Curso Diseño de Puentes -AASHTO

Prof. Dr. Matías A. Valenzuela

Agradecimientos

- Dr. Rafael Foinquinos Mera
- Dr. Carlos G. Matos Flores-Guerra
- Dr. Sergio F. Breña
- Dr. Hernán Pinto Arancet
- Ing. José Luis Seguel

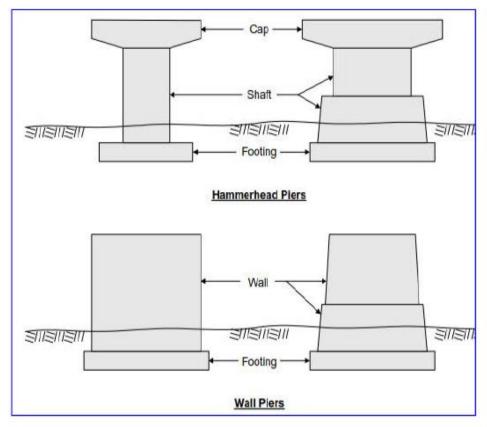
Tópicos del Curso

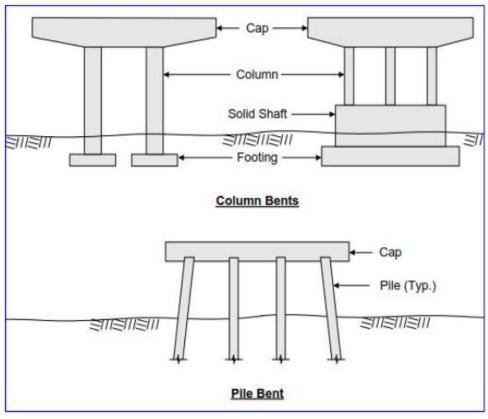
- 1. Filosofía del Código LRFD
- 2. Cargas de Servicio en Subestructuras
- 3. Cargas Extremas en Puentes
- 4. Análisis Estructural Caso 1
- 5. Introducción al Concreto Estructural
- 6. Propiedades materiales Concreto Estructural
- 7. Diseño Flexión
- 8. Diseño Corte
- 9. Diseño de Puente 1 Vano
- 10. Acero Estructural
- 11. Viga Acero Estructural
- 12. Diseño Puente 3 vanos continuo
- 13. Losa Estructural
- 14. Introducción Subestructura
- 15. Cimentaciones
- 16. Estribo
- 17. Pilares Cepas

Introducción

El Pilar o Cepa es una unidad de la subestructura que soporta la superestructura en localizaciones intermedias entre los extremos del puente. El pilar transfiere la cargas verticales desde la superestructura a la fundación, y resiste las cargas laterales que actúan sobre el puente debido a cargas de servicio, sísmicas, de viento, etc.

Pueden ser diseñados en diferentes configuraciones, formas y tamaños.


Los mas comunes son:


- Cepa tipo T o martillo (Hammerhead piers)
- Cepa tipo muro (Wall piers)
- Cepa de columnas multiples (Column bents)
- Cepa Pila-Pilotes (Pile bents)

Características de Cepas Comunes

Pier Configuration	General Description	Primary Components	Common Applications	Limitations
Hammerhead pier	A hammerhead pier usually consists of a single shaft supporting a pier cap in the shape of a hammer	CapShaftFooting	 Urban settings Bridges with relatively large clearance requirements Skewed bridges Multiple structure environments 	> Use on relatively short piers may result in poor aesthetics or vertical clearance problems
Wall pier	Consists of a solid wall extending up from the foundation	> Wall > Footing	 Water crossings which experience flood flows Short piers 	Use on excessively wide bridges can lead to tunnel effect
Column bent	A column bent consists of a pier cap and supporting columns which form a frame-like structure	CapColumnsFooting	 Rural or suburban settings Moderate clearance structures 	Extensive use in one setting can lead to a cluttered appearance
Pile bent	A pile bent consists of a cap beam supported directly by piles	> Cap > Piles	 Marine environments Where multiple simple spans cross a shallow water channel 	 Exposed piles may experience deterioration Impact from marine traffic can occur Debris accumulation can occur

Cepas Comunes

Cargas en la Cepas

Esto depende de varios factores, incluyendo:

