8. Codes Related to GRS Codes

Alternant Codes

• Let $\mathbb{F} = \mathbb{F}_q$ and let $\mathcal{C}_{\text{\tiny{GRS}}}$ be an $[N,K,D]$ GRS code over $\Phi = \mathbb{F}_{q^m}$. The set of codewords of C_{GRS} with coordinates in \mathbb{F} , is called an *alternant code,* $\mathcal{C}_{\rm alt}=\mathcal{C}_{\rm GRS}\cap\mathbb{F}^N.$ *For a PCM* $H_{\rm GRS}$ *of* $\mathcal{C}_{\rm GRS}$ *, we have*

$$
\mathbf{c}\in\mathcal{C}_{\mathrm{alt}}\quad\iff\quad\mathbf{c}\in\mathbb{F}^N\;\text{and}\;H_{\mathrm{GRS}}\mathbf{c}^T=\mathbf{0}.
$$

This is also called a *sub-field sub-code*.

Alternant Codes

$$
H_{\text{GRS}} = \begin{pmatrix} v_1 & v_2 & \dots & v_N \\ v_1 \alpha_1 & v_2 \alpha_2 & \dots & v_n \alpha_N \\ v_1 \alpha_1^2 & v_2 \alpha_2^2 & \dots & v_n \alpha_N^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_1 \alpha_1^{N-K-1} & v_2 \alpha_2^{N-K-1} & \dots & v_n \alpha_n^{N-K-1} \end{pmatrix}
$$

• Let $[n, k, d]$ be the parameters of C_{alt} . Clearly, $n = N$, and $d \ge D$; D is called the *designed distance*. Each row of H_{GRS} translates to $\leq m$ independent rows over $\mathbb F$, so

$$
n - k \le (N - K)m = (D - 1)m \implies k \ge n - (D - 1)m
$$

Decoding: can be done with the same algorithm that decodes C_{GRS} .

.

Binary Narrow-Sense Alternant Codes

• Consider $F = \mathbb{F}_2$ and \mathcal{C}_{GRS} narrow sense $(v_j = \alpha_j)$ over \mathbb{F}_{2^m} , with odd D and $n = N \leq 2^m - 1$.

$$
H_{\text{GRS}} = \left(\begin{array}{ccccc} \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \alpha_1^3 & \alpha_2^3 & \dots & \alpha_n^3 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{D-1} & \alpha_2^{D-1} & \dots & \alpha_n^{D-1} \end{array} \right)
$$

For $\mathbf{c} \in \mathbb{F}_2^n$,

$$
\mathbf{c} \in \mathcal{C}_{\mathrm{alt}} \quad \iff \quad \sum_{j=1}^n c_j \alpha_j^i = 0 \quad \text{for} \ \ i = 1, 2, 3, \dots, D-1 \ .
$$

Over
$$
\mathbb{F}_2
$$
,
\n
$$
\sum_{j=1}^n c_j \alpha_j^i = 0 \iff \sum_{j=1}^n c_j \alpha_j^{2i} = 0
$$

Therefore, check equations for even values of i are dependent, and the redundancy bound can be improved to

$$
n-k\leq \frac{(D-1)m}{2}.
$$

Binary Narrow-Sense Alternant Codes

• A more compact PCM for binary narrow-sense C_{alt} :

• Decoding: same as C_{GRS} , but error values not needed \Rightarrow simpler key equation algorithm.

BCH Codes

• Bose-Chaudhuri-Hocquenghem (BCH) codes are alternant codes that correspond to conventional RS codes.

For $\mathcal{C}_{\text{\tiny RS}}: [N,K,D]$ over \mathbb{F}_{q^m} , we have $\mathcal{C}_{\text{\tiny BCH}} = \mathbb{F}_q^N \cap \mathcal{C}_{\text{\tiny RS}}$.

 $H_{\rm RS} =$ $\sqrt{ }$ $\overline{}$ 1 α^{b} α^{2b} \cdots $\alpha^{(N-1)b}$ 1 α^{b+1} $\alpha^{2(b+1)}$ \cdots $\alpha^{(N-1)(b+1)}$ 1 $\alpha^{b+D-2} \alpha^{2(b+D-2)} \cdots \alpha^{(N-1)(b+D-2)}$ ¹ $\overline{}$

As before, when $b=1$, we can eliminate evennumbered rows

• As with RS codes, to obtain a *cyclic* code, we choose N a divisor of $q^m-1.$ More often, we use a shortened code, where $N\leq q^m-1$ is arbitrary. We lose the cyclic property, but all other properties hold.

