
Listen and Whisper: Security Mechanisms for BGP

Lakshminarayanan Subramanian∗, Volker Roth+, Ion Stoica∗, Scott Shenker∗+, Randy H. Katz∗

∗U.C. Berkeley +ICSI, Berkeley

Abstract

BGP, the current inter-domain routing protocol, assumes that
the routing information propagated by authenticated routers
is correct. This assumption renders the current infrastruc-
ture vulnerable to both accidental misconfigurations and de-
liberate attacks. To reduce this vulnerability, we present a
combination of two mechanisms: Listen and Whisper. Listen
passively probes the data plane and checks whether the un-
derlying routes to different destinations work. Whisper uses
cryptographic functions along with routing redundancy to
detect bogus route advertisements in the control plane. These
mechanisms are easily deployable, and do not rely on either
a public key infrastructure or a central authority like ICANN.

The combination of Listen and Whisper eliminates a large
number of problems due to router misconfigurations, and re-
stricts (though not eliminates) the damage that deliberate at-
tackers can cause. Moreover, these mechanisms can detect
and contain isolated adversaries that propagate even a few
invalid route announcements. Colluding adversaries pose a
more stringent challenge, and we propose simple changes to
the BGP policy mechanism to limit the damage colluding ad-
versaries can cause. We demonstrate the utility of Listen and
Whisper through real-world deployment, measurements and
empirical analysis of their worst-case behaviors. For exam-
ple, a randomly placed isolated adversary, in the worst case
can affect reachability to only 1% of the nodes.

1 Introduction

The Internet is a collection of autonomous systems (AS’s),
numbering more than 14,000 in a recent count. The inter-
domain routing protocol, BGP, knits these autonomous sys-
tems together into a coherent whole. Therefore, BGP’s re-
silience against attack is essential for the security of the
Internet. BGP currently enables peers to transmit route an-
nouncements over authenticated channels, so adversaries
cannot impersonate the legitimate sender of a route an-
nouncement. This approach, which verifies who is speaking
but not what they say, leaves the current infrastructure ex-
tremely vulnerable to both unintentional misconfigurations
and deliberate attacks. For example, in 1997 a simple mis-
configuration in a customer router caused it to advertise a
short path to a large number of network prefixes, and this re-
sulted in a massive black hole that disconnected significant
portions of the Internet [14].

To eliminate this vulnerability, several sophisticated BGP
security measures have been proposed, most notably S-
BGP [24]. However, these approaches typically require

an extensive cryptographic key distribution infrastructure
and/or a trusted central database (e.g., ICANN [3]). Nei-
ther of these two crucial ingredients are currently available,
and so these security proposals have not moved forward to-
wards adoption.1 In this paper we abandon the goal of “per-
fect security” and instead seek “significantly improved se-
curity” through more easily deployable mechanisms. To the
end we propose two measures, Listen and Whisper, that re-
quire neither a public key distribution nor a trusted central-
ized database. We first describe the threat model we address
and then summarize the extent to which these mechanisms
can defend against those threats.

1.1 Threat Model

The primary underlying vulnerability in BGP that we ad-
dress in this paper is the ability of an AS to create invalid
routes. There are two types of invalid routes:

1. Invalid routes in the Control plane: This occurs when
an AS propagates an advertisement with a fake AS path
(i.e., one that does not exist in the Internet topology),
causing other AS’s to choose this route over genuine
routes. A single malicious adversary can divert traffic
to pass through it and then cause havoc by, for exam-
ple, dropping packets (rendering destinations unreach-
able), eavesdropping (violating privacy), or impersonat-
ing end-hosts within the destination network (like Web
servers etc.).

2. Invalid routes in the Data Plane: This occurs when a
router forwards packets in a manner inconsistent with
the routing advertisements it has received or propa-
gated; in short, the routing path in the data plane does
not match the corresponding routing path advertised in
the control plane. Mao et al. [26] show that for nearly
8% of Internet paths, the control plane and data plane
paths do not match. The prevalence of such a high mis-
match ratio motivates the need for separately verify-
ing the correctness of routes in the data plane and not
merely focusing on the control plane.

Invalid routes can be caused by either accidental misconfigu-
rations or deliberate attacks. Misconfigurations occur in sev-
eral forms ranging from buggy configuration scripts to hu-
man errors. In the control plane, Mahajan et al. [25] infer

1There is much debate about whether their failure is due to the
lack of a PKI and trusted database, or onerous processing over-
heads, or other reasons. However, the fact remains that neither
of these infrastructures are available, and any design that requires
them faces a much higher deployment barrier.

1

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Subrayado

marcelo
Cuadro de texto
ok....pero y el esquema de firmas que se explica más adelante...como opera?? Cómo se asignan y distribuyen las claves??

marcelo
Lápiz

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Lápiz

that misconfigurations produce invalid route announcements
to roughly 200− 1200 prefixes every day (roughly 0.2− 1%
of the prefix entries in a typical routing table). Stale routes
(not propagating new announcements) and forwarding errors
at a router (e.g., lack of forwarding entry) are two other data
plane misconfigurations causing invalid routes. While AS’s
might act in malicious ways on their own, the biggest worry
about deliberate attacks comes from adversaries who break
into routers. Routers are surprisingly vulnerable; some have
default passwords [10, 34], others use standard interfaces
like telnet and SSH, and so routers share all their known vul-
nerabilities. For our purposes in this paper, the only differ-
ence between a misconfiguration and an attack is that attack-
ers can take active countermeasures (by, for instance, spoof-
ing responses to various probes) while misconfigured routers
don’t. Deliberate attacks can involve an isolated adversary
(i.e., a single compromised router) or colluding adversaries
(i.e., a set of compromised routers). It is particularly difficult
to secure against colluding attackers.

The spectrum of problems we address in this paper can be
described, in order of increasing difficulty, as misconfigu-
rations, isolated adversaries and colluding adversaries. We
now describe the extent to which Listen and Whisper provide
protection against these threats.

1.2 Level of Protection

Listen detects invalid routes in the data plane by checking
whether data sent along routes reaches the intended desti-
nation. Whisper checks for consistency in the control plane.
While both these techniques can be used in isolation, they
are more useful when applied in conjunction. The extent to
which they provide protection against the three threat sce-
narios can be summarized as follows:

Misconfigurations and Isolated Adversaries: Whisper guar-
antees path integrity for route advertisements in the presence
of misconfigurations or isolated adversaries; i.e., any invalid
route advertisement due to a misconfiguration or isolated ad-
versary with either a fake AS path or with any of the fields
of the AS path being tampered (e.g., addition, modification
or deletion of AS’s) will be detected. Path integrity also im-
plies that an isolated adversary cannot exploit BGP policies
to create favorable invalid routes. In addition, Whisper can
identify the offending router if it is propagating a significant
number of invalid routes. Listen detects reachability prob-
lems caused by errors in the data plane, but is only applicable
for destination prefixes that observe TCP traffic.

However, none of our solutions can prevent malicious nodes
already on the path to a particular destination from eaves-
dropping, impersonating, or dropping packets. In particular,
countermeasures (from isolated adversaries already along
the path) can defeat Listen’s attempts to detect problems on
the data path.

Colluding Adversaries: None of our techniques can prevent
two colluding nodes from pretending there is a direct link be-
tween them by tunneling packets. Moreover, colluding nodes
can exploit the current usage of BGP policies to create large
scale outages without being detectable by either Listen or

Whisper. To deal with this problem, we suggest simple mod-
ifications to the BGP policy engine which in combination
with Whisper can largely restrict the damage that colluding
adversaries can cause. In the absence of complete knowl-
edge of the Internet topology, these two problems also ex-
ist in the case of heavy-weight security solutions like Secure
BGP [23].

The rest of the paper is organized as follows. In Section 2, we
discuss related work. In Sections 3 and 4, we describe the
whisper and the listen protocols. In Section 5, we present our
implementation of Listen and Whisper. In Section 6, we will
evaluate several aspects of Listen and Whisper using real-
world experiences, empirical evaluation and security analy-
sis. In Section 7, we discuss the case of colluding adversaries
and finally present our conclusions in Section 8.

2 Related Work

In this section, we will present related work as well as try to
motivate our work in comparison to previous approaches to
this problem. We classify related work based on the threat
model.

2.1 Misconfigurations

Traditional approaches to detecting misconfigurations in-
volves correlating route advertisements in the control plane
from several vantage points [25, 35]. They identify two
forms of misconfigurations: origin and export misconfigura-
tions. In an origin misconfiguration, the destination AS cor-
responding to a prefix is wrongly specified. An export mis-
configuration occurs when a router violates a BGP export
policy and forwards certain routes to a neighboring AS that it
is not supposed to forward. From our definition of an invalid
route, an export misconfigured route is still a valid route.
Our paper does not deal with this type of misconfiguration.
One limitation with analyzing BGP streams is: the lack of
knowledge of the Internet topology. Since the topology is
not known, these techniques can pinpoint invalid routes only
when the destination AS is wrongly specified.

