
appropriate parameters to fit certain aspects of the
measured data. Although this approach is largely
subjective and suboptimal, the approach is still widely
used in industry as well as in the academic/research
environment. Practical data quality issues do not often
allow the precise determination of parameters. Also not
al (commercial) modelling software platforms provide
the appropriate statistical routines for parameter
estimation. There are automated procedures for model
calibration using algorithms such as statistical sampling
techniques, optimization algorithm, etc. (Sin et al.,
2008). However, such procedures focus on obtaining a
good fit to experimental data and not necessarily on the
identifiability and/or estimation of a parameter from a
data set. Thisis because the latter requires proper use of
statistical theory.

5.2.2.2 Formal statistical methods

In this approach, a proper statistical framework is used
to suggest the problem, which is then solved
mathematically by using appropriate numerical solution
strategies, e.g. minimization algorithms or sampling
algorithms. Under this category, the following statistical
frameworks are usualy employed:

a  Frequentist framework (maximum likelihood, least
sguares, non-linear regression, etc.).

b. Bayesian framework (Metropolis-Hasting, Markov
Chain Monte Carlo (MCMC), importance sampling,
etc.).

c. Pragmatic/hybrid framework (employing some
elements of the two schools of thought above, e.g. the
bootstrap method, Monte Carlo filtering, etc.).

The above statistical methods are among the most
commonly used and recommended here as well. In
particular, we focus on the frequentist and bootstrap
methods as they are more fit to the intended purpose of
this chapter.
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Frequentist method - maximum likelihood theory

In the parameter estimation problem we usualy define
parameter estimators, 8, to distinguish them from the
true model parameters, 0. In the context of statistical
estimation, model parameters are defined as unknown
and statistical methods are used to infer their true value.
This difference is subtle but important to understand and
to interpret the results of parameter estimation,
irrespective of the methods used.

Maximum likelihood is a general method for finding
estimators, 6, from a given set of measurements, y. In
this approach, the model parameters 6 are treated astrue,
fixed values, but their corresponding estimators 6 are
treated as random variables. The reason is that the
estimators depend on the measurements, which are
assumed to be a stochastic process:

y=f(0)+e where e N(0,0) Eq. 5.20

Measurement errors, ¢, are defined by a probability
distribution, e.g. normal distribution, N, with zero mean
and standard deviation (c). With these assumptions, the
likelihood function (L) for the parameter estimation
becomes as follows (Seber and Wild, 1989):

1
L(v0)= o+ 21 EXF{_ 262

(y-1 (e»Z]

Eq.5.21

The most likely estimate of 6 is found as those
parameter values that maximize the likelihood function:
0:min, L(y.0) Eq. 5.22

The solution to this problem setting (5.24) is often
found by optimization algorithms such as simplex,
interior point, genetic algorithms, simulated annealing,
etc. The parameters obtained by caculating the
maximum likelihood (Eqg. 5.21) are the same as the

parameters obtained by calculating the minimum cost
function in Eg. 5.23.

The least squares method

Thisisaspecial case of the maximum likelihood method
in which the measurements are assumed to be
independent and identically distributed with white
measurement errors having a known standard deviation,
6 (Gaussian). The likelihood function becomes
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equivalent to minimizing the following cost (or
objective) function, S(y,0) (Seber and Wild, 1989):

s(y,e):zw Eq. 5.23

Where, y stands for the measurement set, £(6) stands
for the corresponding model predictions, and X standsfor
the standard deviation of the measurement errors. The
solution to the objective function (Eg. 5.24) is found by
minimization algorithms (e.g. Newton's method,
gradient descent, interior-point, Nelder-Mead simplex,
genetic, etc.).

0: min, S(y.0)

P Eq. 5.24
—S(y.0)] =0
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The solution to the above optimization problem
provides the best estimate of the parameter values. The
next step is to evaluate the quality of the parameter
estimators. This step requires the estimation of the
confidence interval of the parameter values and the
pairwise linear correlation between the parameters.

The covariance matrix of parameter estimators

Asaresult of stochastic measurement, estimators have a
degree of uncertainty. In the frequentist framework of
thought, probability is defined in terms of the frequency
of the occurrence of outcomes. Hence, in this method the
uncertainty of the parameter estimators is defined by a
95 % confidence interval interpreted as the range in
which 95 times out of 100 the values of the parameter
estimators are likely to be located. This can be explained
asif one performs the same measurement 100 times, and
then performs the parameter estimation on these 100 sets
and observes the following: 95 occurrences of the
estimator values lie in the confidence interval, while 5
occurrences are outside thisinterval.

In order to estimate the confidence interval, first the
covariance matrix (cov(8)), which contains complete
information about the uncertainty of the parameter
estimators of the estimators, needs to be estimated. One
method to obtain cov() isto use alinear approximation
method through estimation of the Jacobian matrix (F.) of
the parameter estimation problem (Seber and Wild,
1989):
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. § of (6
cov(0)=s*(F:F)"  where F- 90 Eq. 5.25

00

0=0

Where,  is the unbiased estimation of 2 obtained
from the residuals of the parameter estimation:

52: Smin (yré)
n-p

Eq. 5.26

Here, n isthe total number of measurements, pisthe
number of estimated parameters, n-p is the degrees of
freedom, Syin(y,0) is the minimum objective function
value and F. isthe Jacobian matrix, which correspondsto
the first order derivative of the model function, f, with
respect to the parameter vector 0 evaluated at 6 = 6.

The covariance matrix is a square matrix with (pxp)
dimensions. The diagonal elements of the matrix are the
variance of the parameter estimators, while the non-
diagonal elements are the covariance between any pair of
parameter estimators.

The 95 % confidence interval of the parameter
estimators can now be approximated. Assuming a large
n, the confidence intervals (the difference between the
estimators and true parameter values), follow a student t-
distribution, the confidence interval at 100 (1-o) %
significance:

0,,= 0+ t32 Jdiag cov(0)

Eq. 5.27

Where, tnp*2 is the upper o/2 percentile of the t-
distribution with N-p degrees of freedom, and
diag cov(8) represents the diagonal elements of the
covariance matrix of the parameters.

The parwise linear correlation between the
parameter estimators, Rij, can be obtained by calculating
a correlation matrix from unit standardization of the
covariance matrix as follows:

. :cov(ei 0,)

]

Eq. 5.28

Gy, X Oy

This linear correlation will range from [-1 1] and
indicate whether or not he parameter estimator is
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uniquely identifiable (if the correlation coefficient is
low) or correlated (if the correlation coefficient is high).

The bootstrap method

One of the key assumptions for using the maximum
likelihood estimation (MLE) method as well as its
simplified version, the nonlinear least squares method, is
that the underlying distribution of errors is assumed to
follow anormal (Gaussian) distribution.

In many practical applications, however, this
condition is rarely satisfied. Hence, theoretically the
MLE method for parameter estimation cannot be applied
without compromising its assumptions, which may lead
to over or underestimation of the parameter estimation
errors and their covariance structure.

An aternative to this approach is the bootstrap
method developed by Efron (1979), which removes the
assumption that the residuas follow a norma
distribution. Instead, the bootstrap method works with
the actual distribution of the measurement errors, which
are then propagated to the parameter estimation errors by
using an appropriate Monte Carlo scheme (Figure 5.1).

The bootstrap method uses the original data set D(0)
with its N data points, to generate any number of
synthetic data sets DS(1);DS(2);...., dso with N data
points. The procedure is simply to draw N data points
with replacements from the set D(0). Because of the
replacement, sets are obtained in which a random
fraction of the original measured points, typicaly /e =
37 %, are replaced by duplicated original points. Thisis
illustrated in Figure 5.1.

