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Environmental quality is becoming an increasing concern in our society. In that
context, waste and wastewater treatment, and more specifically biological
wastewater treatment processes play an important role. Dynamical Modelling
and Estimation in Wastewater Treatment Processes concentrates on the
mathematical modelling of these processes. The main purpose is to
provide the increasing number of professionals who are using models to design,
optimise and control wastewater treatment processes with the necessary
background for their activities of model building, selection and calibration. 

Dynamical Modelling and Estimation in Wastewater Treatment Processes deals
specifically with dynamic models because they allow us to describe the
behaviour of treatment plants under the highly dynamic conditions that we
want them to operate (for example Sequencing Batch Reactors) or we have to
operate them (for example storm conditions and spills). Further extension is
provided to reactor systems for which partial differential equation descriptions
are necessary to account for their distributed parameter nature (settlers and
fixed bed reactors for example).

The model building exercise is introduced as a step-wise activity that, in this
book, starts from mass balancing principles. In many cases, different hypotheses
and their corresponding models can be proposed for a particular process. It is
therefore essential to be able to select from these candidate models in an
objective manner. To this end, structure characterisation methods are introduced.
Important sections of the book deal with the collection of high quality
data using optimal experimental design, parameter estimation techniques for
calibration and the on-line use of models in state and parameter estimators.

All material is illustrated with actual data collected by the authors.

Dynamical Modelling and Estimation in Wastewater Treatment Processes will
be an invaluable text for practitioners, researchers and students concerned
with the design, operation and control of biological wastewater treatment
processes and plants.
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Preface

The present book has a rather long history that dates back to a meeting of the
European COST action 682 in San Sebastian, Espana in September 1994. At that
time, the action was entitled “Optimizing the Design and Operation of Biologi-
cal Wastewater Treatment Plants Through the Use of Computer Programs Based
on a Dynamic Modelling of the Process”. Later on, it has been renamed with a
more comprehensive title: “Integrated Wastewater Management”. The first title
was given by our hosts in San Sebastian, i.e. Jaime Garcia-Heras and his group
at the CEIT who were at the origin of this COST action. This particular meeting
is certainly memorable for those who were lucky enough to participate. But for
us, it was also the occasion to launch the idea of writing a book on identification
in wastewater treatment processes. Indeed we had the feeling that this matter was
a key topic in wastewater treatment for many reasons: the models of WWTP are
complex; their dynamics are often badly grasped, a characteristic shared with the
other biological processes but with the specific aspect that both the kinetics and the
hydrodynamics may be badly defined; the data necessary for model identification
suffer from a lot of drawbacks, they are basically too rare in terms of the number
of measured variables and in terms of time distribution, and they are often not in-
formative enough to perform a reliable model identification. And we had realised
that there was no monograph that could fit to the needs of the practitioners and
to the students in WWTP engineering. Available textbooks were too mathemat-
ically involved and/or not dedicated to the specific problems encountered in the
identification of WWTP, or they were too much practice oriented and gave insuf-
ficient insight in the quantitative methods used. What was left was a large body of



xii PREFACE

detailed papers and a few good review papers. We all know how difficult it is to
get a comprehensive understanding of a topic as wide as WWTP modelling and
estimation.

To start the writing we had basically already some good material coming from
our individual and mutual scientific experience. We already had the chance to test
the basic ideas of the book in a course that we had been asked to offer at a general
meeting of the same COST action a few months before in Kollekolle, Denmark.

After six years of intensive writing, we are now able to deliver a manuscript
that aims at gathering the main aspects of dynamical modelling, model building
and selection, experiment design, parameter and state estimation in a comprehen-
sive and pedagogical presentation. This is at least our intention. We have tried to
select at each step (W)WTP examples that are drawn from our experience in these
fields.

Obviously the scientific experience that we have gained in these fields is due
to many people with whom we have interacted. These include scientific collab-
orators and students. From the interaction with each of them we have been able
to gather the scientific expertise compiled in the present manuscript. We hope
that we have not forgotten anyone in the list below: Spyros Agathos, Jens Alex,
Kokou Avowlanou, Eduardo Ayesa, Jean-Pierre Babary, Georges Bastin, Danielle
Baetens, Willy Bauwens, Bruce Beck, Ahmed Benhammou, Olivier
Bernard, Herwig Bogaert, Geert Boeije, Jean-Francois Béteau, Benjamin
Bonnet, Ćedric Bonvillain, Bouchaib Bouaziz, Sylvie Bourrel, Juan Canals,
Bernard Capdeville, Bengt Carlsson, Ronald Carrette, Jacob Carstensen, Gilda
Carvalho, Chantal Cenens, Filip Claeys, Filip Coen, John Copp, Diedert
Debusscher, Bob De Clercq, Bart De heyder, Carl Demuynck, Dirk De Pauw,
Martijn Devisscher, Jeremy Dudley, Maxime Estaben, Amaya “Cindirella” Franco,
Chantal Fronteau, Jaime Garcia-Heras Antoine Genovesi, Patrick Gérain, Krist
Gernaey, Sylvie Gillot, Jean-Luc Gouzé, Sandra Gŕegoire, Koen Grijspeerdt, Serge
Guiot, Willi Gujer, Zakaria Hadj-Sadok, Jérôme Harmand, Poul Harremoës, Sef
Heijnen, Chris Hellinga, Mogens Henze, Lisa Hopkins, Steven Isaacs, Ulf
Jeppsson, Sabine Julien, Asma Karama, Karel Keesman, Bas Kops, Peter Krebs,
Patrick Labat, Luis Larrea, Juan Lema, Paul Lessard, Carl-Fredrik Lindberg,
Stefano Marsili-Libelli, Jurgen Meirlaen, Henri Naveau, Fatiha Nejjari, Bart
Nicolai, Ingmar Nopens, Jacques Nyns, Gustaf Olsson, Etienne Paul, André Pauss,
Marco Pengov, Davide Perez Alvarino, Michel Perrier, Britta Petersen, Martin
Pléau, Monique Polit, Marie-Nöelle Pons, Ana Punal, Isabelle Queinnec,
Wolfgang Rauch, Peter Reichert, Enrique Roca, Alberto Rozzi, Manfred Schuetze,
Ivan Simeonov, Laszlo Somlyody, Henri Spanjers, Jan Spriet, Dirk Stevens,
Jean-Philippe Steyer, Hans Stigter, Imre Takacs, Nadia Tali-Maamar, Olivier
Thas, Vincent Van Breusegem, Marc Van Daele, Bart Vanderhaegen, Alexis
Vanderhasselt, Marijke Van de Steene, Hans Vangheluwe, Henk Vanhooren, Jan
Van Impe, Mark van Loosdrecht, Lieven Van Vooren, Frederik Verdonck, Lode
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Vermeersch, Willy Verstraete, Karina Versyck, Stefan Weijers, Aris Witteborg,
Zhiguo Yuan and all the ones we have forgotten to mention here.

Several people have carefully read early versions of (parts of) the book: in
particular we would like to thank the sometimes tedious efforts of Jean-Philippe
Steyer and Michel Perrier who read unachieved bits of text.

Another person has played an important role in the writing of the present
monograph, in particular via numerous discussions on the topic and his sensible
comments: Paul Lessard. The first time we met him was at the already mentioned
COST action meeting in San Sebastian. By that time, Paul was on sabbatical leave
at the INSA of Toulouse in France. Since then, both of us have developed intense,
friendly relations with Paul. We have both been impressed by his scientific rigour
and his comments have always been highly welcomed.

Denis Dochain and Peter Vanrolleghem
Montréal and Gent, 1 May 2001
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to Annick, Chantal, Kevin, Simon, Arnaud and Nicolas.



1

Dynamical Modelling

1.1 Introduction

As for any industrial process, models in biological wastewater treatment have al-
ways played an important role in the process design and in the determination of
optimal operating conditions. Modelling of biological wastewater treatment pro-
cesses is certainly a very active research area today. The models, originally devel-
oped for characterising the carbon removal in Continuous Stirred Tank Reactors
(CSTRs), are constantly reviewed and revised in order to reflect the improvements
achieved in the knowledge about the mechanistic behaviour of the involved pro-
cesses. However, the lack of understanding of the underlying biochemical pro-
cesses has always been a major limitation for the optimisation and effluent quality
control in biological wastewater treatment processes. Hydrodynamics also play an
essential role in the dynamics of wastewater treatment processes. In simple situa-
tions like CSTRs, these are well known and characterised. Yet in many instances,
the behaviour of wastewater treatment processes deviates from the ideal simple
CSTR. For instance, the complete mixing assumption may fail to be fulfilled in
practical operation: the stirring system may not be sufficiently efficient to have a
homogeneous medium in the tank. Also, the large dimensions of the plants imply
that the matter may have a long way to go between the plant input and output:
then transport delays cannot be neglected anymore. The hydrodynamics become
an even more complex matter in other reactors than the CSTR (fixed or fluidised

c© 2001 IWA Publishing. Dynamical Modelling and Estimation in Wastewater Treatment Processes
by Denis Dochain and Peter Vanrolleghem. ISBN: 1 900222 50 7



2 DYNAMICAL MODELLING

bed reactors, airlift loop reactors, settlers,...). This advanced reactor technology is
increasingly operated for wastewater treatment plants.

The above means that better understanding of the complex biological processes
(like nitrification, denitrification or phosphorus removal in activated sludge pro-
cesses or the role of hydrogen in anaerobic digestion) as well as of the hydrody-
namics of the reactors in which the processes are operated, appear to be essential to
improve the operation and control of wastewater treatment plants. The objective of
this book, and of Chapter 2 in particular, is to introduce some modelling concepts
and, when possible (for some classes of processes), systematic model formalisms
which will be useful in the context of parameter identification and monitoring of
biological wastewater treatment processes.

Mankind is using models in nearly every aspect of human life as the princi-
pal vehicle to describe reality. In wastewater treatment, they are currently used in
manifold applications, e.g.

1. to increase the understanding of the underlying bioprocess mechanisms;
2. in the design of (full-scale) processes, and of control and operating strate-

gies;
3. for the training of operators and process engineers.

In these examples the mathematical model can only be successfully applied
if it is a proper description, in terms of both model structure and model para-
meters, of the underlying process. Theoretical (deductive) modelling is most often
not enough. There is also a need for identification of the model from experimental
data (induction).

The goal of model identification is to find and calibrate a model for the system
under investigation that is adequate for its intended purpose.

Although mathematical models can be classified according to many different
criteria, an interesting classification is to distinguish betweenmodels for under-
standingandmodels for prediction/forecasting[53].

Models applied for understanding aim to increase knowledge of system be-
haviour. The objective is to develop a simple, though universal model of the system
under consideration that gives an adequate description of reality as it was observed
[213]. The use of models for the purpose of understanding is most frequent in re-
search and education. These models may not reach the goal their name implies:
full understanding is often too ambitious. These models should therefore be con-
sidered no more than a (dense) description of hypotheses or conjectures that are
acceptable explanations of process behaviour. Such models will hold as long as
there are no significant deviations between model predictions and measurements
as the model is put into jeopardy under different conditions [41]. In other words, a
model for understanding can never be validated, it can only be disproved or con-
firmed [121]. The confidence in the model assumptions (and the mechanisms they
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encapsulate), however, increases as the model passes more and more severe tests.
The bottom line is that accepting a hypothesis never means that the hypothesis is
proved, but only that it was not possible to contradict the hypothesis with the aid
of the available data.

The prediction of either future or hypothetical system behaviour is one of the
basic tasks in practice. Models applied for prediction aim at providing an accurate
and fast image of a real system’s behaviour under different conditions than the ones
prevailing during model building. The model used can either aim at forecasting
future states of the system (simulation with new inputs) or at predicting system be-
haviour under hypothetical scenarios (simulation with new parameter values). The
latter mentioned application is most frequent in design. It is important to stress
that prediction, e.g. in control applications, is possible with calibrated so-called
black boxmodels without understanding the basic mechanisms of the system. This
approach is sometimes even preferable as the development time of such models is
substantially lower.

Before going any further, let us draw the attention of the reader to the following
key points:

1. The models that we shall derive aredynamicalmodels, i.e. models aimed
at describing the time evolution of the processes. Thestaticor steady state
models will then be deduced as a particular case (when there is no time
variation, or more precisely the time derivatives are equal to zero). This ap-
proach is essential for us, especially in the context of system analysis, and
its use for process monitoring and control: static models are a particular case
of dynamical models, and not the opposite. A typical example of this “tradi-
tional” attitude is the dynamical modelling of settlers (see Chapter 2): from
the solid flux theory a basically static model has been derived without any a
priori reference to dynamics. It is only in a second step that the results have
been incorporated in dynamical models for settlers. Unfortunately, because
of the above argument, this can possibly make the applicability of such mod-
els for representing the time evolution of the process questionable.

2. Because the use of physical laws (“first principles”) is a priori the best refer-
ence for deriving reliable models, we shall start the modelling by introducing
the notion of mass balances. As we shall see, a fundamental aspect of any
reactor dynamical model is that its dynamics is composed basically of two
terms, transport dynamics (including hydrodynamics and mass transfer), and
conversion (i.e. the specific influence of the biological reactions).

Before going into the mathematical derivation of the dynamical models, let
us first introduce a classification of mathematical models that will (can) be used
for parameter and state estimation (Section 1.2), and consider the question of
model building (Section 1.3). The basic ideas of optimal experiment design, i.e.
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how to design experiments so as to obtain the best data possible to solve properly
the model building exercise, will be introduced in Section 1.4. Finally, because
people active within the field of water quality management have very different
backgrounds and jargon [51], a glossary with terminology typically used in this
discipline has been put in the Glossary.

1.2 Classification of Mathematical Models

The abstract representation of a real system by the ideas on its constituents and
functional relationships is called aconceptual model. Mathematical formulation
of these ideas leads to a mathematical model that can be used to give quantita-
tive answers to questions on its behaviour under given external conditions. Such
mathematical models are referred to simply as “models” in this book. Because en-
vironmental systems are much too complicated to be described in detail, models
must be drastically simplified descriptions of reality. Since the aspect of a system
that is relevant depends on the question to be answered, a unique model for an en-
vironmental system does not exist, but different models must be used for different
purposes, and even in a given context several adequate descriptions are possible.

1.2.1 Model Constituents

Ultimately, a model is a ‘machine’ that transforms inputs (u) to outputs (y) by de-
fined relations [52], [60], where u and y are, when discretised, sequences of either
scalars or vectors. (In continuous time formulation inputs u may be also a vector of
forcing functions from outside forces.) The features of the input-output relations
determine the basic structure type of the model, which is either an input/output
or a state-space description [52]. The outputs are these variables the model user
is interested in. The inputs of a model consist of disturbances and manipulated
variables that affect the outputs.

An input-output model is, strictly speaking, only the set oftransfer functions
(g) that transform the inputs u directly to outputs y. An example of such a model
(in discrete time formulation) where the outputy at time tk depends on past and
present inputsu(ti ), is:

y(tk) = B(q)

A(q)
u(tk) (1.1)

whereA(q) andB(q) are polynomials in the backward shift operatorq, i.e.

q− j (y(ti )) = y(ti − j ) (1.2)

A(q) = 1 + a1q−1 + a2q−2 + . . . + anq−n (1.3)

B(q) = b0 + b1q−1 + b2q−2 + . . . + bmq−m (1.4)

The order of the polynomialsn andm and the model parametersai andbi are to
be estimated from a set of input-output data to make the model complete.
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Alternative black box models are artificial neural network models that have
been shown to be capable to describe any nonlinear input-output mapping. This
feature has attracted a lot of attention and intense research is going on for their use
in biotechnological applications. More details are given in te Braakeet al. [246].

The most important feature of astate-space modelis the introduction ofstate
variables (vector x) which act as mediators between the inputs and the outputs.
These state variables are additional model constituents and the system description
is consequently addressed as internal. It is characterised by the fact that x is ob-
tained from present and past x and u by means of thestate-transition equation
and y is generated from x by means of theobservation equation.

The state of the system (as described by the model) is defined as the values
of the state variables at any instant of time. Note that by definition it is neither
required that state variables are measurable nor that they are meaningful in terms of
natural science (although they frequently are the latter). It should also be stressed
that the equations of a model can be formulated as either algebraic or differential
equations.

In many cases, the dynamics of the state variablesx considered important for
the adequate description of the process can be described by the following state-
space model:

dx

dt
= Ax + Bu, x(t = 0) = x0 (1.5)

and the output observationsy are given by

y = Cx (1.6)

In this modelA, B andC are matrices containing the characteristic parameters of
the system.

Nonlinearities of the bioprocesses, however, often ask for a different represen-
tation than the linear one given above. A more general model is:

dx

dt
= f (x, u, t, θ), x(t = 0) = x0 (1.7)

y = h(x, u, t, θ) (1.8)

One can observe the nonlinear relationsf andh between the state variables, inputs
and outputs and the model parametersθ .

Whereas the dynamics of stirred tank reactors (STRs) are characterised by or-
dinary differential equations (ODEs)(like (1.7)), the dynamics of non completely
mixed reactors (fixed bed reactors, settlers...) are generally speaking characterised
by a presence of spatial gradients, i.e. a dependence of the key variables (typically
the process component concentrations) not only on time but also on the spatial
position in the tank: their dynamics are described by partial differential equations
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(PDEs)(see Section 2.5). The systems described by ODEs are called “lumped para-
meter systems”, while those described by PDEs are called “distributed parameter
systems”. We shall discuss PDEs in detail later, but let us anticipate with a sim-
ple illustrative example: the mass balance equation in a plug flow reactor of the
concentration of a reactantx involved in one reaction with first order kinetics. The
dynamics are then described by the following PDE:

∂x

∂t
= −v

∂x

∂z
− k0x (1.9)

x(t = 0, z) = x0(z) (1.10)

x(t, z = 0) = xin(t) (1.11)

wherez is the space variable (0≤ z ≤ L, with L the reactor length),v is the
fluid superficial velocity,k0 is the kinetic constant, andxin is the inlet reactant
concentration. Note that:

• x does not only depend on timet but also on spacez (otherwise the partial
derivatives would be meaningless);

• the model needs boundary conditions to be complete (here only one is nec-
essary since the derivative with respect toz is of order 1).

The picture of mathematical models is only complete if one also considersgrey
box models. These are mainly considered as models in which part of the model
structure is based on a priori knowledge of the process while another part consists
of black box descriptions such as empirical rules. Such hybrid models combine the
advantages of both approaches: identifiability and extrapolative power [50] [248].

Fuzzy models may also be considered grey box models though in a different
sense. This is because these models incorporate insights in the internal working
of the processes under study in a qualitative way. Therefore these models are par-
ticularly useful for description of systems where the process mechanisms are not
(yet) completely understood. The mathematics of fuzzy set theory and some appli-
cations are introduced in te Braakeet al. [246].

Irrespective of themodel structure, the mathematical equations that relate
inputs to outputs contain three types of constituents, that ofvariables, constants
andparameters. Inputs, outputs and states are seen as variables in the equations.
The difference between constants and parameters is less evident and gave rise to
some confusion in modelling terminology. In the following we denote all model
constituents that never change their value throughout all possible applications of
the model as constants (e.gπ , e, g,...).

A parameter, on the other hand, is a model constituent whose value may vary
with the circumstance of its application. Hence, the value needs to be determined
for each particular application of the model.

In some cases this strict definition is not followed for ease-of-use and com-
munication reasons. Indeed, the value of some of those parameters may need to
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be modified during a specific application, e.g. adaptive control. Also, some ‘time-
varying’ models exist in which a parameter is introduced in the model which is a
priori known to be time-varying due to a dependency, e.g. on temperature. How-
ever, for the sake of clarity, this dependency is not explicitly included in the equa-
tions, but it is hidden elsewhere, leading to an apparent time-varying parameter.
For some applications a parameter can be replaced by a function describing its time
and space dependency but in fact that should be seen as a model extension. Henze
et al. [120], [121] incorrectly use the term constant for parameter in the widely
used IWA Activated Sludge Model No. 1 and 2 as they are application dependent.

1.2.2 Model Attributes

The model constituents describe the fundamental elements of a model, while the
characteristics of a model can be addressed by a number of descriptive modelling
terms. These terms are called model attributes. Some attributes have a clear and
stringent definition (e.g. linear versus nonlinear), while others have a weak or rel-
ative definition (e.g. phenomenological versus mechanistic). In the following the
model attributes are referred to as being strong or weak depending on the strin-
gency of their definition. It is obvious that the stronger model attributes are applied,
the better a model is characterised.

Strong model attributes

The model attributeslinear and nonlinear relate to the structure of the model
equations. The model may be linear with respect to the variables or to the para-
meters. Thus, a model can be nonlinear in the parameters but linear in the variables
and vice versa. Linearity is a basic characteristic of a model that has quite some im-
pact on the properties of solution, e.g. linear models are frequently used, because
the analytical solution can be found. For nonlinear models numerical solutions are
predominant.

The evaluation of the linearity of a model is conveniently performed by dif-
ferentiating the function with respect to the variable or parameter of interest and
evaluating whether the derivative is still function of the same variable or parameter.
If this is the case, the model is nonlinear in the variable or parameter.

In wastewater treatment processes models are often characterised asdynamic
in the sense that the variables evolve over time. A model which is notdynamic is
calledstatic or steady state. Thus, dynamic relates to a time dependency in the
model which can be formulated as dynamic input variables and/or state variables.
The output of a dynamic model is often called time series (e.g. [159]).

If the model parameters are constant in time the model is characterised as be-
ing time-invariant . Strictly speaking any model therefore is time-invariant. How-
ever, as discussed above (section 1.2.1), sometimes parameters are conveniently
taken as time varying to increase clarity in the model description, e.g. the temper-
ature dependency of the growth rates is well-known and induces a time-varying
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growth rate but this is not reflected in the specification of the growth rate equation.
A model can have a space-dependency (e.g. a clarifier model). Such models are
referred to asdistributed parameter models. Currently, in wastewater treatment
modelling only time- and space-derivatives are concerned, and dynamic distributed
models are normally formulated as partial differential equations. However, in other
biotechnological applications (and expected to become applied in wastewater treat-
ment modelling in the near future), another type of partial differential equation
formulations is used. In these models time is one independent variable, but the
age of the biomass population is also considered and seen as an independent vari-
able [127]. This leads to another type of distributed parameter model as the state
variables have a time- and age-dependency. In pure culture fermentation biotech-
nology, these models have been termedsegregated modelsbecause biomass is
segregated into different age classes. Similarly particle sizing may be used to seg-
regate the biomass and lead to PDEs.

Models can be termed discrete or continuous, and in most cases these attributes
relate to the model formulation of difference/differential equations with respect
to time, i.e. the correct terminology should bediscrete-timeor continuous-time
model. However,discrete-spaceor continuous-spaceare two other model at-
tributes describing a space relationship for up to three dimensions in the model for-
mulation. A continuous-time differential equation is either solved analytically or
discretised into a discrete-time difference equation (according to an Euler, Runge-
Kutta, etc. scheme) which is solved numerically. It should be stressed that most
computer programs apply a discretisation to the continuous-time and continuous-
space differential equations, and the discretised equations are solved as algebraic
equations.

If a model contains elements of randomness, it is calledstochasticotherwise
deterministic. The uncertainty encapsulated in any model is due to a combination
([189], [21], [23]) of

1. uncertainty in input variables,

2. uncertainty in parameter values, and

3. uncertainty in model structure.

Measurement uncertainty is embedded in these three different forms of uncer-
tainty. In case all uncertainty aspects are neglected, the model is deterministic and
the output is determined uniquely by input and initial conditions. The output of
a stochastic model can be described as a probability density function. The terms
stochastic and statistical are occasionally confused, and the use of statistical as
model attribute should be avoided, since the term statistical is referring to methods
of analysing data. Likewise, the term deterministic is occasionally confused with
mechanistic, physical or white-box implying that deterministic models are always
based on physical, chemical and biological laws. This is not true, however, because
a black-box model may be deterministic as well, e.g. a neural network or a spline.
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Stochastic input to a model is denoted as innovations, realisations, disturbances or
perturbations.

The strong model attributes are highly recommended for characterising models
as the meaning of the terms is well defined. However, the use of additional adjec-
tives such as purely, totally or completely (e.g. ‘purely deterministic nor purely
stochastic model’ in Harremoës and Cartensen [112] has no meaning when the
stringent definitions of the strong model attributes are referred to – in fact, these
combinations should be avoided as they are confusing. The majority of models for
wastewater treatment so far are formulated as nonlinear dynamic continuous-time
deterministic models [219], [137].

