Aplicaciones del Álgebra Lineal 2^{do} semestre - 2024

Práctico 8: Perron - Frobenius.

Ref. ALA, JAP, Capítulo IV, Secciones 2 y 3.

Ejercicio 1 Sea $A \in \mathcal{M}_n(\mathbb{R})$ tal que $\rho(A)$ es valor propio de A. Probar que $\rho(A + n.Id) = \rho(A) + n$, para todo $n \in \mathbb{N}$.

Ejercicio 2 Probar que el producto de matrices de permutación, es una matriz de permutación.

Ejercicio 3 Probar que si $v \in K^o$, entonces $\lambda v \in K^o$, para todo $\lambda \in \mathbb{R}^+$.

Ejercicio 4 Sea $P \in \mathcal{M}_n(\mathbb{R})$ matriz de permutación. Calcular $P^{n!}$. Justificar.

Ejercicio 5 Sea $A \in \mathcal{M}_n(\mathbb{R})$, no negativa.

- a. Probar que, si A^p es irreducible siendo p un entero positivo, entonces A es irreducible.
- **b.** ¿Será verdad el recíproco? O sea, si A es irreducible, y p es un entero positivo, entonces A^p es irreducible.

Ejercicio 6 Supongamos que A y B son matrices de $\mathcal{M}_n(\mathbb{R})$, no negativas.

- a. Demostrar o dar un contraejemplo: si A y B son irreducibles, entonces A + B es irreducible.
- **b.** Demostrar o dar un contraejemplo: si A y B son irreducibles, entonces A.B es irreducible.

Ejercicio 7 Demostrar el final del Teorema "light" del Teorema de Perron-Frobenius. O sea que para todo valor propio $\lambda \neq \rho(A)$, se verifica que $|\lambda| < \rho(A)$.

Ejercicio 8 Sea $A \in \mathcal{M}_n(\mathbb{R})$ una matriz no negativa. Probar que son equivalentes:

- **a**. A es primitiva.
- **b**. Existe k_0 tal que para todo $k \ge k_0$, $A^k > 0$.
- c. Existe k, tal que $A^k > 0$.

Nota: Decimos que $A \ge 0$ es primitiva si es irreducible y para todo $\rho(A) \ne \lambda \in Spec(A)$ se tiene que $||\lambda|| < \rho(A)$.

Ejercicio 9

- **a**. Caracterizar las matrices 2x2 que son reducibles.
- b. Caracterizar las matrices 2x2 que son primitivas.

Marcelo Lanzilotta