Mao et al. [26] build an AS-traceroute tool to detect the AS
path in the data plane. Using this tool, one can detect several
forms of invalid routes in the data plane. While this tool is
useful for diagnostic purposes once a problem is detected,
one cannot pro-actively use it to search for invalid routes
since it actively probes the data paths.

Within the context of feedback based routing, Zhu et al. [36]
proposed a data plane technique based on passive and ac-
tive probing. The passive probing aspect of this work shares
some similarities to our Listen method. Padmanabhan et
al. [29] propose a secure variant of traceroute to test
the correctness of a route. This mechanism requires both a
PKI and prior distribution of cryptographic keys to the par-
ticipating AS’s to ascertain the integrity and authenticity of
traceroute packets.

2.2 Dealing with Adversaries

Techniques dealing with adversaries can be classified as Key
distribution based or Non-PKI based.

2

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Subrayado

marcelo
Cuadro de texto
Esto significa que puedo darme cuenta que algo va mal pero no puedo identificar el origen del problema a menos que el no. de invalid routes sea grande???

marcelo
Lápiz

marcelo
Resaltado

marcelo
Resaltado

marcelo
Cuadro de texto
Route leaks are out of scope ...

marcelo
Lápiz

Key-distribution based: One class of mechanisms builds
on cryptographic enhancements of the BGP protocol, for
instance the security mechanisms proposed by Smith et
al. [32], Murphy et al. [27], Kent et al. [24], and recent work
on Secure Origin BGP [28]. All these protocols make ex-
tensive use of digital signatures and public key certification.
S-BGP roughly uses fifteen different certificate types for
route verification [31]. More lightweight approaches based
on cryptographic hash functions have been proposed e.g., by
Hu et al. [20, 22] in the context of secure routing in ad hoc
networks. One variant of the Whisper protocol is concep-
tually similar to their work. However, their mechanisms re-
quire prior secure distribution of hash chain elements.

Why not use a PKI-based infrastructure? Public key in-
frastructures impose a heavy technological and management
burden, and have received a fair share of criticism e.g., by
Davis [16], Ellison and Schneier [17]. The PKI model has
been criticized based on technical grounds, on grounds of a
lack of trust and privacy, as well as on principle [16, 17, 15].
Building an Internet wide PKI infrastructure is a major
project with huge costs and a high risk of failure. Secure-
BGP, despite the push by a major tier-1 ISP, has been de-
ployed only by a very small number of ISPs after 5 years
(though an IETF working group on Secure-BGP exists).

Non-PKI approaches: Non-PKI based solutions offer far
less security in the face of deliberate attacks. Some of these
mechanisms assume the existence of databases with up to
date authoritative route information against which routers
verify the route announcements that they receive. The In-
ternet Routing Registry [4] and the Inter-domain Route Vali-
dation Service proposed by Goodell et al. [19] belong to this
category. Here, the problem is to ascertain the authenticity,
completeness, and availability of the information in such a
database. First, ISPs only reluctantly submit routing infor-
mation because this may disclose local policies that the ISPs
regard as confidential (this is not an issue in [19] because
each AS keeps its own route validation service). Second, the
origin authentication of the database contents again demands
a public key infrastructure. Third, access to such databases
relies on the very infrastructure that it is meant to protect,
which is hardly an ideal situation.

3 Whisper: Control Plane Verification

In this section, we will describe the whisper protocol, a con-
trol plane verification technique that proposes minor modifi-
cations to BGP to aid in detecting invalid routes from mis-
configured or malicious routers. In this section, we restrict
our discussion to the case where an isolated adversary or
a single misconfigured router propagates invalid routes. We
will discuss colluding adversaries in Section 7.

The Whisper protocol provides the following properties in
the presence of isolated adversaries:

1. Any misconfigured or malicious router propagating an
invalid route will always a trigger an alarm.

2. A single malicious router advertising more than a few
invalid routes will be detected and the effects of these
spurious routes will be contained.

A B C D

PKI

S A A B A B CS S S S S

A A B
A B CS S S

S S S

A

B C

D

X Y

h
h

h

h
h

h

A

AB
ABC

AXY

XY

A

Case(i): Secure−BGP model

Case(ii): Whisper Protocol Model

Figure 1: Comparison of the security approach of Whisper
protocols with Secure BGP

3.1 Triggering Alarms vs Identification

The main distinction between our approach and a PKI-based
approach is the concept of triggering alarms as opposed to
identifying the source of problems. In Secure-BGP, a router
can verify the correctness of a single route advertisement by
contacting a PKI and a central authority to test the validity of
the signatures embedded in the advertisement . For example,
in Figure 1 (Case(i)), each AS X appends an advertisement
with a signature SX generated using its public key. Another
AS can use a PKI to check whether SX is the correct sig-
nature of X . In this case, any misconfigured/malicious AS
propagating an invalid route will not be able to append the
correct signatures of other AS’s and can be identified.

Without either of these two infra-structural pieces, a router
cannot verify a single route advertisement in isolation. The
Whisper model is to consider two different route advertise-
ments to the same destination and check whether they are
consistent with each other. For example, in Figure 1 Case(ii),
each route advertisement is associated with a signature of an
AS path. AS D receives two advertisements to destination A
and can compare the signatures hABC and hAXY to check
whether the routes (C, B, A) and (Y, X, A) are consistent.
When two routes are detected as inconsistent, the Whisper
protocol can determine that at least one of the routes is in-
valid. However, it cannot clearly pinpoint the source of the
invalid route. Upon detecting inconsistencies, the Whisper
protocol can trigger alarms notifying operators about the
existence of a problem. This method is based on the com-
position of well-known principles of weak authentication as
discussed by Arkko and Nikander [11].

The whisper protocol does not require the underlying Inter-
net topology to have multiple disjoint paths to every destina-
tion AS. As long as an adversary propagating an invalid route
is not on every path to the destination, whisper will have two
routes to check for consistency: (a) the genuine route to the
destination; (b) invalid path through the adversary.

3.2 Route Consistency Testing

A route consistency test takes two different route advertise-
ments to the same destination as input and outputs true if

3

marcelo
Resaltado

marcelo
Cuadro de texto
Y si recibo una sola ruta?.....qué pasa si no tengo redundancia de paths??

marcelo
Lápiz

marcelo
Lápiz

marcelo
Lápiz

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Subrayado

marcelo
Cuadro de texto
Y luego qué??...De hecho es una buena idea si no revela nada acerca de las policies...

marcelo
Lápiz

marcelo
Resaltado

marcelo
Resaltado

marcelo
Subrayado

marcelo
Resaltado

marcelo
Resaltado

V

P

A B
�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

���
���
���
���

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

V

P

A B

V

P

A B

FalseTrue True or False

Uncompromised
Node

Comrpomised
Node

Imaginary Path

Figure 2: Different outcomes for a route consistency test. In
all these scenarios, the verifying node is V . The verifying
node checks whether the two routes it receives to destination
P are consistent with each other.

the routes are consistent and outputs false otherwise. Con-
sistency is abstractly defined as follows:

1. If both route announcements are valid then the output is
true.

2. If one route announcement is valid and the other one is
invalid then the output is false.

3. If both route announcements are invalid then the output
is true or false.

The key output from a route consistency test is false. This
output unambiguously signals that at least one of the two
route announcements is invalid. In this case, our protocols
can raise an alarm and flag both the suspicious routes as po-
tential candidates for invalid routes. If the consistency test
outputs true, both the routes could either be valid or invalid.
Figure 2 depicts the outcomes of a route consistency test for
various examples of network configurations.

We will now describe two whisper consistency tests, namely
Weak Split Whisper and Strong Split Whisper (SSW), of in-
creasing complexity offering different security guarantees.
We primarily use Weak Split, a simple hash chain based con-
struction, to motivate the construction of SSW. All the results
presented in this paper are based on the strong split variant.
SSW is the variant that offers path integrity in the presence
of misconfigurations or isolated adversaries.

Conceptually, both these constructions introduce a signature
field in every BGP UPDATE message which is used for per-
forming the route consistency test. There are three basic op-
erations that are allowed on the signature field:

1. Generate-Signature: The origin AS (the originator of a
route announcement) of a destination prefix generates a
signature and initializes this field in the BGP UPDATE
message and forwards it to its neighbor. The origin AS
uses different initial signatures for every prefix it owns.

2. Update-Signature: Every intermediary AS that is not
the origin of a destination prefix is required to update
the signature field using a cryptographic hash function.
This operation is only performed by one router in every
AS (typically at the entry point of an AS).

3. Verify-Signature: Any intermediary router that receives
two different routes (with different AS paths) can com-
pare whether the signatures in the two different routes
are consistent with each other.

