Keccak and the SHA-3 Standardization

Guido BERTONI' Joan DAEMEN!?
Michaél PEETERS? Gilles VAN AsSCHE!

1STMicroelectronics

2NXP Semiconductors

NIST, Gaithersburg, MD
February 6, 2013

Outline

=

The beginning

™|

The sponge construction

=

Inside KECCAK

>

Analysis underlying KEccak

B Applications of KEcCAK, or sponge

Some ideas for the SHA-3 standard

Outline

The beginning

3/60

Cryptographic hash functions

h : {o,1}* = {o,1}"

Input message —» r —p Digest

B MDS5: n = 128 (Ron Rivest, 1992)
m SHA-1: n = 160 (NSA, NIST, 1995)
B SHA-2: n € {224,256, 384, 512} (NSA, NIST, 2001)

4/60

Our beginning: RADIOGATUN

m Initiative to design hash/stream function (late 2005)
m rumours about NIST call for hash functions
m forming of KECCAK Team
m starting point: fixing PANAMA [Daemen, Clapp, FSE 1998]
B RADIOGATUN [Keccak team, NIST 2nd hash workshop 2006]
B more conservative than PANAMA
m variable-length output
B expressing security claim: non-trivial exercise
m Sponge functions [Keccak team, Ecrypt hash, 2007]

m closest thing to a random oracle with a finite state
m Sponge construction calling random permutation

5/60

From RADIOGATUN to KECCAK

Input Belt Fun@
Block Input

> Mapping |
1 kel
0 >

Belt

min[16[17]18] o [1[2]a 4[5 e [7]8]9 [10]11]12]13]14]15
vy

A A

Mill Function

B RADIOGATUN confidence crisis (2007-2008)
m own experiments did not inspire confidence in RADIOGATUN
m neither did third-party cryptanalysis
[Bouillaguet, Fouque, SAC 2008] [Fuhr, Peyrin, FSE 2009]
m follow-up design GNOBLIO went nowhere
m NIST SHA-3 deadline approaching ...
m U-turn: design a sponge with strong permutation f
B KECCAK [Keccak team, SHA-3, 2008]

6/60

Outline

The sponge construction

7/60

The sponge construction

M A
il A
& , G
N N N Y N

Y Y Y y ||l
r|]0 T
T R R L T
c||0 E
/ / / N AN /
absorbing : squeezing

sponge

m More general than a hash function: arbitrary-length output
m Calls a b-bit permutation f, with b =r+c

m r bits of rate

B c bits of capacity (security parameter)

The sponge construction

Generic security of the sponge construction

M Z
i 4
pad (j
Y
|0
cl|0 E
absorbmg | Squeezing
sponge

m RO-differentiating advantage < N?/2¢*!

m N is number of calls to f
m Proven in [Keccak team, Eurocrypt 2008]
m As strong as a random oracle against attacks with N < 2¢/2

m Bound assumes f is random permutation

m It covers generic attacks
m ..but not attacks that exploit specific properties of f

Design approach

Hermetic sponge strategy
® Instantiate a sponge function
m Claim a security level of 2¢/2

Mission

Design permutation f without exploitable properties

10/60

How to build a strong permutation

m Build it as is an iterated permutation
m Like a block cipher

m Sequence of identical rounds

m Round consists of sequence of simple step mappings
m ..but not quite

m No key schedule
m Round constants instead of round keys
B Inverse permutation need not be efficient

11/60

Criteria for a strong permutation

m Classical LC/DC criteria
m Absence of large differential propagation probabilities
m Absence of large input-output correlations
m Infeasibility of the CICO problem
m Constrained Input Constrained Output
m Given partial input and partial output, find missing parts
B Immunity to

m Integral cryptanalysis

m Algebraic attacks

m Slide and symmetry-exploiting attacks
N ..

