

DISEÑO HIDROLÓGICO

CAUDAL AMBIENTAL: DEFINICIÓN, MARCO LEGAL Y SU APLICACIÓN EN URUGUAY

Edición 2025 Alejandra De Vera

Instituto de Mecánica de los Fluidos e Ingeniería Ambiental (IMFIA) Facultad de Ingeniería, Universidad de la República, Uruguay

adevera@fing.edu.uy

SERVICIOS ECOSISTÉMICOS Y CAUDAL AMBIENTAL

<u>Objetivo</u>

Relación entre cantidad y calidad en cursos de agua a través de los conceptos de:

- Servicios ecosistémicos
- Caudal ambiental

Interdisciplinariedad:

Aspecto fundamental para la planificación y gestión del recurso hídrico

Contenido

- Definición
- Metodologías de estimación
- Marco legal en Uruguay y su aplicación
- Reflexiones, aseveraciones y preguntas

Concepto

La aplicación de caudales ambientales es reconocida mundialmente como una herramienta de gestión integrada de recursos hídricos (GIRH).

Definición CAUDAL AMBIENTAL (Decreto 368/018, Art. 3)

"... el **régimen hidrológico** de un cuerpo o curso de agua o sus tramos, necesario para sostener la estructura y funcionamiento de los **ecosistemas** correspondientes y el mantenimiento de los **servicios ecosistémicos** asociados en la cuenca."

Antes se hablaba de caudal ecológico: la cantidad de agua que debía permanecer en los ríos para mantener poblaciones de peces de interés comercial (Uruguay: 0,4 L/s/km²).

Concepto

- ❖ El caudal ambiental establece qué características del régimen hidrológico natural es necesario preservar aguas abajo de la intervención en el curso y hacia la planicie de inundación para sostener los valores característicos del ecosistema y el bienestar humano.
- No necesariamente consiste en fijar un único valor de caudal mínimo que debe ser mantenido en el río, sino que también debe considerarse la variabilidad temporal en diversas escalas.

Ley de Riego y Decreto sobre Caudales Ambientales, Decreto 368/018: Introduce este concepto y especifica cómo determinarlo

Metodologías de estimación

Métodos Hidrológicos

Refieren exclusivamente al régimen hidrológico, ya sea a un caudal fijo, o uno por mes o a cualquier otra restricción al régimen hidrológico.

Métodos Hidráulicos

Son similares a los hidrológicos pero incorporan parámetros hidráulicos como la velocidad y profundidad del agua y el perímetro mojado, etc.

Métodos Holísticos

Permiten determinar regímenes hidrológicos necesarios para mantener la integralidad del ecosistema, además de los usos sociales y productivos.

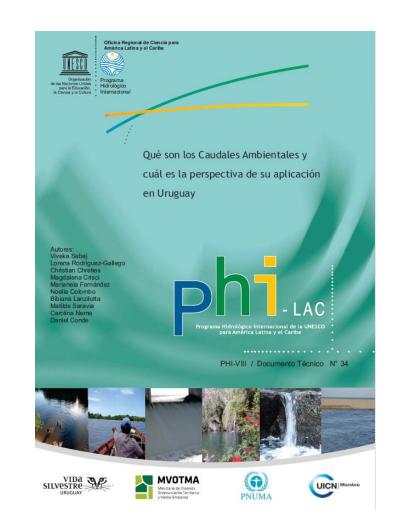
¡Interdisciplinarios!

Métodos Eco-Hidráulicos

Integran el análisis hidrodinámico del tramo del curso bajo estudio y los requerimientos o preferencias de las especies que caracterizan el ecosistema fluvial.

(*) UNESCO, 2014.

Metodologías de estimación


¿Qué método elegir?