P V

A B C

X Y
Secret=X

h(X)

h(h(X))

h (X)

h (X)
4

3

h(X)

h(h(X))
h (X)3

Figure 3: Weak-Split construction using a globally known
hash function h()

The path integrity property requires the whisper protocol to
satisfy two properties: (a) a malicious adversary should not
be able to reverse engineer the signature field of an AS path;
(b) any modification to the AS path or signature field in an
advertisement should be detected as an inconsistency when
tested with a valid route to the same destination.

3.2.1 Weak Split Whisper

Figure 3 illustrates the weak-split construction using a sim-
ple example topology. Weak-Split whisper is motivated by
the hash-chain construction used by Hu et al. [21, 20] in the
context of ad-hoc networks. The key idea is as follows: The
origin AS generates a secret x and propagates h(x) to its
neighbors where h() is a globally known one-way hash func-
tion. Every intermediary AS in the path repeatedly hashes the
signature field. An AS that receives two routes r and s of AS
hop lengths k and l with signatures yr and ys can check for
consistency by testing whether:

hk−l(ys) = yr

The security property that the weak-whisper guarantees is:
An independent adversary that is N AS hops away from an
origin AS can propagate invalid routes of a minimum length
of N − 1 without being detected as inconsistent. An AS that
is N hops away from the origin knows the value hN(x) but
cannot compute hk(x) for any k < N since h() is a one-way
hash function. Such an AS also is not supposed to reveal its
hash value to other nodes (unless the AS colludes with other
AS’s). However, the adversary can forward any fake path of
length N − 1 and forward hN(x) along with the path.

Hence, weak-split whisper does not provide strong forms of
security guarantees. In particular, it cannot ensure path in-
tegrity i.e. a malicious AS could modify the AS numbers of
a path without affecting the AS path length.

3.2.2 Strong Split Whisper

The strong split whisper protocol uses a more sophisticated
cryptographic check and can provide path integrity in the
presence of independent adversaries i.e., If an adversary re-
moves or changes any entry in the AS path, the strong split
whisper will always detect an inconsistency.

Figure 4 shows a construction of the basic SSW using the
RSA mechanism. We use a minor modification of the illus-
trated example. We will elaborate the three basic operations
for this protocol:

4

marcelo
Resaltado

marcelo
Lápiz

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Subrayado

marcelo
Rectángulo

marcelo
Rectángulo

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Rectángulo

marcelo
Resaltado

marcelo
Lápiz

marcelo
Cuadro de texto
Again, el esquema de firmas como opera?? Cómo se asignan y distribuyen las claves??No usa RPKI ni entidades certificadoras...pero como son las signatures??Por otra parte....como BGPSEC....requiere firmar CADA MENSAJE BGP!!....so....no hay RPKI, no solucionan el prefix hijacking y require firmar cada mensaje BGP comop BGPSEC....mmmmm

marcelo
Lápiz

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Cuadro de texto
Muy débil....puedo no firmar, eliminar un AS de la lista y lograr hacer AS-path shortening? También puedo firmar varias veces sin tocar el AS-path....generando alarmas?

marcelo
Lápiz

marcelo
Lápiz

marcelo
Resaltado

marcelo
Rectángulo

marcelo
Cuadro de texto
Se centran en AS-path (route hijacking)....eso significa que no proporcionan soluciones en lo que respecta a route origin authentication (ROA)....so no solucionan el prefix hijacking!

gz.P mod N

gz.P mod N

P V

A B C

X Y

gz.P.A gz.P.A.B

gz.P.A.B.C

gz.P.X.Y

gz.P.X
Generator g
Secret z

N=p.q

mod N
mod N

mod N

Figure 4: Basic Strong-Split construction using exponentia-
tion under modulo N where N = p.q, a product of two large
primes.

1. generate-signature: The origin AS computes three ba-
sic parameters:. N, g, z. N is chosen as p × q where
p and q are two large primes of the form 2p′ + 1 and
2q′ +1 where p′ and q′ are also prime. It then computes
a generator g in the prime group Zp and Zq. Finally,
it chooses a random number z and computes gzmodN .
The signature generated is a tuple (N, gzmodN). While
the origin AS publicly announces N , only it knows the
prime factors of N . Similar to RSA, we rely on the fact
that an adversary cannot factor N to determine its prime
factors.

2. update-signature: Every AS is associated with a unique
AS number which is specified in the path. Let AS A
that receive an advertisement from a neighboring AS
with a signature (N, y) where y is of the form gDmodN
for some value of D. AS A updates this signature to
(N, yAmodN). In other words, the AS exponentiates
using its AS number. In Figure 4, the route announce-
ment contains an AS path P, A, B, C, the correspond-
ing signature of the route is (N, gz.P.A.B.CmodN).

3. verify-signature: We will describe verify-signature us-
ing the example in Figure 4. The verifier,V , receives
two signatures (N, s1) and (N, s2) where s1 =
gz.P.A.B.CmodN and s2 = gz.P.X.Y modN . Given
these values and the corresponding AS paths, the ver-
ifier checks whether:

sX.Y
1 = sA.B.C

2

If so, the routes are said to be consistent.

SSW is similar to the MuHASH construction proposed by
Bellare et al. [12] for incrementally hashing signatures. A
formal proof of the security guarantees offered by MuHASH
is also applicable in our context to show that SSW offers
path integrity. The key observation with our construction is:
given N and given gxmodN , an adversary cannot compute
x−1modN and hence cannot remove the signature of previ-
ous nodes in the AS path.

This construction has three problems: (a) an adversary can
permute entries in a path due to commutative property of
multiplication i.e., A.B = B.A; (b) the factoring property
i.e., 8 = 4 × 2 implies an AS path (2, 4) can be replaced by
(8); (c) More importantly, an adversary can add AS’s to the
AS path without being detected.

Preventing commutativity and factoring: To prevent com-
mutativity and factoring problems, we define a pseudo-AS
number for every AS which depends on the position of the

AS in a given AS path. If an AS X appears in position p in
the AS path, the following function

f(X, p) = 216
× p + X

will produce unique values for all AS’s in different positions
in an AS path (since 16 bits are sufficient to express AS num-
bers). To avoid the problem of commutativity, an AS updates
a signature using f(X, p) instead of using its AS number X .

To avoid the factoring problem, we use prime numbers.
Given a number y, one can determine the q(y) as the yth

lowest prime number. Prime numbers are not factorable and
these numbers can be precomputed. Hence, given an AS X
appearing at position p, we use the exponent to be X ′ =
q(f(X, p)) to avoid both commutativity and factoring prob-
lems. We refer to X ′ as the psuedo-AS number of AS X
when it appears in position p. The pseudo-AS numbers for
a given AS are computable by other routers as well. Hence,
we only use pseudo AS numbers for computing the signature
but do not change AS numbers in the AS path.

Preventing Addition of new AS numbers: The key to pre-
venting an adversary from adding AS numbers is to associate
a link identifier to represent an AS link between two AS’s. If
AS A forwards a route to AS B, let link(A, B) be a uniquely
computable identifier which is a function of the AS numbers
A and B. An AS A that received an advertisement (N, y)
should propagate the advertisement with the signature:

(N, yA′
×link(A,B))

where A′ is the pseudo-AS numbers of A. Since the identi-
fier link(A, B) is added to the signature by A, B cannot re-
move this portion from the signature. This implies B cannot
convert an AS path (B, A) to (B, C, A). However, if B adds
an AS at the end of a path (e.g., (C, B, A)), then the neigh-
bor receiving the advertisement will notice that the neighbor
it received the announcement from (i.e., B) does not match
the first AS in the path (i.e., C). Hence it will not accept the
announcement. One simple way to define a link identifier is:

link(A, B) = 232
× A′ + B′

where A′ and B′ are the pseudo-AS numbers of A and
B. link(A, B) will be unique for all AS pairs A, B. Note
that pseudo-AS numbers are always less than 232 since
f(X, p) < 221 for all AS paths less than 32 hops in length.

Generalized SSW construction: In this section, we only de-
scribed the SSW construction using the basic RSA group
structure. Alternatively, one can build SSW using elliptic
curve cryptography [13]. The main distinction between RSA
and ECC is the number of bits necessary for the signature
field. While RSA requires 1024 bit signatures, ECC only re-
quires 256 bits to provide the same level of security.

3.3 Containment: Penalty Based Filtering

Using route consistency testing, we suggest penalty based
filtering, a simple containment strategy against independent
adversaries. The strategy works as follows: A router counts
across destinations how often an AS appears on an invalid

5

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

�������
�������
�������
�������

�������
�������
�������
�������

A B C

M

V

QP R

PA
QB RC

A B C

MA,MB,MC

Figure 5: Detecting Suspicious AS’s: In this example, M is
a malicious AS that propagates 3 invalid routes to 3 different
destinations A,B,C. The AS paths in the routes propagated
are indicated along the links.

route, and assigns this count as a penalty value for the AS.
The more destinations an adversary affects the higher be-
comes its penalty and the clearer it stands out from the
rest. In penalty based filtering, an AS applies this strategy:
Choose the route to a destination with the lowest penalty
value.

