
Routing in the Future Internet

Marcelo Yannuzzi

Graduate Course (Slideset 10a)
Institute of Computer Science

University of the Republic (UdelaR)

September 7th 2012, Montevideo, Uruguay

Research Topics and Ongoing Activities

Marcelo Yannuzzi and Xavi Masip

July 10, 2008

Marcelo Yannuzzi and Xavi Masip CRAAX — UPC

Department of Computer Architecture Institute of Computer Science

Technical University of Catalonia (UPC), Spain University of the Republic (UdelaR), Uruguay

Outline

1 Assignment of final works for course approval
2 Software Defined Networks (SDNs).
3 Open APIs:

OpenFlow
JUNOS SDK
Cisco ONE
OPENER
.....

4 Outsourcing to the Cloud and its impact on routing, etc.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 2

Outline

1 Assignment of final works for course approval
2 Software Defined Networks (SDNs).
3 Open APIs:

OpenFlow
JUNOS SDK
Cisco ONE
OPENER
.....

4 Outsourcing to the Cloud and its impact on routing, etc.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 3

Final Works (15 hs/person)

Multi-point BGP sessions for Traffic Engineering

Mauricio and M. Barreto:

Identify scenarios and/or use cases in which multi-point BGP
sessions can add value...

How do you imagine multi-point BGP sessions would be?

What can be done with them? ... be creative!

Analyze the options in two contexts. .. intra-AS multi-point
sessions and the challenges toward inter-AS multi-point
sessions...

Examine the possible strengths in the enterprise arena...

Benchmarks vs. LISP-based TE...

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 4

Final Works (15 hs/person) (cont.)

Examine the problem of Route Leaks and propose solutions...

A. Valdés and E. Cota:

Examine the state-of-the-art.

Split the analysis in two contexts: Dealing with route leaks in
BGPSEC vs. the Overlay approach...

Can route leaks be stopped in either of these contexts?

Be creative ...

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 5

Final Works (15 hs/person) (cont.)

EID Prefix Authorization

F. Rodriguez and L. Vidal:

Analyze the requirements for global EID prefix authorization in
the DDT.

Analyze the expected level of security in the authorizations,
including considerations such as the right to register an EID
prefix, and the right to claim the presence of an EID at an RLOC.

To this end, consider the potential coupling with a RPKI and/or
ROA-like infrastructure and the protocols needed.

Analyze the challenges posed by mobility (especially, in the
context LISP-MN where the goal is to keep complex operations
off the ITRs implemented in the mobile terminals).

Be creative ...

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 6

Final Works (15 hs/person) (cont.)

The iBGP, Route Reflection and Overlay puzzle ...

Emiliano, N. Antoniello, and José:

During the course we examined these solutions in isolation ...

Identify the requirements and highlight the considerations toward
their coexistance (iBGP, RRs, iPSP).

Recommendations toward their coexistence with special focus
on the following aspects: scalability, data paths, avoiding black
holes and loops.

Be creative ...

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 7

Final Works (15 hs/person) (cont.)

Software Defined Networks (SDNs)

Juan, Edgardo, and Fernando

Identify a set of problems in the IMM (at least 3) that cannot be
suitably tackled by legacy routing and switching (preferably
involving i/eBGP).

Based on that, define at least 3 use cases for SDNs.

Identify the requirements and highlight how SDNs can help in
these areas.

Develop the ideas for such SDN apps and how they can be used.

Define the new command-set needed and or the services that
shall be exposed through the API.

Be creative ...

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 8

Final Works (15 hs/person) (cont.)

Assessment ...

Be creative ... I wouldn’t like to read a 20 page doc
that lacks good ideas...

Would you like to read and/or comment on other
people’s work before my evaluation?

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 9

Outline

1 Assignment of final works for course approval
2 Software Defined Networks (SDNs).
3 Open APIs:

OpenFlow
JUNOS SDK
Cisco ONE
OPENER
.....

4 Outsourcing to the Cloud and its impact on routing, etc.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 10

Drivers

The router/switch arena is rapidly transforming...

Three ongoing (and overlapping) trends:

1 Trend toward open and programmable network devices

Allowing researchers and network operators to flexibly experiment
with innovative applications and traffic management paradigms on
the same hardware that is currently available on operational
carrier-grade networks.

2 Trend toward coordinated cross-layer network operation

... so as to keep pace with consumers bandwidth and energy
requirements.

3 Trend toward IT and networking convergence

... the limits between cloud and networking will blur

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 11

Current Trends

(1st Trend) Openness and Programmability

OpenFlow
Before OpenFlow there was almost no way to experiment and test
new protocols, algorithms, and novel paradigms in a realistic
fashion

JUNOS Space and JUNOS SDK

CISCO ONE

...

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 12

JUNOS Space

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 13

Current Trends (cont.)

(1st Trend) Openness and Programmability (Cont.)

...

Cisco ⇒ embarked in a profound restructure of its IOS

Open source router: Quagga

... the strategy of router/switch vendors is to open their OSs to third-party
developers and let them become part of the innovation process

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 14

Current Trends (cont.)

(2nd Trend) Cross-layer interactions

Still challenging since operators traditionally manage their IP and
transport network separately (in total isolation)

Take advantage from openness and programmability
Work toward synergetic deployments and operations of IP and
transport (Ethernet/optical) networks.
The key is to devise cost-effective ways both to orchestrate the
operation of L3 and L2/L1 networks, and to manage their
corresponding traffic, (e.g.: JUNIPER’s PTX – hybrid nodes)

2

The PTX Series Packet Transport Switch is based on Juniper

Networks Junos® Express chipset, part of the Junos One family

of processors. Express uses state-of-the-art 40 nm fabrication

technology and is built with “no packet drop” assurance. The PTX

Series product is designed to scale up to 2 Tbps per slot and provides

significant cost reduction over traditional core transport solutions.