BCH Codes

For $\mathcal{C}_{\mathrm{RS}} : [N, K, D]$ over \mathbb{F}_{q^m} , $\mathcal{C}_{\mathrm{BCH}} = \mathbb{F}_q^N \cap \mathcal{C}_{\mathrm{RS}}$. $H_{\rm RS} =$ $\sqrt{2}$ $\overline{}$ 1 α^{b} α^{2b} \cdots $\alpha^{(N-1)b}$ 1 α^{b+1} $\alpha^{2(b+1)}$ \cdots $\alpha^{(N-1)(b+1)}$ 1 $\alpha^{b+D-2} \alpha^{2(b+D-2)} \cdots \alpha^{(N-1)(b+D-2)}$ ¹ $\overline{}$ As before, when $b=1$, we can eliminate evennumbered rows

Summary of BCH (and shortened BCH) code definition

- Code of length $1 \le n \le q^m 1$ over \mathbb{F}_q for some choice of m. If we want a cyclic code, we pick m to be the smallest integer such that $n|(q^m-1).$
- Let $\alpha \in \mathbb{F}_{q^m}$ be a primitive element (or of order *n* for a cyclic code).
- $D > 0$, *b*: design parameters

$$
C_{\text{BCH}} = \left\{ c(x) \in (\mathbb{F}_q)_n[x] : c(\alpha^{\ell}) = 0, \ \ell = b, b+1, \ldots, b+D-2 \right\}
$$

- BCH codes are widely used in practice, for example, in flash memories.
- BCH codes are often superior to RS codes on the BSC.

BCH Code Example

We design a BCH code of length $n = 15$ over \mathbb{F}_2 that can correct 3 errors. The code is primitive, of length 15 with roots in \mathbb{F}_{24} .

 \bullet $m=4$.

Notice

- $b = 1$ \implies narrow-sense
- $D = 7$ \implies 3-error correcting
- $n k \leq (D-1)m/2 = 12$
- resulting \mathcal{C}_{BCH} is $[15, \geq 3, \geq 7]$ over \mathbb{F}_2
- Let α be a primitive element of $\Phi = \mathbb{F}_{24}$, which we choose as a root of $p(x) = x^4 + x + 1$ (primitive polynomial).
- a 12×15 binary PCM of the code can be obtained by representing the entries in H_{Φ} below as column vectors in $\mathbb{F}_2^4.$

$$
H_{\Phi} = \begin{pmatrix} 1 & \alpha & \alpha^2 & \dots & \alpha^j & \dots & \alpha^{13} & \alpha^{14} \\ 1 & \alpha^3 & \alpha^6 & \dots & \alpha^{3j} & \dots & \alpha^{39} & \alpha^{42} \\ 1 & \alpha^5 & \alpha^{10} & \dots & \alpha^{5j} & \dots & \alpha^{65} & \alpha^{70} \end{pmatrix}
$$

et hat $\alpha^{15} = 1$, so $\alpha^{39} = \alpha^9$, etc.

BCH Code Example (continued)

• A codeword $\mathbf{c} \in \mathcal{C}_{\text{BCH}}$ satisfies $c(\alpha) = 0$. Therefore,

$$
0 = c(\alpha)^2 = \left(\sum_{i=0}^{n-1} c_i x^i\right)^2 = \sum_{i=0}^{n-1} c_i^2 x^{2i} = \sum_{i=0}^{n-1} c_i x^{2i} = c(\alpha^2).
$$

For the same reason, $c(\alpha) = c(\alpha^2) = c(\alpha^4) = c(\alpha^8) = 0$

- \Rightarrow $M_{\alpha}(x)$, the minimal polynomial of α , divides $c(x)$.
- Similarly for $M_{\alpha^3}(x)$ and $M_{\alpha^5}(x)$.
- Let $q(x) = M_\alpha(x)M_{\alpha\beta}(x)M_{\alpha\beta}(x)$. Then,

 $\mathbf{c} \in \mathcal{C}_{\text{BCH}} \Leftrightarrow q(x)|c(x).$

- $g(x)$ is the generator polynomial of C_{BCH} , which is presented as a cyclic binary code.
- In the example,

$$
M_{\alpha}(x) = x^{4} + x + 1,
$$

\n
$$
M_{\alpha^{3}}(x) = x^{4} + x^{3} + x^{2} + x + 1,
$$

\n
$$
M_{\alpha^{5}}(x) = x^{2} + x + 1.
$$

$$
\Rightarrow g(x) = x^{10} + x^8 + x^5 + x^4 + x^2 + x + 1.
$$

BCH Code Example (continued)

