Capítulo 8

Polinomio de Taylor

Los ejercicios indicados con (*) son los sugeridos para trabajar en estas dos semanas. Los demás ejercicios son complementarios (se puede elegir algún ejercicio para hacer de manera opcional).

8.1. Polinomio de Taylor y límites

Nomenclatura y notación:

- Polinomio de McLaurin: es el polinomio de Taylor alrededor de 0.
- <u>Infinitésimo</u>: decimos que una función f es un infinitésimo de orden n en un punto a si $f(x) \to 0$ cuando $x \to a$ y además $\lim_{x \to a} \frac{f(x)}{(x-a)^n} = 0$.
- $P_n(f,a)$: es el polinomio de Taylor de orden n de la función f en el punto a.
- 1. (*) El polinomio de McLaurin de orden 4 asociado a una cierta función f es $3-5x+4x^2-x^3-2x^4$. Calcular f(0), f'(0), f''(0), f'''(0), $f^{(4)}(0)$.
- 2. (*) Calcular el polinomio de Taylor de grado n de la función f en el punto a en los siguientes casos:
 - a) $f(x) = x^4 x^3 + 2$, a = 0 y a = 1, n = 2 b) mismo polinomio pero n = 4
 - c) $f(x) = \sin(x), a = \pi, n = 6$ d) $f(x) = \tan(x), a = 0, n = 4$
 - e) $f(x) = e^x$, a = 0 y a = 1, n = 4 $f(x) = \log(x)$, a = 1 y a = e, n = 4

g)
$$f(x) = \frac{\log(x)}{x}$$
, $a = 1$, $n = 4$ h) $f(x) = e^{x^2}$, $a = 0$ y $a = 2$, $n = 4$

h)
$$f(x) = e^{x^2}$$
, $a = 0$ y $a = 2$, $n = 4$

i)
$$f(x) = \int_{1}^{x^2} e^{-t^2} dt$$
, $a = 1$, $n = 3$

i)
$$f(x) = \int_{1}^{x^2} e^{-t^2} dt$$
, $a = 1$, $n = 3$ j) $f(x) = \int_{1}^{x^2} \frac{\sin(t)}{t} dt$, $a = 1$, $n = 3$

- 3. (*) Considere la función $f(x) = x\cos(x) \sin(x)$.
 - a) Encontrar el polinomio de McLaurin de orden 5 de f.
 - b) Analiza si f presenta extremo relativo en x = 0.
 - c) Calcular el límite:

$$\lim_{x \to 0^+} \frac{f(x) + \frac{x^3}{3}}{x^5}$$

4. (*) Calcular los siguientes límites usando polinomios de Taylor:

$$a) \quad \lim_{x \to 0} \frac{x - \log(1 + x)}{x^2}$$

a)
$$\lim_{x \to 0} \frac{x - \log(1 + x)}{x^2}$$
 b) $\lim_{x \to 0} \frac{\log(1 + x) - \sin x}{x^2 + 4x^3}$

$$c) \quad \lim_{x \to 0} \frac{\cosh(x) - \cos(x)}{x^2}$$

$$d) \quad \lim_{x \to 0^+} \frac{\sin x - x \cos x}{x^{\alpha}}, \ \alpha > 0$$

e)
$$\lim_{x\to 0} \frac{e^x - 1 - x^2/2 + \sin x - 2x}{1 - \cos x - x^2/2}$$
 f) $\lim_{x\to 0} \frac{\log(1+x) - x - x^2/2}{\tan x - \sin x}$

f)
$$\lim_{x \to 0} \frac{\log(1+x) - x - x^2/2}{\lg x - \sec x}$$

5. Calcular los siguientes límites usando polinomios de Taylor:

a)
$$\lim_{x \to 0} \frac{x - \arctan(x)}{\sin^3(x)}$$
 b) $\lim_{x \to 0} \frac{1}{x} - \frac{1}{e^x - 1}$ c) $\lim_{x \to 1} x^{\frac{1}{1 - x}}$

$$b) \quad \lim_{x \to 0} \frac{1}{x} - \frac{1}{e^x - 1}$$

$$c) \quad \lim_{x \to 1} x^{\frac{1}{1-x}}$$

d)
$$\lim_{x \to \pi/2} \frac{\log(\sin(x))}{(\pi - 2x)^2}$$

d)
$$\lim_{x \to \pi/2} \frac{\log(\sin(x))}{(\pi - 2x)^2} \qquad e) \quad \lim_{x \to 0} \frac{\log\left(\frac{\sin(x)}{x}\right)}{(\log(1 + x))^2}$$