We will motivate this using an example. In Figure 5, we show
a simple scenario where M is a malicious node that prop-
agates 3 invalid route announcements with AS paths MA,
MB, MC. The verifier V receives three genuine announce-
ments PA, QB and QC. V notices that the announcement
pairs (PA, MA), (QB, MB), (RC, MC) are not consis-
tent with each other. Hence it assigns the penalty values 3,
1, 1 and 1 to AS’s M , P ,Q and R. By choosing the mini-
mum penalty route, the verifier can avoid the invalid routes
through M .

One key assumption used in this technique is: The identity
of an AS propagating invalid routes is always present in the
AS path attribute of the routes. The identity of every AS is
verified by the neighboring AS which receives the advertise-
ment. For example, Zebra’s BGP implementation [2] explic-
itly checks for this constraint for every announcement it re-
ceives. BGP should use shared keys across peering links to
avoid man in the middle attacks i.e. if X and Y peer with
each other, an adversary Z should not be able to hijack the
peering connection by pretending as Y .

However, one must exercise caution in applying penalties. If
we assume that there is only one isolated adversary then the
penalty of the adversary will always be at least as high as
the penalty of any other AS. If multiple adversaries adver-
tise suspicious routes to different destinations then they may
raise the penalty of innocent AS’s higher than their individ-
ual penalties. This may happen even if the adversaries do not
actively collude.

Penalties should be viewed as a reasonable first response un-
til close investigation reveals the cause of alarms. Penalties
are useful for detecting and containing isolated adversaries
but is not a good security measure against colluding adver-
saries. In the absence of any additional knowledge about two
paths, one can exercise penalties in choosing the path. We
will evaluate the performance of penalty based filtering in

the presence of isolated adversaries in Section 6.2.

4 Listen: Data Plane Verification

In this section, we will present the Listen protocol, a data
plane verification technique that detects reachability prob-
lems in the data plane. Reachability problems can occur due
to a variety of reasons ranging from routing problems to
misconfigurations to link failures. Listen primarily signals
the existence of such problems as opposed to identifying the
source or type of a problem.

Data plane verification mechanisms are necessary in two
contexts: (a) connectivity problems due to stale routes or
forwarding problems are detectable only by data plane so-
lutions like Listen. (b) Blackhole attacks by malicious ad-
versaries already present along a path to a destination. How-
ever, proactive malicious nodes can defeat any data plane so-
lution by impersonating the behavior of a genuine end-hosts.
The attractive features of Listen are: (a) passive (b) a stan-
dalone solution that can be incrementally deployed without
any modifications to BGP; (c) quick detection of reachability
problems for popular prefixes; (d) low overhead.

Listen relies on passively observing TCP connections to ver-
ify the correctness of routes. However, the basic form of
the protocol described in this section is vulnerable to port
scanners generating many incomplete connections. In Sec-
tion 6.3, we use propose defensive measures against port
scanners and motivate them using real world measurements.

4.1 Listening to TCP flows

The general idea of Listen is to monitor TCP flows, and to
draw conclusions about the state of a route from this infor-
mation. The forward and reverse routing paths between two
end-hosts can be different. Thus we may observe packets
that flow in only one direction. We say that a TCP flow is
complete if we observe a SYN packet followed by a DATA
packet, and we say that it is incomplete if we observe only a
SYN packet and no DATA packet over a period of 2 minutes
(which is longer than the SYN timeout period).

Consider that a router receives a route announcement for a
prefix P and wishes to verify whether prefix P is reachable
via the advertised route. In the simplest case, a router con-
cludes that the prefix P is reachable if it observes at least
one complete TCP flow. On the other hand, the router can-
not blindly conclude that a route is unreachable if it does
not observe any complete connection. Incomplete connec-
tions can arise due to reasons other than just reachability
problems. These include: (a) non-live destination hosts; (b)
route changes during the connection setup of a single flow
i.e. SYN and DATA packets traverse different routes. (c) port
scanners generating SYN packets.

Under the assumption that port scanners are not present, de-
tecting reachability problems would be easy. To deal with
non-live destinations, a router should notice multiple in-
complete connections to N different distinct destination ad-
dresses (for a reasonable choice of N). The problem of route
changes can be avoided by observing flows over a minimum

6

marcelo
Resaltado

marcelo
Resaltado

marcelo
Resaltado

marcelo
Cuadro de texto
Aquí se les va la olla....

time period T . Hence, a router can conclude that a prefix is
unreachable if during a period t it does not observe a com-
plete TCP flow. In summary, a router must wait for a time t
defined as the maximum between: (a) the time taken to ob-
serve N or more incomplete TCP flows with different desti-
nations within prefix P ; (b) a predefined time period T .

The basic probing mechanism described above suffers from
two forms of classification errors: (a) false negatives; (b)
false positives. A false negative arises when a router infers a
reachable prefix as being unreachable due to incomplete con-
nections. A false positive arises when an unreachable pre-
fix is inferred as being reachable. A malicious end-host can
create false positives by generating bogus TCP connections
with SYN and DATA packets without receiving ACKs. In
Section 6.3, we show how to choose the parameters N and
T to reduce the chances of incomplete connections causing
false negatives.

4.1.1 Dealing with False Positives

Malicious end-hosts can create false positives by opening
bogus TCP connections to keep a router from detecting that a
particular route is stale or invalid. Adversaries noticing route
advertisements from multiple vantage points (e.g., Route-
views [8]) can potentially notice mis-configurations before
routers notice reachability problems. Such adversaries can
exploit the situation and open bogus TCP connections.

We propose a combination of active dropping and retrans-
mission checks as a countermeasure to reduce the probability
of false positives.

1. Active dropping: Choose a random subset of m1 pack-
ets within a completed connection (or across connec-
tions), drop them and raise an alarm if these packets
are not retransmitted. Alternatively, one can just delay
packets at the router instead of dropping them.

2. Retransmission check: Sample a different random sub-
set of m2 packets and raise an alarm if more than 50%
of the packets are retransmitted.

An adversary generating a bogus connection cannot decide
which packets to retransmit without receiving ACKs. If the
adversary blindly retransmits many packets to prevent being
detected by Active dropping, the Retransmission check no-
tices a problem. We set a threshold of 50% for retransmission
checks assuming that most genuine TCP connections will not
experience a loss-rate close to 50%.

Consider an adversary that has transmitted k packets in a
TCP connection without receiving ACKs to retransmit a
fraction, q, of these packets. Let C(x, y) = x!

(x−y)!.y! rep-
resent the binomial coefficient for two values x and y. The
probability with which the adversary is able to mislead the
active dropping test is given by C(k·q,m1)

C(k,m1)
. The probabil-

ity with which the retransmission check cannot detect an
adversary is given by the tail of the binomial distribution
(1− (

∑m2

l=m2/2 C(m2, l)q
l(1− q)m2−l)). Hence the overall

probability, pe, that our algorithm does not detect an adver-

procedure LISTEN(P,T,N)
Require: Prefix P , time period T , number of unique

destinations N
1: t0 = time at which first SYN packet observed
2: wait until |flows with distinct dest. in P | ≥ N
3: wait till clock time > t0 + T
4: {Clean the data-set}
5: For every pair of IP addresses (src, dst) observed
6: if at least a single connection has completed then
7: Add sample (src, dst, complete)
8: else
9: Add sample (src, dst, incomplete)

10: end if
11: {Constants Ch, Cl must be determined in practice}
12: if fraction of complete connections > Ch then
13: return “route is verifiable”
14: end if
15: if at least one connection completes then
16: if fraction of complete connections < Cl then
17: {Test for false positive}
18: sample 2 future complete TCP flows towards

P
19: apply active dropping and retransmission

checks
20: if test is successful then
21: return “route is verifiable”
22: else
23: return “route is not verifiable”
24: end if
25: end if
26: end if

Figure 6: Pseudo-code for the probing algorithm.

sary is:

C(k · q, m1)

C(k, m1)
× (1 − (

m2∑

l=m2/2

C(m2, l)q
l(1 − q)m2−l))

For a given prefix, the overhead of active dropping can be
made very small. By choosing m1 = 6 and dropping only 6
packets across different TCP flows, we can reduce the prob-
ability of false positive, pe, to be less than 0.1%.

This countermeasure is applied only when we notice a dis-
crepancy across different TCP connections to the same des-
tination prefix, i.e., number of incomplete connections and
complete connections are roughly the same. In this case, we
sample and test whether a few complete connections are in-
deed bogus.

