
Generating Synthetic 
Tabular Data with 

GANs
Redes neuronales generativas



GANs vs cGAN

GANs vs cGAN
GANs

cGAN



Why synthetic data?
● Data Privacy: Synthetic data is a great way to ensure data privacy while being able to

share microdata, allowing organizations to share sensitive and personal (synthetic)
data without concerns with privacy regulations

● Prototype Development: Collecting and modeling tremendous amounts of real data is
a complicated and tedious process. Generating synthetic data makes data available
sooner. Besides that, it can help in faster iteration through the data collections
development for ML initiatives

● Edge-case Simulation: It is often seen that the collected data do not contain every
possible scenario which affects the model performance negatively. In such cases, we
can include those rare scenarios by artificially generating them

Redes neuronales generativas



Challenges
● Mixed data types: Numerical data, Categorical data (ordinal, low cardinality,

etc.) , Text, Boolean

● Sparse data

● Unbalanced data

● ...

Redes neuronales generativas

discrete data → represented as vectors {0,0,1,...}



Generating tabular data with GANs
● Problem statement:

A tabular dataset T can be said to contain Nd
discrete columns and Nc continuous columns.
The goal of tabular data generation is to train a
generator G to learn to generate a synthetic
dataset Tsynth from T.

Redes neuronales generativas



How to deal with tabular data
● Rows are treated as data samples

○ One row is one data sample

● GANs (unsupervised learning) used to randomly create samples (data is
generated randomly)

● cGANs (supervised learning) used to create samples by selecting a given
category

○ Categorical columns are used as the label

Redes neuronales generativas



How to deal with tabular data
● Every columns should be defined as a numerical (float) value

○ Many machine learning algorithms perform better or converge faster when
features are on a relatively similar scale and/or close to normally distributed.

○ It is important to find the right distribution/transformation that fits the data.

● Scale: changing the range of the values. The shape of the distribution doesn’t
change. The range is often set at 0 to 1.

● Standardize: changing the values so that the distribution’s standard deviation
equals 1. Scaling is often implied.

● Normalize: either of the above things (and more!)

Redes neuronales generativas



How to deal with tabular data
● sklearn.preprocessing → Preprocessing

○ StandardScaler assumes your data is normally distributed within
each feature and will scale them such that the distribution is now
centred around 0, with a standard deviation of 1.

○ MinMaxScaler essentially shrinks the range such that the range is
now between 0 and 1 (or -1 to 1 if there are negative values).
◦ it is sensitive to outliers

○ RobustScaler uses a similar method to the MinMaxScaler but it
instead uses the interquartile range
◦ It is robust to outliers.

○ Normalizer scales each value by dividing each value by its
magnitude in n-dimensional space for n number of features.

Redes neuronales generativas



How to deal with tabular data

● sklearn.preprocessing → Preprocessing
○ OneHotEncoder convertes categorical variables are converted into a

numerical representation.
◦ Categorizing every category in a discrete variable into its own dimension.
◦ It does not assume ordinal relationship

Redes neuronales generativas

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 0 0 0 0 0 0

0 1 0 0 0 0 0

… … … … … … …

Monday = [1, 0, 0, 0, 0, 0, 0]



How to deal with tabular data
● Deal with the problem as we have already seen

GANs vs cGAN
GANs

cGAN

Redes neuronales generativas



How to deal with tabular data
● Every columns should be defined as a numerical (float) value

○ It is important to find the right distribution/transformation that fits the data

● sklearn.preprocessing → Preprocessing and Normalization

○ MinMaxScaler

○ Normalizer

○ OneHotEncoder

○ PowerTransformer

Redes neuronales generativas



CT-GAN
● To achieve the task of tabular data generation, one could train a vanilla GAN,

however, there are two adaptations that CTGANs proposes that attempt to
tackle two issues with GANs when applied to tabular data.
○ A representative normalization of continuous data
○ A fair sampling of discrete data

Redes neuronales generativas



● Discrete data is easy to represent → one-hot encoded.
○ One-hot encoding is simply the process of categorizing every category in a

discrete variable into its own dimension.
○ For the weekdays (Monday, Tuesday, …., Sunday) instead of having a vector

containing the day of the week, after one-hot encoding, we have 7 columns,
one for each day of the week, with binary indications of class membership.

