
Private and Verifiable Interdomain Routing Decisions

Mingchen Zhao
University of Pennsylvania

Wenchao Zhou
University of Pennsylvania

Alexander J. T. Gurney
University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania

Micah Sherr
Georgetown University

Boon Thau Loo
University of Pennsylvania

ABSTRACT
Existing secure interdomain routing protocols can verify validity
properties about individual routes, such as whether they correspond
to a real network path. It is often useful to verify more complex
properties relating to the route decision procedure – for example,
whether the chosen route was the best one available, or whether it
was consistent with the network’s peering agreements. However,
this is difficult to do without knowing a network’s routing policy
and full routing state, which are not normally disclosed.

In this paper, we show how a network can allow its peers to
verify a number of nontrivial properties of its interdomain routing
decisions without revealing any additional information. If all the
properties hold, the peers learn nothing beyond what the interdo-
main routing protocol already reveals; if a property does not hold,
at least one peer can detect this and prove the violation. We present
SPIDeR, a practical system that applies this approach to the Bor-
der Gateway Protocol, and we report results from an experimental
evaluation to demonstrate that SPIDeR has a reasonable overhead.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Security and pro-
tection; C.2.2 [Network protocols]: Routing Protocols

Keywords
Routing, Privacy, Security, Accountability, Fault detection

1 Introduction
In interdomain routing, there is an inherent tension between veri-
fiability and privacy: both properties are desirable, but they seem
contradictory. Communicating networks have expectations about
one another’s routing decisions, but they are stymied from verify-
ing these expectations because routing configurations are usually
kept confidential.

Routing promises. Interdomain routing policies are routinely
governed by formal agreements, such as peering and transit con-
tracts, and the correct implementation of these policies is vital for
allowing networks to achieve other contractual goals, such as main-
taining traffic ratios [6]. In some cases, such as ‘partial transit’ re-
lationships, the desired policy can be complex, placing additional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’12, August 13–17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1419-0/12/08 ...$10.00.

cost on the implementors [33]. Less formally, networks often pub-
lish information on how customers and others can tweak the route
selection process, using BGP communities [2, 3, 36]. Such capabil-
ities represent an understanding between the networks about how
certain routes should be treated. Negotiation about the provision of
routing services, including undertakings about routing policy, is an
important part of the Internet interconnection marketplace [6].

The value of verifiability. Unfortunately, these promises are not
always kept, and violations are hard to detect. Promise-breaking
may be deliberate, since networks may have economic incentives
to lie about their routes [11]. Other examples of malicious behavior
abound [16, 30]; one study found that 18 of 28 peering agreements
contained clauses against abuse of the peering relationship through
BGP configuration [28]. More innocently, misconfigurations [21],
compromised routers [27], or equipment failures [42] can cause
routing decisions to deviate from expectations.

Secure variants of BGP (e.g., S-BGP [17]) have been proposed as
mechanisms for ISPs to check whether routing announcements cor-
respond to the claimed path and destination, but these mechanisms
do not address the important question of whether the route decision
process matches expectations. Complete verification could be en-
abled by revealing all routing tables [14], but verifiability is not the
only concern.

The value of privacy. For operational security or commercial
reasons, ISPs have traditionally been reluctant to disclose details of
their routing policy. Some aspects may be revealed to neighbors,
included in a route registry, or exposed indirectly via looking glass
services, but we cannot expect network operators to agree to use
any system that reveals even more of their private information. Ex-
isting work has shown that it is possible to make deductions about
which autonomous systems are connected, and even about some as-
pects of policy [4, 8, 19, 34, 39], but these inferences have limited
accuracy [33] and require considerable effort to carry out, which
makes them unsuitable for verifying routing decisions.

Can we have both? Intuitively, it seems that verifiability and
privacy are conflicting goals—by revealing more information, we
can improve verifiability, but we reduce privacy. In this paper, we
show that this intuition is incorrect. We present a first step towards
an interdomain routing system in which networks can verify each
other’s promises without revealing any additional information. Our
approach is to enable the networks to verify promises collabora-
tively: Each promise is broken into small pieces such that a) each
piece can be verified by some network using only information it
already knows, and b) a successful verification of all pieces implies
that the promise has been kept.

We show that collaborative verification is possible for an entire
category of nontrivial promises, covering the relative preference as-
signed to different classes of route, and including the possibility of
route filtering. We present a practical verification algorithm called

383

VPref, as well as a formal proof that VPref both guarantees detec-
tion of broken promises and preserves privacy. We also present a
data structure, called a modified ternary tree (MTT), that can be
used to run our algorithm efficiently for large numbers of prefixes.

To show that our approach is practical, we present Secure and
Private Inter-Domain Routing (SPIDeR), a collaborative verifica-
tion system that can be deployed as a companion protocol to BGP,
possibly on separate hardware, and that makes its decisions based
on observing the BGP message flow. We report experimental re-
sults to show that SPIDeR’s overhead is reasonable. SPIDeR is
meant to be a proof of concept: it can verify a nontrivial set of
control-plane actions, but it does not cover data-plane performance,
and it cannot verify promises about certain aspects of BGP func-
tionality, such as proxy aggregation.

Although this paper motivates and evaluates collaborative verifi-
cation in the context of BGP, the VPref algorithm is not specific to
BGP, or even to interdomain routing: it could be applied to any sce-
nario where one entity privately chooses between multiple options
presented by other entities. Thus, we speculate that VPref could be
useful even beyond network routing.

In summary, this paper makes the following five contributions:

• a novel algorithm, VPref, for collaborative verification of
promises about private choices (Section 4);

• a formal proof that VPref guarantees privacy and verifiability
(Section 4.6; details in [43]);

• a data structure (MTT) that can be used to efficiently scale
VPref (Section 5);

• SPIDeR, a companion protocol to BGP that applies VPref to
interdomain routing (Section 6); and

• an experimental evaluation of SPIDeR (Section 7).

To provide some context, we begin with a general overview and
roadmap (Section 2), followed by a definition of ‘promises’ in the
context of BGP (Section 3).

2 Overview and Roadmap
Figure 1 illustrates the problem we are concerned about in this
paper. Alice and Bob are operators of two autonomous systems
(ASes) A and B, which are connected by a direct link. Alice re-
ceives interdomain routes from Bob via BGP [32], and these routes
typically do not terminate in Bob’s AS but rather traverse one of
Bob’s neighbors: Charlie, Doris, or Eliot. At any given time, Bob
may have several routes to a prefix p; he chooses one of these routes
according to his local policy and then decides whether or not to
make that route available to Alice. However, Alice is unable to
observe which routes (if any) Bob had available at that time.

We are specifically interested in situations where Bob has made
some kind of promise to Alice regarding his routing policy. A
promise is a statement that Bob will prefer certain routes over cer-
tain other routes; for instance, Bob could promise that he will al-
ways choose the shortest route to p that is available to him, or
that he will prefer routes through Charlie’s AS over routes through
Eliot’s. Since Bob’s incoming routes are not visible to Alice, Bob
can easily break his promise without Alice noticing—for instance,
a configuration error might result in Eliot’s route being chosen, in-
stead of the preferred route that Charlie had offered. Our goal is to
enable Alice to verify whether Bob is keeping his promise, without
forcing Bob to reveal his incoming routes to Alice. We will refer to
the first part as our verifiability goal and to the second part as our
privacy goal.

Alice Bob

Charlie
Promise

DorisAS A AS B

Eliot

Figure 1: Motivating scenario. Bob has made a promise to Al-
ice about his routing decisions, but Alice has no way to verify
whether Bob is keeping his promise.

2.1 How much privacy do we need?
Before we can formalize these goals, we need to provide a more
specific definition of privacy. A very strong definition could de-
mand that the downstream neighbors of Bob’s AS learn nothing at
all about the routes available to Bob. However, this property seems
too strong—certainly much stronger than what BGP offers today.
For instance, if Bob announces a route to Alice via BGP, Alice is
able to see (from the AS_PATH attribute) which upstream neighbor
the route traverses, and she can infer that this neighbor had previ-
ously exported it to Bob. Since this seems acceptable to the ASes
that exist today, we adopt a slightly weaker definition: assuming
that BGP is already running and that all participants are correct,
operation of the additional protocol should not enable any AS par-
ticipant to deduce additional information about the routing state or
policy of any other AS, beyond what it can already learn via BGP.

In particular, it should not be possible for Alice to determine
which routes were available to Bob at any given time, except for
those routes she has already learned from him through BGP; and
she should not be able to deduce the relative preference of any two
routes, other than as already specified by Bob in his promise. How-
ever, if Alice colluded with Charlie, then she could find out which
routes he sent to Bob – but she could do this even if our system were
not deployed. When some participants break their promises, it is
acceptable to reveal new information, e.g., evidence that a promise
has been broken.

2.2 What is a promise?
We also need to define what it means for an AS to make a promise
about its routing policy. Section 3 contains more detail on this
topic, and how our formalism can model existing policy for local
preference groups, selective export, etc. The promises of interest to
us relate to the routing decision procedure, in which several routes
enter and at most one leaves; routing policy determines which route
is the winner. A promise does not specify every possible nuance of
route selection, but may give partial information about which routes
will be considered ‘better’ than others.