12/60

Outline

Inside KECCAK

13/60

KECCAK

m Instantiation of a sponge function
m the permutation KECCAK-f
m 7 permutations: b € {25, 50, 100, 200, 400, 800, 1600 }

m Security-speed trade-offs using the same permutation, e.g.,
B SHA-3 instance: r = 1088 and ¢ = 512
B permutation width: 1600
B security strength 256: post-quantum sufficient
m Lightweight instance: r = 40 and ¢ = 160
B permutation width: 200
B security strength 80: same as SHA-1

The state: an array of 5 x 5 x 2¢ bits

state

%4

X

B 5 X 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them

15/60

The state: an array of 5 x 5 x 2¢ bits

lane

%4

X

B 5 X 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them

15/60

The state: an array of 5 x 5 x 2¢ bits

slice

%4

X

B 5 X 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them

15/60

The state: an array of 5 x 5 x 2¢ bits

row

%4

X

B 5 X 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them

15/60

The state: an array of 5 x 5 x 2¢ bits

column

%4

X

B 5 X 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them

15/60

Inside KEccAk

X, the nonlinear mapping in KEcCAK-f

Iy
b,

g

(TI117

m “Flip bit if neighbors exhibit 01 pattern”

m Operates independently and in parallel on 5-bit rows

m Algebraic degree 2, inverse has degree 3

m LC/DC propagation properties easy to describe and analyze

16/60

6’, a first attempt at mixing bits

m Compute parity ¢, of each column
m Add to each cell parity of neighboring columns:

bx,y,z = dxyzDCx—12 D Cx+1z2

l column parity

17/60

Diffusion of @’

18/60

Diffusion of 6’ (kernel)

19/60

Diffusion of the inverse of 6’

20/60

ide KEccAk

Ins

p for inter-slice dispersion

m We need diffusion between the slices ...

m p: cyclic shifts of lanes with offsets

i(i4+1)/2 mod 2°

m Offsets cycle through all values below 2°

1 to break symmetry

m XOR of round-dependent constant to lane in origin
m Without ¢, the round mapping would be symmetric
m invariant to translation in the z-direction

m Without ¢, all rounds would be the same

m susceptibility to slide attacks
m defective cycle structure

m Without ¢, we get simple fixed points (000 and 111)

22/60

A first attempt at KECCAK-f

m Round function: R=10pof oy
m Problem: low-weight periodic trails by chaining:

B x: may propagate unchanged

m ¢': propagates unchanged, because all column parities are 0
m p: in general moves active bits to different slices ...

m ..but not always

23/60

The Matryoshka property

m Patterns in Q' are z-periodic versions of patterns in Q

24/60

7t for disturbing horizontal/vertical alignment

° ° X
'@ 4@3 "Q%*z‘
° ° |
o) @ X
x| & - & Q\
: ® N
Sl R
e | ¥ ° A

ith (X 0 1\ /X
axvy < axlyy/ Wlt y - 2 3 y/

25/60

A second attempt at KECCAK-f

m Round function: R=1omopof oy

m Solves problem encountered before:

B 7T moves bits in same column to different columns!

26/60

Tweaking 6’ to 0

27/60

Inverse of 9

m Diffusion from single-bit output to input very high
B Increases resistance against LC/DC and algebraic attacks

28/60

KECCAK-f summary

m Round function:
R=10xo0 7ropo€

m Number of rounds: 12 + 24

m KeccAak-f[25] has 12 rounds
m KECCAK-f[1600] has 24 rounds

m Efficiency

high level of parallellism

flexibility: bit-interleaving

software: competitive on wide range of CPU
dedicated hardware: very competitive

suited for protection against side-channel attack

29/60

Performance in software

m Faster than SHA-2 on all modern PC
B KECCAKTREE faster than MD5 on some

platforms
C/b | Algo Strength
4.79 | keccakc256treed2 128
4.98 | md5 < 64
5.89 | keccakc512treed?2 256
6.09 | shal < 80
8.25 | keccakc256 128
10.02 | keccakc512 256
13.73 | sha512 256
21.66 | sha256 128

[eBASH, hydra6, http://bench.cr.yp.to/]

30/60

http://bench.cr.yp.to/

Efficient and flexible in hardware

From Kris Gaj’s presentation at SHA-3, Washington 2012:

ASIC Stratix lll FPGA
9 . 9 3
~fr— BLAKE ~fr- BLAKE
8 if,_'.“es" g Keccak ¥ 1?,_’."“"
- Kecoak P~ Kecoak
= e = Skein | 5 s —- Skein |
I3 wKeccak (O-sHaz | a O-staz |
[=214] [=215]
3 3
"J_E 5- "J_E 5t
] k]
N4 B4 @Groestl
]]
E 3 @Groestl E 3 b
o l=]
Z o ‘JH Z a2
SHA2 ' + BSkein