The application of the bootstrap method for
parameter estimation in thefield of wastewater treatment
requires adjustment due to the nature of the data that is
in the time series. Hence, the sampling is not performed
from the original data points (which are the time series
and indicate a particular trend). Instead, the sampling is
performed from the residual errors and then added to the
simulated model outputs (obtained by using reference
parameter estimation) (Figure 5.1). This is reasonable
because the measurement errors are what is assumed to
be stochastic and not the main trend of the measured data
points, which are caused by  biologica
processes/mechanisms. Bearing this in mind, the
theoretical background of the bootstrap method is
outlined below.
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Random sa/r\npling from
residuals, €

Reference Parameter
Estimation, ©

Experimental
Data Set, y
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A
Synthetic data 91 Monte Carlo Parameter 915

6%:min, |y~ f(6)|*

A A
Synthetic data Y7 Monte Carlo Parameter 9;

A
Monte Carlo Parameter 935

Synthetic data 93

A A
Synthetic data y4 Monte Carlo Parameter 92

Figure 5.1 lllustration of the workflow for the bootstrap method: synthetic data sets are generated by Monte Carlo samples (random sampling with
replacement) from the reference MLE. For each data set, the same estimation procedure is performed, giving M different sets of parameter estimates: 0%x),

s s
e [V e (M)«

Let us define a simple nonlinear model whereyi isthe
i measurement, fi is the i'" model prediction, 0 is a
parameter vector (of length p), and & isthe measurement
error of yi:
y;=f(0) +¢ g oo F

where Eq. 5.29

The distribution of errors, F, is not known. This is
unlike in MLE, where the distribution is assumed a
priori. Given y, use least squares minimization, to
estimate 0:

0:ming[y—f (0)

‘ 2

Eq. 5.30

The bootstrap method defines F as the sample
probability distribution of € as follows:

(density) a ¢ =(y,—f,(0)) i=12..n

S

Eq.5.31

The density is the probability of the i"" observation.
In a uniform distribution each observation (in this case
the measurement error, &) has an equal probability of
occurrence, where density is estimated from 1/n. The
bootstrap sample, y’, given (6, F), is then generated as
follows:

y, =f (9)+ai* where ¢ o F Eq. 5.32

The redlisation of measurement error in each
bootstrap method, €*, is simulated by random sampling
with replacement from the origina residuals, which
assigns each point with a uniform (probability) weight.
By performing N random sampling with a replacement
and then adding them to the model prediction (Eq. 5.31),
anew synthetic data set is generated, D(1) =y".

By repeating the above sampling procedure M times,
M data sets are generated: D%(1), D(2), D(3), ... DS(M).

Each synthetic data set, D%(j), makes it possible to
obtain a new parameter estimator 8(j) by the same least
sguares minimisation method which isrepeated M times:

0,: min, | where j=12..M Eq.5.33

D (j)~f (o)

The outcome from this iteration is a matrix of
parameter estimators, (M x p) (M is the number of
Monte Carlo samples of synthetic data and p is the
number of parameters estimated). Hence, each parameter
estimator now has a column vector with values. This
vector of vaues can be plotted as a histogram and
interpreted using common frequentist parameters such as
the mean, standard deviation and the 95 % percentile.
The covariance and correlation matrix can be computed
using 8 (M x p) itself. This effectively provides al the
needed information on the quality of the parameter
estimators.
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For measurement errors that follow a normal
distribution, both MLE and the bootstrap method will
essentialy provide the same results. However, if the
underlying  distribution of the measurements
significantly deviates from a normal distribution, the
bootstrap method is expected to provide a better analysis
of the confidence interval of the estimators.

5.2.3 Uncertainty analysis
5.2.3.1 Linear error propagation

In linear error propagation, the covariance matrix of the
parameter estimators, cov(0), is used to propagate
measurement errors to model prediction errors and to
calculate standard errors and confidence intervals of the
parameter estimates. Therefore, the covariance matrix of
model predictions, cov(y), can be estimated using
cov() asfollows (Seber and Wild, 1989):
cov(y)=(F."F.) cov(é) (F-F)" Eq. 5.34
Inasimilar fashion, the 1-a confidenceinterval of the
predictions, y, can be approximated as follows:

Y, =Yy* 2 /diagcov(y)

This concludes parameter estimation, confidence
intervals and prediction uncertainty as viewed from the
point of view of the frequentist analysis.

Eq. 5.35

5.2.3.2 The Monte Carlo method

The Monte Carlo (MC) method was originally used to
calculate multi-dimensional integrals and its systematic
use started in the 1940s with the * Los Alamos School’ of
mathematicians and physicists, namely Von Neumann,
Ulam, Metropolis, Kahn, Fermi and their collaborators.
The term was coined by Ulam in 1946 in honour of a
relative who was keen on gambling (Metropolis and
Ulam, 1949).

Within the context of uncertainty analysis, which is
concerned with estimating the error propagation from a
set of inputs to a set of model outputs, the integral of
interest is the calculation of the mean and variance of the
model  outputs which are themselves indeed
multidimensional integrals (the dimensionality number
is determined by the length of the vector of input
parameters):
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I =If(x)dx=ff(u1...ud)d”x Eq. 5.36

Authors consider the integral of a function f(x) with
x as the input vector x = (us,...ud). Hence, theintegral is
taken on the d variables uy, .., us over the unit hypercube
[0, 1]¢. In the parameter estimation, these input variables
are parameters of the model that have a certain range
with lower and upper bounds. We assume that f is
square-integrable, which meansthat areal value solution
exists at each integration point. As a short-hand notation
we will denote apoint in the unit hypercube by x = (uy, ..
ud) and the function eval uated at this point by f(x) = f(u,

ug), and then the multidimensiona integration
operation is given by:

N N
E=1Yf(x,) limIYf(x,)=1  Eq.537
1 1

N—e N

Zlm

The law of large numbers ensures that the MC
estimate (E) converges to the true value of this integral.
However, as most of the time N is finite (a sampling
number from input space u with dxd dimension), there
will be an error in the Monte Carlo integration of
multidimensional  functions. This Monte Carlo
integration error is scaled like 1///N. Hence, the average
Monte Carlo integration error is given by
MCerr = o(f)/7/N, where o(f) is the standard deviation of
the error, which can be approximated using sample
variance:

Eq. 5.38

For notational simplicity, we consider the following
simple model: y = f(x), where the function f represents
the model under study, x:[xs;... Xd] is the vector of the
model inputs, and y:[y1;... yn] isthe vector of the model
predictions.

The goal of an uncertainty anaysis is to determine
the uncertainty in the elements of y that results from
uncertainty in the elements of x. Given uncertainty in the
vector x characterised by the distribution functions
D=[Ds,... Dd], where D1 is the distribution function
associated with xu, the uncertainty in'y is given by:

var(y) = [((y) - f (x))dx
E(y)=]f(x)dx

Eq.5.39
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Where, var(y) and E(y) are the variance and expected
value respectively of a vector of random variables, vy,
which are computed by the Monte Carlo sampling
technique. In addition to the variance and mean values,
one can also easily compute a percentile for y including
the 95% upper and lower bounds.

5.2.4 Local sensitivity analysis and
identifiability analysis

5.2.4.1 Local sensitivity analysis

Most of the sensitivity analysis results reported in the
literature are of alocal nature, and these are also called
one factor at atime (OAT) methods. In OAT methods,
each input variable is varied (also called perturbation)
one at atime around its nominal value, and the resulting
effect on the output is measured. The sensitivity analysis
results from these methods are useful and valid in close
proximity to the parameters analysed, hence the name
local. In addition, the parameter sensitivity functions
depend on the nominal values used in the analysis.
Alternative methods, such asregiona or global methods,
expand the analysis from one point in the parameter
space to cover a broader range in the entire parameter
space but this is beyond the scope of this chapter
(interested readers can consult literature elsewhere such
as Saltelli et al., 2000; Sin et al., 2009).

The local sensitivity measure is commonly defined
using thefirst order derivative of an output, y = f(x), with
respect to an input parameter, x:

oy

Absolute sensitivity: sa= —

pe Eq.5.40

(effect ony by perturbing x around its nominal value x°).

o

Relative sengitivity: sr = X Eq.5.41
Y-S= 5% y q->

o

(relative effect of y by perturbing x with afixed fraction
of its nomina vaue x°).

The relative sendtivity functions are non-
dimensional with respect to units and are used to
compare the effects of model inputs among each other.

These first-order derivatives can be computed
analytically, for example using Maple or Matlab
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symbolic manipulation toolbox software. Alternatively,
the derivatives can be obtained numerically by model
simulations with a small positive or negative
perturbation, Ax, of the model inputs around their
nominal values, x°. Depending on the direction of the
perturbation, the sensitivity andysis can be
approximated using the forward, backward or central
difference methods:

Forward perturbation:

ay _ f(x°+Ax) - f(x°)

Eq. 5.42
ox AX
Backward perturbation:

f(x°)— f (x°—Ax
¥y ()=t ) Eq. 5.43
oX AX
Central difference:

f (x°+AX) - f (x° = Ax
. ( )-1{ ) Eq. 5.44

ox 2AX

When an appropriately small perturbation step, AX, is
selected (usually a perturbation factor, £ = 107 is used.
Hence Ax = ¢ - X), all three methods provide exactly the
same results.

Once the sensitivity functions have been calculated,
they can be used to assess the parameter significance
when determining the model outputs. Typicaly, large
absolute values indicate high parameter importance,
while a value close to zero implies no effect of the
parameter on the model output (hence the parameter is
not influential). This information is useful to assess
parameter identifiability issues for the design of
experiments.

