Cálculo Diferencial e Integral en Varias Variables

Segundo semestre de 2023 Examen

20 de diciembre de 2023

Nº Lista	Apellido, Nombre	Cédula	Firma	
			_	

IMPORTANTE

- La duración del examen es de tres horas y media.
- No se permite usar ni calculadora ni material de consulta.
- El examen tiene 6 ejercicios de múltiple opción y dos ejercicios de desarrollo.
- En cada ejercicio de múltiple opción solo hay una opción correcta.
- La comprensión de la letra de los ejercicios es parte de la prueba.
- Tenga cuidado al pasar las respuestas. Para los ejercicios de múltiple opción lo completado en el cuadro de abajo será lo único tenido en cuenta a la hora de corregir.

MÚLTIPLE OPCIÓN (Total: 60 puntos)

Llenar cada casilla con las respuestas A, B, C, D o E, según corresponda.

1	2	3	4	5	6

Correctas: 10 puntos. Incorrectas: -2 puntos. Sin responder: 0 puntos.

DESARROLLO (Total: 40 puntos)

Los dos ejercicios de desarrollo se encuentran en la página 3. Justifique sus respuestas.

SOLO PARA USO DOCENTE

	MO	D.1.1.a)	D.1.1.b)	D.1.2	D.1.3	D.2	Total
ſ							

MÚLTIPLE OPCIÓN

1. Considere el polinomio complejo $P(z) = z^8 - 2z^3$. Entonces:

(A) Tiene exactamente seis raíces distintas, dos de las cuales cumplen Re(z) < 0.

(B) Tiene exactamente seis raíces distintas, tres de las cuales cumplen Im(z) > 0.

(C) Tiene exactamente ocho raíces distintas, todas cumplen Re(z) = 0.

(D) Tiene exactamente ocho raíces distintas, todas cumplen Im(z) = 0.

(E) Tiene exactamente una solución.

2. Considere los conjuntos $A_1 = \{(x,y) \in \mathbb{R}^2 : -1 < x < 1, -1 < y < 1\}, y A_2 = \{(x,y) \in \mathbb{R}^2 : x = -1, -1 \le y \le 1\}.$ Sea $A = A_1 \cup A_2$, y la sucesión $a_k = \left((-1)^{k+1} + \frac{1}{k^2}, (-1)^k\right)$. Entonces:

(A) Todas las subsucesiones convergentes de a_k convergen a puntos de int(A).

(B) Todas las subsucesiones convergentes de a_k convergen a puntos de ∂A .

(C) Todas las subsucesiones convergentes de a_k convergen a puntos de A^c .

(D) La sucesión a_k no tiene subsucesiones convergentes.

(E) Algunas subsucesiones de a_k convergen a puntos de int(A) y otras a puntos de ∂A .

3. Sean $f: \mathbb{R}^2 \to \mathbb{R}^2$ y $g: \mathbb{R}^2 \to \mathbb{R}^2$ las funciones definidas como $f(x,y) = (e^{2xy}, 1 + \sin(x))$, y $g(u,v) = ((u+v)^2, v^5)$. Entonces, la suma de las entradas de la segunda fila de $J_{q \circ f}(\pi,0)$ es:

(A) π

(B) 5

(C) -5

(D) 1

(E) 0

4. Considere las siguientes series e integral:

$$(I) \sum_{k=2}^{\infty} \frac{1}{k \ln(k)}$$

$$(II)\sum_{k=2}^{\infty} \frac{1}{k^2 \ln(k)}$$

2

$$(I) \sum_{k=2}^{\infty} \frac{1}{k \ln(k)} \qquad (II) \sum_{k=2}^{\infty} \frac{1}{k^2 \ln(k)} \qquad (III) \int_2^{\infty} \frac{1}{x \ln(x)} dx$$

Entonces:

(A) Solamente la integral (III) es convergente.

(B) Solamente la integral (III) y la serie (I) son convergentes.

(C) Solamente la serie (II) es convergente.

(D) Son las tres convergentes.

(E) Solamente las series (I) y (II) son convergentes.

- 5. Sea $f:\mathbb{R}^2 \to \mathbb{R}$ una función diferenciable, de la que se sabe:
 - f(x, 2-x) = 3x
 - $\frac{\partial f}{\partial v}(1,1) = 1$, donde v = (1,1).

Entonces el plano tangente al gráfico de f en el punto (1,1) es:

- (A) 2x y z = 0
- (B) x 2y z = 2
- (C) x y z = 0
- (D) 2x y z = -2
- (E) x + y z = 0
- **6.** Considere la ecuación diferencial 2x 2y'(x)y(x) = -1. Entonces la solución con condición inicial y(0) = 1 es:
- (A) $y(x) = 3x^3 x + 1$
- (B) $y(x) = 3x^3 2x + 2$
- (C) $y(x) = \sqrt{x^2 + x + 1}$
- (D) $y(x) = \sqrt{x^2 + x + 2}$
- (E) $y(x) = e^{3x}$

DESARROLLO

Ejercicio 1 (20 puntos)

- 1. Definir función acotada y su negación. Es decir:
 - a) Completar la siguiente definición: Decimos que $f: \mathbb{R}^2 \to \mathbb{R}$ es acotada sii . . .
 - b) Escribir la negación de la definición anterior.
- 2. Completar el siguiente enunciado, de forma de obtener uno de los resultados demostrados en el curso.

Sea $K \subset \mathbb{R}^2$ un conjunto y x_n una sucesión incluida en K. Entonces convergente a un punto

3. Sea $f:K\to\mathbb{R}$ continua, K un conjunto compacto de \mathbb{R}^2 . Probar que f es acotada. (Se está pidiendo demostrar una parte del teorema de Weierstrass)

Ejercicio 2 (20 puntos)

Sea $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, 0 \le z \le \sqrt{x^2 + y^2} \}.$

Realizar un bosquejo de D y calcular su volumen.