La **elección** del método dependerá de:

- Donde se quiere aplicar dicha herramienta de gestión integrada
- El objetivo ambiental planteado para el sistema
- El conocimiento sobre el funcionamiento del ecosistema
- ❖ La existencia de información de base
- La disponibilidad económica y de tiempo

Aplicación de caudales ambientales

- Documento Técnico N°34 (PHI-VIII) elaborado en el marco del Programa Hidrológico Internacional, Oficina Regional de Ciencia para América Latina y el Caribe.
- Introduce el concepto de caudal ambiental y las distintas metodologías existentes para su estimación y su aplicación al caso concreto de Uruguay.
- Experiencia piloto de aplicación en la cuenca del arroyo Maldonado: Métodos hidrológico, eco-hidráulico y holístico.

Aplicación de caudales ambientales

¿Qué método elegir?

Métodos	Ventajas	Desventajas
Hidrológicos	Bajo costo. Bajo requerimiento de información. Existe una importante red nacional de monitoreo hidrológico. Rápida aplicación. Aplicable en casos poco controversiales y como manejo precautorio.	Requiere información hidrológica diaria disponible para el ecosistema acuático de interés. No tiene relación explícita con el componente ecológico (excepto el método del régimen completo).
Eco- hidráulicos	Toma en cuenta la dimensión ecológica del sistema de interés. Presenta ventajas para conservar recursos pesqueros de interés y comunidades relevantes a nivel ecosistémico.	Mayores costos y tiempos. Requiere información hidrológica y ecológica integrada que, en el caso de Uruguay, ha sido escasamente relevada.
Holísticos	Integra aspectos hidrológicos, ecológicos y socioeconómicos, permitiendo abordar la gestión de los recursos hídricos de forma integral. La participación de diferentes disciplinas y de grupos interesados contribuye al planteo de escenarios de decisión en casos conflictivos.	Mayores costos y tiempos de aplicación. Precisa generar información hidrológica, ecológica y socioeconómica en detalle para cada caso.

(*) UNESCO, 2014.

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

Determinación general (Art. 4):

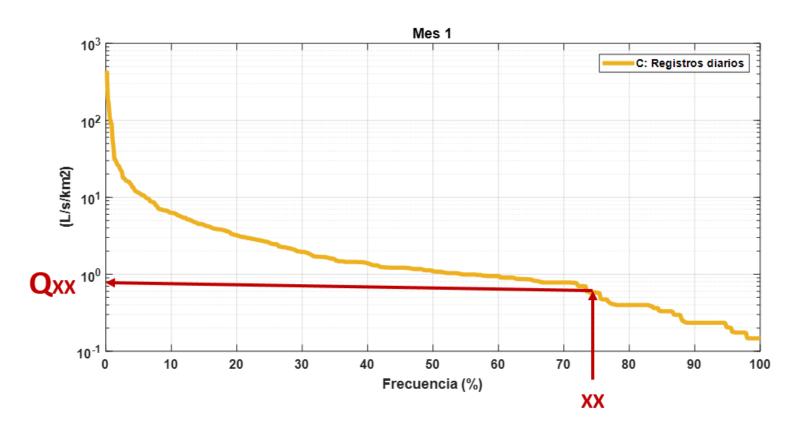
- El MVOTMA en base a los estudios pertinentes determinará los caudales ambientales por cuenca hidrográfica.
- Dentro del plazo de un año de la publicación del Decreto (05/11/2018), la Administración establecerá las guías metodológicas para la determinación, aplicación, control y monitoreo de los caudales ambientales en las distintas cuencas, en función de la información disponible en cada caso.

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

Determinación provisoria (Art. 5):

Mientras no sea realizada la determinación de los caudales ambientales según lo que refiere el artículo anterior, para aquellos cursos o cuerpos de agua superficiales y permanentes o para tramos de los mismos, según sea pertinente, se determinará un caudal ambiental para cada mes del año, en base a una estadística hidrológica de al menos 20 años de observaciones:


- (a) Para las **obras de embalses, el caudal con 60**% de probabilidad de excedencia (frecuencia absoluta acumulada) en el mes correspondiente.
- (b) Para las **tomas de agua, el caudal con 80**% de probabilidad de excedencia (frecuencia absoluta acumulada) en el mes correspondiente.