- Las restricciones a los desplazamientos en los soportes (los soportes fijos pueden general fuerzas longitudinales y/o transversales en los pilares)
- Las cepas en agua (rio o océano) pueden estar sujetos a fuerzas de corrientes, oleaje, hielo y colisión de barcos.
- Las cepas en laderas estarán sujetas a empuje de tierra horizontales.
- La proximidad a una carretera o línea férrea pueden introducir fuerzas de colisión de vehículos.
- La curvatura de la superestructura induce fuerzas centrifugas debido al trafico.
- Fuerzas sísmicas

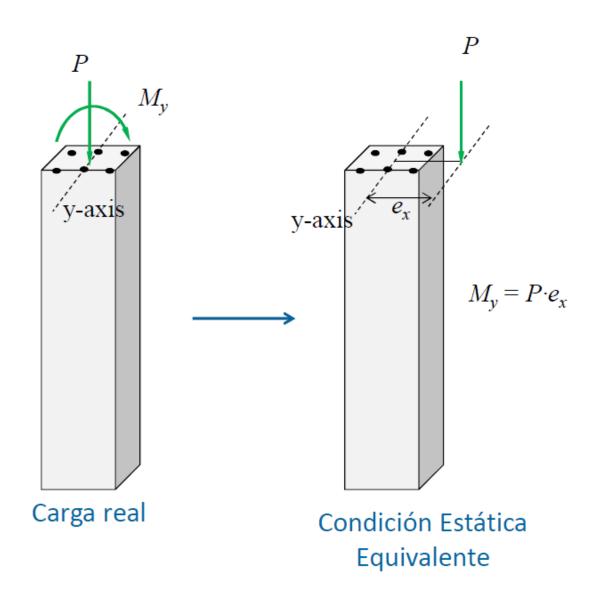
Un ejemplo de calculo típico de cargas para una cepa tipo martillo se muestra en el Apéndice 1 adjunto a este documento.

Combinaciones de Carga

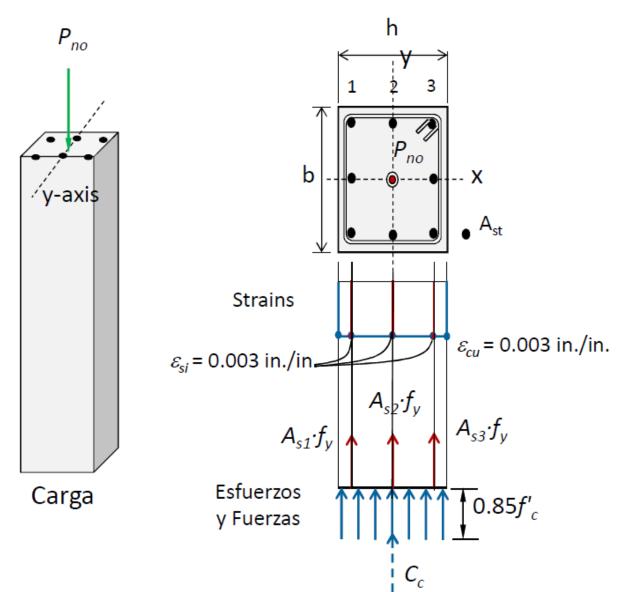
- Una vez evaluadas las cargas, se procede a efectuar el análisis de la cepa y obtener las fuerzas en las secciones criticas.
- Nótese que si el modelo estructural considera tanto la superestructura y la subestructura, las fuerzas se aplican a este modelo y la respuesta es obtenida directamente del modelo.
- Las cargas son factoradas y combinadas de acuerdo a la tabla 3.4.1-1 y 3.4.1-2 de AASHTO.
- En las secciones criticas de diseño las acciones que controlan para los diferentes estados limites (Servicio, Falla o Eventos extremos) son identificadas.
 Alternativamente el diseño puede ser evaluado para todas las cargas si es que el diseñador no esta seguro cuales son las combinaciones mas criticas.

Diseño del Cabezal de la Cepa

- Para cepas comunes con cabezales de concreto reforzado el diseño es de acuerdo al Capitulo 5 (Estructuras de Concreto) de AASHTO.
- El detalle y optimización de las dimensiones preliminares se realizan basado en la fuerzas de sección obtenidos del análisis estructural y las siguientes verificaciones:
 - » Diseño por resistencia a flexión (momentos negativos y/o positivos)
 - » Diseño por resistencia a cortante y torsión (estribos y refuerzo longitudinal de torsión)
 - » Control de grietas
- Una alternativa es el diseño y detalle usando el Método de Bielas y Tirantes (Strut and Tie Method, AASHTO 5.8.2)


Diseño de la columna(s) de la Cepa

- La columna se diseña para estados limites de falla o de eventos extremos y deben considerarse:
 - Diseño por flexo-compresión (Interacción de resistencia axial y de momento, PM)
 - Consideraciones de esbeltez
 - Diseño para resistencia al corte
- Análisis y detalles para zonas sísmicas
- Una breve introducción al calculo de los diagramas de interacción PM, efectos de esbeltez y consideraciones sísmicas son presentados en las siguientes secciones.