Weak model attributes

These terms have less clarity in their interpretation and may in the lack of strong
model attributes potentially lead to confusion. However, provided that the terms
are used correctly these attributes also signify the background of the model. To a
large extent many of the weak model attributes describe almost the same model
property, i.e. the degree of conceptualism, basis in physical, chemical and biolog-
ical laws, simplification level, etc.

Words like mechanistic, physical and white-box are used to describe that
the model’s structure is based on physical, chemical and biological laws. A pri-
ori knowledge is the only information source during the creation of such a model,
i.e. a deductive modelling strategy is adopted. The attributetransparent has the
same interpretation aswhite-box, which means that every detail in the model has
a mechanistic explanation. The extreme isreductionist models (should not be
confused with reduced order models, see below) that are based on the attempt to
include as many details as possible. The term causal is also used with the same
meaning as mechanistic, but in some scientific fields a causal model is strictly de-
fined as a model which only depends on past observations and inputs. Thus, the use
of causal as model attribute should be avoided.Phenomenological, black-box,
empirical andheuristic (by rules of thumb) are used as model attributes to de-
scribe that the model is based on empiricism rather than laws. It is data-driven, i.e.
inductive modelling is adopted. A black-box model has not necessarily a structure
compatible with the underlying physical, chemical or biological reality [252]. The
essential feature of black-box models is that they assume no knowledge of physi-
cal or internal relationships between the system inputs and outputs other than that
the inputs should produce observable responses in the output. Hence, the system
is considered ‘black box’ and no use is made of the available a priori knowledge
(Casti [52] denotes it as an external system description), i.e. it omits the consider-
ation of the mechanism by which inputs are related to outputs.

A combination of the mechanistic and phenomenological approach is frequently
calledgrey-box modelling. Holstet al. [128] refer to grey-box models as reflect-
ing a priori knowledge as well as black-box parts, while in Carstensenet al. [49],
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grey-box models are given two virtues – the properties of parameter interpretability
and parameter identifiability. Ljung [159] refers to this approach assemi-physical
modelling.

Another issue for characterising models is the degree of simplicity or complex-
ity in the model. Asimplemodel is characterised by few equations and parameters
while acomplexmodel has many equations and parameters, but it remains unclear
when a given model should be termed simple or complex. As a rule of thumb,
mechanistic and phenomenological models are normally formulated with a high
and low degree of complexity, respectively. However, an artificial neural network
is considered to be a black-box model but may at the same time have a high level
of complexity [122]. The terms simple or complex for characterising a model indi-
cates that the model is derived from a basis model or compared to another model.
The confusion occurs when this reference model is not given or just assumed to be
well-known. The level of model complexity/simplicity can also be addressed with
the attributesaggregated/segregated. Jeppsson and Olsson [134] use areduced
order model to describe the model’s derivation as beinglumped or aggregated.
A model is lumped or aggregated compared to an original or base model when
model variables or equations are united in a simplified description. At this stage
it is good to note that lumping of variables inevitably results in modelling errors.
These errors end up in the simplified model, typically in the parameters thereof.
This aspect will be dealt with to some detail in Chapter 2.

Even though it is obvious to some people that a model is complex based on the
state-of-the-art in modelling today, this fact is very likely unclear to researchers
unfamiliar with the specific topic or researchers within the field 10 years from now.

1.3 The Model Building Exercise

Using the ‘story’ of a model building exercise, a number of terms involved in
this activity will be introduced within their appropriate context. At the same time
a short review is given on the current state-of-the-art in modelling methodology.
The diagram in Figure 1.1 summarises the aspects of model building which are de-
scribed in detail below. Once the steps in the figure have been fulfilled successfully,
the model can be applied for its intended purpose. These applications typically in-
volve simulation that may be regarded as virtual experimentation with the virtual
reality of the model.

Problem formulation

An often forgotten task in a model building exercise is the clear formulation of the
goal of the model that is to be constructed. While in most cases this task is rather
intuitively performed by the modeller in case he is also the problem supplier, prob-
lem formulation or goal incorporation is much more difficult in case these people
are not the same. In this case, an important effort must be spent to answer such
questions as desired accuracy of the results, degree of uncertainty in the provided
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FIG. 1.1. Themodel building exercise [51].

answers, time scale of the solution, system boundaries, important variables, en-
vironmental conditions under which questions will be asked for which the model
must give an answer, etc.

Prior knowledge collection

The next task is to collect the available, relevant a priori knowledge from liter-
ature and experts or from a model building environment that supports re-use of
model-encapsulated knowledge [256]. At this (early) stage of the exercise, some
experiments may be conducted or some data collected during previous experiments
may be retrieved and stored in the experimental database.

Frame definition

As soon as these two tasks have been performed once, a first iteration of the model
building can start. Theframe definition phase aims to delineate the conditions
under which a model will be used (e.g. temperature), to choose the class of models
that seems fit for the task (time series, state-space, distributed parameter, stochas-
tic...), to specify the variables that seem important to find a solution to the formu-
lated problem (inputs, outputs, states), the range of time constants that need to be
covered by the model, etc.
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Candidate model set creation

Once the frame is defined, the purposes set and the a priori knowledge collected,
the model builder is asked to create one or more possible candidate models for
the system at hand. Two primary types of reasoning are used to create a candidate
model [20]. The first involves the assembling of all prior hypotheses made on the
mechanisms and phenomena that are believed to govern the system’s behaviour.
This is the synthesis part of the exercise. The analysis part consists of refuting or
confirming these hypotheses on the basis of a set of field data.

Typically during the initial phases of model building, linguistic models are built
using qualitative reasoning. There are however no methods or advices available to
guide the modeller in this exercise. The translation of these conceptual models
into mathematical models is better supported. Textbooks provide plenty of basic
kinetic expressions for the biological, physical and chemical interactions among
the variables of interest. It is of course up to the analyst to extract the proper ones.

While the above task is the creative one of the model builder, the model build-
ing exercise is only half way at this stage. It is equally important to demonstrate
whether a particular candidate model (among many proposals that are being made)
is a good or a poor approximation of reality. This second stage of evaluating the
model against experimental data is best described as systemidentification (the
term used in control theory). Simply stated, system identification may be consid-
ered as modelcalibration . However, as stated in Beck [20],

the word calibration suggests an instrument already well-designed and in need
only of small, fine-tuning adjustments. Such a view weakens the role of experimen-
tal observation, relegating it to a minor test on what is the more or less inevitable
path to applying the model with which the model-building procedure was first be-
gun. It encourages the attitude that there is little to be learned from the field data
that was not known before. Our preferred view of system identification is quite the
contrary: it is an integral part of the process of developing scientific theories about
the behaviour of a system; it, too, is about knowledge acquisition and hypothesis
generation.

This statement brings us back to the fact that modelling is an iterative cy-
cle in which experiments play the role of indicating areas of model deficiency
that are subsequently tackled in a new hypothesis generating step. The statement
clearly originated from an environmental systems analyst. Indeed, for most phys-
ical and chemical applications, the a priori knowledge is of such high quality that
the system framework and most of the model structure can be deduced from it.
The modelling methodology developed for these systems is adequate to estimate
the parameters and solve the minor uncertainties in the model structure by us-
ing final validation experiments and eventually iterating a small number of times
through the procedure.

In contrast with this, the inherent characteristics of bioprocesses, i.e. their non-
linearity and nonstationarity, coupled with the lack of adequate measuring tech-
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niques, is such that this mathematical modelling methodology cannot be applied
without modification [267]: more emphasis must be given to inductive reasoning
to infer a larger part of the model structure from the scarce (or harder to obtain)
experimental data. Consequently, structure characterisation (or model selection)
methods become a more important tool, because the chance of obtaining an in-
valid model is much larger and, hence, the number of modelling iterations may
increase substantially.

Model structure selection
The goal ofclassical model structure selection(model structure characterisa-
tion) is to select a unique model structure according to the principles of a quality of
fit and parcimony [238], [113]. However, it is also possible to select a set of models
that are attributed different weights reflecting their probability of appropriateness
[79], [214]. Most model structure selection criteria require the parameter values
to be estimated, e.g information criteria such as AIC [6] and BIC [228]. However,
structural selection criteria that only require basic data analysis also exist for par-
ticular applications [238], [261]. A detailed discussion of this model building task
will be given in Chapter 3.

Parameter estimation
Parameter estimationis typically based on the maximisation or minimisation of
a goodness-of-fit criterion such as Least Squares, Weighted Least Squares, Maxi-
mum Likelihood, etc. and aims to provide values for the parameters in the model
and, in case a state space representation is adopted, also values for the initial (and
boundary) conditions of the state variables. Although several powerful estimation
(nonlinearregression) algorithms are available (both forrecursive andbatch es-
timation depending on the number of data points used for a parameter update, for
details, see Chapters 6 and 7), their success is highly dependent on the experimen-
tal dataset available. The identifiability analysis performed prior to the parameter
estimation can provide answers to the key question whether, given a set of mea-
sured variables, unique parameter values can be obtained. Two types of answers
can be given depending on the applied method. In casestructural (also termed
theoretical or a priori ) identifiability [100] [185] is evaluated the answer is ei-
ther yes or no, respectively meaning that the parameters can be given unique values
or not at all [74]. However, it is not ensured that the data always contain sufficient
information to provide reliable and unique estimates. Methods for thepractical
(also termed asnumerical or posteriori) identifiability study allow to evaluate
the information content of the dataset intended for parameter estimation [258].
The basis of these methods is also underlying methods that can provide a solution
to a practical identifiability problem, i.e.optimal experiment design.This design
procedure uses the model for which unique parameters are to be found to calculate
experimental conditions such that sufficient information is contained in the data.
One should note that a structural identifiability problem encountered cannot be
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solved without altering the candidate model or frame definition (e.g. include other
variables in the system description).Model reduction can lead to models that
become less ‘data-hungry’ and hence their identifiability properties may improve
[134].

Model diagnosis

Once the parameters are estimated it remains to investigate whether the identi-
fied model violates the assumptions made in the frame definition. For instance,
statistical tests of systematic deviations between model results and measurements
(residuals) and their distribution are frequently used [38], [232]. Also, evaluation
whether non-sense parameter values (e.g. negative affinity constants) or initial or
boundary values are obtained can allow diagnosis of potential violation of the ex-
perimental frame.

Model testing

Fitness of a model can be evaluated by comparing its performance with data ob-
tained under different conditions than the ones prevailing at the time of the data
collection performed for model identification. This process of putting the model
in jeopardy [41] or, in other words, straining the model to its limits, may reveal
model inadequacies that may be sufficient to conclude that the model is no longer
‘fit’ for the purpose it was intended for. Hence, the whole model building pro-
cess may have to start all over. Sometimes this may even lead to a reformulation
of the problem as the modelling exercise may have provided considerable insight
in the system under study and its behaviour. This process of putting the model
into jeopardy by confronting it with new data is most often calledmodel valida-
tion, but serious arguments are put forward against this term. As a model only
describes part of the reality (the one defined in the frame) in a simplified man-
ner, it is obvious that a model never can describe reality completely. Therefore,
there will always exist experimental conditions for which the model is not valid.
Hence, validation of a model is utopian! A completely other approach is to term
this process of jeopardising the model a modelfalsification step [53] [212], which
if answered negatively, provides more confidence in the selected model. However,
the term falsification appears too negative and one has therefore looked for other
terminology that is less pronounced (quantitative) as validation but still gives a
qualitative insight in the level of confidence one has in a selected identified model.
The terms put forth for this arecorroboration andconfirmation [200]. Finally,
the termverification is frequently interchanged with validation, but in the quite
related field of simulation methodology, verification has a different, but specific
meaning. In this field, verification is the evaluation whether the coding of a model
has been performed correctly, i.e. whether the implemented model equals the cre-
ated model [156]. From this discussion it is advocated to use the term validation
as it is the most widespread used and has no dubious meaning.
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1.4 Optimal Experiment Design: Basic Ideas

This book devotes a lot of attention to the main tasks of a model building exercise,
model selection and parameter estimation. However, these tasks can only be per-
formed successfully if the sources of information, i.e. goal, a priori knowledge and
experimental data, are of sufficiently high quality. Probably the definition of the
objective is not the most difficult task albeit sometimes overlooked and not stated
in a quantitative way. The analysis of the a priori knowledge leading to the con-
struction of the set of candidate models may take some more time as knowledge
must be acquired from the literature, experts and so forth. The main efforts how-
ever are, certainly for bioprocesses, devoted to the collection of data. The design
of the experiments that will provide the data is an increasingly important task for
the model builder for the following reasons:

• the limited resources available, e.g. experimentation time and expenses;
• the increased degrees of freedom that have to be exploited in an optimal

way;
• the trade-off that has to be made between the information content of the data

and the pursued goal;
• the requirement of good information content for the data for obtaining reli-

able models.

Goals pursued during an experiment design procedure can be categorised in the
following areas:

• experiment design for a reliable selection of an adequate mathematical model
structure of the process;

• the design of experiments for precise estimation of model parameters;
• the dual problem of structure characterisation and parameter estimation.

These will be considered separately in the rest of the book.
Each of these goals is associated with one or another quantitative function

which will determine the focus of the experimental efforts. Some authors also
suggest to separately consider [159]:

• the optimal sampling frequency;
• the best location of sensors and sampling points in a reactor system.

However, these items should be regarded as a part of the degrees of freedom avail-
able and the constraints to which one has to adhere during the experimental design
process. An experiment design typically consists of three steps:

1. definition of an objective function that is the mathematical translation of the
pursued goal of data usage;

2. enumeration of the available degrees of freedom and experimental constraints;
3. extremisation of the objective function by appropriate variations of the de-

grees of freedom without violation of the applicable constraints.
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FIG. 1.2. General procedure for experiment design.

Figure 1.2 schematises the procedure used for (automated) optimisation of the
experimental conditions with relation to (w.r.t.) the defined objective function. An
essential feature of the procedure is that a preliminary model is available that is
identified on the basis of previously acquired data. Essentially, the algorithm per-
forming the design performs “simulated experiments” to quantify the potential ef-
fect of proposed experimental conditions on the objective function. Using a (non-
linear) optimisation algorithm that is able to take into account the experimental
constraints, an “optimal” experiment is proposed that is subsequently applied in
real-life. Real-life may be a specific laboratory experiment or a full-scale process
on which some degrees of freedom are available that can be exploited to gather
informative data.

Since the experiment design procedure depends to a large extent on a model
of the process under study, it is evident that a prerequisite to good design is the
availability of a good process model.

Questions that may be of guidance when initiating an experiment design study
are the following ones.
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What to measure? This question stresses the importance of a good system defi-
nition (input, output and state variables...).

Where to measure?This addresses the problem of sensor location.
When to measure?Here the sampling strategy is paid attention to.
Which manipulations? In many cases this is the most important question and

requires creative work related to the design of excitation signals that will
act on the process in such a way that highly qualitative information can be
gathered. Examples are sine-waves, pulses, PRBS (pseudo random binary
sequences [163]), etc.

What data treatment? Though most of the time not considered part of the
experiment design, pretreatment of the data is often applied before
model identification starts. It is therefore part of the collection of data for
model identification purposes. Typical data pretreatment includes noise
rejection, outlier detection/removal and elimination of “uninteresting”
dynamics.

1.5 Conclusion

The objective of this chapter was to introduce the basic concepts of dynamical
modelling. An important issue is the notion of dynamics, necessary to present
the time evolution of processes. In Section 1.2 we have introduced a classifi-
cation of mathematical models in terms of model constitutents (variables, con-
stants and parameters) and of model attributes (in particular, linear vs nonlinear,
dynamic vs static, lumped parameter vs distributed parameter, discrete-time vs
continuous-time, deterministic vs stochastic, white-box, grey-box, or black-box).
Subsequently, we have introduced the different elements of the model building
exercise, from problem formulation to model testing. Finally the basic ideas of
optimal experiment design, i.e. how to design experiments so as to obtain the best
data possible to solve the model building exercise properly, have been introduced
in Section 1.4.
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Dynamical Mass Balance Model
Building and Analysis

2.1 Introduction

The preceding chapter has introduced the basic concepts of dynamical modelling.
In this chapter we shall go deeper into the subject of dynamical modelling. Because
the use of physical laws (“first principles”) is a priori the best reference for deriving
reliable models, we shall concentrate in this chapter on the notion of mass balances
and related derivation and dynamical analysis of dynamical models. It is also worth
noting that the mass balance models will play a key role in the rest of the book.

Section 2.2 will introduce the basic concepts of mass balances (“first princi-
ple”), and apply them to some simple bioprocess dynamics situations. The end of
Section 2.2 will be dedicated to kinetics with a particular emphasis on mathemat-
ical models of the specific growth rate. In Section 2.3, we shall introduce several
process examples, and their dynamical mass balance models in stirred tank re-
actors (STRs). In Section 2.4, we shall extend and generalise the mass balance
dynamical model developed in Section 2.2 and applied in Section 2.3 by introduc-
ing a General Dynamical Model framework for completely mixed reactors (STRs).
This will be further extended to non completely mixed reactors (plug flow reac-
tors, fixed bed reactors, settlers) in Section 2.5. In Section 2.6, we will discuss the
respective notions of linear and nonlinear systems a little further. In Section 2.7,

c© 2001 IWA Publishing. Dynamical Modelling and Estimation in Wastewater Treatment Processes
by Denis Dochain and Peter Vanrolleghem. ISBN: 1 900222 50 7
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we shall concentrate on the notion of equilibrium points, on the linearisation of
nonlinear models around equilibrium points and on their stability properties. The
last sections of the chapter will concentrate on the properties and the analysis of
a model: a state transformation (Section 2.8), a model reduction method based on
singular perturbation theory (Section 2.9), and the use of Laplace transformation
in models described by PDEs (i.e. non completely mixed reactors).

2.2 The Notion of Mass Balances

2.2.1 Stirred Tank Reactors

Basically the reactor in which the wastewater treatment process is operated is a
tank in which one or several biological reactions occur simultaneously. Let us first
consider a stirred tank reactor, as schematised in Figure 2.1. The tank is charac-
terised by a liquid medium volume V, and inflow and outflow rate,Fin and Fout,
respectively. Let us consider that one (bio)chemical reaction is taking place in the
tank. The mass balance of a component involved in the reaction, and characterised
by a concentrationC in the reactor can be formalised as follows:⎛⎜⎜⎝

T imevariation
of the mass of
the component

in the tank

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Mass of the
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that goes in

the tank

⎞⎟⎟⎠−

⎛⎜⎜⎝
Mass of the
component

that goes out
of the tank

⎞⎟⎟⎠

±

⎛⎜⎜⎜⎜⎝
Mass of the
component
produced or
consumed by
the reaction

⎞⎟⎟⎟⎟⎠ (2.1)

The assumption of perfect mixing in the tank implies that the concentrationC
is homogeneous in the tank, and in particular its value at the reactor output is equal
to the one anywhere in the tank. We now have all the elements to write the mass
balance equation for the component:

d(V C)

dt
= FinCin − FoutC ± Vφ (2.2)

whereCin is the component concentration in the influent, andφ the rate (per unit
volume!) at which the component is produced (+φ) or consumed (-φ), i.e. the con-
version rate ofC. As we shall see later, the conversion rateφ is the product of a
(positive) yield coefficient (ideally, a stoichiometric coefficient) with the reaction
rateρ, which generally speaking is a positive function of different process vari-
ables, e.g. the reactant concentrations, the product and biomass concentrations, or
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FIG. 2.1. Schematic view of a stirred tank reactor.

the physico-chemical conditions like the temperature or the pH. Let us rewrite the
mass balance equation (2.2) by expanding the left hand side:

V
dC

dt
+ C

dV

dt
= FinCin − FoutC ± Vφ (2.3)

and by dividing both sides byV and moving the second term of the left hand side to
the right hand side, we obtain the differential equation describing the concentration
dynamics:

dC

dt
= Fin

V
Cin − Fout

V
C − C

V

dV

dt
± φ (2.4)

An important comment at this point is that the dynamics in a reactor is composed
of two types of terms:

• transport dynamics (Fin
V Cin − Fout

V C + C
V

dV
dt );

• conversion (±φ).

By defining the dilution rateD:

D = Fin

V
(2.5)

a useful alternative formulation of equation (2.4) can be written as follows:

dC

dt
= DCin − DC ± φ (2.6)

which covers the following important type of operations of STRs: batch, fedbatch
(which may be encountered e.g. in Sequential Batch Reactors (SBRs)), and con-
tinuous (without and with volume variation). These are shortly described below.
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Batch reactors. In batch reactors, there is no inflow nor outflow:

Fin = Fout = 0 (2.7)

and equation (2.4) reduces to:
dC

dt
= ±φ (2.8)

which can also be obtained from (2.6) by settingD to zero (D = 0).

Fedbatch reactors. In fedbatch reactors, the tank is initially filled with some
amount of reactants and catalysts, and is progressively filled with reactants (this
is what happens in SBRs when the filling occurs, or when additional substrate is
introduced during a denitrification phase): this means that there is an inflow but no
outflow, and the time variation of the liquid volumeV is equal to the inflow rate
Fin (total mass balance):

Fout = 0,
dV

dt
= Fin (= DV) (2.9)

If we add the above volume equation in (2.4), the mass balance equation (2.6)
fits also to fedbatch operation.

Continuous reactors. In continuous tanks, the reactor is “continuously” fed with
the reactants. Since the tank is filled, the inflow and outflow rates are equal, and
the volume is constant:

Fin = Fout,
dV

dt
= 0 (2.10)

and once again the mass balance in continuous stirred tanks fits into equation (2.6).

Continuous reactors with volume variation.The above argument corresponds to
the classical continuous stirred tank (CSTR). But it may happen in some process
configurations (like in Figure 2.2 which shows three types of overflow weir designs
(see [188])) that the reactor is basically a continuous reactor (with inflow and out-
flow), but for which during transients (e.g. variations of the influent flow rateFin),
the volume is varying, and the outflow rateFout is different from the inflow rate
Fin . Then the above equations (2.10) have to be replaced by the following ones:

dV

dt
= Fin − Fout (2.11)

More precisely, we can have the following relationship between the (out)flow
rate and the heighth:

Fout = c + Nahb (2.12)

whereN is the number of weirs,a andc are functions of weir type or width (c is
only different from zero for the Sutro weir), andb is a function of the weir design
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FIG. 2.2. V-notch, rectangular and Sutro weirs.

(b = 2.5, 1.5 and 1 for the V-notch, the rectangular and the Sutro weir, respectively,
(see [231], [187]). Besides, note that:

V = Az = A(z0 + h) (2.13)

whereA is the reactor section,z is the total depth, andz0 the (constant) distance
between the bottom of the tank and the lower edge of the weir. Then if we consider
a tank with a constant sectionA, the mass balance equation (2.11) becomes:

dh

dt
= − Na

A
hb − c

A
+ Fin

A
(2.14)

As was pointed out in [188](and as suggested by the above equation (2.14)), the
weir designs may have an important influence on the propagation of hydraulics
variations and disturbances in the plant.

The models mentioned above and their parametersa, b, c can be estimated
from relatively simple experiments in which the pump flow rates are changed in
a step-wise manner. In Figure 2.3, the simulation results are given of a variable
volume model that is fitted to experimental data that were collected by measuring
the effluent flow rate of an activated sludge system subjected to a sequence of step
changes to influent and recycle flow rate [64].

2.2.2 A Simple Biological Reactor Model

Let us now consider an example more directly linked to biological reactors. As-
sume that the following microbial growth reaction is taking place in the reactor:

S −→ X (2.15)

whereS is the limiting substrate andX is the biomass. Note that the biomassX
plays the role of an autocatalyst (it is both a product and catalyst) in the above
reaction (sometimes a feedback arrow is added on top of the reaction arrow to
emphasise this, see [14] ). It is usually assumed (but this is not always correct,
as mentioned by Henze [118], important amounts of biomass can be present in
the influent) that only substrate is present in the reactor incoming flow: let us
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FIG. 2.3. Hydraulic propagation experiment [64].

denote bySin the influent substrate concentration. In line with a commonly ac-
cepted assumption since Monod introduced it in 1942, we consider that the re-
action rateρ of the above microbial growth is the product of the autocatalystX
and a proportionality coefficient called specific (i.e. per unit biomass) growth rate
µ (ρ = µX).