[Métodos hidrológicos]

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

Curva de permanencia de caudales

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

❖ Determinación provisoria (Art. 5):

Cuando para un curso de agua superficial determinado no exista la estadística hidrológica referida, el caudal ambiental se calculará utilizando un **modelo de balance hídrico de precipitación-escorrentía**.

El MVOTMA establecerá los **criterios para definir** si un **curso** o cuerpo de agua superficial es **permanente**.

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

- Determinación diferencial (Art. 6): Mediante estudio técnico los interesados pueden solicitar un criterio diferencial del previsto en los artículos anteriores.
- Determinación especial (Art. 7): En casos especiales, la Administración podrá fijar para cierto curso o cuerpo de agua o sus tramos, criterios más restrictivos.
- Obra hidráulica (Art. 8): Las obras hidráulicas deberán prever desde la etapa de proyecto, la infraestructura que permita la descarga hacia aguas abajo y el aforo del caudal ambiental que corresponda.
- Programa de operación (Art. 9): Las obras hidráulicas para riego que conduzcan agua a través de los cursos naturales y los embalses deberán contar con un programa de operación aprobado por el MVOTMA (tanto para el otorgamiento como para la renovación de permisos).

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

Comentarios sobre su aplicación

- Tensión siempre presente de cómo "aterrizar" el objetivo de " ... sostener la estructura y funcionamiento de los ecosistemas".
- Dificultad de "bajar a tierra" el concepto general por falta de conocimiento, información y capacidad de control.

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

Alcance

Definición de curso de agua permanente, muy difícil de hacer con precisión en un contexto de tan alta variabilidad climática.

¿Por área de cuenca de aporte?

¿Otro?

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

Determinación de "tramo"/"cuenca" relevante

Un primer paso es definir/caracterizar con precisión el ecosistema afectado.

¿Desde la obra hasta la confluencia con el curso de mayor orden?

¿Otro?

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

Determinación de "tramo"/"cuenca" relevante

Ley de Riego y Decreto sobre Caudales Ambientales

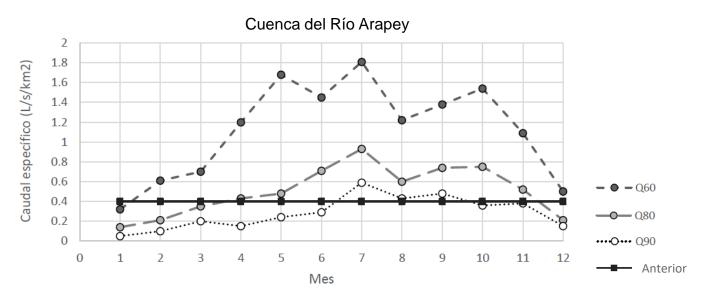
Decreto 368/018

El problema de un Qxx constante

Exige a una obra que cumpla el 100% del tiempo lo que la naturaleza mantiene el xx%

¿Es saludable para el ecosistema?

¿Es económicamente viable la obra?

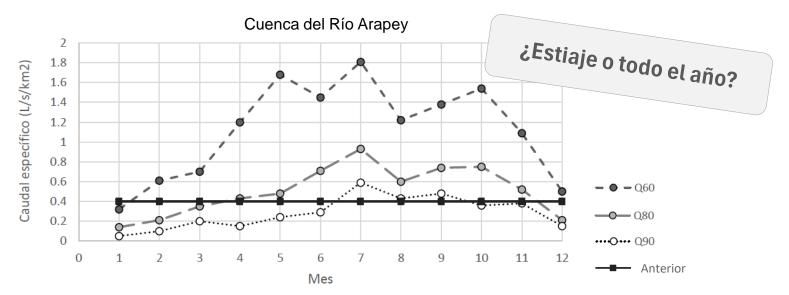

¿Es viable cumplir siempre? NO

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

El problema de un Qxx constante

- Análisis del impacto de la implementación del Decreto en los embalses de riego existentes en los ríos Arapey, San Salvador y Yí.
- Comparación de caudales erogados con la gestión anterior (0,4 L/s/km²)


