Práctico 6

Prueba de Programas

- Programas Funcionales -

Objetivos: Extraer programas funcionales a partir de pruebas. Probar la corrección de programas con respecto a una especificación: terminación de la recursión y corrección propiamente dicha. Especificación de programas.

Principales tácticas a utilizar en estos ejercicios:

- -Extraction Language ...
- -Extraction "..." IDlema (y variantes)
- Functional Scheme, Function, functional induction.

Principales bibliotecas a consultar

- [-] theories\RELATIONS\WELLFOUNDED\ y en particular Inverse Image.v.
- [-] theories\ARITH\ y en particular wf nat.v.

Principales herramientas automáticas

- Hint
- Auto
- -Omega

Ejercicio 6.1.

1. Demuestre en Coq el siguiente lema que especifica la función predecesor para números naturales:

```
Lemma predspec : forall n : nat, \{m : nat \mid n = 0 / m = 0 / n = S m\}.
```

2. Realice la siguiente secuencia de pasos para extraer su programa Coq en un programa Haskell.

```
Extraction Language Haskell.
Extraction "predecesor" predspec.
```

3. Inspeccione el archivo predecesor. hs para ver el código extraído. Puede cargarlo llamando al compilador de Haskell.

Ejercicio 6.2.

1. Considere las definiciones de árbol binario y espejo del práctico 4. Demuestre que para todo árbol binario existe otro que es su espejo, o sea,

2. Redemuestre el lema anterior usando (verificando) la función inverse del práctico 4 (la

cual, dado un árbol binario construye otro que es su espejo). Considere la declaración: Hint Construtors mirror, y analice la táctica "functional induction".

3. Extraiga su programa Coq en un program Haskell llamado mirror_function.hs e inspeccione el archivo para ver el código extraído.

Ejercicio 6.3.

1. Considere la siguiente simplificación de los tipos del ejercicio 5.5 del práctico anterior.

y los siguientes programas de evaluación de expresiones.

```
Fixpoint bevall (e : BoolExpr) : Value :=
 match e with
  | bbool b => b
  | band e1 e2 =>
         match bevall el, bevall e2 with
         | true, true => true
         | _' _ => false
         end
  | bnot e1 => if beval1 e1 then false else true
Fixpoint beval2 (e : BoolExpr) : Value :=
  match e with
  | bbool b => b
  | band e1 e2 => match beva2 e1 with
            | false => false
           | => beval2 e2
           end
  | bnot e1 => if beval2 e1 then false else true
  end.
```

Demuestre sendos lemas de corrección (bevallo y bevallo) que establezcan que los programas bevall y bevallo son correctos con respecto a la especificación:

```
forall e:BoolExpr, {b:Value | (BEval e b) }.
```

2. Redemuestre los lemas poniendo en Hint los constructores de la relación BEVal.

- 3. Extraiga de los lemas de corrección código Haskell de los evaluadores demostrados.
- 4. Regenere el archivo Haskell del punto anterior de forma que el tipo bool de Coq sea extraído como el tipo bool de Haskell.

Ejercicio 6.4.

Considere las siguientes definiciones que formalizan la relación de permutación entre listas:

```
Section list_perm.
Variable A:Set.

Inductive list : Set :=
    | nil : list
    | cons : A -> list -> list.

Fixpoint append (11 12 : list) {struct 11} : list :=
    match 11 with
    | nil => 12
    | cons a 1 => cons a (append 1 12)
    end.

Inductive perm : list -> list ->Prop:=
|perm_refl: forall 1, perm 1 1
|perm_cons: forall a 10 11, perm 10 11-> perm (cons a 10) (cons a 11)
|perm_app: forall a 1, perm (cons a 1) (append 1 (cons a nil))
|perm trans: forall 11 12 13, perm 11 12 -> perm 12 13 -> perm 11 13.
```

Hint Constructors perm.

- 1. Defina una función reverse que dada una lista retorne la lista invertida.
- 2. Pruebe que la función reverse de una lista es una implementación de la siguiente especificación:

```
Lemma Ej6_4: forall 1: list, {12: list | perm 1 12}.
...
End list perm.
```

Ejercicio 6.5.