The PTX Series provides a unique combination of hardware and

software features, allowing service providers to manage their

supercore networks more efficiently. The platforms are built from

the ground up for speed, scale, and cost optimization. The PTX

Series adapts to rapidly changing traffic patterns for video, mobility,

and cloud-based services. It is the first supercore packet switch

in the industry that supports a single chassis with 8 and 16 Tbps

capacity. The modular power design allows power efficiency on the

order of 1 watt per Gbps. This is less than half the requirements of

competitive platforms.

A PTX Series switch working in conjunction with Juniper

Networks T Series Core Routers allows a service provider to

build a core network that is flexible enough to accommodate

dynamically changing traffic patterns for applications, data center

consolidation, mobility for devices, users, and applications, even

an increase in bandwidth intensive applications such as HD video.

The integration of optical transport further improves the economics

of the core network. The seamless integration of IP/MPLS and

optical control plane facilitates modeling, planning, simulation,

provisioning, seamless management, and restoration of multiservice

core networks deploying PTX Series platforms.

PTX5000
Juniper Networks PTX5000 is a 28 RU 8 slot system. It supports up

to 8 FPCs, with each FPC supporting 2 PICs. The PTX5000 can be

used as a switch for the supercore delivering statistical multiplexing

and dynamic label-switched path (LSP) creation and management.

PTX5000 can also function as a packet optical node delivering

functionality for multiple layers in a single Juniper Networks Junos

operating system-based platform. The PTX5000 can be used to

build a Converged Supercore with a higher capacity compared to a

core router, and it includes optical transport capabilities.

PTX9000
Juniper Networks PTX9000 is a 36 RU 16 slot system. It supports

up to 16 FPC with each FPC supporting 2 PICs. The PTX9000

can be used as a switch for the supercore delivering statistical

multiplexing and dynamic LSP creation and management.

PTX9000 can also function as a packet optical node delivering

functionality for multiple layers in a single Junos OS-based

platform. The PTX9000 can be used to build a Converged

Supercore with a higher capacity compared to a core router, and it

includes optical transport capabilities.

Architecture and Key Components
The phenomenal growth in service provider network traffic makes

fundamental changes in the architecture essential. The architecture

must deliver needed functionality with fewer nodes, adapt to rapid

changes in both traffic pattern and volume, support automation,

and most importantly be simple to ensure operational efficiency

and manageability.

Juniper’s vision for the new network architecture is depicted in

Figure 1. It is comprised of edge, core, and supercore networks.

The edge network is focused on delivering intelligent services and

subscriber management capabilities to business and residential

customers. The core network needs to be capable of routing

functions for high traffic volumes. The supercore is laser focused

on speed, cost optimization, statistical multiplexing, and dynamic

LSP creation and management.

MX Series

IP services IP services

T4000

T4000

Converged
Supercore

Junos Trio

MX Series

T4000

PTX9000PTX5000

T4000

Junos Express Junos Trio

Figure 1: Requirements for service provider supercoreMarcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 15

Hybrid and Programmable Nodes

IEEE Communications Magazine • May 2011 149

be executed on the nodes in order to customize
specific networking functions [5]. Standardiza-
tion activities for programmable networks were
also initiated by the IEEE through the P1520
project [6].

At that time programmable and active net-
works failed to reach the actual deployment
phase, mainly because of implementation diffi-
culties. Another reason was lack of interest from
network operators, which were following the
common practice of bandwidth overprovisioning,
the real solution deployed in the IP world to
guarantee application needs. However, thanks to
the latest advances in fields such as virtualization
technology, network processing hardware, soft-
ware router implementation, and overlay net-
work architectures, network programmability is
still envisioned as one of the key paradigms to
deal with the challenges network operators and
service providers face in order to rapidly and
safely deploy new networked services and fea-
tures [7].

Although the IEEE P1520 initiative never
became a standard, other standardization efforts
are currently taking place that can actively con-
tribute to the deployment of programmable net-
works. In particular, the Internet Engineering
Task Force (IETF) defined the Forwarding and
Control Element Separation (ForCES) frame-
work where the control functions are kept sepa-
rate from the forwarding functions [8]. A
standard protocol is also available to replace
proprietary communications between control
elements and forwarding elements so that net-
work boxes can be turned into multivendor
equipment where control and forwarding sub-
systems can be developed and evolve indepen-
dently [9].

On another side, the IETF issued a standard
protocol for remote network configuration called
NETCONF aimed at providing a unified, cross-
vendor, interoperable management interface for
automated control of network equipment [10].
The approach basically consists of a remote pro-
cedure call (RPC) paradigm based on Extensible
Markup Language (XML) data format, which
allows heterogeneous network devices to be con-
trolled by standard application programming
interfaces and makes this protocol a powerful

tool for implementing the management model
required by a programmable network.

Early programmable network concepts were
mainly related to legacy IP routing technology.
This article extends the concept of network pro-
grammability to hybrid networks and describes a
possible approach to the design of programmable
hybrid networks based on the aforementioned
IETF standards. The aim is to demonstrate how
programmability and modularity help in the
deployment of flexible hybrid networking solu-
tions. A programmable hybrid node to provide
integrated control functionality for circuit and
packet switching is proposed by taking advantage
of a shared physical infrastructure, based on
advanced optical switching technologies. An
experimental testbed of the proposed hybrid
node based on a software router platform is also
described, including sample validation results
that prove the feasibility of the proposed
approach.