CT-GAN. Normalization of discrete data

Redes neuronales generativas

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 0 0 0 0 0 0

0 1 0 0 0 0 0

… … … … … … …

Monday = [1, 0, 0, 0, 0, 0, 0]



● Continuous data is NOT SO easy to represent.
○ It is difficult to express all the information carried by the continuous

variable..

CT-GAN. Normalization of continuous data

Redes neuronales generativas

We have a continuous variable like the
one above (distribution in blue) and we
want to represent our sample (in red).
● How can we normalize to be able to use

the data in a ML model?
● Can we represent the distribution with a

Normal distribution?



● Continuous data is NOT SO easy to represent.
○ It is difficult to express all the information carried by the continuous

variable..

CT-GAN. Normalization of continuous data

Redes neuronales generativas

The distribution is quite complex, it has
multiple modes.
Therefore by simply giving the model the
value of the continuous variable at our
sample, we may lose some information,
such as what mode the sample belongs to,
and its importance within that mode.
● Solution:mode-specific normalization



● Mode-specific normalization works by first fitting a VGM (variational Gaussian
mixture model) to each continuous variable.
○ A gaussian mixture model simply tries to find the best k Gaussians to

represent the data through expectation maximization.

CT-GAN. Normalization of continuous data

Redes neuronales generativas



Mode-specific normalization
● Once we have found the k Gaussian distributions that best model our continuous

variable, we can evaluate the sample at each of the Gaussians.
○ From there, we can decide what distribution the sample belongs to (this is

represented by β). Finally, we can represent the value of the sample within its
distribution (how important that sample is in its gaussian) using the α term.

● In the example, the VGM finds 3 Gaussians to represent the distribution of the
continuous variable (k=3). The sample c (in red) is encoded as a β vector {0,0,1}, and an
α vector using the equation shown above.

● And that’s it, to solve the normalization problem
→ we give it α and β.

CT-GAN. Normalization of continuous data

Redes neuronales generativas



● When training the generator of a GAN, the input noise is drawn from a prior
distribution (Z). Sampling in this way for discrete variables may miss information
about their distribution. It would be useful for the model to somehow include
information from the discrete variables as input, and for it to learn to map that
input accordingly to the desired output.

● The solution the paper proposes consists of three key elements:
○ conditional vector,
○ generator loss,
○ and training-by-sampling.

CT-GAN. Fair sampling of discrete data

Redes neuronales generativas



● Conditional vector: The same idea than cGAN
○ Some information about the desired discrete variables must be contained on

the input aside from the random noise.

● The conditional vector allows us to force the generator to generate a sample
from a chosen category. The conditional vector contains all the discrete
columns, one-hot encoded, where all the values are set to zero except for one
category in one discrete column (the condition we want the generated sample
to fulfil). The condition is chosen through training-by-sampling.

CT-GAN. Fair sampling of discrete data

Redes neuronales generativas



● Training-by-sampling allows sampling the conditions to generate the
conditional vectors such that the distributions generated by the generator
match the distributions of the discrete variables in the training data.

● Training-by-sampling is done as follows:
○ First, a random discrete column is selected
○ From this discrete column, a category is selected based on a probability

mass function constructed from the frequencies of occurrence of each
category in that discrete column.

○ The condition is transformed to the conditional vector and used as input to
the generator

CT-GAN. Fair sampling of discrete data

Redes neuronales generativas



● The generator loss is adapted to force the generator to generate a sample with
this condition. They do this by adding the cross-entropy between the
conditional vector and the generated sample to the loss term. This forces the
produced samples to abide by the condition → The same than cGAN

CT-GAN. Fair sampling of discrete data

Redes neuronales generativas



● Training a CT-GAN using CTGAN Python library from The Synthetic Data Vault
1. Get full tabular dataset

2. Get categorical features (columns)

3. Train the model

4. Produce samples

CT-GAN. Experiments with code

Redes neuronales generativas



● Evaluating the produced simples using TableEvaluator Python library
● https://baukebrenninkmeijer.github.io/table-evaluator/