(*) Finozzi y Hastings, DGRN-MGAP

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

El problema de un Qxx constante

- Análisis del impacto de la implementación del Decreto en los embalses de riego existentes en los ríos Arapey, San Salvador y Yí.
- Comparación de caudales erogados con la gestión anterior (0,4 L/s/km²)

(*) Finozzi y Hastings, DGRN-MGAP

Ley de Riego y Decreto sobre Caudales Ambientales

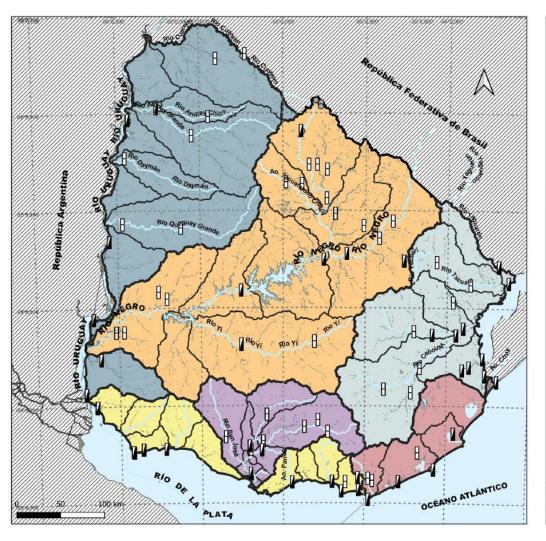
Decreto 368/018

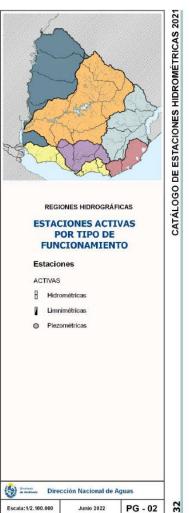
El problema de un Qxx constante

Análisis del impacto de la implementación del Decreto en los embalses de riego exis

(*) Finozzi y Hastings, DGRN-MGAP

Ley de Riego y Decreto sobre Caudales Ambientales


Decreto 368/018


Información hidrométrica disponible

- Registros (medios diarios) en estaciones hidrométricas.
- Regionalización de curvas de frecuencias de caudales específicos estacionales
 - DINAGUA (2019): "Regionalización de estadísticas de caudales" (Periodo 1980-2010). Curvas de frecuencias de caudales específicos diarios estacionales normalizados (ABR-JUL, AGO-NOV, DIC-MAR*).

(*) **DIC-MAR**: Período del año más sensible, correspondiente a los meses en los que las demandas se intensifican para complementar mediante riego las necesidades no cubiertas por las precipitaciones.

❖ Red estaciones hidrométricas

Red estaciones hidrométricas

Registros de niveles (#100) y caudales (#50)

			Niveles						
Cuenca	Área (km²)	Estaciones	Extensión prom. (años)	Densidad (est./ 100.000 km²)	Estaciones	Extensión prom. (años)	Densidad (est./ 100.000 km²)	Automáticas	
Uruguay	45.400	19	37,3	4,2	8	8 31,8		10	52,6 %
Río de la Plata	12.150	19	30,2	15,6	4	22,0	3,3	6	31,6 %
Océano Atlántico	9.250	8	26,8	8,6	2	21,5	2,2	8	100 %
Laguna Merín	27.900	17	44,1	6,1	8	39,1 2,9		10	58,8 %
Río Negro	68.200	30	40,7	4,4	17	34,9 2,5		13	43,3 %
Río Santa Lucía	13.500	10	37,4	7,4	9	30,8 6,7		6	60,0 %
Totales	176.400	103	37,3	5,8	48 32,7 2,7		53	51,5 %	

Tabla 8.1 | Resumen de estaciones operativas y datos registrados (dic. 2014) | Fuente: DINAGUA

≈ 100 estaciones activas con 30-40 años de registros

DINAGUA (2019)