• As with RS codes, we have the polynomial (cyclic) interpretation of BCH codes: $u(x) \mapsto c(x)=u(x)g(x)$, with $u(x) \in \mathbb{F}_2[x]$ (a binary polynomial of degree $\langle k \rangle$, corresponding to a non-systematic *binary* generator matrix

$$
G = \begin{pmatrix} g_0 & g_1 & \dots & g_{n-k} \\ g_0 & g_1 & \dots & g_{n-k} \\ 0 & \ddots & \ddots & \ddots & \vdots \\ g_0 & g_1 & \dots & g_{n-k} \end{pmatrix} (g_{n-k} = 1, k \text{ rows})
$$

- In the example, this representation also implies that $k_{\text{BCH}} = 15 10 = 5$, the rank of G.
- Codes with dimension better than the bound are obtained when some of the minimal polynomials $M_{\alpha i}$ are of degree less than m. This happened, in our example, for M_{α^5} .
- As in the RS case, we can construct a systematic encoder based on $g(x)$ and using a *binary* feedback shift-register.

The [15, 5, 7] BCH code in the example is used for format information in QR codes.

Interleaving and Burst Error Correction

- Interleaving spreads bursts of errors among codewords, so that each codeword is affected by a small number of errors.
- Cost: increased latency

Product codes

Let C_1 and C_2 be $[n_1, k_1, d_1]$ and $[n_2, k_2, d_2]$ (usually RS) codes, resp.

Decoding product codes

- A decoding strategy:
	- Use a (small) part of the C_1 redundancy to correct random errors, and the rest for robust error detection (so that burst errors in rows will be detected with high probability).
	- Mark detected corrupted rows as erased.
	- Use the column code C_2 to correct the erasures (and remaining random errors, if any, and if possible). Recall that erasures are "cheaper" to correct than full errors.
	- Other strategies are possible, including row/column iterations.

Concatenated Codes

- Let $\mathbb{F} = \mathbb{F}_q$ and $\Phi = \mathbb{F}_{q^k}$, $k > 1$.
- Let \mathcal{C}_{out} be an $[N, K, D]$ code over Φ (the *outer code*).
- Let C_{in} be an $[n, k, d]$ code over $\mathbb F$ (the *inner code*).
	- Notice that the dimension k of C_{in} is the same as the extension degree of Φ over \mathbb{F} .
- Represent Φ as vectors in \mathbb{F}^k using a fixed basis of Φ over $\mathbb{F}.$
- A concatenated code \mathcal{C}_{cct} is defined by the following

Encoding Procedure:

Input: A *message* **u** of length K over Φ . **Output:** A *codeword* c_{cct} of length nN over F.

- Step 1: Encode u into a codeword $c_{\text{out}} \in \mathcal{C}_{\text{out}}$.
- Step 2: Interpret each of the N symbols of c_{out} as a word of length k over $\mathbb F$. Encode it with $\mathcal C_{\text{in}}$.

Concatenated Codes

- \mathcal{C}_{cct} has parameters $[n_{\text{cct}}, k_{\text{cct}}, d_{\text{cct}}] = [nN, kK, \geq dD]$ over F.
- As with product codes, different decoding strategies are possible.
	- Typically, we use C_{in} for combined error correction/detection. When errors are detected without correction, the symbol is marked as erased for C_{out} .
	- Then we use \mathcal{C}_{out} to correct erasures and errors. The process may be iterative.
	- Forney's Generalized Minimum Distance decoding can correct up to $(dD-1)/2$ errors.

Concatenated Codes

- \mathcal{C}_{out} is typically taken to be a GRS code.
	- By letting k grow, we can obtain arbitrarily long codes over \mathbb{F}_q , for fixed q .
	- By careful choice of C_{in} , very good codes can be constructed this way.
		- Codes with $R_{\rm cct}$ and $d_{\rm cct}/n_{\rm cct}$ bounded away from zero as $k \to \infty$, which can be constructed explicitly and have efficient encoding/decoding algorithms.
		- Even better, codes that achieve channel capacity for the QSC channel, still with explicit constructions and efficient encoding/decoding algorithms.
	- Variant: use a different C_{in} for each coordinate of C_{out} .
	- Notice that what is exponential in k may be linear in $N: ML$ decoding for C_{in} may be affordable.