PROGRAMMABLE HYBRID
NETWORK ARCHITECTURE

The network architecture discussed here strongly
relies on the concept of a programmable hybrid
router (PHR), defined as a node that supports
different and dynamically configurable network
functions and transport technologies. This target
is achieved by enabling on-demand network ser-
vices with the simple addition or reconfiguration
of some specific software modules that control
the underlying switching and transmission hard-
ware. The goal is to implement a flexible archi-
tecture where one or more ISPs, referred to
here as guest operators (GOs), are able to con-
figure part of the network infrastructure owned
or managed by a host operator (HO) to offer
different connectivity services to their customers.
To this end, the HO must be able to support dif-
ferent network-based applications according to
their specific requirements and translate technol-
ogy-dependent resource availability into switch-
ing-hardware-independent dynamic service
abstraction. This abstraction enables flexible and
efficient use by GOs of network resources while
meeting application and/or customer needs.

Figure 1. A programmable hybrid network owned by a host operator and three different instances of guest
operator networks resulting from different configurations.

Host operator plane

Programmable
hybrid router

Optical
cross-connectIP router

PHRPHR

PHR

PHR PHR

PHR

Guest operator
C plane

Guest operator
B plane

Guest operator
A plane

Although the IEEE
P1520 initiative
never became a
standard, other
standardization

efforts are currently
taking place that can
actively contribute to
the deployment of

programmable
networks.

CERRONI LAYOUT 4/20/11 2:34 PM Page 149

R. Cafini et al., “Standard-Based Approach to Programmable Hybrid Networks,” IEEE Communications
Magazine, May 2011.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 16

Hybrid and Programmable Nodes

IEEE Communications Magazine • May 2011 151

to the GOs (e.g., for packet routing or circuit
setup/teardown). The scheme in Fig. 2, for
instance, assumes out-of-band signaling based on
the Resource Reservation Protocol with Traffic
Engineering (RSVP-TE) for circuit setup/tear-
down as part of the generalized multiprotocol
label switching (GMPLS) standard. Traditional
in-band signaling for IP routing table construc-
tion (e.g., Open Shortest Path First [OSPF]) is
assumed for packet-based traffic. The CE is in
charge of mapping the requests coming from the
in-band and/or out-of-band signaling channels
over the available hardware, sending proper
ForCES-compliant messages to the lower-layer
FE. In the scenario presented here, IP packets
should coexist with optical circuits, so the CE
should send the proper kind of requests to the
FE according to the service it wants to activate
on the switching hardware. The CE also deals
with security aspects when exchanging signaling

messages with GOs and customers, such as
authentication, authorization, and integrity
check. Then it can interact with the FE in a
trusted way to properly configure the node.

NODE MANAGEMENT PLANE
By means of the node management plane, differ-
ent GOs can configure and update their network
instances by programming the requested func-
tionalities in the HO PHRs. The interface
between GO and HO is seen as part of the man-
agement plane because these kinds of interac-
tions are prerequisites for activation of the
preferred control plane signaling schemes. As a
matter of fact, from a high-level perspective pro-
gramming a hybrid network is equivalent to any
other task performed by a remote configuration
mechanism, typically implemented through a
network management system. In the architecture
considered here, node management is left to the

Figure 2. Programmable hybrid router (PHR) architecture, showing the relevant elements in the forwarding, control, and management
planes as well as the standard interfaces adopted.

NM MENETCONF

CE

Input 1

Circuit
PFE

Packet
PFE

LFE

FE

Switching
module

Input N

Node
forwarding
plane

HT

GMPLS
RSVP-TE

Out-of-band
circuit

signaling

In-band
packet

signaling

Output 1

Output N

HT

ForCES

Node
management

plane

Node
control
plane

Node
forwarding

plane

Network
management

plane

Node
control
plane

NM=Network manager ME=Management element

LFE=Logical FE PFE=Physical FE HT=Header tap

CE=Control element FE=Forwarding element

Node/network
management
plane

Standard
interface Signaling

CERRONI LAYOUT 4/20/11 2:34 PM Page 151

R. Cafini et al., “Standard-Based Approach to Programmable Hybrid Networks,” IEEE Communications
Magazine, May 2011.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 17

Hybrid and Programmable Nodes

IEEE Communications Magazine • May 2011 153

does not provide guidelines on how to do that.
On the other hand, NETCONF does not specify
how the external standard directives must be
translated into internal configuration commands,
which is a task typically left to the equipment
manufacturer through proprietary solutions.
However, the future definition of a standard
interface between ME and CE could be an addi-
tional feature that extends the modular approach
adopted by ForCES to the separation between
router management and control functions, fos-
tering a scenario where system manufacturers
can integrate router control components with
network management components developed by
different and specialized vendors.

While the management and control plane
functions are easily implemented at the user
level, the forwarding plane may suffer from per-
formance limitations due to the high packet rate
of the input data traffic. Therefore, the forward-

ing plane is more suitable to be implemented at
the kernel level. This requires the setup of a vir-
tual network interface called a tap interface,
which allows the Click process running at the
user level to communicate with the Click process
at the kernel level.

The kernel-level Click configuration imple-
ments a control bus used to exchange informa-
tion among the FE submodules. The same bus is
also used to collect ForCES commands coming
from the CE via the tap interface and packet
headers spilled by the header taps. When a cir-
cuit setup request is received from the CE, the
LFE looks for the destination in the forwarding
table and verifies the channel availability in the
output interface (i.e., it performs logical schedul-
ing operations). In case of success, the LFE for-
wards the request to the circuit PFE, which
verifies the availability of the required hardware
switching resources (i.e., it executes physical

Figure 3. Click-based implementation of a PHR emulating an optical switching module. For the sake of
simplicity, a 2 × 2 switching module is considered.

Node
forwarding
plane

Device setup
(e.g. via click

handlers)

Kernel level

User level

LFE
FE

Click control bus

ME

CE

TapIF

Circuit
PFE

Click-emulated
optical

switching
matrix

FromDevice

Packet
PFE

HT

HTFromDevice

ToDevice

ToDevice

Node
control
plane

Node
management
plane

ME=Management element

LFE=Logical FE PFE=Physical FE HT=Header tap TapIF=Tap interface

CE=Control element FE=Forwarding element

RSVP-TE
socket

NETCONF-over-SSH
server (YUMA)

ForCES
socket

While the manage-
ment and control

plane functions are
easily implemented

at the user level, the
forwarding plane

may suffer from per-
formance limitations

due to the high
packet rate of the
input data traffic.
Therefore, the for-
warding plane is

more suitable to be
implemented at the

kernel level.