Assume that an ASA, for a prefix p, has a total order over the set
R(A, p) of all possible routes from A to p, yielding its preference.
During protocol operation, A will choose the best route, according
to this order, from all those that are currently available. We envi-
sion a promise as dividingR(A, p) into several indifference classes,
where preferences exist between them, but not within each class. In
this way,A could divideR(A, p) into ‘routes through customer net-
works’ and ‘all other routes’, and promise that the customer routes
constitute the more preferred class. This is an undertaking that if
A ever has both a customer and a non-customer route, then it will
choose the customer route; but it promises nothing about what will
happen when two customer routes are both possible, or when only
non-customer routes are available. In these last two cases, the can-
didate routes are all within the same class, and so no public prefer-
ence is specified among them.

384

In the presentation, we assume that, for each pair of neighboring
ASes, only a single promise is in effect for a given prefix. However,
real routing policy may legitimately be different at each intercon-
nection point, and the visible routes will differ as well: ASes are
not atomic [24]. In Section 8, we discuss the proper handling of
this fact in our system.

2.3 Goals
We are now ready to define (based on [13]) the four properties we
want to provide in SPIDeR:

1. Verifiability: If an AS A breaks a promise and all of A’s
neighbors are correct, then at least one neighbor detects this.

2. Privacy: No AS can learn information by running SPIDeR
that it could not already learn from running BGP.

3. Evidence: If an AS A detects that another AS B has broken
a promise, A can obtain evidence against B that will con-
vince a third party.

4. Accuracy: If an AS A is keeping all of its promises and
is running SPIDeR correctly, no other AS can obtain valid
evidence against A.

The first two properties correspond to the informal goals from the
beginning of this section. Properties 3 and 4 are useful when hold-
ing ASes accountable for broken promises: evidence ensures that
ASes cannot deny genuine violations, and accuracy protects correct
ASes from spurious accusations.

Non-goals: To keep the problem manageable, we set two ex-
plicit non-goals for this paper. First, we focus strictly on verify-
ing control-plane behavior; checking data-plane forwarding against
control-plane announcements is a separate problem that is discussed,
e.g., in [41]. We also do not attempt to handle all aspects of BGP
operation (such as aggregation [35]), nor of peering agreements
(such as cold potato manipulation). The latter can be handled by
systems like BorderGuard [7], which is complementary to SPIDeR.

3 Policy and Promises
BGP best-route selection is carried out on the basis of routes’ at-
tributes, according to the local configuration of each router. The
decision procedure is lexicographic, beginning with the local pref-
erence attribute and proceeding down a chain of tie-breakers as nec-
essary. Pattern-match rules allow attribute values to be modified as
routes are propagated. In the case of local preference, the numeric
value might be chosen based on the AS neighbor from whom the
route was received. Choosing shorter routes (those going through
fewer ASes) is the next step, if local preference values were tied.

Route preference can also be influenced by BGP communities [2,
3, 36], which are numeric tags attached to route advertisements.
For example, routes might get local preference 100 by default,
but those with a special community tag might get a preference of
80, making them seem less attractive to the recipient. Other com-
munities can be used to control the export of routes, or to cause
AS-number prepending. They can also be attached on export to
give additional information (e.g., a route’s geographic origin [5]).
These capabilities are determined by the pattern matching rules in
the router configurations of the recipient AS.

Many lists of supported communities are publicly available, in-
dicating that ASes are often willing to disclose certain aspects of
their routing policy, at least at a high level. If an AS reveals its local
preference tiers in this way (for example, the fact that transit routes
are the least preferred) then it has committed to only part of the in-
formation in its actual route preference order. That is, although the
AS will make its routing decisions based on many different route

attributes, it has only made a public promise about the first attribute.
Outside observers cannot say for sure, concerning two routes in the
same tier, which one would actually be preferred. This observation
motivates our order-theoretic model of an AS’s promises.

3.1 Promises formalized
DEFINITION 1. Suppose that R(A, p) is the given total order on
all routes that might ever be received by AS A for prefix p. A
promise on R(A, p) consists of a partial order (C,≤) and a parti-
tion

⊎
c∈C Rc of R(A, p).

The set C is used to label various classes of routes. It is endowed
with a partial order, representing the definite preference of one class
over another. Every route falls into exactly one of these classes.
The semantics of this promise are that each Rc is an indifference
class, meaning that no preference is stated among the routes within
that class. However, if c < d for some c and d in C, then a prefer-
ence exists between routes in Rc and Rd: if r is in Rc and s is in
Rd, then r is stated to be less preferred than s. Although this model
is very general, we expect that typical use would not involve very
many classes, and that the mapping from routes to classes would
match contemporary BGP usage. One consequence is that the rep-
resentation of a promise can be expected to be compact.

We include the null route ⊥ among R(A, p), and so it is also
represented somewhere in the promise, perhaps but not necessarily
in a class of its own. Because ⊥ is always available, for a route
to be ranked worse than ⊥ means that the route should never be
propagated by A. This capability allows the handling of promises
about routes that should not be exported.

Promises to different neighbors. An AS may make different
promises to different neighbors, each consistent with what it is ac-
tually doing. For example, suppose that the AS prefers customer
routes over peer routes, and in addition prefers one customer over
all others. The favored customer could be told that its routes will
get the highest preference; other customers might only be told that
customer routes are better than peer routes. Both promises can be
kept at the same time, although one is more specific than the other.

Promise privacy. Not all neighbors need have access to the full
definition of the promise. This is useful for cases where it is im-
portant to conceal which promises have been made, on the grounds
of policy privacy, A producer of routes will only need to know the
definitions of classes into which their routes might fall. It does not
need to know the partial ordering of those classes, or the definitions
of other classes. Therefore, the most they can tell is that the promise
makes some preference distinction about the known classes. Fur-
ther obfuscation is possible by splitting classes into mutually in-
different subclasses, to hide the true basis on which decisions are
being made.

3.2 Examples
Next, we present a few examples of AS promises based on cur-
rent interdomain routing practices. Our examples involve neither
many route classes nor complex rules about how routes are as-
signed to their classes. However, all of the examples represent be-
havior that neighbors would expect to rely on, but where the AS
involved might do something different. Figure 2 summarizes some
supporting evidence that policies and promises of this kind are cur-
rently being used in practice, based on documentation provided by
AS networks themselves. Note that this does not cover every pos-
sible use of communities (for example, to control prepending or
blackholing). We briefly describe some example promises, ordered
by how frequently they appear in [29]:

Set local preference: Many ASes offer neighboring networks a
choice of community values to adjust the local preference of their

385

Method ASes
Set local preference 57
Selective export by neighbor group 48
Selective export by specific AS 45
Information about route origin 45

Figure 2: Summary of BGP community actions supported by
88 autonomous systems [29].

routes. Of the ASes from Figure 2, 64% (57 ASes) supported this
option by setting their local preferences, with a mode of three tiers
and a maximum of twelve.

Selective export: Communities may be used to exclude cer-
tain routes from being given to specific neighbors or categories of
neighbor [5]. In our model, this can be accomplished by placing the
exportable routes in a separate, preferred class to the other routes.
If the semantics are that these excluded routes should never be ex-
ported (as opposed to merely being de-preferenced) then the null
route should be placed, in a class of its own, between the two main
classes. In verifying this promise, the original sender of a route can
confirm that it was indeed not exported, and the ultimate recipient
can be sure that none of the routes that it was entitled to see were
falsely excluded. As shown in Figure 2, selective export is popular;
it may be based on naming the specific ASes to be excluded (51%),
or may deal with them in groups, such as ‘peers in Poland’ or ‘all
transit providers’ (54%).

Partial customer or transit relationship: A dual version of
the above policy has the recipient of the routes, rather than the
sender, asking for a particular export policy. In this ‘partial cus-
tomer’ model, certain neighbors are only interested in a subset of
the routing table; for example, they might want to receive only
routes to destinations in Japan [33]. Correct implementation of
these requirements is critical for enabling ASes to balance traffic
across a diverse collection of peers [6]. The use of exported com-
munities for geographic information [5] is additional evidence that
connected networks are interested in making decisions on a geo-
graphic basis. As shown in Figure 2, such opportunities were pro-
vided by 51% (45) of the ASes.

Prefer customer: Following the Gao-Rexford guideline [9], and
in accordance with commonly-declared AS practice, a network could
promise that all customer routes would be preferred over all non-
customer routes. This would yield just two indifference classes. An
AS could also differentiate between peer and provider routes, the
latter being least preferred of all, for three classes in total.

Path length: For any of these schemes, an AS might additionally
want to make a promise about preferring shorter AS-level paths. In
this case, each original class would be split: what was the ‘peer
route’ class now becomes ‘peer routes of length 2’, ‘peer routes of
length 3’, and so on, up to some small maximum. Note that mak-
ing a promise about path length requires more complete disclosure
of the true local preference values being used. In the ‘favored cus-
tomer’ scenario, a longer route through that customer will be pre-
ferred over a shorter route through a different customer: if the AS
has previously promised to deliver the shortest customer route re-
gardless of that customer’s identity, then this is a violation of the
promise.

4 The VPref algorithm
Next, we introduce the VPref algorithm for collaborative verifica-
tion of promises, and we sketch our proof of correctness. The basic
algorithm works for routes to a single prefix at a single time point;
in Section 5, we show how to extend VPref to multiple prefixes and
handle route announcements and withdrawals.