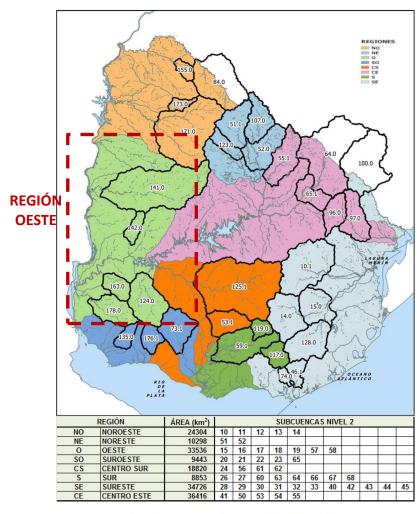
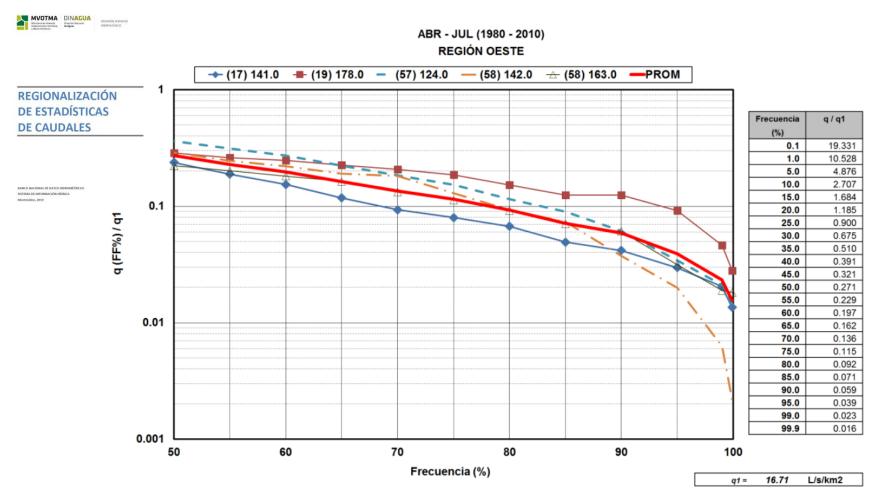



Figura 20 – Regionalización de estadísticas hidrométricas Nivel 2 de codificación de subcuencas

				ÁREA	PROM.	Q ESP.	
CUENCA	C3	CURSO	ESTACIÓN	(km2)	ANUAL	ANUAL	
				. ,	(m3/s)	(L/s/km2)	
ΑY	103	Río Cuareim	84.0	4420	97.29	22.01	
3Ú,	107	Ao. Tres Cruces	155.0	573	7.41	12.93	
RÍO URUGUAY	123	Río Arapey Chico	173.0	518	9.77	18.85	
	135	Río Arapey Grande	171.0	6934	109.43	15.78	
Į,	178	Río Queguay Grande	141.0	7863	118.92	15.12	
Œ	193	Río San Salvador	178.0	2157	21.44	9.94	
	504	Río Negro	64.0	6525	90.21	13.83	
	505	Río Negro	65.1	8039	130.69	16.26	
	516	Río Tacuarembó	51.1	2210	42.52	19.24	
0	517	Ao. Cuñapirú	107.0	1929	38.72	20.07	
GR	519	Río Tacuarembó	52.0	6599	130.94	19.84	
RÍO NEGRO	524	Ao. Tres Cruces	123.0	916	17.88	19.51	
0	536	Ao. Yaguarí	55.1	2491	51.07	20.50	
RÍ	566	Río Yí	125.1	8878	125.26	14.11	
	570	Ao. Grande del Sur	124.0	3106	20.7	6.7	
	582	Ao. Don Esteban	142.0	789	8.50	10.77	
	588	Ao. Bequeló	163.0	1146	12.9	11.3	
R. de la P.	215	Río San Juan	135.0	748	7.32	9.80	
	235	Río Rosario	176.1	999	8.27	8.28	
RÍO SANTA LUCÍA	601	Río Santa Lucía	117.0	1078	17.48	16.22	
	605	Ao. Casupá	119.0	690	8.65	12.53	
	608	Río Santa Lucía	59.1	4916	63.83	12.98	
	615	Río Santa Lucía Chico	53.1	1748	23.57	13.48	
~	655	Río San José	73.1	2315	30.67	13.25	
نـ ن	301	Ao. San Carlos	46.1	804	10.65	13.25	
OC. ATL.	306	Ao. Maldonado	174.0	364	5.30	14.59	
7	406	Río Yaguarón	100.0	4622	70.92	15.34	
LAGUNA MERÍN	413	Río Tacuarí	96.0	1423	24.87	17.48	
	417	Río Tacuarí	97.0	3537	59.49	16.82	
	437	Río Olimar Grande	10.1	4678	90.30	19.31	
	444	Río Cebollatí	14.0	2899	57.05	19.68	
	445	Ao. del Aiguá	128.0	2749	37.93	13.80	
1	446	Río Cebollatí	15.0	7872	116.78	14.83	