CERRONI LAYOUT 4/20/11 2:34 PM Page 153

R. Cafini et al., “Standard-Based Approach to Programmable Hybrid Networks,” IEEE Communications
Magazine, May 2011.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 18

Hybrid and Programmable Nodes

IEEE Communications Magazine • May 2011154

scheduling operations). In case of success, the
circuit PFE configures the switching module to
set up a path between the involved input and
output channels. Similarly, when a new packet
header is received, forwarding table lookup and
logical packet scheduling are performed by the
LFE, whereas the packet PFE is in charge of the
physical packet scheduling and switch setup.

In the software router testbed an optical
switching matrix belonging to the broadcast-and-
select family is emulated, assuming N = 2
input/output fibers each carrying W = 4 distinct
wavelength channels. This means that traffic
coming from a total of 8 input channels must be
switched to 8 output channels. The optical
switching fabric is emulated by means of suitably
customized Click elements that mimic the logical
and physical characteristics of photonic devices
[15]. However, the control primitives defined in
the testbed are general enough to support inte-
gration with real photonic switching hardware.

The validation experiment is carried out con-
necting the network interfaces of the emulated
PHR with data, control, and management traffic
sources implemented by ad hoc software running
on separate computers. While data sources gen-

erate both packet and circuit traffic, other
sources generate RSVP messages to set up cir-
cuits and NETCONF-over-SSH commands to
program the PHR. Traffic sinks are also con-
nected to the emulator and used to measure the
throughput at the output of the PHR.

When the experiment starts, the node for-
wards only packet traffic, with load = 1 per
channel. Since no queueing is available in the
optical switching module, packet contentions
result in only one packet to be successfully trans-
mitted and the others to be dropped. Then new
circuit setup requests are generated at times P1
= 300, P2 = 510, P3 = 713, and P4 = 2015. The
related RSVP-TE messages exchanged between
the router and its previous hops as well as the
NETCONF transactions with the GOs are shown
in Fig. 4. Circuit traffic is generated by constant
bit rate sources transmitting at full rate. The
time evolution of the normalized throughput for
both packet and circuit traffic is shown in Fig. 5.

The packet throughput is initially affected
only by the high packet loss rate due to con-
tentions, which is the reason for its random
behavior. Then the first circuit request, repre-
sented by the PATH message arriving at time P1,
is simply ignored because it is generated by an
unauthorized user with IP address 172.16.2.1;
that is, it comes from a customer of a GO that
has not programmed the PHR as an OXC yet.
The second PATH message arriving at time P2
comes from an authorized GO customer and is
followed by the corresponding RESV message,
which successfully completes the circuit setup,
meaning that one of the eight wavelength chan-
nels is now dedicated to that customer. The
result is normalized circuit traffic throughput
reaching 0.125 as soon as the customer starts
transmitting at full rate. At the same time, the
packet throughput decreases due to the reduced
number of channels available.

A secure NETCONF-over-SSH transaction
takes place at time N1 = 634, when a GO pro-
grams the PHR to allow circuit setup requests
from 172.16.2.1. The same customer whose
request was dropped at time P1 is now allowed
to ask for a circuit at time P3. The packet
throughput further decreases while the circuit
throughput doubles. Another programming
action from GOs via NETCONF takes place at
time N2 = 1206, when the bandwidth available
to packet traffic is reduced by an amount equiv-
alent to one wavelength channel. The packet

Figure 4. Capture of the RSVP-TE and NETCONF signaling messages in the experimental PHR validation.

Figure 5. Normalized throughput measured for packet and circuit traffic in the
experimental PHR validation.

Time
5000

0.2

0

N
or

m
al

iz
ed

 t
hr

ou
gh

pu
t

0.4

0.6

0.8

1

1000

P1

1500 2000 2500

Packet traffic
Circuit traffic

P2

N1

P3

N2

PT3 PT2 P4

CERRONI LAYOUT 4/20/11 2:34 PM Page 154

R. Cafini et al., “Standard-Based Approach to Programmable Hybrid Networks,” IEEE Communications
Magazine, May 2011.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 19

Hybrid and Programmable Nodes

IEEE Communications Magazine • May 2011154

scheduling operations). In case of success, the
circuit PFE configures the switching module to
set up a path between the involved input and
output channels. Similarly, when a new packet
header is received, forwarding table lookup and
logical packet scheduling are performed by the
LFE, whereas the packet PFE is in charge of the
physical packet scheduling and switch setup.

In the software router testbed an optical
switching matrix belonging to the broadcast-and-
select family is emulated, assuming N = 2
input/output fibers each carrying W = 4 distinct
wavelength channels. This means that traffic
coming from a total of 8 input channels must be
switched to 8 output channels. The optical
switching fabric is emulated by means of suitably
customized Click elements that mimic the logical
and physical characteristics of photonic devices
[15]. However, the control primitives defined in
the testbed are general enough to support inte-
gration with real photonic switching hardware.

The validation experiment is carried out con-
necting the network interfaces of the emulated
PHR with data, control, and management traffic
sources implemented by ad hoc software running
on separate computers. While data sources gen-

erate both packet and circuit traffic, other
sources generate RSVP messages to set up cir-
cuits and NETCONF-over-SSH commands to
program the PHR. Traffic sinks are also con-
nected to the emulator and used to measure the
throughput at the output of the PHR.

