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Let us assume thatα (growth rate constant) andmS (maintenance coefficient) are
unknown and that we have data on substrate and biomass concentrations in the
reactor, the dilution rateD and the inlet substrate concentrationSin with sampling
periodT. We further assume that the yield coefficientY is known. The parameter
vectorθ therefore equals:

θ =
[

α

mS

]
(6.45)

By approximating the derivativedS/dtby a finite difference(Si +1-Si )/T (wherei
corresponds to the time instantt = i.T ), we can rewrite the mass balance (6.44) as
follows:

Si +1 − Si − T Di Sin,i + T Di Si = − 1

Y
Si Xi Tα + Xi T mS (6.46)

In other words, in the formalism of equation (6.30),yi andφi correspond to:

yi = Si +1 − Si − T Di Sin,i + T Di Si , φi =
[− 1

Y Si Xi T
Xi T

]
In the simple case of a linear equation with unknown parametersθ , linear regres-
sion can be applied, for instance a weighted least squares objective function:

J (θ) =
N∑

i =1

βi

(
yi

(
θ̂
)

− yi

)2

The least squares estimator that minimises this criterion, can easily be deduced to
be:

θ̂ =
[

N∑
i =1

βi φi φ
T
i

]−1 N∑
i =1

βi φi φ
T
i

As mentioned before, a possible choice for the weightsβi are the inverses of the
varianceσ 2

i of the measurementyi .

6.6.2 Nonlinear Parameter Estimation

Not all parameter estimation problems can be solved as easily as the problems in
which parameters appear linearly in the model. In some exceptional cases non-
linear parameters can be determined analytically by solving (a set of) nonlinear
equations. The problems, however, turn very quickly mathematically intractable
and one needs to try to find the minimum of a nonlinear objective function. Luck-
ily, finding the minimum of a multivariate functionf is a common problem in many
research fields and the available expertise is substantial.

Overall, the purpose is to find as efficiently as possible values ofθ that make
J(θ ) minimal. However, typical for nonlinear functions is that the minimum can
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FIG. 6.13. Local and global minima in an objective function.

either be global (the lowest function value in the whole parameter space) or lo-
cal (the lowest function value in a finite neighbourhood), see Figure 6.13. Despite
extensive efforts, no perfect minimisation algorithm for nonlinear objective func-
tions exists (so far), and consequently, finding the global minimum for nonlinear
problems cannot be guaranteed [203]. Rather we must accept that additional ef-
forts will be needed and care should be taken to maximise the confidence that one
is not ending up with a bad local minimum of the objective function, i.e. end-
ing up with sub-optimal parameter estimates. Consequently, one of the important
characteristics of minimisation algorithms will clearly be their sensitivity to local
minima.

A helpful visualisation of a nonlinear objective function is a landscape with
hills and valleys. The minimisation algorithm should search for the lowest point
in this landscape, but can eventually end up in a local minimum instead of the
global minimum. Minimisation algorithms typically need a set of initial values
where they start from on their quest for the parameter set that gives the lowestJ.
A property of nonlinear function minimisation is that the minimum found by the
algorithm (global or local) can be influenced by the choice of the starting values for
the parametersθ (0). Indeed, a search algorithm can get “stuck” in a local minimum
when it comes down one way, whereas it may never come near that local minimum
when it comes another way. For instance, in Figure 6.13 one could imagine getting
stuck in the local minimum when coming from the left, whereas one would end up
in the global minimum whenθ (0) was put on the right side of the figure.

The overall procedure of nonlinear parameter estimation is schematised in Fig-
ure 6.14. Initially, the model structure, of which we want to estimate certain se-
lected parameters, and the experimental data need to be specified. To start the
algorithm, first guesses of the parameters have to be given. The minimisation algo-
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FIG. 6.14. Illustration of parameter estimation routine (modified from [280]).

rithm will then request for model predictions corresponding to this first parameter
set. These model predictions are obtained by solving the set of model equations
and are passed on to the routine where the objective function is calculated by con-
fronting the predictions with the data. On the basis of rules that are different for
each minimisation algorithm either a new proposal for parameters is made and sent
to the model solver or, if certain criteria are met, the parameter values are passed
on to the user as best estimates. Stopping criteria may be that the maximum num-
ber of iterations is reached or that no improvement in objective function is found
in recent iterations.

It is important to note here that most calculation time needed to find the best
estimates is spent in the box “integration of model equations”. Therefore, any ap-
proach that can minimise the time spent in this box is very important. For instance,
one may aim for the fastest model solution methods. The main gain is, however,
obtained by selecting a minimisation algorithm that finds the minimum with the
smallest number of iterations through that box.

Schuetze [226] attempted to classify the different minimisation methods in two
main groups, local and global minimisation methods. However, he indicated that it
may not be possible at all to come up with a strict taxonomy since there are many
interrelations between the approaches. For example, most global search methods
include at some stage a local procedure in order to refine an approximation of a
solution which has been found by the global procedure.
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(a)

(b)

FIG. 6.15. Inefficient steepest decent search along valley.

6.6.3 Local Minimisation Algorithms Using Derivative Information

A wide range of minimisation procedures has been developed for locating a lo-
cal minimum, and many among them make use of information about the gradient
of the objective function with respect to the parameters to be estimated. This in-
formation is either assumed to be directly available or is computed by numerical
approximation.

Steepest descent.The basic idea of these gradient based methods is that, first, a
direction is sought in parameter space along which a minimisation of the objective
function is pursued. Once the direction is decided upon the step size with which
the parameters will be changed is to be determined.

For the steepest descent method, the path of steepest descent is followed as
long asJ decreases. When the minimum along this direction is reached, a new
steepest descent direction is searched for and the parameters are changed accord-
ing to this new direction. While, theoretically, the method will converge, it may
do so in practice with agonising slowness [80] after some rapid initial progress.
It happens particularly when the path of steepest descent zigzags slowly down a
narrow valley, each iteration bringing only a slight reduction inJ (see Figure 6.15).

Gauss-Newton method.A well-known alternative, the Gauss-Newton method,
approximates the objective functionJ locally (around a parameter setθi reached
at a certain point in the minimisation procedure) by a Taylor series expansion:

J
′
i (θ) = J (θi ) +

(
∂ J
∂θ

∣∣
θi

)T
(θ − θi ) + 1

2 (θ − θi )
T ∂2J

∂θ2

∣∣∣
θi

(θ − θi )

= ci + bT
i · δθ + 1

2δθT · Ai · δθ

whereci ≡ J (θi ) bi ≡ ∇ J|θi
[ Ai ]kl ≡ ∂2J

∂θk∂θl

∣∣∣
θi

δθ = θ − θi
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FIG. 6.16. Newton method for parameter estimation by consecutive linearisations of the
objective function.

For this approximate linear objective function the minimum can be calculated
analytically, i.e. by setting the gradient ofJ’ to zero

∂ J
′
i

∂θ
= bi + Ai · δθ = 0

we obtain that the parameter set minimising this approximation of the objective
function is found at:

θi +1 = θi − A−1
i bi

Evidently, for a nonlinear problem the minimum obtained in this way is not the
true minimum (due to the Taylor series approximation) and the linearisation must
be carried out at this point again to make a move to the next minimum, eventually
ending in the true minimum. Figure 6.16 shows the procedure for a two-parameter
example. Note the nonlinear contour line ofJ and consecutive linear approxima-
tions of J’ (ellipsoidal contour lines). The main drawback of the method is that
it may converge very slowly (or even diverge) and oscillate around the solution.
Our own experience is that the method is not very useful for the type of estimation
problems one is encountering in wastewater treatment modelling.

Moreover, the Newton method requires the evaluation of the second derivative
matrixA (Hessian) of the objective function at anyθ . This is analytically feasible in
case the objective function can be written explicitly, but this is often not the case.
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Rather,A will need to be approximated numerically, with all the corresponding
problems.

When we consider a weighted least squares problem, we can write the elements
[A] kl to be:

[ A]kl ≡ ∂2J

∂θk∂θl
= 2

Ndata∑
i =1

1

σ 2
i

[
∂yi

∂θk

∂yi

∂θl
− (

yi − ŷi (θ)
) ∂2yi

∂θk∂θl

]
In the Gauss modification of Newton’s method, the second term is neglected be-
cause the error [yi -yi (θ )] multiplying the second derivative should be random and
can have either sign. Hence, they tend to cancel out when summed overi [203].
Therefore, we no longer need to evaluate the second derivatives and obtain for the
Gauss-Newton methods that

θi +1 = θi +
(
Yθ i Y

T
θ i

)−1
Yθ i εi

in which Yθ i is the matrix of output sensitivities to the parameters andεi is the
vector of residuals for the parameter setθi .

It is to be noted that some “fiddling” with theA-matrix has no effect at all on
the final result of the minimisation but will only affect the downhill path that is
taken to get there. Indeed, the condition at the minimum thatb should be zero is
independent of howA is defined.

Levenberg-Marquardt. Probably the best-known modification (“fiddling”) of the
above two basic methods is the Levenberg-Marquardt algorithm [168] where a
compromise is sought between the above inverse Hessian and the steepest-descent
method. The idea of Marquardt can be explained briefly as follows. First, both
linearisation and steepest-descent methods are “asked” for their optimal direction
for a next parameter update step. The Marquardt algorithm then provides a method
for interpolating between these two directions and for obtaining a suitable step size
as well. We shall not go into any further detail here. This algorithm is good in the
sense that it almost always converges and does not slow down as the steepest-
descent method often does [80].

Quasi-Newton methods.The basic idea of the quasi-Newton or variable met-
ric methods [203] is to build up, iteratively, a good approximation to the inverse
Hessian matrixA−1. Hence, the term “quasi” points to the fact that we only use
the current approximation of the inverse Hessian to move forward in the Newton
parameter update formula. As explained in Presset al. [203] it is found that this
approximation often works better than the true Hessian, because it always guar-
antees in the beginning to move downhill, whereas this guarantee is not given
in the Newton method. Of course, close to the minimum the approximation con-
verges to the true Hessian and we can benefit from the quadratic convergence of
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Newton’s method. The two best known examples of quasi-Newton methods are
the BFGS (Broyden, Fletcher, Goldfarb and Shanno) and DFP (Davidon-Fletcher-
Powell) methods [87]. These algorithms only differ in details but it has generally
become recognised that, empirically, BFGS is superior to DFP. Vanrolleghem and
Keesman [264] reported, however, that while these methods converge very quickly,
they appear quite sensitive to local minima too.

6.6.4 Derivative-Free Local Minimisation Algorithms

In the parameter estimation problems we have discussed in this book on dynamic
models, the objective function is defined by a system of ordinary or partial differ-
ential equations that are mostly not linear in the system variables and parameters.
Consequently, the objective function is evaluated by numerical integration of the
dynamic system. Parametric derivatives generally must be found by further inte-
gration of a large, derived system (of sensitivity functions), one for each parameter.
In situations such as these, derivative-free algorithms are particularly attractive -
especially ones that make efficient use of previously computed function values
[207]. It is clear that these methods need less preparation for implementation since
no calculation of the derivatives must be supported. Also, numerical problems as-
sociated with calculating the derivatives may induce convergence problems. In
contrast to, for instance, [13], we do not consider methods that use finite differ-
ences to approximate the derivative as derivative-free methods. According to us
they belong to the first group of local minimisation algorithms.

Rosenbrock method.One of the oldest methods for derivative-free minimisation
was introduced by Rosenbrock in 1960 [220]. It was specifically developed for
problems in which the objective function is characterised by ridges and valleys
and deals with these by rotating the search axes at the end of every stage in the
direction of the valley. Riefleret al. [217] found this method very insensitive to the
local minima which other methods such as BFGS were suffering from.

Brent’s algorithm. The direction set method of Powell [202] with refinements
proposed by Brent [42] is one of the best derivative-free local minimisation meth-
ods [203]. It is based on a repeated combination of one-dimensional searches along
a set of various directions [96]. Direction-set methods consist of prescriptions for
updating the set of directions as the method proceeds, attempting to come up with
a set which either

• includes some very good directions that will take us far along narrow valleys,
or else

• includes some number of “non-interfering” directions with the special prop-
erty that minimisation along one is not “spoiled” by subsequent minimisa-
tion along another, so that interminable cycling through the set of directions
can be avoided.
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FIG. 6.17. Elementary steps in a direction set algorithm with direction set containing con-
jugate directions adapting according to Brent [42].

Interesting to mention is that Brent also incorporated some random “jumps”
into the procedure to avoid some “local minima” problems that Powell’s original
algorithm still suffered from.

In Figure 6.17 a typical sequence of searches is presented to illustrate the ba-
sic algorithm. We start in an initial parameter guessθ0 and search sequentially for
the minimum along each of the directions in the direction set{n1,n2}. When all
directions are passed through (leading toθ1), the oldest direction in the set is re-
placed by a new direction constructed asn3 = θ1-θ0. This first iteration is ended
by searching along this new direction for the minimumφ1. Then a new iteration
is started along directions{n2,n3} leading toθ2 and the new directionn4 which
leads to the minimumφ2. This sequence of steps continues until a stop criterion is
reached (e.g. maximum number of allowed iterations or a lack of further decrease
in objective function).

Vanrolleghem and Keesman [264] confirmed the statement by Presset al. [203]
that this method is probably one of the best ones in terms of optimally compromis-
ing convergence rate and insensitivity to local minima. Schuetze [226], using the
original Powell method, indeed complained about its sensitivity to local minima.

Simplex method. Another well-known local minimisation method, which does
not require derivative information, was proposed by Nelder and Mead [184], better
known as the simplex method (not to be mixed up with the linear programming
simplex method !).

The main concept used by this method is the geometrical concept of a simplex.
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A simplex is the geometrical figure consisting, inp dimensions, ofp+1 points (or
vertices) and all their interconnecting line segments, polygonal faces etc. Exam-
ples are a triangle (p=2) or a tetrahedron (p=3). The simplex method only makes
use of nondegenerate simplexes, i.e. if any point of a nondegenerate simplex is
taken at the origin, then the otherp points define vector directions that span the
p-dimensional parameter space.

Starting from an initial simplex, elementary steps (Figure 6.18) are developed
to find a minimum by evaluating the objective function value at the vertices of
the simplex and replacing the vertex with the highest value by another point inp-
dimensional space. These steps make sure that the objective function value of each
new point of the new simplex is closer to the optimum than the old one. Further-
more, it is ensured that the elementary steps maintain the simplex nondegeneracy
property.

The typical progress of iterations is illustrated in Figure 6.19 using a two-
dimensional example. Vertices 1,2 and 3 form the initial simplex and increasing
numbers indicate the new vertices added at each iteration. Note that vertex 7 has
the largest function value for the simplex{4,6,7} but is not reflected immediately
since it is the newest vertex in that simplex. When simplex{6,9,10} is reached,
vertex 6 has been in the current simplex for four iterations leading to a contraction
to the new simplex{6,11,12}. The iteration continues from this simplex and the
algorithm will continue to reflect and contract the simplex until the stop criterion
has been achieved.

The simplex method is well appreciated for its robustness to local minima, ease
of implementation and reasonable convergence rate [203], [264], [226].

Secant or DUD algorithm. The name under which this algorithm was proposed
in Ralston and Jennrich [207], DUD (doesn’t use derivatives), is clearly indicative
of what the authors found to be a main feature of the algorithm. Essentially, the
DUD algorithm can be considered a derivative-free Gauss-Newton algorithm. For
instance, in the weighted least squares case,

J (θ) =
Ndata∑
i =1

1

σ 2
i

(
yi − ŷi (θ)

)2
the Gauss-Newton algorithm approximatesŷi (θ) by a first order Taylor series ex-
pansion about the current value of the parametersθ , whereas the DUD algorithm
approximateŝyi (θ) by a linear functionF(θ ) that exactly agrees witĥyi (θ) at
(p+1) points. This function describes a secant to the nonlinear functionŷi (θ).

The (p+1) points are initially selected as in the Simplex method and an up-
dating mechanism is used to replace one of the(p+1) points. In the weighted least
squares case, the objective function calculated with the secant has exactly one min-
imum which can be easily located. Usually, the point with the highest value ofJ(θ )
is replaced by this minimum except when it is too close to the best solution found
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FIG. 6.18. Elementary operations in the simplex minimisation method.

so far. Then, the point with the highest value ofJ is contracted by a factor of 10
towards the best point to improve the approximation ofJ by its secant function
at the next iteration. If, on the other hand, the minimum found from the secant
approximation is larger than any value of the current(p+1) points, convergence is
improved by a step reduction mechanism [213].

Reichert [213] extended the original algorithm to take into account individu-
ally weighted data and simple inequality constraints. He reported that the para-
meter transformation approach mentioned in the section on inequality constraints
in this chapter could not be used for DUD because the unlimited step size of the
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FIG. 6.19. The Simplex algorithm for a two-dimensional optimisation problem.

secant method would lead to rapid divergence of parameters lying on constraints.
Rather, the alternative approach to deal with inequality constraints that is based
on its translation into an equality constrained problem and minimising an objec-
tive function augmented with these constraints and Lagrange multipliers (e.g. [13])
was advocated.

6.6.5 Global Minimisation Algorithms

All local minimisation methods suffer from the problem that finding a local mini-
mum does not ensure that a global minimum has been found. Consequently, global
minimisation methods have been proposed which do not make use of local prop-
erties of the objective function. Thus, the problem of getting stuck in a local min-
imum is circumvented. However, this advantage of global methods is usually paid
for by a higher number of function evaluations necessary for obtaining a solution.

Global optimisation methods can be grouped roughly into two main groups
[226], the first of which consists of (purely) deterministic methods, such as grid-
ding. The gridding methods consist of evaluating the objective function at a large
number of points predefined on a grid laid in the parameter space. If the number
of function evaluations is sufficiently high, there might be some chance to come
at least close to minima. This method is clearly very inefficient because it does
not allow for any scope of learning from the function evaluations. An obvious re-
finement is of course to refine the grid after a series of evaluations around the best
value found so far.

The second group of global optimisation methods can be termed randomised
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methods since random decisions are involved in the search10. The degree of ran-
domness varies significantly in different approaches: Uniform random search can
be considered as being entirely probabilistic since the objective function is eval-
uated at every point of a random sample of points in parameter space. Again, as
in the gridding approach, no use is being made of information gained in previous
evaluations. Methods that do make use of such information are called adaptive ran-
dom search methods. The main idea here is to perform evaluations of the objective
function at points centred around promising points.

Among the first realisations of adaptive random search techniques is the Sim-
ulated Annealing technique [203]. The main idea is that the search is not always
going towards a candidate solution (eventually ending up in a local minimum)
but to allow – occasionally – also a step in a different direction. The probabil-
ity of such random jumps is slowly decreased during the minimisation process.
This method can be regarded as the predecessor of such currently popular methods
as the genetic algorithms (GA) and controlled random search (CRS) techniques.
These algorithms, which can also be termed “evolutionary” [225], start with an
initial population of candidate solutions (a bit similar to the vertices in the simplex
method) sampled randomly from the parameter space. The function values of the
individuals of this population influence the process of generating new candidate
solutions. Various techniques have been proposed for this process. In genetic al-
gorithms [101] new generations of candidate solutions are obtained by imitation
of the biological evolution processes of cross-over, mutation and selection of ap-
propriately encoded representations (e.g. bit-strings) of populations of parameters.
The definition of the parameters of the algorithm itself is crucial to the success of
its application.

In the CRS methods [204], new candidate solutions are generated by reflec-
tions on the centre of gravity of the current set of candidate solutions. Duanet al.
[81] developed the shuffled complex evolution (SCE) algorithm which constitutes
an extension of the CRS procedure, to which elements of the simplex method of
Nelder and Mead [184] and of competitive evolution were added. In SCE the initial
set of candidate solutions is split into different communities (“complexes”) which
are allowed to develop separately by a combination of CRS and simplex search.
From time to time, these complexes are mixed (“shuffled”), thereby passing on
information about the parameter space gained independently by each community.
It is generally accepted that the SCE method is robust and more efficient than a
genetic algorithm procedure [226].

10It should be noted that many local minimisation algorithms include random steps to “jump” out
of local minima, in this way allowing for increased robustness against this major problem of nonlinear
minimisation.
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6.6.6 Comparison of Different Minimisation Algorithms

Although many studies are certainly available in the literature, only a few are men-
tioned here for illustrative purposes. In a study by Tseng and Hsu [251] the esti-
mates obtained from three linear transformations of a nonlinear model (Lineweaver
& Burk, Eadie & Hofstee and Eisenthal & Cornish-Bowden) were compared with
the estimates obtained with their own random search method. They evaluated the
quality of fit (expressed as the sum of squared errors) and the computation time for
the different methods. A remarkable result was that estimate bias became larger for
the transformation-based methods when more data points were included for para-
meter estimation, again stressing the problems caused by the loss of the required
error structure due to these transformations.