● It provides a series of metrics and visualizations to compare the distribution of
real data and synthetic data
● F1-scores and Jaccard similarity
● Absolute log mean and standard deviation of numeric data
● Cummulative sums
● Distributions per feture
● Difference between real and fave correlations among features
● First two PCA components

CT-GAN. Experiments with code

Redes neuronales generativas

https://baukebrenninkmeijer.github.io/table-evaluator/


● Evaluating the produced simples using TableEvaluator Python library
● https://baukebrenninkmeijer.github.io/table-evaluator/

● It provides a series of metrics and visualizations to compare the distribution of
real data and synthetic data
● F1-scores and Jaccard similarity

● Given a specific column

CT-GAN. Experiments with code

Redes neuronales generativas

https://baukebrenninkmeijer.github.io/table-evaluator/


● Evaluating the produced simples using TableEvaluator Python library
● https://baukebrenninkmeijer.github.io/table-evaluator/

● It provides a series of metrics and visualizations to compare the distribution of
real data and synthetic data
● Absolute log mean and standard deviation of numeric data

CT-GAN. Experiments with code

Redes neuronales generativas

https://baukebrenninkmeijer.github.io/table-evaluator/


● Evaluating the produced simples using TableEvaluator Python library
● https://baukebrenninkmeijer.github.io/table-evaluator/

● It provides a series of metrics and visualizations to compare the distribution of
real data and synthetic data
● Cummulative sums

CT-GAN. Experiments with code

Redes neuronales generativas

https://baukebrenninkmeijer.github.io/table-evaluator/


● Evaluating the produced simples using TableEvaluator Python library
● https://baukebrenninkmeijer.github.io/table-evaluator/

● It provides a series of metrics and visualizations to compare the distribution of
real data and synthetic data
● Distributions per feture

CT-GAN. Experiments with code

Redes neuronales generativas

https://baukebrenninkmeijer.github.io/table-evaluator/


● Evaluating the produced simples using TableEvaluator Python library
● https://baukebrenninkmeijer.github.io/table-evaluator/

● It provides a series of metrics and visualizations to compare the distribution of
real data and synthetic data
● Difference between real and fave correlations among features

CT-GAN. Experiments with code

Redes neuronales generativas

https://baukebrenninkmeijer.github.io/table-evaluator/


● Evaluating the produced simples using TableEvaluator Python library
● https://baukebrenninkmeijer.github.io/table-evaluator/

● It provides a series of metrics and visualizations to compare the distribution of
real data and synthetic data
● First two PCA components

CT-GAN. Experiments with code

Redes neuronales generativas

https://baukebrenninkmeijer.github.io/table-evaluator/


Example

Redes neuronales generativas

● IRIS → CTGAN
https://drive.google.com/file/d/12541AomVyxpSowrLbCGvvpGKDt9-LLyQ/view?usp=sharing

https://drive.google.com/file/d/12541AomVyxpSowrLbCGvvpGKDt9-LLyQ/view?usp=sharing


Example

Redes neuronales generativas

● Medical data → CTGAN
https://drive.google.com/file/d/1RDencmohwZiB-7d5JlHNVhCLd8dNMWXw/view?usp=sharing



Exercise

Redes neuronales generativas

● Credit Card Analysis Data → CTGAN
https://github.com/jamaltoutouh/curso-ciencia-de-datos-

python/blob/main/correct_synthetic_credit_analysis.csv

Download file from:

https://github.com/jamaltoutouh/curso-ciencia-de-datos-
python/blob/main/correct_synthetic_credit_analysis.csv

https://github.com/jamaltoutouh/curso-ciencia-de-datos-python/blob/main/correct_synthetic_credit_analysis.csv
https://github.com/jamaltoutouh/curso-ciencia-de-datos-python/blob/main/correct_synthetic_credit_analysis.csv
https://github.com/jamaltoutouh/curso-ciencia-de-datos-python/blob/main/correct_synthetic_credit_analysis.csv
https://github.com/jamaltoutouh/curso-ciencia-de-datos-python/blob/main/correct_synthetic_credit_analysis.csv


JAMAL TOUTOUH

Thanks!

Redes neuronales generativas 34JAMAL TOUTOUH

Comments?
JAMAL TOUTOUH
toutouh@mit.edu
jamal.es
necol.net
@jamtou

mailto:toutouh@mit.edu