When the experiment starts, the node for-
wards only packet traffic, with load = 1 per
channel. Since no queueing is available in the
optical switching module, packet contentions
result in only one packet to be successfully trans-
mitted and the others to be dropped. Then new
circuit setup requests are generated at times P1
= 300, P2 = 510, P3 = 713, and P4 = 2015. The
related RSVP-TE messages exchanged between
the router and its previous hops as well as the
NETCONF transactions with the GOs are shown
in Fig. 4. Circuit traffic is generated by constant
bit rate sources transmitting at full rate. The
time evolution of the normalized throughput for
both packet and circuit traffic is shown in Fig. 5.

The packet throughput is initially affected
only by the high packet loss rate due to con-
tentions, which is the reason for its random
behavior. Then the first circuit request, repre-
sented by the PATH message arriving at time P1,
is simply ignored because it is generated by an
unauthorized user with IP address 172.16.2.1;
that is, it comes from a customer of a GO that
has not programmed the PHR as an OXC yet.
The second PATH message arriving at time P2
comes from an authorized GO customer and is
followed by the corresponding RESV message,
which successfully completes the circuit setup,
meaning that one of the eight wavelength chan-
nels is now dedicated to that customer. The
result is normalized circuit traffic throughput
reaching 0.125 as soon as the customer starts
transmitting at full rate. At the same time, the
packet throughput decreases due to the reduced
number of channels available.

A secure NETCONF-over-SSH transaction
takes place at time N1 = 634, when a GO pro-
grams the PHR to allow circuit setup requests
from 172.16.2.1. The same customer whose
request was dropped at time P1 is now allowed
to ask for a circuit at time P3. The packet
throughput further decreases while the circuit
throughput doubles. Another programming
action from GOs via NETCONF takes place at
time N2 = 1206, when the bandwidth available
to packet traffic is reduced by an amount equiv-
alent to one wavelength channel. The packet

Figure 4. Capture of the RSVP-TE and NETCONF signaling messages in the experimental PHR validation.

Figure 5. Normalized throughput measured for packet and circuit traffic in the
experimental PHR validation.

Time
5000

0.2

0

N
or

m
al

iz
ed

 t
hr

ou
gh

pu
t

0.4

0.6

0.8

1

1000

P1

1500 2000 2500

Packet traffic
Circuit traffic

P2

N1

P3

N2

PT3 PT2 P4

CERRONI LAYOUT 4/20/11 2:34 PM Page 154

R. Cafini et al., “Standard-Based Approach to Programmable Hybrid Networks,” IEEE Communications
Magazine, May 2011.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 20

Current Trends (cont.)

(3st Trend) IT and Networking convergence

Google, IBM, HP, etc.

Telefónica, ...

Alcatel, Cisco, etc.

....

... cross-stratum optimizations (DC + network)

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 21

Outline

1 Assignment of final works for course approval
2 Software Defined Networks (SDNs).
3 Open APIs:

OpenFlow
JUNOS SDK
Cisco ONE
OPENER
.....

4 Outsourcing to the Cloud and its impact on routing, etc.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 22

OpenFlow
... the Flow Table is controlled by a remote controller via a secure channel.

switches to enable experiments? Our goal here is to propose
a new switch feature that can help extend programmability
into the wiring closet of college campuses.

One approach - that we do not take - is to persuade
commercial “name-brand” equipment vendors to provide an
open, programmable, virtualized platform on their switches
and routers so that researchers can deploy new protocols,
while network administrators can take comfort that the
equipment is well supported. This outcome is very unlikely
in the short-term. Commercial switches and routers do not
typically provide an open software platform, let alone pro-
vide a means to virtualize either their hardware or software.
The practice of commercial networking is that the standard-
ized external interfaces are narrow (i.e., just packet forward-
ing), and all of the switch’s internal flexibility is hidden. The
internals differ from vendor to vendor, with no standard
platform for researchers to experiment with new ideas. Fur-
ther, network equipment vendors are understandably ner-
vous about opening up interfaces inside their boxes: they
have spent years deploying and tuning fragile distributed
protocols and algorithms, and they fear that new experi-
ments will bring networks crashing down. And, of course,
open platforms lower the barrier-to-entry for new competi-
tors.

A few open software platforms already exist, but do not
have the performance or port-density we need. The simplest
example is a PC with several network interfaces and an op-
erating system. All well-known operating systems support
routing of packets between interfaces, and open-source im-
plementations of routing protocols exist (e.g., as part of the
Linux distribution, or from XORP [2]); and in most cases it
is possible to modify the operating system to process packets
in almost any manner (e.g., using Click [3]). The problem,
of course, is performance: A PC can neither support the
number of ports needed for a college wiring closet (a fanout
of 100+ ports is needed per box), nor the packet-processing
performance (wiring closet switches process over 100Gbits/s
of data, whereas a typical PC struggles to exceed 1Gbit/s;
and the gap between the two is widening).

Existing platforms with specialized hardware for line-rate
processing are not quite suitable for college wiring clos-
ets either. For example, an ATCA-based virtualized pro-
grammable router called the Supercharged PlanetLab Plat-
form [4] is under development at Washington University,
and can use network processors to process packets from
many interfaces simultaneously at line-rate. This approach
is promising in the long-term, but for the time being is tar-
geted at large switching centers and is too expensive for
widespread deployment in college wiring closets. At the
other extreme is NetFPGA [5] targeted for use in teaching
and research labs. NetFPGA is a low-cost PCI card with
a user-programmable FPGA for processing packets, and 4-
ports of Gigabit Ethernet. NetFPGA is limited to just four
network interfaces—insufficient for use in a wiring closet.

Thus, the commercial solutions are too closed and inflex-
ible, and the research solutions either have insufficient per-
formance or fanout, or are too expensive. It seems unlikely
that the research solutions, with their complete generality,
can overcome their performance or cost limitations. A more
promising approach is to compromise on generality and to
seek a degree of switch flexibility that is:

• Amenable to high-performance and low-cost imple-
mentations.