5.2.4.2 Identifiability analysis using the
collinearity index

The first step in parameter estimation is determining
which sets of parameters can be selected for estimation.
This problem is the subject of identifiability analysis,
which is concerned with identifying which subsets of
parameters can be identified uniquely from a given set of
measurements. Thereby, it is assumed a model can have
a number of parameters. Here the term uniquely is
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important and needs to be understood as follows. a
parameter estimate is unique when its value can be
estimated independently of other parameter values and
with sufficiently high accuracy (i.e. asmall uncertainty).
This means that the correlation coefficient between any
pair of parameters should be low (e.g. lower than 0.5)
and the standard error of parameter estimates should be
low (e.g. the relative error of the parameter estimate, Go
/0, lower than e.g. 25%). Asit turns out, many parameter
estimation problems are ill-conditioned problems. A
problem is defined ill-conditioned when the condition
number of afunction/matrix isvery high, whichiscaused
by multicollinearity issues. In regression problems, the
condition number is used as a diagnostic tool to identify
parameter identifiability issues. Such regression
diagnostics are helpful in generating potential candidates
of the parameter subsets for estimation which the user
can select from.

There are several identifiability tests suggested in
literature that are entirely based on the sensitivity
functions of the parameters on the outputs. Here we are
using the two-step procedure of Brun et al., 2002.
Accordingly, the procedure works as follows: (i)
assessment of the parameter significance ranking, (ii)
collinearity analysis (dependency analysis of the
parameter sensitivity functionsin a parameter subset):

Step 1. Rank the significance of the parameters: ™

Where, s is avector of non-dimensional sensitivity
values, sr =i...N values.

Eq.5.45

Step 2. Calculate the collinearity index of a parameter
subset K, yk.

1
A = eigen(snormf snormy) Eq. 5.47
snorm = l Eq. 5.48
llsrll -

Where, K indicates a parameter subset, snorm is the
normalized non-dimensional sensitivity function using
the Euclidian norm, and Ak representsthe eigenval ues of
the normalized sensitivity matrix for parameter subset K.
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In Step 1, parameters that have negligible or near-
zero influence on the measured model outputs are
screened out from consideration for parameter
estimation. In the second step, for each parameter subset
(@l the combinations of the parameter subsets which
include 2, 3, 4,...m parameters) the collinearity index is
calculated. The collinearity index is the measure of the
similarity between any two vectors of the sengitivity
functions. Subsets that have highly similar sensitivity
functionswill tend to have avery large number (yk ~inf),
while independent vectors will have asmaller value yk ~
1 which is desirable. In identifiability anayss, a
threshold value of 5-20 isusually used in literature (Brun
et al., 2001; Sin and Vanrolleghem, 2007; Sin et al.,
2010). It is noted that this yx value is to be used as
guidance for selecting parameter subsets as candidates
for parameter estimation. The best practice is to iterate
and try anumber of higher ranking subsets.

5.3 METHODOLOGY AND WORKFLOW

5.3.1 Data consistency check using an
elemental balance and a degree of
reduction analysis

The following workflow is involved in performing an
elemental balance and a degree of reduction analysis:

Step 1. Formulate a black box process stoichiometry for
the biological process.

In this step, the most relevant reactants and products
consumed and produced in the biological process are
identified and written down. The output is a list of
reactants and products for Step 2.

Step 2. Compose the elemental composition matrices (Em

First establish which variables of interest are measured
and then define the matrices as follows. Em includes the
elemental composition and the degree of reductions for
these measured variables, while Ey includes those of
unmeasured variables. To caculate the degree of
reduction, use the procedure given in Section 5.2.1.2.

Step 3. Compute the unmeasured rates of the species (qu).
Using Em and Eu together with the vector of the measured

rates (gm), the unmeasured rates (qu) are estimated from
the solution of the linear set of equationsin Eq. 5.18.
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Step 4. Calculate the yield coefficients.

In this step, since &l the species rates of
consumption/productions are now known, the yield
coefficients can be calculated using Eq. 5.2 and the
process stoichiometry can be written using the yield
coefficient values.

Step 5. Verify the elemental balance.

In this step, a simple check is performed to verify if the
elemental balance and degree of reduction balance are
closed. If not, the procedure needs to be iterated by
assuming a different hypothesis concerning the
formation of by-products.

5.3.2 Parameter estimation workflow for
the non-linear least squares method

This workflow assumes that an appropriate and
consistent mathematical model is used to describe the
data. Such a model confirms the elemental balance and
degree of reduction analysis (seetheworkflow in Section
5.3.1). Usudly these models are available from
literature. Most of them are modified from ASM models
with appropriate simplifications and/or additions
reflecting the conditions of the batch experiment.

Step 1. Initialisation.

In this step, theinitial conditions for the model variables
are specified as well as a nomina set of parameters for
the model. The initial conditions for the model are
specified according to the experimental conditions (e.g.
10 mg NH4-N added at time O, k.a is a certain value,
oxygen saturation at a given temperature is specified,
etc.). An initial guess of the model parameters is taken
from literature.

Step 2. Select the experimental data and a parameter
subset for the parameter estimation.

In this step, the experimental data is reviewed for the
parameter estimation and which parameters need to be
estimated is defined. This can be done using expert
judgement or, more systematically, a sensitivity and
identifiability analysis (see Section 5.3.4).

Step 3. Define and solve the parameter estimation
problem.
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In this step, the parameter estimation problem is defined
asaminimization problem and solved using optimization
algorithms (e.g. fminsearch in Matlab)

Step 4. Estimate the uncertainty of the parameter
estimators and model outputs.

In this step, calculate the covariance matrix of the
parameter estimators and compute the parameter
confidence intervals as well as the parameter correlation
matrix. Given the covariance matrix of the parameter
estimators, estimate the covariance matrix of the model
outputs by linear error propagation.

Step 5. Review and analyse the results.

In this step, review the values of the parameter values,
which should be within the range of parameter values
obtained from the literature. In addition, inspect the
confidence intervals of the parameter estimators. Very
large confidence intervals imply that the parameter in
question may not be estimated reliably and should be
excluded from the subset.

Further, plot and review the results from the best-fit
solution. Typically, the data and model predictions
should fit well.

If the results (both parameter values) and the best fit
solution to the data are not satisfactory, iterate as
appropriate by going back to Step 1 or Step 2.

5.3.3 Parameter estimation workflow for
the bootstrap method

The workflow of the bootstrap method follows on from
Step 1, Step 2 and Step 3 of the non-linear least squares
method.

Step 1. Perform a reference parameter estimation using
the non-linear least squares method.

This step is basically an execution of steps 1, 2 and 3 of
the workflow in the non-linear least squares technique.
The output is a residual vector that is passed on to the
next step. The residual vector is then plotted and
reviewed. If the residuals follow a systematic pattern (it
should be random) or contain outliers, thisis a cause for
concern as it may imply the bootstrap method is not
suited for this application.
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Step 2. Generate synthetic data by bootstrap sampling and
repeat the parameter estimation.

Synthetic data is generated using Eq. 5.29-5.32 by
performing bootstrap sampling (random sampling with
replacement) from theresidual vector and adding it to the
model prediction obtained in Step 1. For each synthetic
data, the parameter estimation in Step 1 is repeated and
the output (that is, the values of the parameter estimators)
isrecorded in amatrix.

Step 3. Review and analyse the resullts.

In this step, the mean, standard deviation and the
correlation matrix of the parameter estimators are
computed from the recorded matrix data in Step 2.
Moreover, the distribution function of the parameter
estimators can be estimated and plotted using the vector
of the parameter values that was obtained in Step 2.

Asin Step 5 of the workflow in the non-linear least
squares method, the results are interpreted and evaluated
using knowledge from literature and process
engineering.

5.3.4 Local sensitivity and identifiability
analysis workflow

The workflow of this procedure starts with the
assumption that a mathematical model is available and
ready to be used to describe a set of experimental data.

Step 1. Initialisation.

A framework is defined for the sensitivity analysis by
defining the experimental conditions (the initial
conditions for the batch experiments) as well as a set of
nomina values for the model analysis. The model is
solved with theseinitial conditionsand the model outputs
are plotted and reviewed before performing the
sensitivity analysis.

Step 2. Compute the sensitivity functions.

Define which outputs are measured and hence should be
included in the sendtivity analysis. Define the
experimental data points (every 1 min versus every 5
min).

Compute the sensitivity functions of the parameters
on the outputs using a numerical difference, e.g. using a
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forward, backward or central difference. Plot, review and
analyse the resullts.

Step 3. Rank the parameter significance.