6. (*) Determinar los valores de los parámetros (a, b, y/o c, según corresponda) para obtener un infinitésimo del mayor orden posible para $x \to 0$. Hallar la parte principal.

$$a) \quad a(e^x - 1) - bx^2 - x$$

b)
$$x + a \operatorname{sen} x + b \operatorname{tg} x$$

a)
$$a(e^x - 1) - bx^2 - x$$
 b) $x + a \sin x + b \tan x$ c) $e^x \sin x - (ax + bx^2 + cx^3)$

$$d) \quad \log(1+x) - \frac{ax + bx^2}{1+cx}$$

- 7. Sea *Q* un polinomio de grado *n*.
 - a) Probar que $P_m(Q,a)(x) = Q(x)$ para todo $m \ge n$.

- b) Sea a raíz de Q de multipilicidad k. Probar que $P_m(Q,a) = 0$ si m < k y a es raíz de $P_m(Q, a)$ con multiplicidad k si $m \ge k$.
- 8. Sean $f, g : \mathbb{R} \to \mathbb{R}$ dos funciones n veces derivables.

Probar que

- a) $P_n(f+g,a) = P_n(f,a) + P_n(g,a)$
- b) $P_n(fg,a) = \sum_{k=0}^n a_k (x-a)^k$ donde $P_n(f,a) P_n(g,a) = \sum_{k=0}^N a_k (x-a)^k$
- c) $P_n(f P_n(f, 0), 0) = 0$
- d) Si h(x) = f(3x), $P_n(h, a) = \sum_{k=0}^n 3^k a_k (x-a)^k$ donde $P_n(f, 3a) = \sum_{k=0}^n a_k (x-3a)^k$
- e) Si g(a) = 0 entonces $P_n(f \circ g, a) = \sum_{k=0}^n a_k (x a)^k$ donde $P_n(f, 0) \circ P_n(g, a)(x) = \sum_{k=0}^N a_k (x a)^k$
- 9. (*) Hallar el desarrollo de McLaurin de orden n de las siguientes funciones:
- a) $\frac{1}{2-x}$ b) $(x^2+x)e^x$ c) $\log(1-x)$ d) $\frac{1}{x^2-2x+1}$
- e) $e^x \cos(x)$ f) $\sin(x)\cos(x)$ g) $\sin^2(x)$ h) $\sqrt{1-x}$
- a) Calcular $P_n(f,0)$ para la función $f(x) = \frac{1}{1-x^2}$. 10.

Sugerencia: escribir $\frac{1}{1-x^2} = \frac{a}{1-x} + \frac{b}{1+x}$ para algún par $a, b \in \mathbb{R}$.

- b) Calcular el $P_n(f, 0)$ para la función $f(x) = \log\left(\frac{1+x}{1-x}\right)$.
- 11. (*) Consideremos la función: $f(x) = e^x x 2 + \cos x \frac{x^3}{6}$
 - a) Encontrar el polinomio de McLaurin de orden 4 de f.
 - b) Analizar si f presenta un extremo relativo en 0.
 - c) Calcular, discutiendo según $\alpha \in \mathbb{R}^+$, el límite:

$$\lim_{x \to 0^+} \frac{f(x)}{x^{\alpha}}$$

12. (*) Sea $f: \mathbb{R} \to \mathbb{R}$ una función n veces derivable, tal que existe k < n para el cual f(a) = a $f'(a) = f''(a) = \dots = f^{(k)}(a) = 0 \text{ y } f^{(k+1)}(a) \neq 0.$

Probar las siguientes afirmaciones:

- a) Existe $g: \mathbb{R} \to \mathbb{R}$ continua, tal que $g(a) \neq 0$ y $f(x) = (x-a)^{k+1}g(x)$.
- b) Si k + 1 es impar, entonces f no tiene un extremo relativo en a.
- c) Si k+1 es par, entonces f tiene un extremo relativo en a. Ademas si $f^{(k+1)}(a) > 0$ entonces f tiene un mínimo relativo, mientras que si $f^{(k+1)}(a) < 0$ tiene un máximo relativo.