4.1.2 Detailed Algorithm

Figure 6 presents the pseudo-code for the listen algorithm.
The algorithm takes a conservative approach towards deter-
mining whether a route is verifiable. Since false positive tests
can impact the performance of a few flows, the algorithm
uses the constant Ch and Cl to trade off between when to
test for false positives. When the test is not applied, we use
the fraction of complete connections as the only metric to
determine whether the route works. The setting of Ch, Cl

depends on the popularity of the prefixes. Firstly, we apply

7

the false positive tests only for popular prefixes i.e., Cl = 0
for non-popular prefixes. For a popular prefix, we choose a
conservative estimate of Ch (closer to 1) i.e., a large fraction
of the connections have to complete in order to conclude that
the route is verifiable. On the other hand, if we observe that
a reasonable fraction of combination of incomplete connec-
tions, we apply the false positive test to 2 sampled complete
connections. The user has choice in tuning Cl based on the
total number of false positive tests that need to be performed.
For non-popular prefixes, the statistical sample of connec-
tions is small. For such prefixes, we set the value of Ch to be
small.

5 Implementation

In this section, we will describe the implementation of Listen
and Whisper and also discuss their overhead characteristics.

5.1 Whisper Implementation

In this section, we will only focus on the implementation
of the strong split whisper protocol. The whisper imple-
mentation contains two basic components: (a) a stand alone
whisper library which performs the cryptographic operations
used in the protocol. (b) a Whisper-BGP interface which in-
tegrates the whisper functions into a BGP implementation.
We implemented the Whisper library on top of the crypto
library supported by OpenSSL development version 0.9.6b-
33. We integrated this library with the Zebra BGP router im-
plementation version 0.93b [2]. Our Whisper implementa-
tion works on Linux and FreeBSD platforms.

5.1.1 Whisper Library

The structure of a basic Whisper signature is:
typedef struct {

BIGNUM *seed;
BIGNUM *N;

}Signature;

BIGNUM is a basic data structure used within the OpenSSL
crypto library to represent large numbers. The whisper li-
brary supports these three functions using the Signature data
structure:

1: generate signature(Signature *sg);
2: update signature(Signature *sg, int asnumber, int

position);
3: verify signatures(Signature *r, Signature *s,int *as-

path r, int *aspath s);

These functions exactly map to the three whisper operations
described earlier in Section 3.2.2. The main advantage of
separating the whisper library from the whisper-BGP inter-
face is modularity. The whisper library can be in isolation
with any other BGP implementation sufficiently different
from the Zebra version.

5.1.2 Integration with BGP

The Whisper protocol can be integrated with BGP without
changing the basic packet format of BGP. Specifically, we
do not need any additional field for the Whisper signature.
BGP uses community attributes within UPDATE messages
that can be leveraged for embedding the signature attributes.
Community attributes are 32 bit values which are optional
BGP attributes that are mainly used for community-based
routing mainly for multi-homing ISPs.

This design offers us many advantages over updating a ver-
sion of BGP. First, a single update message can have several
community attributes and one can split a signature among
multiple community attributes. Second, a community at-
tribute can be set using the BGP configuration script to al-
low operators the flexibility to insert their own community
attribute values. In a similar vein, one can imagine a stand-
alone whisper library computing the signatures and a simple
interface to insert these signatures within the community at-
tributes. Third, one can reserve a portion of the community
attribute space for whisper signatures. In today’s BGP, com-
munity values can be set to any value as long as they are
interpreted correctly by other routers.

Our implementation uses the following semantics for the
community attribute: if the first 8 bits of an attribute are set
to 0xF0 and 0xF1, then the remaining 24 bits refer to a por-
tion of the seed and N attributes in the signature. An RSA
based Whisper signature uses 2048 bits per signature field
- 1024 bits for the seed and 1024 bits for N . Such a signa-
ture uses 88 community attributes. An ECC based Whisper
implementation uses 512 bits per signature and hence uses
only 22 community attributes.

5.2 Listen Implementation

We implemented the passive probing component of Listen
(i.e. without active dropping) in about 2000 lines of code in
C and have ported the code to Linux and FreeBSD operating
systems. The current prototype uses the libpcap utility [5] to
capture all the packets off the network. This form of imple-
mentation has two advantages: (a) is stand-alone and can be
implemented on any machine (need not be a router) which
can sniff network traffic; (b) does not require any support
from router vendors. Additionally, one can execute bgpd (Ze-
bra’s BGP daemon [2]) to receive live BGP updates from a
network router. For faster line-rates (e.g. links in ISPs), listen
should be integrated with hardware or packet probing soft-
ware like Cisco’s Netflow [1]. The current implementation
cannot support false positive tests since the code can only
passively observe the traffic but cannot actively drop packets
(since this does not perform the routing functionality).

In our implementation, the complexity of listening to a TCP
flow is of the same order as a route lookup operation. Ad-
ditionally, the state requirement is O(1) for every prefix.
We maintain a small hash table for every prefix entry cor-
responding to the (src,dst) IP addresses of a TCP flow and
a time stamp. While a SYN packet sets a bit in the hash ta-
ble, the DATA packet clears the bit and record a complete
connection for the prefix. Using a small hash table, we can

8

Operation 512-bit 1024-bit 2048-bit
update signature 0.18 msec 0.45 msec 1.42 msec
verify signatures 0.25 msec 0.6 msec 1.94 msec
generate signature 0.4 sec 8.0 sec 68 sec

Table 1: Processing overhead of the Whisper operations on a
1.5 Ghz Pentium IV with 512 MB RAM.

crudely estimate the number of complete and incomplete
connections within a time-period T . Additionally, we sam-
ple flows to reduce the possibility of hash conflicts. This
implementation uses simple statistical counter estimation
techniques used to efficiently maintain statistics in routers.
Hence, the basic form of Listen can be efficiently imple-
mented in the fast path of today’s routers.

Deployment: We deployed our Listen prototype to sniff on
TCP traffic to and from a /24 prefix within our university.
Additionally, we received BGP updates from the university
campus router and constructed the list of prefixes in the rout-
ing table used by the edge router. The tool only needs to
know the list of prefixes in the routing table and assumes a
virtual route for every prefix. The Listen tool can report the
list of verifiable and non-verifiable prefixes in real time. Ad-
ditionally, the Listen algorithm is applied only by observing
traffic in one direction (either outbound or inbound).

5.3 Overhead Characteristics

Overhead of Whisper: One of the important requirements
of any cryptography based solution is low complexity. We
performed benchmarks to determine the processing overhead
of the Whisper operations. Table 1 summarizes the average
time required to perform the whisper operations for 3 differ-
ent key sizes: 512− bit, 1024−bit and 2048−bit. As the key
size increases, the RSA-based operations offer better secu-
rity. Security experts recommend a minimum size of 1024
bit keys for better long-term security.

We make two observations about the overhead characteris-
tics. First, the processing overhead for all these key sizes
are well within the limits of the maximum load observed
at routers. For 2048 bit keys, a node can process more than
42, 000 route advertisements within 1 minute. In compari-
son, the maximum number of route advertisements observed
at a Sprint router is 9300 updates every minute [9]. For 1024
bit keys, Whisper can update and verify over 100, 000 route
advertisements per minute. Second, generate signature() is
typically a very expensive operation and in many cases con-
sumes more than 1 sec per operation. However, this opera-
tion is performed only once over many days.

Overhead of Listen: By analyzing route updates for over 17
days in Routeviews [8], we observed that 99% of the routes
in a routing table are stable for at least 1 hour. Based on data
from a tier-1 ISP, we find that a router typically observes a
maximum of 20000 active prefixes over a period of 1 hour
i.e., only 20000 prefixes observe any traffic. If the probing
mechanism uses a statistical sample of 10 flows per prefix,
the overhead of probing at the router is negligible. Essen-
tially, the router needs to process 200000 flows in 3600 sec
which translates to monitoring under 60 flows every second

(equivalent to O(60) routing lookups). Even if the number of
active prefixes scales by a factor of 10, current router imple-
mentations can easily implement the passive probing aspect
of Listen.

Active dropping and retransmission checks are applied only
in the IP slow path. These tests are invoked only when a pre-
fix observes a combination of both incomplete and complete
connections. In order to minimize the additional overhead of
these operations, we restrict these checks to a few prefixes.

6 Evaluation

In this section, we evaluate the key properties of Listen and
Whisper. Our evaluation is targeted at answering specific
questions about Listen and Whisper:

1. How much security can Whisper provide in the face of
isolated adversaries?

2. How useful is Listen in the real world? In particular:
(a) Can it detect reachability problems?
(b) How many routes can be verified using Listen?
(c) What is the response time?

3. How does Listen react in the presence of port scanners?
How does one adapt to such port scanners?

We answer question (1) in Section 6.2, questions (2(a)),(3)
in Section 6.3 and questions (2(b)), (2(c)) in Section 6.4.