Diagramas de Interacción Fuerza Axial-Momento

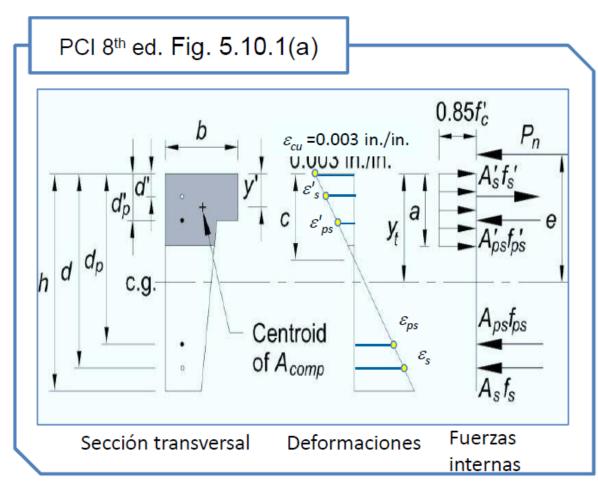
- Representa la envolvente de resistencia de un miembro de compresión sometido a la aplicación simultánea de carga axial (P) y momento (M).
- Constituye una condición última (falla, no servicio).
- La construcción se basa en la resistencia de los materiales y simplificaciones en los modelos de comportamiento de los materiales.
- Los esfuerzos de compresión en el concreto están representados por el bloque de esfuerzos de Whitney
 - > Esfuerzo uniforme de magnitud igual a 0.85 f'c
 - \triangleright Profundidad del bloque a = β_1 c
- El acero de refuerzo suave se considera elasto-plástico (fy es suficiente para definir el flujo plástico).
- El acero de pretensado se comporta de forma no lineal.

Carga Axial + Momento Uní axial

Resistencia Nominal para Carga Axial Pura, P_{no}

Asunciones: la falla ocurre a una deformación (ε_{cu}) igual a0.003 in./in.

$$C_c = 0.85 f'_c (b \cdot h - A_{st})$$


$$\sum P = 0$$

$$P_{no} = 0.85 f'_{c} (b \cdot h - A_{st}) + A_{st} \cdot f_{y}$$

Donde:

$$A_{st} = A_{s1} + A_{s2} + A_{s3}$$

Procedimiento general para determinar un punto en el Diagrama de Interacción P_n - M_n (1/3)

Deformación total del pre tensionado

$$(f_{se}/E_{ps})$$
 +/- loading to get f_{ps}

DE el diagrama de deformación lineal (triángulos semejantes):

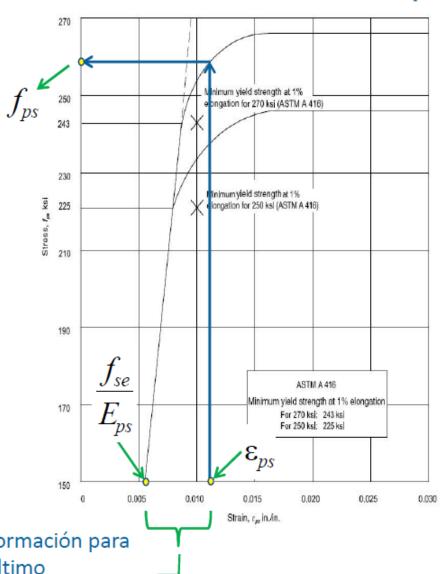
$$\frac{\varepsilon'_s}{c-d'} = \frac{0.003}{c} \longrightarrow \varepsilon'_s = \left(\frac{0.003}{c}\right)(c-d')$$

$$\varepsilon_{s} = \left(\frac{0.003}{c}\right)(d-c)$$

$$\varepsilon'_{ps} = \frac{f_{se}}{E_{ps}} - \left(\frac{0.003}{c}\right)(c-d'_{p})$$