8.2. Resto de Taylor y aproximaciones

1. (*) Aproximaciones racionales

En este ejercicio basta con dar una forma de encontrar la aproximación, no es necesario hallarla explícitamente.

- a) Dar una aproximación racional del número e con un error menor a 10^{-4} .
- b) Dar una aproximación racional del número $\sin(2)$ con un error menor a 10^{-4} .
- c) Dar una aproximación racional del número $\sqrt{8}$ con un error menor a 10^{-4} .
- d) Dar una aproximación racional del número log(1,2) con un error menor a 10^{-4} .

2. Aproximacimaciones de integrales

Sea $f : \mathbb{R} \to \mathbb{R}$, la función definida por $f(t) = e^{-t^2}$.

La idea de este ejercicio es aproximar el valor de la integral $\int_0^1 f(t) dt$

- a) Dar una partición equi-espaciada de forma que $S^*(f,P) \int_0^1 f(t) dt \le 10^{-6}$. Sugerencia: revisar la prueba de que una función monótona es integrable.
- b) Dar un *n* tal que $\left| \int_0^1 P_n(f,0)(t) dt \int_0^1 f(t) dt \right| < 10^{-6}$
- 3. *a*) Usando el polinomio de McLaurin de orden 3 de sen(x), hallar una aproximación de la solución no nula a la ecuación $x^2 = \text{sen}(x)$.
 - b) Llamemos r a la aproximación de la parte anterior. Ver qué estimación da una calculadora de r^2 y sen(r).
 - c) Demostrar que:

$$|r^2 - \operatorname{sen}(r)| < 0.05$$

4. Acotaciones uniformes

- a) Sea $f: \mathbb{R} \to \mathbb{R}$ una función C^{∞} (es decir con derivadas de todos los ordenes). Probar que si existe M tal que $|f^{(n)}(x)| \le M \ \forall n$, entonces para todo $x \in \mathbb{R}$ y $\epsilon > 0$ existe $n \in \mathbb{N}$ que verifica que $|P_n(f,0) - f(x)| \le \epsilon$.
- b) Sea $\Psi : \mathbb{R} \to \mathbb{R}$ definida por $\Psi(x) = \begin{cases} e^{-\frac{1}{1-x^2}} & \text{si } x \in (-1,1) \\ 0 & \text{en otro caso} \end{cases}$

Probar que $P_n(\Psi,-1)=0$ para todo n. Deducir que las derivadas de Ψ no están acotadas,

8.3. Complementarios

1. Calcule los siguientes límites

a)
$$\lim_{x \to a^+} \frac{\sqrt{x} - \sqrt{a} + \sqrt{x - a}}{\sqrt{x^2 - a^2}}$$

b)
$$\lim_{x \to 0} \frac{(\cos(x) - 1)(\log(1 + x) - x) - x^4}{x^5}$$

c)
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} \left(\frac{1}{x(x+1)} - \frac{\log(x+1)}{x^2} \right)$$

d)
$$\lim_{x \to 0} (\cos(x) + \sin(x))^{\frac{1}{x}} \qquad e) \quad \lim_{x \to 0} \left(\frac{\sin(x)}{x}\right)^{\frac{1}{1 - \cos(x)}}$$

- 2. Encontrar una función $f: \mathbb{R} \to \mathbb{R}$ derivable que no tenga derivada segunda en 0 y que verifique $|f(x)| \le x^3$.
- 3. Sea $f: \mathbb{R} \to \mathbb{R}$ una funcion de clase C^2 (dos veces derivable con derivada segunda continua).

Definimos la funcion $\phi : \mathbb{R} \to \mathbb{R}$ como

$$\phi(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} & \text{si } x \neq a \\ f'(a) & \text{si } x = a \end{cases}$$

Probar que ϕ es de clase C^1 .

Probar que si f es de clase C^3 entonces ϕ es de clase C^2