6.1 Evaluation Methodology

Our evaluation methodology is three-fold: (a) empirically
evaluate the security properties of Whisper; (b) use real-
world deployment to determine usefulness of Listen; (c) use
data sets from external sources to infer additional proper-
ties of Listen. The motivation for this three-fold approach is
that some questions that can be answered empirically cannot
be answered using deployment. Since our deployment setup
(described earlier in Section 5.2) is limited to a small net-
work. Hence we use additional data sets to answer specific
questions about Listen.

We will now describe the data sets used for empirically eval-
uating Listen and Whisper.

FlowStat: We obtained two-sets of aggregated statistics of
flows collected at an edge router of a tier-1 provider. This
data covers a period of 114 hours in 2002 in one-hour and
5−minute intervals. The first statistics provided the number
of active prefixes (prefixes observing at least one flow) across
both time intervals. The second statistics provided the num-
ber of flows observed within a prefix over 5 minute and 1
hour time intervals. This data is provided only for prefixes
that contribute 80% of the traffic.

Internet Topology: We collected Internet AS topology data
based on BGP advertisements observed from 15 different
vantage points over 17 days including Routeviews [8] and
RIPE [7]. The policy-based routing path between a pair of
AS’s is determined using customer–provider and peer–peer
relationships, which have been inferred based on the tech-
nique used in [33].

9

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of nodes vulnerable to attack(%)

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Top 100
Top 300
Top 500
Top 1000

Figure 7: Effects of penalty filtering.

6.2 Whisper: Security Properties against Isolated
Adversaries

In this section, we quantify the maximum damage an iso-
lated adversary can inflict on the Internet given that Strong
Split Whisper is deployed. Since SSW offers path integrity,
an isolated adversary cannot propagate invalid routes with-
out raising alarms unless there exists no alternate route from
the origin to the verifier (i.e. adversary is present in all paths
from the origin to the Internet).

Given an adversary that is willing to raise alarms, we ana-
lyzed how many AS’s can one such adversary affect. In this
analysis, we exclude cases where the adversary is already
present in the only routing path to a destination AS. We use
penalty based filtering as the main defense to contain the ef-
fects of such invalid routes. We assume that in the worst-
case, an adversary compromising a single router in an AS
is equivalent to compromising the entire AS especially if all
routers within the AS choose the invalid route propagated by
the compromised router.

Let M represent an isolated adversary propagating an invalid
route claiming direct connectivity to an origin AS O. AS V is
said to be affected by the invalid route if V chooses the route
through M rather than a genuine route to O either due to
BGP policies or shorter hop length. Based on common prac-
tices, we associate all AS’s with a simple policy where cus-
tomer routes have the highest preference followed by peers
and providers [18]. Given all these relationships, we define
the vulnerability of an origin AS, O, as V (O, M) to be the
maximum fraction of AS’s, M can affect. Given an isolated
adversary M , we can quantify the worst-case effect that M
can have on the Internet using the cumulative distribution of
V (O, M) across all origin AS’s in the Internet.

With AS’s deploying penalty based filtering as a defense,
we expect the vulnerability V (O, M) to reduce. We study
how the cumulative distribution of V (O, M) for a single ad-
versary M varies as a function of how many AS’s deploy
penalty based filtering. We consider the scenario where the
top n ISPs deploy penalty based filtering (based on AS de-
gree). Figure 7 shows this cumulative distribution for for dif-
ferent values of n = 100, 300, 500 and 1000. These distribu-
tions are averaged across all possible choices for M .

We make the following observations. First, a median value of
1% for n = 1000 indicates that a randomly located adversary

Number of Probability of
Reachability Problems False Negatives

Outbound 235 0.93%
Inbound 343 0.37%

Table 2: Listen: Summary of Results

can affect at most 1% of destination AS’s by propagating bo-
gus advertisements assuming that the top 1000 ISPs deploy
penalty based filtering. This is orders of magnitude better
that what the current Internet can offer where a randomly lo-
cated adversary can on an average affect nearly 30% of the
routes to a randomly chosen destination AS. The value 30%
was determined by repeating the same analysis on the Inter-
net topology without using SSW.

Second, in the worst case, a single AS can at most affect 8%
of the destination AS’s for n = 1000. For n = 1000, 8% is
a limit imposed by the structure of the Internet topology. If
we remove the top 1000 AS’s from the topology, the size of
the largest connected component contains roughly 8% of the
AS’s. One malicious AS in this component can potentially
affect the other AS’s within the same component.

Third, if all provider AS’s deploy penalty based filtering, the
worst case behavior can be brought to a much smaller value
than 8%. Additionally, there is very little benefit in deploying
penalty based filtering in the end-host networks since they
are not transit networks and typically are sources and sinks
of route advertisements. Hence, any filtering at these end-
hosts only protects themselves but not other AS’s.

To summarize, the Whisper protocol in conjunction with
penalty based filtering can guarantee that a randomly placed
isolated adversary propagating invalid routes can affect at
most 1% of the AS’s in the Internet topology.

6.3 Listen: Experimental Evaluation

In this section, we describe our real-world experiences using
the Listen protocol. We make two important observations:

1. In reality, we found that a large fraction of incomplete
TCP connections are spurious i.e., not indicative of a
reachability problem. We show that by adaptively set-
ting the parameters T, N of our listen algorithm we can
drastically reduce the probability of such false negatives
due to such connections.

2. We are able to detect several reachability problems us-
ing Listen including specific misconfiguration related
problems like forwarding errors.

Table 2 presents a concise summary of the results obtained
from our deployment. First, we were able to detect reachabil-
ity problems to 578 different prefixes from our testbed. Sec-
ond, we reduce the false negative probability due to spurious
connections to 0.95% and 0.37% respectively for outbound
and inbound connections.

We will now describe our deployment experiences in greater
detail. In our testbed, we additionally use active probing to
verify the correctness of results obtained using Listen. It is

10

marcelo
Resaltado

marcelo
Cuadro de texto
Penalty filtering tampoco es una buena idea

Number of end-hosts behind /24 network 28
Number of days 40
Total No. of TCP connections 994234
No. of complete connections 894897
No. of incomplete connections 99337
Average Routing Table Size 123482
Total No. of Active Prefixes 11141
Average No. of Active Prefixes per hour 141
Average No. of Active Prefixes per day 2500-3000
Verifiable Prefixes 9711
Prefixes with perennial problems 42

Table 3: Aggregate characteristics of Listen from the deploy-
ment

activated for every failed TCP connection. We use three dif-
ferent techniques: (a) ping the destination; (b) traceroute and
check whether any IP address along in the path is in the same
prefix as the destination; (c) perform a port 80 scan on the
destination IP address. We classify an incomplete connec-
tion as having a reachability problem if all the three tech-
niques fail. We classify an incomplete connection as a spu-
rious connection if one of the probing techniques is able to
detect that the route to a destination prefix works. A spuri-
ous TCP connection is an incomplete connection that is not
indicative of a reachability problem.

Table 3 presents the aggregate characteristics of the traffic
we observed from our deployment. We observed the traffic to
and from a /24 network for over 40 days. In reality, we found
that many incomplete connections do occur and a large frac-
tion of these connections are spurious. Nearly 10% of the
TCP connections we observed in our testbed were incom-
plete. Of these, nearly 91% of inbound connections and 63%
of outbound connections are spurious. A more careful obser-
vation at the spurious connections showed that nearly 90%
of spurious inbound connections are due to port scanners and
worms. The most prominent ones include the Microsoft Net-
BIOS worm and the SQL server worms [6]. Spurious out-
bound connections occur primarily due to failed connection
attempts to non-live hosts and attempts to access a disabled
ports of other end-hosts (e.g., telnet port being disabled in a
destination end-host).Given this alarmingly high number of
spurious connections, we now propose defensive measures
to reduce the probability of false negatives due to such con-
nections.

6.3.1 Defensive Measures to reduce False Negatives

In this section, we show that one can adaptively set the pa-
rameters N , T in the listen algorithm to drastically reduce
the probability of false negatives due to spurious TCP con-
nections. In particular, we show by adaptively tuning the
minimum time period, T , one can reduce false negatives due
to port scanners and by tuning the number of distinct desti-
nations, N , one can deal with non-live hosts.

Given the nature of incomplete connections in our testbed,
we use outbound incomplete connections as a test sample for
non-live hosts and inbound connections as the test sample for
port scanners and worms. In both inbound and outbound, we

Type of problem Number of Prefixes
Routing Loops 51
Forwarding Errors 64
Generic (forward path) 146
Generic (reverse path) 317

Table 4: The number of prefixes affected by different types
of reachability problems.

restricted our samples to only those connections which are
known to be false negatives.

Setting T : One possibility is to choose an interval T large
enough such that the router will notice at least one genuine
TCP flow during the interval. Such a value of T will de-
pend on the popularity of a prefix. The popularity of a prefix,
pop(P), is defined as the mean time between two complete
TCP connections to prefix P . We can model the arrival of
TCP connections as a Poisson process with a mean arrival
rate as 1/pop(P) [30].2 Given this, we can set the value of
T = 4.6 × pop(P) to be 99% certain that one would experi-
ence at least one genuine connection within the period T . To
have a 99.9% certainty, one needs to set T = 6.9 × pop(P).
For prefixes that hardly observe any traffic, the value of T
will be very high implying that port scanners generating in-
complete connections to such prefixes will not generate any
false alarms.