- 1. Defina los predicados Le:nat->nat->Prop y Gt:nat->nat->Prop que representan las relaciones *menor o igual y mayor* entre números naturales respectivamente.
- 2. Demuestre que el orden entre números naturales es decidible probando el siguiente lema: Le_Gt_dec: forall n m:nat, {(Le n m)}+{(Gt n m)}. Para ello, escriba un programa leBool:nat->nat->bool que "decida" si un número natural es menor o igual que otro y utilícelo junto con la táctica functional induction en la prueba del lema.
- 3. Considere la función lebool definida en la parte anterior. Demuestre el lema de

decidibilidad le_gt_dec: forall n m:nat, {(le n m)}+{(gt n m)} donde le y gt son las relaciones de la biblioteca Coq. Para hacer la prueba emplee la táctica functional induction e intente demostrar los objetivos aritméticos con la táctica omega (incluya previamente el módulo Omega).

Ejercicio 6.6.

Considere la siguiente especificación de la división euclideana vista en el curso:

```
Definition spec_res_nat_div_mod (a b:nat) (qr:nat*nat) :=
  match qr with
    (q,r) => (a = b*q + r) /\ r < b
  end.

Definition nat_div_mod :
    forall a b:nat, not(b=0) -> {qr:nat*nat | spec res nat div mod a b qr}.
```

Derive a partir de la especificación anterior un algoritmo para la división. Sugerencia: considere en la prueba la lógica de la siguiente solución (con b>0):

```
• 0 divmod b = (0,0)
• (n+1) divmod b = let (q,r) = n divmod b
in if r < b-1
then (q,r+1)
else (q+1,0)
```

Incorpore al contexto los siguientes módulos:

```
Require Import Omega.
Require Import DecBool.
Require Import Compare_dec.
Require Import Plus.
Require Import Mult.
```

Ejercicio 6.7.

Considere las siguientes definiciones que permiten formalizar una relación de subárbol entre árboles binarios.

```
Inductive tree (A:Set) : Set :=
   | leaf : tree A
   | node : A -> tree A -> tree A -> tree A.
Inductive tree_sub (A:Set) (t:tree A) : tree A -> Prop :=
   | tree_sub1 : forall (t':tree A) (x:A), tree_sub A t (node A x t t')
   | tree_sub2 : forall (t':tree A) (x:A), tree_sub A t (node A x t' t).
```

Pruebe que la relación tree sub es un orden bien fundado.

```
Theorem well founded tree sub : forall A:Set, well founded (tree sub A).
```

Ejercicio 6.8.

Considere los tipos value, BoolExpr y BEval definidos en el ejercicio 3.

1. Defina un orden bien fundado elt (*Expresions Less Than*) que justifique la terminación de los programas que evalúan expresiones (de forma ansiosa y perezosa) definidos en el ejercicio 3. Defina el orden a partir de una función size de tipo BooExpr->nat, como sigue:

```
Definition elt (e1 e2 : BoolExpr) := size e1 < size e2.
```

2. Demuestre que el orden elt es bien fundado. Sugerencia: utilice los módulos wf_nat e Inverse Image.

Ejercicio 6.9.

Considere lista de naturales y la función insert_sort del práctico 4. Demuestre que dicha función es una implementación correcta de la siguiente especificación:

<u>Nota</u>: considere la variante de la definición de permutaciones entre listas del ejercicio 4 que sigue:

Sustituir el constructor:

```
|perm_app: forall a l, perm (cons a l) (append l (cons a nil))
por el constructor:
|p ccons: forall a b l (perm (cons a (cons b l)) (cons b (cons a l)))
```

Ejercicios a entregar:

Ver la fecha límite y los ejercicios requeridos en el sitio EVA del curso.

El archivo a entregar debe cargar correctamente en Coq. Si deja ejercicios sin resolver, debe delimitarlos como comentarios: (* ... *).

Al inicio del archivo deben estar los datos de cada integrante; se admiten entregas individuales o de a dos estudiantes.

Construcción Formal de Programas en Teoría de Tipos

Usar la plantilla publicada junto con el práctico para el desarrollo de los ejercicios requeridos; no es necesario entregar los ejercicios no solicitados.