14 'ELAK?kem 1 @SHA2 BLAKE

a i . i 0 i . i

o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

MNormalized Area Normalized Area

31/60

Outline

Analysis underlying KEcCAK

32/60

Our analysis underlying the design of KEcCAK-f

m Presence of large input-output correlations
m Ability to control propagation of differences

m Differential/linear trail analysis
m Lower bounds for trail weights
m Alignment and trail clustering
m This shaped 6, 7 and p

m Algebraic properties
m Distribution of # terms of certain degrees
m Ability of solving certain problems (CICO) algebraically
m Zero-sum distinguishers (third party)
m This determined the number of rounds
m Analysis of symmetry properties: this shaped :

B See [Keccak referencel, [Ecrypt Il Hash 2011], [FSE 2012]

33/60

Third-party cryptanalysis of KECCAK

Distinguishers on KECCAK-f[1600]

’ Rounds ‘ Work ‘

3 | low | CICO problem [Aumasson, Khovratovich, 2009]
4 low | cube testers [Aumasson, Khovratovich, 2009]
8 | 2% | unaligned rebound [Duc, Guo, Peyrin, Wei, FSE 2012]
24 | 21574 | zero-sum [Duan, Lai, ePrint 2011] [Boura, Canteaut,
De Canniére, FSE 2011]

Academic-complexity attacks on KEccAk
m 6-8 rounds: second preimage [Bernstein, 2010]
m slightly faster than exhaustive search, but huge memory

m attacks taking advantage of symmetry

B 4-round pre-images [Morawiecki, Pieprzyk, Srebrny, FSE 2013]
m 5-rounds collisions [Dinur, Dunkelman, Shamir, FSE 2013]

34/60

Third-party cryptanalysis of KECCAK

Practical-complexity attacks on KECCAK

’ Rounds ‘

preimages and collisions [Morawiecki, CC]

collisions [Duc, Guo, Peyrin, Wei, FSE 2012 and CC]

40-bit preimage [Morawiecki, Srebrny, 2010]

near collisions [Naya-Plasencia, Rock, Meier, Indocrypt 2011]

key recovery [Lathrop, 2009]

distinguishers [Naya-Plasencia, Rick, Meier, Indocrypt 2011]

collisions [Dinur, Dunkelman, Shamir, FSE 2012 and CC]

vl lbbWWINN

near-collisions [Dinur, Dunkelman, Shamir, FSE 2012]

CC = Crunchy Crypto Collision and Preimage Contest

35/60

Observations from third-party cryptanalysis

m Extending distinguishers of KECCAK-f to KECCAK is not easy
m Effect of alignment on differential/linear propagation

m Strong: low uncertainty in prop. along block boundaries
m Weak: high uncertainty in prop. along block boundaries
m Weak alignment in KECCAK-f limits feasibility of rebound attacks

m Effect of the inverse of the mixing layer 6

m 97! has very high average diffusion
m Limits the construction of low-weight trails over more than a few
rounds

36/60

Outline

Applications of KECCAK, or sponge

37/60

Regular hashing

Padded message Hash
A
Ty (¥ Oy v O
O 1O O &> >
0 f f f f f
> > > — >
I NG .

m Electronic signatures
m Data integrity (shaXsum ...)
m Data identifier (Git, online anti-virus, peer-2-peer ...)

38/60

Salted hashing

Salt Padded message Hash
A
] 4 M) 4 M) 4 Y)
as s o P T i
o~ : e g
I N O

m Randomized hashing (RSASSA-PSS)
m Password storage and verification (Kerberos, /etc/shadow)

39/60

Salted hashing

Salt | message | 0'000-000000 Hash
A
] Y M) v) v v ~
O 1O 1O & s
0 f f fl .. f f
> » > .
L —/ _/ _/

m Randomized hashing (RSASSA-PSS)
m Password storage and verification (Kerberos, /etc/shadow)
m ...Can be as slow as you like it!

39/60

Applications of KEcCAK, or sponge

Mask generation function

Var-length input Variable-length output
A A A
L)Y A ING
ol |f|IT|F COLfL | F [f .. | f
> > —> > > -
I AN - U

m Key derivation function in SSL, TLS
m Full-domain hashing in public key cryptography
m electronic signatures RSASSA-PSS [PKCS#1]

m encryption RSAES-OAEP [PKCS#1]
m key encapsulation methods (KEM)

Applications of KEcCAK, or sponge

Message authentication codes

Key Padded message MAC
A
Cly (Y Yy () Y vy ()
O O O O
0 f f fl . f f
- - > — >
LY O O

m As a message authentication code
m Simpler than HMAC [FIps 198]

m Required for SHA-1, SHA-2 due to length extension property
m No longer needed for sponge

41/60

Stream encryption

Key | IV
v O M
D> > >
ol " |fl| |fl|l |f
My
Key stream

m As a stream cipher

m Long output stream per IV: similar to OFB mode
m Short output stream per IV: similar to counter mode

42/60

Applications of KEcCAK, or sponge

Single pass authenticated encryption

Key | IV Padded message MAC
A
Y (M) Y (M) Y 4 (M)
O O O o> >
o IfLL L Il L |f
Yy _/
Key stream

m Authentication and encryption in a single pass!
m Secure messaging (SSL/TLS, SSH, IPSEC ...)