C1

P1

r2=P2 X
Elector E

C2

P2

P3

r2 P2 X

P3

Consumers ProducersElector

Figure 3: Simplified system model.

4.1 System model and definitions
In the following, we focus on the routing decision of a specific
AS, which we will call the elector E (Figure 3). The elector is
connected to several upstream ASesPi, called producers, as well as
to several downstream ASes Ci, called consumers. (These terms,
unlike ‘provider’ or ‘customer’, are not intended to suggest any
particular business relationship among the ASes, but only indicate
the flow of routing data.) As in BGP, each producer Pi advertises
to the elector a single route ri, which can be the null route ⊥. The
elector then picks a single route e, which must either be ⊥ or one
of the advertised routes ri. Finally, the elector advertises to each
consumer Cj a route cj , which must be either cj = e or cj = ⊥.
Note that this model can represent import filtering (the elector is
free to choose ⊥ instead of an advertised route) as well as export
filtering (the elector can offer⊥ to certain consumers instead of e).

As discussed in Section 3.1, we assume that the set of possible
routes is divided into k indifference classes R1, . . . , Rk, which are
known to all ASes. We further assume that the elector has made a
promise to each consumer Cj , which we model as a partial order
≤j over the classesR1, . . . , Rk. We say that the elector has broken
his promise to a consumer Cj iff one of the inputs ri is in a class
Ri that is strictly more preferred than the class R of cj (that is,
R <j Ri): so the elector had a route available that was ‘better’
than the one he exported to Cj . If the elector has not broken any
promise, we say that the elector is correct.

4.2 Assumptions
We make the following seven assumptions:

1. Each AS has access to the same collision-resistant crypto-
graphic hash function H;

2. Each AS i has a private key, written σi, and a public key,
written πi;

3. No AS can invert the hash function H or forge a digital sig-
nature of a correct AS;

4. Signed messages contain timestamps and logical counters to
prevent replay attacks;

5. The topology and the public keys are known to all ASes;

6. Each Ci has some representation of the promise ≤i that is
signed by E; and

7. Correct ASes can eventually communicate with each other.

The first four assumptions can be satisfied, e.g., by using SHA-512
as the hash function and RSA as the signature scheme, and by ap-
plying standard security practices. The fifth assumption seems ac-
ceptable because the AS-level topology of the Internet can already
be inferred [4]; for key distribution, the deployment of RPKI [15]
would certainly suffice. The sixth assumption could be satisfied by
exchanging a representation of ≤i out of band, for example as part
of a peering agreement. The seventh assumption simply states that
link failures and other disruptions are eventually repaired.

386

4.3 Intuition
Intuitively, VPref works by breaking the complex property that is
to be verified into a number of simpler lemmata, such that 1) each
lemma can be verified by some network, using information it al-
ready knows, and 2) in combination, the lemmata imply the origi-
nal property. This is combined with a commitment mechanism to
ensure that all lemmata are verified using the same state. Finally,
we add cryptographic signatures to enable networks to prove viola-
tions to each other, or to a third party.

VPref has one lemma for each indifference class, which says that
the elector has at least one route from that class or a more preferred
route. When a producer gives the elector a route from some class
Ri, it can ask the elector to prove that the corresponding lemma
holds for its routing state, but the producer learns nothing from
such a proof because it already follows from its own input. When
a consumer receives a route from class Ri, it can ask for a proof
that the lemmata for all more preferred classes do not hold; again,
such a proof reveals no additional information because the elector
is supposed to output a route from the most preferred class.

4.4 Commitment phase
VPref proceeds in two rounds, a mandatory commitment phase and
an optional verification phase. The commitment phase involves the
following six steps:

1. Each producer Pi picks his route ri, signs it with his key σPi ,
and then sends σPi(ri) to the elector.

2. The elector responds to each producer with an acknowledg-
ment σE(σPi(ri)).

3. The elector chooses e to be either ⊥ or some ri. It also
chooses k input bits b1, . . . , bk, one for each Rj , and sets
bj = 1 if either ri ∈ Rj for some i (i.e., at least one input
is from class Rj) or Rj ≤i e for some i (i.e., Rj is worse
than e according to at least one promise). Otherwise it sets
bj = 0.

4. The elector chooses k random bitstrings x1, . . . , xk and com-
putes h := H(H(b1||x1) || . . . ||H(bk||xk)).

5. The elector sends a commitment σE(h) to each producer and
each consumer.

6. To each consumer Cj , the elector sends either

• σE(Cj ,⊥), if cj = ⊥, or

• σE(Cj , σPi(ri), σE(ri)), if cj = ri.

If an expected message is not received or the message is not prop-
erly signed, the corresponding AS raises an alarm. If no alarm is
raised at the end of the protocol, each producer holds a signed proof
that the elector has acknowledged his input, each consumer holds a
route announced by the elector, and each producer and elector holds
an (opaque) commitment σE(h) to the elector’s bits. The acknowl-
edgments and commitments are needed for the optional verification
phase.

4.5 Verification phase
Any producer or consumer may trigger a verification of the elec-
tor’s choice by broadcasting a VERIFY(σE(h)) message to the other
producers and consumers. Upon receiving this message, each AS
compares σE(h) to the commitment it has received from the elector
earlier. If an AS has received a different commitment σE(h

′), the
elector has clearly misbehaved, and the AS broadcasts a INVALID-
COMMIT(σE(h), σE(h

′)) message as proof of the elector’s misbe-
havior. Otherwise the ASes are satisfied that they all have received
the same commitment.

Next, each producer or consumer forwards the VERIFY message
to the elector, which responds with a number of signed bit proofs.
A bit proof for the ith bit consists of bi, xi, and, for all j 6= i,
H(bj ||xj). The recipient of such a proof can (by recomputing h)
verify that the ith bit really did have the value bi when the commit-
ment was produced. Specifically,

• A consumer Cj that was offered a route cj earlier will now
receive a bit proof for any bx such that cj ≤j Rx and cj /∈
Rx (i.e., the indifference class Rx is preferred over the class
containing cj);

• A producer Pj that sent a route rj 6= ⊥ earlier will now
receive a bit proof for bx such that rj ∈ Rx;

• A producer Pj that sent the empty route ⊥ earlier will not
receive any bit proofs.

When a producer Pi previously provided an input ri from indiffer-
ence class Rx but does not receive a valid bit proof for bx = 1,
it broadcasts a PROOFCHALLENGE message to the other ASes that
contains the acknowledgment σE(σPi(ri)) and, if it exists, the in-
valid bit proof it received from the elector. The other ASes can
then use the signed acknowledgment from the PROOFCHALLENGE
message to challenge the elector to produce a valid bit proof for
bx = 1. A correct elector would always be able to answer such a
challenge for any acknowledgment it has signed, so, if the elector
refuses, it effectively admits its own guilt.

Finally, each consumer Cj checks whether it has (a) received all
the bit proofs it is due, and whether (b) all the bits are being proven
to be 0. If a proof is missing or the bit is being proven to be 1,
Cj broadcasts a PROOFCHALLENGE message that contains (i) the
message it previously received from the elector in step six, (ii) a
signed representation of ≤j , and (iii) any bit proofs received from
the elector. Again, any other AS can use this message to challenge
the elector to produce the corresponding proofs. Note that a signed
representation of ≤j must exist (Assumption 6) and is included so
that the other ASes know which bit proofs to request.

4.6 Correctness
Next, we briefly sketch our proofs that VPref satisfies all the goals
we described in Section 2.3. The full proofs are available in [43].

THEOREM 1. Verifiability: If (1) an AS is faulty during the com-
mitment phase or breaks a promise, (2) both phases of the protocol
are executed, and (3) all the neighbors of the faulty AS are correct,
then at least one correct neighbor will detect the fault.
Proof sketch: The proof is a case distinction that identifies, for
each possible misbehavior, the step in VPref that detects it.

A producer is faulty if it provides an invalid signature in its route
announcement; such behavior is trivially detected. A correct con-
sumer does not send any messages during the commitment phase,
and hence any message received from a consumer immediately re-
veals that it is faulty. The elector must send identical commitments
to all correct ASes, or else an AS will discover the discrepancy
when a VERIFY message is received.

The elector breaks a promise to Cj if there is a route rq from
producer Pi such that cj ≤j rq (where cj is the elector’s choice
of route) and cj and rq are in different indifference classes. This
case is always detected by a producer or consumer: if Rq is the
indifference class that contains rq , then either bq = 0 (in which
case Pi discovers that the elector is faulty) or bq = 1 (in which
case Cj discovers that the elector broke a promise). This follows
from the collision-resistant property of the hash function; i.e., the
elector is unable to provide a valid bit proof that inverts any bit used
to compute in its previously sent commitment. 2

387

THEOREM 2. Evidence: If a correct AS X detects that another
AS Y was faulty during the commitment phase, then either (1) Y
did not send an expected message or did not properly sign a mes-
sage with its key σY in which case X raises alarm, or (2) X can
convince any correct AS that Y is faulty.

Proof sketch: The proof is a case distinction that lists the possible
faults that may be detected in AS Y , and shows that the AS that
detects the fault can convince another correct AS that Y is faulty.