From our testbed, we determine the mean separation time
between the arrival of two incoming connections to be
pop(P) = 34.1 sec. By merely setting T = 156.8 to achieve
99% certainty, we could reduce the probability of false neg-
atives in Listen to 0.37%. Throughout the entire period of
measurement, only during 8 periods of 156 seconds each did
we verify incorrectly that the local prefix is not reachable. In
the process, we could reduce the number of spurious connec-
tions that we considered from 91.83% to 0.35%. Note that if
the volume of traffic observed is higher (e.g., in a tier-1 ISP),
the value of T will be much smaller.

Setting N : The choice of an appropriate value of N trades
off between minimizing the false negative ratio due to non-
live hosts and the number of reachability problems detected.
In our testbed, we noticed that by merely setting N = 2, we
can significantly reduce the false negative ratio in outbound
connections from 63% to less than 1%. However, Listen re-
ported only 35 out of 663 potential prefixes to have routing
problems. For several /24 prefixes, we observed TCP con-
nections to only a single host. By setting N = 2, we tend
to omit these cases. In practice, the value of N is dependent
on the destination prefix and the traffic concentration at a
router. For many /24 prefixes, we need to set N = 1. For /8
and /16 prefixes, one can choose larger values of N = 4 or
N = 5 provided the prefix observes diversity in the traffic.

6.3.2 Detected Reachability Problems

After using the defensive measures against false negatives,
Listen is able to detect several reachability problems with

2While arrival of TCP connections can be modeled as a Poisson
process, packet arrival times cannot be modeled using a Poisson
process.

11

5-min interval 1-hour interval
Active prefixes 1004–5061 4201–13007
Mean active 2908 7663
Elephant 318 625
Mice 2590 7048
No traffic 127 K 122 K

Table 5: Number of active, elephant, mice prefixes observed
in FlowStat. We calculated the number of prefixes with no
traffic as the difference between the mean number of active
prefixes and the number of elephant prefixes. The routing
table size has approximately 130 K entries.

a low false negative ratio. Two particular forms of reacha-
bility problems which we can detect are: routing loops and
forwarding errors due to unknown IP addresses. While Lis-
ten signals the existence of the problem, we use traceroute
to check whether the routing path to a destination IP has a
routing loop or not. A forwarding error due to an unknown
IP address arises when the destination IP address specified
in a packet corresponds to a genuine prefix but does not
have a forwarding entry in the routing table. This can po-
tentially arise due to staleness of routes. Table 4 summarizes
the number of prefixes which are affected by each type of
problem. In particular, we observe routing loops along the
data paths to 51 different prefixes. Additionally, 64 different
prefixes were affected by forwarding errors. Listen detected
463 other prefixes having other forms of reachability prob-
lems. We classify these into two categories: forward path and
reverse path. A forward path problem implies that the path
an end-host (initiator of TCP connection) from our network
to a destination prefix is problematic. Similarly, reverse path
is used in the context of inbound connections. We observed
more reverse path than forward path problems due to a larger
diversity of prefixes in inbound connections.

To cite a few examples of reachability problems we ob-
served:

1. A BGP daemon within our network attempted to con-
nect to another such daemon within the destination pre-
fix 193.148.15.0/24. The route to this prefix was peren-
nially unreachable. For a few days, we observed routing
loops in the path to this prefix.

2. The route to Yahoo-NET prefix 207.126.224.0/20 was
fluctuating. During many periods, the route was de-
tected as unavailable.

3. We detected several local outages ranging from 10 min-
utes to an hour within the campus network. During
these periods, none of the prefixes are verifiable.

6.4 Listen: Empirical Evaluation

In this section we answer two questions about Listen: (a)
How many routes are verifiable in practice using Listen? (b)
What is the time to detect a problem?

Number of Verifiable Routes: The number of routing table
entries verifiable using listen is dependent on two parame-
ters: (a) how frequently does a route change; (b) do we ob-
serve any traffic for a given prefix during the stable period

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 1 10 100 1000 10000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Number of flows to a destination prefix

Popular
Average

Intermittent

Figure 8: Number of flows observed within a prefix over an inter-
val of 5 minutes at an access router of a tier-1 ISP. We consider only
625 elephant prefixes in this case.

of a route. By analyzing route updates for over 17 days in
Routeviews, we observed that 99% of the routes in a routing
table are stable for at least 1 hour. To analyze the number of
verifiable routes, we set the maximum stable time period as
1 hr (a conservative estimate).

Table 5 shows the aggregate statistics of the number of veri-
fiable routes in the FlowStat over two separate time-periods:
5 min and 1 hr. We make three observations. First, only 10%
of the prefixes observe any traffic over the period of 1 hour.
While probing is not applicable for the remaining 90% of the
prefixes, reachability problems along these routes will have
no impact on the traffic. Second, the FlowStat dataset given
to us classifies prefixes into elephant and mice prefixes. Ele-
phant prefixes together account for 80% of the traffic. We
infer that the number of elephant prefixes is very small com-
pared to the total number of prefixes (in the order of 300-700
for the tier-1 ISP). Third, the number of verifiable prefixes
within 5− minute intervals constitute only 25-40% of the
number of verifiable prefixes in 1 hour.

Response Time: The time required to detect a reachability
problem for a route depends on the frequency of new TCP
flows observed for the corresponding prefix. Based on this,
we can classify elephant prefixes into two categories: pop-
ular and intermittent. We define a prefix to be popular if it
observes at least one flow for a large fraction (> 90%) of
the measurement intervals. We classify other prefixes as in-
termittent. Figure 8 shows the cumulative distribution of the
average number of flows observed by an elephant prefix in 5
minute intervals and contrasts a popular prefix from an inter-
mittent one.

Additionally, we need to observe multiple flows within a
time-period T in order to conclude whether a route is reach-
able or not. The listen mechanism can provide a fast detec-
tion time for elephant prefixes in particular popular prefixes.
In the best case, we observed more than 1000 flows to one
popular prefix within certain intervals while in the mean case
we observe roughly 200 flows. In the mean case, an access
router may observe at least 10 flows for a popular prefix
within 15 seconds. Hence the router can notice within sec-
onds when such a prefix becomes unreachable. In the aver-

12

age case, the detection time is in the order of minutes for
elephant prefixes. For mice prefixes, the detection time can
be much higher. The important observation is that our Lis-
ten mechanism works best for those prefixes that attract the
largest amount of traffic.

6.5 Summary of Results

We summarize the important conclusions from our evalua-
tion results:

1. The Whisper protocol in conjunction with penalty
based filtering can restrict the damage a randomly
placed isolated adversary can cause to less than 1% of
the AS’s in the Internet topology.

2. Listen is useful in detecting many reachability prob-
lems. We detected reachability problems to 578 differ-
ent prefixes of which 51 prefixes had routing loops and
64 of them were affected by forwarding errors.

3. An adaptive choice of parameters for the Listen algo-
rithm can largely reduce the probability of false neg-
atives due to spurious connections. In our testbed, the
probability of false negatives is reduced to 0.37% in the
presence of port scanners and worm traffic.

4. Listen can provide fast detection of reachability prob-
lems for popular prefixes (in the order of 15 seconds).

7 Colluding Adversaries

Colluding adversaries can perform three types of attacks
additional to acting as isolated adversaries. First, colluding
adversaries can tunnel advertisements and secrets between
them and attempt to defeat the security measures. For exam-
ple, without complete knowledge of the Internet topology, it
is impossible to detect a fake AS link between two collud-
ing adversaries. Second, colluding adversaries can target the
same set of destination AS’s by propagating invalid routes.
By doing so, these nodes can inflict the maximum damage on
specifically chosen destination AS’s. Third, within the con-
text of BGP, colluding adversaries can exploit BGP policies
to propagate invalid routes.

While we cannot deal with the problem of tunneling adver-
tisements, we can provide protective measures against the
other two problems. In Figures 9, 10 and 11, we contrast 3
scenarios: (a) effect of colluding adversaries on the current
Internet; (b) effect of colluding adversaries with whisper pro-
tocols and policy routing; (c) effect of colluding adversaries
with whisper protocols and shortest path routing. All these
graphs show the cumulative distribution of the vulnerability
metric (defined in Section 6.2) for a set of colluding mali-
cious adversaries. We specifically consider three cases: (a)
2 colluding tier-1 ASes; (b) 2 colluding tier-2 ASes (c) 12
colluding customer ASes.