In 1992, Fuente and co-workers [94] evaluated a large range of minimisation
algorithms for calibration of an activated sludge treatment plant model. They com-
pared steepest descent and the Davidon-Fletcher-Powell methods as examples of
unconstrained minimisation and compared different methods for constrained min-
imisation based on the penalty function method including infinite barriers in ad-
dition to log and inverse penalties. The conclusion of the work was that the min-
imisation algorithms had no difficulties in finding parameter estimates that fitted
the data. However, although the fits are similar, the parameter estimates differ sub-
stantially which points to identifiability problems.

The study of Vanrolleghem and Keesman [264] compared a series of methods,
including BFGS, Simplex, Brent, Random Search and Monte Carlo Set-Member-
ship on identifying Monod-based models with three to six parameters on respiro-
metric data. The results confirmed the relatively high rate of convergence of the
BFGS and Brent methods and the robustness to local minima of the Brent, Sim-
plex and the Random Search and Set-Membership methods.

Riefleret al. [217] also evaluated the BFGS, steepest descent and Rosenbrock
methods on the estimation of biofilm kinetics. The steepest descent method con-
verged too slowly to be practically useful, whereas the BFGS algorithm suffered
from sensitivity to local minima as deduced from the sensitivity of its results on
the initial parameter guesses. The authors concluded that the Rosenbrock method
was most fit for their estimation problem which was characterised by a narrow
objective function valley. The steep walls prevented derivative approximations
with sufficient accuracy to determine a descent direction on the direction of the
valley.

Finally, Schuetze [226] did a comprehensive evaluation of minimisation algo-
rithms, comparing

• the Controlled Random Search (CRS) method,
• a genetic algorithm (GA) according to Caroll and a modification by Krish-

nakumar, called micro genetic algorithm (µGA), that uses very small popu-
lation sizes and does not include mutation,
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• the original Powell [202] method as presented in [203] without the modifi-
cations by [42] since they were considered too computationally demanding,

• a gridding of the parameter space where four values were evaluated in each
parameter dimension,

• an approach in which simple substitute models were created for the objective
function, i.e. a function was fitted to the objective function values obtained
and, given an appropriate choice of the function, its minimum was obtained
in an analytical way,

• the Response Surface Methodology (RSM) which requires the building of
a quadratic substitute modelf over the entire feasible parameter space. The
(p+1)(p+2)/2 coefficientsα in p variables (here the parameter values for
which we look for a minimum in the objective function)

f
(
θ1, · · · θp

) =
p∑

i, j = 1
i ≥ j

αi j θi θ j +
p∑

i =1

αi 0θi + α00 (6.47)

are determined by least squares regression over all 3p combinations of the
smallest, mean and largest value of the range of each of thep parameters.
The parameter estimates are then easily found by minimisingf.

The best performance was obtained with the CRS method (giving the lowest
objective function within a given maximum number of function evaluations). In
this study, the Powell method was found to be quite sensitive to local minima and
the methods based on substitute models for the objective function were found to
work unsatisfactorily. As expected, allowing a larger number of function evalua-
tions turned out more favourable for the genetic algorithms. As a side remark it
was stated that the tangent transformation used to still work with constraints when
algorithms for unconstrained minimisation are used, was not very successful in
several minimisation runs. Apparently, when the search approaches a region close
to the constraint, the tangent transformation (expanding even small differences in
the parameters in such region) prevents convergence or further successful search
steps of the procedure.

6.7 Evaluation of Parameter Estimation Quality

When a model is calibrated to a data set, it is essential to evaluate the success of
this step, even before actual validation of the model is performed. Two aspects
need to be evaluated. First, we need to know whether the fitting process itself went
well (i.e. did we reach an adequate model fit ?). Second, we want to find out how
accurate we have estimated the parameters and conclude whether this accuracy
is sufficient for our purpose or whether additional data need to be collected (or
a different model built). The first task will, for instance, be based on residuals
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analysis whereas the second task will typically focus on the parameter estimation
confidence regions, which in most cases will be based on the parameter estimation
error covariance matrix. We will, however, also draw attention to alternative meth-
ods for parameter accuracy evaluation because the covariance matrix can only be
considered an approximation of the true parameter error distribution due to – again
– the nonlinearity of the model. These alternative methods will, however, be char-
acterised – again – by high computational demands making their use less popular
than the approximate covariance matrix based analysis.

6.7.1 Residuals Analysis

Extensive methodology has been developed for investigating whether a calibrated
model provides a good description of the data. The methods usually involve ex-
amination of the residuals, i.e. the differences between the observed data and the
model predictions. It is quite evident that these methods have therefore also been
used for structure characterisation (see Chapter 3). Basically, the whole method-
ology of residuals analysis is based on the feature that an adequate model leaves
only measurement error in the residuals. Hence, if the model is appropriate and the
model calibration process has been successful, we may expect that the residuals
are characterised in the same way as the measurement errors, for instance random-
ness, homoscedasticity (constant variance), normal distribution. A comparison of
their characteristics therefore allows us to conclude whether the calibration was
successful.

Analysis of randomness can be based on autocorrelation assessment methods
as introduced in Chapter 3 for model selection purposes, i.e. the autocorrelation
tests, the runs test, ... A note should be made, however, when correlation analysis is
performed on the basis of small data sets. The modeller can indeed be misled when
his examination is based on the residuals’ (in)dependency since there are only
Ndata-p degrees of freedom left among them after the model identification [208].
On the other hand, the presence of autocorrelation may have statistically serious
consequences, more particularly it will lead to an underestimation of the size of
the confidence regions, or in other words, we will get too much confidence in our
parameter estimates [19]. Thus, investigators should not delude themselves into
thinking that more data points are better for least squares estimation of parameters,
unless they know that the measurement errors are uncorrelated [218].

Other residuals analysis methods evaluate whether the other assumptions made
when choosing the objective functionJ are fulfilled. For instance, the residuals’
homoscedasticity may be evaluated by plotting the residuals against the indepen-
dent variable (mostly time) or against the measured variable (see for instance Fig-
ure 6.2). Trends in the residuals sequence may suggest a switch from an ordinary
least squares to a weighted least squares objective function. Testing whether the
residuals are indeed normally distributed can be done by performing adequate dis-
tribution analysis tests found in statistical handbooks.
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6.7.2 Parameter Estimation Error Covariance Matrix Determination

Even if the nonlinearity of the model parameters makes it only an approximation
and other methods are in principle more correct (see below), the parameter estima-
tion error covariance matrix is the corner stone of parameter estimation accuracy
evaluation. Indeed, once this covariance matrix is available, one may use several
statistical techniques to evaluate the quality of the estimated parameters. In the
next sections some of these techniques are discussed, namely:

• Computation of confidence intervals.
• Determine and draw confidence region ellipses for two parameters.
• Determine whether the zero vector lies within the confidence region.
• Computation and evaluation of correlation values.

Because of its importance, we will therefore review the different methods that are
being used to obtain the parameter estimation error covariance matrix.

Linear model. In case we are dealing with a linear parameter estimation problem
(see the example in Section 6.6.1),Y = Xθ whereY is the vector of output mea-
surements andX the regressor vector, we obtain that the estimation error covari-
ance matrix can be readily calculated as (under iidN assumption of the residuals):

V =
(

XT X
)−1

σ 2

whereσ 2 is the measurement error, typically estimated ass2=Jopt/(Ndata-p). In
case modelling errors exist, one needs to have an independent measure of the mea-
surement errors2

e, which can substitute forσ 2. It must be stressed that the ma-
trix inversion that is needed may be troublesome. Indeed, these matrices are often
characterised by poor condition numbers due to highly correlated parameters (re-
member the Modified E criterion for optimal experiment design that could allow
this inversion problem to be solved, see Chapter 5).

In case the measurement errors are not equal (but still random and distributed
normal), and the weighting of the errors in the objective functionJ is achieved
via the measurement error covariance matrixQ (which is a diagonal matrix if the
measurements are uncorrelated but with different varianceσ 2

i ):

Q =

⎡⎢⎢⎢⎢⎢⎣
1
σ2

1
0 · · · 0

0 1
σ2

2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2

Ndata

⎤⎥⎥⎥⎥⎥⎦
the parameter estimation error covariance matrix is again readily calculated, i.e.
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V =
(

XT QX
)−1

In some cases this value of V is multiplied with a termχ2/(Ndata-p) whereχ2is
the minimum value obtained for the objective functionJopt in this weighted least
squares parameter estimation. Indeed, whereas the above equation gives the para-
meter variance as a function of measurement errors only, the multiplication with
χ2 leads to more reasonable (larger) estimates of errors in cases in which the stan-
dard deviations of the measurements do not take all sources of error into account
(e.g. some modelling error). The danger involved in employing this multiplication
with χ2 is that systematic errors may be treated as statistical errors [213]. The
multiplication withχ2 is, however, useful when theσ 2

i are not given in absolute
terms, but merely as relative magnitudes, something which typically happens in
case no detailed analysis of the measurement errors is conducted (as for instance
in the example of Section 6.4.3.). In that case theχ2 value obtained as a result of
the parameter estimation corrects for this.

From the above, it is clear that calculating the covariance matrix does not in-
volve a lot of calculations as it only requires some matrix manipulations with the
available data.

Nonlinear model. For nonlinear parameter estimation problems an approximate
parameter error covariance matrix can be calculated by replacing theX-terms in
the above by the output sensitivity functions with respect to the parameters, i.e.

V =
(

∂y

∂θ

T

Q
∂y

∂θ

)−1

where∂y/∂θ is a vector of the output sensitivities at each of theNdata measurement
points. Note that again we see the link between the parameter estimation error
covariance matrix and the Fisher Information Matrix indicated in Chapter 5.

We immediately can see that the actual evaluation of this covariance matrix will
involve many more calculations. Indeed, the evaluation of the sensitivity function
either requires a simultaneous solution of a considerable set of differential equa-
tions (see the simple example given in Chapter 5). Alternatively, a numerical ap-
proximation of the sensitivity functions can be made by performingp additional
simulations around the nominal trajectory where each parameter is perturbed with
a small perturbationδθ . The adequate choice of this perturbation parameterδθ

is the Achilles’ heel of this method (see also the similar Nelder and Mead [184]
method below).

Luckily, some minimisation algorithms such as the Levenberg-Marquardt and
Newton algorithms need or approximate (quasi-Newton and Gauss-Newton meth-
ods) the Hessian, which is the inverse of the covariance matrix. Only some minor
modification to these algorithms is therefore needed to get access to this Hessian
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matrix which after (careful) inversion leads to the parameter estimation error co-
variance matrixV. Some other algorithms also build up information that leads to an
approximation of the Hessian, e.g. Brent’s algorithm. However, Van Vooren [269]
learnt that this approximation is too crude in some parameter estimations since the
method only asymptotically converges to the Hessian.

The method proposed by Spendleyet al. [237], and extended by Nelder and
Mead [184], can also be adopted. It allows the covariance matrix around the min-
imum for any parameter estimation method to be calculated as it is basically an
add-on exercise. The technique is based on the construction of a quadratic surface
around the minimum of the cost functionf. If (p+1) points inp dimensions are
given byP0, P1, Pp, then “half-way points”Pi j =(Pi +Pj )/2, i =j are calculated,
and a quadratic surface is fitted to this combined set of(p+1)(p+2)/2 points. The
pointsPi may be taken as:

P0 =
(
θ̂1, θ̂2, · · · , θ̂p

)
P1 =

(
θ̂1 + δ1, θ̂2, · · · , θ̂p

)
P2 =

(
θ̂1, θ̂2 + δ2, · · · , θ̂p

)
...

Pp =
(
θ̂1, θ̂2, · · · , θ̂p + δp

)
in which θ̂i is the estimated optimum parameter value andδi is the step size, a user-
defined small value or a value automatically chosen as function of the machine
precision. In order not to exceed the parameter boundaries (e.g. under constrained
optimisation), the step may be chosen positive or negative.

The matrix with the step sizesδ is called the direction matrixD.

D =

⎡⎢⎢⎢⎣
δ1 0 · · · 0
0 δ2 · · · 0
...

...
. . .

...

0 0 · · · δp

⎤⎥⎥⎥⎦
A quadratic approximation to the objective functionJ in the neighbourhood of the
minimum can be obtained using Taylor series expansion

J ′ (θ) = J (P)+
∑

i

∂ J

∂θi

∣∣∣∣∣
P

θi + 1

2

∑
i, j

∂2J

∂θi ∂θ j

∣∣∣∣∣
P

θi θ j +· · · ∼= c−b·θ+ 1

2
θ ·A·θ

wherec ≡ J (P) b ≡ − ∇ J|P [ A]i j ≡ ∂2J
∂θi ∂θ j

∣∣∣
P
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The coefficients of the Hessian matrixA can be estimated as:

aii = 2(yi + y0 − 2y0i ) i = 1, · · · , p
ai j = 2

(
yi j + y0 − y0i − y0 j

)
i = 1, · · · , p ; j = 1, · · · , p ; i = j

whereyi are the values of the objective functionJ at Pi andyi j those atPi j . The
Hessian or Fisher Information Matrix in the original coordinate system is given
by11

2
(

D−1
)T

AD−1

so that the parameter estimation error covariance matrix is given by

1

2
D A−1DT

In many cases, the sum of squares of residuals is minimised, and normal equal-
variance independent errors are assumed, thus this matrix must be multiplied by
2σ 2 [184]. As usualσ 2 is estimated byJopt/(Ndata-p).

Van Vooren [269] implemented this technique and investigated the effect of
the step sizesδi . It was found that the final results were not much influenced by
different choices of theδi ’s. However, the choice of the step size will depend on
the rounding errors, and it is advised in Nelder and Mead [184]) that the step size
should be at least 103 times that rounding error. A too large step size should be
avoided too because then the linear approximation of the objective function may
no longer hold (depending on its level of nonlinearity). Hence, a compromise must
be sought. A pragmatic approach is to perform the calculation with halved step
size and compare the results. If they are sufficiently close, they can be accepted.

Clearly, one of the drawbacks of this method is that it requires a considerable
number of additional function evaluations [213]. However, in many parameter es-
timation cases, the extra calculation time necessary to run this extra algorithm is
negligible compared to the overall parameter estimation time.

6.7.3 Confidence Regions

In order to give a meaningful value for the estimated parameters, they should be
supplied together with a confidence region. A confidence region is ap-dimensional
interval in which, with a certain probability (e.g. 68.3 %), the true parameter
(a p-dimensional vector) lies. The most common confidence region is the one-
dimensional region, the confidence interval. A visualisation of a two-dimensional
confidence region and a test whether the (n-dimensional) 0 lies within then-
dimensional confidence region are also given below.

11Note that in the original paper Nelder and Mead [184], the factor 2 was erroneously omitted as was
corrected in an erratum to this paper inComput. J., 8, 27, 1965.
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FIG. 6.20. Exact confidence region determination for two parametersθ1 andθ2 using the
[162] approach.

First, however, we will discuss the actual nature of the confidence region in
a nonlinear parameter estimation problem. Let us start from a linear parameter
estimation problem in which a weighted least squares objective function was min-
imised and in which the residuals can be assumed to be independent distributed
normal. Under those conditions, the confidence region of the parameter estimates
can be exactly calculated from the covariance matrix. As soon as the model is non-
linear in the parameters, this covariance matrix that we have constructed with the
methods given above, only allows to approximate the true confidence region. The
exact boundaries of a100(1-α)% confidence12 region for the parameter estimateθ̂

are defined as those parameters for which the following equality holds [18]:

Jcri t = Jopt ·
(

1 + p

Ndata − p
Fα;p,Ndata−p

)
(6.48)

whereJopt is the minimum value found for the objective function andFα;p,Ndata−p
is the value of theF-distribution with p andNdata − p degrees of freedom and a
confidence levelα.

The100(1-α)% confidence region for̂θ is then the locus of values forθ which
result in a value ofJ below this critical value.

12In case we do not know the true residuals’ distribution, we are unable to obtain a specified proba-
bility level [80]. For residuals with normal distribution, we do have that certainty.
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FIG. 6.21. Terminology of confidence intervals in the two-dimensional case.

The problem of finding this boundary may, however, be computation demand-
ing as no easy analytical calculation is feasible. Rather, we have to search for those
parameter sets fulfilling the above (in)equalities, i.e. we have to run a considerable
number of additional simulations. Typical approaches are to evaluate the parameter
space around the parameter estimateθ̂ over a grid or via random sampling using
Monte Carlo techniques. However, this method quickly becomes impractical as
the number of parameters increases or if the desired resolution increases. Con-
sequently, Lobryet al. [162] proposed an elegant, pragmatic method for finding
the confidence region boundary with a minimum of additional simulations. The
method is introduced in Figure 6.20. First, an initial trial confidence region is pro-
posed that completely encloses the true confidence region, i.e. allJ(θ ) should be
larger than the value given by the Beale-formula above. Then an algorithm is ini-
tiated that makes each of the points converge towards the centre, i.e. where the
parameter estimatêθ is found. This convergence is stopped when a J(θ) is found
that corresponds to the criticalJ value given by Beale and a certainα.

Confidence intervals. The difference between a confidence interval in one and
two dimensions is illustrated in Figure 6.21. The same fraction of evaluated points
lies (i) between the vertical lines, (ii) between the two horizontal lines and (iii)
within the ellipse. Overall, a confidence interval of a parameterθi is given by [θi -
δθi ,θi +δθi ] where

δθi =
√

�χ2
1

√
Vii

Vii is the diagonal element of the covariance matrix corresponding to thei-th para-
meter.�χ2

1 will be obtained from distribution data for a given100(1-α)% confi-
dence and(Ndata-p) degrees of freedom. For instance, when the 68, 90 and 99%
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confidence intervals are to be calculated for one parameter, the�χ2
1 values to be

used are 1.00, 2.71 and 6.63 respectively [203]. For two parameters these�χ2
1

values would be 2.30, 4.61 and 9.21.
Draper and Smith [80] rightly point to the danger of regarding the square in

Figure 6.21 given by the two horizontal and two vertical interval lines, as the joint
confidence region. In that case the correlation between the two parameters is com-
pletely ignored. The “joint” message of individual confidence intervals should be
regarded with caution.

Finally, the marginal confidence intervals of a parameter are given by the pro-
jection of the confidence region on the corresponding parameter axis and are there-
fore bigger than the normal confidence intervals specified above [160].

Confidence region ellipsoids.A confidence region ellipsoid (Fig. 6.22) (two-
dimensional confidence region) can be drawn on the basis of the parameter es-
timation error covariance matrix using the following equation

λi
([

wi i wi j
]
δθ
)2 + λ j

([
w j i w j j

]
δθ
)2 = �χ2

2

whereδθ = [δθi δθ j ]T and�χ2
2 are taken for a given100(1-α)% confidence

region. The ellipsoids will be obtained using

δθi = �χ2
2

λi
wi i cos(φ) − �χ2

2
λ j

wi j sin(φ)

δθ j = �χ2
2

λi
wi j cos(φ) − �χ2

2
λ j

w j j sin(φ)

whereφ varies between 0 and 2π . The wi j and theλi are the elements of the
eigenvector and eigenvalue decomposition of the covariance matrixV:

V = [
Vi j
] = W · D−1 · WT W = [

wi j
] = [

wi

]
D = diag(λi )

The centre of the ellipse will be the vector of estimated parameter values.

6.7.4 Significance of a Single Parameter

To test whether a parameter estimate is significant, can be done easily by calculat-
ing the following t-value [208]

t = θ̂i√
Vii

i.e. the ratio of the parameter estimateθ̂i to its standard error, estimated by the
square root of the variance of the estimateVii . This value can then be tested by
reference to a Student’s t-distribution with(Ndata-p) degrees of freedom and a
user-defined confidence level100(1-α)%. A high t-value associated with a para-
meter estimate tends to indicate that the estimate is well determined in the model;
conversely, a low t-value tends to indicate that the estimate is poorly determined,
although sometimes in multiparameter models, a t-value may be low because of
high correlation of the parameter with other parameters in the model.
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FIG. 6.22. Aconfidence region ellipsoid for the parametersθ1 andθ2.

6.7.5 Significance of the Parameter Set

Testing whether0 lies within thep-dimensional100(1-α)% confidence region is
relevant as it allows assurance that the parameter set found is significantly different
from the zero vector. This test can be performed by evaluating whether

�χ2
ν >

p∑
i =1

λi
(
wi · (−θ)

)2
Herewi (the columns ofW) andλi are the eigenvectors and the corresponding
eigenvalue ofV. The value�χ2

ν is obtained for a user-supplied100(1-α)% con-
fidence level and aFα;p,Ndata−p distribution. If this inequality holds,0 will lie
within the specified confidence region.

6.7.6 Correlation Among Parameters

The correlation coefficientri j between two parametersθi andθ j gives a measure
for the correlation between these two parameters. Ifri j is close to-1 or 1 the para-
meters are said to be highly correlated. Anri j close to0 implies a low correlation.
The correlation coefficient is given by

ri j = Vi j√
Vii Vj j
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When a high correlation is encountered this may point to practical identifiability
problems that may, for instance, be solved by collecting additional data from an
optimally designed experiment (see Chapter 5).

