Tarea 1

fecha de entrega: 9 de Abril de 2024

- 1. Sea (M,d) un espacio métrico con τ_d la topología métrica inducida por d. Para $X,Y\subseteq M$, demuestre que:
 - (a) $\overline{X \cup Y} = \overline{X} \cup \overline{Y}$ y $\overline{X \cap Y} \subseteq \overline{X} \cap \overline{Y}$. Dar un ejemplo donde no se cumpla la otra inclusión.

(1 punto)

- (b) $(X \cap Y)^{\circ} = X^{\circ} \cap Y^{\circ}$ y $X^{\circ} \cup Y^{\circ} \subseteq (X \cup Y)^{\circ}$. Dar un ejemplo donde no se cumpla la otra inclusión. (1 punto)
- 2. Sea $C^1([0,1],\mathbb{R})$ el espacio vectorial real de funciones $f:[0,1] \to \mathbb{R}$ que son de clase C^1 , es decir, que poseen derivada continua.
 - (a) Sea $\|-\|: \mathcal{C}^1([0,1],\mathbb{R}) \to \mathbb{R}$ la función dada por

$$||f|| := \sup_{x \in [0,1]} \{|f(x)| + |f'(x)|\}$$
 para toda $f \in C^1([0,1], \mathbb{R})$.

Demuestre que $\|-\|$ es una norma.

(1 punto)

- (b) Sea $D \subseteq \mathcal{C}^1([0,1],\mathbb{R})$ el subconjunto formado por los difeomorfismos de clase C^1 , es decir, D está formado por las funciones $f \in \mathcal{C}^1([0,1],\mathbb{R})$ tales que $f'(x) \neq 0$ para todo $x \in [0,1]$. Demuestre que f es una bijección monótona de [0,1] sobre un intervalo [a,b] para cada $f \in D$, y que $f^{-1} \in \mathcal{C}^1([a,b],\mathbb{R})$. (1 punto)
- (c) Demuestre que D es un abierto en el espacio ($\mathcal{C}^1([0,1],\mathbb{R}), \tau_{d_{\|-\|}}$). (1 punto)