CoGAN: Coupled Generative
Adversarial Networks (GAN)

Application

* Possible applications: Producing color image and depth image where
these two images are highly correlated, i.e. describing the same
scene, or images of the same face with different attributes (smiling
and non-smiling).

Main ldea

* A single input vector can generates correlated outputs in different
domains through multiple GANs with weight sharing.

Generators Discriminators
GAN, f1(91@)
> . > > ! (Z) > » > . —e—»)
z — weight sharing
 f2(922)
IR 92(2) | i i O
GAN,

Main ldea

* CoGAN is designed for learning a joint distribution of images in two
different domains.

* It consists of a pair of GANs — GAN1 and GAN2; each is responsible
for synthesizing images in one domain.

Generators Discriminators
GAN, f1(9:1)
| ~ | | 9,(2) I | _ . C
z — weight sharing
[2(922)
J R d | 9,(2) | | . I _‘_O

GAN,

Generators

91(2)

Generators

. 4 »

aring

weight | sh

>
*

9,(2)

GAN,

Both g1 and g2 are realized as multilayer neural network:

g1(z) = gi™ (0i™ V(... i7(9i"(2)))), g2(z) =g3"* (g5 V(...

9o

2) 1
(95’ (2)

)))

* Through layers, the generative models gradually decode information from more abstract

concepts to more material details.

e The first layers decode high-level semantics and the last layers decode low-level details.

* No constraints are enforced to the last layers.

 The idea is to force the first layers of g1 and g2 to have identical structure and share the

weights.

* With weight sharing, the pair of images can share the same high-level abstraction but

having different low-level realizations.

Generators

* The idea is to force the first layers of g1 and g2 to have identical structure and
share the weights.

* With weight sharing, the pair of images can share the same high-level abstraction
but having different low-level realizations.

(Generators

GAN
sl 91(2)

*— -~ *—

z — | weight: sharing

9,(2)

P VI—

&
-

GAN,

G e n e rato rS class CoupledGenerators(nn.Module):

def __init_ (self):
super(CoupledGenerators, self).__init_ ()

self.init_size = img_size // 4
self.fc = nn.Sequential(nn.Linear(z_dim, 128 % self.init_size *x 2))

self.shared_conv = nn.Sequential(

)
self.G1

nn.Sequential(

)
self.G2 = nn.Sequential(

)

def forward(self, z):
out = self.fc(z)
out = out.view(out.shape[@], 128, self.init_size, self.init_size)
img_emb = self.shared_conv(out)
imgl = self.G1l(img_emb)
img2 = self.G2(img_emb)
return imgl, img2

Discriminators

f1(91z)
/’_\l

Discriminators so | L L S

' £2(9:2)
/“‘\l

* The discriminative models map an input i |
image to a probability score, estimating the (R
likelihood that the input is drawn from a true
data distribution.

fiGa) = A (A0 P (P 3))))s falx) = £ (B0 (17 (1) (x2)))

* The first layers of the discriminative models extract low-level
features, while the last layers extract high-level features.

* Similar to generator, the last layers are weight shared.

Discriminators

class CoupledDiscriminators(nn.Module):

def

def

__init__(self):

super(CoupledDiscriminators, self).__init__ ()

def discriminator_block(in_filters, out_filters, bn=True):
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1)]

if bn:

block.append(nn.BatchNorm2d(out_filters, 0.8))

™ Vv &

block.extend([nn.LeakyRelLU(0.2, inplace=True), nn.Dropout2d(0.25

return block

self.shared_conv = nn.Sequentiall(

*discriminator_block(channels, 16, bn=False),

*discriminator_block(16, 32),

*discriminator_block(32, 64),

*discriminator_block(64, 128),
)

The height and width of downsampled image

ds_size = img_size // 2 %% 4

self.D1 = nn.Linear(128 x ds_size ** 2, 1)
self.D2 = nn.Linear(128 % ds_size *x 2, 1)
forward(self, imgl, img2):

Determine validity of first image
out = self.shared_conv(imgl)

out = out.view(out.shape(@], -1)
validityl = self.D1l(out)

Determine validity of second image
out = self.shared_conv(img2)|

out = out.view(out.shape(@], -1)
validity2 = self.D2(out)

return validityl, validity2

Learning

e Similar to minmax GAN, CoGAN can be trained by back propagation with the
alternating gradient update steps.

* In the game, there are two teams and each team has two players.

max min V(f1,f2,g1,gz), subjectto 0) =0 (), fori=1,2,...,k
91,92 f1,f2 91 9>

9f1(n1~—j) = 0f§n2-~j), fOI’j = 0,1,...,l -1

V(f1, f2:91,92) = Ex,~px, [—log f1(%1)] + Eznp,[—10g(1 — f1(91(2)))]
T Ex;;rvpx2 [_ log f2(x2)] T EZNPZ[_ log(l — fa(92 (Z)))]

* Basically, the alternating gradient update steps are to train 2 discriminators one
by one, then to train 2 generators one by one alternatively.

Learning

Determine validity of real and generated images
validityl real, validity2_real = coupled_discriminators(imgsl, imgs2)
validityl_fake, validity2_fake = coupled_discriminators(gen_imgsl.detach(), gen_imgs2.detach())

d_loss = (
adversarial_loss(validityl_real, real_label)
+ adversarial_loss(validityl_fake, fake_label)
+ adversarial_loss(validity2_real, real_label)
+ adversarial_loss(validity2_fake, fake_label)
) / 4

d_loss.backward()
optimizer_D.step()

Generate a batch of images

gen_imgsl, gen_imgs2 = coupled_generators(z)

Determine validity of generated images

validityl, validity2 = coupled_discriminators(gen_imgsl, gen_imgs2)

g_loss = (adversarial_loss(validityl, real_label) + adversarial_loss(validity2, real_label)) / 2

g_loss.backward()
optimizer_G.step()

Full code

* Generate MNIST on MNIST-Modified images

https://drive.google.com/file/d/1vovpwQ9h5CJAtOpJFAfRWnTy
TcOjLY5H/view?usp=sharing

https://drive.google.com/file/d/1vovpwO9h5CJAtOpJFAfRWnTyTcOjLY5H/view?usp=sharing
https://drive.google.com/file/d/1vovpwO9h5CJAtOpJFAfRWnTyTcOjLY5H/view?usp=sharing