6.8 Conclusions

The purpose of the present chapter was to introduce quite different aspects of para-
meter estimation from a complete data set. In the next chapter we will focus on
how this work can also be done on-line, i.e. with a data set that is continuously
growing. To clearly make the difference between both types of estimation, the
chapter was introduced with simple, illustrative examples. Next necessary prelim-
inary steps for a parameter estimation problem were introduced, such as the selec-
tion of parameters to be estimated, reparametrisation of the model, the guessing
of initial values for the parameters. An important section also dealt with the way
one deals with constraints on parameter values when using unconstrained minimi-
sation algorithms. Quite some part of this chapter was dedicated to the different
aspects of measurement errors since the method that is to be used for parameter
estimation depends on the error characteristics. From this and other features, the
objective function of the parameter estimation can be selected among the differ-
ent ones presented in Section 5.5. The real calculation work is then focused upon
in Section 6.6, where some linear and nonlinear parameter estimation algorithms
are introduced in a rather qualitative manner. Note again that it is important to
realise that most of the algorithms presented in this chapter are basically optimi-
sation algorithms that can also be useful in other tasks than parameter estimation,
e.g. optimisation of an experiment design. Last but not least, the chapter ends with
methods for the assessment of the quality of the parameter estimation performed.
It also adresses the important question of the quality of the parameter estimates
themselves and the generation of confidence information.



7

Recursive State and Parameter
Estimation

7.1 Introduction

This final chapter is dedicated to a question closely related to those already ad-
dressed in the preceding chapters. Up to now, we have built models, or we have
selected one of them for our specific applications, and we have shown how to
calibrate its parameters. In terms of modelling, we can consider that the task is
completed. We can use our model(s) for simulating numerically the dynamical be-
haviour of our processes, possibly for predicting and/or analysing their behaviour.
But we can also use the models for monitoring, i.e. to predict the time evolution
of the process variables and parameters on-line. The developed monitoring tools
can be used to follow the time evolution of variables and/or parameters that are not
accessible from on-line measurements; they can also be used for diagnosis about
the operation of the plant and help the operator or a supervision system to take
appropriate actions to maintain the process in good (ideally, “optimal”) operat-
ing conditions, diagnose possible process, sensor or actuator failures, or prevent
accidents. The supervision can (should) be connected to control loops.

In the following, we shall call these monitoring toolssoftware sensors. A soft-
ware sensor can be defined as an algorithm built from a dynamical model of (part
of) the process to estimate on-line unmeasured variables (typically process compo-

c© 2001 IWA Publishing. Dynamical Modelling and Estimation in Wastewater Treatment Processes
by Denis Dochain and Peter Vanrolleghem. ISBN: 1 900222 50 7
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nent concentrations like biomass, substrates or products) and/or unknown (or badly
known) parameters (e.g. specific reaction rates, or some other kinetic or yield co-
efficients) from the (few) measurements that are available on-line (typically liquid
flow rates, nutrient concentrations (N, P), respiration rate, turbidity, pH, ORP, or
gaseous outflow rates). In that sense, these tools can be viewed as “sensors” based
on an algorithm (software), i.e. in our nomenclature, assoftware sensors.

In this chapter, we shall introduce two types of software sensors.

1. State observers for reconstructing on-line the time evolution of unmeasured
process component concentrations.

2. On-line parameter estimators for unknown or badly known parameters.

The need for monitoring systems and automatic control in order to optimise
process operation or detect disturbances in wastewater treatment processes is ob-
vious. Generally speaking, the problems arising from the implementation of these
processes are similar to those of more classical industrial processes. Nevertheless,
monitoring and automatic control of wastewater treatment processes is clearly de-
veloping very slowly. There are at least two main reasons for this:

a) The internal working and dynamics of these processes are as yet badly
grasped and many problems of methodology in modelling remain to be
solved. It is difficult to develop models taking into account the numerous
factors which can influence the specific bacterial growth rate and the yield
coefficients which characterise microorganism growth. The modelling ef-
fort is often tedious and requires a great number of experiments before pro-
ducing a reliable model. Reproducibility of experiments is often uncertain
due to the difficulty in obtaining the same environmental conditions. More-
over, as these processes involve living organisms, their dynamic behaviour
is strongly nonlinear and non-stationary, as we already noted in Chapter 2.
Model parameters may not remain constant over a long period13. They will
vary e.g. due to metabolic variations of biomass or to random and unobserv-
able physiological or genetic modifications. It should also be noted that the
lack of accuracy of the measurements often leads to identifiability problems
(see Chapter 5).

b) Another essential difficulty lies in the absence, in most cases, of cheap and
reliable instrumentation suited to real-time monitoring. To date, the market
offers very few sensors capable of providing reliable on-line measurements
of the biological and biochemical parameters required to implement high
performance automatic control strategies. The main variables, i.e. biomass,
substrate and product concentrations, generally need determination through

13This may appear ambiguous with the terminology used in this monograph where we consider
parameters as being “constant” for all times. However due to the simplicity of the considered models
with regard to the complexity of the processes, it appears that different values of the parameter are
sometimes necessary to describe satisfactorily the process dynamics in different conditions.
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laboratory analyses. The cost and duration of the analyses obviously limit
the frequency of the measurements and their timely availability.

To reconstruct the state of the system from the only on-line available mea-
surements and to control [14] [192] biological variables such as the biomass, the
substrates or the products, appropriate algorithms have to be developed. The effi-
ciency of any monitoring system highly depends on the design of the monitoring
techniques and the care taken in their design. Indeed, monitoring algorithms will
prove to be efficient if they are able to incorporate the important well-known in-
formation on the process while being able to deal with the missing information
(lack of on-line measurements, uncertainty on the process dynamics,...) in a “ro-
bust” way, i.e. such that the missing information will not significantly deteriorate
the performance of the monitoring system.

In this chapter, we shall show how to incorporate well-known knowledge about
the dynamics of wastewater treatment processes (basically, the reaction network
and the material balances) in monitoring algorithms which may moreover be capa-
ble of dealing with the process uncertainty (in particular on the reaction kinetics)
via on-line estimation schemes for the uncertain kinetic parameters.

The chapter is organised as follows. Section 7.2 will concentrate on the no-
tion of state observability as applied to WWTP. The following sections will deal
with state observation, i.e. the on-line reconstruction of process components, via
different approaches:

1. “classical observers” (extended Luenberger observers, and extended Kalman
filter) (Section 7.3);

2. “asymptotic” observers (which are observers independent of the process ki-
netics) (Section 7.4);

3. an intermediate class of observers, in between classical observers and asymp-
totic observers, applicable when the reaction rate model structure is known
but the model parameters are badly known (Section 7.5).

Section 7.6 will introduce two types of algorithms for recursive estimation of un-
certain parameters: a least squares estimation algorithm, and an observer-based
estimator. Practical issues and real-life results will be presented in both sections.

7.2 State Observability

Simply speaking, the notion of observability can be defined as the possibility to
connect the state variables of a dynamical system to the measured variables via
the dynamical model of the system. Essentially, a system is observable if every
state variable of the system affects some of the process variables. An important
consequence of the observability of a system is the ability to reconstruct the time
evolution of the state variables from measured variables in an arbitrary finite time
from any initial conditions (see e.g. [151]). This notion is very important in practi-
cal applications because it implies that if a system is observable, then it is formally
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possible to design an “observer” that is theoretically capable of correctly recon-
structing the time evolution of the unmeasured variables, theoretically after a finite
arbitrarily chosen time.

Observability is clearly a critical issue in dynamical systems in general and in
chemical and biochemical systems in particular. For instance, the implementation
of Kalman or Luenberger observers for an application to bioreactors is based on
the a priori knowledge of the observability of the process. Because of the nonlinear
aspects of their dynamics, the observability analysis is rather complex in biochem-
ical process applications; and the usually large uncertainty in the kinetics of the
biochemical reactions and analytical expressions used to describe them makes the
approach even more difficult. As a matter of fact, very few works deal with the ob-
servability of nonlinear biochemical processes (e.g. [3], [7]) and they are usually
concerned with particular process applications.

Let us see how the concept of observability can be formalised mathematically,
or more precisely how we can test if a process is observable or not.

For simplicity, we shall consider the notion of observability forlinear systems
(in the state), and for which the matrices (A andB) have constant parameters (i.e.
time invariant systems). Let us consider the following dynamical equation system:

dx

dt
= Ax + Bu (7.1)

with dim(x) = N. Consider that the measured variables (theoutput) are denotedy
(dim(y) = p) and are related to the state variablesx by the following relationship:

y = Cx (7.2)

whereC is a matrix (The simplest obvious case is when the measured variablesy
are some of the process components (states); thenC is a matrix whose entries are
“1” or “0”). The linear system (7.1) (7.2) is said to be observable if the following
matrix O

O =

⎡⎢⎢⎢⎢⎢⎣
C

C A
C A2

...

C AN−1

⎤⎥⎥⎥⎥⎥⎦ (7.3)

is full rank. It is well known (e.g. [151]) that the linear stationary system (7.1),
(7.2), is observable if and only if

rank(O) = N (7.4)

Let us now consider linear approximations of nonlinear models, e.g. of the General
Dynamical Model introduced in Chapter 2:
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dξ

dt
= −Dξ + Yρ(ξ) + F(ξ) − Q(ξ) (7.5)

If we define f (ξ, D, F, Q) as follows:

f (ξ, D, F, Q) = −Dξ + Yρ(ξ) + F(ξ) − Q(ξ) (7.6)

the linear approximation of the General Dynamical Model (7.5) around some oper-
ating point obtained from the Taylor series expansion of the model equations (also
called thelinearised tangent model, see also Section 2.7.3 in Chapter 2) is written
as follows:

dx

dt
= A(ξ̄ )x + B(ξ̄ )u (7.7)

whereA, B, x are equal to:

A(ξ̄ ) = [∂ f

∂ξ
]ξ=ξ̄ = −D̄ IN + Y[∂ρ

∂ξ
]ξ=ξ̄ + [∂(F − Q)

∂ξ
]ξ=ξ̄ (7.8)

B(ξ̄ ) = [∂ f

∂u
]ξ=ξ̄ (7.9)

x = ξ − ξ̄ (7.10)

andu is the input vector which may be constituted by the values varying around
the solutionξ = ξ̄ of some of the feedratesFi and/or the dilution rateD.

The observability test can still be applied to the linear model (7.7), but it is
worth noting that then the observability test (7.4) is only a sufficient observability
condition for the nonlinear system (7.5) (e.g. [152]): if the linearised tangent model
(7.7)-(7.10) is observable atξ = ξ̄ , then the nonlinear system (7.5) is observable
around this point.

7.2.1 Example #1: Two Step Nitrification Process

Let us consider the two step nitrification model introduced in Section 2.3.4:

SN H −→ X1 + SN O2 (7.11)

SN O2 −→ X2 + SN O3 (7.12)

characterised by the following matrices and vectors in the General Dynamical
Model format:

ξ =

⎡⎢⎢⎢⎢⎣
SN H

SN O2

SN O3

X1
X2

⎤⎥⎥⎥⎥⎦ , Y =

⎡⎢⎢⎢⎢⎣
− 1

Y1
0

Y3 − 1
Y2

0 Y4
1 0
0 1

⎤⎥⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎢⎣
DSN H,in

0
0
0
0

⎤⎥⎥⎥⎥⎦ (7.13)
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ρ =
[

ρ1
ρ2

]
, Q = 0 (7.14)

If we assume that the reaction rates are only a function of the components interven-
ing in the reaction (i.e.ρ1(SN H, X1, SN O2) andρ2(SN02, X2, SN O3)), the matrix
A of the linearised tangent model is equal to:

A(ξ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−D − 1
Y1

∂ρ1
∂SN H

− 1
Y1

∂ρ1
∂SN02

0 − 1
Y1

∂ρ1
∂ X1

− 1
Y1

∂ρ2
∂ X2

Y3
∂ρ1

∂SN H
−D + Y3

∂ρ1
∂SN02

− 1
Y2

∂ρ2
∂SN02

− 1
Y2

∂ρ2
∂SN03

Y3
∂ρ1
∂ X1

− 1
Y2

∂ρ2
∂ X2

0 Y4
∂ρ2

∂SN02
−D + Y4

∂ρ2
∂SN03

0 ∂ρ2
∂ X2

∂ρ1
∂SN H

∂ρ1
∂SN02

0 ∂ρ1
∂ X1

0

0 ∂ρ2
∂SN02

∂ρ2
∂SN03

0 ∂ρ2
∂ X2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
It can be checked that all the states of the linearised tangent model with the above
matrix A is observable ifSN H , SN O2 andSN O3 are measured, and is not observable
if the measured variables areSN O2 andSN O3, or if these areSN H , X1 andSN O2

when the reaction rate is independent ofSN O3.

7.2.2 Simple Local Observability Tests

Let us now see how to derive a very simple necessary observability condition for
the system (7.7), (7.8), (7.9), (7.10). For simplicity, we shall consider thatF is
independent ofξ and that there is no gaseous outflow rate (Q = 0). Let us first
define the matrixÃ(ξ̄ ):

Ã(ξ̄ ) = Y[∂ρ
∂ξ

]ξ=ξ̄ = Yρξ (7.15)

whereρξ is a more compact notation for[ ∂ρ
∂ξ

]ξ=ξ̄ . Let us denote byÕ , the “ob-

servability” matrix computed fromÃ(ξ̄ ). Then we have the following results for
the observability of the system (7.7), (7.8), (7.9), (7.10).

Theorem 1: rank(O) ≤ min(N, p + R)
with R = rank(Y), N = dim(x), p = dim(y)

Proof: see [71]

The following important consequence can be derived from Theorem 1.
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Corollary 1: A necessary condition for the observability of (7.7), (7.8), (7.9),
(7.10) is that:

p + R ≥ N (7.16)

i.e. the number of measured components + the rank of the yield coefficient matrix
must be larger than or equal to the number of process components.

Comment #1: Theorem 1 gives an upper bound for the rank of the observabil-
ity matrix of system (7.7), (7.8), (7.9), (7.10). This result is obviously local since
it applies to the linearised tangent model of (7.5). But it is worth noting that the
result is generic in the sense that it is independent of the mathematical structure of
the reaction ratesρ(ξ).

Comment #2: the above condition is a necessary condition but not a sufficient
one. If it can be useful to detect in a very simple manner the possible lack of ob-
servability of the process, the fulfillment of condition p + R≥ N does not guarantee
its observability. This will be illustrated in Example #2 here below.

7.2.3 Example #1: Two Step Nitrification Process (Continued)

From Theorem 1, we know that system (7.15) will be unobservable if two (or less)
components are measured on-line (R + p≤ 4 < 5).

7.2.4 Example #2: Simple Microbial Growth Process

Let us consider a simple microbial growth process involving one substrate S and
one population of microorganisms X, and synthesising a reaction product P. The
process can be described by the following reaction scheme:

S −→ X + P (7.17)

The dynamical behaviour of the process in a stirred tank reactor is described by
the following equations:

d

dt

⎡⎣ S
X
P

⎤⎦ = −D

⎡⎣ S
X
P

⎤⎦+
⎡⎣− 1

Y1

1
Y2

⎤⎦ ρ +
⎡⎣ DSin

0
0

⎤⎦ (7.18)

whereY1 andY2 are the yield coefficients andρ = µX. The matrixÃ of the lin-
earised tangent model is here equal to:

Ã(S̄, X̄, P̄) =
⎡⎣− 1

Y1
ρS − 1

Y1
ρX − 1

Y1
ρP

ρS ρX ρP

Y2ρS Y2ρX Y2ρP

⎤⎦ (7.19)
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with:

ρi = [∂ρ
∂ i

]ξ=ξ̄ i = S, X, P (7.20)

From Theorem 1, we know that the linearised system of (7.18) will be unobserv-
able if only one component is measured on-line (R + p = 2< 3). As a matter of
fact, if, for instance,P is available for on-line measurement, the “observability”
matrix Õ is equal to:

Õ =
⎡⎣ 0 0 1

Y2ρS Y2ρX Y2ρP

Y2ρSρ̄ Y2ρX ρ̄ Y2ρPρ̄

⎤⎦ (7.21)

with ρ̄ = − 1
Y1

ρS + ρX + Y2ρP.

It is obvious thatÕ is not full rank (the last two rows are proportional to each
other). Now, if two components are available for on-line measurement (e.g.Sand
P), the “observability” matrix becomes:

Õ =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 1

− 1
Y1

ρS − 1
Y1

ρX − 1
Y1

ρP

Y2ρS Y2ρX Y2ρP

− 1
Y1

ρSρ̄ − 1
Y1

ρX ρ̄ − 1
Y1

ρPρ̄

Y2ρSρ̄ Y2ρX ρ̄ Y2ρPρ̄

⎤⎥⎥⎥⎥⎥⎥⎦ (7.22)

It will be full rank as long asρX is different from zero. In the particular (but
widely encountered) situation when the specific growth rateµ is only a function
of the limiting substrate S, we can expect the process to be observable whenever
µ(S) is different from zero (which only happens whenS = 0 with most kinetic
models available in the literature (see [14])).

Finally, not any choice of two components will guarantee the observability
of the process. Assume for instance in line with many practical situations that the
reaction rateρ is independent of the product concentrationP, i.e.ρP = 0. Consider
now thatSandX are measured on-line. Then the “observability” matrixÕ is equal
to:

Õ =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0

− 1
Y1

ρS − 1
Y1

ρX 0
Y2ρS Y2ρX 0

− 1
Y1

ρSρ̃ − 1
Y1

ρX ρ̃ 0
Y2ρSρ̃ Y2ρX ρ̃ 0

⎤⎥⎥⎥⎥⎥⎥⎦ (7.23)

with:
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ρ̃ = − 1

Y1
ρS + ρX (7.24)

It is obvious that since the third column is equal to zero, rank(Õ) < 3 and there-
fore, the linearised system is not observable. However the result is straightforward
to obtain by simply looking at the linearised tangent model equations ofS, X, P
for ρP equal to zero and by recalling that an important condition for the observ-
ability of the process is that the dynamical equations of the measured variables
must incorporate connections with the unmeasured variables. In the example here,
the dynamical equations ofS andX no longer contain any term related toP if ρ

is taken independent ofP.

7.3 Classical Observers

7.3.1 The Basic Structure of a State Observer

An interesting alternative to on-line measurement for monitoring biomass, reactant
and product concentrations that circumvents and exploits the use of a model in
conjunction with a limited set of measurements is the use of Luenberger or Kalman
observers. In these techniques, a model which includes states that are measured as
well as states that are not measured is used in parallel with the process. The model
states may then possibly be used for feedback. This configuration may be used to
reduce the effect of noise on measurements as well as to reconstruct the states that
are not measured. An introduction to these ideas can be found in e.g. Kwakernaak
and Sivan[151].

Let us derive the general structure of state observers. Let us consider the fol-
lowing nonlinear state space model:

dx

dt
= f (x, u) (7.25)

The measured variables, denotedy, are related to the process states by the follow-
ing relation:

y = h(x) (7.26)

The general structure of a state observer is then written as follows:

dx̂

dt
= f (x̂, u) + K (x̂)(y − ŷ) (7.27)

wherex̂ and ŷ are the on-line estimations ofx and y given by the state observer
(7.27) and:

ŷ = h(x̂) (7.28)

and whereK (x̂) is the “gain” of the observer. The above observer equation can
be interpreted as a copy of the process model plus a correction termK (y − ŷ)

proportional to the output observation errory − ŷ. This term is indeed the driving
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term of the observer; it disappears in presence of perfect estimation (obviously,
under the assumption that the process model is perfect too). The design of the state
observer consists of choosing an appropriate gainK (x̂).

The above state observer was originally developed for linear problems. Be-
cause of the nonlinear characteristics of bioprocess dynamics, it is of interest to
extend these concepts and exploit particular structures for biochemical engineer-
ing application problems. The design of the gain matrixK is based on a linearised
version (the linearised tangent model) of the process dynamics observation error
(computed from a Taylor’s series expansion of a state space model around some
operating point. If we define the observation errore as follows:

e = x − x̂ (7.29)

the dynamics of the observation error are readily derived from equations (7.25)
and (7.27):

de

dt
= f (x̂ + e, u) − f (x̂, u) − K (x̂)(h(x̂ + e) − h(x̂)) (7.30)

If we consider the linearisation of the above equation around the observation error
e = 0, we obtain:

de

dt
= (A(x̂) − K (x̂)C(x̂))e (7.31)

whereA(x̂) andC(x̂) are respectively equal to:

A(x̂) = [∂ f

∂x
]x=x̂, C(x̂) = [∂h

∂x
]x=x̂ (7.32)

Thus the design problem can be formulated as the choice of the matrixK (x̂) such
that the linearised error dynamics (7.31) has desired properties. This has resulted
in two typical state observation designs: the extended Luenberger observer, and the
extended Kalman observer. The word “extended” obviously emphasises that these
observers are extensions of the original linear versions to nonlinear systems. These
modified observers, particularly the extended Kalman filter (EKF), have found ap-
plications in some biochemical processes (e.g. [21], [22], [24] [242], [153], [287],
[47]).