43/60

The duplex construction

o) Zo g1 Z 1 02 Z2
I 4 I 4 | A
pad [] 4 pad BEA pad L] &
Y M) "
4 Y Y
r O \\ > D f/ >
f f f
c||0 > > >
N -/ -/
init. duplexing duplexing duplexing

m Generic security equivalent to Sponge [Keccak Team, SAC 2011]
m Applications include:

m Authenticated encryption: spongeWrap
m Reseedable pseudorandom sequence generator

44/60

Reseedable pseudorandom sequence generator

m Defined in [Keccak Team, CHES 2010] and [Keccak Team, SAC 2011]
m Support for forward secrecy by forgetting in duplex:

(o) Zy o1 Zo
| 4 | 4
pad r\ pad | -] & pad R] &
T 0 T T I
f f f
c|0
-/ -/ -/
init. duplexing duplexing duplexing

45/60

Applications of KEccak, or sponge

Reseedable pseudorandom sequence generator

m Defined in [Keccak Team, CHES 2010] and [Keccak Team, SAC 2011]
m Support for forward secrecy by forgetting in duplex:

ao Z o1 0 Zo
| 4 | | 4
pad r\ pad] &
T T I
f f f
c
U) U
init. duplexing duplexing duplexing

45/60

Outline

A Some ideas for the SHA-3 standard

46/60

Capacity and security strength levels
Output length oriented approach

Output | Collision | Pre-image | Required | Relative SHA-3

length | resistance | resistance | capacity perf. instance
n = 160 s < 80 s < 160 c =320 x1.250 SHA3n160
n =224 s <112 s <224 C = 448 xX1.125 SHA3n224
n = 256 s <128 s < 256 c =512 x1.063 SHA3Nn256
n = 384 s <192 s < 384 c =768 +1.231 SHA3Nn384
n = 512 s < 256 s < 512 c = 1024 +1.778 SHA3n512

n s<n/2 s<n c=2n | xXO<

s: security strength level [NIST SP 800-57]

B These SHA-3 instances address

m multiple security strengths each
m levels outside of [NIST SP 800-57] range

m Performance penalty!

Capacity and security strength levels
Security strength oriented approach

Security | Collision | Pre-image | Required | Relative SHA-3
strength | resistance | resistance | capacity perf. instance
s =80 n > 160 n > 80 c =160 X1.406 SHA3c160
s =112 n > 224 n > 112 c =224 xX1.343 SHA3c224

s =128 n > 256 n>128 c = 256 x1.312 SHA3c256

s =192 n > 384 n > 192 c =384 x1.188 SHA3c384

s =256 n > 512 n > 256 c =512 x1.063 SHA3c512

s n>2s n>s c=12s | xB0 [SHA3[c=2s]

s: security strength level [NIST SP 800-57]

m These SHA-3 instances

m are consistent with philosophy of [NIST SP 800-57]
m provide a one-to-one mapping to security strength levels

m Higher efficiency

Choosing the capacity

Ideas for discussion

Let SHA-3 be a sponge

m Allow freedom in choosing c
m Allow variable output length

Choosing the capacity

Ideas for discussion

Let SHA-3 be a sponge

m Allow freedom in choosing c
m Allow variable output length

Decouple security and output length
m Set minimum capacity ¢ > 2s for [SP 800-571’s level s

Choosing the capacity

Ideas for discussion

Let SHA-3 be a sponge

m Allow freedom in choosing c
m Allow variable output length

Decouple security and output length
m Set minimum capacity ¢ > 2s for [SP 800-571’s level s

Base naming scheme on security level
m For instance SHA3c180 for KECCAK|[c = 180]

Choosing the capacity

Ideas for discussion

Let SHA-3 be a sponge

m Allow freedom in choosing c
m Allow variable output length

Decouple security and output length
m Set minimum capacity ¢ > 2s for [SP 800-571’s level s

Base naming scheme on security level
m For instance SHA3c180 for KECCAK|[c = 180]

For SHA-2-n drop-in replacements, avoid slow instances
m Example option1: c=n
m Example option 2: ¢ = min{2n, 576}
m Example option 3: c = 576

Structuring the standard

(Hashing | (mac) (PRNG (Auth.Enc.] Mode

Construction
Primitive

Ideas for discussion

Standardize KEccAk-f, constructions and modes separately

m Constructions and modes defined independently of KEccak-f
m Like block ciphers and their modes
(It seems you have this in mind too.)