Calculate the delta mean-square measure, 8™, and rank
the parameters according to this measure. Exclude any
parameters that have zero or negligible impact on the
outputs.

Step 4. Compute the collinearity index.

For all the parameter combinations (e.g. subset size 2, 3,
4....m), the collinearity index, vk, is calculated. Each
parameter subset is ranked according to the collinearity
index vaue.

Step 5. Review and analyse the results.

Based on the results from Step 3 and Step 4, identify a
short list of candidates (parameter subsets) that are
identifiable. Exclude these parameters from any
parameter subset that has near-zero or negligible
sengitivity on the outputs.

5.3.5 Uncertainty analysis using the Monte
Carlo method and linear error propagation

The workflow for the Monte Carlo method includes the
following steps:

Step 1. Input the uncertainty definition.

Identify which inputs (parameters) have uncertainty.
Define a range/distribution for each uncertainty input,
e.g. normal distribution, uniform distribution, etc. The
output from the parameter estimators (e.g. bootstrap) can
be used asinput here.

Step 2. Sampling from the input space.

Define the sampling number, N, (e.g. 50, 100, etc.) and
sample from the input space using an appropriate
sampling technique. The most common sampling
techniques are random sampling, Latin Hypercube
sampling, etc. The output from this step is a sampling
matrix, Xnxm, where N isthe number of samplesand mis
the number of inputs.
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Step 3. Perform the Monte Carlo simulations.

Perform N simulations with the model using the
sampling matrix from Step 2. Record the outputs in an
appropriate matrix form to be processed in the next step.

Step 4. Review and analyse the resullts.

Plot the outputs and review the results. Calculate the
mean, standard deviation/variance, and percentiles (e.g.
95 %) for the outputs. Analyse the results within the
context of parameter estimation quality and model
prediction uncertainty. Iterate the analysis, if necessary,
by going back to Step 1 or Step 2.

The workflow for linear error propagation:

The workflow is relatively straightforward as it is
complementary to the covariance matrix of the parameter
estimators and should be performed as part of the
parameter estimation in the non-linear least squares
method. It requires the covariance matrix of parameter
estimators as well as the Jacobian matrix which are both
obtained in Step 4 of the non-linear least sgquares
methodology.

5.4 ADDITIONAL EXAMPLES

Example 5.2 Anaerobic fermentation of glucose

In this example, anaerobic fermentation of glucose to
ethanol and glycerol as metabolic productsis considered.

Step 1. Formulate the process stoichiometry.

Ammonia is assumed to be the nitrogen source for
growth. The biomass composition is assumed to be
CH16005No.1s. All the substrates are given on the basis
of 1 C-mol, whereas nitrogen is on the basis of 1 N-moal.
In this biological process, the substrates are CH20
(glucose) and NHs. The products are CH1610052No.15
(biomass), CH30os (ethanol), CHs30 (glycerol) and CO..
Water is excluded from the anaysis, as its rate of
production is not considered relevant to the process. This
means that the H and O balances will not be considered
either.

Step 2. Compose the elemental composition matrices (Em

Asthe process has six species (substrates + products) and
three constraints (two elemental balances for C and N

EXPERIMENTAL METHODS IN WASTEWATER TREATMENT

plus a degree of reduction balance), measurement of
three rates is sufficient to estimate/infer the remaining
rates.

To illustrate the concept, the measured rates are
selected as the volumetric consumption rate of substrate
(-gs), the biomass production rate (gx), and the glycerol
production rate (gg) hence the remaining rates for
ammonia consumption as well as the production of
ethanol and CO2 need to be estimated using Eg. 5.18. In
the measured rate vectors, a negative sign indicates the
consumption of a species, while a positive sign indicates
the production of a species.

Step 3 Compute the unmeasured rates of the species (qu).

Recall Eg. 5.18, which is solved asfollows:
Em'qm+ Eu'qu: 0

S X Gy NH, Eth CO,
cf[1 1 1 1(<.) [0 10 10] (-,
Nlo 015 0 ||{q |+|1 0 0 ||q,|=0
y|4 412 467 |(q,) |0 6 0](q

qu:_(Eu)_l'Em'qm

-q, 010 10’1 1 1 (=,
g, |[=-{|1 0 O 10 015 0 |- q,
a. 0 6 O 4 412 467 || q

Solving the system of linear equations above yields
the following solution where the three unmeasured rates
are calculated as a function of the measured rates gs, g
and ox:

-, —0.15q,
g. |=| 29,/ 3-467q, / 600—-103q, /150
4. g,/ 3-133q, / 600-47q, /150

Step 4. Calculate the process yields.
Once the rates of all the products and substrates are

estimated, one can then calculate the yield coefficients
for the process by recalling Eg. 5.2 as follows:
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\ =% ad Yy :%
s s
Y, =9 =00 g5y,
s s
v 2% (29, / 3— 4670, / 6001030, / 150) _
¥ oq e

2_07783Y,, ~06367Y,
3

y :&:(q5/3—133qg/600—47qX/150):
A d

1022177, -03133v,
3

With these vyield coefficients estimated, the
simplified process stoichiometry reads as follows:

0=-CH,0-0.15Y,, - NH,...

2
+ Yy - CH, 005, Nois + (5 —0.7783Y, —0.6867Y J -CH,O 5+

1
Y,,- CHgeO+ (5 ~0.2217Y,, - 0.3133ij .Co,

Step 5. Verify the elemental balance.

From the process stoichiometry, it is straightforward to
verify that the elemental and degree of reduction
balances are closed:

“1+Y + (E —-0.7783- Y, —0.6867- stj Yyt
3

(é -0.2217-Y,, - 03133 Yy] =0
The nitrogen balance:

-0-0.15-Y, +0.15-Y,+0+0+0=0
The degree of reduction balance:

-1-4+Y, -4.12+[§—0.7783~ Y, —0.6867- YS‘] -6+

Y, -467=0
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In the above example, three measured rates were
assumed available as a minimum requirement to identify
the system of linear equations. In practical applications,
there might be two other situations: (i) redundant
measurements. measurements of most or perhaps all of
the species rates of production/consumption are
available. In this case, the additional rate measurements
can be used for data quality check and validation (where
some of the measured rates could be used as a validation
of the estimated coefficients from the balance analysis);
(i) alimited set of measurements: in this case too few
rates measurements are available to uniquely estimate
the unmeasured rates. If data from enough variables is
not available, some variables should be fixed (e.g. this
could be done iteratively in asearch algorithm) to reduce
the degrees of freedom. If not, thereareinfinite solutions.
Further discussion of these techniques can be found
elsawhere in relevant literature (Villadsen et al., 2011,
Meijer et al., 2002; van der Heijden et al., 1994).

Example 5.3 Estimate the parameters of the ammonium and
nitrite oxidation processes using data from batch tests: the non-
linear least squares method

Aerobic batch tests with a sudge sample from a pre-
denitrification plant are performed to measure the
parameters of the nitrifying bacteria, in particular the
ammonium-oxidizing organisms (AOO) and nitrite-
oxidising organisms (NOO). Following the
recommended experimental procedure in literature
(Guisasola et al., 2005), two separate batch tests were
performed as follows: (i) batch test 1 with added
ammonium of 20 mg NH4-N L and an inhibitor (sodium
azide) to suppress NOO activity, (ii) batch test 2 with
added ammonium of 20 mg NH.-N L without any
inhibitor addition. In both tests, both the pH and
temperature are controlled at 7.5 and 25 °C respectively.
During both the batch tests, ammonium, nitrite and
nitrate are measured every 5 minutes, while dissolved
oxygen is measured every minute. The data collected is
shown in Figure 5.2. For the sake of simplicity and to
keep the focus on the demonstration of the methods and
their proper interpretation, these examples use synthetic
data with random (white-noise) addition.

Part 1. Estimate the parameters of the ammonium oxidation
process.

Several models are suggested in literature reviewed in
Sin et al., 2008. We use the following mathematical
model given in Table 5.1 to describe the kinetics of
ammonium and nitrite oxidation. For the sake of
simplicity, the following is assumed: (i) endogenous
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respiration related to heterotrophic biomass is constant
(hence not modelled), (i) the inert fraction of the
biomass released during decay is negligible (hence not
modelled), and (iii) the ammonium consumed for
autotrophic growth of biomass is negligible. It is noted
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that for the sake of completeness al of the above
phenomena should be described which makes the
analysis more accurate. However, here the model is kept
simple to focus the attention of the reader on the
workflow of parameter estimation.