Controller

OpenFlow

Switch

Flow

Table

Flow

Table

Secure

Channel

Secure

Channel PC

OpenFlow

Protocol

SSL

hw

sw

Scope of OpenFlow Switch Specification

Figure 1: Idealized OpenFlow Switch. The Flow
Table is controlled by a remote controller via the
Secure Channel.

• Capable of supporting a broad range of research.

• Assured to isolate experimental traffic from production
traffic.

• Consistent with vendors’ need for closed platforms.

This paper describes the OpenFlow Switch—a specifica-
tion that is an initial attempt to meet these four goals.

2. THE OPENFLOW SWITCH
The basic idea is simple: we exploit the fact that most

modern Ethernet switches and routers contain flow-tables
(typically built from TCAMs) that run at line-rate to im-
plement firewalls, NAT, QoS, and to collect statistics. While
each vendor’s flow-table is different, we’ve identified an in-
teresting common set of functions that run in many switches
and routers. OpenFlow exploits this common set of func-
tions.

OpenFlow provides an open protocol to program the flow-
table in different switches and routers. A network admin-
istrator can partition traffic into production and research
flows. Researchers can control their own flows - by choosing
the routes their packets follow and the processing they re-
ceive. In this way, researchers can try new routing protocols,
security models, addressing schemes, and even alternatives
to IP. On the same network, the production traffic is isolated
and processed in the same way as today.

The datapath of an OpenFlow Switch consists of a Flow
Table, and an action associated with each flow entry. The
set of actions supported by an OpenFlow Switch is exten-
sible, but below we describe a minimum requirement for
all switches. For high-performance and low-cost the data-
path must have a carefully prescribed degree of flexibility.
This means forgoing the ability to specify arbitrary handling
of each packet and seeking a more limited, but still useful,
range of actions. Therefore, later in the paper, define a basic
required set of actions for all OpenFlow switches.

ACM SIGCOMM Computer Communication Review 70 Volume 38, Number 2, April 2008

N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,” ACM SIGCOMM Computer
Communication Review, Volume 38, Number 2, April 2008.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 23

OpenFlow (cont.)

An OpenFlow Switch consists of at least three parts: (1)
A Flow Table, with an action associated with each flow en-
try, to tell the switch how to process the flow, (2) A Secure
Channel that connects the switch to a remote control pro-
cess (called the controller), allowing commands and packets
to be sent between a controller and the switch using (3) The
OpenFlow Protocol, which provides an open and standard
way for a controller to communicate with a switch. By speci-
fying a standard interface (the OpenFlow Protocol) through
which entries in the Flow Table can be defined externally,
the OpenFlow Switch avoids the need for researchers to pro-
gram the switch.

It is useful to categorize switches into dedicated OpenFlow
switches that do not support normal Layer 2 and Layer 3
processing, and OpenFlow-enabled general purpose com-
mercial Ethernet switches and routers, to which the Open-
Flow Protocol and interfaces have been added as a new fea-
ture.

Dedicated OpenFlow switches. A dedicated OpenFlow
Switch is a dumb datapath element that forwards packets
between ports, as defined by a remote control process. Fig-
ure 1 shows an example of an OpenFlow Switch.

In this context, flows are broadly defined, and are limited
only by the capabilities of the particular implementation of
the Flow Table. For example, a flow could be a TCP con-
nection, or all packets from a particular MAC address or
IP address, or all packets with the same VLAN tag, or all
packets from the same switch port. For experiments involv-
ing non-IPv4 packets, a flow could be defined as all packets
matching a specific (but non-standard) header.

Each flow-entry has a simple action associated with it;
the three basic ones (that all dedicated OpenFlow switches
must support) are:

1. Forward this flow’s packets to a given port (or ports).
This allows packets to be routed through the network.
In most switches this is expected to take place at line-
rate.

2. Encapsulate and forward this flow’s packets to a con-
troller. Packet is delivered to Secure Channel, where
it is encapsulated and sent to a controller. Typically
used for the first packet in a new flow, so a controller
can decide if the flow should be added to the Flow
Table. Or in some experiments, it could be used to
forward all packets to a controller for processing.

3. Drop this flow’s packets. Can be used for security, to
curb denial of service attacks, or to reduce spurious
broadcast discovery traffic from end-hosts.

An entry in the Flow-Table has three fields: (1) A packet
header that defines the flow, (2) The action, which defines
how the packets should be processed, and (3) Statistics,
which keep track of the number of packets and bytes for
each flow, and the time since the last packet matched the
flow (to help with the removal of inactive flows).

In the first generation “Type 0” switches, the flow header
is a 10-tuple shown in Table 1. A TCP flow could be spec-
ified by all ten fields, whereas an IP flow might not include
the transport ports in its definition. Each header field can
be a wildcard to allow for aggregation of flows, such as flows
in which only the VLAN ID is defined would apply to all
traffic on a particular VLAN.

In VLAN Ethernet IP TCP

Port ID SA DA Type SA DA Proto Src Dst

Table 1: The header fields matched in a “Type 0”
OpenFlow switch.

The detailed requirements of an OpenFlow Switch are de-
fined by the OpenFlow Switch Specification [6].

OpenFlow-enabled switches. Some commercial
switches, routers and access points will be enhanced with
the OpenFlow feature by adding the Flow Table, Secure
Channel and OpenFlow Protocol (we list some examples in
Section 5). Typically, the Flow Table will re-use existing
hardware, such as a TCAM; the Secure Channel and Proto-
col will be ported to run on the switch’s operating system.
Figure 2 shows a network of OpenFlow-enabled commercial
switches and access points. In this example, all the Flow
Tables are managed by the same controller; the OpenFlow
Protocol allows a switch to be controlled by two or more
controllers for increased performance or robustness.