Evidence against producers and consumers consist of malformed
messages that are signed. These messages serve as proof of misbe-
haviors (PoMs) against the sender; i.e., they can convince any cor-
rect AS that the sender is faulty. A correct AS that detects a faulty
elector who sends inconsistent commitments can construct a PoM
by transmitting an INVALIDCOMMIT message.

A correct producer that detects an invalid commitment (i.e., that
bz = 0 whereRz contains its advertised route) can cause other cor-
rect ASes to also detect the fault by broadcasting a
PROOFCHALLENGE message that contains the elector’s signed ac-
knowledgment of the omitted route. Similarly, a correct consumer
Cj that detects a broken promise can cause other correct ASes to
also detect the violation by sending a PROOFCHALLENGE message
that contains the elector’s choice from step six along with the en-
coding of ≤j . In either case, the elector cannot offer a valid bit
proof, indicating to the correct AS that it is faulty. 2

THEOREM 3. Accuracy: If an AS X is correct during the com-
mitment phase, then no correct AS will detect a fault in X , and no
valid evidence can exist against X .

Proof sketch: The proof is a case distinction of all possible de-
tectable faults and evidence, showing in each case that the fault
cannot be detected, and the evidence cannot exist, if X is correct.

A correct AS detects faults (resp. collects evidence) against X if
X sends an invalid (resp. and properly signed) message. However,
sinceX is correct, it will send only valid and signed messages. Ad-
ditionally, a correct AS detects faults against an elector if the elector
does not send proper acknowledgments, commitments, or routing
choices, or does not provide a valid bit proof. However, a correct
elector will always properly acknowledge messages and send a sin-
gle well-formed commitment to all ASes. From the definition of
the protocol, a correct elector maintains sufficient information to
construct a bit proof, and therefore can always provide valid bit
proofs. Finally, an AS cannot have valid evidence against a correct
elector because the elector will not send inconsistent commitments
(hence no valid INVALIDCOMMIT messages can exist) or be unable
to provide a valid bit proof (hence no PROOFCHALLENGE message
will uncover faulty behavior). 2

THEOREM 4. Privacy: If all ASes are correct, then no AS can
learn anything from running VPref that it could not already have
learned from running BGP.

Proof sketch: When a consumer receives cj , it cannot use the in-
formation revealed in VPref to tell whether E had any other routes
at all. Therefore, it cannot deduce unrevealed preferences of E,
since it cannot tell whether E even had a choice to make. A pro-
ducer P can only tell that its route was received: since this happens
even when E has a trivial policy to discard every route, P can-
not deduce anything about E’s policy or state. Finally, E does not
receive any data from VPref that it does not already know. 2

THEOREM 5. Inconsistent promises: If an elector makes incon-
sistent promises, i.e., there exist indifference classesRi andRj and
consumers Ca and Cb such that Ri ≤a Rj and Rj ≤b Ri, then
there exists a set of inputs such that the elector either must choose
e = ⊥ or break at least one promise.

Proof sketch: The proof considers inputs ri, rj that are respec-
tively in classesRi andRj . The elector must choose e ∈ {⊥, ri, rj}.
If e = ⊥, the theorem trivially holds. If e = ri, then the elector
breaks its promise to Ca. Otherwise, if e = rj , then the elector
breaks its promise to Cb. 2

In an extended technical report [43], we prove minor variations
of the above theorems for cases in which faulty parties collude
(i.e., coordinate their efforts). Briefly, if the elector colludes with
some of the producers, detection is only guaranteed for violations
that would exist for any combination of inputs from the colluding
producers—if there is any combination that would make the elec-
tor’s output conform to the promise, the elector can simply ask his
confederates to pretend that this is what they provided. The proofs
for the evidence and accuracy theorems remain unchanged.

Our privacy result says that VPref participants learn nothing that
they could not have learned from BGP, so long as the elector’s
promise is not broken, i.e., the algorithm does not provide them
with new information. This holds even if the participants share
data: they cannot share any more than they have already obtained
from BGP. Colluding parties could manipulate route advertisements
in an attempt to discover the elector’s hidden preferences, but they
do not need VPref to help them.

5 Multi-prefix VPref
The basic VPref algorithm has two important limitations: it only
considers routes to a single prefix, and it only works in a static set-
ting. In this section, we extend VPref to support multiple prefixes
as well as route announcements and withdrawals at runtime.

5.1 Additional challenges
Adding support for routing changes and multiple prefixes results
in two additional challenges that are both related to confidentiality.
One way to handle multiple prefixes would be to run a separate in-
stance of VPref for each prefix the elector can reach. However, this
would leak some information: If an AS A is invited by its neigh-
bor B to participate in a VPref instance for some prefix p, A can
conclude that B has a route to p, even if B never exports such a
route to A via BGP. An alternative would be to always run a VPref
instance for every possible prefix, regardless of whetherB ever had
a corresponding route, but this would be very expensive: there are
233 − 1 possible prefixes in IPv4! Thus, our first additional chal-
lenge is to run multiple parallel VPref instances efficiently, without
leaking information. To this end, we introduce a special data struc-
ture called a modified ternary tree (MTT) that is based on a ternary
Merkle hash tree (Section 5.2).

Another challenge results from the need to handle route announce-
ments and withdrawals. To guarantee detection of all faults, we
must re-verify the elector’s routing decision whenever the underly-
ing set of routes changes. However, if the elector simply re-runs
VPref whenever a route is announced or withdrawn, it again leaks
information: If a neighbor observes an execution of VPref, it can
conclude that the elector has received an update from some pro-
ducer, even if the elector has not changed the route it exports via
BGP to that particular neighbor. In SPIDeR, we avoid this problem
by running VPref periodically at short, fixed intervals (Section 5.3).
This means that we cannot reliably detect violations whose dura-
tion is less than one interval, but in return, the fact that VPref runs
at some particular time does not leak any information about the
underlying routes.

5.2 The modified ternary tree
We now describe the modified ternary tree (MTT), which SPIDeR
uses for efficient commitments. An MTT is a tree with four types

388

0 1 E

0 1 E 0 1 E1

0 1 E

1

0 1 E

Prefix node
0 1 E

160.0.0.0/3

Prefix node
Inner node
Dummy node
Bit node

Figure 4: MTT with three prefixes: 0/2, 160/3, and 128/1.

of nodes: inner nodes, prefix nodes, bit nodes, and dummy nodes.
Each inner node has three children, and we will imagine the edges
leading to these children as being labeled 0, 1, and E (for ‘end of
prefix’). The children at the end of the edges labeled 0 or 1 can
be inner nodes, prefix nodes, or dummy nodes; the child at the end
of the edge labeled E can be a prefix node or a dummy node. Each
prefix node has at least one bit node as its child (but can have more).
Bit nodes and dummy nodes do not have any children of their own.

Given an MTT, we can map each prefix node to a specific IP
prefix simply by concatenating the bits on the path from the root
to the node (but omitting the E label). Figure 4 shows an example
MTT in which the highlighted node would be mapped to the prefix
160.0.0.0/3 (101 in base 2). A full MTT of depth 32 (without
dummy nodes) would contain 233 − 1 prefix nodes, one for each
possible IPv4 prefix, but, as we will show in Section 7.3, MTTs
for realistic routing tables are much smaller. Also, for any set P
of prefixes and any function ε that maps each prefix to a set of
indifference classes, there is a unique minimal MTT M(P, ε) that
contains (a) a prefix node π(p) for each prefix p ∈ P , and (b) for
each element of ε(p), a bit node that is a child of π(p).

The MTT can be used to efficiently run multiple instances of
VPref in parallel. Recall that VPref requires two key primitives:
1) a commitment to a set of input bits for each prefix, and 2) a
bit proof to show that a specific input bit had a certain value. If
an elector has routes to a set of prefixes P , it can use M(P, ε)
to maintain the corresponding input bits (in the bit nodes below
π(p)). It can then produce a single commitment for all the bits,
and it can construct a bit proof for each input bit without revealing
the presence or absence of any particular prefix in P . Next, we
describe these primitives in more detail.

5.3 Commitments and bit proofs with MTTs
To produce a commitment to a given MTT M(P, ε), the elector
essentially uses the MTT as a Merkle Hash tree [22]. First, it as-
signs a label to each leaf node: each dummy node is labeled with
a random bitstring, and each bit node is labeled with H(bi ||xi),
where bi is the value of the bit and xi is a random bitstring. (All
random bitstrings must be the same length as a hash value). Then it
recursively labels each interior node with the hash H(l1 || . . . || lk)
of the labels li of its children. Finally, the commitment is σE(h),
where h is the label of the root node.

A bit proof for a bit bi then consists of a) the values of bi and xi,
as well as b) the labels of all direct children of each node on the path
from bi’s bit node and the root. As with basic VPref, the recipient
of such a proof can verify it by recomputing h from the values
in the proof. Crucially, the recipient cannot distinguish between
hash values and random bitstrings, and thus has no way of knowing
whether a given value in the proof is the label of an inner node or a

dummy node. Therefore, a bit proof does not leak any information
about the presence or absence of any prefixes in the MTT, other
than the specific prefix to which the bit belongs.

