
CoGAN: Coupled Generative 
Adversarial Networks (GAN)



Application

• Possible applications: Producing color image and depth image where
these two images are highly correlated, i.e. describing the same
scene, or images of the same face with different attributes (smiling
and non-smiling).



Main Idea

• A single input vector can generates correlated outputs in different
domains through multiple GANs with weight sharing.



Main Idea

• CoGAN is designed for learning a joint distribution of images in two
different domains.
• It consists of a pair of GANs — GAN1 and GAN2; each is responsible

for synthesizing images in one domain.



Generators

• Both g1 and g2 are realized as multilayer neural network:

• Through layers, the generative models gradually decode information from more abstract
concepts to more material details.

• The first layers decode high-level semantics and the last layers decode low-level details.
• No constraints are enforced to the last layers.
• The idea is to force the first layers of g1 and g2 to have identical structure and share the

weights.
• With weight sharing, the pair of images can share the same high-level abstraction but

having different low-level realizations.



Generators

• The idea is to force the first layers of g1 and g2 to have identical structure and 
share the weights.

• With weight sharing, the pair of images can share the same high-level abstraction
but having different low-level realizations.



Generators



Discriminators
• The discriminative models map an input 

image to a probability score, estimating the
likelihood that the input is drawn from a true 
data distribution.

• The first layers of the discriminative models extract low-level 
features, while the last layers extract high-level features.
• Similar to generator, the last layers are weight shared.



Discriminators



Learning
• Similar to minmax GAN, CoGAN can be trained by back propagation with the

alternating gradient update steps.
• In the game, there are two teams and each team has two players.

• Basically, the alternating gradient update steps are to train 2 discriminators one
by one, then to train 2 generators one by one alternatively.



Learning



Full code

• Generate MNIST on MNIST-Modified images

https://drive.google.com/file/d/1vovpwO9h5CJAtOpJFAfRWnTy
TcOjLY5H/view?usp=sharing

https://drive.google.com/file/d/1vovpwO9h5CJAtOpJFAfRWnTyTcOjLY5H/view?usp=sharing
https://drive.google.com/file/d/1vovpwO9h5CJAtOpJFAfRWnTyTcOjLY5H/view?usp=sharing