Table 5.1 The two-step nitrification model structure using matrix representation (adopted from Sin et al., 2008)

Variables—G  Sw So Shoz Shos Xnoo Xoo Rates
Processes | j mgNL? mg 0, L mgNL' mgNL' mg (0D L' mg COD L' [
AOO th 1 1 343 ! 1 ACO , M M X
grow YAOO YAOO YAOO Mmax - VINH - Mlo,A00 * A ACO
A0O decay 1 -1 baco - X aco
OO crowh L -1 1 . .
growt Yoo Yoo Yoo Hmax - * Moz - Monoo * Xnoo
NOO decay 1 -1 brnoo - Xnoo
Aeration 1 kLa:(Se™ - S)
Mo S\ Snoz

The model has in total six ordinary differential
equations (ODE), which corresponds to one mass
balance for each variable of interest. Using a matrix
notation, each ODE can be formul ated as follows:

dc,
SO DR Eq. 5.49
]

The model is implemented in Matlab and solved
using a standard differential equation solver (ODE45 in
Matlab).

%% solve the ODE model:

%[time,output] = ODEsolver('Model’,[starttime
simulation endtime simulation],Initial conditions for
model variables,simulation options,model parameters);
options=odeset('RelTol',1le-7, 'AbsTol',1e-8);

[t,y] = ode45(@nitmod,t,x0,0ptions,par);
Step 1. Initialisation.

The model has in total 12 parameters. The nomina
valuesaswell astheir range are taken fromliterature (Sin
et al., 2008) and shown in Table 5.2

;Mo a00: :Monoo! :Mnoz:
SurtKsa00 T SotKo 00 ' So+Konoo Svo2tKsnoo

The model has six state variables, all of which need
to be specified to solve the system of the ODE eguations.
The initia condition corresponding to batch test 1 is
shown in Table 5.3.

Step 2. Select the measurements and parameter subset for
parameter estimation.

We used data collected from batch test 1 which includes
ammonium, nitrite and dissolved oxygen measurements.
Due to the suppression of NOO activity, no nitrate
production is observed. Since batch test 1 isnot designed
for decay rate coefficient estimation, we consider al the
parameters of AOO except baoo for estimation. Hence,
the following is our selection:

e Y =[NH4NO: DQ]J; selected measurement set, Y.
e 0 =[Yaoo Uma*®® Ksaoo Koaoo]; parameter subset
for the estimation.

Step 3. Solve the parameter estimation problem.

The parameter estimation is programmed as a
minimization problem using the sum of the sguared
errors as the cost function and solved using an
unconstrained  non-linear  optimisation  solver
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(fminsearch algorithm in Matlab) using the initial maximum growth rate of NOO is assumed to be zero in
parameter guess given in Table 5.2 and initial conditions the model simulations. The best estimates of the
in Table 5.3. To simulate the inhibitor addition, the parameter estimators are given in Table 5.3.

Table 5.2 Nominal values of the model parameters used as an initial guess for parameter estimation together with their upper and lower bounds.

Parameter Symbol Unit Nominal value Range
Ammonium-oxidising organisms (A0O)

Biomass yield Yoo mg (0D mg N 0.15 0.11-0.21
Maximum growth rate Hmac*% d! 0.8 0.50-2.10
Substrate (NHa) affinity Ks 400 mg N L' 0.4 0.14-1.00
Oxygen affinity Kon00 mg 0,L 0.5 0.10-1.45
Decay rate coefficient baoo d’ 0.1 0.07-0.30
Nitrite-oxidising organisms (NOO)

Biomass yield Yoo mg (0D mg N 0.05 0.03-0.09
Maximum growth rate T d! 0.5 0.40-1.05
Substrate (NO,) affinity Ksnoo mg N 15 0.10-3.00
Oxygen affinity Koo mg 0,L 145 0.30-1.50
Decay rate coefficient bioo d’ 0.12 0.08-0.20
Experimental setup

Oxygen mass transfer kia d’ 360 *
Oxygen saturation Sosat mg 0,1 8 *

* Not estimated in this example but assumed known.

Table 5.3 Initial condition of the state variables for the model in batch test 1.

Variable Symbol Unit Initial value Comment
Ammonium Shi mgNL" 20 Pulse addition
Oxygen So mg 0, L 8 Saturation
Nitrite Swoz mgNL" 0 Post denitrified
Nitrate Swos mgNL" 0 Post denitrified
A0O biomass Xnoo mg COD L' 75 Ratio of AOO to NOO reflects ratio of their yields
NOO biomass Xnoo m (0D L' 25
254 9
- ® NH N 8 & OO0 0000 000000
> 200 o000I00000000000000 ¢ NO, N 71 °
g ° - -
T | e °
5 15 . ® T
z o° 8 4o -
s 101 8
=z i @
z ®e 3 % oo ®
T o5 ® e 2+
z [ ) °
[ ] [} Ly
R YYYYY" Wee N PAMB(EII 0 0 : ‘ |
0.0 1.2 2.4 3.6 0.0 1.2 2.4 3.6
Time (h) Time (h)

Figure 5.2 Data collected in batch test 1. NH, NO, and DO are used as the measured data set.
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%%step 3 define and solve parameter estimation
problem (as a minimization problem)

options =optimset('display’,

'iter', 'tolfun',1.0e-06, 'tolx',1.0e-5,
'maxfunevals', 1000);

[pmin, sse]=fminsearch(@costf,pinit,options,td,yd
,idx,iy);

Step 4. Estimate the uncertainty of the parameter
estimators and the model prediction uncertainty.

In this step, the covariance matrix of the parameter
estimators is computed. From the covariance matrix, the
standard deviation, 95 % confidence interval as well as
the correlation matrix are obtained. The results are
shown in Table 5.4.

Table 5.4 Optimal values of the parameter estimators after the solution of
the parameter estimation problem.

Parameter Initial guess, 6° Optimal values, )
Yaoo 0.1 0.15
T 08 145
Ksa00 0.4 0.50
Ko 00 0.5 0.69
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%% get the Jacobian matrix. use built-in
"lsgnonlin.m" but with no iteration.

options =optimset('display’,

'iter', "tolfun',1.0e-06, 'tolx',1.0e-5,
‘maxfunevals', 0);
[~,~,residual,~,~,~,jacobian]=1sgnonlin(@costl,p
min, [],[],options,td,yd,idx,1iy);
j(:,:)=jacobian; e=residual;

s=e'*e/dof; %variance of errors

%% calculate the covariance of parameter
estimators

pcov = s*inv(j'*j) ; %covariance of parameters
psigma=sqrt(diag(pcov))'; % standard deviation
parameters

pcor = pcov ./ [psigma'*psigma]; % correlation
matrix

alfa=0.025; % significance level
tcr=tinv((1-alfa),dof); % critical t-dist value
at alfa

p95 =[pmin-psigma*tcr; pmin+psigma*tcr]; %+-95%
confidence intervals

Table 5.5 Parameter estimation quality for the ammonium oxidation process: standard deviation, 95% confidence intervals and correlation matrix.

Parameter  Optimal value, &  Standard deviation, 55 95 % confidence interval (Cl) Correlation matrix

Ya0o [T Ks a00 Ko 00
Yoo 0.15 0.0076 0.130 0.160 1 0.96 0.0520 0.17
Hrma*® 145 0.0810 1.290 1.610 1 0.0083 0.42
Ks.00 0.50 0.0180 0.470 0.540 1 -0.26
Ko z00 0.69 0.0590 0.570 0.800 1

Using the covariance matrix of the parameter
estimators, the uncertainty in the model predictionisalso
calculated and the results are shown in Figure 5.3.

%% calculate confidence intervals on the model
output

ycov = j * pcov * j';

ysigma=sqrt(diag(ycov)); % std of model outputs
ys=reshape(ysigma,n,m);

y95 = [y(:,1iy) - ys*tcr y(:,iy)+ys*tcr]; % 95%
confidence intervals
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Figure 5.3 Model outputs including 95 % confidence intervals calculated using linear error propagation (red lines). The results are compared with the

experimental data set.

Step 5. Review and analyse the results.

The estimated parameter values (Table 5.5) are found to
be within the range reported in literature. This is an
indication that the parameter values are credible. The
uncertainty of these parameter estimators is found to be
quite low. For example, the relative error (e.g. standard
deviation/mean value of parameter values) islessthan 10
%, which is aso reflected in the small confidence
interval. This indicates that the parameter estimation
quality is good. It is usually noted that relative error
higher than 50 % is indicative of bad estimation quality,
while relative error below 10 % is good.