Propose a guideline for interfaces between these

50/ 60

Some ideas for the SHA-3 standard Input formatting

Multiple instances of KECCAK

| Valid sponge input, rate-separated |

Multi-rate padding

B ¢; # ¢; = KECCAK[c = ¢;] and KECCAK[c = ¢,| independent

m Joint security level determined by min{c;, c,}
[KEccAK Team, SAC 2011]

51/ 60

Some ideas for the SHA-3 standard Input formatting

Domain separation

| Valid sponge input, rate- and mode-separated |

Idea for discussion

Foresee domain separation from the start

m To prevent potential clashes between different modes
m If possible, anyone can define his/her domain

52/60

Example: domain separation with namespaces

m Basic idea: prefix input with namespace identifier (URI)

m Payload syntax determined by namespace

m Inspired from XML [http://www.w3.0org/TR/REC-xml-names/|
m Presence of namespace indicated by suffix

m plain input||o||1071

m UTF8(URI)||0®||specifically-formatted input||1][1071

53/60

http://www.w3.org/TR/REC-xml-names/

Parallel hashing

m Pros

m Can exploit parallelism in SIMD instructions

m Can exploit parallelism in multi-core or distributed systems

® Induce no throughput penalty when less parallelism available (for
long messages)

m Cons

m Needs more memory
® Induce a performance penalty for short messages

54/60

A universal way to encode a tree

m Two related, yet distinct, aspects to specify:

the exact (parameterized) tree layout and processing;
the input formatting of leaves and nodes.

55/60

Some ideas for the SHA-3 standard Parallel hashing

A universal way to encode a tree

m Two related, yet distinct, aspects to specify:

the exact (parameterized) tree layout and processing;
the input formatting of leaves and nodes.

m Goals

m Address the input formatting only
® Be universal

= agnostic of future tree structure specifications
m Be sound [Keccak Team, ePrint 2009/210]

55/60

Some ideas for the SHA-3 standard Parallel hashing

A universal way to encode a tree

m Two related, yet distinct, aspects to specify:

the exact (parameterized) tree layout and processing;
the input formatting of leaves and nodes.

m Goals

m Address the input formatting only
® Be universal
= agnostic of future tree structure specifications
m Be sound [Keccak Team, ePrint 2009/210]
m Extra features

m Flexible ways to spread message bits on nodes, e.g.,
m interleaved 64-bit pieces for SIMD
m 1MB chunks for independent processes

m Possible re-use of hash function context (“connected hops”)

55/60

Example 1/3

3

M,

IHTH

My

m CV; = h(M;||{leaf}||nonfinal)
m h(Mo||{leaf}||CVy||CV,||CV;||[{#C = 4, CH, | = 64}||final)

56/60

Example 2/3

i ———

My,
Mo

y

Zy

m CV;; = h(M;]|{leaf}||nonfinal)
m CV; = h(Mjo||{leaf}||CVi1||{#C = 2, CH}||nonfinal)
m h(CVol||CVy|[{#C = 2}||final)

57/60

Example 3/3

m h(M]|{leaf}||final)

58/60

Parallel hashing in SHA-3

h(M||{leaf}|final)

Idea for discussion

Even if no parallel hashing mode is standardized at first
m Foresee it in the input formatting
m Make default sequential hashing a particular case of parallel
hashing (i.e., a single root node)
[KECCAK Team, ePrint 2009/210]

59/60

Conclusion

Questions?

http://sponge.noekeon.org/
http://keccak.noekeon.org/

60/60

http://sponge.noekeon.org/
http://keccak.noekeon.org/

	The beginning
	The sponge construction
	Inside Keccak
	Analysis underlying Keccak
	Applications of Keccak, or sponge
	Some ideas for the SHA-3 standard
	Capacity and security strength levels
	Structure
	Input formatting
	Parallel hashing