Firstly, the amount of damage 12 randomly compromised
customer routers can inflict is of the same magnitude as that
of two tier-1 nodes. This describes the seriousness of the
problem of colluding adversaries. Secondly, while Whisper
protocols provide some level of protection against colluding
adversaries, the advantage quickly diminishes as the number

of adversaries increases in the presence of policy routing. Fi-
nally, whisper protocols with shortest path routing offers the
maximum protection. The difference between shortest path
routing and policy routing is strikingly high in the case of
colluding adversaries in customers. In the case of shortest
path routing, the damage that 12 customers can inflict is neg-
ligible.

Colluding Adversaries exploiting BGP policies: BGP al-
locates higher importance to local preference than the AS
path length. The local preference of a route is based on
which neighboring AS advertised it. The typical policy pref-
erence of an AS is: Customer routes have a higher prefer-
ence than peer routes which are more preferred than provider
routes [18].

Consider a simple attack scenario: a single adversary com-
promises several routers in different customer networks.
Such an attacker can exploit the fact that customer routes
typically receive a higher local preference even if other
shorter paths are available. As an example, consider 10 cus-
tomers of 10 different tier-1 ISPs. By tunneling advertise-
ments between them, these nodes can exploit local prefer-
ence and virtually hijack the routes to all other customers of
these 10 ISPs (These nodes set up a virtual tier-1 plane be-
tween themselves). This is not a weakness of our protocols,
but it is a loop hole in the current application of BGP poli-
cies. In principle, this problem exists also in S-BGP.

Our analysis in Figure 11 shows that shortest path routing
offers much better protection in the face of colluding adver-
saries especially when the compromised nodes are in cus-
tomer ASes. However, for economic reasons, policy routing
is necessary In order to strike a middle ground between eco-
nomic considerations and the greater protection offered by
shortest path routing, we propose a simple modification to
the calculation of local-preferences: Do not associate any
local preference to customer routes that have an AS path
length greater than 2. Since whisper protocols provide path
integrity, an invalid route that is tunneled across two collud-
ing adversaries will have a minimum path length of 3. We
believe that this modification to BGP policies should have
little impact on current operation since most customer routes
today have a path length less than 3.

To summarize, whisper protocols in combination with the
modified application of policies (emulating shortest path
routing) can largely restrict the damage of colluding adver-
saries.

8 Conclusions

In this paper we consider the problem of reducing the vulner-
ability of BGP in the face of misconfigurations and malicious
attacks. To address this problem we propose two techniques:
Listen and Whisper. Used together these techniques can de-
tect and contain invalid routes propagated by isolated adver-
saries, and a large number of problems (such as unreach-
able prefixes) due to misconfigurations. To demonstrate the
utility of Listen and Whisper, we use a combination of real
world deployment and empirical analysis. In particular, we
show that Listen can detect unreachable prefixes with a low

13

marcelo
Resaltado

marcelo
Lápiz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of affected ASes

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

2 Tier−1 ASes
2 Tier−2 ASes
12 Customer ASes

Figure 9: The effects of colluding adver-
saries in the current Internet.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of affected ASes

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

2 Tier−1 ASes
2 Tier−2 ASes
12 Customer ASes

Figure 10: Effects of colluding adversaries
with whisper protocols + policy routing.

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Percentage of affected ASes

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

2 Tier−1 ASes
2 Tier−2 ASes
12 Customer ASes

Figure 11: Effect of colluding adversaries
with whisper protocols + shortest path rout-
ing

probability of false negatives, and that Whisper can limit the
percentage of nodes affected by a randomly placed isolated
adversary to less than 1%. Finally, we show that both Lis-
ten and Whisper are easy to implement and deploy. Listen
is incrementally deployable and does not require any BGP
changes, while Whisper can be integrated with BGP without
changing the packet format.

References
[1] Cisco ios netflow. http://www.cisco.com/warp/

public/732/Tech/nmp/netflow/index.shtml.
[2] Gnu zebra router implementation. http://www.zebra.

org/.
[3] Internet Corporation for Assigned Names and Numbers.

http://www.icann.org/.
[4] Internet routing registry. http://www.irr.net/. Ver-

sion current January 2003.
[5] libpcap utility. http://sourceforge.net/

projects/libpcap.
[6] Microsoft port 1433 vulnerability. http:/lists.

insecure.org/lists/vuln-dev/2002/Aug/
0073.html.

[7] Ripe ncc. http://www.ripe.net.
[8] Routeviews. http://www.routeviews.org/.
[9] Sprint IPMON project. http://ipmon.sprint.com/.

[10] Trends in dos attack technology. http://www.cert.
org/archive/pdf/DoS_trends.pdf.

[11] J. Arkko and P. Nikander. How to authenticate unknown prin-
cipals without trusted parties. In Proc. Security Protocols
Workshop 2002, April 2002.

[12] M. Bellare and D. Micciancio. A new paradigm for collision-
free hashing: Incrementality at reduced cost. volume 1223 of
Lecture Notes in Computer Science. Springer Verlag, 1997.

[13] I. Blake, G. Serossi, and N. Smart. Elliptic Curves in Cryp-
tography. Cambridge University Press, 2000.

[14] V. J. Bono. 7007 explanation and apology. http:
//www.merit.edu/mail.archives/nanog/
1997-04/msg00444.html.

[15] R. Clarke. Conventional public key infrastructure: An artefact
ill-fitted to the needs of the information society. Technical
report. http://www.anu.edu.au/people/Roger.
Clarke/II/PKIMisFit.html.

[16] D. Davis. Compliance defects in public key cryptography. In
Proc. 6th USENIX Security Symposium, 1996.

[17] C. Ellison and B. Schneier. Ten risks of PKI: What you’re not
being told about public key infrastructure. Computer Security
Journal, 16(1):1–7, 2000. Available online at URL http:
//www.counterpane.com/pki-risks.html.

[18] L. Gao and J. Rexford. Stable internet routing without global
coordination. In IEEE/ACM Transactions on Networking,
2001.

[19] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel,
and A. Rubin. Working around BGP: An incremental ap-
proach to improving security and accuracy of interdomain
routing. In Proc. of NDSS, San Diego, CA, USA, Feb. 2003.

[20] Y. Hu, D. B. Johnson, and A. Perrig. SEAD: Secure efficient
distance vector routing for mobile wireless ad hoc networks.
In Proc. of WMCSA, June 2002.

[21] Y. Hu, A. Perrig, and D. B. Johnson. Wormhole detection in
wireless ad hoc networks. Technical Report TR01-384, De-
partment of Computer Science, Rice University, Dec. 2001.

[22] Y. Hu, A. Perrig, and D. B. Johnson. Efficient security mech-
anisms for routing protocols. In Proc. of NDSS’03, February
2003.

[23] S. Kent, C. Lynn, and K. Seo. Design and analysis of the
Secure Border Gateway Protocol (S-BGP). In Proc. of DIS-
CEX ’00.

[24] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway Proto-
col (Secure-BGP). IEEE Journal on Selected Areas of Com-
munications, 18(4):582–592, Apr. 2000.

[25] R. Mahajan, D. Wetherall, and T. Anderson. Understanding
BGP misconfigurations. In Proc. ACM SIGCOMM Confer-
ence, Pittsburg, Aug. 2002.

[26] Z. Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an
accurate AS-level traceroure tool. In ACM SIGCOMM, 2003.

[27] S. Murphy, O. Gudmundsson, R. Mundy, and B. Wellington.
Retrofitting security into Internet infrastructure protocols. In
Proc. of DISCEX ’00, volume 1, pages 3–17, 1999.

[28] J. Ng. Extensions to BGP to support Secure Origin BGP
(sobgp). Internet Draft draft-ng-sobgp-bgp-extensions-00,
Oct. 2002.

[29] V. N. Padmanabhan and D. R. Simon. Secure traceroute to
detect faulty or malicious routing. In Proc. HotNets-I, 2002.

[30] V. Paxson and S.Floyd. Wide area traffic: Failure of poisson
modeling. In Proc. ACM SIGCOMM, 1994.

[31] K. Seo, C. Lynn, and S. Kent. Public-Key Infrastructure for
the Secure Border Gateway Protocol (S-BGP). In Proc. of
DISCEX ’01, volume 1, pages 239–253, 2001.

[32] B. Smith and J. Garcia-Luna-Aceves. Securing the Border
Gateway Routing Protocol. In Proc. Global Internet ’96, Lon-
don, UK, November 1996.

[33] L. Subramanian, S.Agarwal, J.Rexford, and R. H. Katz. Char-
acterizing the Internet hierarchy from multiple vantage points.
In IEEE INFOCOM, New York, 2002.

[34] R. Thomas. http://www.cmyru.com.
[35] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F.

Wu, and L. Zhang. An analysis of BGP multiple origin AS
(MOAS) conflicts. In ACM SIGCOMM IMW, 2001.

[36] D. Zhu, M. Gritter, and D. Cheriton. Feedback based routing.
In Proc. of HotNets-I, October 2002.

14

marcelo
Resaltado

marcelo
Resaltado