Regarding the correlation matrix, typically from
estimating parameters from batch data for Monod-like
models, the growth yield is significantly correlated with
the maximum growth rate (the linear correlation
coefficient is 0.96). Also notable is the correlation
between the maximum growth rate and the oxygen
affinity constant. This means that a unique estimation of
the yield and maximum growth rate is not possible.
Further investigation of the correlation requires a
sengitivity analysis, which is demonstrated in Example
5.5.

Since the parameter estimation uncertainty is low, the
uncertainty in the model predictionsis also observed to
be small. In Figure 5.3, the mean (or average) model

prediction and the 95 % upper and |lower boundsare quite
close to each other. This means that the model prediction
uncertainty due to parameter estimation uncertainty is
negligible. It is noted that a comprehensive uncertainty
analysis of the model predictionswill require analysis of
all the other sources of uncertainty including other model
parameters as well as the initial conditions. However,
thisis outside the scope of this example and can be seen
elsewhere (Sin et al.,, 2010). Measurement error
uncertainty is considered in Example 5.6.

This concludes the analysis of parameter estimation
using the non-linear least squares method for the AOO
parameters.

Part 2. Estimate the parameters for the NOO step.

Steps 1and 2. Initial conditions and selection of data and
parameter subsets for the parameter estimation.

Thesameinitia condition for batch test 1 isused in batch
test 2 but without any inhibitor addition, meaning that in
this example the nitration is active. The data collected
from batch test 2 is shown in Figure 5.3, which includes
ammonium, nitrite, nitrate and DO measurements.

e Y2=[NH4 NO2 NO3 DOJ; selected measurement set,
Y.
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The parameter values of AOO were set to the
estimated values (Table 5.4) in the first part and are
hence known, while the yield and kinetic parameters of
NOO can be identified from the data:
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Figure 5.4 Measured data from batch test 2.

Steps 3 and 4. Solve the parameter estimation problem and
calculate the parameter estimation uncertainties.

The AOO parameters are previously estimated in Part 1.
The results of the solution of the parameter estimation

DO (mg O, L")

EXPERIMENTAL METHODS IN WASTEWATER TREATMENT

e 02=[Ynoo Hma"®° Ksnoo Konoo]; parameter subset
for the estimation.

problem as well as the parameter uncertainties for NOO
areshown in Table 5.6.

Table 5.6 Optimal values of the parameter estimators after solution of the parameter estimation problem.

Parameter Optimal values, ®  Standard deviation, 5 95 % confidence interval (Cl) Correlation matrix

Lower bound  Upper bound Yioo Prvar Ksnoo Ko,u00
Yoo 0.04 0.01 0.01 0.07 1.00 1.00 0.54 -0.86
Hma**° 0.41 0.13 0.15 0.66 1.00 0.55 -0.86
Ksnoo 148 0.03 142 1.55 1.00 -0.37
Konoo 1.50 0.05 139 1.60 1.00

The linear propagation of the parameter estimation
error (covariance matrix) to the model prediction
uncertainty is shown in Figure 5.5.
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Figure 5.5 Model outputs including 95 % confidence intervals compared with the experimental data set.

Step 5. Review and analyse the results

The estimated parameter values are within the range
reported for the NOO parameters in literature, which
makes them credible. However, this time the parameter
estimation error is noticeably higher, e.g. the relative
error (the ratio of standard deviation to the optimal
parameter value) is more than 30%, especialy for the
yield and maximum growth rate. This is not surprising
since the estimation of both the yield and maximum
growth rate is fully correlated (the pairwise linear
correlation coefficient is 1). These statistics mean that a
unique parameter estimation for the yield, maximum
growth rate and oxygen half-saturation coefficient of
NOO (the pairwise linear correlation coefficient is 0.86)
is not possible with this batch experiment. Hence, this
parameter subset should be considered as a subset that
provides a good fit to the experimental data, while
individually each parameter value may not have
sensible/physical meaning.

The propagation of the parameter covariance matrix
to the model prediction uncertainty indicates low
uncertainty on the model outputs. This means that
although parameters themselves are not uniquely
identifiable, they can still be used to perform model

predictions, e.g. to describe batch test data. While
performing simulations with the model, however, one
needs to report the 95% confidence intervals of the
simulated values as well. The latter reflects how the
covariance of the parameter estimates (implying the
parameter estimation quality) affects the model
prediction quality. For example, if the 95% confidence
interval of the model predictions is low, then the effect
of the parameter estimation error is negligible.

Part 1 and Part 2 conclude the parameter estimation
for the two-step nitrification step. The results show that
the quality of the parameter estimation for AOO is
relatively higher than that of NOO using batch data for
these experiments. This poor identifiability will be
investigated later on, using sensitivity analysis to
improve the identifiability of individual parameters of
the model.

Regarding the model prediction errors, the 95%
confidence interval of the model outputs is quite low.
This means that the effects of the parameter estimation
errors on the model outputs are low.
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Example 5.4 Estimate the parameters of ammonium oxidation
using data from the batch test — the bootstrap method

In this example, we investigate the parameter estimation
problemin part 1 of Example 5.3. We used the datafrom
batch test 1 to estimate the parameters of AOO.

EXPERIMENTAL METHODS IN WASTEWATER TREATMENT

Step 1. Perform a reference parameter estimation using
non-linear least squares.

The workflow in this step is exactly the same as the steps
1, 2 and 3 in Example 5.3. The output from this step is
the best fit to the data and the distribution of residuas
(Figure 5.6).
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Figure 5.6 Residuals from the reference parameter estimation.

Step 2. Generate synthetic data by bootstrap sampling and
repeat the parameter estimation.

In this step, bootstrap sampling from residuas is
performed.

nboot=50; % bootstrap samples
for i=1:nboot

disp(['the iteration number is :
',num2str(i)])

onesam =ceil(n*rand(n,m)); % random sampling
with replacement

rsam =res(onesam); % measurement errors for

each variable

ybt = y(:,iy) + rsam ; % synthetic data:
+ model (ref PE)
options

error

=optimset('display', ‘iter', 'tolfun’',1.0e-
06, 'tolx',1.0e-5, "'maxfunevals',1000);
[pmin(i,:),sse(i,:)]=1sgnonlin(@costl,pmini,plo,
phi,options,td,ybt,idx,iy);

bootsam(:,:,i)=ybt; % record samples
end

Fifty bootstrap samples from residuals (random
sampling with replacement) are performed and added to
the model, thereby vyielding the 50 synthetic
measurement data sets shown in Figure 5.7.



DATA HANDLING AN

Nitrate (mg N L") Ammonium (mg N L")

Oxygen (mg O, L)

D PARAMETER ESTIMATION

20

10

223

o ©

.00

20

0.06

0.08

10

o ©

.00

10+

0.06

0.08 1.20

0.06
Time (h)

0.08 1.20

Figure 5.7 Generation of synthetic data using bootstrap sampling from the residuals (50 samples in total).

For each of
a parameter esti

this synthetic data (a bootstrap sample),
mation is performed and the results are

recorded for analysis. Because 50 synthetic data sets are
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generated, this means that 50 different estimates of
parameters are obtained. The results are shown as a
histogram for each parameter estimate in Figure 5.8.
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Figure 5.8 Distribution of the parameter estimates obtained using the bootstrap method (each distribution contains 50 estimated values for each

parameter).
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Step 3. Review and analyse the resullts.

Step 2 provided a matrix of the parameter estimates,
Os0x4. 1IN this step, the mean, standard deviation and
correlation matrix properties of this matrix are eval uated.
Theresults are shown in Table 5.7.

EXPERIMENTAL METHODS IN WASTEWATER TREATMENT

J%step 3 Evaluate/interpret distribution of theta
disp('The mean of distribution of theta are')
disp(mean(pmin))

disp('The std.dev. of distribution of theta
are')

disp(std(pmin))

disp('")

disp('The correlation of parameters')
disp(corr(pmin))

Table 5.7 Optimal values of the parameter estimators after solving the parameter estimation problem.

Parameter Optimal value, B Standard deviation, G Correlation matrix

Yaoo [T Ks a00 Ko,n00
Yaoo 0.14 0.01 1.00 0.97 -0.03 0.20
Hma"® 1.40 0.1 1.00 -0.07 0.4
K00 0.50 0.02 1.00 -0.28
Ko 400 0.68 0.07 1.00

All the results, including the mean parameter
estimates, their standard deviation and the correlation
matrix are in good agreement with the parameter
estimates obtained from the non-linear least squares
method (compare with Table 5.6.). This is expected,
since the distribution of residuals is found to be quite
similar to anormal distribution (Figure 5.6). In this case,
both the non-linear least squares (and the linear
approximation of covariance matrix estimation) as well
as the bootstrap method will obtain statistically similar
results.