An important detail is that the random bitstrings must be re-
placed for each new commitment. If the bitstrings were reused,
neighbors could compare the labels of subtrees (which they can ex-
tract from the bit proofs) in consecutive commitments. If a subtree
had the same label in two MTTs, this would mean that all the bits in
that subtree were almost certainly identical in both commitments,
i.e., all of the corresponding routes would have remained the same.

6 Application to BGP
The approach we have described so far is generic and could be
applied to different routing protocols. Next, we present SPIDeR, a
system that applies our approach to one specific protocol: BGP.

6.1 System overview
SPIDeR is designed as a companion protocol to BGP and could
run alongside existing BGP equipment. It consists of three compo-
nents: a recorder, a proof generator, and a checker. The recorder
implements the commitment part of VPref: it opens BGP connec-
tions to the border routers in its local AS, mirrors their routing state,
and then announces the same routes to the recorders in adjacent
ASes, but with the appropriate signatures and acknowledgments
added. The recorder also maintains a record of all recent messages
it has sent or received, and it periodically computes a commitment,
which it distributes to recorders in neighboring ASes.

The two other components implement the verification part of
VPref. When a verification is triggered for some AS, the proof
generator in that AS reconstructs the corresponding MTT from the
recorded message trace and then generates a set of bit proofs, which
can be distributed to the neighboring ASes. There, they are verified
by the checker. If verification fails, the checker in the detecting AS
produces evidence that can be distributed to other neighbors, which
can validate the evidence with their own checker.

The recorder, proof generator, and checker implement all the
SPIDeR-specific functionality, and they need not be run on the
routers—they could run on a separate workstation in each AS. The
only change that needs to be made to existing routers is a new pair
of iBGP/eBGP sessions to the recorder.

6.2 Signatures and acknowledgments
When verification is triggered for a past commitment at time T ,
the proof generator needs to reconstruct its AS’s precise routing
state at time T ; moreover, if some faulty AS reconstructs its state
incorrectly, the other ASes need to be able to prove that they (or the
faulty AS) were in fact im- or exporting a particular route at time T .
For this purpose, the recorders timestamp, sign, and acknowledge
each BGP UPDATE, and they keep a record of past updates and
acknowledgments they have sent or received.

Specifically, a route announcement sent from an elector E to a
consumer C has the form m := σE(ANNOUNCE, t, C, p, σP (r

′),
σE(r)), where t is a timestamp, C is the AS number of the recipi-
ent, p is the prefix, r′ the underlying route thatE itself has imported
(if any), and r is the route itself, including all the attributes that are
currently in a BGP UPDATE (AS_PATH, communities, etc.). σP de-
notes a signature by the producer who has exported the underlying
route r′ to E, and σE denotes a signature by E. Note that t serves
as a nonce, and that both inner signatures are necessary: σP proves
to C that the route actually exists (and was not fabricated by E);
σE is necessary so that C can use it as the fifth element when it
propagates the route further to its own consumers. A withdrawal
has the form σE(WITHDRAW, t, C, p).

389

When a recorder receives a messagem that contains an announce-
ment or a withdrawal, it checks whether m’s timestamp is reason-
ably close to its own clock (within, say, a few seconds); if so, it
returns a message σr(ACK, t, C,H(m)), where H(m) is the hash
of message m. If a router fails to acknowledge m after some time
Tmax, even after several retransmissions, the sender raises an alarm,
which must be handled outside of the system, e.g., by calling the
faulty router’s system administrator on the phone. The same pro-
cess is used when a recorder detects that the signed messages it is
receiving from some neighbor’s recorder contain different routes
than the BGP messages the local routers are receiving via BGP
from that neighbor. Thus, when there have been no recent alarms,
each non-faulty router must have a valid ACK for any message it
has sent more than Tmax ago. To limit the number of signatures
that are required during message bursts, routers can sign messages
in batches, e.g., using a variant of Nagle’s algorithm [26].

6.3 Evidence
Recall from Section 4.5 that there are two situations in which an
AS must provide something about the elector’s past routing state
during verification:

• if a producer did not receive a bit proof for a route r it was
exporting to the elector, it must prove that the elector had
acknowledged r (evidence of import); and

• if a consumer did not receive bit proofs for a route r it had
received from the elector, it must prove that the elector had
exported r to it (evidence of export).

With periodic commitments, the situation is more complicated than
in Section 4.5: announcements and acknowledgments are no longer
sufficient proof because they can be withdrawn at a later time.
Therefore, we adopt an iterative approach: announcements and
acknowledgments are considered initial evidence but can be dis-
proven by other evidence, such as a WITHDRAW message with a
higher timestamp. Since clocks are only loosely synchronized, we
always use the timestamp of the elector that is being verified, i.e.,
outgoing announcements and withdrawals are considered effective
when they are sent, and incoming ones are effective when they are
acknowledged. (A malicious elector cannot change its timestamps
by re-signing messages because it cannot forge matching ACKs
from other ASes, and because signing multiple ACKs for the same
message would constitute a proof of misbehavior.)

Evidence of import: If Alice wants to prove that she was ex-
porting a route r to Bob at time t, Alice presents her ANNOUNCE
for r, timestamped t′ < t, and the matching ACK from Bob. If
Alice has made a mistake and is presenting an announcement she
has withdrawn again before t, Bob can refute her evidence by pre-
senting Alice’s WITHDRAW for r with a timestamp t′′ such that
t′ < t′′ < t.

Evidence of export: If Alice wants to prove that Bob was ex-
porting a route r to her at time t, she presents Bob’s ANNOUNCE
for r, timestamped t′ < t. If Alice has made a mistake and Bob
has withdrawn r at some time t′′ < t, Bob can refute her evidence
by presenting his own WITHDRAW for r, timestamped t′ < t′′ < t,
with Alice’s matching ACK.

6.4 Handling loose synchronization
In an ideal world, an AS would update its routing decisions in-
stantly whenever it receives an announcement or a withdrawal. In
practice, it can take some time for changes to take effect, e.g., due
to propagation delays or due to BGP features such as MRAI or
route flap damping [38]. If a commitment is requested shortly af-
ter an incoming message, some of the outgoing routes may not yet

be consistent, and this could appear to neighbors as if the AS had
broken a promise.

To avoid this problem, we allow electors, for the purposes of a
commitment at time T , to choose their inputs from a time window
[T − δ, T]. For instance, suppose Alice had received route r1 from
Bob at time t1, but r1 had been withdrawn at time t2 and then
replaced with r2 at time t3 (T − δ < t1 < t2 < t3 < T), then
Alice would be free to choose whether she wants her input from
Bob to be r1, ⊥, or r2. Alice informs Bob of her choice during
verification, so that Bob can know how to check the corresponding
bit proofs. Alice may choose different times for different neighbors
and different prefixes, as long as they all fall into [T − δ, T].

Electors could use this freedom to hide promise breaches shorter
than δ, as long as some combination of inputs from [T−δ, T] would
have satisfied the promise. However, this seems acceptable because
it is restricted to periods of instability: when the routes for a given
prefix are stable, the elector has no freedom at all!

If the elector is correct, a satisfactory combination of inputs must
exist, as long as all delays are shorter than δ. This is because any
output must be the result of the BGP decision process, and all in-
puts to the process must have been valid at some point within the
last δ seconds. To find such a combination during verification, the
proof generator can simply choose the actual output and, for each
other producer, the first input from [T − δ, T] that would not have
been preferred over the actual output. Such an input must exist
because otherwise that producer would have offered the elector a
better route during the entire time window, so the elector’s output
could not be correct.

6.5 Logging, checkpointing, and replay
The recorder maintains a log of all announcements, withdrawals,
and acknowledgments that its AS has sent or received. This log is
used to produce evidence in case a verification is triggered. To pre-
vent the log from growing without bounds, verification is limited to
commitments that are at mostR days old; thus, ASes can safely dis-
card log entries older than R days, since they are no longer needed
for verification. We refer to R as the retention time, and we expect
R = 365 to be a typical value.

SPIDeR also uses the log to save space for MTTs. Recall from
Section 4.5 that electors must provide bit proofs on demand, which
requires access to any MTT within the retention time. However, the
MTTs are generated from the AS’s routing tables at commitment
time, and the log contains all the information needed to reconstruct
the MTT. This can be done as follows: the recorder maintains a full
checkpoint of its routing state at the beginning of the log, and op-
tionally some additional checkpoints at various commitment times.
Then, when verification is triggered for a commitment at some time
t, the proof generator loads the most recent checkpoint prior to t,
and replays all messages with timestamps up to t. This reproduces
the same routing state that was used to create the MTT originally.
Thus, the recorder can discard the MTTs after each commitment,
and the proof generator can reconstruct them on demand.

However, the MTT contains not only the routing state, but also
some random bitstrings. In principle, the recorder could store these
bitstrings explicitly, but there is an easier way: it can generate the
bitstrings using a cryptographically secure pseudo-random number
generator (CSPRNG) with a secret seed. The proof generator can
thus later reconstruct the bitstrings from the stored seed. As long as
a new seed is chosen truly at random for each commitment, other
ASes (who do not have knowledge of the seed) cannot predict the
generated bitstrings or distinguish them from hash values, which is
sufficient to maintain privacy.