7.3.2 Extended Luenberger Observer

In the extended Luenberger observer, the objective is to selectK (x̂) such that the
linearised error dynamics (7.31) are asymptotically stable (i.e. the error converges
to zero). This is achieved by choosingK (x̂) such that (see e.g. [14]):

1. the matrixA(x̂) − K (x̂)C(x̂) and its time derivative are bounded:

‖A(x̂) − K (x̂)C(x̂)‖ ≤ C1, ∀x̂ (7.33)

‖ d

dt
(A(x̂) − K (x̂)C(x̂))‖ ≤ C2, ∀x̂ (7.34)
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2. the eigenvalues ofA(x̂) − K (x̂)C(x̂) have strictly negative real parts:

Re(λi [A(x̂) − K (x̂)C(x̂)]) ≤ C3 < 0, ∀x̂ andi = 1 to N (7.35)

The importance of the requirement of state observability of the linearised system
becomes clearer at this point: if the linearised system is not observable, it is then
not possible to assign freely the dynamics of the observation error (or in other
words, to have perfect estimation after some defined time), i.e. to select arbitrary
eigenvaluesλi . An example will be given in Section 7.3.4 here below.

7.3.3 Extended Kalman Observer

Although the Kalman filter has been originally introduced in a stochastic frame-
work, it can also interpreted as the solution of a (deterministic) optimisation prob-
lem (see e.g. [14], [66]). Indeed the design of the extended Kalman observer con-
sists of finding the gain matrixK (x̂) that minimises the mean square observation
error:

E =
∫ t

0
eT We dτ (7.36)

with the dynamical model (7.31) (“under the constraints of the dynamical model
(7.31)”, in the usual notations of optimisation theory).W is a weighting matrix
that allows different weightings to the different terms of the errore with a view to
standardise the error norm, e.g. when the different components ofe are not of the
same dimension.

The gain matrixK (x̂) can be shown to be equal to:

K (x̂) = R(x̂)CT (7.37)

where the N× N symmetric matrixR(x̂) is a solution of the following dynamical
Riccati matrix equation:

d R

dt
= −RCT WC R+ R AT (x̂) + A(x̂)R, R = RT , R(0) = R0 = RT

0 (7.38)

As we shall see here below, the choice of the intial values of the entries of the
matrix R plays an important role in the convergence properties of the extended
Kalman observer.

7.3.4 Application to the General Dynamical Model

Let us see how to design extended Luenberger and Kalman observers to the Gen-
eral Dynamical Model (7.5). Let us consider that some (exactly,p) process com-
ponents are accessible for on-line measurement, i.e. the output vector is equal to:

y = Cξ (7.39)
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with C an elementary matrix (i.e. with only “0” and “1” as entries). The matrix
A(ξ̂ ) of the linearised tangent model associated to the General Dynamical Model
(7.5) is equal to:

A(ξ̂ ) = −DIN + Y[∂ρ
∂ξ

]
ξ=ξ̂

+ [∂(F − Q)

∂ξ
]
ξ=ξ̂

(7.40)

The observer equations specialise as follows:

dξ̂

dt
= −Dξ̂ + Yρ(ξ̂ ) + F − Q(ξ̂ ) + K (x̂)(y − Cξ̂ ) (7.41)

Then the design equations presented precedingly apply.

Example: simple microbial growth process.Let us consider the following ex-
ample, i.e. a simple microbial growth process in a continuous stirred tank reactor
(CSTR)14:

S −→ X (7.42)

Recall that the model dynamics in a CSTR are given by the following equations:

dS

dt
= − 1

Y1
µX + DSin − DS (7.43)

d X

dt
= µX − DX (7.44)

With ξ = [S, X]T , the matrixA is now equal to:

A =
[− 1

Y1
ρ̂S − D − 1

Y1
ρ̂X

ρ̂S ρ̂X − D

]
(7.45)

Let us consider as a matter of illustration one particular kinetic model for the spe-
cific growth rateµ, e.g. the Haldane model:

µ = µ0S

KS + S+ S2

KI

(7.46)

Assume that the substrate concentrationS is available for on-line measurement
while the biomass concentrationX is not. The state observer specialises as follows.
The output matrixC and the gain matrixK of the observer are equal to:

C = [1 0] , K =
[

k1
k2

]
(7.47)

14The choice of the bioreactor example is arbitrary, yet it will be used throughout the following
sections as the illustration support.
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And the matrixA − KC is equal to:

A − KC =
[− 1

Y1
ρ̂S − D − k1 − 1

Y1
ρ̂X

ρ̂S − k2 ρ̂X − D

]
(7.48)

The observability matrix is equal to:

O =
[

1 0
− 1

Y1
ρ̂S − D − 1

Y1
ρ̂X

]
(7.49)

By computing the determinant of the matrixO, we can conclude that the system
is observable ifρ̂X is different from zero (̂ρX = 0). If ρ = µX, this means that
µ + ∂µ

∂ X X must be different from zero. For the Haldane model, this means thatµ

must be different from zero, which may happen only ifS = 0. Hence the system
is observable fromS.

The observer equations are then equal to:

dŜ

dt
= − 1

Y1
µmax

Ŝ

KS + Ŝ+ S2

KI

X̂ + DSin − DŜ+ k1(S− Ŝ) (7.50)

dX̂

dt
= µmax

Ŝ

KS + Ŝ+ S2

KI

X̂ − DX̂ + k2(S− Ŝ) (7.51)

The extended Luenberger observer design consists of choosing the eigenvalues of
the matrix A − KC. In practice, this can be achieved by computing the charac-
teristic polynomial ofA − KC (i.e. det(λI − A + KC)) and comparing it with
the characteristic polynomial corresponding to the desired observer dynamics. If
you select a desired error dynamics with stable real poles, this latter polynomial
is here equal to(λ + λ1)(λ + λ2) with λ1 andλ2 strictly positive (we have two
poles because the observer is of order two). The above computation formalises as
follows:

det(λI − A + KC) = λ2 + λ(k1 + 2D + 1

Y1
ρ̂S − ρ̂X)

+(
1

Y1
ρ̂S + D + k1)(D − ρ̂X) + 1

Y1
ρ̂X(ρ̂S − k2) (7.52)

= (λ + λ1)(λ + λ2) (7.53)

By identifying the different terms of the two characteristic polynomials (7.52)
(7.53), we obtain the following relationships:

k1 + 2D + 1

Y1
ρ̂S − ρ̂X = λ1 + λ2 (7.54)
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(
1

Y1
ρS + D + k1)(D − ρ̂X) + 1

Y1
ρ̂X(ρ̂S − k2) = λ1λ2 (7.55)

This leads to the following values for the gainsk1 andk2 from a chosen set of poles
−λ1 and−λ2:

k1(Ŝ, X̂) = −2D − 1

Y1
ρ̂S + ρ̂X + λ1 + λ2 (7.56)

k2(Ŝ, X̂) = ρ̂S − Y1

ρ̂X
[λ1λ2 − (

1

Y1
ρ̂S + D + k1)(D − ρ̂X)] (7.57)

The extended Luenberger observer is then given by equations (7.50)(7.51) with
the values ofk1 andk2 computed as above. The implementation of the observer
requires explicit values for̂ρS and ρ̂X in the above expression. For the Haldane
model, these are equal to:

ρ̂S = µ0X̂(KS − Ŝ2/KI )(
KS + Ŝ+ Ŝ2

KI

)2
, ρ̂X = µ0Ŝ

KS + Ŝ+ Ŝ2

KI

(7.58)

Note that the values of the observer gainsk1 andk2 are changing with time as a
function of the estimateŝSand X̂.

Let us now consider the extended Kalman observer. The matrixR has the fol-
lowing form here:

R =
[

r1 r3
r3 r2

]
(7.59)

Then the extended Kalman observer is given by equations (7.50)(7.51) in which
the gainsk1 andk2 are calcuated according to the following equations:

k1 = r1 (7.60)

k2 = r3 (7.61)
dr1

dt
= −r 2

1 − 2(
1

Y1
ρ̂S + D)r1 − 2

1

Y1
ρ̂Xr3 (7.62)

dr2

dt
= −r 2

3 + 2(ρ̂X − D)r2 + 2ρ̂Sr3 (7.63)

dr3

dt
= −r1r3 + ρ̂Sr1 − 1

Y1
ρ̂Xr2 + (ρ̂X − 1

Y1
ρ̂S − 2D)r3 (7.64)

The last three equations (7.62)(7.63)(7.64) are the Riccati equations.
Recall that in the preceding section we have mentioned that the lack of ob-

servability will not allow the observer dynamics to be assigned. Let us illustrate
this.

Let us consider the simple microbial growth process with a productP (Exam-
ple #2 in Section 7.2). We have seen that the model is not observable with one
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FIG. 7.1. Simulation results of the extended Luenberger observer.

measured component. As in Section 7.2, let us consider thatP is the measured
component. The matrixA − KC is then equal to:

A − KC =
⎡⎣− 1

Y1
ρ̂S − D − 1

Y1
ρ̂X − 1

Y1
ρ̂P − k1

ρ̂S ρ̂X − D ρ̂P − k2
Y2ρ̂S Y2ρ̂X Y2ρ̂P − D − k3

⎤⎦ (7.65)

It is then routine to check that one of the eigenvalues of the matrixA − KC is
equal to−D, whatever the values of the gainsk1, k2 andk3.

This can be straightforwardly deduced from the characteristic polynomial:

det(λI − A + KC) = (λ + D)(λ2 + αλ + β) (7.66)

with:

α = k3 + 2D + 1

Y1
ρ̂S − ρ̂X − Y2ρ̂P (7.67)

β = (k3 + D)(D − ρ̂X + 1

Y1
ρ̂S) + Y2(k1ρ̂S + k2ρ̂X − Dρ̂P) (7.68)

The time response of the observation error is then typically equal to the weighted
sum of exponential terms with negative exponents, where one is equal toe−Dt . It
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FIG. 7.2. Simulation results of the extended Kalman observer.

is then hopeless to try to look for a convergence rate faster than 1/D: whatever the
values of the observer gains, one pole of the observer will remain equal to−D! In
the automatic control terminology, the process is not observable (because it is not
possible to assign freely the dynamics of the observer) but is detectable (because
the dynamics of the observer error is asymptotically stable due to the presence of
three poles (−D, −α/2−√α2 − 4β/2 and−α/2+√α2 − 4β/2) whose real part
is negative).

Simulation results. Let us illustrate the performances of the extended Luenberger
observer and of the extended Kalman observer on the above simple microbial
growth process with Haldane kinetics, and on the simple microbial growth pro-
cess with one productP.

The parameters and initial conditions of the simulation model are based on
experimental values from a degradation process of lactoserum byRhodopseu-
domonas capsulata([275]); they have been set to the following values:

µ0 = 0.33 h−1, KS = 5 g/ l , KI = 25 g/ l , Y1 = 0.5, Y2 = 0.6

S(0) = 0.9 g/ l , X(0) = 2.05 g/ l , P(0) = 1.22 g/ l

Sin(0) = 5 g/ l , D(0) = 0.05 h−1

Figures 7.1 and 7.2 illustrate the performances of the extended Luenberger ob-
server (ELO) and of the extended Kalman observer (EKO), respectively with a
square variation of the influent substrateSin for different observer gain values.
The higher the values of the polesλ1 andλ2 of the ELO (from 0.1 to 1, here), the
quicker the convergence of the estimated values. Similarly, the higher the initial
values of the entries of the matrixR (from 1 to 10), the better the convergence of
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FIG. 7.3. Simulation results of the extended Luenberger observer for an unobservable
process.

the EKO. The initial values of the estimates in the observers have been set to the
following values:X̂(0) = 0 g/ l , Ŝ(0) = 0.9 g/ l (ELO & EKO) = 0 g/ l (ELO for
the unobservable process),P̂(0) = 1.22g/ l (ELO for the unobservable process).

Figure 7.3 illustrates the inability to assign arbitrarily the dynamics of a classi-
cal observer (here, the ELO) when the system is unobservable, as is the case for the
simple microbial growth with only one on-line measurement (here,P). The chosen
polesλ1 andλ2 correspond to much faster dynamics than the residence time 1/D
(λ1 = λ2 = 10>> D = 0.05). We note on Figure 7.3 that after a fast transient, the
dynamics of the observer are dominated by the residence time, i.e. 1/D (it takes
about three times the residence (60 hours) for the observer to converge).

7.3.5 Performance of Classical Observers in Presence of Model Uncertainties

Let us now illustrate the performance of a classical observer when some of the
model parameters are badly known. Let us consider here the ELO applied to the
estimation of the biomass concentrationX from measurements of the substrate
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concentrationS in a simple microbial growth process15. Let us consider Monod
kinetics16:

µ = µmax
S

KS + S
(7.69)

with µmax the maximum specific growth rate (h−1) andKS the saturation constant
(g/l). Assume that the yield coefficientY1 is known while the kinetic parameters
µmax andKS may be such that their values may have been determined with some
uncertainty. The observer equations are then equal to:

dŜ

dt
= − 1

Y1
µ̃max

Ŝ

K̃S + Ŝ
X̂ + DSin − DŜ+ k1(S− Ŝ) (7.70)

dX̂

dt
= µ̃max

Ŝ

K̃S + Ŝ
X̂ − DX̂ + k2(S− Ŝ) (7.71)

ŜandX̂ represent the estimations ofSandX given by the observer. The para-
metersµ̃max andK̃S used in the observer computation may be different from their
“true” valuesµmax andKS.

Recall that in the ELO for this system, the gainsk1 and k2 are selected as
follows:

k1 = λ1 + λ2 − 1

Y1

K̃Sµ̃maxX̂

(KS + Ŝ)2
+ µ̃2

maxŜ

K̃S + Ŝ
− 2D (7.72)

k2 = Y1
K̃S + Ŝ

µ̃maxŜ
[−λ1λ2 + (λ1 + λ2)(D − µ̃maxŜ

K̃S + Ŝ
)

−(D − µ̃maxŜ

K̃S + Ŝ
)2 + 1

Y1

µ̃maxK̃SŜX̂

(K̃S + Ŝ)3
] (7.73)

in order to have observer dynamics assigned to desired valuesλ1 andλ2 (see Sec-
tion 7.3.1). Let us test the performance of the observer with a wrong value of one
of the kinetic parameters. The numerical simulation conditions are the following:

Y = 0.5, µmax = 0.33h−1, KS = 5g/ l , Sin = 5g/ l

D = 0.05 h−1, X(0) = 1g/ l , S(0) = 0.5g/ l

The observer has been initialised withŜ(0) = S(0) andX̂(0) = 0. Figure 7.4 shows
the estimation results with 10 % error onKS (K̃S = 4.5 g/l instead of 5) for two
sets of design parametersk1 andk2 (one corresponding toλ1 = λ2 = -0.1 (“slow”
dynamics), the other forλ1 = λ2 = -10 (“fast” dynamics))17. The results are quite

15The choice of the extended Luenberger is obviously arbitrary and is not based on any priori idea
about its advantages and drawbacks.

16The choice of the Monod model is obviously also arbitrary. For instance, we could have as well
chosen the Haldane model in the preceding section.

17Similar results are obtained with an error onµmax.
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FIG. 7.4. Extended Luenberger observer with a wrong value ofKS (initial transient)(-:
“true” simulated values).

typical of classical observers but also of any “high gain” observers for nonlin-
ear systems: the higher the gain, the worse the state estimation results. Indeed high
gain (fast dynamics) will result in a good estimation of the measured variable (here
S)(it is impossible to distinguish on the figure betweenS and Ŝ!) while rejecting
the parameter uncertainty on the estimated variable (hereX). This simple example
shows that there is a need to develop observers that can handle parameter uncer-
tainty, a typical situation encountered in (bio)chemical process applications.

7.4 Asymptotic Observers

One of the reasons for the popularity of the EKO/ELO is that it is easy to im-
plement since the algorithm can be derived directly from the state space model.
However, since (as the ELO) it is based on a linearised model of the process, the
stability and convergence properties are essentially local and valid only around
some operating point, and it is rather difficult to guarantee its stability over wide
ranges of operation. Ljung [158] shows that the EKO for state and parameter es-
timation of linear systems may give biased estimates or even diverge if it is not
carefully initialised.
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One reason for the problem of convergence of EKO/ELO is that, in order to
guarantee the (arbitrarily chosen) exponential convergence of the observer, the
process must be locally observable, i.e. the linearised tangent model must be ob-
servable and fulfill the classical observability rank condition. This condition, as it
turns out, is restrictive in many practical situations (as illustrated in Figure 7.3)
and may account for the failure of EKO/ELO to find widespread application (e.g.
[14], [16], [71]).

Another problem is that the theory for the extended Luenberger and Kalman
observers is developed using a perfect knowledge of the system model and para-
meters, in particular of the process kinetics: it is difficult to develop error bounds
and there is often a large uncertainty on these parameters. The performance of
ELO/EKO in the presence of badly known parameters has been illustrated in the
preceding Section 7.3.5.

It appears from the above remarks that there is a clear incentive to develop
alternative methodologies for the on-line estimation of the unmeasured concen-
tration variables in wastewater treatment processes that do not rely on parts of the
dynamical model that may be largely uncertain, and that do not require in particular
the explicit use of kinetic models. Indeed, the objective of this section is to propose
an alternative to EKO/ELO and use process mechanisms in a more direct manner
to develop a nonlinear observer applicable to the estimation problem of wastewater
treatment processes. The proposed observer is based on the well-known nonlinear
model of the process without the knowledge of the process kinetics being neces-
sary. In order to advance the application of this method, we discuss its stability and
convergence properties. We would like to emphasise that the presented results are
global (i.e. independent of the initial conditions) as opposed to the local properties
for EKO/ELO (see e.g.[14]).

This section is organised as follows. We shall first present the general method-
ology for single tank bioprocesses and discuss its theoretical convergence prop-
erties and the practical implementation aspects. Then we shall present a real-life
application on an anaerobic digestion process. Finally we shall introduce the ex-
tension to fixed bed reactors.

7.4.1 Asymptotic Observers for Single Tank Bioprocesses

The derivation of the asymptotic observer equations are based on the Key State
Transformation introduced in Section 2.8 and on the following assumptions:

1. p (≥ M (the number of reactions)) components are measured on-line.

2. The feedratesF , the gaseous outflow ratesQ and the dilution rateD are
known either by measurement or by choice of the user.

3. The yield coefficient matrixY is known.

4. The reaction rate vectorρ is unknown.

5. The M reactions are irreversible and independent, i.e. rank(Y) = R = M
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From assumption 1, we can define the following state partition:

ξ =
[

ξ1
ξ2

]
(7.74)

whereξ1 andξ2 hold for the measured component concentrations and the unmea-
sured ones, respectively.

Let us recall the state transformationζ introduced in Chapter 2 (Section 2.8):

ζ = Caξa + Cbξb (7.75)

whereCa andCb are solutions of the matrix equation:

CaYa + CbYb = 0 (7.76)

and with the following dynamical equations (independent of the reaction rateρ!):

dζ

dt
= −Dζ + Ca(Fa − Qa) + Cb(Fb − Qb) (7.77)

Let us consider one (arbitrarily chosen) transformationζ defined by (7.75, 7.76).
The variableζ can be rewritten as a linear combination of the measured and un-
measured statesξ1 andξ2, i.e.:

ζ = A1ξ1 + A2ξ2 (7.78)

The equations (7.78)(7.77) are the basis for the derivation of the asymptotic ob-
server. The dynamical equations ofζ are used to calculate an estimate ofζ on-line,
which is used, via equation (7.78) and the on-line data ofξ1, to derive an estimate
of the unmeasured componentξ2. Let us further assume that the matrixA2 is (left)
invertible. The following two cases can be differentiated.

Case #1: p = M

In this case, the asymptotic observer is written as follows:

dζ̂

dt
= −Dζ̂ + Ca(Fa − Qa) + Cb(Fb − Qb) (7.79)

ξ̂2 = A−1
2 [ζ̂ − A1ξ1] (7.80)

Comment: if we consider the most simple and straightforward choice for the
state transformationζ , i.e. with ξ1 = ξa andξ2 = ξb, and withCb = IN−p, then
we have:

A1 = −Y2Y−1
1 , A2 = IN−p (7.81)

And therefore the condition on the invertibility ofA2 is in fact a condition on
the invertibility of the submatrixY1 (i.e. Y1 is full rank or rank(Y1) = M). This
condition is indeed fulfilled from assumption 5 (independent reactions) and if the
measured variables are independent.
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Case #2: p> M

Assume that the number of measured components is larger than the number which
is strictly necessary than the one needed, i.e. p> M. Then the asymptotic observer
is modified as follows:

dζ̂

dt
= −Dζ̂ + Ca(Fa − Qa) + Cb(Fb − Qb) (7.82)

ξ̂2 = A+
2 [ζ̂ − A1ξ1] (7.83)

whereA+
2 is a left inverse ofA2 (see the example (case #3) here below).