Then by considering (2.1), the mass balance equations forSandX are written
as follows:

dS

dt
= DSin − DS− 1

Y
µX (2.16)

d X

dt
= −DX + µX (2.17)

Let us now take a closer look at this model and highlight some important features.
The conversion rate of the biomass,φX , is simply the reaction rate (i.e. the

growth rate)(φX = ρ = µX). Indeed this corresponds to a standardisation of the
yield coefficients with respect to one component (here, the biomass). This stan-
dardisation is obviously a priori arbitrary (it could as well have been performed
with respect to the substrate, in the above example), although the use in biochem-
ical engineering consists of standardising the yield coefficients of growth reactions
with respect to the related biomass.

It is also usual in biochemical engineering to define yield coefficients in growth
reactions as ratios of biomass production over substrate consumption (asY above),
or of product synthesis over biomass production (see section 2.2.4 below): this
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implies that in the conversion terms of the (dynamical) mass balance equations,
the yield coefficient divides the reaction rate when the component is a substrate of
the reaction, and it multiplies the reaction rate when it is a reaction product. Hence,
in equation (2.16), the conversion termφS is the product of the yield coefficient1Y
and of the reaction rateµX (φS = 1

Y ρ = 1
Y µX).

Strictly speaking, if we refer to the reaction network formalism considered in
(2.15), the yield coefficientY should be a stoichiometric coefficient, i.e. hereY is
the quantity of biomassX (in appropriate dimensions, e.g. in grammes) which is
produced when one (mass) unit of substrateS is consumedby the reaction (2.15).
However, this would only be true if the conversion process is completely defined
by the reaction (2.15), i.e. if

1. this is the only reaction (i.e. in particular there are no side reactions);
2. the only components areSandX;
3. and if the elemental content (in carbon, nitrogen, oxygen, hydrogen) ofS

andX are exactly known.

Most often, at least one of the above conditions are not fulfilled in biochemical
processes. The underlying biological process is most often much more complex
than the process (2.15), and it is also quite difficult in most instances to precisely
characterise the elemental content of the biomass. One important consequence is
that, instead of being constant (like they should if they were stoichiometric coeffi-
cients), the yield coefficients in biochemical processes may be in practice changing
with time (within some bounds) e.g. when the wastewater composition or operat-
ing conditions are (significantly) changing, e.g. because side reactions which were
previously neglected are no longer negligible.

2.2.3 Biomass Death and Substrate Maintenance

Biomass death and/or substrate maintenance terms are sometimes added in the
simple microbial growth models. These reactions can be formalised as follows
(see also [14]):

biomass death: X −→ Xd (2.18)

maintenance: S+ X −→ X (2.19)

Note that in the above reactions,X no longer plays the role of an autocatalyst: it
is a simple reactant (transformed in dead biomassXd) in reaction (2.18), and a
catalyst in reaction (2.19): then it is neither consumed or produced, that’s why we
have putX on both sides of the reaction scheme (2.19). The dynamical equations
(2.16)(2.17) are then modified as follows:

dS

dt
= DSin − DS− 1

Y
µX − mSX (2.20)
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d X

dt
= −DX + µX − bX (2.21)

wheremS andb are maintenance and death coefficients, respectively.

2.2.4 (Liquid and Gaseous) Product Dynamics

The growth of microorganisms in bioreactors is often accompanied by the forma-
tion of products which are either soluble in the culture or which are given off in
gaseous form. The mass balance relative to the product in the bioreactor is given
by (assuming no product in the inlet):

d P

dt
= −DP − Q + νX (2.22)

with P being the product concentration (in the liquid phase),Q the rate of mass
outflow of the product from the reactor in gaseous form, andν the specific produc-
tion rate.

The termνX in (2.22) represents the rate of product formation: it expresses the
fact that the production is, in some way, “catalysed” by the biomassX.

In some instances (e.g. methaneC H4), the liquid concentration can be assumed
to be negligible (P ≈ 0). The gaseous outflow rate is then usually considered as
being equal to the production rate and is written as follows:

Q = νX (2.23)

We shall later (Section 2.9) introduce mathematical tools that give a sound basis
to “reduce” the mass balance equation (2.22) to quation (2.23).

An important special case arises when the product formation isgrowth-associated,
i.e. the specific production rate is assumed to be proportional to the specific growth
rate:

ν = YPµ (2.24)

with YP a yield coefficient. However, the specific production rate may also be com-
pletely or partially independent of the specific growth rate. A classical example is
the lactic fermentation for which Luedeking and Piret (1959) [164] have proposed
the following expression:

ν = YPµ + η (2.25)

whereη is the non-growth associated specific production rate.

2.2.5 Oxygen Dynamics

Aerobic bioprocesses are processes in which the microorganisms need oxygen in
order to develop properly. A typical example is the activated sludge process. In
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such cases dissolved oxygen in the mixed liquor can be considered as an additional
substrate.

S+ SO −→ X (2.26)

The dissolved oxygen (DO) mass balance in the bioreactor is described as follows:

dSO

dt
= DSO,in − DSO + OT R− OU R (2.27)

where SO is the DO concentration in the reactor,OT R is the oxygen transfer
rate andOU R is the oxygen uptake rate. Note the presence of the liquid inlet
term DSO,in in the mass balance equation of oxygen. This term (which is often
neglected) is introduced here to emphasise the possible presence of dissolved oxy-
gen in the influent e.g. as a consequence of the oxygen transfer to the wastewater
in the sewer system before it is fed to the tank.

The oxygen uptake rateOU Robviously depends on the growth of the biomass.
This is often expressed as follows:

OU R = 1

YO2

µX (2.28)

with YO2 being a yield coefficient. Note that the usual formalism in activated
sludge processes consists of considering that ifY is the biomass growth yield,
Y biomass units (in COD (Chemical Oxygen Demand) units) are produced from
one unit (in COD units) of the substrate, i.e.S, and the rest of the available COD,
i.e. 1− Y (in COD units) is oxidised to produce carbon dioxideCO2. This implies
by considering the above line of reasoning that the yield coefficientYO2 is equal
to:

YO2 = Y

1 − Y
(2.29)

A term proportional to the biomass concentration (bO2 X) is often included in equa-
tion (2.28) to account for the oxygen consumption for endogenous metabolism (to
maintain viability of the cell). Hence, the total oxygen uptake rateOU R is com-
posed of two terms, a growth related “exogenous” respiration rateOU Rex and a
cell maintenance related “endogenous” respiration rateOU Rend:

OU R = OU Rex + OU Rend = 1 − Y

Y
µX + bO2 X (2.30)

By using a line of reasoning based on Henry’s law to model the liquid-gas
transfer dynamics, the oxygen transfer rate,OT R, is expressed as follows:

OT R= kLa(S∗
O − SO) (2.31)

wherekLa is the mass transfer coefficient andS∗
O is the oxygen saturation concen-

tration.
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However expression (2.31) may have to be used with precaution because the
coefficientsS∗

O andkLa may be unknown and may vary greatly with time: it is well
known that the oxygen saturation concentrationS∗

O depends on variables such as
the oxygen partial pressure in the surrounding atmosphere, temperature, salinity
and concentration of chemicals in the liquid, and that factors such as the type and
geometry of the aerator, the air flow rate, the presence of surfactants or the biomass
concentration determine the value ofkLa. In some applications, however, the input
and output gaseous oxygen mass flow rates are measured on-line using off-gas
analysis equipment [116]. Hence, provided the liquid-gas transfer dynamics are
negligible, theOT Rcan simply be expressed from the gaseous oxygen balance:

OT R= QO2,in − QO2,out (2.32)

whereQO2,in andQO2,out are respectively the input and output oxygen flow rates
(per reactor volume unit).

2.2.6 Models of Reaction Rates

It can clearly be seen from equations (2.16), (2.17), (2.24), (2.25) and (2.28) that
the reaction rateρ, and more particularly the specific growth rateµ is a key para-
meter for the description of biomass growth, substrate consumption and product
formation.

Let us briefly introduce some basic notions of kinetics, before introducing
some typical models of the specific growth rate (see also e.g. [88], [14], [91] for
surveys on the subject; note also that more than 60 kinetic models for bioprocesses
are listed in Bastin and Dochain [14]).

Basic kinetic law. The basic kinetic model for (bio)chemical reactions takes the
following form:

ρ = k0

∏
i

Cαi
i (2.33)

whereCi are the concentrations of the reactants involved in the reaction,k0 is the
kinetic constant, andαi are defined as the orders of the reaction with respect to the
i th reactant. The totalreaction orderis equal to the sum of theαi (

∑
i αi ). When

the reaction ordersαi are equal to the stoichiometric coefficients, the reaction is
referred to as anelementaryreaction.

Note that, for instance, for the biomass death reaction (2.18), if the death coef-
ficientb is constant, then (2.18) is a first order reaction.

One of the essential consequences of the above kinetic law (2.33) is that the
reaction rateρ will be equal to zero if the concentration of one of the reactants
involved in the reaction is equal to zero:

ρ = 0 if Ci = 0 (2.34)

It is obvious that this is a minimal requirement for any reaction rate model, i.e.
also for specific growth rate models.



28 MASS BALANCE MODELS

Models of the specific growth rate.Biochemical experiments carried out over
more than half a century on pure cultures as well as on open cultures (with non-
sterile substrates) have clearly indicated that the parameterµ varies with time
and is influenced by many physico-chemical and biological environmental fac-
tors among which the most important ones are: substrate concentration, biomass
concentration, product concentration, pH, temperature, dissolved oxygen concen-
tration, light intensity and various inhibitors of microbial growth.

The specific growth rate is then commonly (but not systematically, see e.g. the
Contois model here below) expressed by the multiplication of individual terms,
each of them referring to one of the influencing factors:

µ(t) = µ(S)µ(X)µ(P)µ(SO)µ(pH)µ(T)... (2.35)

whereX, S, P, SO have been defined above whileT refers to temperature.
We shall present, in the following paragraphs, some of the most commonly

used kinetic models for the different terms of equation (2.35).
It is important to draw the attention that any specific growth rate must fol-

low some basic modelling rules in order to be a correct representation of the
phenomenon that it is supposed to describe. First of all, recall that the specific
growth rate is part of the reaction rate (ρ = µX) of a reaction which transforms
substrate(s) into biomass (maybe some additional products). This means that the
specific growth rate has to be positive (otherwise it would represent the reverse
reaction of transformation of biomass into substrate(s)!):

µ ≥ 0, for all time (2.36)

Secondly it must fulfill the basic kinetic law condition (2.34), i.e. the specific
growth rate must equal to zero when the concentration of one of the substrates
Si (i = 1, 2,...) of the reaction is equal to zero.

µ(Si ) = 0 if Si = 0 (2.37)

Influence of the substrate concentration S.The most widespread analytical spe-
cific growth rate model is certainly the “Michaelis-Menten law”, also often called
the “Monod law”, which expresses the dependence ofµ on the substrate concen-
tration S as follows (Figure 2.4):

µ = µmaxS

KS + S
(2.38)

whereµmax is the maximum growth rate andKS is the “Michaelis-Menten” or
saturation constant. The subscriptS in the parameterKS refers to the involved
substrate. Note that the value ofKS corresponds to the substrate concentration for
which the specific growth rateµ is half its maximum valueµmax (see Figure 2.4):

µ(S = KS) = µmax

2
(2.39)
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FIG. 2.4. TheMonod law and the Blackman law.

In fact, this expression was initially proposed by Michaelis and Menten in
1913 [173] and physically justified by Briggs and Haldane [43] later, in 1925, to
express the reaction rate of enzyme-catalysed reactions with a single substrate. It
was extended by Monod in 1942 [176] to the case of microorganism growth, but
without any specific physical justification.

Expression (2.38) was adopted by Monod because it fits experimental data
well. But, as Monod himself recognised, “toute courbe d’allure sigmoı̈de pourrait
être ajust́ee aux donńees exṕerimentales” (any sigmoidal curve could be fitted to
the experimental data)[176]. Besides, another expression was suggested by Tessier
[247] in the same year 1942:

µ = µmax(1 − e
−S
KS ) (2.40)

This equation could fit the Monod data equally well. Many different (and more or
less esoteric) formulas have been proposed since then (see [14]).

Another simple and often used model for the specific growth rate dependence
with respect to the substrate concentration is the Blackman law (Figure 2.4):

µ = µmax

KS
S if S ≤ KS (2.41)

= µmax if S > KS (2.42)

which is a combination of first order kinetics with respect toS for S ≤ KS, and
zero order kinetics forS> KS.

A drawback of the Monod, Tessier or Blackman laws is that they do not allow
any account to be taken of possible substrate inhibitory effects at high concen-
trations (overloading). Typical examples in biological wastewater treatment are
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NH4-inhibition of nitrification or self-inhibition of phenol degradation. Andrews
[8] suggested that substrate inhibition be treated by the “Haldane law” which was
initially derived by Haldane [107] to describe inhibition in enzyme-substrate reac-
tions (Figure 2.5):

µ = µ0S

KS + S+ S2

Ki

(2.43)

whereKi is the “inhibition parameter” and:

µ0 = µmax(1 + 2

√
KS

Ki
) (2.44)

If the substrate inhibition is neglected (Ki → ∞), the Haldane law reduces to
the Monod law.

One important feature of the Haldane model is shown in Figure 2.5: for each
value of the specific growth rate, there exist two possible substrate concentra-
tions (denoted byS1 and S2 in Figure 2.5), which are distributed on both sides
of the maximum specific growth rate (which corresponds to the value ofS equal
to

√
KSKi ). This feature has the following consequences in CSTRs with a simple

microbial growth reaction (2.15) (i.e. described by equations (2.16)(2.17)). First,
it allows the emphasis of the possible existence of three equilibrium points: be-
side the wash-out (X = 0, S = Sin), there are two possible steady states, each one
corresponding to one of the two valuesS1 andS2. Secondly, the Haldane relation
allows the emphasis of the possible existence of instability in bioprocesses: in-
deed, it will be shown in Section 2.7 that in a CSTR (2.16)(2.17), the steady state
corresponding toS1 is a stable equilibrium point, and the one corresponding toS2
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is an unstable one. The latter unstable state corresponds to the experimentally ob-
served situation when there is accumulation of inhibiting substrate which results
in a wash-out of the biomass. A typical example is the accumulation of volatile
fatty acids in anaerobic digestion processes (e.g. [29], [92]).

Influence of the biomass concentration X.The biomass growth is often observed
to be slowed down at high biomass concentration (and this has been experimen-
tally observed in particular instances). A simple model that accomodates for this
situation assumes that the specific growth rate decreases linearly with increasing
biomass concentration:

µ(X) = µmax(1 − aX) (2.45)

whereµmax is the maximum growth rate anda (= 1
Xmax

) the inhibition constant. It
is often called the “logistic model” and was proposed by Verhulst in 1838 [271].
Another model which is a function of bothSandX is the following:

µ = µmaxS

KcX + S
(2.46)

with Kc constant. This model was proposed by Contois in 1959 [61], and is illus-
trated in Figure 2.6, which shows the inhibition dependence ofµ with respect to
X (for constantS).

Influence of the product concentration P.It is a well known fact that, in particu-
lar bioreactions, the product of the reaction can also inhibit the biomass growth. A
typical example is anaerobic digestion when acetate/propionate and/or hydrogen
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are inhibitory to acidogenesis reactions. Typical models for product inhibition are
e.g. (Figure 2.7) [4]:

µ(P) = K p

K p + P
(2.47)

µ(P) = e−K p P (2.48)

with K p constant.
These inhibition models are also used to emphasise for instance the inhibition

of denitrification by oxygen and are often termed “switching functions”.

Influence of pH. As we have indicated here above, the biomass growth can ac-
tually takes place only if pH and temperature lie within (usually small) ranges of
admissible values.

The pH often inhibits the biological activity due to non dissociated acids or
bases (ammonium, fatty acids, nitrite) in the mixed liquor. Up to now, few good
models for this pH-dependency are presented. One possibility is a bell-shaped
function:

KpH = Kmax · 1

1 + 10pK1−pH + 10pH−pK2

wherepK1 andpK2 are the low and the high pH with half of the maximum activity
(Figure 2.8).

In anaerobic digestion, for instance, the process is known to operate correctly
only for nearly neutral pH (= 7). For this process, Rozzi [222] proposes treating
the influence of pH by a parabolic law derived from experimental data:

µ(pH) = a pH2 + b pH + c if pHmin ≤ pH ≤ pHmax (2.49)

= 0 otherwise (2.50)
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with a, b, c constants, andpHmin and pHmax are thepH bounds within which
growth is possible.

Influence of temperature.On the other hand, the influence of temperature is most
often modelled by an Arrhenius-type law, as has been done, for instance, by Topi-
wala and Sinclair [250]:

µ(T) = a1e− E1
RT − a2e− E2

RT − b (2.51)

where E1, E2 are activation energies,R is the gas constant (8.314 J.g.mol/K),
anda1, a2, b are constants. This expression shows that the specific growth rate
increases continuously with temperature up to a maximum valueTmax (at which
the cells die) (see Figure 2.9).

This is often simplified to:

µ(T) = KT1 · 10−α(T1−T2) or KT1 · θ−(T1−T2) (2.52)

whereθ is around 1.03 to 1.05 for most processes (corresponding to a doubling
of the reaction rate with a temperature increase of 10◦). On the other hand, nitrifi-
cation is strongly dependent on temperature (θ = 1.15). More detailed models for
description of the effects of temperature can be found in the overview by Zwieter-
ing et al. [291]. See also [115], [147], [210].

2.3 Examples of Biological Wastewater Treatment Process Models

In this section, we introduce some typical examples of biological wastewater pro-
cesses and their mass balance dynamical models:
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• Anaerobic digestion: The 4 population model
• Activated sludge process: The basic model
• Activated sludge process: The IWA Activated Sludge Model No. 1
• Two step nitrification
• Two step denitrification

The section will be used to extend the ideas developed in Section 2.2 for simple
examples to more complex ones. As it has been suggested in the preceding section,
the model building basically considers the following two steps:

1. building of an appropriate reaction network
2. derivation of the dynamical mass balances

We shall use the first example (anaerobic digestion) to illustrate the model build-
ing procedure with mass balances for processes which involve a large number of
components (10) and reactions (4).

2.3.1 Anaerobic Digestion: The 4 Population Model

Anaerobic digestion is a biological wastewater treatment process which produces
methane. Four metabolic paths [178] can be identified in this process: two for
acidogenesis and two for methanisation (Figure 2.10).

In the first acidogenic path (Path 1), glucose (or another complex substrate)
is decomposed into volatile fatty acids (VFAs)(acetate, propionate), hydrogen and
inorganic carbon by acidogenic bacteria. In the second acidogenic path (Path 2),
Obligate Hydrogen Producing Acetogens (OHPA) decompose propionate into ac-
etate, hydrogen and inorganic carbon. In a first methanisation path (Path 3), acetate
is transformed into methane and inorganic carbon by acetoclastic methanogenic
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FIG. 2.10. Scheme of the anaerobic digestion.

bacteria, while in the second methanisation path (Path 4), hydrogen combines
with inorganic carbon to produce methane under the action of hydrogenophilic
methanogenic bacteria. The process can then be described by the following reac-
tion network:

S1 −→ X1 + S2 + S3 + S4 + S5 (2.53)

S2 −→ X2 + S3 + S4 + S5 (2.54)

S3 −→ X3 + S5 + P1 (2.55)

S4 + S5 −→ X4 + P1 (2.56)

whereS1, S2, S3, S4, S5, X1, X2, X3, X4 and P1 are respectively glucose, propi-
onate, acetate, hydrogen, inorganic carbon, acidogenic bacteria, OHPA, acetoclas-
tic methanogenic bacteria, hydrogenophilic methanogenic bacteria and methane.

The conversion terms for the above reactions (2.53) to (2.56) are characterised
by:

1. a reaction rate, denotedρi , the index i = 1, 2, 3, 4 being related to reaction
(2.53), (2.54), (2.55), (2.56), respectively. Each reaction rate is a growth
rate, and each growth reaction involves a different microorganism popula-
tion: therefore in line with the usual biochemical engineering notations, each
reaction rate may be written as the product of a specific growth rate by the
concentration of the biomass involved in the reaction:

ρi = µi Xi , i = 1 to 4 (2.57)
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2. stoichiometry (yield coefficients) associated to each component of each re-
action. Here we have considered to use the symbolsYji for the yield co-
efficients, where the index j corresponds to the component (ranging in the
following order: X1, S1, X2, S2, X3, S3, X4, S4, S5 and P1), and the index
i to the reaction (ranged as above). This choice looks a priori arbitrary, but,
as we shall see in Section 2.4, corresponds to the position of elements in a
matrix.

Beside the conversion terms, the mass balance model also contains transport terms:
let us consider that the anaerobic digestion process is operated in a CSTR, and that
the only inlet substrate is the organic matterS1.

We now have all the necessary information to derive the dynamical mass bal-
ance model of the process. The dynamics of the anaerobic digestion process are
then described by the following equations:

d X1

dt
= µ1X1 − DX1 (2.58)

dS1

dt
= − 1

Y21
µ1X1 + DSin − DS1 (2.59)

d X2

dt
= µ2X2 − DX2 (2.60)

dS2

dt
= Y41µ1X1 − 1

Y42
µ2X2 − DS2 (2.61)

d X3

dt
= µ3X3 − DX3 (2.62)

dS3

dt
= Y61µ1X1 + Y62µ2X2 − 1

Y63
µ3X3 − DS3 (2.63)

d X4

dt
= µ4X4 − DX4 (2.64)

dS4

dt
= Y81µ1X1 + Y82µ2X2 − 1

Y84
µ4X4 − DS4 − Q1 (2.65)

dS5

dt
= Y91µ1X1 + Y92µ2X2 + Y93µ3X3 − 1

Y94
µ4X4 − DS4 − Q2 (2.66)

d P1

dt
= Y03µ3X3 + Y04µ4X4 − DP1 − Q3 (2.67)

whereµ1, µ2, µ3, µ4 are the specific growth rates (h−1) of reactions (2.53), (2.54),
(2.55), (2.56), respectively, andSin , Q1, Q2 and Q3 represent respectively the
influent glucose concentration (g/L) and the gaseous outflow rates ofH2, CO2 and
CH4 (g/L.h).

Note that if we intend to use the model for (dynamic) simulation, we still need
expressions for the specific growth rates. This can be done by choosing e.g. one
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FIG. 2.11. Schematic view of an activated sludge process.

(or a combination) of the expressions presented in Section 2.2. The problem of
choosing appropriate expressions for specific growth rates and calibrating para-
meter values will be discussed in Chapters 3, 4 and 5.

2.3.2 Activated Sludge Process: The Basic Model

The activated sludge process is one other classical biological (but aerobic) waste-
water treatment process. It is usually operated in (at least) two sequential tanks (see
Figure 2.11): an aerator (in which the degradation of the pollutantsS takes place)
and a settler (which is used to separate biomassX from the treated wastewater and
recycle it to the aerator).

The reaction in the aerator may be described by a simple microbial growth
reaction (see e.g. [108], [169]).

S+ SO −→ X (2.68)

It is often assumed that the settler works perfectly, i.e. there is no biomass in the
overflow of the settler (characterised by the flow rateFo (= Fin − FW)). The dy-
namics of the plant (aerator + settler) are then described by the following mass
balance equations:

dS

dt
= −1

YS
µX − FR + Fin

V
S+ Fin

V
Sin (2.69)

dSO

dt
= −1

Y0
µX + Fin

V
SO,in − FR + Fin

V
SO + kLa(S∗

O − SO) (2.70)

d X

dt
= µX + FR

V
XR − FR + Fin

V
X (2.71)

d XR

dt
= Fin + FR

VS
X − FR + FW

VS
XR (2.72)



38 MASS BALANCE MODELS

whereXR is the concentration of the recycled biomass (g/L),Fin , FR andFW are
the influent, recycle and waste flow rates (g/L.h), respectively, andV andVS the
aerator and settler volumes (L), respectively.