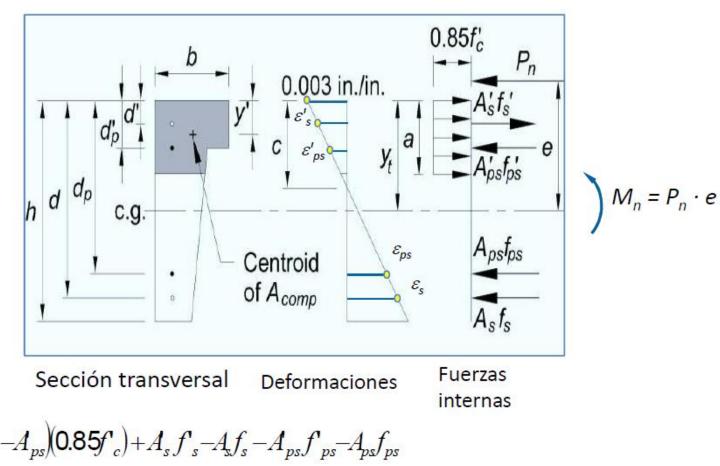
$$\varepsilon_{ps} = \frac{f_{se}}{E_{ps}} + \left(\frac{0.003}{c}\right)(d_{p}-c)$$

Procedimiento general para determinar un punto en el Diagrama de Interacción P_n - M_n (2/3)


Una vez calculadas las deformaciones (diapositiva previa), los esfuerzos y las fuerzas internas pueden ser calculadas

$$f'_{s} = \varepsilon'_{s} E_{s} \le f_{y}$$

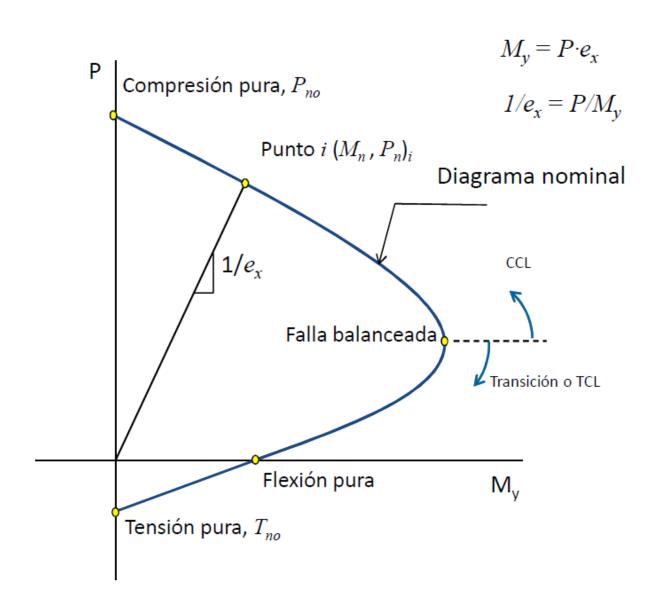
$$f_{ps} = \varepsilon'_{s} E_{s} \le f_{y}$$
Se determinan usando las curvas esfuerzodeformacion

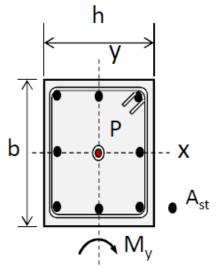

Nota: Los esfuerzos son calculados sin tener en cuenta el signo (siempre positivos). Los signos son considerados en las ecuaciones de equilibrio.

Use of PCI Design Aid 15.2.3 for f_{ps}

Incremento en deformación para llegar al esfuerzo ultimo

Procedimiento general para determinar un punto en el Diagrama de Interacción P_n - M_n (3/3)

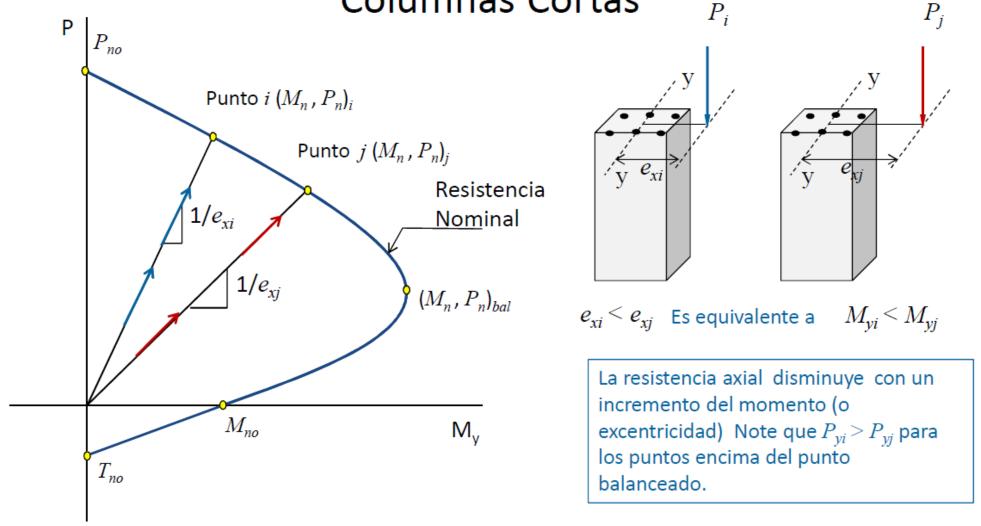

Convención de signos para las ecuaciones de equilibrio:


$$\stackrel{+}{\longrightarrow} P_n = \left(A_{comp} - A_s - A_{ps}\right) (0.85 f_c) + A_s f_s - A_s f_s - A_{ps} f_{ps} - A_{ps} f_{ps}$$

$$(+) M_n = P_n e = (A_{comp} - A_s - A_{ps})(0.85f_c)(y_t - y') + A_s f_s(y_t - d') + A_s f_s(d - y_t) - A_{ps} f_{ps}(y_t - d'_p) + A_{ps} f_{ps}(d_p - y_t)$$

$$Los momentos son tomados con respecto al c.g.$$

Diagrama Nominal de Interacción P-M (Flexión alrededor del eje y)



CCL – El aplastamiento del concreto es alcanzado antes de la fluencia del acero

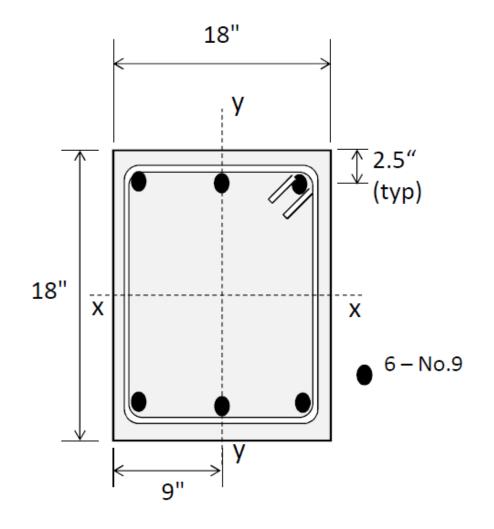
Transición o TCL – El acero fluye en tensión previo al aplastamiento del concreto

Efecto de la excentricidad de la carga Axial en Columnas Cortas

Cuando P se incrementa monotonicament hasta alcanzar la falla para una excentricidad determinada es equivalente a seguir un camino a lo largo de la línea de igual excentricidad. Note se que este caso, M_y se incrementa proporcionalmente con un incremento de P.

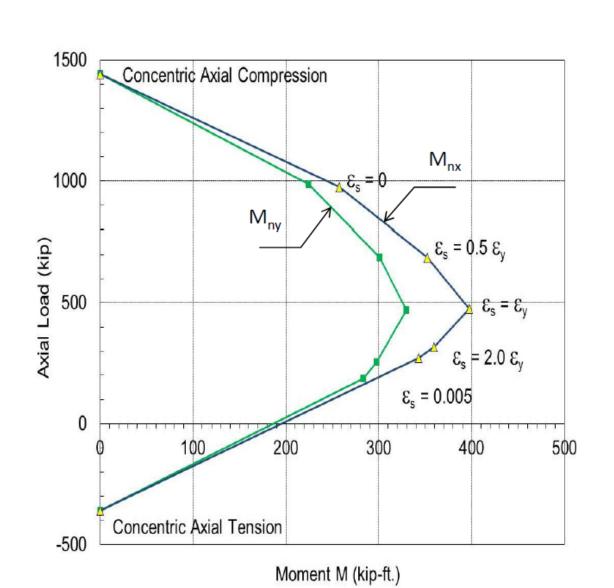
Ejemplo de Diagrama de Interacción

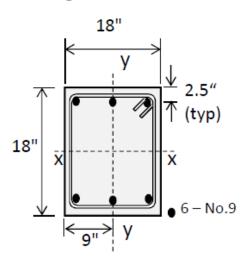
Columna de Concreto reforzado Objetivos:


 Construir el diagrama de interacción P-M nominal y de diseño alrededor de los ejes x & y. Discutir sus características