❖ DINAGUA (2019)

A III.1 – Frecuencias de caudales específicos diarios estacionales normalizados (ABR-JUL)

DINAGUA (2019)

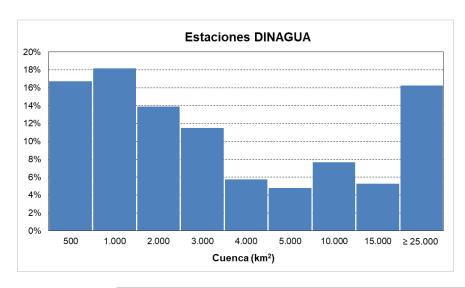
REGIONALIZACIÓN **DE ESTADÍSTICAS DE CAUDALES**

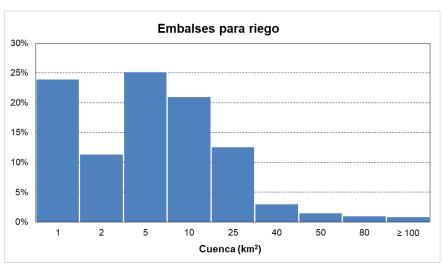
Montevideo, 2019

ANEXO V

CAUDALES MENSUALES MEDIOS Y ESTACIONALES POR SUBCUENCA

TABLA V-I - CAUDALES ESPECÍFICOS PROMEDIOS POR SUBCUENCA Y REGIÓN


		Caudal específico (I/s/km²)															
REGIÓN	CUENCA NIVEL 2	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ENE	FEB	MAR	ANUAL	ABR- JUL	AGO- NOV	DIC- MAR
NO	10	26.8	21.8	18.4	15.9	11.5	16.3	18.8	20.0	13.0	12.9	13.4	13.3	16.8	20.7	16.6	13.1
	11	24.7	18.2	17.6	11.6	8.9	12.0	17.3	17.9	12.7	13.9	9.7	10.6	14.6	18.0	14.0	11.7
	12	26.0	20.7	20.3	12.9	10.3	13.8	17.2	15.7	11.6	10.1	14.8	14.7	15.7	20.0	14.3	12.8
	13	21.5	21.1	20.0	14.1	10.9	13.7	16.7	14.0	10.8	8.1	12.3	11.4	14.5	19.2	13.8	10.6
	14	18.6	17.7	15.0	8.0	6.7	9.1	17.3	12.3	10.6	8.4	10.5	12.4	12.2	14.8	11.3	10.5
NE	51	19.5	23.3	22.0	22.0	16.7	20.6	20.2	18.9	12.4	7.5	9.7	8.8	16.8	21.7	19.1	9.6
INE	52	17.1	24.2	21.7	19.8	16.1	18.9	19.5	17.5	12.2	8.2	11.6	9.4	16.4	20.7	18.0	10.4
	15	19.1	18.7	16.3	11.2	8.8	10.4	14.2	12.1	10.1	7.9	12.8	10.9	12.7	16.3	11.4	10.4
	16	17.8	18.1	13.4	11.5	10.1	10.8	14.5	14.6	10.6	7.7	14.6	10.8	12.8	15.2	12.5	10.9
	17	16.3	18.0	15.8	14.1	10.3	10.8	11.8	11.7	9.3	6.4	14.4	8.9	12.3	16.1	11.2	9.8
0	18	11.1	12.3	11.2	9.8	9.7	8.3	12.6	9.6	7.6	4.8	12.7	7.7	9.8	11.1	10.0	8.2
	19	5.4	9.8	9.5	9.3	11.0	10.2	16.8	10.6	6.8	3.4	7.7	9.2	9.2	8.5	12.2	6.8
	57	7.8	13.0	12.8	12.9	14.0	12.0	19.0	11.9	9.0	4.7	9.2	10.1	11.4	11.6	14.2	8.3
	58	11.1	13.9	13.2	12.3	11.9	10.2	14.7	10.1	8.6	5.9	13.7	9.8	11.3	12.6	11.8	9.5
	20	3.1	4.7	5.2	6.1	7.6	7.4	11.4	8.6	5.5	2.0	4.0	8.3	6.2	4.8	8.7	4.9
so	21	4.1	6.1	7.0	7.1	8.5	8.5	12.5	9.4	5.5	2.2	4.3	8.4	7.0	6.1	9.7	5.1
	22	4.5	6.3	6.9	6.6	8.1	8.0	11.9	9.3	5.9	2.1	3.6	7.0	6.7	6.1	9.3	4.6
	23	5.8	9.7	10.2	12.0	13.4	12.3	16.3	10.0	6.4	3.2	4.5	8.6	9.4	9.4	13.0	5.7
	65	7.1	11.9	14.0	15.1	15.8	13.7	16.8	10.8	7.0	3.5	5.4	9.0	10.9	12.0	14.2	6.2


Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

Falta de información observacional y por ende capacidad de modelación

Desajuste entre el tamaño de cuenca en que existen datos hidrométricos (≈1000 km²) y las cuencas típicas de aporte a embalses para riego (< 100 km²).</p>

Las estadísticas de las curvas de permanencia son fuertemente dependientes de la escala de la cuenca.

Ley de Riego y Decreto sobre Caudales Ambientales

Decreto 368/018

Modelación hidrológica

Determinación provisoria (Art. 5): "... Cuando para un curso de agua superficial determinado no exista la estadística hidrológica referida, el caudal ambiental se calculará utilizando un modelo de balance hídrico de precipitación-escorrentía".

¿Paso de tiempo a considerar? Mensual versus Diario.

Reflexiones sobre caudal ambiental en Uruguay

- Presentación a cargo de Rafael Terra en el marco de las "Jornadas de Divulgación: Plataforma de soporte para la toma de decisión en agricultura irrigada sostenible. Dra. Gabriela Eguren". Marzo 2023, INIA Las Brujas.
- Disponible en:

http://www.inia.uy/Paginas/Plataforma-de-soporte-para-la-toma-de-decision-en-agricultura-irrigada-sostenible-Dra--Gabriela-Eguren.aspx

SERVICIOS ECOSISTÉMICOS Y CAUDAL AMBIENTAL

Interdisciplinariedad

Dada la transversalidad de la temática del agua es necesario articular esfuerzos a nivel interinstitucional para contribuir hacia una **gestión integrada de los recursos hídricos** (GIRH).

Promueve la gestión y el desarrollo coordinados del **agua y la cuenca asociada**, con el fin de maximizar el **bienestar social y económico** resultante de manera equitativa, y sin comprometer la **sustentabilidad de los ecosistemas**.

BIBLIOGRAFÍA

- Decreto 368/018. Caudales ambientales. 2018.
- DINAGUA, 2019. Regionalización de estadísticas de caudales.
- MVOTMA. Plan Nacional de Aguas, 2017, p.130-131. ISBN: 978-9974-658-31-8. https://www.gub.uy/ministerio-ambiente/comunicacion/publicaciones/plan-nacional-aguas
- UNESCO. Qué son los Caudales Ambientales y cuál es la perspectiva de su aplicación en Uruguay, 2014.