2.3.3 Activated Sludge Process: The IWA Activated Sludge Model No. 1

Generally speaking, the simple aerobic microbial growth reaction (2.68) is not
the only one which takes place in an activated sludge process. The simple reac-
tion results in a rather simple dynamical model which may be convenient in many
instances, e.g. for control design. However, in other instances, e.g. for an exhaus-
tive process description, the dynamical model should include the influences of the
different reactions that are taking place in activated sludge processes. One of the
objectives of the Task Group that eventually produced the IWA Activated Sludge
Model No. 1 [120] was to gather these reactions (or at least the most important
ones) into one model framework. There are 13 important components and 8 impor-
tant reactions, which are carried out by two types of microorganisms: heterotrophs
(their carbon comes from an organic compound) and autotrophs (they require only
CO2 to supply their carbon needs). Next to their growth (for the heterotrophs both
under aerobic and anoxic conditions) and decay reactions (reactions 1-5), 3 other
reactions take place: ammonification of soluble organic nitrogen (6), hydrolysis of
entrapped organics (7) and of entrapped organic nitrogen (8). These can be for-
malised into the following reaction network:

1. Aerobic growth of heterotrophs:SS + SO + SN H −→ XB,H

2. Anoxic growth of heterotrophs:SS + SN O + SN H −→ XB,H

3. Aerobic growth of autotrophs:SO + SN H −→ XB,A + SN O

4. Decay of heterotrophs:XB,H −→ XP + XS + XN D

5. Decay of autotrophs:XB,A −→ XP + XS + XN D

6. Ammonification of soluble organic nitrogen:SN D −→ SN H

7. Hydrolysis of entrapped organics:XS −→ SS

8. Hydrolysis of entrapped organic nitrogen:XN D −→ SN D

where SS, SO, SN H , SN O, SN D, XN D, XB,H , XB,A, XP, XS are the readily
biodegradable substrate, the dissolved oxygen concentration, the soluble ammonia
nitrogen, the nitrate nitrogen, the soluble organic nitrogen, the particulate biodegrad-
able organic nitrogen, the heterotrophic bacteria, the autotrophic bacteria, the par-
ticulate products arising from biomass decay, and the slowly biodegradable sub-
strate, respectively.

The dynamics in a stirred tank reactor are given by the following mass balance
equations (with the yield coefficient nomenclature of the IWA Activated Sludge
Model No. 1):

dSS

dt
= − 1

YH
µ1XB,H − 1

YH
µ2XB H + ρ7 + DSS,in − DSS (2.73)
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d XS

dt
= (1 − fP)bH XB,H + (1 − fP)bAXB,A − ρ7 + DXS,in − DXS

(2.74)
d XB,H

dt
= µ1XB,H + µ2XB,H − bH XB,H + DXB,H,in − DXB,H (2.75)

d XB,A

dt
= µ3XB,A − bAXB,A + DXB,A,in − DXB,A (2.76)

d XP

dt
= fPbH XB,H + fPbAXB,A + DXP,in − DXP (2.77)

dSO

dt
= −1 − YH

YH
µ1XB,H − 4.57− YA

YA
µ3XB,A

+kLa(S∗
O − SO) + DSO,in − DSO (2.78)

dSN O

dt
= −1 − YH

2.86YH
µ2XB,H + 1

YA
µ3XB,A + DSN O,in − DSN O (2.79)

dSN H

dt
= −i X Bµ1XB,H − i X Bµ2XB,H − (i X B + 1

YA
)µ3XB,A + DSN H,in

−DSN H (2.80)
dSN D

dt
= ρ8 − kaSN DXB,H + DSN D,in − DSN D (2.81)

d XN D

dt
= (i X B − fPi X P)bH XB,H + (i X B − fPi X P)bAXB,A − ρ8

+DXN D,in − DXN D (2.82)

ρ7 = kh
XS/XB,H

KX + XS/XB,H
XB,H (2.83)

ρ8 = ρ7
XN D

XS
(2.84)

In the above equations,ρ7 andρ8 hold for the reaction rates of reaction 7(hydroly-
sis of entrapped organics) and 8 (hydrolysis of entrapped organic nitrogen). In the
IWA Activated Sludge Model No. 1, the model equations are summarised in a ta-
ble (see Table 2.11) which is very convenient in the sense that it clearly emphasises

1“ SI and XI are not involved in any conversion process. Nevertheless they are included because
they are important to the performance of the process”; “Inclusion of alkalinity (SALK ) is not essential,
but its inclusion is desirable because it provides information whereby undue changes in pH can be
predicted” [120].
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the interaction and interconnections of the different process components within
the different process reactions. The adoption of a Petersen matrix [196] format
in which components, reaction kinetics and stoichiometry are clearly separated
has shown to be very fruitful. In the General Dynamical Model section (Section
2.4), we shall introduce another, yet very similar, compact form of mass balance
models (i.e. in a mathematical matrix form) which will be very convenient for
mathematical manipulations (e.g. for model reduction and monitoring design).

2.3.4 Two Step Nitrification

Nitrification is the biological oxidation of ammonium-nitrogen to nitrate-nitrogen.
Yet nitrification is known to be a two-step reaction (e.g. [5], [11], [286]):

SN H −→ X1 + SN O2 (2.85)

SN O2 −→ X2 + SN O3 (2.86)

whereSN H , SN O2, SN O3, X1 and X2 hold respectively for ammonium-nitrogen
(N H4−N), nitrite-nitrogen (N O2−N), nitrate-nitrogen (N O3−N), Nitrosomonas
bacteria andNitrobacterbacteria, respectively.

In the IWA Activated Sludge Model No. 1, nitrification is represented by only
one reaction: reaction 3 (aerobic growth of autotrophs, see previous section). In-
deed, the two sequential reactions (2.85)(2.86) of nitrification can be reduced to the
single reaction 3 if the reaction (2.85) is assumed to be slower than reaction (2.86).
In the model order reduction section (Section 2.9) we shall introduce a systematic
approach for reducing reaction systems with slow and fast reactions.

The dynamics of the two-step nitrification in a stirred tank reactor fed with
only ammonium containing wastewater are given by the following mass balance
equations:

dSN H

dt
= − 1

Y1
µ1X1 + DSN H,in − DSN H (2.87)

dSN O2

dt
= − 1

Y2
µ2X2 + Y3µ1X1 − DSN O2 (2.88)

dSN O3

dt
= Y4µ2X2 − DSN O3 (2.89)

d X1

dt
= µ1X1 − DX1 (2.90)

d X2

dt
= µ2X2 − DX2 (2.91)

whereµ1 andµ2 are the specific growth rates of reaction (2.85) and (2.86), re-
spectively,Y1 to Y4 are yield coefficients, andSN H,in the influent concentration of
SN H .
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2.3.5 Two Step Denitrification

Denitrification plays an important role not only in wastewater treatment (see re-
action 2 in the IWA Activated Sludge Model No. 1) but also in the production
of drinking water. As this is a multi-step process and some toxic intermediates are
formed, nitrite in particular, a process description involving nitrite is needed as one
desires its complete absence from drinking water. In wastewater treatment, impor-
tant cost savings can be obtained if one adheres to what has been termed “Nitrit
Verfahren” for nitrogen removal, i.e. partial nitrification to nitrite and denitrifica-
tion from nitrite to nitrogen gas [1],[5], [117].

For such processes the denitrification reaction scheme is also composed of two
sequential reactions:

SN O3 + S −→ X + SN O2 (2.92)

SN O2 + S −→ X + N2 (2.93)

whereSN O3, SN O2, S, N2 andX are nitrate (N O−
3 ), nitrite (N0−

2 ), organic carbon,
nitrogen, and denitrifying bacteria, respectively. In the above reaction scheme, the
denitrifying bacteria are of the same type and are growing in a similar environment:
that’s why only one biomassX is considered in both reactions.

The dynamical mass balances in a stirred tank reactor are then equal to:

dSN O3

dt
= − 1

Y1
µ1X + DSN O3,in − DSN O3 (2.94)

dSN O2

dt
= − 1

Y2
µ2X + Y3µ1X − DSN O2 (2.95)

dS

dt
= − 1

Y4
µ1X − 1

Y5
µ2X + DSin − DS (2.96)

d X

dt
= µ1X + µ2X − DX (2.97)

d N2

dt
= Y6µ2X − DN2 − QN2 (2.98)

whereµ1 andµ2 are the specific growth rates of reaction (2.92) and (2.93), respec-
tively, Y1 to Y6 are yield coefficients,SN O3,in andSin the influent concentration of
nitrateSN O3 and organic carbonS, andQ the gaseous nitrogen outflow rate.

2.4 General Dynamical Model of Stirred Tank Reactors

So far, we have formalised each biological wastewater treatment process example
by considering reaction networks. The notion of reaction scheme (as it is suggested
in the above examples) is a useful tool to derive the dynamical mass balance model
of the process: indeed, the dynamical model can be derived on the basis of the
reaction network and put in a matrix form that is now introduced in this section.
But before, let us draw the attention on the following points.
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• As suggested in the above examples, a reaction system (and in particular
a biological wastewater treatment process) can be viewed in the context of
mass balance modelling as a set ofM (bio)chemical reactions involvingN
components. The reactions most often encountered in bioprocesses are mi-
crobial growth (in which the biomass plays the role of an autocatalyst) and
enzyme catalysed reactions (in which the biomass can be viewed as a sim-
ple catalyst); but many other reactions can also take place, like microorgan-
ism death, maintenance,... The main components are microorganism popu-
lations, enzymes, substrates and products.

• The reaction schemes as introduced here do not represent a stoichiometric
relation between the process components, in contrast to the common prac-
tice in chemical kinetics. They are sometimes qualitative (in line with the
comments on yield coefficients of Section 2.2.2). Yet this approach is not
exclusive, and the user has the flexibility to explicitly include yield or stoi-
chiometric coefficients in the reaction scheme, if he feels this more conve-
nient.

• The reaction network is basically a tool for process description and model
derivation, and therefore does not need to be an exhaustive (i.e. withall the
reactions andall the components) description of the process. For instance,
side reactions and by-products may not appear in the reaction network if it
appears that their role is negligible in the process description, or even more
precisely, in the context of the considered study.

2.4.1 The General Dynamical Model

Let us now go back, for instance, to the denitrification example (2.94)-(2.98). The
model can be rewritten in the following matrix form:

d

dt

⎛⎜⎜⎜⎜⎝
SN O3

SN O2

S
X
N2

⎞⎟⎟⎟⎟⎠ = −D

⎛⎜⎜⎜⎜⎝
SN O3

SN O2

S
X
N2

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎝
− 1

Y1
0

Y3 − 1
Y2− 1

Y4
− 1

Y5

1 1
0 Y6

⎞⎟⎟⎟⎟⎟⎠
(

µ1X
µ2X

)
+

⎛⎜⎜⎜⎜⎝
DSN O3,in

0
DSin

0
0

⎞⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎝
0
0
0
0

QN2

⎞⎟⎟⎟⎟⎠ (2.99)

This suggests to rewrite the dynamical mass balance model in the following com-
pact matrix form:

dξ

dt
= −Dξ + Yρ(ξ) + F − Q(ξ) (2.100)
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whereξ is the vector of the bioprocess component concentrations (dim(ξ ) = N),
Y is the yield coefficient matrix (dim(Y) = N x M), ρ(ξ) is the vector of reaction
rates (that may be function of the component concentrationsξ (dim (ρ) = M), F
is the feed rate vector andQ the vector of gaseous outflow rates that also may be
influenced by the component concentrationsξ (dim(F) = dim(Q) = N).

The model (2.100) has been called theGeneral Dynamical Modelfor stirred
tank bioreactors (see [14]). The derivation of the dynamical mass balance model
from a reaction network is straightforward by noting that each componentYi j of
the yield coefficient matrix

Y = [Yi j ] i = 1 to N, j = 1 to M (2.101)

is representative of thei th component: it is negative if the component is a reactant,
it is positive if it is a product and it is equal to zero if the component does not
intervene in the reaction.

Note that the mass balance general dynamical model is composed of the two
terms that we have mentioned in the introduction and in section 2.2.1:

• transport dynamics:−Dξ + F − Q(ξ),
• conversion:Yρ(ξ)

As it has been pointed out in section 2.2.1, note finally that the General Dynamical
Model remains valid for processes with variable volumes via the addition of a
dynamical equation describing the volume dynamics.

2.4.2 Examples (Continued)

Let us see how the different process examples that we have previously presented
fit into the General Dynamical Model (2.100) framework.

Anaerobic digestion: The 4 population model.Equations (2.58) to (2.67) can
be rewritten in the matrix form (2.100) by considering the following vectors and
matrices (N = 4, M = 10):

ξ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1
S1
X2
S2
X3
S3
X4
S4
S5
P1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
− 1

Y21
0 0 0

0 1 0 0
Y41 − − 1

Y42
0 0

0 0 1 0
Y61 Y62 0 − 1

Y63

0 0 0 1
Y81 Y82 0 − 1

Y84

Y91 Y92 Y93 − 1
Y94

0 0 Y03 Y04

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.102)
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F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
DSin

0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0

Q1
Q2
Q3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ρ =

⎛⎜⎜⎝
ρ1
ρ2
ρ3
ρ4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
µ1X1
µ2X2
µ3X3
µ4X4

⎞⎟⎟⎠ (2.103)

Activated sludge process: The basic model.An interesting feature of the basic
model of activated sludge process is that due to its multi-tank characteristics (aera-
tor + settler), the dilution rate becomes a matrix. In the General Dynamical Model
(2.100) framework, the mass balance equations (2.69) to (2.72) become (N = 4, M
= 1):

ξ =

⎛⎜⎜⎝
S

SO

X
XR

⎞⎟⎟⎠ , Y =

⎛⎜⎜⎝
− 1

YS

− 1
YO

1
0

⎞⎟⎟⎠ , F =

⎛⎜⎜⎝
Din Sin

Din SO,in + kLa(S∗
O − SO)

0
0

⎞⎟⎟⎠(2.104)

ρ = µX, Q = 0, D =

⎛⎜⎜⎝
D1 0 0 0
0 D1 0 0
0 0 D1 −D2
0 0 −D3 D4

⎞⎟⎟⎠ (2.105)

with the following definitions forDin , D1, D2, D3, andD4:

Din = Fin

V
, D2 = FR

V
, D1 = Din + D2, D3 = Fin + FR

VS
, D4 = FR + FW

VS

(2.106)

Activated sludge process: The IWA Activated Sludge Model No. 1.For the IWA
Activated Sludge Model No. 1, the model equations are written in the General Dy-
namical Model (2.100) framework with the following definitions (N = 10,
M = 8):
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ξ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

SS

XS

XB,H

XB,A

XP

SO

SN O

SN H

SN D

XN D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DSS,in

0
0
0
0

DSO,in + kLa(S∗
O − SO)

0
DSN H,in

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.107)

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
YH

− 1
YH

0 0 0 0 1 0
0 0 0 1− fP 1 − fP 0 −1 0
1 1 0 −1 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 fP fP 0 0 0

−1−YH
YH

0 −4.57−YA
YA

0 0 0 0 0

0 − 1−YH
2.86YH

1
YA

0 0 0 0 0
−i X B −i X B −i X A 0 0 1 0 0

0 0 0 0 0 −1 0 1
0 0 0 YB YB 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.108)

ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1
ρ2
ρ3
ρ4
ρ5
ρ6
ρ7
ρ8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ1XB,H

µ2XB,H

µ3XB,A

bH XB,H

bAXB,A

kaSN DXB,H

ρX7XB,H

ρX8XB,H

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Q = 0 (2.109)

with ρX7 andρX8 the specific (i.e. perXB,H units) hydrolysis rates of reactions
(6) and (7),YB = i X B − fPi X P, andi X A = i X B + 1

YA
.

Note the great similarity between the Petersen matrix of the IWA Activated
Sludge Model No. 1 and the matrix Y. The matrix is simply the transpose2 of the
Petersen matrix where columns 1, 3 and 13 have been deleted (see footnote of
Section 2.3.3).

Two step nitrification. In the nitrification example, the different terms of (2.100)
are defined as follows (N = 5, M = 2):

2Indeed the rows correspond to the reactions in the IWA Activated Sludge Model No. 1, and to the
process components in the matrix Y of the General Dynamical Model (2.100). Conversely, the columns
correspond to the process components in the matrix Y of the General Dynamical Model (2.100), and to
the reactions in the IWA Activated Sludge Model No. 1.
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ξ =

⎛⎜⎜⎜⎜⎝
SN H

SN O2

SN O3

X1
X2

⎞⎟⎟⎟⎟⎠ , Y =

⎛⎜⎜⎜⎜⎝
− 1

Y1
0

Y3 − 1
Y2

0 Y4
1 0
0 1

⎞⎟⎟⎟⎟⎠ , F =

⎛⎜⎜⎜⎜⎝
DSN H,in

0
0
0
0

⎞⎟⎟⎟⎟⎠ (2.110)

ρ =
(

ρ1
ρ2

)
=
(

µ1X1
µ2X2

)
, Q = 0 (2.111)

Two step denitrification. In the denitrification example, the different terms of
(2.100) are defined as follows:

ξ =

⎛⎜⎜⎜⎜⎝
SN O3

SN O2

S
X
N2

⎞⎟⎟⎟⎟⎠ , Y =

⎛⎜⎜⎜⎜⎜⎝
− 1

Y1
0

Y3 − 1
Y2− 1

Y4
− 1

Y5

1 1
0 Y6

⎞⎟⎟⎟⎟⎟⎠ , F =

⎛⎜⎜⎜⎜⎝
DSN O3,in

0
DSin

0
0

⎞⎟⎟⎟⎟⎠ , Q =

⎛⎜⎜⎜⎜⎝
0
0
0
0

QN2

⎞⎟⎟⎟⎟⎠
ρ =

(
ρ1
ρ2

)
=
(

µ1X
µ2X

)
(2.112)

2.5 Multi Tank and Non Completely Mixed Reactors

In the preceding sections, we have considered the mass balances in tanks where the
medium is homogeneous. However in many practical situations, this is not the case
due to a lack of sufficient mixing: this is typically the situation of large-scale reac-
tors, for which it is almost impossible to provide proper stirring to homogenise the
reactor medium. However, the non complete mixing may also be deliberate; there
is even a trend for increased use of processes which intrinsically are characterised
by non homogeneous conditions. Typical examples are fixed bed and fluidised bed
reactors, in which the (auto)catalysts are either fixed on some support, or main-
tained in suspension in the tank. Another obvious example is the settler which is
used to separate biomass from the treated wastewater. Finally, plug flow reactors
are also characterised by non-perfect mixing conditions resulting in (deliberate)
concentration profiles along the length of the reactor.
Well-known from engineering text books is the simplest way to model non homo-
geneous tanks by considering them as a sequence of reactors. More fundamentally,
the dynamics of fixed bed or fluidised bed reactors and settlers can be derived by
considering mass balances in small (“infinitesimal”) volumes: this will result in
partial differential equation (PDE) models, i.e. models in which the state variables
(the process components) do not only depend on time but also on the position in
the tank; these models also most often include partial derivatives of the state vari-
ables with respect to time and space. The finite difference of fixed bed reactor or
settler PDE models will result in sequential reactor models: this clearly emphasises
the relation between both types of models. In the following, we shall first consider
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Fin n

FIG. 2.12. Two sequential tanks.

the sequential reactor model, then the PDE models for fixed bed reactors (with and
without axial and radial dispersion), fluidised bed reactors, and settlers.

2.5.1 Sequential Reactors

Let us first consider two sequential stirred tank reactors (Figure 2.12) of volumes
V1 andV2, respectively, and in which a simple microbial growth reactionS−→ X
takes place. Let us denote each tank by an index i: i = 1 for thefirst tank, and 2
for the second. The mass balance for the substrate concentrationS in both tanks is
written as follows:

dS1

dt
= Fin

V1
Sin − Fin

V1
S1 − 1

Y
µ1X1 (2.113)

dS2

dt
= Fin

V2
S1 − Fin

V2
S2 − 1

Y
µ2X2 (2.114)

Similarly for the biomass, the mass balance in both tanks gives rise to the
following set of differential equations:

d X1

dt
= − Fin

V1
X1 + µ1X1 (2.115)

d X2

dt
= Fin

V2
X1 − Fin

V2
X2 + µ2X2 (2.116)

in which µi is a function of the variables in tank i (i = 1 or 2),e.g. ofS1 and X1
for µ1, and ofS2 andX2 for µ2. An important feature of the substrate concentra-
tion equations is that the influent substrate concentration in tank 2 is the effluent
substrate concentration from tank 1. The same remark holds for the biomass.

The generalisation toN (> 2) sequential reactors is then straigthforward. For
instance, the mass balance of the substrate concentration inN STRs is written as
follows:

dS1

dt
= Fin

V1
Sin − Fin

V1
S1 − 1

Y
µ1X1 (2.117)

dS2

dt
= Fin

V2
S1 − Fin

V2
S2 − 1

Y
µ2X2 (2.118)
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...
dSN

dt
= Fin

VN
SN−1 − Fin

VN
SN − 1

Y
µN XN (2.119)

For the biomass, it is equal to:

d X1

dt
= − Fin

V1
X1 + µ1X1 (2.120)

d X2

dt
= Fin

V2
X1 − Fin

V2
X2 + µ2X2

... (2.121)
d XN

dt
= Fin

VN
XN−1 − Fin

VN
XN + µN XN (2.122)

The General Dynamical Model (2.100) formalism is still valid. Indeed, if for in-
stance we choose to group the components by tank, i.e. if we define the component
concentration vectorξ as follows:

ξT = (
S1 X1 S2 X2 · · · SN XN

)
(2.123)

the above mass balance equations can be written in the General Dynamical Model
(2.100) framework by considering the following definitions:

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
Y 0 · · · 0

1 0 · · · 0
0 − 1

Y · · · 0
0 1 · · · 0
...

...
...

...

0 · · · 0 − 1
Y

0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.124)

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fin
V1

0 0 0 · · · 0 0 0

0 Fin
V1

0 0 · · · 0 0 0

− Fin
V2

0 Fin
V2

0 · · · 0 0 0

0 − Fin
V2

0 Fin
V2

· · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 · · · − Fin
VN

0 Fin
VN

0

0 0 0 · · · 0 − Fin
VN

0 Fin
VN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.125)

ρ =

⎛⎜⎜⎜⎝
µ1X1
µ2X2

...

µN XN

⎞⎟⎟⎟⎠ , F =

⎛⎜⎜⎜⎝
DSin

0
...

0

⎞⎟⎟⎟⎠ , Q = 0 (2.126)
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F in ut

FIG. 2.13. Two interconnected tanks.

A first difference between the single tank model and the multi-tank one is, as it was
already mentioned in the basic activated sludge model, that now the dilution rate is
a matrix. A second difference is the increase of the dimension of the reaction rate
ρ, and in consequence, of the yield coefficient matrixY. Note finally the above
matrix presentation is arbitrary: we could also have chosen to write the vectorξ by
grouping the terms by component, i.e. the first rows forS and the remaining ones
for X (yet the General Dynamical Model (2.100) formalism works!)(see also [56]
for further details on multi-tank bioreactor models).

Let us end this section by the model of two interconnected CSTRs (Figure
2.13). Note that if the volumesV1 and V2 are constant, thenFout = Fin and F2
= F1 − Fin . If we consider as before a simple microbial growth reaction in both
tanks, the mass balance of the substrate concentration is then equal to:

dS1

dt
= Fin

V1
Sin + F1 − Fin

V1
S2 − F1

V1
S1 − 1

Y
µ1X1 (2.127)

dS2

dt
= F1

V2
S1 − F1

V2
S2 − 1

Y
µ2X2 (2.128)

The use of interconnected CSTR equations like (2.127)(2.128) is often considered
to simulate the lack of medium homogeneity, e.g. due to insufficient stirring in
reactors.

2.5.2 Fixed Bed Reactor: The Basic Mass Balance Model

Let us consider an example of a non completely mixed reactor: the fixed bed reac-
tor, i.e. a tank in which the (auto)catalysts arefixedon some (solid) support and in
which the reactants (in the liquid phase) are flowing through and are transformed
when in contact with the (fixed) (auto)catalysts. Recently, a number of such reactor
systems have been developed as they are capable of maintaining high autocatalyst
concentrations and, hence, can sustain a high volumetric loading rate. Examples
are submerged trickling filters for denitrification.

There is no specific stirring mechanism, and generally speaking, the reactor
is not in completely mixed conditions anymore. Therefore in terms of (dynamic)
modelling, the approach has to be modified: the mass balance has to be computed
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Fin
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dz
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FIG. 2.14. Schematic view of a fixed bed reactor.

on a thin section dz of the reactor (and not anymore on the whole volume of the
reactor) (see Figure 2.14).

Let us first concentrate on the dynamical model derivation for fixed bed reac-
tors with axial dispersion, and for which radial dispersion is negligible. Assume
that the dispersion phenomenon obeys Fick’s diffusion law which expresses that
the perpendicular flux of particlesj through a unit surface is proportional to the
gradient of concentration at the surface according to the following equation:

j = −D
∂C

∂z
(2.129)

where D is a diffusion coefficient andz is the direction of the fluxj . Indeed
the “microscopic” phenomenon of diffusion has been by analogy extended to the
“macroscopic” reactor situation, and the terminology “dispersion” is more often
used than “diffusion” in fixed bed or fluidised bed reactor modelling. Let us note
Dma (m2.s−1) the axial mass dispersion coefficient.