The observer (7.79)(7.80) or (7.82)(7.83) is completely independent of the pro-
cess kinetics and can be implemented without the knowledge of the reaction rates
ρ(ξ) being required.

Theoretical convergence of the asymptotic observer.The convergence properties
can be summarised in the following theorem.

Theorem 2: If the dilution rate D is a persistently exciting signal, i.e. if there
exist positive constantsδ andβ such that:∫ t+β

t
D(τ )dτ ≥ δ > 0 (7.84)

then:
lim

t→∞(ξ2 − ξ̂2) = 0 (7.85)

Proof: the proof of the theorem is immediate if one observes that, from (7.77),
(7.79), (7.80), (7.83), the dynamics of the estimation error is equal to:

d(ξ2 − ξ̂2)

dt
= −D(ξ2 − ξ̂2) (7.86)

QED

Remark #1:the persistence-of-excitation condition onD simply requires that
D is not equal to zero for too long. This condition is clearly easily fulfilled in
fedbatch and continuous reactors.

Remark #2:the general formulation of the estimation algorithm (7.82), (7.83)
with the introduction of the left inverse allows for larger flexibility in the use of
the asymptotic observer since it permits the possible presence of a number of mea-
sured variables larger than M to be taken into account. Let us illustrate this in the
following example.
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Example: anaerobic digestion process.Let us consider the simplified two step
anaerobic digestion reaction network:

S1 −→ X1 + S2 + P1 (acidogenesis) (7.87)

S2 −→ X2 + P1 + P2 (methanisation) (7.88)

whereS1, S2, X1, X2, P1 and P2 represent the organic matter, the volatile fatty
acids, the acidogenic bacteria, the methanogenic bacteria, the carbon dioxide, and
the methane, respectively. The associated general dynamical model is given by the
following vectors and matrices:

ξ =

⎡⎢⎢⎢⎢⎢⎢⎣
S1
S2
X1
X2
P1
P2

⎤⎥⎥⎥⎥⎥⎥⎦ , Y =

⎡⎢⎢⎢⎢⎢⎢⎣

− 1
Y1

0

Y3 − 1
Y2

1 0
0 1
Y4 Y5
0 Y6

⎤⎥⎥⎥⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎢⎢⎢⎣
DSin

0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ , Q =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0

Q1
Q2

⎤⎥⎥⎥⎥⎥⎥⎦ (7.89)

ρ =
[

ρ1
ρ2

]
=
[

µ1X1
µ2X2

]
(7.90)

Let us first define one state transformationζ , e.g.:

ξa =
[

X1
X2

]
, ξb =

⎡⎢⎢⎣
S1
S2
P1
P2

⎤⎥⎥⎦ (7.91)

with:

Ya =
[

1 0
0 1

]
, Yb =

⎡⎢⎢⎣
− 1

Y1
0

Y3 − 1
Y2

Y4 Y5
0 Y6

⎤⎥⎥⎦ (7.92)

Therefore ifCb is chosen as an identity matrix (Cb = I4), thenCa is equal to:

Ca = −YbY−1
a =

⎡⎢⎢⎣
1
Y1

0

−Y3
1
Y2−Y4 −Y5

0 −Y6

⎤⎥⎥⎦ (7.93)

The dynamics ofζ are here equal to:

d

dt

⎡⎢⎢⎣
ζ1
ζ2
ζ3
ζ4

⎤⎥⎥⎦ = −D

⎡⎢⎢⎣
ζ1
ζ2
ζ3
ζ4

⎤⎥⎥⎦+

⎡⎢⎢⎣
DSin

0
−Q1
−Q2

⎤⎥⎥⎦ (7.94)
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Note that sinceFa = Qa = 0, the dynamics ofζ are also independent of the yield
coefficients. This has been called anice partitionin Bastin and Dochain [14].

Case #1: S2 and P2 are measured on-line

ThenA1 andA2 are equal to:

A1 =

⎡⎢⎢⎣
0 0
1 0
0 0
0 1

⎤⎥⎥⎦ , A2 =

⎡⎢⎢⎣
1 1

Y1
0 0

0 −Y3
1
Y2

0
0 −Y4 −Y5 1
0 0 −Y6 0

⎤⎥⎥⎦ (7.95)

Therefore,S1, X1, X2 and P1 can be estimated by using the asymptotic observer
via the dynamical equation ofζ (7.94) as follows:

Ŝ1 = ζ̂1 + 1

Y1Y3
(S2 + P2

Y6
− ζ̂4

Y6
− ζ̂2) (7.96)

X̂1 = 1

Y3
(S2 + P2

Y6
− ζ̂4

Y6
− ζ̂2) (7.97)

X̂2 = 1

Y6
(P2 − ζ̂4) (7.98)

P̂1 = ζ̂3 + Y4

Y3
S2 − Y4

Y3
ζ̂2 + Y4 + Y3Y5

Y3Y6
(P2 − ζ̂2) (7.99)

Case #2: S1 and X1 are measured on-line

This choice is interesting because it corresponds to a wrong choice of measured
variables, sinceS1 andX1 are not independent. Indeed the matricesA1 andA2 are
then equal to:

A1 =

⎡⎢⎢⎣
1
Y1

1
0 Y3
0 −Y4
0 0

⎤⎥⎥⎦ , A2 =

⎡⎢⎢⎣
0 0 0 0
1 1

Y2
0 0

0 −Y5 1 0
0 −Y6 0 1

⎤⎥⎥⎦ (7.100)

The matrixA2 is obviously not invertible (the first row is equal to zero!).
This example shows that not any choice of M measured components is valid

for the implementation of the asymptotic observer: the submatrixY1 must be full
rank, i.e. the measured components must be independent or the measured compo-
nents have to take part in all the reactions (at least one in each reaction) in order to
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avoid a submatrixY1 with (a) column(s) only filled with zeros.

Case #3: S2, P1 and P2 are measured on-line

Now the number of measured variables is larger than rank(Y). In this case, the
vectorsξ1 andξ2 are equal to:

ξ1 =
⎡⎣ S2

P1
P2

⎤⎦ , ξ2 =
⎡⎣ S1

X1
X2

⎤⎦ (7.101)

and the matricesA1 andA2 are then defined as follows:

A1 =

⎡⎢⎢⎣
0 0 0
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ , A2 =

⎡⎢⎢⎣
1 1

Y1
0

0 −Y3
1
Y2

0 −Y4 −Y5
0 0 −Y6

⎤⎥⎥⎦ (7.102)

A2 is not a square matrix anymore. Then we can choose, as a left inverse, its left
pseudo-inverse:

A+
2 = (AT

2 A2)
−1AT

2 (7.103)

which takes the following form in our example:

A+
2 =

⎡⎣0 1 0 0
0 0 1 0
0 0 0 1

⎤⎦ (7.104)

Implementation aspects: choice of the sampling period.The practical computer
implementation of the asymptotic observer (7.79)(7.80) or (7.82)(7.83) requires
that it be rewritten in a discrete-time form. This can be done simply by replacing
the time derivative ofζ by a finite difference (using a first order Euler approxima-
tion):

dζ̂

dt
−→ ζ̂t+1 − ζ̂t

T
(7.105)

whereT is the sampling period andt andt + 1 are time indices. The asymptotic
observer is then written as follows for the general case p≥ M:

ζ̂t+1 = ζ̂t − T Dt ζ̂t + T Ca(Fat − Qat) + Cb(Fbt − Qbt) (7.106)

ξ̂2,t+1 = A+
2 [ζ̂t+1 − A1ξ1,t+1] (7.107)

For the discrete-time equation, the value of the sampling period plays a role in the
stability. In fact, if the dilution rateD is bounded as follows:
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0 ≤ D(t) ≤ Dmax (7.108)

then equation (7.106) will remain stable as long asT is smaller than 2/Dmax:

T ≤ 2

Dmax
(7.109)

Equation (7.109) gives a condition for the stability of the discrete-time version
of the asymptotic observer. But even if the sampling periodT is chosen so as
to fulfill condition (7.109), large values ofT may introduce oscillations in the
estimation. As a matter of fact, if we assume thatD is constant, the dynamics ofζ

are characterised by a (discrete-time) pole equal to (1 -T D). It will be negative ifT
is larger than 1/D (T > 1/D) and then corresponds to oscillating (underdamped)
dynamics forζ . Therefore, in order to avoid (undesirable) oscillations, condition
(7.109) can be replaced by:

T ≤ 1

Dmax
(7.110)

Remark:note that different sampling periods may be used for the computation
of the variablesζ and the calculation of the observation ofξ2 , e.g. a “fast” com-
putation of the variablesζ and a slower computation of the estimated values of
ξ2. This choice may depend on the measurement sampling interval which may be
different from one variable to another.

Application to an anaerobic digestion process.Let us consider the on-line esti-
mation ofS1, X1 andX2 from the measurements of methaneP2 and volatile fatty
acidsS2. This corresponds to the case #1 hereabove18.

Note that in practice the methane gas is a low solubility product, and therefore
the model reduction approach discussed in Chapter 2 (Section 2.9) applies:

P2 = 0,
d P2

dt
= 0 (7.111)

Therefore the asymptotic observer specialises as follows:

dζ̂1

dt
= −Dζ̂1 + DSin (7.112)

dζ̂2

dt
= −Dζ̂2 (7.113)

18We did not consider the on-line estimation ofCO2 (P1) which is indeed directly obtained either
via the gas flow rate andCO2 percentage measurement, or via the gas flow rate and theCH4 percentage
measurement under the assumption that the outflow gas is composed almost exclusively byCO2 and
CH4.
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FIG. 7.5. On-line data of the asymptotic observer for the anaerobic digestion process.

dζ̂4

dt
= −Dζ̂4 − Q2 (7.114)

Ŝ1 = ζ̂1 + 1

Y1Y3
(S2 − ζ̂4

Y6
− ζ̂2) (7.115)

X̂1 = 1

Y3
(S2 − ζ̂4

Y6
− ζ̂2) (7.116)

X̂2 = − 1

Y6
ζ̂4 (7.117)

The asymptotic observer has been implemented on a 60 liter pilot CSTR of the
Unit of Bioengineering, Université Catholique de Louvain, Belgium ([14]). The
values of the yield coefficients are equal to:

Y1 = 0.3125, Y2 = 0.035, Y3 = 5.7, Y6 = 27.3 (7.118)

Figure 7.5 shows the data used for the on-line estimation (volatile fatty acidsS2,
methane gas flow rateQ2 denotedQC H4 in the figure), influent organic matter
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FIG. 7.6. Estimation results of the asymptotic observer of the anaerobic digestion process
(-: ζ̂1(0) = 11,ζ̂2(0) = 4, ζ̂4(0) = -6 ; - -: ζ̂1(0) = 11,ζ̂2(0) = 3.9,ζ̂4(0) = 0 ; - . -: ζ̂1(0) =
11, ζ̂2(0) = 6.65,ζ̂4(0) = -13.65).

concentrationSin , and dilution rateD. The estimation results are given in Figure
7.6. Different initial conditions for the auxiliary variablesζ have been considered:

− : ζ̂1(0) = 11, ζ̂2(0) = 4, ζ̂4(0) = −6

− − : ζ̂1(0) = 11, ζ̂2(0) = 3.9, ζ̂4(0) = 0

−.− : ζ̂1(0) = 11, ζ̂2(0) = 6.65, ζ̂4(0) = −13.65

Note that the asymptotic observer converges after an initial transient to the same
estimation profile. The convergence time is approximately equal to 60 days, which
corresponds to three times the residence time (or equivalently the inverse of the
dilution rate, see Figure 7.5).

One of the major difficulties that we had to face here was the validation of
the on-line estimates provided by the asymptotic observer, since no measurement,
even indirect, of the different (acidogenic and methanogenic) bacterial populations
is available. So we have been using COD data for the validation, more precisely
the difference between the total COD and the soluble COD, which are known
to represent fairly well the active biomass population in the process, i.e.X1 +
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X2 ([14]). The last figure in Figure 7.6 compares these data with the sum of the
estimatesX̂1 + X̂2 for the three different initial conditions.

7.4.2 Asymptotic Observers for Multi-Tank Reactors

The design of the above asymptotic observer can be easily extended to multi-
reactor processes, since the definition of the transformationζ is the same. The
main question is the stability of the dynamics of the auxiliary variablesζ (see
Chapter 2, Section 2.8):

dζ

dt
= −(CbDbb + CaDab)C

−1
b ζ + Ca(Fa − Qa) + Cb(Fb − Qb)

+[(CbDbb + CaDab)C
−1
b − CbDba − CaDaa]ξa (7.119)

with:

D =
[

Daa Dab

Dba Dbb

]
(7.120)

The stability of (7.119) is determined by the matrix:

−(CbDbb + CaDab)C
−1
b (7.121)

We shall not develop this point in detail here (see e.g. [56]). Rather we shall con-
centrate on one example (the basic model of the activated sludge process), and
discuss its stability.

Let us first recall the equation of the basic model of the activated sludge pro-
cess, written as follows in the General Dynamical Model format:

ξ =

⎡⎢⎢⎣
S

SO

X
XR

⎤⎥⎥⎦ , Y =

⎡⎢⎢⎣
− 1

YS

− 1
YO

1
0

⎤⎥⎥⎦ , F =

⎡⎢⎢⎣
Din Sin

Din SO,in + kLa(S∗
O − SO)

0
0

⎤⎥⎥⎦ (7.122)

ρ = µX, Q = 0, D =

⎡⎢⎢⎣
D1 0 0 0
0 D1 0 0
0 0 D1 −D2
0 0 −D3 D4

⎤⎥⎥⎦ (7.123)

with the following definitions forDin , D1, D2, D3, andD4:

Din = Fin

V
, D2 = FR

V
, D1 = Din + D2, D3 = Fin + FR

VS
, D4 = FR + FW

VS

(7.124)
Let us consider, as in Section 2.8.3, the following state partition:
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ξa = X, ξb =
⎡⎣ S

SO

XR

⎤⎦ (7.125)

This means that the different dilution matrices are equal to:

Daa = D1, Dab = [
0 0 −D2

]
(7.126)

Dba =
⎡⎣ 0

0
−D3

⎤⎦ , Dbb =
⎡⎣ D1 0 0

0 D1 0
0 0 D4

⎤⎦ (7.127)

If we selectCb = I , the matrixCa is equal to:

Ca =
⎡⎢⎣− 1

YS

− 1
YO

0

⎤⎥⎦ (7.128)

and the auxiliary variableζ is written as follows:

ζ =
⎡⎢⎣ S+ 1

YS
X

SO + 1
YO

X
XR

⎤⎥⎦ (7.129)

The stability of the dynamics of the auxiliaryζ (and the underlying asymptotic
observer) is determined by the matrix (7.121) which specialises here as follows:⎡⎢⎣−D1 0 − D2

YS

0 −D1 − D2
YO

0 0 −D4

⎤⎥⎦ (7.130)

Its eigenvalues are negative ifD1 andD4 are positive, i.e. if

Fin + FR > 0 andFR + FW > 0 (7.131)

which holds for instance if the sludge is being recycled (FR > 0).
Let us now consider the problem of estimating the concentrations of organic

matterS, and of the biomassX andXR both in the aerator and in the settler, from
on-line data of dissolved oxygenSO. This means thatξ1 and ξ2 are defined as
follows:

ξ1 = SO, ξ2 =
⎡⎣ S

X
XR

⎤⎦ (7.132)

The asymptotic observer is then written as follows:

dζ̂1

dt
= − Fin + FR

V
ζ̂1 + Fin

V
Sin + FR

V YS
ζ3 (7.133)
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FIG. 7.7. Estimation results of the asymptotic observer of an activated sludge process.

dζ̂2

dt
= − Fin + FR

V
ζ̂2 + kLa(S∗

O − SO) + FR

V YO
ζ̂3 (7.134)

dζ̂3

dt
= − FW + FR

VS
ζ̂3 + Fin + FR

VS
(ζ̂2 − SO)YO (7.135)

Ŝ = (ζ̂1 − YO ζ̂2 + YOSO)YS (7.136)

X̂ = (ζ̂2 − SO)YO (7.137)

X̂R = ζ̂3 (7.138)

The implementation of the asymptotic observer further requires on-line data of
the influent flow rateFin , of the influent organic matter concentrationSin , and of
the recycle and waste flow ratesFR and FW. And besides the values of the yield
coefficientsYS andYO, we also need the values of the mass transfer coefficient
kLa and of the saturation concentrationS∗

O.
Figure 7.7 shows the application of the asymptotic observer to a wastewater

treatment plant (the Maria Middelares treatment plant, Gent, Belgium)(see also
[76]). The available data were the on-line data of dissolved oxygen and influent
COD (obtained from an on-line respirometer), some off-line measurements of the
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COD in the effluent and of the suspended solids in the aerator (yet no precise
measurement of the recycle flow rate and only time points (t = 208 h and 449
h) when discontinuous sludge wastage was carried out). The state estimation is a
challenging question if we consider the measurement constraints, and the oversim-
plification of the model dynamics. Figure 7.7 shows the estimation results. Figures
a, b and c show the data of the influent flow rateFin , the influent substrate con-
centrationSin and the dissolved oxygenSO, respectively, while Figures d and e
compare the estimation results given by the asymptotic observer with the off-line
data forSandX, respectively. The computed value ofXR is also shown (in dotted
lines) in Figure d. The recycle flow rateFR was kept constant at the design value
of 8 m3/h. The volumes are:V = 380m3, VS = 265m3; the determination ofS∗

O
andkLa gave the following result:

S∗
O = 10 mg/ l , kLa = 1.7 h−1 (7.139)

We note that although the reaction scheme is very simple and that some of the data
are not very precise, the reaction scheme is fairly well validated.

7.4.3 Asymptotic Observers for Tubular Bioreactors

Let us now discuss the extension and application of the asymptotic observer design
to non completely mixed reactors.

Let us modify the first assumption introduced in Section 7.4.1:

1bis.p (= M) components are measured on-linealong the reactor.

and introduce a sixth one:

6. The axial mass dispersion coefficientDam and the reactor sectionA are
known.

Recall that we had considered in Section 2.8.2 (Chapter 2)Cb = I and that the
vector of the fixed componentξ f i has been put inξb:

ξb =
[

ξbf

ξ f i

]
(7.140)

Then we can rewrite the auxiliary variableζ as follows:

ζ =
[

ζ f l

ζ f i

]
=
[

ξbf

ξ f i

]
+
[

Ca f

Cae

]
ξa (7.141)

The dynamics ofζ can then be written as follows:

∂ζ f l

∂t
= − Fin

A

∂ζ f l

∂z
+ Dam

∂2ζ f l

∂z2
(7.142)
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∂ζ f i

∂t
= − Fin

A
Cae

∂ξa

∂z
+ DamCae

∂2ξa

∂z2
(7.143)

Assume that the measured components are put in the vectorξa (i.e. we consider
a particular choice forξ1 andξ2 (ξ1 = ξa, ξ2 = ξb); this is done only to simplify
the approach but, of course, other choices are possible). Then by using the same
arguments as above and the equations (7.141), (7.142) and (7.143), we obtain the
following asymptotic observer for tubular bioreactors:

∂ζ̂ f l

∂t
= − Fin

A

∂ζ̂ f l

∂z
+ Dam

∂2ζ̂ f l

∂z2
(7.144)

∂ζ̂ f i

∂t
= − Fin

A
Cae

∂ξa

∂z
+ DamCae

∂2ξa

∂z2
(7.145)

ξ̂2 = ζ̂ −
[

Ca f

Cae

]
ξ1 (7.146)

There remain two key questions with the above asymptotic observer:

1. The above observer is written under the form of (“infinite dimensional”)
partial derivative equations (PDEs). These are not very easy or convenient
to handle in practical control and monitoring applications. Moreover, it is
assumed that p components are available for on-line measurementalong the
reactor. In line with a number of works on the subject (e.g. [97], [136]), we
propose to “reduce” the above PDE equations to a finite number of ordinary
differential equations (ODEs) at a finite number of positions along the reac-
tor and to consider the reduced equations for the practical application of the
observer. This will the object of the next section.

2. The second key question is to know whether the proposed observer is reli-
able, i.e. under which the conditions it will give estimates that converge to
their true values: this will be addressed on page 284.

Practical implementation of the asymptotic observer.Let us reduce the PDEs of
the asymptotic observer (7.144) to a finite number of ODEs. We shall not discuss
the choice of one reduction method here (see e.g. [277], [211] for this topic); we
shall only assume that the user has chosen one method for approximating the PDEs
(e.g. finite differences, orthogonal collocation,...) and that the reduced model is a
fairly good representation of the PDE asymptotic observer (7.144). Whatever the
reduction method, the partial derivatives of the variablesζi with respect to the
space variablez are approximated by a weighted sum ofζi at a finite number of
positionszj (j = 0 to q,where 0 and q hold for the input and output of the reactor,
respectively) along the reactor:
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∂k

∂zk

⎡⎢⎢⎢⎣
ζi (z = z1)

ζi (z = z2)
...

ζi (z = zq)

⎤⎥⎥⎥⎦ ∼= [c̃k | C̃k]

⎡⎢⎢⎢⎣
ζi (z = z0)

ζi (z = z1)
...