390

6.6 Verification of withdrawals
Similar to S-BGP [17], SPIDeR uses signed route announcements
to enable the consumers to verify that a received route actually ex-
ists in the underlying topology. However, as in S-BGP, the con-
sumer cannot easily verify whether the route continues to be valid
once it is announced. If the route is withdrawn by the producer
and the elector fails to propagate the withdrawal to the consumer,
the consumer has no way to detect this. Therefore, SPIDeR al-
lows ASes to trigger an extended verification for a given commit-
ment, which works exactly like a normal verification, except that
the AS must also re-announce all routes it had announced origi-
nally, with timestamps equal to the commitment time. To prevent
the re-announcements from being used in place of the original an-
nouncements, they contain a special RE-ANNOUNCE message type.

Since the elector cannot sign messages on behalf of the produc-
ers, the producers must send a set of RE-ANNOUNCE messages to
the elector when extended verification is triggered, one for each
route they were exporting at the time of the original commitment.
(If a producer fails to provide an acceptable RE-ANNOUNCE mes-
sage, the elector can use evidence of import to demonstrate that
the producer is misbehaving.) The elector then selects the RE-AN-
NOUNCEs that correspond to the routes it had originally chosen,
and distributes those to any consumers that had originally received
the routes. Note that the elector cannot avoid asking for all mes-
sages, even though it must discard most of them; if it asked only
for RE-ANNOUNCEs that corresponded to chosen routes, it would
reveal to the producers which routes had been chosen, which would
compromise privacy.

6.7 Incremental deployment
SPIDeR is a local protocol: all interactions occur between the AS
that is being verified and its direct neighbors. Thus, SPIDeR does
not need global adoption, or a global PKI, to be effective—it merely
requires some local collaboration between ISPs, similar to what is
done for route debugging today. Moreover, SPIDeR’s guarantees
strengthen gradually with the size of the deployment: if only a sub-
set of the neighbors of an AS deploy SPIDeR, they can still detect
and prove violations of promises that involve inputs and outputs
from that subset. Thus, an initial deployment could be as small as
three adjacent ASes: one AS that has made some of the promises
from Section 3.2, and two customers or peers of that AS who would
like to verify that the promises are being kept. Once such ‘islands’
of deployment exist, they enable the ASes on their perimeter to
easily offer verification to their own neighbors, so the ‘islands’ can
grow incrementally.

7 Evaluation
Next, we report results from an experimental evaluation of SPI-
DeR. Our goal is to answer two high-level questions: 1) is SPIDeR
practical?, and 2) how expensive is SPIDeR?

To provide a baseline for comparisons, we aligned our experi-
ments with those from the NetReview paper [14]. NetReview is
a good baseline for SPIDeR because it can also verify promises
about interdomain routing policies, and can also be deployed as a
companion protocol to BGP. However, NetReview requires ASes to
disclose a lot of sensitive information, whereas SPIDeR is designed
to provide strong privacy guarantees.

7.1 Prototype implementation
For our experiments, we built a proof-of-concept implementation
of SPIDeR, including a recorder, a proof generator, and a checker.
For the recorder, we reused some code from NetReview [14], specif-
ically the component for mirroring BGP routing state from existing

1 Internet AS 1

Ti
er

AS 2 AS 3

Ti
er
 2

AS 4 AS 5 AS 6
Backup

St
ub

s

AS 7 AS 8 AS 9 AS 10

C t id li k P li k R tCustomer‐provider link Peer link Router

Figure 5: AS topology for our experiments (from [14]). A
RouteViews trace is injected at AS 2.

routers and the component for maintaining a tamper-evident mes-
sage log with signatures and acknowledgments (but not the code
for auditing, which is different in SPIDeR). We added code for
the MTT and for generating commitments; the proof generator and
checker are written from scratch. Overall, we added or changed
8,012 lines of C++ code.

We chose RSA-1024 signatures and the SHA-512 hash function,
but we use only the first 20 bytes of each digest to save space. The
CSPRNG is implemented by encrypting sequences of zeroes with
RC4, discarding the first 3,072 bytes to mitigate known weaknesses
in RC4. Our recorder implementation uses separate threads for han-
dling messages and for generating commitments; this prevents the
message handler from blocking while MTTs are being labeled. The
number c of commitment threads can be varied to take advantage
of multiple cores; when c > 1, we break the MTT into subtrees
that are each labeled completely by one of the threads.

7.2 Methodology and experimental setup
Our goal was to estimate the cost a typical Internet AS would incur
by running SPIDeR. Since it was not feasible to replicate the Inter-
net’s entire AS topology in our lab, we decided to set up a small,
synthetic topology (shown in Figure 5) using 36 Quagga BGP dae-
mons in 10 ASes. However, as in [14], we injected BGP messages
from a RouteViews trace into one of the ASes. Thus, the condi-
tions in our synthetic topology were approximately as if the ASes
had been a part of the global Internet: the routing tables contained
routes to every reachable IP prefix, and the number and the arrival
pattern of the BGP UPDATEs were similar to the conditions at the
RouteViews collection point.

Specifically, we used a 15-minute RouteViews trace that was col-
lected by a Zebra router at Equinix in Ashburn, VA, on January 18,
2012 at 10am. This trace contains 38,696 BGP messages, and the
corresponding RIB snapshot contains 391,028 distinct IP prefixes.
In our experiment, we first populated the routing tables by slowly
announcing the prefixes from the snapshot over a period of 30 min-
utes; then we replayed the 15-minute message trace. We refer to
the first phase as the setup period and to the second phase as the
replay period. Unless otherwise specified, we report data that was
collected during the replay period, and we focus on the AS in the
middle (AS 5).

Each AS was configured with a simple routing policy based on
Gao-Rexford [9], defined 50 indifference classes based on the num-
ber of hops, and promised to choose the shortest route to all prefixes
in the BGP routing table. These simple choices are sufficient for
measuring overhead because the cost depends mostly on the size

391

of the MTT and thus on the number of prefixes and indifference
classes. Recall from Section 3 that only very few ASes support
more than five local-pref classes, and consider that promises could
be made for a specific set of prefixes (“I will give you my short-
est route to Google”); hence, 50 classes and all prefixes are both
conservative choices.

We ran our experiments on a cluster of 11 machines that were
connected by a 1 Gb Ethernet network. Each machine had a 2.4 GHz
Intel X3220 CPU with four cores and 4 GB RAM, and ran Fe-
dora Core 10 (Linux 2.6.27.41). For the BGP daemon, we used
Quagga 0.99.20 with a 100-line patch that enables the daemon to
bind to a specific IP. Commitments were generated every 60 sec-
onds. Unless otherwise specified, we used c = 3 cores for commit-
ments and the fourth core for message handling.

7.3 Microbenchmarks
We first ran a number of microbenchmarks to measure the size of a
typical MTT, and the time needed to generate and verify proofs.

MTT size. The MTT from AS 5’s last commitment in the exper-
iment contains 22,333,767 nodes, including 389,653 prefix nodes,
950,372 inner nodes, 1,511,092 dummy nodes, and 19,482,650 bit
nodes. This is expected because there is one prefix node for each
IP prefix that is reachable at that point in the trace, and each pre-
fix node has 50 bit nodes. In total, these nodes required about
137.5 MB of memory.

Labeling time. With c = 3 cores, computing the label of this
MTT’s root node took 13.4 seconds. This seems unproblematic be-
cause the computation is done by the recorder (and not by a border
router!) and because it is asynchronous, i.e., does not block BGP.
Thus, an AS could use our implementation to make a commitment
every 15 seconds and catch any promise violations that last at least
that long. For comparison, the same computation took 38.8 sec-
onds with only c = 1 core, so the speed-up for c = 3 is 2.9. This is
expected because MTT labeling is highly scalable. Because of this,
shorter intervals could be achieved by adding more cores, or even
additional machines.

Proof generation and proof size. When verification is trig-
gered, the proof generator must reconstruct the MTT at the time
of the commitment and then generate a set of bit proofs for each
neighbor. For AS 5’s last commitment, it took 13.4 s to reconstruct
the MTT and 70.2 s to generate the proofs for the five neighbors.
The average size of a proof was 449 MB. As a rough approxima-
tion, each bit proof with k indifference classes contributes k hashes,
or 20 · k bytes, plus potentially some hashes of dummy nodes.

For comparison, we also generated the proofs for an alternative
promise about just one prefix: “I will give you the shortest route to
Google.” This took only 0.431 s to generate (after MTT reconstruc-
tion), and the corresponding proofs were 2.1 KB for the producers
and 2.1 KB for the consumers. If an AS wants to make promises
about very many prefixes and proof size is a concern, its neighbors
could trigger verification for smaller subtrees, e.g., all prefixes in
32.0.0.0/8.

Proof checking. With c = 1 core, verification of a single proof
takes 27 s on average; we observed times from 8.6 s to 40 s. As a
first step, the checker needs to rebuild the part of the MTT that is
included in the proof and re-label it to verify the commitment; this
step took 26 s on average. Then, the checker must verify that all the
required bits are present and have the appropriate value; this step
accounted for the remaining 1 s.

7.4 Functionality check
Next, we performed a number of sanity checks on our implementa-
tion. First, we ran the experiment to completion and then triggered

verification; as expected, no broken promises were reported. Next,
we re-ran the experiment, injecting different faults into AS 5 that
caused its promise to be violated:

• Overaggressive filter: The AS incorrectly filters out a good
route from an upstream AS.