For simplicity, we also consider that the reactor is tubular; this implies in par-
ticular that the cross-section of the reactor is constant (equal toA (m2)). Further-
more this section is the sum of the section occupied by the (auto)catalysts (i.e. a
“solid” section,AS (m2)) and of the section left free for the flow of (liquid) reac-
tants and products,AL (m2) (A = AS + AL ).

The reactions are assumed to be autocatalytic and to take place on thesolid
catalytic support. Let us further assume that the mass transfer dynamics between
the solid and liquid phases are negligible (This assumption may be formally justi-
fied by considering aquasi steady state approximation, e.g. [85], see also Section
2.9)
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In order to explicit the model derivation, let us begin with the mass balance on
the thin section dz of a component of concentration C (kg.m−3) which intervenes
in one reaction characterised by a reaction rateρ (kg.m−3.s−1) (since the reaction
takes place on thesolidsupport, the dimension of the reaction is mass per time unit
persolidvolume (i.e.ASdz):

∂
∂t [ALdzC] = FinC −Fin(C + ∂C

∂z dz)
time variation inflow outflow

of the mass of C at position z at position z + dz

−DmaAL
∂C
∂z −(−DmaAL

∂
∂z[C + ∂C

∂z dz])
diffusion diffusion

at position z at position z + dz

+ASdz ρ(z, t)
reaction rate

between z and z + dz

whereFin is the influent flow rate (m3.s−1). If one divides both sides byALdzand
defines the void fractionε and the fluid superficial velocityu (m.s−1):

ε = AL

A
, u = Fin

AL
(2.130)

the above equation can be reduced to the following expression:

∂C

∂t
= −u

∂C

∂z
+ Dma

∂2C

∂z2
+ 1 − ε

ε
r (z, t) (2.131)

Note that the above development assumes a constant cross-sectional area A and
constant individual termsAL andAS.

2.5.3 General Dynamical Model of Fixed and Fluidised Bed Reactors

Fixed Bed Reactors with Axial Dispersion.Let us now generalise the model for
fixed bed reactors with N components involved in M reactions [73]. Let us first
assume that among the N process components,N f i are microorganisms entrapped
or fixed on some support and, hence, remain within the reactor, andN f l other
reactants (essentially substrates and products) flow through the reactor. In addition,
let us define two associated component vectors,x f i andx f l , respectively.

From mass balance considerations on a section dz, we can deduce the follow-
ing General Dynamical Model for fixed bed reactors with axial dispersion:

∂x f i

∂t
= Yf i ρ(x f i , x f l ) (2.132)
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∂x f l

∂t
= −u

∂x f l

∂z
+ Dma

∂2x f l

∂z2
+ 1 − ε

ε
Yf l ρ(x f i , x f l ) (2.133)

whereρ(x f i , x f l ) is the reaction rate vector (kg.m−3.s−1):

ρT (x f i , x f l ) = [ρ1(x f i , x f l ), ρ2(x f i , x f l ), ..., ρM (x f i , x f l )] (2.134)

andYf i andYf l are the yield coefficient matrices.

Remark: Note that, as in the completely mixed reactors, the above matrix formu-
lation emphasises the presence of two terms in the process dynamics:

• conversion: Yf i ρ(x f i , x f l ) and 1−ε
ε

Yf l ρ(x f i , x f l );

• transport dynamics: −u
∂x f l
∂z + Dma

∂2x f l

∂z2 .

Boundary conditions have still to be added to complete the model. Because
of the presence of the second order derivative with respect to z, two boundary
conditions are required: typically, one at the reactor inlet (z = 0) and one at the
outlet (z = L). Although they are the object of criticism in some instances (e.g.
[85]), the most largely used boundary conditions are those of Danckwerts [63]:

Dma
∂x f l

∂z
= −u(xin − x f l ) at z = 0 (2.135)

∂x f l

∂z
= 0 at z = L (2.136)

with xin the influent value ofx f l .

Example: biochemical reactor with a growth reaction and a death/detach-
ment reaction

Let us now consider a fixed bed reactor with a growth reaction and a death/detach-
ment reaction:

growth : S −→ X + P (2.137)

death: X −→ Xd (2.138)

If we assume that the non-active microorganisms detach and leave the bioreactor,
the dynamics of the bioprocess (2.137)(2.138) will be described by the following
equations:

∂ X

∂t
= µX − bX (2.139)

∂S

∂t
= −u

∂S

∂z
+ Dma

∂2S

∂z2
− 1 − ε

ε

1

YS
µX (2.140)



54 MASS BALANCE MODELS

∂ P

∂t
= −u

∂ P

∂z
+ Dma

∂2P

∂z2
+ 1 − ε

ε
YPµX (2.141)

∂ Xd

∂t
= −u

∂ Xd

∂z
+ Dma

∂2Xd

∂z2
+ 1 − ε

ε
bX (2.142)

z = 0 : Dma
∂S(0, t)

∂z
= −u(Sin(t) − S(0, t)

Dma
∂ P(0, t)

∂z
= u P(0, t)

Dma
∂ Xd(0, t)

∂z
= uXd(0, t) (2.143)

z = L : ∂S(L , t)

∂z
= ∂ P(L , t)

∂z
= ∂ Xd(L , t)

∂z
= 0 (2.144)

The above equations can be rewritten in the formalism of equations (2.132)(2.133)
(2.135)(2.136) by considering the following definitions:

x f i = X, x f l =
⎛⎝ S

P
Xd

⎞⎠ (2.145)

xin =
⎛⎝ Sin

0
0

⎞⎠ , ρ =
(

ρ1
ρ2

)
=
(

µX
bX

)
(2.146)

Yf i = (
1 −1

)
, Yf l =

⎛⎝− 1
YS

0
YP 0
0 1

⎞⎠ (2.147)

Extension 1: Plug Flow Reactor.The dynamical model of the fixed bed reactor
in absence of dispersion, i.e. of the plug flow reactor, is readily obtained from the
equations (2.132)(2.133)(2.135) by simply setting the dispersion coefficientDma

to zero (Dma = 0). Since there is then only a first order derivative of the state
variablex f l with respect to the space variablez, only the boundary condition at
the reactor input (z = 0) (2.135) is kept, and the boundary condition at the reactor
output (2.136) is dropped. The model equations are then:

∂x f i

∂t
= Yf i ρ(x f i , x f l ) (2.148)

∂x f l

∂t
= −u

∂x f l

∂z
+ 1 − ε

ε
Yf l ρ(x f i , x f l ) (2.149)

x f l = xin at z = 0 (2.150)

The frequent description of an activated sludge plant as a plug flow system is
just a special case of the above in which no fixed biomass is present and hence
equation(2.148) vanishes.
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Extension 2: Gas phase.Assume that one product gives off in the gaseous phase,
as in high rate fixed film anaerobic digesters (C O2, C H4) [67] or denitrification
reactors (N2) [102], [131]; or that the fixed bed reactor is aerated for aerobic car-
bon removal [172] or nitrification [283]. Note that the very widespread trickling
filter also has to be described as a three phase fixed bed reactor [224]. The equa-
tions for fixed bed systems (2.132)-(2.136) will be modified by introducing the
gaseous flow rate vectorQ (kg.s−1). By introducing similar arguments as in equa-
tion (2.131), a new term, the derivative ofQ with respect to z, is introduced in the
model formulation:

∂x f i

∂t
= Yf i ρ(x f i , x f l ) (2.151)

∂x f l

∂t
= −u

∂x f l

∂z
+ Dma

∂2x f l

∂z2
+ 1 − ε

ε
Yf l ρ(x f i , x f l ) − 1

AL

∂Q

∂z
(2.152)

with the same boundary conditions (2.135)(2.136) as above. Note that the sec-
tion A is now the sum of three sections, the solid, liquid and gaseous sections:
A = AS + AL + AG. In the above model formulation, it has been implicitly
assumed that the sectionAG is negligible with respect toAS and AL . If this as-
sumption is not correct, as in trickling filters, then the term(1 − ε)/ε should be
replaced byAS/AL .

Note that the above model extension to gas production is only valid if the
dynamics between the liquid and gas phases are fast enough to be considered as
being negligible, i.e. the gas and liquid phases are assumed to be in equilibrium.

As a matter of illustration, assume that in the bioreactor example (2.137)
(2.138), the product P gives off in the gaseous phase. Then the model is completed
with the following gaseous flow rate vector:

Q =
⎛⎝ 0

QP

0

⎞⎠ (2.153)

whereQP is the gaseous flow rate of the product P.

Extension 3: Radial Dispersion.Here again the extension (e.g. [85], [145]) is
straightforward if one introduces a new spatial variable, the radial coordinate r
in case of a tubular reactor. The model is readily obtained by using arguments
similar to those used for the derivation of equations (2.132)(2.133)(2.135)(2.136):
it results in an addition of a radial dispersion term and of two boundary conditions
(at r = 0 andr = R, with R the radius of the reactor, see Figure 2.15). In the
presence of radial dispersion, the two-phase model (2.132)(2.133)(2.135)(2.136)
(i.e. without the gas phase) becomes:
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FIG. 2.15. Schematic view of a fixed bed reactor with radial dispersion.

∂x f i

∂t
= Yf i ρ(x f i , x f l ) (2.154)

∂x f l

∂t
= −u

∂x f l

∂z
+ Dma

∂2x f l

∂z2
+ Dmr

1

r

∂

∂r
(r

∂x f l

∂r
)

+1 − ε

ε
Yf l ρ(x f i , x f l ) (2.155)

Dma
∂x f l

∂z
= −u(xin − x f l ) at z = 0 (2.156)

∂x f l

∂z
= 0 at z = L (2.157)

∂x f l

∂r
= 0 at r = 0 (2.158)

∂x f l

∂r
= 0 at r = R (2.159)

whereDmr (m2.s−1) is the radial mass dispersion coefficient.

Extension 4: Fluidised Bed Reactors.Fluidised bed technology as many others
stems from chemical engineering technology, and has its roots in solid bed reactors
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FIG. 2.16. Fixed bed versus fluidised bed.

[177]. In fluidised bed reactors, the solid (catalytic) particles are “fluidised” by the
stream of liquid (most common) or gas [54] [249] from below the reactor as the
upflow velocity increases. Figure 2.16 illustrates the difference between a fixed (or
“packed”) bed reactor and a fluidised bed. If the fluid velocity is low, the particles
are packed at the bottom of the reactor: the reactor behaves like a fixed bed reactor
since the solid particles do not move upwards. For larger values of the fluid or
gas velocity, the solid particles will be “pushed” upwards and may be maintained
in suspension for appropriate hydrodynamical conditions, i.e. an expanded bed is
formed.

The oldest application of fluidisation [227] in biotechnology is in the area of
nitrification and denitrification of wastewater and drinking water treatment [243]
[84]. Another important application area of biofluidisation is in the field of anaer-
obic digestion with the very widespread use of the UASB (Upflow Anaerobic
Sludge Bed) reactors [67] [82].
The dynamical modelling of fluidised bed reactors requires even more attention
and care. In terms of dynamical modelling, the basic difference between fixed bed
and fluidised bed reactors is that in the latter, the solid phase (basically the catalyst
on its support) is not fixed but is composed of particles in suspension in the reactor.
A major implication is that now, generally speaking, the void fractionε cannot be
considered as being constant, especially during expansion and contraction of the
bed.

At this point there are two possible options.

1. Either to consider that the transient phase during bed expansion and con-
traction is very fast and to neglect its dynamics. Then the void fractionε in
steady state can be deduced by considering the (heuristic but largely used)
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Richardson and Zaki’s law [216]:

ε = (
u0

UT
)

1
n (2.160)

whereu0 is the fluid superficial velocity in the absence of solid particles,UT

is the terminal settling velocity of the particles andn is the expansion index
(which typically depends on the type of particles and medium).

2. Or to consider the dynamics of the bed expansion and contraction. Then
extra equations are required. Typically the mass balances equations (also
sometimes called thecontinuity equations)(for instance, (2.132)(2.133) or
(2.148)(2.149)) are completed with momentum equations [89]. In the plug
flow case, these are written as follows for the liquid and particle phases,
respectively:

ρL
∂

∂t
[εu] = − ∂

∂z
[ε(pL + 1

2
ρLu2)] − ε ρL g − Fi

ρS
∂

∂t
[(1 − ε)uS] = − ∂

∂z
[(1 − ε)(pS + 1

2
ρLu2)] − (1 − ε) ρS g + Fi

whereρL , ρS, pL , pS, g, Fi anduS are the liquid phase and particle phase
densities (kg.m−3), the liquid and particle pressures (N.m−2), the grav-
ity constant (m.s−2), the liquid-particle interaction force per unit volume
(N.m−3) and the particles’ velocity in the reactor (m.s−1), respectively.
Moreover the Richardson and Zaki’s equation has to be modified to account
for the transient of the solid particles (e.g. [199]:

u − uSε = UTεn−1 (2.161)

The choice of appropriate expressions forFi , pL and pS is still a matter
of discussion in the scientific literature. As a matter of illustration, the fol-
lowing expressions are recommended e.g. in Foscolo and Gibilaro [89], and
Jean and Fan [132] forFi , pL and pS:

Fi = (1 − ε)ρL g + (1 − ε)(ρS − ρL)g(
u0 − uS

UT
)

4.8
n ε−4.8 (2.162)

pS = 0, εpL = −(ερL + (1 − ε)ρS)gz (2.163)

Another important equation is the volume balance at any position in the
reactor:

εu + (1 − ε)uS = u0 (2.164)

Because of the much lower complexity of the model, the first option is very
often considered in many applications.

An example of dynamical model of an anaerobic digestion process in a flu-
idised bed reactor is given in Bonnetet al. [30].
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2.5.4 Settlers

Solid flux theory basic model.In Section 2.5.2, we have considered that the dy-
namics of the settler (Figure 2.17) are often described by those of a CSTR. Largely
because the model neglects sedimentation effects, the CSTR assumption is more
and more an object of criticism in the scientific community, and alternative models
are presently recommended. Let us first recall that the main functions of secondary
settlers in wastewater treatment plants are double:

1. clarification , i.e. separation of the biomass from the treated wastewater in
order to produce a solid-free effluent;

2. thickening of the biomass at the bottom of the settler to be recycled back
into the aerator.

In some cases the settler is also considered for more advanced use, i.e.

1. sludge storage, i.e. in the bottom part of the settler sludge is stored for
subsequent use under high waste load conditions;

2. the settler as a reactorwhere additional aerobic conversions can occur or
where denitrification may take place [230] (with the danger of formation of
nitrogen gas bubbles and rising sludge problems [119]).

Hence, to be able to evaluate the functioning of the settler under dynamic con-
ditions, models must be able to describe these different aspects in more or less
detail [83].

The alternative models are usually based on (or at least refer to) mass balances
(here again, the terminology “continuity equation” is largely used) and on the Solid
Flux Theory [69]. The mass balance is computed not anymore on the whole tank
but on a small section dz (see Figure 2.17). If we recall the mass balance consid-
erations of Section 2.5.2, the dynamical model in its simplest form (e.g. [170]) is
written as follows:

∂ X

∂t
= −∂Fl

∂z
(2.165)

X(z = H, t) = XR(t) (2.166)

where Fl is the biomass solid flux (kg.m−2.h−1]) at depth z of the settler
(z ∈ [0, H ], where 0 andH correspond to the top and bottom of the settler, re-
spectively). The flux is basically due to two phenomena: sedimentation (settling)
due to gravity, and “bulk” flow due to sludge withdrawal at the bottom. Note that,
in the above equation (2.165), only convection (∂Fl /∂z) is considered.

The total fluxFl (t, z) can be expressed as follows:

Fl (z, t) = νX + uX (2.167)

whereν is the settling velocity, andu is the bulk velocity, i.e. the velocity of the
recycled biomass mixed liquor due to underflow pumping. Withu simply the ratio
of the flow rateFR + Fw over the settler sectionAse:
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FIG. 2.17. Schematic view of a secondary settler.

u = FR + Fw

Ase
(2.168)

and if we denote:
νX = f (X) (2.169)

then the mass balance equations (2.165)(2.166) are rewritten as follows:

∂ X

∂t
= −(

FR + Fw

Ase
+ ∂ f (X)

∂ X
)
∂ X

∂z
+ X

FR + Fw

A2
se

d Ase

dz
(2.170)

X(H, t) = XR(t) (2.171)

There exists in the literature a number of different models for the settling velocity
ν, e.g.:

• Vesilind exponential model:

ν = ν0e−aX, ν0, a > 0 (2.172)

• Power law:
ν = nX−a, n, a > 0 (2.173)
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FIG. 2.18. Settling velocity: Takacs model.

• Inverse power law:

ν = a

b + Xn
, n, a, b > 0 (2.174)

• Takacs model (“generalised Vesilind model”) [245]:

ν = ν′ i f ν′ ≤ νmax (2.175)

= νmax i f ν′ > νmax (2.176)

with ν′ = ν0(e
−rh(X−Xmin) − e−r p(X−Xmin)),

ν0, Xmin > 0, r p > rh > 0 (2.177)

with νmax the maximum attainable settling velocity,Xmin the minimum at-
tainable suspended solids concentration, andrh andr p the settling charac-
teristics of the hindered settling zone and of the low solids concentration,
respectively. The model is graphically represented in Figure 2.18. Note that
with that model, the maximum attainable settling velocityνmax is generally
speaking different from (lower than) the maximum ofν′ which is reached
for a value ofX equal to:

X = Xmin + 1

r p − rh
ln

(
r p

rh

)
(2.178)

• Cho model [59]

ν = ν0
e−aX

X
, ν0, a > 0 (2.179)
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Remark: the model (2.170)(2.171) only considers one spatial coordinate: this
means that we have implicitly assumed that the settler dynamics are uniform at
each section dz. More complicated models can also be derived when this assump-
tion is not fulfilled in practice, with 2 or 3 (for non-circular section settlers) space
coordinates (see for instance [244]): this type of model also includes momentum
conservation equations.

Steady-state curves of the settler model.Before going further, let us see what is
the relative importance of the settling term and of the “bulk” flow term, at least in
steady state. Figure 2.19 exhibits some curves, in steady state, of solid fluxesFl

as a function of the biomassX for the Vesilind model (2.172) and with the bulk
velocity u as an operational parameter. It shows that for a given value ofu, the
recycled biomass concentrationXR is uniquely determined by the solid flux estab-
lished in the settler. Indeed the minimum solid fluxF∗ represents the maximum
rate of solids transferred through the liquid/solid interface for a given settler geo-
metry and sludge settling behaviour. Excess solids which cannot be transferred to
the bottom accumulate above the interface. On the other hand, in steady state, the
underflow solids concentration is not a dynamic variable but depends on the limit-
ing flux and available mass above the interface. If the settler is critically loaded, the
total limiting flux through the thickening zone, i.e.AseF∗ is equal to the underflow
withdrawal, i.e.(FR + FW)XR:

AseF
∗ = (FR + FW)XR (2.180)

This gives the value of the recycled biomass:

XR = AseF∗

FR + FW
(2.181)

For the Vesilind model,ν tends to zero ifX tends to infinity:

lim
X→∞ ν = 0 (2.182)

This implies that the solid fluxFl tends touX for large values ofX. Therefore the
value ofXR can be graphically (Figure 2.19) determined from the intersection of
F∗ anduX (which is the asymptote ofFl for X tending to infinity).

Limitations of the solid flux theory basic model.The major drawback of the Solid
Flux Theory basic model (2.165)(2.166) is its inability to emphasise concentration
gradients at least in steady state. Indeed in steady state (∂ X

∂t = 0) for settlers with
constant section, we have:

d F

dz
= 0 (2.183)

i.e., since all the proposed models for the settling velocityν are only functions of
the sludge concentrationX:
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(u + ν + X
∂ν

∂ X
)
d X

dz
= 0 (2.184)

There are therefore a priori (mathematically) two possible steady state solutions of
(2.183) [75], [205]:

1) u + ν + X ∂ν
∂ X = 0 (2.185)

2) d X
dz = 0 (2.186)

Generally speaking, the first steady state has to be rejected, because it implies that:

ν = −u + K
1

X
, K constant (2.187)

e.g. thatν is a function ofu in steady state. This also imposes one model structure
for the dependence of the settling velocityν with respect to the sludge concentra-
tion X and the superficial fluid velocityu. ν will even be negative for sufficiently
large values ofX (> u/K ).

Therefore we end up with one possible steady state,

d X

dz
= 0 (2.188)

which means that there is no spatial profile in steady state, in major contradiction
with the experimental evidence (as illustrated in Figure 2.21 here below).

To circumvent the difficulty, different modifications have been proposed to the
mass balance model. The most popular and most successful presently is the model
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proposed by e.g. [278],[245]. The model is based on two important assumptions:
the first one is to consider a layered settler model (Figure 2.20), which can be
viewed as a finite difference approximation of the space derivative in the mass
balance model; the second one is a limitation of flux from one layer to another
(“The mass flux into a layer cannot exceed the mass flux the volume is capable of
passing, nor can it exceed the mass flux which the volume immediately below it is
capable of passing”).

The gap between the layered model and its assumed original model, the Solid
Flux Theory based mass balance equations (2.165)(2.166)(2.167), with only a con-
vection term (∂Fl

∂z ), is indeed quite large. It is well known (e.g. [93], [73] and
also Section 2.9.5) that a large number of “layers” (typically larger than 100)
are necessary to obtain a satisfactory approximation of hyperbolic systems like
(2.165)(2.166)(2.167) or plug flow reactor models (2.149)(2.150) that basically
behave like delay systems (see also section 2.10), while a lower number of “lay-
ers” are necessary for approximating correctly parabolic systems with second or-
der derivatives like the modified settler model (2.190) here below or the axial dis-
persion model (2.133)(2.135)(2.136). In practice, a limited number of layers are
usually considered in the application of the layered model. This, combined with
the flux limitation, contributes to make the layered model closer to a model with
the second order derivatives (as proposed in the modified version of the settler
model). Strangely, the bad level of approximation of the original model (i.e. a
selection of not enough layers for a good approximation) results to a simulation
model that tends to mimic and therefore behaves closer to a model that is able to
emphasize the spatial gradient in settlers. This probably explains at least partially
the popularity of the layered models in numerical simulation applications. We see
therefore that the original model has been approximated in order to obtain a model
that behaves more closely to the physical reality, but the connection of the resulting
model with the original model is difficult to see. This renders even more difficult
the interpretation of the resulting model with respect to the physical phenomenon
that it is supposed to describe. It further motivates to go back to the basic physical
phenomena to build physically sound models.

As we have just said, although the model proves quite successful in applica-
tions, the physical basis of the model is questionable. As clearly shown by Jepps-
son ([133], there is no rigourous connection between the layered settler model and
the “convection-type” Kynch theory derived model. The main problem is that the
flux limitation should be inherently connected to the mass balance, and not intro-
duced in the lumped model after the approximation procedure. In other words, the
question could be formulated as follows: is it possible to derive the mass balance
model such that a limitation of flux is implicitly included (i.e. a consequence of
the structure of the physical model)?

A possiblesolution to the above question and to that of the presence of spatial
gradient in settlers is indeed to introduce a second order derivative term with re-
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FIG. 2.20. Layered settler scheme.

spect toz in the mass balance model. A possible interpretation of such a term is
that it represents diffusion following Fick’s law. This type of term is largely used
e.g. in chemical engineering to emphasise non perfect plug flow hydrodynamics
and the presence of “back-mixing” effects in reactors like fixed-bed reactors. In
such a case, the fluxF is written as follows:

F = uX + νX − Da
∂ X

∂z
(2.189)

and the mass balance model becomes:

∂ X

∂t
= −u

∂ X

∂z
− ∂(νX)

∂z
+ Da

∂2X

∂z2
(2.190)

Let us now explain why this is a possible solution to introduce a spatial gradient
in the settler model. In order to keep the line of reasoning as simple as possible, let
us assume that the settling velocityν is constant (this assumption is only needed
for this purpose, and this does not mean that we imposeν to be constant in the
settler model).

Let us then calculate the steady state solution (i.e. when∂ X
∂t = 0) of the PDE

equation with the second order derivative term. The above assumption (constant
ν) allows us to have an analytical solution of the steady state (it is indeed its main
merit). In steady state, the mass balance equation then becomes:

Da
d2X

dz2
− (u + ν)

d X

dz
= 0 (2.191)

Let us consider here the following boundary conditions3:

3These have been chosen in accordance with the physical reality, but will not be very useful in
practice for simulating the model, because it requires the values of the sludge concentrations at the
settler’s input and output.
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FIG. 2.21. Identification of model (2.193) with experimental data.