ζi (z = zq)

⎤⎥⎥⎥⎦ , k = 1, 2 (7.147)

dim(c̃k) = q × 1, dim(C̃k) = q × q (7.148)

If we consider a finite difference approximation, the matricesC̃k (k = 1, 2) are
equal to:

C̃1 = 1

�z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0

−1 1 0 · · · ...
...

0 −1 1 · · · ...
...

0 0 −1 · · · ...
...

...
...

... · · · 1 0
0 0 0 · · · −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c̃1 = 1

�z

⎡⎢⎢⎢⎣
1
0
...

0

⎤⎥⎥⎥⎦ (7.149)

C̃2 = 1

(�z)2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 · · · 0 0

1 −2 1 · · · ...
...

0 1 −2 · · · ...
...

0 0 1 · · · ...
...

...
...

... · · · −2 1
0 0 0 · · · 1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c̃2 = 1

(�z)2

⎡⎢⎢⎢⎣
1
0
...

0

⎤⎥⎥⎥⎦ (7.150)

where�z is the spatial discretisation step.
The reduction procedure results in a rewriting of the auxiliary variablesζ f and

of the asymptotic observer equations under ODEs at each positionzj (j = 1 to q).
Then the dynamics of the auxiliary variablesζ f and of the asymptotic observer
become:

Dynamics ofζ f :

dζrl

dt
= [DamC2 − F

A
C1]ζrl + [Damc2 − F

A
c1](ξ2,in + Ca f ξ1,in) (7.151)

dζr i

dt
= [DamC2 − F

A
C1]Caeξa + [Damc2 − F

A
c1]Caeξ1,in (7.152)
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Asymptotic Observer:

dζ̂rl

dt
= [DamC2 − F

A
C1]ζ̂rl + [Damc2 − F

A
c1](ξ2,in + Ca f ξ1,in) (7.153)

dζ̂r i

dt
= [DamC2 − F

A
C1]Caeξa + [Damc2 − F

A
c1]Caeξ1,in (7.154)

with:

ζr =
[

ζrl

ζr i

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζr,1(z = z1)
...

ζr,1(z = zq)
...

ζr,R(z = z1)
...

ζr,R(z = zq)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.155)

Ck =

⎡⎢⎢⎢⎢⎣
C̃k 0 · · · 0

0 C̃k · · · ...
...

... · · · 0
0 0 · · · C̃k

⎤⎥⎥⎥⎥⎦ , ck =

⎡⎢⎢⎢⎣
c̃k

c̃k
...

c̃k

⎤⎥⎥⎥⎦ , k = 1, 2 (7.156)

One important feature of the above equations (7.151)(7.153) is that the tubular re-
actor is approximated by a stirred multi-tank reactor. In case of a finite difference
approximation, the equations represent a cascade of stirred tank reactors; but with
other approximation methods (e.g. collocation methods), the model exhibits inter-
connections between each of the stirred tank reactors of the ODE model since the
entries of the matrices̃Ck (k = 1, 2) are generally different from zero [155].

Stability properties of the asymptotic observer.Let us start by analysing the sta-
bility of the PDE asymptotic observer.

If we define the estimation errore on the auxiliary variablesζ as follows:

e = ζ − ζ̂ =
[

ζ f l − ζ̂ f l

ζ f i − ζ̂ f i

]
=
[

ef l

ef i

]
(7.157)

the dynamics ofe are given by the following equations:

∂ef l

∂t
= − Fin

A

∂ef l

∂z
+ Dam

∂2ef l

∂z2
, ef l (t = 0, z) = ef l0(z) (7.158)
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∂ef i

∂t
= 0, ef i (t = 0, z) = ef i 0(z) (7.159)

The analysis of the second equation (7.159) shows that under the assumption pre-
sented above, any initial bias will remain (this is exactly the same as for the batch
reactor in stirred tank reactors).

Let us now analyse the first error equation (7.158). First note that it is a linear
equation. IfDam is different from zero (parabolic equation), it is characterised (see
e.g. [285]) by the following simple, real, negative eigenvaluesλn, n ≥ 1:

λn = −s2
n + u2

4Dam
< − u2

4Dam
< 0, for all n ≥ 1 , (7.160)

where{sn : n ≥ 1} is the set of all the solutions to the equation (called the resolvent
equation):

tan(
L

2Dam
s) = 2us

s2 − u2
, s > 0 , (7.161)

with u = Fin/A andL the length of the reactor.
If Dam is equal to zero (hyperbolic equation, plug flow reactor), the solution

of the equation (7.158) is of the following form:

ef l (t, z) = ef l0(z − ut), if t < z/u

= 0 if t ≥ z/u

Therefore the equation (7.158) is asymptotically stable, and the asymptotic ob-
server for the componentsξ f is convergent.

Let us concentrate on the stability properties of the reduced form (7.153) of
the asymptotic observer, to see in which conditions the above stability result is cor-
rectly transferred to the discretised version of the asymptotic observer. For obvious
reasons, we shall only concentrate on the error dynamics (7.158). If we define the
observation error:

e = ζr − ζ̂r (7.162)

then the dynamics of the observation errore is readily obtained from (7.151)(7.153):

de

dt
= [DamC2 − F

A
]e (7.163)

Therefore the stability depends on the state matrix:

DmaC2 − F

A
C1 (7.164)

Because of the diagonal structure of the matricesC1 andC2, the stability of the
above state matrix (7.164) depends on the stability of each submatrix:
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DmaC̃2 − F

A
C̃1 (7.165)

Therefore it follows that the asymptotic observer (7.153) will be asymptotically
stable, i.e.:

lim
t→∞ ξ̂r = ξr (7.166)

if the eigenvalues of the matrixDmaC̃2 − F
AC̃1 are stable. Note that the stability

of the asymptotic observer only depends on the axial mass transfer and not on the
kinetics. In other words, the reactor may be unstable (due to kinetics like the Hal-
dane kinetics, see Section 2.2.6) while the asymptotic observer is asymptotically
stable (because of stable hydrodynamics).

Note also that it is routine to check the stability of the matrix (7.165) by using
any matrix computation program. An interesting particular case is the finite differ-
ence approximation of a fixed bed reactor without dispersion (Dam = 0). Indeed,
the stability then simply depends on the matrixF

AC1 , and it is straightforward to
check that the matrixFAC1 (see equation (7.149)) is stable as long asF is posi-
tive. The stability properties of the hydrodynamics approximated via orthogonal
collocation are analysed in Lefévreet al. [155].

Example. Let us consider a plug flow reactor with fixed biomass and with the
following reaction scheme:

S −→ X + P (7.167)

X −→ Xd (7.168)

with Xd the dead biomass. The dynamics of the process are given by the following
equations:

∂S

∂t
= − Fin

A

∂S

∂z
− 1

Y1
µX (7.169)

∂ P

∂t
= − Fin

A

∂ P

∂z
+ Y2µX (7.170)

∂ X

∂t
= µX − kd X (7.171)

∂ Xd

∂t
= − Fin

A

∂ Xd

∂z
+ kd X (7.172)

Assume first thatSandXd are available for on-line measurement (whileX andP
are not). Assume also that the specific growth rateµ and the death/detachment co-
efficientkd are unknown. Then the asymptotic observer can be derived as follows.
The auxiliary variablesζ are derived from equation (7.141) and are, for instance,
equal to:

ζ1 = X + Xd + Y1S (7.173)
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ζ2 = P + Y1Y2S (7.174)

The asymptotic observer equations are then written as follows:

∂ζ̂1

∂t
= − Fin

A

∂(Xd + Y1S)

∂z
(7.175)

∂ζ̂2

∂t
= − Fin

A

∂ζ̂2

∂z
(7.176)

X̂ = ζ̂1 − Xd − Y1S (7.177)

P̂ = ζ̂2 − Y1Y2S (7.178)

Another option is when the death coefficientkd is known. Then only one measure-
ment is necessary, e.g. the substrate concentrationS. There are now three entries
for the auxiliary variableζ , e.g.:

ζ1 = X + Y1S (7.179)

ζ2 = P + Y1Y2S (7.180)

ζ3 = Xd (7.181)

Then the asymptotic observer specialises as follows:

∂ζ̂1

∂t
= − Fin

A
Y1

∂S

∂z
− kd(ζ̂1 − Y1S) (7.182)

∂ζ̂2

∂t
= − Fin

A

∂ζ̂2

∂z
(7.183)

∂ζ̂3

∂t
= − Fin

A

∂ζ̂3

∂z
+ kd(ζ̂1 − Y1S) (7.184)

X̂ = ζ̂1 − Xd − Y1S (7.185)

P̂ = ζ̂2 − Y1Y2S (7.186)

X̂d = ζ̂3 (7.187)

7.4.4 Asymptotic Observers as a Tool for Model Selection

Here above we have seen that asymptotic observers are independent of the process
kinetics. In this section an approach is suggested on how to use asymptotic ob-
servers for model selection, more precisely to model and validate reaction schemes
independently of the reaction kinetics [76]. We shall first introduce the modelling
concept and procedure based on the asymptotic observer. The results will be illus-
trated with one process: a detoxification reactor.

Model selection procedure.The basic idea of the approach is to use the asymp-
totic observer not for on-line estimation but for model building, more precisely for
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modelling the reaction network part of the dynamics independently of the kinet-
ics. It is based on the convergence properties of the observer: because of these, we
know that the asymptotic observer is able to give a reliable replica of the dynamics
of the process components if the reaction scheme is correct (i.e. representative of
the key process reactions) and only if the values of the yield coefficients are known
(and not the reaction kinetics).

Assume that a set of experimental data of the concentrations and (when ap-
propriate) gaseous outflow rates of the key process components (whose number is
equal toN) as well as of the hydrodynamics (mainly, the flow rates) are available.
The model selection procedure is the following.

1. Select a plausible reaction network involving the measured components.
2. Build the dynamical model in the format of the General Dynamical Model.
3. SelectM (= number of a priori selected reactions) components and build the

asymptotic observer to estimate theN − M remaining components.
4. Try to fit the estimated values of theN−M components to their experimental

values by selecting appropriate values of the yield coefficients.
5. The final step is usual: either the fitting is satisfactory and you stop, or it is

not and you go back to the first step (select another reaction scheme candi-
date, possibly with another set of process components).

Illustrative case study: a detoxification process.Soil decontamination has be-
come an important matter in wastewater treatment in recent years, resulting for in-
stance in the increasing use and development of biological detoxification processes
[125]. For instance, polychlorinated aliphatic compounds [175], [33], recalcitrant
compounds, and halogenated aromatic compounds [40] extracted from the con-
taminated soil may be treated by microbial mixed populations in strict anaerobic
conditions. In this context, a packed bed reactor has been developed and success-
fully applied to the anaerobic destruction of a mixture of toxic and recalcitrant
molecules (chlorinated aliphatics) on a laboratory scale [175], [33].

The anaerobic detoxification is a complex biochemical network involving dif-
ferent microorganism populations and biochemical reactions. A four-reaction model
is often considered to describe it [178] (see Figure 7.8). Here again the constraints
on the available data for modelling are quite hard: only off-line measurements
of hydrogen, acetate, toxics and non-toxics at the reactor output, and of the co-
substrate in the influent are available. A plausible reaction network is then:

S −→ H2 + V A2 (7.188)

H2 + T −→ NT (7.189)

whereS, H2, V A2, T andNT represent the co-substrate (ammonium citrate), the
hydrogen, the acetate, the toxics and the non-toxics, respectively. Different sets
of data corresponding to different experiments are available. Because of the high
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FIG. 7.8. Scheme of the four-reaction model of the anaerobic detoxification process.

recirculation rate (usually 18 d−1), the reactor is run under rather homogeneous
conditions, and the transport time delay between the reactor input and its output
is negligible with regard to the measurement frequency (the lowest measurement
frequency is 3-4 days for the acetate). This validates the use of a stirred tank reactor
model. Therefore the dynamics of the process in the General Dynamical Model
formalism are as follows:

ξ =

⎡⎢⎢⎢⎢⎣
S

V A2
H2
T
NT

⎤⎥⎥⎥⎥⎦ , Y =

⎡⎢⎢⎢⎢⎣
−1 0
Y1 0
Y2 − 1

Y3

0 − 1
Y4

0 1

⎤⎥⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎢⎣
DSin

0
0

DTin

DNin

⎤⎥⎥⎥⎥⎦ , ρ =
[

ρ1
ρ2

]
, Q = O

(7.190)
Let us consider the state partition:

ξ1 =
[

S
H2

]
, ξ2 =

⎡⎣V A2
T
NT

⎤⎦ (7.191)

The asymptotic observer equations follow from the above model:

dζ̂1

dt
= −Dζ̂1 − k1DSin (7.192)
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FIG. 7.9. Experimental data and estimation results of the detoxification process (Bioengi-
neering unit, Louvain-la-Neuve, Belgium) (o: experimental data, -: asymptotic observer
results).

dζ̂2

dt
= −Dζ̂2 − Y2Y3

Y4
DSin + DTin (7.193)

dζ̂3

dt
= −Dζ̂3 + Y2Y3DSin + DBNin (7.194)

ˆV A2 = ζ̂1 + Y1S (7.195)

T̂ = ζ̂2 + Y2Y3

Y4
S+ Y3

Y4
H2 (7.196)

N̂T = ζ̂3 − Y2Y3S− Y3H2 (7.197)

The asymptotic observer-based modelling procedure has been applied on three sets
of data with similar results. Since the co-substrate is not measured at the reactor
output and COD estimation indicates its complete utilisation, its value has been
assumed in rough approximation to be negligible. Figure 7.9 shows one set of
results for whichD = 0.014 d−1, Sin = 0.3 gCOD/l,Nin = 457 mg/l,Tin = 25
mg/l. Figure 7.9.a gives the data ofH2 and Figures 7.9.b, c and d compare the
experimental data ofV A2, T and N with their estimates provided by the above



OBSERVERS FOR PROCESSES WITH BADLY KNOWN KINETICS 291

asymptotic observer for the following values of the yield coefficients:Y1 = 33,Y2
= 800,Y3 = 1.25,Y4 = 5000. Note the fairly good validation of the reaction scheme.

7.5 Observers for Processes with Badly Known Kinetics

So far, we have considered (classical) observers when the kinetics are perfectly
known, and asymptotic observers when the kinetics are assumed to be unknown.
We shall now introduce an intermediate class of observers, i.e. observers of pro-
cesses for which the structure (“models”) of the kinetics are known but with badly
or unknown parameter values [77].

7.5.1 State Observer with the Unknown Parameters as Design Parameters

The first approach that we propose in this section is based on the following idea:
why not use the badly known kinetic parameters as extra design observer para-
meters in order to guarantee (at least) zero steady state observation errors for the
unmeasured variables?

Let us denote the badly known parameters byθ . The process dynamics (7.25)
can be rewritten as follows:

dx

dt
= f (x, u, θ) (7.198)

If we consider that the output vector consists of state variables (as it is often the
case in (bio)processes), we can define a state partition with the measured variables
(y = x1) and the unmeasured variables,x2:

dx1

dt
= f1(x, u, θ) (7.199)

dx2

dt
= f2(x, u, θ) (7.200)

The observer design remains basically the same, but now we chooseθ such that
x2 − x̂2 is equal to zero in steady state, i.e.:

θ : (x2(θ) − x̂2(θ))ss = 0 (7.201)

Let us illustrate this idea on the simple microbial growth example (Section 7.3.4).
The objective is to select one of the kinetic parameters used in the observer such
that the estimation error is equal to zero in steady state. Let us first consider that
the badly known parameter is the saturation constantKS (this means that we use
K̃S andµmax in the observer equations). Then the dynamics of the observation
errors is here equal to:

d

dt

[
eS

eX

]
=
[

−D − 1
Y1

α̃X − k1 − 1
Y1

α̃Ŝ

α̃ − k2 α̃Ŝ− D

][
eS

eX

]
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+
[− 1

Y1
SX

SX

]
eα (7.202)

with:

α̃ = µmax

K̃S + Ŝ
, eα = µmax[ 1

KS + S
− 1

K̃S + Ŝ
] (7.203)

eS andeX are the estimation errors onS and X. As a matter of illustration, if we
consider the ELO, the gainsk1 andk2 would be chosen from equations (7.72)(7.73).
Let us setdeS/dt, deX/dt to zero. TheneX in steady state,̄eX , is given by the fol-
lowing expression:

ēX = ( 1
Y k2 + k1 + D)SXeα

(D − α̃Ŝ)(D + k1 + 1
Y1

α̃X) + 1
Y1

α̃Ŝ(α̃X − k2)
(7.204)

We note that the steady state errorēX will be equal to zero if 1
Y1

k2 + k1 + D = 0.

This gives the following expression for̃KS from (7.72) (7.73):

K̃S = −Ŝ+ µmaxDŜ

D2 − (λ1 + λ2)D + λ1λ2
(7.205)

By using a similar approach, ifµmax is assumed to be badly known instead of
KS, the value ofµ̃max in the observer that guarantees zero steady state error for
the estimation ofX is given by the following relationship:

µ̃max = (D2 − (λ1 + λ2)D + λ1λ2)(KS + Ŝ)

DŜ
(7.206)

Figures 7.10 and 7.11 illustrate the behaviour of the ELO withK̃S given by equa-
tion (7.205) forλ1 = λ2 = -0.2. Figure 7.10 shows the convergence of the observer
whenX̂(0) = 0. Figure 7.11 illustrates the performance of the observer in presence
of a square wave of the influent concentrationSin (between 5 and 6 g/l, variations
at time t = 40, 80, 120 and 160 h). The process is assumed to be initially in steady
state (X(0) = 2.054 g/l,S(0) = 0.893 g/l); the observer has been initialised with
the correct value for̂S, and a wrong value for̂X (= 1 g/l). Note that, as expected,
the estimate ofX (dotted line) converges to the “true” simulated value. This is
obviously done at the price of a biased estimate of the measured variableS. Note
that in Figure 7.11 the estimate ofS rapidly converges to its biased value (around
0.68 g/l).

Our numerical experience with different kinetic models and estimation prob-
lems tell us that the gains of the observer have to be selected not too large in
order to avoid strange transient behaviour of the observer. So far we have not been
able to obtain satisfactorily (i.e. under realistic conditions) theoretical stability and
convergence for this approach.
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FIG. 7.10. Extended Luenberger observer withKS computed from (7.205)(initial tran-
sient)(-: “true” simulated values; - -: estimates).

7.5.2 Adaptive State Observer

The second approach that we propose in order to handle (kinetic) parameter uncer-
tainty in the state observation of (bio)chemical processes is the design of adaptive
observers, i.e. observers that also estimate the badly known parameters (e.g. [58],
[14]). One of the original features of the present adaptive observers is to consider
a nominal (default) process model, i.e. a model with nominal values of the badly
known parameters.

For simplicity we consider here that the badly known parameters are such that
the process models are linear in these parameters. Then we can write the right hand
side of (7.198) as follows:

f (x, u, θ) = f̄ (x, u, θ̄ ) + b(x, u)�θ (7.207)

From the above equations and the observer equations (7.27), the adaptive observer
is readily obtained (by considering the badly known parameters (here�θ ) as un-
measured states with dynamics equal to zero):

dx̂

dt
= f̄ (x̂, u, θ̄ ) + b(x̂, u)�̂θ + K (y − ŷ) (7.208)
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FIG. 7.11. Extended Luenberger observer withKS computed from (7.205)(square wave
Sin)(-: “true” simulated values; - -: estimates).

d�̂θ

dt
= �(y − ŷ) (7.209)

Some important remarks are probably necessary at this point. Although the de-
sign of adaptive observers has been a very active research field in the 1980s (see
e.g. [150], [70], [183], [167], [14]), the theoretical analysis of adaptive observers
may become easily highly complex. Moreover our experience shows that their ap-
plication to processes is indeed so far quite disappointing because they are very
difficult to tune properly in practice. That’s why we have limited our study here to
the following items:

1. to base the design on a model with nominal values of the badly known para-
meters;

2. to consider here only models linear in the badly known parameters;
3. to allow only one badly known parameter per measured variable;
4. to consider what is called in the adaptive control nomenclature as the “aver-

aging” (see e.g. [165]) as a key tuning rule for the adaptive observer.

Item 1 is important to increase the flexibility on the observer dynamics. Item 2 is
only an a priori choice that simplifies the approach. Item 3 is probably the most
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FIG. 7.12. Adaptive observer (initial transient).

essential assumption in order to have some guarantee for the successful implemen-
tation of the observer, and is rather easy to understand from a practical viewpoint:
how can one expect to handle properly uncertainty on different kinetics and distin-
guish between them if there is not a sufficient amount of information about them,
in particular one independent information per independent unknown. Finally, item
4 is also a key issue in the implementation of the adaptive observer: one important
underlying idea of averaging is that the dynamics of the parameter adaptation has
to be slower than the dynamics of the rest of the observer.