• Wrongly exporting: A received route is marked as ‘not for
export’ (with a promise where some routes are worse than
the null route) but the AS passes it on.

• Tampered bit proof: The AS attempts to hide a good route
by changing a bit in the bit proof sent to a downstream AS.

After each run, we triggered verification, and in each case the fault
was detected by one of the ASes. In the first run, the upstream AS
raised an alarm because it did not receive a bit proof for the route it
had supplied. In the second run, the downstream AS noticed that it
had a bit proof for the null route, which was better than the route it
had actually received. In the third run, the downstream AS detected
that the proof did not match the hash value from the commitment.
These examples complement the proofs in Section 4.6 to give us
confidence in our implementation.

7.5 Overhead: Computation
The SPIDeR recorder performs two kinds of operations that are
computationally expensive: It signs messages and ACKs, and it
generates and labels a MTT for each commitment. To quantify
this overhead, we used the getrusage system call to measure the
computation time the recorder’s threads spent overall, and we sep-
arately instrumented the code to measure the time spent on gener-
ating and verifying signatures and on labeling MTTs. We excluded
the first and the last minute to avoid startup/shutdown effects.

We found that, during the replay period, the recorder spent
634.5 s of computation time overall. 9.75 s were spent on gen-
erating and verifying 3,913 RSA-1024 signatures; note that this is
lower than the total number of BGP updates in the trace because,
when updates arrive in bursts, the recorder can batch several of
them together and sign the entire batch. Generating 13 MTTs re-
quired 519 s. All other operations, e.g., BGP RIB maintenance, ac-
count for the remaining 105.75 s. Averaged over the entire 13 min-
utes, a single X3220 core would have been about 81.3% utilized.
Since we reuse its messaging code, NetReview would have incurred
exactly the same costs, except for the MTT generation; thus, Ne-
tReview’s CPU utilization would have been about five times lower.

SPIDeR’s computational cost increases with the commitment gen-
eration rate, and with the number of routing updates that need to be
sent (which in turn depends on the number of neighbors), since
there are more messages that need signing. For a small AS with
five neighbors, like AS 5, the SPIDeR recorder could easily be run
on a single commodity workstation. According to CAIDA’s topol-
ogy data [1], 89% of the current Internet ASes have five or fewer
neighbors.

7.6 Overhead: Bandwidth
SPIDeR increases the amount of interdomain routing traffic be-
cause all BGP updates need to be re-announced via SPIDeR with
additional signatures and acknowledgments. To quantify this over-
head, we used tcpdump to capture all BGP packets and all SPI-
DeR packets that were sent from AS 5 during the replay period. We
found that, on average, BGP sent traffic at a rate of 11.8 kbps and
SPIDeR at a rate of 32.6 kbps. The relative increase (176%) may
seem high, but compared to the amount of traffic ASes commonly
handle, 20.8 kbps is not very much—it is about 2% of a single typ-
ical DSL upstream.

392

SPIDeR additionally sends bit proofs to neighboring ASes for
verification; the amount depends on the frequency of verifications
and the number of commitments checked, which in turn depend on
perceived AS needs. Verifying 1% of commitments every minute
would result in about 3.0 Mbps of traffic for AS 5.

7.7 Overhead: Storage
Each SPIDeR recorder requires some local storage for the message
log, the information needed to reconstruct past MTTs, and a num-
ber of snapshots of its routing state. To quantify the amount of
storage needed, we examined the storage of AS 5’s recorder after
the replay period. We excluded information that was stored during
the setup period.

The log contained 2.95 MB of message data, excluding snap-
shots; a substantial fraction (24.4%) consisted of cryptographic
signatures. Thus, it grew at an average rate of about 232.3 kB
per minute. Complete snapshots of the routing state were about
94.1 MB. All of this information would be stored by NetReview as
well. The only addition in SPIDeR is the MTT-related data, which
was comparatively small: each commitment added only 32 bytes to
the log. This is because the MTT can be regenerated from the mes-
sage trace; only the CSPRNG’s seed needs to be stored explicitly.

Based on these results, we estimate that an AS could keep a
year’s worth of logs, including one snapshot per day, in 145.7 GB
of storage. This data would easily fit onto a commodity hard drive.

8 Discussion
AS atomicity. In our presentation of SPIDeR we have assumed
that an elector has uniform policy towards its consumer, for a given
prefix. In reality, policy (and therefore promises) may have geo-
graphic differences, and the sets of routes visible at each border
router may legitimately vary: ASes are not atomic [24, 33]. Our
system, operating at the AS level, treats such equivocation as evi-
dence of misbehavior. In order to recover the ability to make and
verify such promises, the protocol must be run not only for each
consumer but for each consumer adjacency, so that the promise
made to Alice in Europe can be differentiated from the promise
made to her in Asia. This capability would also be necessary to sup-
port communities relating to specific adjacencies, such as ‘do not
advertise this route at LINX’ [5]. If this were done, then additional
information would be revealed to producers: we have assumed that
the AS-level topology is public knowledge, but now the producers
can find out how many interconnections there are between the elec-
tor and consumer. Adding extra dummy instances would conceal
the true number of connections, at additional cost.

Aggregation. Aggregation of routing announcements is an im-
portant concern for network scalability [35]. Most aggregation is
performed by the network originating the prefixes, and poses no
problem for us. BGP also allows proxy aggregation, where some
other AS can combine routes to adjacent prefixes in some circum-
stances. It would be possible to support proxy aggregation in the
case of identical AS paths, with additional computational cost (but
we do not propose to deal with the rare and deprecated AS_SET
attribute [18]). The MTT could include aggregates as well as ordi-
nary prefixes. For example, if p and q were two aggregatable /24
prefixes, then their immediate parent node in the tree, a /23 prefix,
would contain a subtree for verifying promises about the aggregate.
To achieve privacy, the elector must construct the /23 tree (includ-
ing a 1 bit for the routes in question) and the producer must check
it, whether or not aggregation actually occurred. This is in addition
to the requirement to validate the individual /24 trees. Without this
step, the producer could use the fact that aggregation happened to
deduce that both of its routes had been adopted.

The addition of aggregate prefixes into SPIDeR would greatly
increase the computational overhead, in terms of storage space,
computation time, and volume of traffic. However, since correct
SPIDeR operation requires the producer to reason about the possi-
ble aggregation, the producer would be better off simply doing the
aggregation directly. Ultimately, it should be done by the originator
in all cases, removing the need for the larger MTT.

9 Related Work
BGP security: There has been a great deal of work on BGP route
and origin attestation, aimed at preventing prefix hijacking and re-
lated problems; example protocols include S-BGP [17], SO-BGP
[40] and psBGP [37]. These proposals provide mechanisms for en-
suring that an individual route is genuine, but do not aim to validate
any aspect of the BGP decision process or of AS policy, beyond this
minimum level. The IETF Secure Inter-domain Routing Working
Group is engaged in an attempt to strengthen and standardize such
proposals, including the provision of a Resource Public Key Infras-
tructure [15]. Our own system aims to check a complementary set
of properties about the outcome of routing decisions, and in a local
rather than end-to-end fashion. It could also make use of the RPKI,
and be run alongside one of these other systems.

NetReview [14] does allow routing decisions to be checked, but
it reveals the entire stream of BGP updates an AS has received
from its neighbors, so it is considerably less private than SPIDeR.
An earlier variant of VPref, previously published in [13], provided
similar guarantees but was only able to support two simple oper-
ators, and only in a static setting. This paper substantially gen-
eralizes our earlier work, and it also presents a complete system
design and an evaluation. BorderGuard [7] verifies a different type
of promise, namely whether an ISP is advertising consistent routes
at all peering points it shares with a given neighbor. In contrast to
the promises we consider here, this can be done using information
that is already available to the ISP, so privacy is not an issue.

Verifiable aggregation: In the context of distributed database
queries, verifiable aggregation in the presence of adversaries has
been considered by Garofalakis et al. [10]. Their ‘proof sketches’
idea allows parties to check if the outcome of a query (such as
count, sum, or average) is close to the true value. The technique
combines an authentication manifest—which uses cryptographic
signatures to prevent input values from being forged—with a one-
pass streaming algorithm for approximate aggregation; this is anal-
ogous to our combination of S-BGP and the MTT structure. They
do not consider privacy of the aggregation function, or the idea of
verifying the actual function against a promise.

Collaborative detection: SPIDeR is not the only system in which
nodes work together to detect misbehavior; for instance, in Catch
[20], nodes collaboratively detect free-riders in a mobile ad-hoc
network. However, in Catch, there is no private information to
be protected, whereas SPIDeR performs collaborative verification
with privacy guarantees. Privacy-preserving detection of traffic
anomalies is possible in the P3CA system [25], through a version of
principal component analysis that employs secure multiparty com-
putation. This is a data-plane counterpart to our work.

Zero-knowledge proofs: Following the seminal paper by Gold-
wasser, Micali, and Rackoff [12], a variety of cryptographic tech-
niques have been developed to allow one node, the prover, to con-
vince another node, the verifier, that a certain statement is true,
without revealing any additional information. ZKPs are very gen-
eral but also somewhat expensive; however, specialized but more
efficient variants have been developed, e.g., for straight-line com-
putations [31]. The bit proofs in VPref can be seen as special-
purpose ZKPs, and our tree constructions resemble those used for

393

zero-knowledge sets [23]. VPref’s bit proofs are not as general as
zero-knowledge sets, but they can be constructed efficiently using
only hashing, i.e., without modular exponentiation.