X(z = H) = XR, X(z = 0) = Xi (2.192)

whereXR and Xi are the sludge concentrations at the output and at the input of
the settler, respectively. Then the analytical solution has the following form:

X(z) = 1

1 − e
u+ν
Da

H
[(Xi (e

u+ν
Da

z − e
u+ν
Da

H
) − XR(e

u+ν
Da

z − 1)] (2.193)

Note that the above steady state expression ofX depends explicitly on the spatial

z (e
u+ν
Da

z) in accordance with the experimental evidence (accumulation of sludge
from the top to the bottom of the settler). This is illustrated on one typical steady
state data set (from a cylindrical laboratory settler from the CEIT (San Sebastian,
Spain) [253]): Figure 2.21 presents the results of the identification of the model
equation (2.193) via a Levenberg-Marquardt identification routine compared to
the data. The identification procedure gives the following value to the parameter:

u + ν

Da
= 0.0772 (2.194)

It is worth noting that the above suggested approach is in line with a number of
recent works in the area. A similar model with a dispersion term is also considered
in [109]. The report of Vanrolleghemet al. [260] is dealing with the parameter
identification of such a model. And another approach which results in a model
which has some similarities is considered by Cacossa and Vaccari [46]. In their
paper, the authors consider the following settling velocity expression:

ν = νm(1 − 1

K

∂ X

∂z
) (2.195)

whereνm andK are the maximum settling velocity and the compressibility func-
tion, respectively. Then the dynamical model of the settler is written as follows:
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∂ X

∂t
= −u

∂ X

∂z
− νm

∂ X

∂z
+ νm

K
(
∂ X

∂z
)2 + νm

K
X

∂2X

∂z2
(2.196)

Here again a second order derivative term with respect toz has been introduced in
the model.

The settler model equation (2.190) has only been considered to draw attention
to the fact that with a second order derivative term with respect to z, a gradient in
the sludge concentration can be emphasised. This is its prime advantage, but we
do not suggest modelling settler dynamics using this format for, because it has at
least two drawbacks to be feasible in more general practical situations.

1. The settling dynamics with respect toX are linear (ν is constant): all the
models proposed in the literature are nonlinear.

2. The boundary conditions are not very convenient, at least for numerical sim-
ulation (indeed the values of the concentrations at both inputs and outputs
of the settler are needed to solve the equations, while the objective should
be to be able to predict one (and also the distribution inside the settler) from
the other). That’s why we suggest to use, in line with those used for non
completely mixed reactors (see Section 1.5.2), the following boundary con-
ditions:

X(z = 0) = Xi ,
∂ X

∂z
(z = H) = 0 (2.197)

A clarifier/sedimentation model.By using the arguments considered above, we
can derive a model that combines the clarification and sedimentation aspects in the
settler. The model derivation is based on Figure 2.22. It is also a one-dimensional
model with respect to space. An important question is that of the boundary con-
ditions at the inlet. Because the model considers only one dimension (vertical),
the interface corresponding to the inlet can be considered as homogeneous. If we
denote byX1 and X2 the sludge concentration in the settler and in the clarifier,
respectively, the mass balance equations for clarifiers/settlers with constant cross
sections are written as follows:

• Settler

∂ X1

∂t
= − FR + FW

Ase

∂ X1

∂z
− ∂(ν1X1)

∂z
+ Da

∂2X1

∂z2
(2.198)

∂ X1

∂z
= 0 for z = H1 (2.199)

Da
∂ X1

∂z
= FR + FW

Ase
(X1 − Xi ) − νi Xi + ν1X1 for z = 0 (2.200)

• Clarifier

∂ X2

∂t
= − Fin − FW

Ase

∂ X2

∂z
− ∂(ν2X2)

∂z
− D′

a
∂2X2

∂z2
(2.201)
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∂ X2

∂z
= 0 for z = H2 (2.202)

D′
a
∂ X2

∂z
= Fin − FW

Ase
(X2 − Xi ) − νi Xi + ν2X2 for z = 0 (2.203)

In line with other works [154], [281], we have introduced the flexibility of the
potential existence of different dispersion coefficients for the clarifier and for the
settler.

Determination of the sludge blanket height.There is still an important variable:
the sludge blanket heighthb. The easiest way is to calculate it as the location
where the concentrationX becomes larger than a certain threshold value when
starting from the top of the settler. One possible alternative to determine it has
been proposed by Stehfest [241]. It is based on the following line of reasoning (the
technical mathematical details are extensively discussed in [241]). Let us consider
the mass balance equation (2.165) around the interface liquid/solid, and integrate
it with respect to the spatial coordinatez (with za andzb (unknown) on each side
of hb):

d

dt

∫ zb

za

Xdz= F(X(zb)) − F(X(za)) (2.204)
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If the concentrationX− and X+ are the values ofX for z → hb from below and
above, then the above equation becomes:

dhb

dt
= F(X+) − F(X−)

X− − X+
(2.205)

The computation ofhb also requires the knowledge ofX− andX+. These are given
by mass balance equations for the quantities of biomass above and belowhb. In
order to have a simple operational model, the biomass concentrations are assumed
to be homogeneous in both zones. This means that the quantities of biomass in
the zones above and belowhb are equal to(H − hb)Xa andhbXb. After some
mathematical manipulations, the dynamical model for determininghb proposed
by [241] has the following form:

d Xa

dt
= 1

H − hb
(F(Xi ) − F(Xa)) (2.206)

d Xb

dt
= 1

hb
(F(Xa) − F(X0) + (Xb − Xa)

F(Xa) − F(X−)

Xa − X−
(2.207)

dhb

dt
= F(Xa) − F(X−)

X− − Xa
(2.208)

with:
X− = min(Xb, X∗

1), X0 = max(Xb, X∗) (2.209)

whereX∗
1 and X∗ are the steady-state values defined in Figure 2.19 and Section

2.5.4 (subsection “steady-state curves of the settler model”).

2.6 Linear vs Nonlinear Models
Up to now we have introduced a number of models, and we have formalised all
the models based on mass balance in one general dynamical model framework,
for stirred tank reactors on one hand, and for non completely mixed reactors on
the other hand. In Section 1.2, we have introduced a brief classification of models.
In particular, we have made a distinction between linear and nonlinear models.
Strictly speaking, what we had considered was the notion of systems linear (or
nonlinear)in the state x and the input u, and also linear (or nonlinear)in the
parameters. Let us illustrate further these notions by an example: let us consider
the simple microbial growth model (2.16) (2.17) repeated below as (2.210) (2.211):

dS

dt
= DSin − DS− 1

Y
µX (2.210)

d X

dt
= −DX + µX (2.211)

With Monod kinetics, the above equations are written as follows:

dS

dt
= DSin − DS− 1

Y

µmaxS

KS + S
X (2.212)
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d X

dt
= −DX + µmaxS

KS + S
X (2.213)

These equations are clearly nonlinear in the state (via the conversion term which
includes the multiplication of two “states”S andX, nd the division by a function
of S, i.e. KS + S). It is also nonlinear in the parametersY, µmax andKS. And if
the dilution rateD is considered as an input, then there is a bilinear term appearing
in both equations:DSandDX, respectively.

Let us consider another viewpoint. For instance, let us consider zero order
kinetics with respect toS for the growth rateρ (= µX in the above equations
(2.210) (2.211)) (because for instance in the considered application, the substrate
concentrationS is large compared to the substrate affinity constantKS). Hence,
the specific growth rateµ can be assumed to be almost constant and equal to
the maximum specific growth rateµmax. This means that the growth rate can be
written as follows:

ρ = µmax (2.214)

and the mass balance equations take the following form:

dS

dt
= DSin − DS− 1

Y
µmaxX (2.215)

d X

dt
= −DX + µmaxX (2.216)

Now the model is linear in the statesS and X. However, it is nonlinear in the
parametersY andµmax (division byY and “multiplication” 1

Y µmax. Yet, by con-
sidering the following (one-to-one) transformation:

θ1 = 1

Y
µmax, θ2 = µmax (2.217)

the model can be rewritten as follows:

dS

dt
= DSin − DS− θ1X (2.218)

d X

dt
= −DX + θ2X (2.219)

which is linear in the parametersθ1 andθ2. (Note that we could have used the same
argument with the Monod kinetics mass balance model if the problem had been to
estimate the parameters1

Y andµmax under the assumption thatKS is known, albeit
that this model remains nonlinear in the states.)

Finally, assume that the operating conditions are such that the dilution rateD
is fixed and that the influent substrate concentrationSin can be manipulated, then
Sin is the system input andD can be considered as a parameter: this implies that
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the model is also linear in the input. Then the model (2.218)(2.219) can be written
in the linear model framework:

d

dt

(
S
X

)
=
(−D − θ1 0

θ2 −D

)(
S
X

)
+
(

D
0

)
Sin (2.220)

The objective of the above discussion is motivated by the following arguments:

• on one hand, as suggested above, the models used in biological wastewater
treatment are, generally speaking, nonlinear;

• on the other hand, the tools of system analysis are, generally speaking, much
simpler, easier to apply and/or of larger use for linear systems than for non-
linear ones.

That’s why we shall prefer the use of linear system methods whenever possible,
either because the model is linear in the context of the study or because by a proper
manipulation we have been able to transform the nonlinear model into a linear one.
We have already considered a transformation for the parameters. In other instances,
we might have to use another transformation, the most largely used one consists of
linearising the nonlinear model around some equilibrium point (or steady state).

Finally, it is important to point out that all the analysis results which can be
obtained from a “linearised” model are usually not global (i.e. not valid for all
the values of the variables and parameters) but local: for instance, analysis results
based on a model linearised around some equilibrium points will only be valid
close to these points. Note that even the above proposed parameter transformation
exhibits a singular point: the combination (θ1 = 0, θ2 
= 0) givesY = ∞! And
therefore strictly speaking the transformation is one-to-one except at that singular
point.

2.7 Equilibrium Points, Linearisation and Stability Analysis

An equilibrium point (or steady state) of a dynamical model is, by definition, a
constant state, i.e. its time derivative is equal to zero. If we consider the general
dynamical model (2.100), the equilibrium points (that we shall denoteξ̄ ) are such
that:

dξ̄

dt
= 0 (2.221)

This implies that equilibrium points are solutions of the algebraic equation:

−D̄ξ̄ + Yρ(ξ̄ ) + F̄ − Q(ξ̄ ) = 0 (2.222)

for given constant values of̄D and F̄ of the dilution rateD and of the feed rates
F . The problem of calculating the equilibrium pointsξ̄ of a biological wastewater
treatment process whose dynamics are described by equations (2.100) is that of
solving equation (2.222). The latter has no general analytical solution and can
only be solved in specific applications.
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Furthermore an important feature of (bio)chemical processes is that they can
exhibit multiple steady states, i.e. several solutions to (2.222) exist. Let us illustrate
this via the simple microbial growth model with different kinetic models (first
order, Monod, and Haldane).

2.7.1 First Order Kinetics

Let us consider the mass balance model (2.215) (2.216) of the preceding section:

dS

dt
= DSin − DS− 1

Y
µmaxX (2.223)

d X

dt
= −DX + µmaxX (2.224)

which, as we already said, is linear. As a consequence, there will be no multiple
equilibrium points, i.e. to one set of values of (D̄, S̄in) corresponds one and only
one set of values of̄S and X̄. Indeed the equilibrium points are here the solution
of the equations:

0 = D̄S̄in − D̄S̄− 1

Y
µmaxX̄ (2.225)

0 = −D̄ X̄ + µmaxX̄ (2.226)

The equilibrium point is then given by the following expressions:

S̄ = D̄

D̄ + 1
Y µmax

S̄in (2.227)

X̄ = k0

D̄ + 1
Y µmax

S̄in (2.228)

2.7.2 Monod and Haldane Kinetics

Let us recall the dynamical mass balance equations of the simple microbial growth
process (2.13) (2.14):

dS

dt
= DSin − DS− 1

Y
µX (2.229)

d X

dt
= −DX + µX (2.230)

The equilibrium points are therefore the solutions of the following set of algebraic
equations:

0 = D̄S̄in − D̄S̄− 1

Y
µ̄X̄ (2.231)

0 = −D̄ X̄ + µ̄X̄ (2.232)

From the second equation, we note that there are two possible solutions:
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1. X̄ = 0
2. µ̄ = D̄

The first equilibrium point corresponds to thewash-outsteady state:

X̄ = 0, S̄ = S̄in (2.233)

It corresponds to a wash-out of the biomass from the reactor. It can occur for any
value ofD̄ andS̄in . It is also the only possible equilibrium point whenD̄ > µmax.
It is obvious that wash-out is undesirable and should be avoided as far as possible
in practice.

The second equilibrium point corresponds to operational steady states. Expres-
sions of the specific growth rate are necessary to obtain explicit expressions of the
equilibrium points. Let us consider two typical specific growth rate expressions.

Monod kinetics. The operational steady state equationµ̄ = D̄ with Monod kine-
tics is written as follows:

µmaxS̄

KS + S̄
= D̄ (2.234)

We can deduce the following equilibrium point from the above equation and the
steady state equation (2.231) ofS̄:

S̄ = D̄KS

µmax − D̄
(2.235)

X̄ = Y(Sin − S) = Y(Sin − D̄KS

µmax − D̄
) (2.236)

Note in particular that the steady state of the substrate concentrationS̄ is indepen-
dent of the influent substrate concentrationS̄in . This property is indeed generic for
any model of the specific growth rate whichonly depends on the substrate con-
centration. (Exercise: calculate the steady states of the simple microbial growth
process with Tessier and with Contois specific growth rate models, and compare
the results.)

Haldane kinetics. For the Monod kinetics we have obtained two possible equi-
librium points: one wash-out steady state, and one operational steady state. Let us
now consider the same microbial growth process but with Haldane kinetics (2.43).
There is still obviously a wash-out equilibrium point. As suggested in Figure 2.5,
there are now two operational equilibrium points (instead of one with the Monod
model). Indeed the equation̄µ = D̄ with the Haldane model is written as follows:

µmaxS̄

KS + S̄+ S̄2

Ki

= X̄ (2.237)
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Therefore the steady state valueS̄ is the solution of the following equation:

D̄

Ki
S̄2 + (D̄ − µmax)S̄+ K̄S = 0 (2.238)

and the two solutionsS1 andS2 in Figure 2.5 are equal in steady state to:

S̄1 = (µmax − D̄)Ki

2D̄
− Ki

2D̄

√
(µmax − D̄)2 − 4D̄2 KS

Ki
(2.239)

S̄2 = (µmax − D̄)Ki

2D̄
+ Ki

2D̄

√
(µmax − D̄)2 − 4D̄2 KS

Ki
(2.240)

The above two operational equilibrium points have fundamentally different dy-
namical properties in terms of stability. This is what we shall briefly analyse in
Section 2.7.4. However since the analysis is based on a linearised model of the
process, we shall first introduce the linearised tangent model of nonlinear models.

2.7.3 Linearised Tangent Model of Nonlinear Models

Let us consider a nonlinear dynamical model:

dx

dt
= f (x, u) (2.241)

wherex is the state vector andu the input vector. The equilibrium point(s) are the
values ofx̄, the solution of:

0 = f (x̄, ū) (2.242)

for constant values of̄u. The derivation of the linearised tangent model around the
steady statēx is based on the Taylor series’ expansion of the functionf around
this steady state forx andu.

Let us define the deviation variablesx̃ andũ:

x̃ = x − x̄, ũ = u − ū (2.243)

The Taylor series expansion off aroundx = x̄ andu = ū is equal to:

f (x, u) = f (x̄, ū)+∂ f (x̄, ū)

∂x
x̃+∂ f (x̄, ū)

∂u
ũ+ 1

2!
∂2 f (x̄, ū)

∂x2
x̃2+ 1

2!
∂2 f (x̄, ū)

∂u2
ũ2+...

(2.244)
If we stop the expansion at the first order derivative and we consider the deviation
state variablẽx, the nonlinear dynamical model (2.241) can be rewritten under the
following linear form:

dx̃

dt
= Ax̃ + Bũ (2.245)
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with:

A = ∂ f (x̄, ū)

∂x
, B = ∂ f (x̄, ū)

∂u
(2.246)

The above model (2.245)(2.246) is the linearised tangent model of the nonlinear
model (2.241). (It is indeed tangent of the nonlinear model at the equilibrium point
x̄).

As a matter of illustration, let us apply the above linearisation procedure to the
simple microbial growth process equations (2.16) (2.17). Assume that the specific
growth rate is, generally speaking, a function ofSandX (µ(S, X)), andD andSin

are both inputs. Then the linearised tangent model around operational equilibrium
pointsS= S̄andX = X̄ (µ̄ = D̄!) is equal to:

d

dt

(
s̃
x̃

)
=
(−D̄ − 1

Y µ̄SX̄ − 1
Y (D̄ + µ̄X X̄)

µ̄SX̄ 0

)(
s̃
x̃

)
+
(

D̄ S̄in − S̄
0 −X̄

)(
s̃in

d̃

)
(2.247)

with:

s̃ = S− S̄, x̃ = X − X̄, s̃in = Sin − S̄in, d̃ = D − D̄ (2.248)

µ̄S = ∂µ(S̄, X̄)

∂S
, µ̄X = ∂µ(S̄, X̄)

∂ X
(2.249)

For the Haldane model for instance:

µ̄X = 0, µ̄S = µmax(KS − S̄2

Ki
)

(KS + S̄+ S̄2

Ki
)2

(2.250)

and the state matrixA is then equal to:

A =
(−D̄ − 1

Y µ̄SX̄ − 1
Y D̄

µ̄SX̄ 0

)
(2.251)

2.7.4 Stability of Equilibrium Points

Stability theory of dynamical systems is a very old subject. Yet, significant ad-
vances in the stability analysis are due to the Russian mathematician Lyapunov
(1892), whose results were largely confined to Eastern European countries until
about 1960. Lyapunov’s first method [284] utilises the eigenvalues of the state ma-
trix A of the linear model (2.245) to check the stability of the equilibrium state.
Recall that the eigenvaluesλ of a square matrixA are the roots of the characteristic
polynomial:

det(λI − A) = 0, I : identity matrix (2.252)

If the real parts of all the eigenvalues are negative, the equilibrium point is stable.
If any of the real parts of the eigenvalues are positive, the equilibrium is unstable.
No conclusion can be drawn in case of eigenvalues having zero real parts.
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Let us apply the analysis to the simple microbial growth model with Haldane
kinetics. Let us calculate the characteristic polynomial of the linearised tangent
model state matrix (2.251):

det(λI − A) = λ2 + (D̄ + 1

Y
µSX̄)λ + 1

Y
µSX̄ D̄ (2.253)

A necessary and sufficient condition for a second order polynomial to have roots
with all negative real parts is that all the coefficients of the polynomial have the
same sign. This means that here in order to have stability,D̄+ 1

Y µ̄SX̄ and 1
Y µ̄SX̄ D̄

must be positive. If we recall the value ofµ̄S (2.250), this condition will be fulfilled
if and only if S̄ <

√
KSKi , i.e. for S1 in Figure 2.5. Conversely, the equilibrium

point S̄2 will be unstable sincēS >
√

KSKi , and (at least) one coefficient in the
polynomial will be negative.

This is a quite interesting feature of the Haldane model that it is able to em-
phasise the possible presence of unstable steady states. These states might be of
practical interest in industrial applications but are not reachable without any appro-
priate external control. It is clearly a major issue in automatic control to regulate
and stabilise processes around equilibrium points which are open-loop (i.e. with-
out external action) unstable (see e.g. [14]).

2.8 A Key State Transformation

The key result of this section is the introduction of a state transformation by which
part of the dynamical model (2.100) becomes independent of the reaction kinetics
ρ (see [14], [56]). This transformation will play a very important role in the design
of asymptotic observers (Chapter 7). The proposed transformation readily derives
from the notion of invariants in reaction systems (see e.g. [95], [86]).

2.8.1 Definition of the State Transformation

The transformation is defined as follows. Let us denote rank(Y) = R and consider
a state partition (in which the state vector is decomposed in two sub-vectorsξa and
ξb):

ξ =
[

ξa

ξb

]
(2.254)

whereξa contains R (arbitrarily chosen) process variables andξb the others, but
such that the corresponding submatrixYa is full rank (rank(Ya) = R). Let us define
the state transformation into the auxiliary variableζ (dim(ζ ) = N-R):

ζ = Caξa + Cbξb (2.255)

whereCa andCb are solutions of the matrix equation:

CaYa + CbYb = 0 (2.256)
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In the particular (but quite general) situation of M independent irreversible reac-
tions, then R = M andCb may be chosen to be a full rank square matrix (the
simplest choice being obviously the identity matrixI ). ThenCa is found from

Ca = −CbYbYa
−1 (2.257)

Let us illustrate the dynamics ofζ from the General Dynamical Model (2.100)
or (2.132)(2.133) and the definition (2.255). Note that the vectorsF , Q, D are
partitioned according to the partitioning of the state vectorξ .

1) Single reactor: D = scalar

dζ

dt
= −Dζ + Ca(Fa − Qa) + Cb(Fb − Qb) (2.258)

2) Multi-reactor: D = matrix

dζ

dt
= −(CbDbb + CaDab)C

−1
b ζ + Ca(Fa − Qa) + Cb(Fb − Qb)

+[(CbDbb + CaDab)C
−1
b − CbDba − CaDaa]ξa (2.259)

with:

D =
(

Daa Dab

Dba Dbb

)
(2.260)

3) Fixed bed reactor

For simplicity reasons, let us consider hereCb = I and let us put the vector
ξ f i of the fixed components inξb:

ξb =
(

ξbf

ξ f i

)
(2.261)

Then we can rewrite the auxiliary variableζ as follows:

ζ =
(

ζ f l

ζ f i

)
=
(

ξbf

ξ f i

)
+
(

Ca f

Cae

)
ξa (2.262)

The dynamics ofζ can then be written as follows:

∂ζ f l

∂t
= − Fin

A

∂ζ f l

∂z
+ Dam

∂2ζ f l

∂z2
(2.263)

∂ζ f i

∂t
= − Fin

A
Cae

∂ξa

∂z
+ DamCae

∂2ξa

∂z2
(2.264)

Note that the dynamical equations ofζ (2.258), (2.259) and (2.263)(2.264) are
independent of the reaction kineticsρ(ξ).
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2.8.2 Example 1: Two Step Denitrification

Let us consider as a first example the denitrification process described by equations
(2.99). One possible choice for the state partition is the following:

ξa =
(

X
N2

)
, ξb =

⎛⎝ SN O3

SN O2

S

⎞⎠ (2.265)

Indeed, the submatricesYa andYb are then equal to:

Ya =
(

1 1
0 Y6

)
, Yb =

⎛⎜⎝− 1
Y1

0

Y3 − 1
Y2− 1

Y4
− 1

Y5

⎞⎟⎠ (2.266)

andYa is full rank (sinceY6 is by definition strictly positive). If we consider the
simplest possible choice forCb (= I ), thenCa is equal to:

Ca = −YbY−1
a =

⎛⎜⎝
1
Y1

− 1
Y1Y6

−Y3
Y2Y3+1

Y2Y6
1
Y4

Y5−Y4
Y4Y5Y6

⎞⎟⎠ (2.267)

Therefore the auxiliary variableζ is equal to:

ζ =
⎛⎝ ζ1

ζ2
ζ3

⎞⎠ =
⎛⎜⎝ SN O3 + 1

Y1
X − 1

Y1Y6
N2

SN O2 − Y3X + Y2Y3+1
Y2Y6

N2

S+ 1
Y4

X + Y5−Y4
Y4Y5Y6

N2

⎞⎟⎠ (2.268)

and its dynamics are written as follows:

d

dt

⎛⎝ ζ1
ζ2
ζ3

⎞⎠ = −D

⎛⎝ ζ1
ζ2
ζ3

⎞⎠+
⎛⎜⎝ DSN O3,in + 1

Y1Y6
QN2

−Y2Y3+1
Y2Y6

QN2

DSin − Y5−Y4
Y4Y5Y6

QN2

⎞⎟⎠ (2.269)

Remark: all the above calculations are based on an arbitrary choice of the state
partitionξa, ξb. Many other choices would have been appropriate. For instance we
could have considered the first two entries of the state vector, i.e.SN O3 andSN O2

for ξa and the other forξb, and this would have resulted in the following state
transformation:

ζ =
⎛⎝ ζ1

ζ2
ζ3

⎞⎠ =
⎛⎝ S− Y1(Y5+Y2Y3Y4)

Y4Y5
SN O3 − Y2

Y5
SN O2

X + Y1(1 + Y2Y3)SN O3 + Y2SN O2

N2 + Y1Y2Y3Y6SN O2 + Y2Y6SN O3

⎞⎠ (2.270)

It is important to remember that the time evolution of these auxiliary vari-
ables can be calculated without knowledge of the reaction kinetics, i.e. without
any requirement concerning the knowledge about its model structure and/or its
parameters.
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2.8.3 Example 2: Activated Sludge Process: The Basic Model

As already mentioned, the basic activated sludge process model is a two-tank re-
actor model, with a dilution rate matrixD.