Our goal is to enable experiments to take place in an ex-
isting production network alongside regular traffic and ap-
plications. Therefore, to win the confidence of network ad-
ministrators, OpenFlow-enabled switches must isolate ex-
perimental traffic (processed by the Flow Table) from pro-
duction traffic that is to be processed by the normal Layer 2
and Layer 3 pipeline of the switch. There are two ways to
achieve this separation. One is to add a fourth action:

4. Forward this flow’s packets through the switch’s nor-
mal processing pipeline.

The other is to define separate sets of VLANs for experi-
mental and production traffic. Both approaches allow nor-
mal production traffic that isn’t part of an experiment to be
processed in the usual way by the switch. All OpenFlow-
enabled switches are required to support one approach or
the other; some will support both.

Additional features. If a switch supports the header for-
mats and the four basic actions mentioned above (and de-
tailed in the OpenFlow Switch Specification), then we call it
a “Type 0” switch. We expect that many switches will sup-
port additional actions, for example to rewrite portions of
the packet header (e.g., for NAT, or to obfuscate addresses
on intermediate links), and to map packets to a priority
class. Likewise, some Flow Tables will be able to match on
arbitrary fields in the packet header, enabling experiments
with new non-IP protocols. As a particular set of features
emerges, we will define a “Type 1” switch.

Controllers. A controller adds and removes flow-entries
from the Flow Table on behalf of experiments. For example,
a static controller might be a simple application running
on a PC to statically establish flows to interconnect a set
of test computers for the duration of an experiment. In
this case the flows resemble VLANs in current networks—
providing a simple mechanism to isolate experimental traffic
from the production network. Viewed this way, OpenFlow
is a generalization of VLANs.

One can also imagine more sophisticated controllers that
dynamically add/remove flows as an experiment progresses.
In one usage model, a researcher might control the complete

ACM SIGCOMM Computer Communication Review 71 Volume 38, Number 2, April 2008

N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,” ACM SIGCOMM Computer
Communication Review, Volume 38, Number 2, April 2008.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 24

OpenFlow (cont.)
Example of a network of OpenFlow enabled commercial switches and routers.

Controller

PC

OpenFlow

Access Point

Server room

OpenFlow

OpenFlow

OpenFlow
OpenFlow-enabled

Commercial Switch

Flow

Table

Flow

Table

Secure

Channel

Secure

Channel

Normal

Software

Normal

Datapath

Figure 2: Example of a network of OpenFlow-
enabled commercial switches and routers.

network of OpenFlow Switches and be free to decide how all
flows are processed. A more sophisticated controller might
support multiple researchers, each with different accounts
and permissions, enabling them to run multiple indepen-
dent experiments on different sets of flows. Flows identified
as under the control of a particular researcher (e.g., by a
policy table running in a controller) could be delivered to a
researcher’s user-level control program which then decides if
a new flow-entry should be added to the network of switches.

3. USING OPENFLOW
As a simple example of how an OpenFlow Switch might be

used imagine that Amy (a researcher) invented Amy-OSPF
as a new routing protocol to replace OSPF. She wants to
try her protocol in a network of OpenFlow Switches, with-
out changing any end-host software. Amy-OSPF will run in
a controller; each time a new application flow starts Amy-
OSPF picks a route through a series of OpenFlow Switches,
and adds a flow- entry in each switch along the path. In her
experiment, Amy decides to use Amy-OSPF for the traffic
entering the OpenFlow network from her own desktop PC—
so she doesn’t disrupt the network for others. To do this,
she defines one flow to be all the traffic entering the Open-
Flow switch through the switch port her PC is connected to,
and adds a flow-entry with the action “Encapsulate and for-
ward all packets to a controller”. When her packets reach
a controller, her new protocol chooses a route and adds a
new flow-entry (for the application flow) to every switch
along the chosen path. When subsequent packets arrive at
a switch, they are processed quickly (and at line-rate) by
the Flow Table.

There are legitimate questions to ask about the perfor-

mance, reliability and scalability of a controller that dynam-
ically adds and removes flows as an experiment progresses:
Can such a centralized controller be fast enough to process
new flows and program the Flow Switches? What happens
when a controller fails? To some extent these questions were
addressed in the context of the Ethane prototype, which
used simple flow switches and a central controller [7]. Pre-
liminary results suggested that an Ethane controller based
on a low-cost desktop PC could process over 10,000 new
flows per second — enough for a large college campus. Of
course, the rate at which new flows can be processed will de-
pend on the complexity of the processing required by the re-
searcher’s experiment. But it gives us confidence that mean-
ingful experiments can be run. Scalability and redundancy
are possible by making a controller (and the experiments)
stateless, allowing simple load-balancing over multiple sep-
arate devices.

3.1 Experiments in a Production Network
Chances are, Amy is testing her new protocol in a network

used by lots of other people. We therefore want the network
to have two additional properties:

1. Packets belonging to users other than Amy should be
routed using a standard and tested routing protocol
running in the switch or router from a “name-brand”
vendor.

2. Amy should only be able to add flow entries for her
traffic, or for any traffic her network administrator has
allowed her to control.

Property 1 is achieved by OpenFlow-enabled switches.
In Amy’s experiment, the default action for all packets
that don’t come from Amy’s PC could be to forward them
through the normal processing pipeline. Amy’s own packets
would be forwarded directly to the outgoing port, without
being processed by the normal pipeline.

Property 2 depends on the controller. The controller
should be seen as a platform that enables researchers to im-
plement various experiments, and the restrictions of Prop-
erty 2 can be achieved with the appropriate use of permis-
sions or other ways to limit the powers of individual re-
searchers to control flow entries. The exact nature of these
permission-like mechanisms will depend on how the con-
troller is implemented. We expect that a variety of con-
trollers will emerge. As an example of a concrete realization
of a controller, some of the authors are working on a con-
troller called NOX as a follow-on to the Ethane work [8].
A quite different controller might emerge by extending the
GENI management software to OpenFlow networks.