10 Conclusion
This paper has shown that interdomain routing systems do not need
to make a choice between verifiability and privacy: it is possible to
have both. Using our VPref algorithm for collaborative verifica-
tion, networks can verify a number of nontrivial promises about
each others’ BGP routing decisions without revealing anything that
BGP would not already reveal. The results from our evaluation of
SPIDeR show that the costs for the participating networks would
be reasonable. VPref is not BGP-specific and could be applied to
other routing protocols, or perhaps even to private verification tasks
in other domains.

Acknowledgments
We thank our shepherd, Hovav Shacham, and the anonymous re-
viewers for their comments and suggestions. We also thank Jen-
nifer Rexford for helpful comments on earlier drafts of this pa-
per. This work was supported by NSF grants IIS-0812270, CCF-
0820208, CNS-0845552, CNS-1040672, CNS-1054229, and CNS-
1065130, and DARPA contracts N66001-11-C-4020 and FA8650-
11-C-7189. Any opinions, findings, and conclusions or recommen-
dations expressed herein are those of the authors and do not neces-
sarily reflect the views of the funding agencies.

References
[1] AS relationships dataset from CAIDA. http://www.

caida.org/data/active/as-relationships/.
[2] O. Bonaventure and B. Quoitin. Common utilizations of the

BGP community attribute. Internet draft, 2003.
[3] E. Chen and T. Bates. An application of the BGP community

attribute in multi-home routing. RFC 1998, Aug 1996.
[4] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker,

Y. Hyun, kc claffy, and G. Riley. AS Relationships:
Inference and Validation. ACM CCR, (1):29–40, Jan 2007.

[5] B. Donnet and O. Bonaventure. On BGP communities. ACM
CCR, 38(2):55–59, April 2008.

[6] P. Faratin, D. Clark, P. Gilmore, S. Bauer, A. Berger, and
W. Lehr. Complexity of Internet interconnections: Tech-
nology, incentives and implications for policy. In Proc. 35th
Annual Telecomm. Policy Research Conf. (TPRC), 2007.

[7] N. Feamster, Z. M. Mao, and J. Rexford. BorderGuard:
Detecting cold potatoes from peers. In Proc. IMC, Oct. 2004.

[8] L. Gao. On inferring autonomous system relationships in the
Internet. IEEE/ACM ToN, 9:733–745, Dec. 2001.

[9] L. Gao and J. Rexford. Stable Internet routing without global
coordination. IEEE/ACM ToN, 9(6):681–692, Dec. 2001.

[10] M. Garofalakis, J. Hellerstein, and P. Maniatis. Proof
sketches: Verifiable in-network aggregation. In Proc. ICDE,
Apr. 2007.

[11] S. Goldberg, S. Halevi, A. Jaggard, V. Ramachandran, and
R. Wright. Rationality and traffic attraction: Incentives for
honestly announcing paths in BGP. In Proc. ACM
SIGCOMM, Aug. 2008.

[12] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM J. Comput.,
18(1):186–208, 1989.

[13] A. J. T. Gurney, A. Haeberlen, W. Zhou, M. Sherr, and B. T.
Loo. Having your cake and eating it too: Routing security
with privacy protections. In Proc. HotNets, Nov. 2011.

[14] A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel.
NetReview: Detecting when interdomain routing goes
wrong. In Proc. NSDI, Apr 2009.

[15] IETF Working Group on Secure Inter-domain Routing.
http://tools.ietf.org/wg/sidr.

[16] A. J. Kalafut, C. A. Shue, and M. Gupta. Malicious hubs:
detecting abnormally malicious autonomous systems. In
Proc. INFOCOM, Mar. 2010.

[17] S. Kent, C. Lynn, and K. Seo. Secure border gateway
protocol (S-BGP). IEEE JSAC, 18(4):582–592, 2000.

[18] W. Kumari and S. Kotikalapudi. Recommendation for not
using AS_SET and AS_CONFED_SET in BGP. RFC 6472.

[19] H. V. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishna-
murthy, and A. Venkataramani. iPlane Nano: path prediction
for peer-to-peer applications. In Proc. NSDI, Apr. 2009.

[20] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Sustaining cooperation in multi-hop wireless networks. In
Proc. NSDI, May 2005.

[21] R. Mahajan, D. Wetherall, and T. Anderson. Understanding
BGP misconfiguration. In Proc. ACM SIGCOMM, Sep 2002.

[22] R. Merkle. Protocols for public key cryptosystems. In Proc.
Symposium on Security and Privacy, Apr. 1980.

[23] S. Micali, M. Rabin, and J. Kilian. Zero-knowledge sets. In
Proc. FOCS, Oct. 2003.

[24] W. Mühlbauer, A. Feldmann, O. Maennel, M. Roughan, and
S. Uhlig. Building an AS-topology model that captures route
diversity. In Proc. ACM SIGCOMM, Sept. 2006.

[25] S. Nagaraja, V. Jalaparti, M. Caesar, and N. Borisov. P3CA:
Private anomaly detection across ISP networks. In Proc.
Privacy Enhancing Technologies Symp. (PETS), July 2011.

[26] J. Nagle. Congestion control in IP/TCP internetworks. RFC
896, Jan 1984.

[27] O. Nordstroem and C. Dovrolis. Beware of BGP attacks.
ACM CCR, 34(2):1–8, Apr. 2004.

[28] W. B. Norton. A study of 28 peering policies. Technical
report, DrPeering International.

[29] One Step Consulting, Inc. BGP community guides.
http://onesc.net/communities, 2012.

[30] N. Patrick, T. Scholl, A. Shaikh, and R. Steenbergen. Peering
Dragnet: anti-social behavior amongst peers, and what you
can do about it. NANOG 38, 2006.

[31] M. O. Rabin, R. A. Servedio, and C. Thorpe. Highly efficient
secrecy-preserving proofs of correctness of computations
and applications. In Proc. LICS, July 2007.

[32] Y. Rekhter, T. Li, and S. Hares. A border gateway protocol 4
(BGP-4). RFC 4271, Jan 2006.

[33] M. Roughan, W. Willinger, O. Maennel, D. Perouli, and
R. Bush. 10 lessons from 10 years of measuring and
modelling the Internet’s Autonomous Systems. IEEE JSAC,
29(9):1810–1821, 2011.

[34] R. Sherwood, A. Bender, and N. Spring. DisCarte: a dis-
junctive Internet cartographer. In Proc. SIGCOMM, 2008.

[35] P. Smith, R. Evans, and M. Hughes. Recommendations on
route aggregation. Technical Report RIPE-399, RIPE
Routing Working Group, Dec. 2006.

[36] P. Traina and R. Chandrasekeran. BGP communities
attribute. RFC 1997, Aug 1996.

[37] P. C. van Oorschot, T. Wan, and E. Kranakis. On
interdomain routing security and pretty secure BGP
(psBGP). ACM TISSEC, 10(3), 2007.

[38] C. Villamizar, R. Chandra, and R. Govindan. BGP route flap
damping. RFC 2439, Nov 1998.

[39] F. Wang and L. Gao. On inferring and characterizing Internet
routing policies. In Proc. IMC, Oct. 2003.

[40] R. White. Securing BGP through Secure Origin BGP. The
Internet Protocol Journal, 6(3):15–22, 2006.

[41] E. L. Wong, P. Balasubramanian, L. Alvisi, M. G. Gouda,
and V. Shmatikov. Truth in advertising: lightweight
verification of route integrity. In Proc. PODC, Aug. 2007.

[42] J. Wu, Z. M. Mao, J. Rexford, and J. Wang. Finding a needle
in a haystack: Pinpointing significant BGP routing changes
in an IP network. In Proc. NSDI, May 2005.

[43] M. Zhao, W. Zhou, A. J. T. Gurney, A. Haeberlen, M. Sherr,
and B. T. Loo. Private and verifiable interdomain routing
decisions. Technical Report MS-CIS-12-10, U. Penn, 2012.

394

http://www.caida.org/data/active/as-relationships/
http://www.caida.org/data/active/as-relationships/
http://tools.ietf.org/wg/sidr
http://onesc.net/communities

	Introduction
	Overview and Roadmap
	How much privacy do we need?
	What is a promise?
	Goals

	Policy and Promises
	Promises formalized
	Examples

	The VPref algorithm
	System model and definitions
	Assumptions
	Intuition
	Commitment phase
	Verification phase
	Correctness

	Multi-prefix VPref
	Additional challenges
	The modified ternary tree
	Commitments and bit proofs with MTTs

	Application to BGP
	System overview
	Signatures and acknowledgments
	Evidence
	Handling loose synchronization
	Logging, checkpointing, and replay
	Verification of withdrawals
	Incremental deployment

	Evaluation
	Prototype implementation
	Methodology and experimental setup
	Microbenchmarks
	Functionality check
	Overhead: Computation
	Overhead: Bandwidth
	Overhead: Storage

	Discussion
	Related Work
	Conclusion