There is one reaction:ξa will be a scalar. Let us for instance considerX for
ξa (note that we could also have takenS or SO but not XR). Then we have the
following state partition:

ξa = X, ξb =
⎛⎝ S

SO

XR

⎞⎠ (2.271)

This means that the different entriesDaa, Dab, Dba andDbb of the matrixD are
equal to:

Daa = D1, Dab = (
0 0 −D2

)
(2.272)

Dba =
⎛⎝ 0

0
−D3

⎞⎠ , Dbb =
⎛⎝ D1 0 0

0 D1 0
0 0 D4

⎞⎠ (2.273)

The matricesYa, Yb andCa are equal to:

Ya = 1, Yb =
⎛⎜⎝− 1

YS

− 1
YO

0

⎞⎟⎠ , Ca = −YbY−1
a =

⎛⎜⎝ 1
YS
1

YO

0

⎞⎟⎠ (CB = I ) (2.274)

i.e. ζ is equal to:

ζ =
⎛⎜⎝ S+ 1

YS
X

SO + 1
YO

X
XR

⎞⎟⎠ (2.275)

2.8.4 Example 3: Activated Sludge Process: The IWA Activated Sludge Model
No. 1

A careful look at the reaction network of the IWA Activated Sludge Model No. 1
reveals that there is a loop with reactions 1, 4 and 7. Indeed the readily biodegrad-
able substrateSS is transformed in reaction 1 in heterotrophic bacteriaXB H , which
in turn is transformed in the decay reaction 4 in slowly biodegradable substrateXS.
And in reaction 7XS is hydrolysed inSS.

This reaction loop has an important consequence on the above state transforma-
tion. Indeed the process components and reactions are not completely independent
from each other. This means that not any choice of state partition will give a full
rankYa. For instance, if one takes the first 8 components forξa, the relatedYa will
be singular, since row 7 will be a linear combination of rows 1 to 4 and row 6, or
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in other words, in terms of reaction kinetics,SN O is a linear combination ofSS,
XS, XB H , XB A andSO.

A possible choice for the state partition is to take the first 6 components inξ

(2.107) plusSN H andSN D for the subvectorξa:

ξa =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

SS

XS

XB,H

XB,A

XP

SO

SN H

SN D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ξb =

(
SN O

XN D

)
(2.276)

Ya =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
YH

− 1
YH

0 0 0 0 1 0
0 0 0 1− fP 1 − fP 0 −1 0
1 1 0 −1 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 fP fP 0 0 0

−1−YH
YH

0 −4.57−YA
YA

0 0 0 0 0

−i X B −i X B −i X B − 1
YA

0 0 1 0 0
0 0 0 0 0 −1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.277)

Yb =
(

0 − 1−YH
2.86YH

1
YA

0 0 0 0 0
0 0 0 i X B − fPi X P i X B − fPi X P 0 0 −1

)
(2.278)

Then the matrixCa is equal to:

Ca =
(

c1 c1 c2 c2 c3
1

2.86 0 0
c4 c4 c5 c5 c6 0 1 1

)
(2.279)

with

c1 = YH

2.86
(−1 − YH

YH
+ 1.71− YA

YA
) (2.280)

c2 = 1.71− YA

2.86YA
(2.281)

c3 = (1 − fP)(YA − 1.71YH ) + 1.71YA

2.86 fPYA
(2.282)

c4 = YH

YA
(2.283)

c5 = i X B + 1

YA
(2.284)
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c6 = 1 − YH + fP(YH − YAi X P)

fPYA
(2.285)

and the auxiliary variablesζ are written as follows:

ζ =
(

SN O + c1(SS + XS) + c2(XB,H + XB,A) + c3XP + 1
2.86SO

XN D + c4SS + c4XS + c5XB,H + c5XB,A + c6XP + SN H + SN D

)
(2.286)

2.8.5 Example 4: Fixed Bed Reactor Model With a Growth Reaction and a
Death/Detachment Reaction

Let us consider for instance the following state partition:

xa =
(

S
Xd

)
, xb =

(
P
X

)
(2.287)

The matricesYa andYb are equal to:

Ya =
(− 1

YS
0

0 1

)
, Yb =

(
YP 0
ε

1−ε
− ε

1−ε

)
(2.288)

Therefore the matrixCa is equal to:

Ca = −YbY−1
a =

(
YSYP 0

YSε
(1−ε)

ε
1−ε

)
(2.289)

ζ is then equal to:

ζ =
(

P + YPYSS
X + YSε

(1−ε)
S+ ε

1−ε
Xd

)
(2.290)

2.9 Model Order Reduction

The examples of bioprocesses presented in the preceding sections have shown that
a bioreactor dynamical model may be fairly complex in some instances and involve
a large number of differential equations. But there are many practical applications
where a simplified reduced order model is sufficient from an engineering view-
point. One possible systematic approach to achieve model simplification is to use
the singular perturbation method, which is a technique that allows to transform a
set ofn + m differential equations into a set ofn differential equations and a set of
m algebraic equations. It is based on the partition of the state equations into two
sets of dynamical equations characterised by the variablesx1 andx2, of dimension
n-m and m, respectively, i.e.:

dx1

dt
= f1(x1, x2, u) (2.291)
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δ
dx2

dt
= f2(x1, x2, u, δ) (2.292)

i.e. the time derivative of some of the state variables are multiplied by a small para-
meterδ (also sometimes called the perturbation parameter). For sufficiently small
parameterδ, the parameterδ can considered as being negligible, and the singu-
lar perturbation consists of settingδ to zero, and to replace then + m differential
equations (2.292) by algebraic equations:

f2(x1, x2, u, δ) = 0 (2.293)

More precisely, ifx̄2 is the solution of the above algebraic equation, then the model
(2.291)(2.292) is replaced by the following set of equations:

dx1

dt
= f1(x1, x̄2, u) (2.294)

x̄2 = g(x1, u) (2.295)

The model (2.294) is sometimes called aquasi-steady statemodel, which is often
considered for instance in (bio)chemical engineering, e.g. [37], [114], [255].

This technique is suitable when neglecting the dynamics of products with low
solubility in the liquid phase or of substrates in fast reactions. The method will be
illustrated with two specific examples (low solubility product, and substrates in a
fast reaction) before stating the general rule for order reduction.

2.9.1 Singular Perturbation Technique for Low Solubility Products

Let us consider a reaction described by the following reaction scheme:

S −→ P (2.296)

where P is a volatile product which can be given off in gaseous form and has
low solubility in the liquid phase (e.g.H2 in anaerobic digestion). The dynamical
model is as follows:

dS

dt
= −ρ − DS+ DSin (2.297)

d P

dt
= Yρ − DP − Q (2.298)

For the consistency of this model, the product concentrationP can be expressed
with respect to the saturation concentration representative of the product solubility
as follows:

P = �Psat, 0 ≤ �(t) (2.299)

wherePsat is the saturation concentration which is constant in a stable physico-
chemical environment. The model (2.297)(2.298) is rewritten in the standard sin-
gular perturbation form, withδ = Psat:

dS

dt
= −ρ − DS+ DSin (2.300)
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δ
d�

dt
= Yρ − δD� − Q (2.301)

If the solubility is very low, we obtain a reduced order model by settingδ = 0 and
replacing the differential equation (2.301) by the algebraic one:

Q = Yρ (2.302)

2.9.2 Singular Perturbation Technique for Substrates of Fast Reactions

Singular perturbation can also be applied to reduce the order of the model dynam-
ics for reactors with fast and slow reactions. For simplicity we shall concentrate on
an example, i.e. the nitrification process which is characterised by the following
two sequential reactions (2.85) (2.86) repeated below as (2.303)(2.304):

SN H −→ X1 + SN O2 (2.303)

SN O2 −→ X2 + SN O3 (2.304)

The dynamics in a CSTR are given by the following equations:

dSN H

dt
= − 1

Y1
ρ1 + DSN H,in − DSN H (2.305)

dSN O2

dt
= − 1

Y2
ρ2 + Y3ρ1 − DSN O2 (2.306)

dSN O3

dt
= Y4ρ2 − DSN O3 (2.307)

d X1

dt
= ρ1 − DX1 (2.308)

d X2

dt
= ρ2 − DX2 (2.309)

In line with the basic kinetics rules (Section 2.2.6), the reaction ratesρ1 andρ2
can be written as follows:

ρ1 = k1Sα1
N Hφ1(SN H, X1, SN O2) (2.310)

ρ2 = k2Sα2
N O2

φ2(SN O2, X2, SN O3) (2.311)

whereki (i = 1, 2) are the maximum reaction rates,αi (i = 1, 2) are coefficients
(which might be the reaction orders), andφi (i = 1, 2) positive functions of the
state (φi > 0). Assume now that the first reaction is slow and the second one is
fast. This can be formalised by considering that the maximum reaction rate of the
second reactionk2 is much larger than the one of the first reactionk1:

k2 � k1 (2.312)

Let us now consider the following state transformation (the general formulation is
given in [255]):

ζ1 = Y4Y2SN O2 + SN O3 (2.313)
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ζ2 = Y2SN O2 + X2 (2.314)

Then we can rewrite the process dynamics as follows:

dSN H

dt
= − 1

Y1
ρ1 + DSN H,in − DSN H (2.315)

dSN O2

dt
= − 1

Y2
ρ2 + Y3ρ1 − DSN O2 (2.316)

dζ1

dt
= Y2Y3Y4ρ1 − Dζ1 (2.317)

d X1

dt
= ρ1 − DX1 (2.318)

dζ2

dt
= Y2Y3ρ1 − Dζ2 (2.319)

The choice of the above transformation can be briefly intuitively motivated as fol-
lows. First, the second equation (2.316) is the only one that still contains the kinet-
ics of both reactions, while the other four equations only contain the reaction rate
of the slow reaction. Secondly the auxiliary variablesζ1 andζ2 are the algebraic
sum ofSN O2 (i.e. the “intermediate” component: product of the first reaction, and
substrate of the second), and of the products of the second (fast) reaction,SN O3

andX2 respectively.
Let us define the singular perturbationδ as the inverse of the maximum reaction

ratek2:

δ = 1

k2
(2.320)

By considering the expression (2.311) and the singular perturbation parameterδ,
the dynamical equation ofSN O2 can be rewritten as follows:

δ
dSN O2

dt
= − 1

Y2
Sα2

N O2
φ2(SN O2, X2, SN O3) + δY3ρ1 − δDSN O2 (2.321)

If the second reaction is sufficiently fast, then we can apply the singular perturba-
tion and setδ to zero. This implies that the above equation reduces to:

1

Y2
Sα2

N O2
φ2(SN O2, X2, SN O3) = 0 (2.322)

SinceY2 andφ2 are strictly positive, this implies:SN O2 = 0. Then by recalling
the definition ofζ , the equations (2.315)(2.317)(2.318)(2.319) of the dynamical
model can be rewritten as follows:

dSN H

dt
= − 1

Y1
ρ1 + DSN H,in − DSN H (2.323)
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dSN O3

dt
= Y2Y3Y4ρ1 − DSN O3 (2.324)

d X1

dt
= ρ1 − DX1 (2.325)

d X2

dt
= Y2Y3ρ1 − DX2 (2.326)

i.e. it is as if the two sequential reactions (2.303)(2.304) have been reduced to one
reaction:

SN H −→ X1 + X2 + SN O3 (2.327)

2.9.3 A General Rule for Order Reduction

The above examples show that the rule for model simplification is actually very
simple and that an explicit singular perturbation analysis is not really needed. Con-
sider that, for somei , the dynamics of the componentξi are to be neglected. The
dynamics ofξi are described by equation (2.100):

dξi

dt
= −Dξi + Yi ρ + Fi − Qi (2.328)

whereYi is the row ofY corresponding to the componentξi . The simplification
is then achieved by settingξi anddξi /dt to zero i.e. by replacing the differential
equation (2.328) by the following algebraic equation:

Yi ρ = −Fi + Qi (2.329)

It has been shown that the above model order reduction rule is not only valid
for low solubility products but also for bioprocesses with fast and slow reactions.
Then the above order reduction rule (2.329) applies to substrates of fast reactions
(as long as they intervene only in fast reactions) (see [255] for further details).

Note the close connection between the singular perturbation reduction and the
quasi steady state (QSS) approximation, which is largely used in (bio)chemical
engineering. This suggests the following comment: singular perturbation can be
viewed as an efficient mathematical tool to rigourously justify QSS approxima-
tions on a systematic basis via an appropriate analysis (including the choice of an
appropriatesmallperturbation parameter).

The above considerations also apply to models with other hydrodynamics, like
the fixed bed reactor models with or without dispersion, mutatis mutandis, i.e. by

setting the different derivative (∂xi
∂t , ∂xi

∂z , ∂2xi
∂z2 ) of the low solubility product or of

the “fast substrate” to zero in its mass balance equation.

2.9.4 Example: the Anaerobic Digestion

Let us see how to apply the above model order reduction rule (2.329) to a specific
example, the anaerobic digestion. First of all, it is well-known that methane is a low
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solubility product. Therefore the above procedure applies. Furthermore, assume
that the second methanisation path (hydrogen consumption) is limiting, i.e. that
the first three reactions (2.53)(2.54)(2.55) are fast and the fourth one (2.56) is
slow. We can then apply the model order reduction rule (2.329) to the the glucose
concentrationS1, the propionate concentrationS2, the acetate concentrationS3
and the dissolved methane concentrationP1. By setting their values and their time
derivatives to zero:

S1 = S2 = S3 = P1,
dS1

dt
= dS2

dt
= dS3

dt
= d P1

dt
= 0 (2.330)

we reduce their differential equations to the following set of algebraic equations:⎛⎜⎜⎜⎝
− 1

Y21
0 0 0

Y41 − 1
Y42

0 0

Y61 Y62 − 1
Y63

0
0 0 Y03 Y04

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

ρ1
ρ2
ρ3
ρ4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−DSin

0
0

Q3

⎞⎟⎟⎠ (2.331)

By inverting the submatrix of the yield coefficients of the left hand side of (2.331),
we can express the reaction ratesρ1, ρ2, ρ3 andρ4 as functions of the feedrate
DSin and of the gaseous methane outflow rateQ3:

ρ1 = Y21DSin (2.332)

ρ2 = Y21Y41Y42DSin (2.333)

ρ3 = (Y41Y42Y62 + Y61)Y21Y63DSin (2.334)

ρ4 = 1

Y04
Q3 − Y03

Y04
(Y41Y42Y62 + Y61)Y21Y63DSin (2.335)

Let us replace the reaction ratesρ1, ρ2 andρ4 by their above expressions (2.332),
(2.333), (2.335) in the dynamical equation of the hydrogen concentrationS4, which
is then rewritten as follows:

dS4

dt
= −DS4 − Q1 − Y1Q3 + Y2DSin (2.336)

whereY1 andY2 are defined as follows:

Y1 = 1

Y84Y04
(2.337)

Y2 = Y81Y21 + Y82Y21Y41Y42 + Y03

Y04Y84
(Y41Y42Y62 + Y61)Y21Y63 (2.338)

Note that the coefficientsY1 andY2 are nonlinear combinations of the yield coef-
ficientsYi j .
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2.9.5 Specific Approach for Model Reduction of PDE Models

The model reduction of PDEs is also a key question in dynamical modelling, es-
timation and control. In Section 2.5, we have already suggested that the fixed bed
reactor is often approximated by a sequence of STRs. Here we shall present two
approaches (singular perturbation, and Laplace transform) which also allow the
connection to be made between the PDE model of fixed bed reactors to STR mod-
els. The two approaches are used to reduce theinfinite-dimensionalDistributed
Parameter Systems (DPS) tofinite-dimensionallumped parameter models.

Application of the Singular Perturbations to the Fixed Bed Reactor Model.Here
the perturbation method is used in a somewhat different perspective as before (see
also [289], [72], [32]). A small parameterδ is also introduced, but here the appli-
cation of the perturbation method is based on an asymptotic expansion of the state
variables in powers ofδ, see [148]:

x(z, t) =
∞∑

i =0

δi xi (z, t) (2.339)

wherexi (z, t) represent the approximation of the variablex(z, t) at order i (as we
shall see here below, the order 0 in the approximation of the axial dispersion model,
for instance, corresponds to the STR model). The approximation methods are often
referred to (but the terminology is not uniform in the literature!) asperturbation
methodswhen the series expansion is convergent (or is expected to converge), and
asasymptotic methodswhen the series is divergent but asymptotic (so that the first
few terms yield a good approximation for very low values ofδ). It is a generally
admitted viewpoint that proving that the series is either convergent or asymptotic
is not essential. Also, it is a general property of asymptotic series that finding
additional terms not necessarily improves the approximation since the series is
generally divergent. As the perturbation parameterδ decreases, the approximation
provided by the series gets better. Thus a key assumption in the following is thatδ

is very small (see e.g. [290], [25]).
As explained e.g. in [270], the axial dispersion model (presented in a general

form (2.132) (2.133)) is an intermediate model between two “extreme” models:
the STR model and the plug flow reactor model. For highly diffusive reactors, the
behaviour of the axial dispersion reactor tends to the one of a STR, while for low
dispersion coefficients, the axial dispersion model tends to a plug flow model.

In the following, we shall consider fixed bed reactors in which the mass dis-
persion may be assumed as being very important:Dma is very large (with respect
to uL). Let us define the parameterδ as the (dimensionless) mass Peclet number
Pem:

δ = Pem = uL

Dma
(2.340)
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Before going any further, note that the singular perturbation will only apply to the
variablesx f l : therefore in order to keep the notations as simple as possible, the
index f l will be dropped in the following. Moreover, we shall compact the writing
of the conversion term by definingY = 1−ε

ε
Yf l .

Then the equations (2.133)(2.135)(2.136) become:

δ
∂x

∂t
= uL

∂2x

∂z2
+ δ(−u

∂x

∂z
+ Yρ) (2.341)

∂x

∂z
= − δ

L
(xin − x) for z = 0 (2.342)

∂x

∂z
= 0 for z = L (2.343)

By using singular perturbation techniques, away from the boundary layer, the sol-
ution of (2.341) is given by:

x(z, t) =
∞∑

n=0

δnxn(z, t) (2.344)

ρ(x) =
∞∑

n=0

δnρn(x0, x1, ..., xn) (2.345)

with:

ρ0(x0) = ρ(x0), ρ1(x0, x1) = (
∂ρ

∂x
)(x0)x1 (2.346)

The differential equations for the different termsx0, x1 of the expansion (2.344)
(2.345) are thus obtained by substituting these expansions in the equations (2.341)
(2.342) (2.343) and equating the terms of the same power inδ, so we have:

• zero order approximation:

∂2x0

∂z2
= 0 for 0 ≤ z ≤ L (2.347)

∂x0

∂z
= 0 for z = 0 andz = L (2.348)

• first order approximation :

uL
∂2x1

∂z2
= u

∂x0

∂z
+ ∂x0

∂t
− Yρ0 for 0 ≤ z ≤ L (2.349)

∂xo
1

∂z
= 1

L
(x0 − xin) for z = 0 (2.350)

∂x1

∂z
= 0 for z = L (2.351)
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• approximation of order n ≥ 2:

uL
∂2xn

∂z2
= u

∂xn−1

∂z
+ ∂xn−1

∂t
− Yρn−1 for 0 ≤ z ≤ L (2.352)

∂xn

∂z
= 1

L
xn−1 for z = 0 (2.353)

∂xn

∂z
= 0 for z = L (2.354)

By integrating the equation (2.347)-(2.348) with respect to the spatial coordinate
z, we obtain:

x0(z, t) = x0(t) (2.355)
dx0

dt
= u

L
(xin − x0) + Yρ(x0) (2.356)

The equations (2.355)-(2.356) show that the first term in the approximation, say
x0, is independent on the spatial coordinate z, and consequently, for the zero-order
approximation, the process behaves like a stirred tank reactor. So singular per-
turbation when applied to PDEs also allows the reduction of the PDE fixed bed
reactor model to a STR model and emphasises the connection between both types
of models on a systematic basis.

2.10 Connection Between Plug Flow Reactors and CSTRs: A Laplace Trans-
form Approach

Laplace transform can be a very interesting tool for transforming a linear dis-
tributed parameter model into a lumped parameter one. One of its advantages is
that it is an exact lumping method and does not involve any approximation. How-
ever, it may look difficult to generalise the approach, especially for nonlinear sys-
tems, since the Laplace transform is basically applicable to linear systems only. Let
us just illustrate the use of Laplace transform in a simple example: the dynamics
of the substrate’s concentration in a plug flow reactor where a first order reaction
takes place. As we shall see, the Laplace transform will be helpful in systematising
the physically admitted idea that if the input is the influent substrate concentration
and the output the effluent substrate, then the process basically behaves like the
combination of a stirred tank and a time delay (due to the transport of the substrate
from the reactor input to the reactor output) (see also [105]).

The dynamics of the reactant concentrationC is described by the following
equation:

∂C

∂t
= −u

∂C

∂z
− k0C (2.357)

(wherek0 is the kinetic constant), with the following boundary condition:
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C(z = 0, t) = Cin(t) (2.358)

Let us consider the Laplace transform of C(z,t) with respect to timet :

L[C(z, t)] = C(z, s) (2.359)

Let us apply the Laplace transform to the above equation in which we neglect the
initial conditionsC(z, t = 0) = 0:

sC(z, s) = −u
∂C
∂z

− k0C (2.360)

which can be rewritten as follows:

∂C
∂z

= −s + k0

u
C (2.361)

The solution of the above differential equation (in the independent variablez) is
equal to:

C(z, s) = C(0, s)e−(s+k0)z/u (2.362)

which can be rewritten as follows:

C(z, s) = e−sz/u[F(z, s)] (2.363)

F(z, s) = C(0, s)e−k0z/u (2.364)

If one recalls the shift property of the Laplace transform, we can notice that the
above equation is characterised by a time delay z/u. Indeed:

L[ f (z, t − z

u
)] = e−sz/u[F(z, s)] (2.365)

Moreover, if we consider the boundary condition (2.358), the functionF(z, s) is
rewritten as follows:

F(z, s) = Cin(s)e−k0z/u (2.366)

The above equations (2.363)(2.366) can be used e.g.

1. to calculate time responses
For instance, if the initial state is assumed to be zero (C(t = 0, z) = 0), the
response to a stepCin1+(t) is equal to:

C(z, t) = 0 for t <
z

u
(2.367)

= Cine−k0z/u for t ≥ z

u
(2.368)
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2. to compare the plug flow reactor model with the CSTR one
Then it is first worth noting that the equation (2.366) is also the expression
of the equilibrium state ofC(z, t) for Cin constant, i.e. the solution of:

0 = −u
∂C

∂z
− k0C (2.369)

Let us compare this expression with the steady state value ofC(t) in a
CSTR, which is the solution of the following equation:

0 = F

V
(Cin − C) − k0C (2.370)

i.e.

C̄ = Cin

1 + k0V
F

(2.371)

It is worth noting that by definition:

F

V
= u

L
(2.372)

We note then that there is a great similarity between both expressionse−k0L/u

and 1

1+ k0V
F

at the reactor outputz = L. Note in particular that both expres-

sions have the same first order term in the Taylor series expansion:

1 − k0L

u
(2.373)

This similarity is illustrated in Figure 2.23, where the expressionse−k0L/u

and 1

1+ k0V
F

have been drawn. This illustrates the analogy, in that specific case

(when the input is the influent concentration), between the plug flow reactor
and the CSTR + a time delay.

The above simple example illustrates the advantage of the Laplace transform
to study the properties of distributed parameter models and to reduce them ex-
actly to lumped parameter models. It also emphasises the possible limitations of
the method. For instance how can we extend the above results to more complex
dynamics, e.g. for nonlinear kinetics?