3.2 More Examples
As with any experimental platform, the set of experiments

will exceed those we can think of up-front — most experi-
ments in OpenFlow networks are yet to be thought of. Here,
for illustration, we offer some examples of how OpenFlow-
enabled networks could be used to experiment with new net-
work applications and architectures.

Example 1: Network Management and Access Con-
trol. We’ll use Ethane as our first example [7] as it was
the research that inspired OpenFlow. In fact, an OpenFlow

ACM SIGCOMM Computer Communication Review 72 Volume 38, Number 2, April 2008

N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,” ACM SIGCOMM Computer
Communication Review, Volume 38, Number 2, April 2008.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 25

OpenFlow (cont.)
Example of processing packets through an external line-rate packet-processing
device (e.g., a programmable NetFPGA router).

Switch can be thought of as a generalization of Ethane’s
datapath switch. Ethane used a specific implementation of
a controller, suited for network management and control,
that manages the admittance and routing of flows. The ba-
sic idea of Ethane is to allow network managers to define a
network-wide policy in the central controller, which is en-
forced directly by making admission control decisions for
each new flow. A controller checks a new flow against a set
of rules, such as “Guests can communicate using HTTP, but
only via a web proxy” or “VoIP phones are not allowed to
communicate with laptops.” A controller associates pack-
ets with their senders by managing all the bindings between
names and addresses — it essentially takes over DNS, DHCP
and authenticates all users when they join, keeping track of
which switch port (or access point) they are connected to.
One could envisage an extension to Ethane in which a policy
dictates that particular flows are sent to a user’s process in
a controller, hence allowing researcher-specific processing to
be performed in the network.

Example 2: VLANs. OpenFlow can easily provide users
with their own isolated network, just as VLANs do. The
simplest approach is to statically declare a set of flows which
specify the ports accessible by traffic on a given VLAN ID.
Traffic identified as coming from a single user (for example,
originating from specific switch ports or MAC addresses) is
tagged by the switches (via an action) with the appropriate
VLAN ID.

A more dynamic approach might use a controller to man-
age authentication of users and use the knowledge of the
users’ locations for tagging traffic at runtime.

Example 3: Mobile wireless VOIP clients. For this
example consider an experiment of a new call- handoff
mechanism for WiFi-enabled phones. In the experiment
VOIP clients establish a new connection over the OpenFlow-
enabled network. A controller is implemented to track the
location of clients, re-routing connections — by reprogram-
ming the Flow Tables — as users move through the network,
allowing seamless handoff from one access point to another.

Example 4: A non-IP network. So far, our examples
have assumed an IP network, but OpenFlow doesn’t require
packets to be of any one format — so long as the Flow
Table is able to match on the packet header. This would
allow experiments using new naming, addressing and rout-
ing schemes. There are several ways an OpenFlow-enabled
switch can support non-IP traffic. For example, flows could
be identified using their Ethernet header (MAC src and dst
addresses), a new EtherType value, or at the IP level, by a
new IP Version number. More generally, we hope that fu-
ture switches will allow a controller to create a generic mask
(offset + value + mask), allowing packets to be processed
in a researcher-specified way.

Example 5: Processing packets rather than flows.
The examples above are for experiments involving flows —
where a controller makes decisions when the flow starts.
There are, of course, interesting experiments to be per-
formed that require every packet to be processed. For ex-
ample, an intrusion detection system that inspects every
packet, an explicit congestion control mechanism, or when
modifying the contents of packets, such as when converting
packets from one protocol format to another.

Controller

PC

NetFPGA

Laboratory

OpenFlow-enabled

Commercial Switch

Flow

Table

Flow

Table

Secure

Channel

Secure

Channel

Normal

Software

Normal

Datapath

Figure 3: Example of processing packets through an
external line-rate packet-processing device, such as
a programmable NetFPGA router.

There are two basic ways to process packets in an
OpenFlow-enabled network. First, and simplest, is to force
all of a flow’s packets to pass through a controller. To do
this, a controller doesn’t add a new flow entry into the Flow
Switch — it just allows the switch to default to forward-
ing every packet to a controller. This has the advantage of
flexibility, at the cost of performance. It might provide a
useful way to test the functionality of a new protocol, but
is unlikely to be of much interest for deployment in a large
network.

The second way to process packets is to route them to
a programmable switch that does packet processing — for
example, a NetFPGA-based programmable router. The ad-
vantage is that the packets can be processed at line-rate in
a user-definable way; Figure 3 shows an example of how this
could be done, in which the OpenFlow-enabled switch op-
erates essentially as a patch-panel to allow the packets to
reach the NetFPGA. In some cases, the NetFPGA board (a
PCI board that plugs into a Linux PC) might be placed in
the wiring closet alongside the OpenFlow-enabled switch, or
(more likely) in a laboratory.

4. THE OPENFLOW CONSORTIUM
The OpenFlow Consortium aims to popularize OpenFlow

and maintain the OpenFlow Switch Specification. The Con-
sortium is a group of researchers and network administra-
tors at universities and colleges who believe their research
mission will be enhanced if OpenFlow-enabled switches are
installed in their network.

Membership is open and free for anyone at a school,
college, university, or government agency worldwide. The
OpenFlow Consortium welcomes individual members who
are not employed by companies that manufacture or sell
Ethernet switches, routers or wireless access points (because
we want to keep the consortium free of vendor influence). To
join, send email to join@OpenFlowSwitch.org.

ACM SIGCOMM Computer Communication Review 73 Volume 38, Number 2, April 2008

N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,” ACM SIGCOMM Computer
Communication Review, Volume 38, Number 2, April 2008.

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 26

Questions?

Marcelo Yannuzzi Routing in the Future Internet: Graduate Course, INCO, Montevideo, Uruguay, 2012. 27