In the rest of the section we shall consider the same example as before (simple
microbial growth, Section 7.3.4) on which we shall perform the theoretical analysis
of the adaptive observer and illustrate its performance in numerical simulation.

Assume thatµmax is the badly known parameter with:

µmax = µ̄max + �µmax (7.210)

whereµ̄max is a nominal value ofµmax. Then equation (7.207) specialises as fol-
lows:

dS

dt
= − 1

Y1
µ̄max

SX

KS + S
+ DSin − DS− 1

Y1

SX

KS + S
�µmax (7.211)
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FIG. 7.13. Adaptive observer (square waveSin).

d X

dt
= µ̄max

SX

KS + S
− DX + SX

KS + S
�µmax (7.212)

At this point we consider an asymptotic observer for estimating the value of
X that appears in the regressor (i.e. the multiplicative term) of�µmax. Its intro-
duction is fully motivated by the theoretical analysis that will be performed below.
The asymptotic observer is based on the state transformation:ζ = S + 1

Y X. Its
dynamical equations are readily derived from the model equations (7.43),(7.44):

dζ

dt
= −Dζ + DSin (7.213)

Xe = Y1(ζ − S) (7.214)

whereXe denotes the estimate ofX given by the asymptotic observer (we use a
different notation in order to avoid the confusion with the estimate ofX (X̂) given
by the adaptive observer). The adaptive observer is then equal to:

dŜ

dt
= − 1

Y1
µ̄max

SX̂

KS + S
+ DSin − DS− 1

Y1

SXe

KS + S
̂�µmax

+K1(S− Ŝ) (7.215)
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dX̂

dt
= µ̄max

SX̂

KS + S
− DX̂ + SXe

KS + S
̂�µmax − K2(S− Ŝ) (7.216)

d ̂�µmax

dt
= −γ (S− Ŝ) (7.217)

The analysis of the theoretical stability and convergence properties of the adap-
tive observer is based on the estimation error dynamics. If we define:

eS = S− Ŝ, eX = X − X̂, eµ = �µmax − ̂�µmax (7.218)

these are written as follows:

de

dt
= Ae+ BeXe (7.219)

with:

A =
⎡⎢⎣−K1 − 1

Y1

µ̄maxS
KS+S − 1

Y1

SXe
KS+S

K2
µ̄maxS
KS+S

SXe
KS+S − D

γ 0 0

⎤⎥⎦
e =

⎡⎣ eS

eX

eµ

⎤⎦ , B =
⎡⎢⎣− 1

Y1

�µmaxS
KS+S

�µmaxS
KS+S

0

⎤⎥⎦ , eXe = X − Xe

From the theory of the asymptotic observers, we know thateXe will tend asymp-
totically to zero, lim

t→∞ eXe = 0. We also know (see e.g. [14]) that the matrixB is

bounded. Similarly, ifK1, K2 andγ are bounded, thenA is bounded. Therefore
the error dynamics are that of a time-varying system with an input,eXe, going
asymptotically to zero. If the state matrixA is asymptotically stable, we can use
a classical stability result (e.g. [284], p.55) to state that the estimation errors will
tend asymptotically to zero. Let us check now thatA is a stable matrix. Its charac-
teristic polynomial det(λI − A) is equal to:

λ3 + λ2(K1 + D − µ̄maxS

KS + S
) + λ(K1(D − µ̄maxS

KS + S
)

+K2
1

Y

µ̄maxS

KS + S
+ γ

1

Y

SXe

KS + S
) + γ

1

Y
D

SXe

KS + S

It is then routine to check thatA is asymptotically stable via a proper choice
of the gainsK1, K2, andγ , e.g. if we assign the dynamics of the observer with
the three eigenvaluesλ1, λ2, λ3. Figure 7.12 illustrates the performance of the
observer under the same initial and operating conditions as in Figure 7.10, but with
a 10% error onµmax. The gains have been chosen primarily to assign the dynamics
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FIG. 7.14. Adaptive observer (10% error onKS).

with λ1 = λ2 = λ3 = 5 h−1, thenγ has been reduced by a factor 20 to follow the
averaging recommendations (the factor is somewhat arbitrary (10 would also have
been good too for instance), it just gives a rough idea of a typical value forγ ).
Figure 7.13 illustrates the performance of the adaptive observer in the presence of
a square wave influent substrate concentration.

Note that the adaptive observer (which assumes the knowledge of the kinetics
model) is able to converge faster than the asymptotic observer (which ignores the
kinetics model).

It is also worth noting that the adaptive observer (7.215)(7.216)(7.217) is capa-
ble of handling nonlinear uncertainties like those onKS, as it illustrated in Figure
7.14, which presents a numerical simulation performed under the same conditions
as in Figure 7.12, but with a 10% error onKS. The adaptive observer compensates
the error onKS by a bias on the estimate ofµmax.

7.5.3 Generalisation

The generalisation of both proposed observers is based on the General Dynamical
Model:

dξ

dt
= −Dξ + Yρ + F − Q (7.220)
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If we consider that the measured outputsy are process components, then the part
of the General Dynamical Model associated toy is written as follows:

dy

dt
= −Dy + Yyρ + Fy − Qy (7.221)

whereYy, Fy and Qy gather the rows ofY, F and Q related toy. The key as-
sumptions at this point are to consider that the number of measured components
is (at least) equal to the number of uncertain kinetics, and that the measured com-
ponents are independent (this basically requires that the submatrixYy is full rank).
The generalisation consists then of introducing the following state transformation
(see also [191]):

� = Y−1
y y (7.222)

This transformation decouples all the kinetic terms and associates each of them to
only one variable�. Indeed equation (7.221) can be rewritten as follows:

d�

dt
= −D� + ρ + Y−1

y (Fy − Qy) (7.223)

It is then straightforward to extend the design of both observers introduced in the
above sections to each decoupled system (�i , ρi ).

7.6 On-line Parameter Estimation

So far we have considered the estimation of state variables, i.e. state observation. In
this section, we address the problem of estimating the reaction rates from on-line
knowledge of the state variables (knowledge available either from measurements
or from state estimation). It has been decided to restrict the section to the develop-
ment, analysis and implementation of estimators of kinetic parameters. Our mo-
tivation for doing so comes basically from our experience that shows the kinetic
parameters are in practice difficult to evaluate precisely via kinetic models and
are often the primary and key source of uncertainty of bioprocess models (these
difficulties has also motivated the writing of the preceding chapters, particularly
Chapter 5 dedicated to experiment design for parameter estimation). It is also im-
portant to note that the approaches presented here do not exclusively apply to the
estimation of kinetic parameters, but can also be used for the estimation of any
other process parameters, like yield coefficients or transfer coefficients. Examples
of estimation of such parameters can be found e.g. [14].

Two approaches will be considered: the observer-based estimator and the re-
cursive least squares estimator.

7.6.1 The Observer-Based Estimator

The underlying idea of the observer-based estimator is (as its name suggests) to
consider the classical observer structure already introduced in Section 7.3. Yet here



300 RECURSIVE STATE AND PARAMETER ESTIMATION

we go a step further by assimilating the unknown parameter as unknown states for
which the dynamics are equal to zero. This means that if we consider that the
dynamics of the process are given by the following equations:

dx

dt
= f (x, u, θ) (7.224)

we assume that the unknown parametersθ have the following “dynamics”:

dθ

dt
= 0 (7.225)

and we consider both equations (7.224)(7.225) for the design of the observer-based
estimator.

Let us now proceed further in the design of the estimator. Let us first consider
the General Dynamical Model:

dξ

dt
= Yρ(ξ) − Dξ − Q + F (7.226)

We assume that:

a) the matrixY of yield coefficients is known,
b) the dilution rateD, the feed ratesF and the gaseous outflow ratesQ are

measured on-line,
c) the vector of state variablesξ is known either by measurement or by estima-

tion using an asymptotic observer (as described in Section 7.4).

We further assume that the vectorρ(ξ) of reaction rates is partially unknown and
written as follows:

ρ(ξ) =
[

H(ξ)r (ξ)

h(ξ)

]
(7.227)

whereH(ξ) is a diagonal matrix of known functions of the state andr (ξ) a vector
of unknown functions ofξ with dimr (ξ) = nu.

The known reaction rates are given by vectorh(ξ) with dimh(ξ) = M − nu.
Using equation (7.227), the general dynamical model is rewritten as:

dξ

dt
= Yu H(ξ)r (ξ) + Ykh(ξ) − Dξ − Q + F (7.228)

whereYu andYk are matrices of yield coefficients associated with the unknown
and known reaction rates respectively.

The observer-based estimator is written as follows:

dξ̂

dt
= Yu H(ξ)r̂ + Ykh(ξ) − Dξ − Q + F − �(ξ − ξ̂ ) (7.229)
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dr̂

dt
= [Yu H(ξ)]T �(ξ − ξ̂ ) (7.230)

As in the classical observer, the update of the parameter vectorr̂ is driven by the
deviation term (ξ − ξ̂ ) which reflects the mismatch betweenr̂ andr .

The matrices� and� are tuning parameters for adjusting the rate of conver-
gence of the algorithm [14]. A common choice is:

� = diag(−ωi ), � = diag(−γ j ), ωi , γ j > 0 (7.231)

With this choice, the stability of the estimator is satisfied.
The tuning procedure may be simplified if the state equations are first de-

coupled using the transformation (7.222) already considered in Section 7.5.3 [191]:

� = Y−1
u ξ (7.232)

The dynamical equations of the new variables� are readily obtained from (7.228):

d�

dt
= H(ξ)r (ξ) + Y−1

u Ykh(ξ) − D� + Y−1
u (F − Q) (7.233)

Note that each entry�i of � is a linear combination of the entriesξi of ξ . Applying
the estimation algorithm to the transformed state equations yields:

d�̂

dt
= Hr̂ + Y−1

u Ykh − D� + Y−1
u (F − Q) − �(� − �̂) (7.234)

dr̂

dt
= H�(� − �̂) (7.235)

Recall thatH is a diagonal matrix. Let us gather each variable�i with its related
parameterri and rearrange the entries of the vector [�, r ]T in the following order
in a vectorζ :

ζ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1
r1
�2
r2
...

�p

r p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.236)

Basic tuning rule. Let us first define the estimation error:

e = ζ − ζ̂ (7.237)

The estimation error dynamics are readily derived from equations (7.233) (7.234)
and (7.235):
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de

dt
= Ae+ b (7.238)

with a block diagonal matrixA with 2 × 2 blocks:

A = diag{Ai }, Ai =
[−ωi hi (ξ)

−γi 0

]
, i = 1 to p (7.239)

andb equal to:

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
dr1
dt
0

dr2
dt
...

0
drp
dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.240)

The characteristic equation of the matrixA, det(λI − A), is equal to:

det(λI − A) =
p∏

i =1

(λ2 + ωi λ + γi hi (ξ)) (7.241)

The key idea of the tuning rule consists of choosing eachγi inversely proportional
to the corresponding termhi (ξ):

γi = γ̄i

hi (ξ)
, γ̄i > 0, i = 1 to p (7.242)

With the choice above, the characteristic equation (7.241) is rewritten as follows:

det(λI − A) =
p∏

i =1

(λ2 + ωi λ + γ̄i ) (7.243)

and the observer-based estimator dynamics are now independent of the state vari-
ables. Such a choice corresponds to a Lyapunov transformation (see [192]). It is
obviously valid for values ofhi (ξ) = 0: this condition is usually met easily in
(bio)process applications, as it will be illustrated in the following section.

The values of the design parameters can then be set to arbitrarily fix the es-
timator’s dynamics for each unknown parameterri . Since the estimator reduces,
via the transformations, to a set of independent second-order linear systems, the
classical rules for assigning the dynamics of second-order linear systems apply
straightforwardly here. The reader is therefore referred to the classical automatic
control textbooks for further information on the subject. However the following
basic guidelines are suggested.
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One important guideline is to choose real poles:

ω2
i − 4γ̄i ≥ 0 (7.244)

The objective of this is to avoid oscillations in the estimation of the parameters that
do not correspond to any physical phenomenon related to the estimated reaction
rates.

Pomerleau and Perrier ([198]) suggest choosing double poles, i.e.:

γ̄i = ω2
i

4
(7.245)

The tuning of the estimation algorithm reduces to the choice of one design
parameter,ωi , per estimated parameter. This allows having a design procedure that
has the double advantage of being simple (one design parameter) and flexible (each
parameter estimation can be tuned differently if needed, e.g. if the time variations
of the parameters are different).

As an alternative, Oliveiraet al. ([186]) propose to choose complex poles with
a damping factor equal to 0.7 in order to increase the speed of convergence of
the estimator with a reduced overshoot. (Generally speaking, the damping factor
can be freely chosen; the choice may then depend on the type and nature of the
application, of the time variations of the parameter to be estimated, and of the
noise on the measured data. This means that then there are, in this approach, two
design parameters per estimated parameter).

So far, we have suggested that it is possible to assign arbitrarily the dynam-
ics of the estimator. However in presence of noisy data, it appears that indeed
a compromise has to be made between a fast estimator convergence and a good
noise rejection. A detailed and somewhat involved study is performed in Bastin
and Dochain [14] (pp. 162-72) to analyse the performance of the observer-based
estimator both in theory and in numerical simulation in the presence of bounded
noisy data in the particular case of the estimation of the specific growth rate of
a simple microbial growth process. The theoretical optimisation analysis is based
on the evaluation of the asymptotic properties of the estimator and results in the
following optimal value forω1:

ω1,opt = 2

√
M1

α(M2
2 + Y1SmaxM2)

, 0 < α < 1 (7.246)

whereM1 andM2 are the upper bounds on the time derivative ofµ and on the mea-
surement noise, respectively, andSmax the maximum value of the influent substrate
concentrationSin .

This result is probably rather conservative because it is based on upper bounds
for the measurement noise, the time variation ofµ and the influent substrate con-
centration, but it is qualitatively confirmed by numerical simulation studies which
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FIG. 7.15. Experimental set-up of the denitrification process.

also give a value of the design parameters that minimises the estimation error. Be-
cause it is conservative, the theoretical optimum has to be interpreted with care,
but since it is qualitatively correct, our suggestion (also based on our practical ex-
perience), in presence of noisy measurements, is to perform numerical simulations
with a plausible reaction rate model and noise in order to get a first initial guess
for the design parameter values. These can then be adjusted when applied to the
real process.

Application to a denitrification process.Let us consider the application to the
observer-based estimator to a denitrification process. The process considered here
is a pilot-scale denitrifying biofilter [34], [36]. The denitrification process under
study is a submerged granular fixed bed biofilter (see Figure 7.15); it is packed
with pouzzolane, a very porous volcanic material which retains a big amount of
microorganisms even after back-washing. Thus the initial biomass concentration
is often very close to the maximum active biomass concentration. The substrates
to be removed can move freely along the reactor. The inside temperature is kept
almost constant via a double insulation jacket. An ethanol solution is mixed with
the feeding nitrate in a tank at the inlet of the reactor. Eight measurement points
are distributed at every thirty centimeters along the column for the measurement
of nitrate and nitrite concentrations.

The denitrification process is defined as being the reduction of nitrates (elec-
tron acceptor)N O−

3 into gaseous nitrogenN2 by using organic carbon (electron
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donor) with the production of intermediate compounds, namely nitritesN O−
2 . In

the denitrification, two sequential biological reactions are considered in the model,
denitratation (1) and denitritation (2):

N O3− (1)−→ N O2− (2)−→ N2

If we assume that the liquid and solid mediums are in completely mixed con-
ditions and that the biomass is fixed, the dynamics of the process are given by the
following equations:

dSN O3

dt
= −DSN O3 + DSN O3,in − 1

Y1
µ1X (7.247)

dSN O2

dt
= −DSN O2 + Y3µ1X − 1

Y2
µ2X (7.248)

dSC

dt
= −DSC − DSC,in − 1

Y4
µ1X − 1

Y5
µ2X (7.249)

d X

dt
= (µ1 + µ2 − kd) X (7.250)

whereSC is the (external) source of carbon (ethanol) for both biochemical reac-
tions, andkd is the biomass death coefficient.

As a matter of illustration of the flexibility of the algorithm, let us consider that
we consider the following rewriting of the specific growth ratesµ1 andµ2:

µ1 = r1SN O3, µ2 = r2SN O2 (7.251)

which simply expresses an explicit dependence between the specific growth rates
and one of their limiting substrates. Then:

r =
[

r1
r2

]
, H =

[
SN O3 X 0

0 SN O2 X

]
(7.252)

In the present experiments, the concentrations of nitrateSN O3 and nitriteSN O2 are
accessible for on-line measurement. The auxiliary variables� are obtained from
the inverse of the yield coefficient matrixY associated to these two variables:

Y =
⎡⎢⎣− 1

Y1
0

Y3 − 1

Y2

⎤⎥⎦ (7.253)

The auxiliary variables are then defined as follows:
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�1 = −Y1SN O3, �2 = −Y2SN O2 − Y1Y2Y3SN O3 (7.254)

The observer-based estimator is written as follows:

d�̂1

dt
= −D�1 − DY1SN O3,in + r̂1SN O3 X + ω1(�1 − �̂1) (7.255)

dr̂1

dt
= ω2

1

4SN O3 X
(�1 − �̂1) (7.256)

d�̂2

dt
= −D�2 − DY2(Y1Y3SN O3,in + SN O2,in ) + r̂2SN O2 X

+ω2(�2 − �̂2) (7.257)

dr̂2

dt
= ω2

2

4SN O2 X
(�2 − �̂2) (7.258)

Figure 7.16 shows the estimation results ofr1 andr2 based on real-life data. The
(known) parameters of the model are equal to:

Y1 = 1.05, Y2 = 0.67, Y3 = 1.05, Y4 = 0.33, Y5 = 0.22, kd = 0.01h−1

The flow rate was equal to 32.5 l/h. The influent concentrations are given in Figure
7.16. The observer-based estimator was initialised as follows:

ω1 = 0.5h−1, ω2 = 0.5h−1, �̂1(0) = �(0), �̂2(0) = �2(0) (7.259)

r̂1(0) = 0.0001m3/g/h, r̂2(0) = 0.0002m3/g/h (7.260)

Validation of the estimation has been performed on data of ethanolSC by compar-
ing real-life data with values computed on the basis of the estimated values ofr1
andr2 and the mass balance equation ofSC, i.e.:

dŜC

dt
= −DŜC − DSC,in − 1

Y4
r̂1SN O3 X − 1

Y5
r̂2SN O2 X (7.261)

The values are given in Figure 7.16 (bottom right).

7.6.2 The Recursive Least Squares Estimator

Since the model is linear in the unknown parameters, an alternative estimation
algorithm may be the least squares algorithm in recursive form, or the recursive
least squares (RLS) scheme. We have presented in Chapter 6 the non recursive
version of the least squares estimation algorithm.

Let us consider the following discrete-time equation linear in the (unknown)
parameterθ :

yt = φT
t θt (7.262)

wheret is the time index. The RLS scheme with forgetting factorγ based on the
above equation (7.262) is indeed written as follows (see e.g. [151] for a detailed
approach to derive the recursive form from the batch (“off-line”) version):
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FIG. 7.16. Observer-based estimator for a denitrifying biofilter

θ̂t+1 = θ̂t + gtφt (yt − φT
t θ̂t ) (7.263)

gt = gt−1

γ

[
I − φt (γ I + φT

t gt−1φt )
−1φT

t gt−1

]
g0 > 0, 0 < γ ≤ 1

(7.264)

where I is the identity matrix, andgt is the gain of the estimator. The role of
the forgetting factor is to follow possible time variations of the unknown para-
meterθ by giving a weight to recent data that is higher than that given to old data.
γ = 1 means that an equal weight is given to all data, and there is then no forgetting
effect. The forgetting factor is typically (but not necessarily) chosen between 0.9
and 0.99 in practical applications.

Let us see how to apply the RLS scheme to the estimation of kinetic parameters
on the basis of the General Dynamical Model. If we consider an Euler approxima-
tion for the time derivative:

dξ

dt
= ξt+1 − ξt

�t
(7.265)
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with �t the sampling period, the version used for the observer-based estimator
(7.228) is written in discrete-time as follows:

ξt+1 = ξt + �t (Yu H(ξt )r (ξt ) + Ykh(ξt ) − Dtξt − Qt + Ft ) (7.266)
The RLS scheme can be immediately applied by considering that:

yt = ξt+1 − ξt − �t (Ykh(ξt ) − Dtξt − Qt + Ft ) (7.267)

φT
t = �tYu H(ξt ), θt = r (ξt ) (7.268)

The selection of the initial gaing0 is typically an important choice for starting
correctly the RLS estimator. Obviously it must be positive definite. Usually the
literature suggests starting with a diagonal matrix with large values. However in
practice too large values may result in very large transients in the starting phase.
Our recommendation for RLS estimation with forgetting factor is to select initial
values for entries of the gain matrix that have the same order of magnitude as those
reached in steady state.