Also the model simulation with the mean values
obtained from the bootstrap samples provided similarly
good fit to the measured data, as shown in Figure 5.3.

Because the bootstrap method is intuitively simple
and straightforward and does not require a calculation of
the Jacobian matrix, we recommend it for practical use.
However, areservation on using this method is that the
distribution of the residuals should be inspected and
should not contain any systematic pattern (indicating
model structure or systematic measurement issues).

%% get the Jacobian matrix. use built-in
"lsgnonlin.m" but with no iteration.
options =optimset('display’,

‘iter', 'tolfun',1.0e-06, 'tolx',1.0e-5,
'maxfunevals', 9);

~,~,residual,~,~,~,jacobian]=1sgnonlin(@costl,p
min, [],[],options,td,yd,idx,1y);
j(:,:)=jacobian; e=residual;

s=e'*e/dof; %variance of errors
%% calculate the covariance of parameter
estimators

pcov = s*inv(j'*j) ; %covariance of parameters
psigma=sqrt(diag(pcov))'; % standard deviation
parameters

pcor = pcov ./ [psigma'*psigma]; % correlation
matrix

alfa=0.025; % significance level
ter=tinv((1l-alfa),dof); % critical t-dist value
at alfa

p95 =[pmin-psigma*tcr; pmin+psigma*tcr]; %+-95%
confidence intervals

Example 5.5 Sensitivity and identifiability analysis of the
ammonium oxidation process parameters in batch tests

Here the ammonium oxidation process is used as
described in Example 5.3. The objective of this example
is twofold: in the first part, we wish to assess the
sensitivity of al the AOO parameters to al the model
outputs under the experimental conditions of batch test
1. In the second part we wish to examine, given the
measured data set, which parameter subsets are
potentially identifiable and compare them with the
parameter subset aready used in the parameter
estimation in Example 5.3.
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Step 1. Initialisation. We use the initia conditions of
batch test 1 as described in Table 5.3 as well as the
nominal values of AOO model parameters as given in
Table5.2.

The model outputs of interest are:

e y=[NH4NO2NO3 DO AOO NOQ]

The parameter set of interest is:

e 0 =[Ya00Mma*°Ksaoo Koaoobaoo]

Step 2. Compute and analyse the sensitivity functions.

In this step, the absolute sensitivity functions are
computed using numerical differentiation and the results
are recorded for analysis.

for i=1:m; %for each parameter

dp(i) = pert(i) * abs(ps(i)); % parameter
perturbation

p(i) = ps(i) + dp(i);
perturbation

[t1l,y1] = ode45(@nitmod,td,x0,options,p);

p(i) = ps(i) - dp(i); %backward perturbation

[t2,y2] = ode45(@nitmod,td,x0,options,p);

dydpc(:,:,1) = (yl-y2) ./ (2 * dp(i));
%central difference

dydpf(:,:,1) = (yl-y) ./ dp(i); %forward
difference

dydpb(:,:,1) = (y-y2) ./ dp(i); %backward
difference

% forward

p(i)=ps(i); % reset parameter to its reference
value
end

The output sensitivity functions (absolute) are
plotted in Figure 5.9 for one parameter, namely theyield
of AOO growth for the purpose of detailed examination.
The interpretation of a sengitivity function is as follows:
(i) higher magnitude (positive or negative alike) means
higher influence, while lower or near zero magnitude
means negligible/zero influence of the parameter on the
output, (ii) negative sensitivity meansthat an increase in
a parameter value would decrease the model output, and
(iii) positive sensitivity means that an increase in a
parameter value would increase the model output.
With thisin mind, it is noted that the yield of AOO hasa
positive effect on ammonium and an equally negative
impact on nitrite. This is expected from the model
structure where there is an inverse relationship between
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the yield and ammonium (substrate) consumption. A
higher yield means |ess ammonium is consumed per unit
growth of biomass, and hence it would aso mean more
ammonium present in the batch test. Since less
ammonium is consumed, less nitrite would be produced
(hence the negative correlation).

On the other hand, it is aso noted that the sensitivity
of the yield parameter increases gradually during the
linear growth phase and starts to decrease as we are
nearer to the depletion of ammonium. Once the
ammonium is depleted, the sensitivity becomes nil as
expected. As predicted, the yield has a positive impact
on AOO growth since a higher yield means higher
biomass production. Regarding oxygen, the yield first
has a positive impact that becomes negative towards the
completion of ammonium. This means there is a rather
non-linear relationship between the oxygen profile and
the yield parameter. As expected, the yield of AOO has
no impact on the nitrate and NOO outputsin batch test 1,
because of the addition of the inhibitor that effectively
suppressed the second step of nitrification.

In the sensitivity analysis, what is informative is to
compare the sengitivity functions among each other. This
isdonein Figure 5.10 using non-dimensional sensitivity
functions, which are obtained by scaling the absolute
sensitivity function with their respective nominal values
of parameters and outputs (Eqg. 5.41). Figure 5.10 plots
the sensitivity of all themodel parameters with respect to
the six model outputs. Each subplot in the figure presents
the sensitivity functions of al the parameters with
respect to one model output shown in the legend. The y-
axis indicates the non-dimensional sensitivity measure,
while the x-axis indicates the time during the batch
activity. For example, we observe that the sensitivity of
parameters to nitrate and NOO is zero. This is logical
since NOO activity is assumed to be zero in this
simulation.

For the model outputs for ammonium, nitrite and
oxygen, the sensitivity functions of the yield and
maximum growth rate for AOO follow an inversely
proportional trend/pattern. This inversely proportional
relation is the reason why the parameter estimation
problemisanill-conditioned problem. Thismeansthat if
the search agorithm increases the yield and yet at the
same time decreases the maximum growth rate with a
certain fraction, the effect on the model output could be
cancelled out. The result is that many combinations of
parameter values for the yield and maximum growth rate
can have asimilar effect on the model output. Thisisthe
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reason why a high correlation coefficient is obtained
after the parameter estimation has been performed. This

EXPERIMENTAL METHODS IN WASTEWATER TREATMENT

their senditivity functions should be unique and not
correlated with the sensitivity function of the other

means that for a parameter to be uniquely identifiable, parameters.
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Figure 5.9 Absolute sensitivity of the AOO yield on all the model outputs.

Another point of interest regarding these plotsis that
therelative effect (that is, the magnitude of values on the
y-axis) of the parameters on ammonium, oxygen and
nitrite is quite similar. This means that all three of these
variables are equaly relevant and important for
estimating these parameters.

Step 3. Parameter-significance ranking.

In this step the significance of parameters is ranked by
summarizing the non-dimensional sensitivity functions
of the parameters to model outputs using the &M
mesasure. The results are shown in Figure 5.11.

The results show that the decay rate of AOO has
almost zero effect on al three of the measured variables
(ammonium, nitrite and oxygen) and therefore cannot be
estimated. This is known from process engineering and
for this reason, short-term batch tests are not used to
determine decay constants. This result therefore is a
confirmation of the correctness of the sengtivity
analysis. With regards to the maximum growth rate and
yield, these parameters are equally important followed
by the affinity constant for oxygen and ammonium. This
indicates that at least four parameters can potentially be
estimated from the data set.
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Figure 5.10 Relative sensitivity functions of the AOO parameters on the model outputs.

Step 5. Identifiability analysis.

In this step, normalized sensitivity functions are used to
assess which parameter subsets have a small collinearity
index. The collinearity index is a measure of how two
sengitivity functions are aligned together, therefore
implying linear dependency.

for 1 = 2:subset
combos = combnk(set,i); % all possible
parameter combinations of different subset size

(2,3,4...)
for j=1:n
tempn = snormy(:,combos(j,:)) ;
tempa = say(:,combos(j,:)) ;
nsm = tempn'*tempn; % normalized

sensitivity matrix

asm = tempa'*tempa; % absolute

sensitivity matrix, fim

dtm =
%determinant index

sqrt(det(asm))~(1/(i*2));
col = 1/sqrt(min(eig(nsm))); %
collinearity index
subs (3, :) = [k i col dtm] ;
end
end

Theidentifiability analysisindicates that there are 26
different combinations of the parameter subsets that can
potentially be used for parameter estimation using the
ammonium, nitrite and oxygen measurements (Table
5.8). The collinearity index value was changed from 1.2
to53 andin general tendsto increasefor larger parameter
subset sizes. The parameter subset K#21 is the one used
in the parameter estimation above (see examples 5.3 and
5.4). This subset has a collinearity index of 45, whichis
far higher than typically considered threshold values of
5-15 for asubset to be considered practically identifiable
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(Brun et al., 2002; Sin et al., 2010). As shown here, the
analysis would have diagnosed the issue before
performing the parameter estimation (PE) and thiswould

EXPERIMENTAL METHODS IN WASTEWATER TREATMENT

have indicated that this subset was not suitable for the
estimation.
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Figure 5.2 Significance ranking of the AOO parameters with respect to the model outputs.