2.11 Conclusions

This chapter has been dedicated to mass balance modelling. Starting from sim-
ple examples, we have emphasised the two basic items in mass balance models in
WWTP: transport dynamics, and conversion. We have also used the notion of reac-
tion schemes as a basis for modelling, and illustrated the concept via a number of
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FIG. 2.23. Steady state functions of the CSTR and the plug flow reactor.

WWTP examples. We introduced the General Dynamical Model; this formalism is
rather similar to the tabular format (Petersen matrix) used for the IWA model. The
General Dynamical Model format is convenient for algebraic manipulations, as has
already been illustrated in the present chapter via the state tranformation of Section
2.8 (which will be used later to design software sensors for process monitoring)
and the model order reduction approach of Section 2.9. We have illustrated dy-
namical modelling by using several examples of wastewater treatment processes:
anaerobic digestion, activated sludge process (basic model and IWA model), two
step nitrification, two step denitrification.

Other examples like waste stabilisation ponds (lagoons) and soil decontamina-
tion could also have been considered. A model of detoxification is given in Chapter
7 (Section 7.4.4) in the context of model building of the reaction network indepen-
dently of the process kinetics, via the use of the asymptotic observers introduced
in that chapter. A full study, from model building to parameter identification, of
a lagoon is presented in Bonvillain [31] and Grégoireet al. [106]. The model is
derived from mass balance considerations by considering three types of microor-
ganisms (micro-algae, aerobic bacteria, anaerobic bacteria) working at different
depths in the pond. The resulting model contains 36 parameters, but only 3 vari-
ables (temperature, dissolved oxygen and light intensity) were available for mea-
surement. Gŕegoireet al. [106] summarizes the identification results for the model
parameters, which is clearly a challenging issue and has therefore to be very care-
fully performed. With that respect, the results presented in Grégoireet al. [106]
are illustrative and exemplary of a situation largely encountered in parameter iden-
tification of WWTP.
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We would also like to mention the possibility of including alkalinity in anaer-
obic digestion models via the introduction of electro-chemical equilibrium equa-
tions [223]. A complete study from model building to parameter identification has
been performed in the context of an EEC project (AMOCO) for a pilot anaer-
obic digester [26] [27] [78]. One interesting point of the study is the design of
experiments for parameter identification: in order to account for the specific con-
straints about the operation of the anaerobic digestion process (the process is rather
slow and sensitive to disturbances that may easily drive the process to instability,
i.e. wash-out), the experiment design for parameter identification has resulted in
a sequence of step changes of the influent flow rate and of the influent substrate
concentration (or equivalently, of the dilution rate and of the organic load with
sufficiently long steady states in between) that basically covers all the operating
regions that the process is expected to face. This experiment design can be viewed
as an alternative strategy to the one presented in Chapter 5.

So far we had considered single stirred tank reactors. In Section 2.5, we have
extended the dynamical models to multi-tank processes, and to non-completely
mixed ones, like fixed bed reactors, fluidised bed reactors, and settlers. In the latter
case, the dynamical equations are described by PDEs (partial differential equa-
tions) instead of ODEs (ordinary differential equations).

Sections 2.6 to 2.10 are dedicated to the dynamical properties of the mass bal-
ance models. In Section 2.6, we have drawn the attention to the difference between
linear and nonlinear models, and to the fact that the same model can even be either
linear or nonlinear depending on the considered input(s) and/or the kinetic mod-
els, for instance. In Section 2.7, we have briefly introduced the concept of stability,
and the multiple steady states in WWTP: for one set of input values, the process
can have different steady states; each of these steady states can even correspond to
different stability characteristics, i.e. they can be either stable or unstable. Section
2.8 has introduced a key state transformation that will be very useful to analyse
the process model and to design software sensors. Section 2.9 was concerned with
a systematic approach for model order reduction (the singular perturbation ap-
proach) applied to ODE models as well as to PDE models. Finally, Section 2.10
has considered the use of the Laplace transform as a tool for comparing plug flow
reactor models and CSTR models.
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Structure Characterisation (SC)

3.1 Introduction

As mentioned in the first chapter, Structure Characterisation (SC) is a key step
in the model building exercise (see also Figure 1.1 in Chapter 1). After a chapter
on mass balance modelling, the present chapter will be concerned with structure
characterisation. The objective is to infer the level of model complexity (dimension
of the state vector...) and to determine relationships between variables; this can
also be viewed, in other words, as a selection of the best model structure among
different model structure candidates on the basis of experimental data.

Finding the “true model”MT (ST , PT ) with model structureST and parameters
PT is utopian. Rather one must aim at finding – from a finite set ofN noisy data
points – the partial descriptions that are purposeful within the application [159].
Settling for the best possible modelM(SN, PN), however, induces an error that
has two components:

MT (ST , PT ) − M(SN, PN) = [MT (ST , PT ) − M(SN, P∗)]
+[M(SN, P∗) − M(SN, PN)] (3.1)

The first term is due to the error between the true model structureST and the model
structureSN chosen from the set of candidate models with restricted complexity.
This so-calledbias errorreflects the unmodelled dynamics [104]. The second com-
ponent, thevariance error, is caused by the particular realisation of the noise in

c© 2001 IWA Publishing. Dynamical Modelling and Estimation in Wastewater Treatment Processes
by Denis Dochain and Peter Vanrolleghem. ISBN: 1 900222 50 7
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the limited number of data used in the system identification. Each data set will
result in different parameter estimatesPN that will only tend to the realP∗ (for
this structure) when there is no noise or when the number of data points tends to
infinity. This variance error also includes the effect of the overparametrisation: the
more parameters included in the model, the more uncertain their values will be.

Typically the variance error decreases like 1/N, but increases likep, with p
the number of parameters in the model structure, a measure of its complexity.
The bias error, on the other hand, will decrease asp increases, but is independent
of N [157], [159]. Hence, as the aim is to obtain the model structure giving the
lowest total error, the goal of model structure characterisation will be to find the
compromise between bias error and variance error.

This chapter is organised as follows. Section 3.2 starts with the introduction
of a model used in respirometry that we shall consider as a case study throughout
Chapters 3, 4 and 5. Section 3.3 is dedicated to the presentation of the methods for
structure characterisation, basically gathered in a priori and a posteriori methods.
Finally, in Section 3.4, we shall deal with optimal experiment design for structure
characterisation.

3.2 A Model Case Study

Let us consider the following candidate models that we shall build on the basis
of on-line measurements of the oxygen uptake rate via a respirometer ([74]). The
considered respirograms are indeed representative of the biodegradation kinetics
in the WWTP, and the objective is to identify a kinetic model from the data of the
respirometer. Recall that the model considered here expresses the dependence of
the exogenous oxygen uptake rateOU Rex on the biodegradation of k substrates
Si present in the mixed liquor:

OU Rex =
k∑

i =1

(1 − Yi )rSi (3.2)

In the above expression,Yi (the yield coefficient) is the fraction of pollutantSi

which is not oxidised but converted into new biocatalystX, andrSi is the rate of
consumption ofSi . The experiments that we shall consider are performed in batch
conditions. In these conditions (andonly in these conditions! Recall what has been
said in Chapter 2, Section 2.2.1), we can write:

dSi

dt
= −rSi (3.3)

The four types of wastewater/sludge interaction that have been included in the set
of candidates of model structure are:
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Type 1 (Exponential): One pollutant, first order kinetics (k=1)

dS1

dt
= −kmax1X

Y1
S1 = −rS1 (3.4)

Type 2 (Single Monod): One pollutant, Monod kinetics (k=1)

dS1

dt
= −µmax1X

Y1

S1

KS1 + S1
= −rS1 (3.5)

Type 3 (Double Monod): Two pollutants simultaneously degraded without mutual
interaction, double Monod kinetics (k=2)

dS1

dt
= −µmax1X

Y1

S1

KS1 + S1
= −rS1 (3.6)

dS2

dt
= −µmax2X

Y2

S2

KS2 + S2
= −rS2 (3.7)

Type 4 (Modified IWA activated sludge model No. 1) [233]: 3 pollutants, 2 hy-
drolysed into the first substrate which is used for growth according to the Monod
kinetics (k=1)

dS1

dt
= −µmax1X

Y1

S1

KS1 + S1
+ kr Xr + ksXs = −rS1 + kr Xr + ksXs (3.8)

d Xr

dt
= −kr Xr (3.9)

d Xs

dt
= −ksXs (3.10)

Note that nitrification and its associated oxygen consumption have not been in-
cluded in this case study. Thekmax1, µmaxi (i = 1, 2) andkj (j = r, s) are rate
constants, and theKSi (i = 1, 2) are the affinity constants expressing the depen-
dency of the degradation rate on the concentration of pollutantSi (i = 1, 2). Recall
also that the experiments on which the model identification is to be based, are per-
formed in such a way that the change in biomass concentration can be assumed
negligible (i.e.d X

dt = 0) (which is a fair assumption providedS(t=0) << X(t=0)),
that the oxygen uptake rate data are only due to exogenous (= substrate induced)
respiration (OU Rex), i.e. endogenous respiration is either assumed negligible or is
eliminated from the data, and that the oxygen concentration is always maintained
above 2mg/L so that oxygen is never limiting.

The aim is to select between the above biodegradation models via measure-
ments of the oxygen uptake rateOU R, as these characterise substrate degradation.
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3.3 Structure Characterisation Methods
In this section a variety of objective decision tools will be introduced that enable
to find the trade-off between bias and variance error. The picture of approaches,
methods and results of structure characterisation (SC) is very diverse and scattered
over several scientific disciplines. Although a number of studies have evaluated
different SC techniques, none of them has resulted in a clear recommendation on a
definitely superior method [6], [65], [146], [166], [239]. With the above case study,
an analogous exercise was devoted to decide on a SC technique most adapted to
the problem at hand. To illustrate the fact that this step of model building is not as
mature as, for instance, parameter estimation, we use this case study to also show
how new SC methods can be developed. A number of these are specific to the
candidate models used in this case study, but others are potentially more generally
applicable.

The SC techniques have been classified according to their impact on the total
time needed for a model identification (i.e. model selection + parameter estima-
tion).

1. Most existing methods for SC evaluate the quality of the different model
structures after fitting each model to the data. Hence, these methods can be
termeda posteriori SC[262].

2. Methods capable of selecting a model without the need of first estimating
the parameters belong to the other class, thea priori SCtechniques.

In view of the observation that parameter estimation of the nonlinear bioprocess
models that are dealt with here takes considerable computing time (see Chapter 6),
it is clearly advantageous to apply a priori methods, since they will only require
the estimation of the parameters of the a priori selected model.

3.3.1 A Priori SC

The approach of a priori SC has also been termed model structure selection based
on preliminary data analysis and has been reported to be an underdeveloped field
[159].

Two groups of methods can be discerned: one type of method is generally
applicable, while the other SC methods take advantage of specific features of the
model structures present in the set of candidate models.

General Methods. The pattern recognition capabilities of neural networks [229]
have incited a study on their applicability as SC technique. Details on the method
developed for the case study can be found elsewhere [272], but the main princi-
ples are summarised here (Figure 3.1): A three-layer recurrent neural net archi-
tecture receiving preprocessed data was used. Different data preprocessing algo-
rithms were tested, all aiming to perform data reduction (to decrease the number of
input nodes to the neural net classifiers) without loss of structure specific informa-
tion. The learning stage was performed with 750 training-patterns obtained from
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FIG. 3.1. Training and application stages of a neural net used for model selection.

Monte Carlo simulations of the different candidate models with different para-
meter values and initial conditions. Once the net was trained to recognise the most
appropriate model, it could be used on new (preprocessed) data. The results for the
case study are discussed below.

A next method that can be applied stems from recent developments in iden-
tification of linear state space models. Numerical algorithms for Subspace State
Space System Identification (N4SID, read asenforce it) combine the estimation of
the order of the state with the identification of the system matrices, but, in contrast
to traditional identification schemes, the order is estimated first [257]. This aspect
of this data-driven approach may be useful for non-linear models as well. Clearly,
for the case study for instance, one cannot expect that N4SID will give a direct
measure of the number of substrates to be included or the degradation mechanism
involved. Rather it can be hoped that the order computed by the algorithm enables
differentiation among the models. The order is determined on the basis of the num-
ber of non-zero singular valuesSV in a matrix H composed of the following Block
Hankel matrices containing “past” (Yp) and “future” (Yf ) data:

Yp =

⎛⎜⎜⎜⎝
OU R1 . . . OU Rj

OU R2 . . . OU Rj +1
...

...

OU Ri . . . OU Rj +i

⎞⎟⎟⎟⎠ (3.11)
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Yf =

⎛⎜⎜⎜⎝
OU Ri +1 . . . OU Rj +i

OU Ri +2 . . . OU Rj +i +1
...

...

OU R2i . . . OU Rj +2i

⎞⎟⎟⎟⎠ (3.12)

Different H-matrices can be evaluated:

H = Yf YT
p (3.13)

H = Yf YT
p (YpYT

p )−1Yp (3.14)

H = L−T
f Yf YT

p L−1
p (3.15)

with L f andL p Cholesky factorisations ofYf YT
f andYpYT

p .
The choices ofi and j are important:j must be as large as possible (for the

case studyj was setN − 2i ); i must be much smaller thanj , but larger than the
largest model order expected (i was set 10). For the case study the best results were
obtained with the first form ofH and singular values considered 0 when below 0.1:
type 1 models were selected ifSV � 2; type 2 ifSV = 2 and type 3 ifSV � 2.

Specific Methods. Structure characterisation on the basis of so-called parameter
invariant model features has been advocated, but has found little application due to
the difficulty in finding such features from the models under consideration. Indeed,
from the data one must find a characteristic that is independent of the parameters
of the corresponding model. For instance, we look for features which are scale in-
dependent. For the candidate models in the case study, such features can be found
[259]: the number of inflection points is 0, 1 and 3 for models of type 1, 2 and 3
respectively (see also Figure 3.2). Though this is analytically correct, the determi-
nation of inflection points on noisy data is not straightforward. However, using a
moving window regression method in which linear and quadratic regressions are
compared with an F-test, the significance of the second derivative can be assessed,
leading to a more reliable estimate of the number of inflection points.

Another model-specific approach applicable to the case study consists of fitting
an exponential function, a hyperbolic tangent function and a Double hyperbolic
tangent function to the data and comparing the resulting sum of square residuals
(SSR). In other words, this a priori method for selecting among the biodegradation
models is in fact an a posteriori method with respect to the Exp/Tanh/Double Tanh
candidate model set. However, these models can be fitted much faster than the
biokinetic models. SSR ratios larger than 10 were found necessary before a more
complex model was accepted.

A third method developed for the models of the case study is based on the ratio
between the area below theOU Rex versus time data (and the square formed by the
(OU Rex,max, tmax) and (0, 0) corners). Some preprocessing of theOU Rex data
is performed prior to the determination of this criterion: first, the zero-tail (Figure
3.2) is cut from the data-set using a t-test on the mean value of a data-window and,
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second, the reducedOU Rex, t-dataset is scaled to the unit square. Type 1 data
have the lowest area(� 0.3) and type 2 the largest area(� 0.5) under the curve
(Figure 3.2). These threshold values for the areas enable the selection among the
candidate models type 1, 2 and 3 [259].

These examples of specific methods illustrate that one can devise effective
methods for structure characterisation, but this requires special insight in the mod-
els to be selected.

3.3.2 A Posteriori SC

Most methods described in this section have found more widespread application.
In some applications they seem less appropriate because they may become very
time-consuming, especially as the number of candidate models increases. How-
ever, it is not inconceivable that a SC strategy is devised in which a priori methods
are used to make up a first ranking of the different structures, after which a post-
eriori methods are called in order to make the final selection among the structures
with the highest ranking. In that context, time constraints on the model building
process and the selection reliability can be sufficed.

Criteria with Complexity Terms. The criteria on which most of the a posteriori
SC methods are based take one of the following two forms [232]:

SSR

N
[1 + β(N, p)] (3.16)

Nlog

(
SSR

N

)
+ γ (N, p) (3.17)

with SSRthe sum of squared residuals, andN andp as defined before. ForN � p
one can show that both representations are equivalent if [232]:

γ (N, p) = Nβ(N, p) (3.18)

For both cases, the first term decreases with increasingp (increasing complex-
ity) while the second term penalises too complex (overparametrised) models. The
model structure with the smallest criterion value is selected. Different authors have
proposed several functional forms for the model selection criteria depending on a
theoretical starting point. The two best-known are the Final Prediction Error (FPE),
with [159]:

β(N, p) = 2p

N − p
(3.19)

and Akaike’s Information Criterion (AIC), with

γ (N, p) = 2p (3.20)

FPE and AIC have been proven not to be consistent (i.e. they do not guarantee that
the probability of selecting the wrong model tends to zero as the number of data
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points tends to infinity) [140]. However, this disadvantage is compensated by the
fact that AIC and FPE enjoy certain properties that allow the determination of good
prediction models in case the true model does not belong to the set of candidate
models [232].

An example of a consistent criterion is the Bayesian Information Criterion
(BIC) in which [6], [228]:

γ (N, p) = p log(N) (3.21)

If p ≥ 8, it can easily be seen that BIC will tend to favour models of lower com-
plexity than those chosen by AIC. Another consistent criterion is LILC where
[110]:

γ (N, p) = p log(log(N)) (3.22)

Criteria that Assess Undermodelling.Goodwinet al. [104] decomposed the total
error between the true model and a candidate model into three components:

• the effect of the variance of the particular noise realisation

• the effect of the parameter errors due to the noise present in the identification
data

• the effect of the undermodelling, corresponding with the bias term in (3.1).

Their General Information Criterion, GIC, is defined as:

GIC(N, p) = σ̂ 2
v + p

N
σ̂ 2

v + undermodelling (3.23)

In this equation it is essential to have an estimate of the residual errorσv
2 that is

independent of the undermodelling error. Goodwinet al. [104] obtained this by
fitting a high-dimensional model (assuming it to be the true model) and using the
residual variance as an estimate. In the case study of this chapter, such a model
is not available, but, fortunately, the zero-tail end of theOU Rex-dataset can be
used forσ 2

v estimation since this part of the data is characterised by the absence of
biological dynamics [263]. As a result, the variance of this part of the data can be
used for an accurate estimate of the residual error. Using the similarities shown by
the authors between the expected value of FPE and GIC [104], it is even possible
to write an explicit formula for the undermodelling term [259]:

undermodelling= SSR

N
−
(
σ̂ 2

v + p

N
σ̂ 2

v

) N − p

N + p
(3.24)

Structure characterisation is then performed by selecting the model with the lowest
undermodelling value.
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FIG. 3.2. IllustrativeOU Rex-data.

Statistical Hypothesis Tests.The F-test is probably the most frequently applied
method to choose among model structures. The statistical test(

SSRi − SSRj
)
/
(
pj − pi

)
SSRj /

(
N − pj

) (3.25)

is compared with theF(pj − pi , N − pj ) distribution to decide whether the more
complex modelj is significantly (with a confidence levelα) better than modeli .
The similarities that exist between F- andχ2-tests and the equivalence between
the AIC/FPE criteria and F-tests with a prespecified significance level have been
shown [232].

Diagnostic Checking (Analysis of Residuals).When modelling, some assump-
tions are made concerning the properties of the noise. In most cases, the prediction
errorsε(t) are assumed to be a realisation of independent random variables with
zero mean and a defined distribution. Then, the quality of a model can be assessed
by analysis of the properties of the calculated residuals. Two approaches can be
used to check the independence of the residuals (white noise property): the auto-
correlation and the run test. The autocorrelation test [232] is based on the fact that
the correlation function for a white noise sequenceε(t):

r̂ε(τ ) =

N−τ∑
t=τ

ε(t − τ)ε(t)

N − 2τ

N∑
t=1

ε2(t)

N

(3.26)

is zero except forτ = 0. Structure characterisation with these tests is performed
by selecting the model whose residuals are as white as possible. Two statistical
tests are suggested to make objective decisions on the whiteness of the residuals.

• One test compares the correlation for each lagτ (3.26) with the limit value
N(0,1)√

N
, which forα = 0.05 means that only 5 % of theautocorrelations may
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FIG. 3.3. Typical model fitting results for three models to a “Double Monod” style data
set.

be larger than1.96√
N

. In Figure 3.3, an example taken from the case study, the

residuals for the three models fitted to a typical type 3 dataset are given. In
Figure 3.4 the corresponding autocorrelation function for lagsτ = 0 to 20
is depicted. Clearly, the residuals for models 1 and 2 are highly dependent,
while for model 3 only the first 4 correlations (20 %) are significantly higher
than the prescribed level (indicated by the horizontal lines). Hence, the resid-
uals do not originate from a white noise sequence, indicating some unmod-
elled dynamics. Looking into some more detail to the residuals of model 3
(Figure 3.3), one distinguishes an oscillatory pattern, probably causing the
significant autocorrelation.

• The other autocorrelation test compares a combination of the firstm covari-
ances:
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FIG. 3.4. Normalised covariance function of the residuals for the models in figure 3.3.

N

r̂ 2
ε (0)

m∑
i =1

r̂ 2
ε (i ) (3.27)

with theχ2(m) distribution giving a significance level for the independence
of the residuals [159].

Another residuals test is a so-called non-parametric test in which the number
of runs R, calculated easily as the number of sign changes in the sequence of
residuals, is evaluated against the expected number of runs,N/2 [232]. To assess
the significance of a deviation from this number the statistical test

R − N
2√

N/2
(3.28)

can be compared withN(0, 1). A posteriori SC with this method selects the model
with the statistical test closest to zero or the simplest model with a non-significant
statistical test.

Results for the Case Study.The different SC methods introduced above were
evaluated on the basis of 8 typical real-lifeOU Rex-datasets [259]. Only the type 1,
2 and 3 models were included in the candidate model set. In Table 3.1 the selected
models are compared with the advice of a human expert. Dataset 4 is difficult to
classify since it could be considered very close to both a type 1 and type 2 model.
Hence, both were considered correct.

Except for the N4SID method, all a priori SC methods produced very good se-
lection results. Among them, the Tanh and neural net approaches may be preferable
considering the noisy data which may cause problems in estimating the number of
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Table 3.1 Model selected on the basis of different a priori and a posteriori SC methods.
The results are compared with the advice of a human expert (figures in bold indicate “right”
choice, underfit and overfit refer to the complexity of the selected model compared to the
choice of the expert)

Method of Structure Dataset Evaluation
Characterisation 1 2 3 4 5 6 7 8 underfit overfit correct
N4SID 1 3 2 1 2 2 2 2 3 1 4
Neural Net 3 2 3 1 3 2 3 2 0 1 7
Inflection points 1 2 3 2 3 2 3 2 0 0 8
Tanh 1 2 3 1 3 2 3 2 0 0 8
OU Rex-Area 1 2 3 3 3 2 3 2 0 1 7
AIC 3 3 3 3 3 3 3 3 0 5 3
FPE 3 3 3 3 3 3 3 3 0 5 3
BIC 3 3 3 3 3 3 3 3 0 5 3
LILC 3 3 3 3 3 3 3 3 0 5 3
Undermodelling-GIC 1 2 3 1 3 2 3 2 0 0 8
F-test 3 3 3 3 3 3 3 3 0 5 3
Autocorrelation 1 2 3 2 3 2 3 3 0 1 7
Run-test 1 2 3 3 3 2 3 3 0 2 6
Human Expert 1 2 3 2(1) 3 2 3 2 - - -

inflection points. Neural nets have an additional advantage as a potentially general
tool for a priori SC.

For the a posteriori methods, an important finding was that all “information”
criteria, i.e. AIC, FPE, BIC and LILC, with the notable exception of GIC, result
in overfitting of the model compared to the “expert advice”. This is probably due
to the oscillations that can be observed in theOU Rex-data (see Figure 3.2 and
the residuals in Figure 3.3). Since the more complex models possess sufficient
flexibility, some of these oscillations can be modelled. This reduces the residual
error to such an extent that any penalty for model complexity is compensated for.
As the observed oscillations cannot be explained by any biological process and
are probably due to some hardware dependent process which is not of interest to
the user, this “parasite process” should be eliminated from the data before model
identification is initiated.

The F-test also suffers from the modelling of the parasite processes super-
imposed on the biological response. For the GIC-based method, these overfitting
problems were nonexistent because the effect of the oscillations is included in the
estimate of the variance (from the zero-tail). In this way only the undermodelling
of the biological phenomena is retained leading to model selections congruent with
the observation of the human expert.
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