This can be easily done when estimating only one parameter. Indeed the gain
matrix gt (as well the regressorφt ) reduces to a scalar and is written as follows:

gt = gt−1

γ + gt−1φ
2
t

(7.269)

In steady state ,gt = gt−1, and therefore we can draw the following expression for
gt :

gt = 1 − γ

φ2
t

(7.270)

Therefore our recommendation is then to select the initial valueg0 close to
1 − γ

φ2
0

.

Application to an anaerobic digestion process.Let us consider the anaerobic di-
gestion process already introduced in Section 7.4 and Figures 7.5 and 7.6.

Here again, methaneP2 and volatile fatty acidsS2 are available measurements.
Let us use them to estimate the specific growth ratesµ1 andµ2 of the acidogenesis
and of the methanisation, respectively.

In discrete-time, and by considering the low solubility assumption on methane,
the mass balance equations for methane and volatile fatty acids are written as fol-
lows:

Q2t = Y6µ2t X2t (7.271)

S2,t+1 = S2t − �t Dt S2t + 1

Y2
µ1t�t X1t − Y3µ2t�t X2t (7.272)

Becauseµ2 appears in both equations whileµ1 appears only in the second,
we have here designed the estimators in cascade. At each time step, we proceed as
follows:

1. estimation ofµ2 on the basis of equation (7.271);
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FIG. 7.17. On-line estimation of the specific growth rates in an anaerobic digestion process
with a recursive least squares algorithm.

2. estimation ofµ1 on the basis of equation (7.272) and with the estimate of
µ2 given at step 1

The estimation results are given in Figure 7.17. The values of the biomass
concentrationsX1 andX2 are provided by the asymptotic observer of Section 7.4.
The RLS estimators have been initialised as follows:

estimation ofµ2 : yt = Q2t , φt = Y6X2t , γ = 0.9, g0 = 0.01 (7.273)

estimation ofµ1 : yt = S2,t+1 − S2t + �t Dt S2t + Y3µ̂2t�t X2t (7.274)

φt = 1

Y2
�t X1t , γ = 0.9, g0 = 0.01 (7.275)

The estimateŝµ1 andµ̂2 have been validated by considering, as in Section 7.4
and Figure 7.6, the off-line data of total and soluble COD to calculate the biomass
concentration. These have been compared to values computed on the basis of the
estimates ofµ1 andµ2 with the mass balance equation forX1 + X2:

d( ̂X1 + X2)

dt
= −D( ̂X1 + X2) + µ̂1X1 + µ̂2X2 (7.276)
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7.7 Conclusions

This chapter has been dedicated to the design of software sensors to estimate con-
centrations (state observers) and kinetic parameters (parameter estimation). We
have started the chapter with theoretical notions of state observability, which ap-
peared to be important to evaluate the possibility to apply and design state ob-
servers. The state observers have been presented in three sections: classical ob-
servers, asymptotic observers, and “intermediate” observers. The last section has
been concerned with the design of recursive parameter estimation algorithms. Two
approaches have been presented: the observer-based estimator, and the recursive
least squares estimator. All the approaches proposed in the present chapter have
been mathematically analysed. Their performances have been illustrated via nu-
merical simulations and/or real-life results. And we have proposed several guide-
lines to help the user to implement them.

At this point, we would also like to draw attention to the following conclusions
concerning the application of the software sensors introduced here.

1. As it has been already explained, the parameter estimation section has been
restricted to the estimation of kinetic parameters. Our motivation for doing
so comes basically from our experience that shows that kinetic parameters
are in practice difficult to evaluate precisely via kinetic models and are of-
ten the primary and key source of uncertainty of bioprocess models (these
difficulties have also motivated the writing of the preceding chapters, partic-
ularly Chapter 5 dedicated to experiment design for parameter estimation).
It is also important to note that the approaches presented here do not exclu-
sively apply to the estimation of kinetic parameters, but can also be used
for the estimation of any other process parameters, like yield coefficients
or transfer coefficients. Examples of estimations of such parameters can be
found e.g. [14].

2. Today the estimation of states and parameters in nonlinear systems remains
generally speaking an open question. This explains why it is an active re-
search area. In the present chapter, we have followed a line in which we
have privileged three approaches (classical observers, asymptotic observers,
and “intermediate” observers). The reason for doing so is twofold. First,
this sequence had the pedagogical advantage to present approaches that are
dedicated to solve three types of problems (state observation with known
model parameters, with unknown model structure, and with badly known
parameters, respectively). Secondly, the proposed approaches present a high
degree of reliability due to our experience in implementing them (as illus-
trated in the numerical and real-life examples). But this choice does not
mean that we consider that other approaches must be rejected or are gen-
erally speaking worse than those presented here. We even have the feeling
that we are giving here an instantaneous photograph of the estimation of
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state and parameter estimation in WWTP, and that the situation may change
rapidly with possibly new emerging approaches.

3. Yet, our experience shows that today the asymptotic observer represents the
best state observers that can be applied to bioprocesses in general and to
WWTP in particular. This argument is largely based to the large number of
applications that we have seen over the last 20 years. The deciding factor in
favour of the asymptotic observers is the following. The asymptotic observer
is indeed a reliable (because of its theoretical stability and convergence prop-
erties) replica of the reaction scheme and of the hydraulics that have been
chosen by the user to represent the dynamics of the process. Therefore, if
for any reason the asymptotic observer does not work well, the diagnosis is
usually easy: it is either due to a bad selection of the reaction scheme or of
the hydrodynamics, or to wrong values of the yield coefficients, or finally to
on-line measurements that may appear to be unreliable.



APPENDIX A

Glossary

A.1 Model Constituents

constant: model constituent, whose value is constant throughout all possible ap-
plications of the model.

forcing function: function used as model input.

input/output model: model that describes system behavior as being a function of
only present input and past inputs and outputs.

model: abstraction of reality.

model structure: the relations between inputs, outputs and eventually states for-
mulated as equations.

observation equation: equation in state-space model, that relates the state vari-
ables to the outputs (sometimes also denoted as output equation).

parameter: model constituent, whose value needs to be determined for each spe-
cific application of the model.

state: present situation of the system as described by the model.

state variable: model constituent in state-space models, acting as mediator be-
tween inputs and outputs and used for a descriptive representation of the
system.

state-space model:model that includes a descriptive representation of the system
by means of an additional set of state variables.

c© 2001 IWA Publishing. Dynamical Modelling and Estimation in Wastewater Treatment Processes
by Denis Dochain and Peter Vanrolleghem. ISBN: 1 900222 50 7
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state-transition equation: function that relates the future state of the system to
the present state and inputs.

transfer function: same as input/output function.
variables: inputs, outputs and eventually state variables in model equations.

A.2 Model Attributes

adaptive: model that interacts with the real system and changes the values of its
inputs or state variables depending on past output values.

aggregated: model that contains state variables that represent functional classes
of different constituents (e.g. organisms) or that simplifies the spatial con-
figuration of a system by lumping it together (cf. segregated).

black-box: model that describes the observed behaviour of the corresponding
subsystem without being based on the mechanisms of this subsystem (cf.
white-box).

complex: a relative attribute that values whether the model contains more state
variables, parameters, forcing functions, etc. or an attribute that qualifies
that (irrespective of the number of variables) there exists chaotic solutions
of the model equations (cf. simple).

continuous space:the model resolves the spatial domain of the system continu-
ously (cf. discrete space).

continuous time: the model resolves the time axis continuously; the time evolu-
tion is usually described by differential equations (cf. discrete time).

conceptual: a model that contains a description of the ideas/hypothesis on system
behaviour without giving a mathematical formulation.

deterministic: the time evolution of the model solution is uniquely determined
by the initial state (for state-space models) and the time evolution of inputs
(cf. stochastic).

discrete space:the model approximates the spatial domain of the system by a
number of mixed compartments (cf. continuous space).

discrete time: the model divides the time axis into periods of finite length and the
output or the state of the model in the next period is given as an algebraic
equation depending on the old inputs or states (cf. continuous time).

distributed parameter: model with more than one independent variable, i.e. model
behaviour is governed by partial differential equation in time and space.

dynamic: the model describes the time evolution of a system; a solution of the
model may anyway be in steady-state (cf. static, steady-state).

empirical: the model equations are not based on generally accepted laws but are
just of a descriptive nature (cf. phenomenological, mechanistic).

grey-box: the model consists of submodels that partly are based on mechanistic,
partly on phenomenological descriptions (cf. black-box, white-box).
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heuristic: model not based on rigorous development but on rules of thumb, feel-
ing, qualitative reasoning.

linear: model equations are linear in input variables (for input-output models) or
in state variables (for state-space models).

lumped: equal to aggregated.

mechanistic: model with the goal of describing the mechanisms that lead to the
observed behaviour (cf. phenomenological).

nonlinear: model equations are nonlinear in input variables (for input-output mod-
els) or in input and state variables (for state-space models).

phenomenological: describing the observed phenomena without representing the
mechanisms governing the behaviour (cf. mechanistic).

physical: model that is based on a description with physical, chemical or biolog-
ical laws; sometimes also used for small scale reproductions of a system
made in physical materials.

reduced order: model of reduced complexity obtained by direct deduction (e.g.
by aggregation/lumping) from a more complex basic model.

reductionist: hierarchical description of a system by resolving it in subsystems
that again are resolved in sub-subsystems until a description level is reached
at which a satisfying description is possible without empirical assumptions
(in the ideal case down to a description that is based on natural laws).

segregated:model that separates variables in more functional classes (cf. aggre-
gated).

semi-physical: equal to grey-box .

simple: relative attribute that describes that the model equations contain only few
state variables, parameters, forcing functions, etc. and the solutions show
simple behaviour (periodic or quasi-periodic; cf. complex).

static: the model only describes the steady-state solution of a system (cf. dy-
namic).

steady state: the model only describes the steady-state solution of a system (cf.
dynamic).

stochastic: the time evolution of the model contains random elements (cf. deter-
ministic).

time-invariant: the way the model processes input to output does not change with
time.

transparent: equal to white-box.

white-box: model that describes a system by one or several submodels (white-
boxes) that describe the observed behaviour of the corresponding subsystem
by describing the relevant mechanisms of this subsystem (cf. black-box).
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A.3 Terms of Model Building

calibration: the same as parameter estimation but not necessarily by using statis-
tical methods.

corroboration: the same as validation; the term introduced by Popper [200] makes
it clearer that the correctness of the model cannot be proved and that each
successful test only increases the belief that the model is correct (cf. confir-
mation, falsification, validation, verification).

confirmation: the same as validation; the term makes it clearer that the correct-
ness of the model cannot be proved and that each successful test only in-
creases the belief that the model is correct (cf. corroboration, falsification,
validation, verification).

falsification: demonstrating the invalidity of a model by showing that the model
results deviate significantly from the measurements confirmation, corrobo-
ration, validation and verification are fail trials of falsification (cf. confirma-
tion, corroboration, validation, verification).

frame definition: selection of which components of a system are to be described
and specification of classes of models to be included in the model structure
selection process and specification of the experimental conditions for use of
the model (experimental frame).

identifiability analysis (structural, practical): evaluation of the uniqueness of
the estimates of model parameters from measured data. Structural (theo-
retical, a priori) identifiability analysis assesses the uniqueness of parameter
estimates from ideal data for a given experimental frame, practical (a pos-
teriori) identifiability analysis assesses the accuracy with which parameters
can be estimated with a given data set. In the latter case identifiability is not
an objective property, but it depends on the required accuracy.

model building: the process of finding an adequate model of a system by (itera-
tively) processing the following model building steps: Problem formulation,
prior knowledge collection, system identification and model testing (see Fig-
ure 1.1).

model reduction: simplification of an existing model in order to improve its iden-
tifiability without loosing the description of the most important phenomena.

model (structure) selection: selecting out of a given set of model structures the
structure that makes an optimal (as simple as possible but as complicated as
required for the intended purpose) description of measured data possible.

optimal experimental design: using a (preliminary) model of a system in order
to plan an experiment that maximises the possible gain in information.

parameter estimation (batch, recursive): process of finding parameter values
that lead to an optimal agreement of model results with measured data by
using statistical methods. Time series of data can be used as a whole (batch
estimation) or data points from within a moving data window can be used. In
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the latter case the parameters become time-dependent and the algorithm can
be implemented to modify the previous estimate by considering the omitted
and the new data points (recursive estimation).

regression (linear, nonlinear): the same as parameter estimation, however usu-
ally used for the special case of algebraically given linear or nonlinear model
equations and using the (weighted) least squares technique goodness-of-fit
criterion.

simulation (interactive, real-time, Monte Carlo): calculating the solution of a
model for given values of the parameters, inputs and intial values (usually
numerically). Interactive simulations are processed on a computer which al-
lows the user to interact with the program (stop, change parameter values,
etc.). Monte Carlo simulation is a method to propagate probability distri-
butions of parameters, inputs and initial values to probability distributions
of model results by performing a lot of simulations with parameter values
sampled randomly from the probability distribution of the parameters, inputs
and initial values.

system identification: finding a model to solve a given problem by (iteratively)
processing the following identification steps: Frame definition, model struc-
ture selection, parameter estimation, model diagnosis. (see Figure 1.1).

structure characterisation: the same as model (structure) selection.
uncertainty analysis: estimating the uncertainty of model predictions and

analysing the sources of uncertainty.
validation: test of a model with a data set not used for identification; note that

such tests only increase the belief in the correctness of the model, it is not
possible to prove that the model is correct (cf. confirmation, corroboration,
falsification, verification).

verification: the same as validation (cf. confirmation, corroboration, falsification,
validation).
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Nomenclature

ai , i = 1 to n : Coefficients of the polynomial A(q)
a : Inhibition constant (logistic model) [l/g]
a, b : Constants (weir flow rate model)
a, b, c : Constants (µ(pH))
A : State matrix
A : Reactor cross-section [m2]
AL : Liquid phase cross-section [m2]
AS : Solid phase cross-section [m2]
Ase : Settler cross-section [m2]
A(q) : Polynomial in q (denominator of a transfer function)
b : Death coefficient [/h]
bi , i = 1 to m : Coefficients of the polynomial B(q)
B : Input matrix
B(q) : Polynomial in q (numerator of a transfer function)
C : Component concentration [g/l]
C : Joint experimental design criterion for SC and PE
Ci : Measurement error covariance matrix
D : Dilution rate [/h]
D : Discriminative power of an experiment
Dma : Axial mass dispersion (diffusion) coefficient [m2/s]

c© 2001 IWA Publishing. Dynamical Modelling and Estimation in Wastewater Treatment Processes
by Denis Dochain and Peter Vanrolleghem. ISBN: 1 900222 50 7
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DO : Dissolved oxygen
e : Observation or estimation error
E : Parameter estimation accuracy of an experiment
E : Activation energy [J/mol]
E : Expectation operator
f : State function
F : Hydraulic flow rate [l/h]
F : Feed rate vector [g/l/h]
F : Fisher Information Matrix
Fl : Solid flux [g/m2/h]
g : Gravity constant [m/s2]
h : Output function
H(s) : Transfer function
h, H : Height [m]
J : Objective functional
Jopt : Minimal value of the objective functional
k0 : Kinetic constant
kr , ks : Rate constants [/h]
kLa : Mass transfer coefficient [/h]
K : Gain matrix (of an observer)
Kc : Contois model constant
Ki : Inhibition constant [g/l]
K p : Product inhibition constant [g/l]
Ks : Affinity (or saturation, or Michaelis-Menten) constant [g/l]
L : Length [m]
L : Output matrix
L f : Lie derivative along the vector fieldf
ms : Maintenance coefficient [/h]
n : Expansion index
n : Number of data in moving window regression
N : Number of weirs
N : Number of measured data
O : Observability matrix
OU R : Oxygen uptake rate [mgO2/l.min]
OT R : Oxygen transfer rate [mgO2/l.min]
pi : Number of parameters of modeli
pL : Liquid phase pressure [N/m2]
pS : Solid phase pressure [N/m2]
P : Product concentration [g/l]
Q : Gaseous outflow rate (vector) [g/l/h]
Qi : Weighting matrix
r ( f ) : Reliability of an inflection pointf
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rε(τ ) : Covariance with lagτ
R : Ideal gas constant [J/mol/K]
R : Riccati matrix
s : Laplace variable
s2 : Residual mean square
S : Substrate concentration [g/l]
SO : Oxygen concentration [g/l]
S∗

O : Oxygen saturation concentration [g/l]
t : Time [min]
T : Sampling period [min]
T : Temperature [K]
tpuls : Time of pulse addition [min]
u : Fluid superficial velocity [m/h]
u(t) : Input vector
u0 : Fluid superficial velocity in absence of solid particles [m/h]
uS : Particles’ velocity [m/h]
UT : Terminal settling velocity of the particles [m/h]
V : Parameter estimation covariance matrix
V : Volume [m3]
W : Weighing matrix (Kalman observer)
wD : Weight attributed to model discrimination
wE : Weight attributed to parameter estimation
x : State vector
X : Concentration of biomass [g/l]
Xd : Concentration of dead/detached biomass [g/l]
Y : Yield coefficient (matrix)
y : Measurement vector
ŷi (θ) : Model prediction vector for modeli
z : Space [m]

B.1 Greek Letters

αi : Reaction order
δ : Small parameter (singular perturbation)
ε : Void fraction
λ : Local state isomorphism (structural identifiability)
λmax : Largest eigenvalue ofF (in absolute values)
λ : Eigenvalue
λmin : Smallest eigenvalue ofF (in absolute values)
� : Gain matrix (observer-based estimator)
µmax : Maximum specific growth rate [/h]
µ : Specific growth rate [/h]
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ν : Specific production rate [/h]
ν : Settling velocity [/h]
ν : Maximum settling velocity [/h]
η : Non-growth associated specific production rate [/h]
ρ : Reaction rate [/h]
ρL : Liquid phase density [g/m3]
ρS : Solid phase density [g/m3]
φ : Conversion rate [/h]
� : State transformation (state obsever and observer-based estimator)
σ(θi ) : Standard error of parameteri
θi : Parameteri
χi : Experimental conditions for experimenti
ξ : Vector of the bioprocess component concentrations [g/l]
� : Gain matrix (observer-based estimator)

B.2 Indices

B, A : Autotrophic bacteria
B, H : Heterotrophic bacteria
end : Endogenous
ex : Exogenous
in : Influent
min : Minimum
max : Maximum
N D : Organic nitrogen
N H : Ammonia nitrogen
N O : Nitrate nitrogen
out : Effluent
R : Recycle
W : Waste

B.3 Abbreviations

AIC : Akaike’s Information Criterion
BFGS : Broyden, Fletcher, Goldfarb and Shanno
CST R : Continuous stirred tank reactor
det : Determinant (of a matrix)
DF P : Davidson-Fletcher-Powell
DU D : doesn’t use derivatives
G A : Genetic algorithm
GIC : General Information Criterion
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i id N : independent and identically distributed normally
M AP : Maximum a posteriori
MCSM : Monte Carlo set-membership
O DE : Ordinary differential equation
O E D/P E : Optimal experimental design for parameter estimation
O E D/SC : Optimal experimental design for structure characterization
OLS : Ordinary least squares
P DE : Partial differential equation
P DF : Probability density function
P E : Parameter estimation
P RBS : Pseudo random binary signal
RSM : Response surface methodology
SC : Structure characterization
SC E : Shuffled complex evolution
SSRi : Sum of squared residuals of modeli
tr : Trace (of a matrix)
W LS : Weighted least squares
W W T P : Wastewater treatment process (or plant)
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Environmental quality is becoming an increasing concern in our society. In that
context, waste and wastewater treatment, and more specifically biological
wastewater treatment processes play an important role. Dynamical Modelling
and Estimation in Wastewater Treatment Processes concentrates on the
mathematical modelling of these processes. The main purpose is to
provide the increasing number of professionals who are using models to design,
optimise and control wastewater treatment processes with the necessary
background for their activities of model building, selection and calibration. 

Dynamical Modelling and Estimation in Wastewater Treatment Processes deals
specifically with dynamic models because they allow us to describe the
behaviour of treatment plants under the highly dynamic conditions that we
want them to operate (for example Sequencing Batch Reactors) or we have to
operate them (for example storm conditions and spills). Further extension is
provided to reactor systems for which partial differential equation descriptions
are necessary to account for their distributed parameter nature (settlers and
fixed bed reactors for example).

The model building exercise is introduced as a step-wise activity that, in this
book, starts from mass balancing principles. In many cases, different hypotheses
and their corresponding models can be proposed for a particular process. It is
therefore essential to be able to select from these candidate models in an
objective manner. To this end, structure characterisation methods are introduced.
Important sections of the book deal with the collection of high quality
data using optimal experimental design, parameter estimation techniques for
calibration and the on-line use of models in state and parameter estimators.

All material is illustrated with actual data collected by the authors.

Dynamical Modelling and Estimation in Wastewater Treatment Processes will
be an invaluable text for practitioners, researchers and students concerned
with the design, operation and control of biological wastewater treatment
processes and plants.

Professor Denis Dochain is Honorary Research Director at Université
Catholique de Louvain, Belgium. Professor Peter A. Vanrolleghem is Associate
Professor in Bioprocess Control at Ghent University, Belgium.
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