Introducción a la modulación

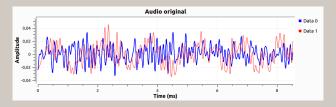
Conceptos clave para el primer parcial

Docentes de TallerInE

Agenda

1 Motivación

2 Modulación

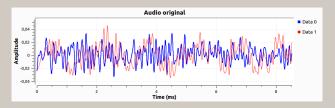

3 Resumiendo

4 Como sigue

Motivación

¿Cómo transmitir señales distintas por un mismo medio?

Dos locutores hablan por un micrófono para dos estaciones de radio diferentes. Si vemos estas señales en el tiempo tenemos algo así:



En este caso, como para la mayoría de los medios de comunicación inalámbricos, el **canal** o **medio físico** que utilizamos es el aire.

Motivación

¿Cómo transmitir señales distintas por un mismo medio?

Dos locutores hablan por un micrófono para dos estaciones de radio diferentes. Si vemos estas señales en el tiempo tenemos algo así:

En este caso, como para la mayoría de los medios de comunicación inalámbricos, el **canal** o **medio físico** que utilizamos es el aire.

¿Cómo viajan a la vez estas dos señales "superpuestas" por el aire sin "chocar"?

¿Cómo podemos identificarlas, separarlas y procesarlas?

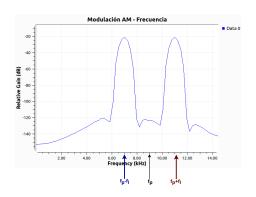
Modulación

Para aprovechar el espectro radioeléctrico se utiliza la modulación, que permite enviar información variada compartiendo un mismo medio inalámbrico.

Podemos distinguir dos partes:

- procesar la información antes de enviarla
- enviar la información a una cierta frecuencia "alta" que llamaremos portadora

En recepción se realiza el proceso inverso: bajar en frecuencia y recuperar la información transmitida a partir de la señal recibida.


La modulación en un sistema de comunicación

Modular y demodular Modulación Procesamiento transmitir por aire Bajar a banda base Procesamiento 4 Demodulación

La portadora: subir en frecuencia

Veamos qué sucede cuando multiplico una sinusoide lenta $\cos(2\pi f_l t)$ y una rápida $\cos(2\pi f_p t)$. La señal resultante es s(t):

$$s(t) = \cos(2\pi f_l t)\cos(2\pi f_p t) = \frac{1}{2}[\cos(2\pi (f_p - f_l)t) + \cos(2\pi (f_p + f_l)t)]$$

Modulación 1: AM

La más intuitiva: Amplitud Modulada (AM)

La señal a transmitir viaja en la **amplitud** de una señal sinusoidal rápida.

Un poco de matemáticas...

Sea x(t) señal a transmitir y $A\cos(2\pi f_p t)$ la señal portadora.

Si las multiplicamos obtenemos:

$$s(t) = x(t) \times A\cos(2\pi f_{\rho}t)$$

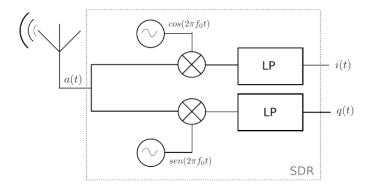
Es decir que la señal resultante tiene la frecuencia de la señal portadora, ahora con amplitud $A \times x(t)$

Modulación 1: AM

Un poco de matemáticas...

Sea $x(t) = x_t$ señal a transmitir y $\cos(2\pi f_p t)$ la señal portadora, enviamos: $s(t) = x_t \cos(2\pi f_p t)$.

En recepción la "bajamos en frecuencia": multiplicar por un coseno a la misma frecuencia de la portadora. Entonces nos llega:


$$r(t) = x_t \cos(2\pi f_p t) \cos(2\pi f_p t)$$

Usando que $\cos(a)\cos(b) = \frac{1}{2}[\cos(a-b) + \cos(a+b)]$:

$$r(t) = rac{X_t}{2} [\cos(2\pi(f_p - f_p)t) + \cos(2\pi(f_p + f_p)t)]$$
 $r(t) = rac{X_t}{2} [1 + \cos(2\pi(2f_p)t)]$

¿Cómo recupero x(t)?

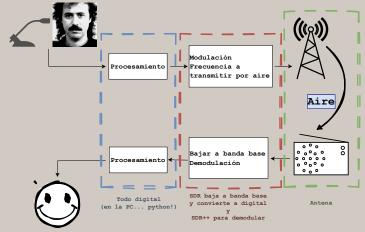
Bajada en frecuencia!

Modulación 2: FM

Una evolución: Frecuencia Modulada (FM)

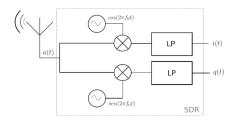
Ahora la información viajará en la frecuencia de la señal portadora.

Un poco de matemáticas...


En este caso, la señal x(t) viajará en la frecuencia de la señal portadora, enviaremos:

$$s(t) = A\cos(2\pi f_{\rho}t + \varphi)$$

Donde
$$x(t) = \frac{d\varphi}{dt}$$
.


Resumiendo: sistemas de comunicación inalámbricos

Esquema de comunicación genérico

¿Cómo seguimos?

- Normalmente ustedes recibirían dos secuencias de números flotantes por el puerto USB al que se conecta el SDR:
 - i(t), resulta de multiplicar la señal que llega por el coseno de la portadora: $cos(2\pi f_p t)$ y pasarlo por un filtro pasabajos.
 - q(t), resulta de multiplicar la señal que llega por el coseno de la portadora: $\sin(2\pi f_p t)$ y pasarlo por un filtro pasabajos.

■ También les damos un archivo con las muestras *i*(*t*) y *q*(*t*) grabadas de una estación de radio. Claro que pueden utilizar grabaciones propias o del grupo.

¿Cómo seguimos?

Parcial y próximos pasos

- Resolver los diferentes problemas que se plantean en el notebook. Terminarán demodulando transmisiones en FM.
- Control intermedio: deberán enviarnos las cuentas matemáticas asociadas al parcial y un esquema del informe que realizarán para el miércoles 07/05. Les daremos una devolución para facilitar la realización del parcial.
- Hacer un informe con las pautas que están en EVA. Para esto tienen como fecha máxima el domingo 18 de Mayo a las 23:55hs.

¿Cómo seguimos?

Parcial: momentos

- La parte uno consiste en Modulacion AM. Explorar como se ve en el tiempo y en la frecuencia.
- La parte dos consiste en el teorema de muestreo, tema importante al trabajar con señales digitales.
- La parte tres consiste en trabajar en la modulación FM, armando un demodulador FM. Es imprescindible tener el demodulador funcionando para poder aprobar el parcial.
- Por último en la parte cuatro, trabajaremos con el SDR (receptor), explorando el espectro y obteniendo señales. Clase que viene otra presentación sobre el uso de SDR.