However, given that the sensitivity of baco was not
influential on the outputs (see Step 3), any subset
containing this parameter would not be recommended for
parameter estimation. Nevertheless there remain many
subsets that meet a threshold of 5-15 for y« that can be
considered for the parameter estimation problem. The
parameter subsets shaded in Table 5.8 meet these
identifiability criteria, and therefore can be used for
parameter estimation. The best practice is to start with
the parameter subset with the largest size (of parameters)
and lowest yk. Taking these considerations of the
sengitivity and collinearity index of the parameter
subsets into account helps to avoid the ill-conditioned
parameter estimation problem and to improve the quality
of the parameter estimates.

Example 5.6 Estimate the model prediction uncertainty of the
nitrification model - the Monte Carlo method

In this example, we wish to propagate the parameter
uncertainties resulting from parameter estimation (e.g.
Example 5.3 and Example 5.4) to mode output
uncertainty using the Monte Carlo method.

For the uncertainty analysis, the problem is defined
asfollows: (i) only the uncertainty in the estimated AOO
parameters is considered, (ii) the experimenta
conditions of batch test 1 are taken in account (Table
5.3), and (iii) the model in Table 5.1 is used to describe
the system and nominal parameter valuesin Table 5.2.
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Table 5.8 The collinearity index calculation for all the parameter combinations.
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Subset K Subset size Parameter combination Yk
1 2 Ko,a00 broo 1.32
2 2 Ks.a00 broo 1.26
3 2 Ks 00 Ko.400 2.09
4 2 Pra% baoo 1.30
5 2 P22 Ko,a00 13.92
6 2 [ Ks a0 2.03
7 2 Ynoo baoo 1.28
8 2 Yaoo Ko,400 12.55
9 2 Yaoo Ks 00 2.02
10 2 Yaoo Hmax*®° 493
n 3 Ks 00 Ko.a00 baoo 2.10
12 3 TR Ko,400 broo 14.05
13 3 Hma'® Ks a00 broo 2.03
14 3 [ Ks a0 Ko 00 14.23
15 3 Ya0o Ko,n00 broo 13.09
16 3 Yaoo Ks 400 baoo 2.02
17 3 Yaoo Ks p00 Ko,400 12.89
18 3 Yaoo % baoo 51.25
19 3 Ya00 Hmax" Ko,a00 4587
20 3 Yaoo Hmax' Ks a00 4337
21 4 Ya00 Hmax" Ks a00 Koa00 4591
22 4 Yaoo Hmax' Ks a00 broo 51.25
23 4 Ya0o Hmax" Ko,a00 broo 53.01
24 4 Yaoo Ks 400 Koa00 broo 13.30
25 4 Hma'® Ks a00 Ko,a00 broo 14.30
26 5 Yaoo Hmax' Ks a00 Ko,00 broo 53.07

Step 1. Input uncertainty definition.

As defined in the above problem definition, only the
uncertainties in the estimated AOO parameters are taken
into account:

o Oinpu=[Ya00 Uma*°° Ksaoo Koaoo).

Mean and standard deviation estimates are taken as
obtained from the bootstrap method together with their
correlation matrix (Table 5.7). Further it is assumed that
these parameters follow a norma distribution or
multivariate normal distribution since they have a
covariance matrix and are correlated. This assumption

can be verified by calculating the empirical density
function for each parameter using the parameter
estimates matrix (6soxa) and shown in Figure 5.12.

figure
labels=["\theta_1";'\theta_2';'\theta_3';"'\theta
_4']; %or better the name of parameter
for i=1:4

subplot(2,2,1i)

[f xi]=ksdensity(pmin(:,1));

plot(xi,f)
xlabel(labels(i,:), 'FontSize',fs, 'FontWeight','b
old")
end
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Figure 5.12 Empirical probability density estimates for the AOO parameters as obtained by the bootstrap method.

Step 2. Sampling from the input space case the most important observations are that (i) the
parameter input space is sampled randomly and (ii) the

Since the input parameters have a known covariance parameter correlation structure is preserved in the

matrix, any sampling technique must take this into sampled values.

account. In this example, since the parameters are

defined to follow a normal distribution, the input Step 3. Perform the Monte Carlo simulations.

uncertainty spaceisrepresented by a multivariate normal

distribution. A random sampling technique is used to Inthisstep, N model simulations are performed using the

sample from this space: sampling matrix from Step 2 (Xnxm) and the model
outputs are recorded in amatrix form to be processed in

%% do random sampling the next step.

N= 100; %% sampling number

mu=mean(pmin); %% mean values of parameters %%step 2 perform monte carlo simulations for

sigma=cov(pmin); %% covariance matrix (includes each parameter value

stand dev and correlation information) % Solution of the model

X = mvnrnd(mu,sigma,N); % sample parameter space initcond;options=odeset('RelTol",1le-

using multivariate random sampling 7, 'AbsTol',1le-8);
for i=1:nboot

The output from this step is a sampling matrix, Xnxm, disp(['the iteration number is :

where N is the sampling number and m is the number of ", num2str(i)])

inputs. The sampled values can be viewed using a matrix par(idx) = X(i,:) ; %read a sample from

plot as in Figure 5.13. In this figure, which is a matrix sampling matrix

plot, the diagonal subplots are the histogram of the [t,y1] = ode45(@nitmod,td,x0,options,par); ;

parameter values while the non-diagonal subplots show %solve the model

the sampled val ues of the two pairs of parameters. In this y(:,:,1)=y1; %record the outputs

end
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Figure 5.13 Plotting of the sampling matrix of the input space, Xum — the multivariate random sampling technique with a known covariance matrix.
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Figure 5.14 Monte Carlo simulations (N = 100) of the model outputs.
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Step 4. Review and analyse the resullts.

In this step, the outputs are plotted and the results are
reviewed. In Figure 5.14, Monte Carlo simulation results
are plotted for four model outputs.

As shown in Figure 5.15, the mean, standard
deviation and percentiles (e.g. 95 %) can be calculated
from the output matrix. The results indicate that for the
sources of uncertainties being studied, the uncertainty in

20
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the model outputs can be considered negligible. These
results are in agreement with the linear error propagation
results shown in Figure 5.5.

This means that while there is uncertainty in the
parameter estimates themselves, when the estimated
parameter subset is used together with its covariance
meatrix, the uncertainty in the model prediction is low.
For any application of these model parameters they
should be used together as a set, rather than individually.

20
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Figure 5.15 Mean and 95 % percentile calculation of the model output uncertainty.

Another point to make is that the output uncertainty
evaluated depends on the input uncertainty defined as
well as the framing, eg. initial conditions of the
experimental setup. For example, in the above example
what was not considered is the measurement uncertainty
or uncertainty due to other fixed parameters (decay) and
initial conditions (theinitial concentration of autotrophic
bacteria). Therefore these results need to be interpreted
within the context where they are generated.

5.5 ADDITIONAL CONSIDERATIONS

Best practice in parameter estimation

In practice, while asymptotic theory assumption gives
reasonable results, there are often deviations from the
assumptions. In particular:
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e The measurement errors are often auto-correlated,
meaning that too many observations are redundant
and not independent (non-independently and
identically distributed (iid) random variables). This
tends to cause an underestimation of asymptotic
confidence intervals due to smaller sample variance,
o2 A practical solution to this problemisto check the
autocorrelation function of the residuals and filter
them or perform subsampling such that
autocorrelation is decreased in the data set. The
parameter estimation can then be redone using the
subsample data set.

e Parameter estimation algorithms may stop at local
minima, resulting in an incorrect linearization result
(the point at which the non-linear least squares are
linearized). To alleviate this issue, parameter
estimation needs to be performed severa times with
either different initial guesses, different search
algorithms and/or an identifiability analysis.

Afterwardsit isimportant to verify that the minimum
solution is consistent with different minimization
algorithms.

Identifiability or ill-conditioning problem: Not all the
parameters can be estimated accurately. This can be
caused by atoo large confidenceinterval compared to the
mean or optimized value of the parameter estimators.
The solution is to perform an identifiability analysis or
re-parameterisation of the model, so that alower number
of parameters needs to be estimated.

While we have robust and extensive statistical
theories and methods relevant for estimation of model
parameters as demonstrated above, the definition of the
parameter estimation problem itself, which is concerned
with stating what is the data available, what is the
candidate model structure, and what is the starting point
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