Materiales

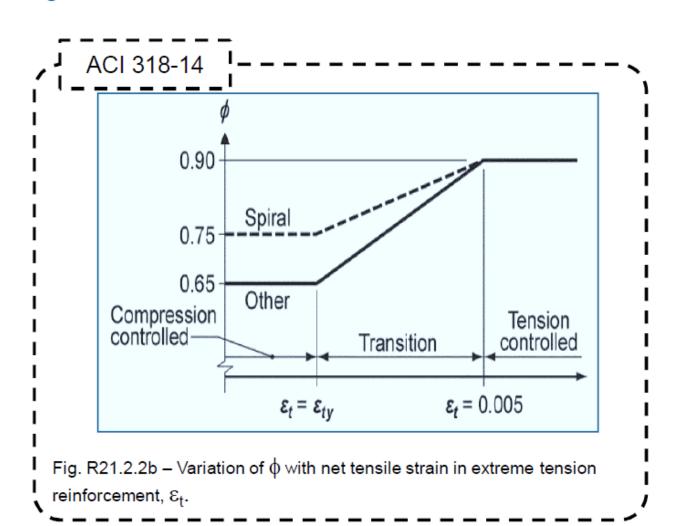
Concreto:

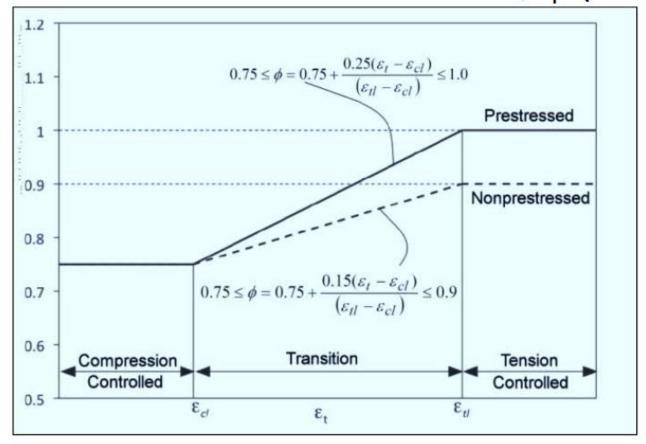

 f'_c = 4,000 psi Acero de refuerzo


 f_v = 60,000 psi

Nota: Los cálculos fueron realizados usando EXCEL.

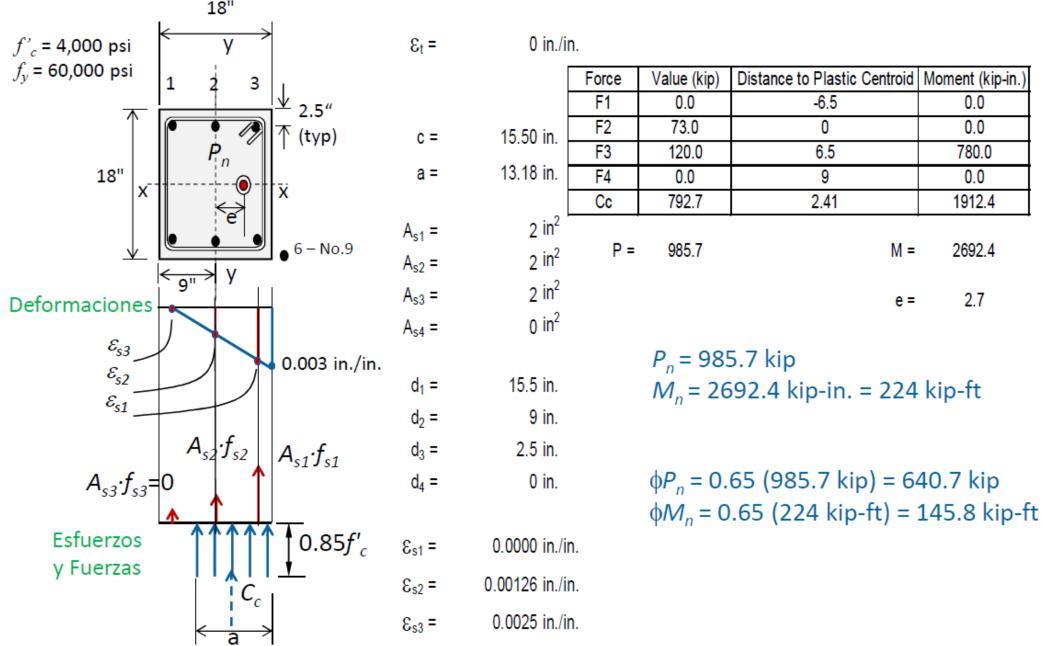
Efecto de la Distribución del refuerzo en la Resistencia Nominal

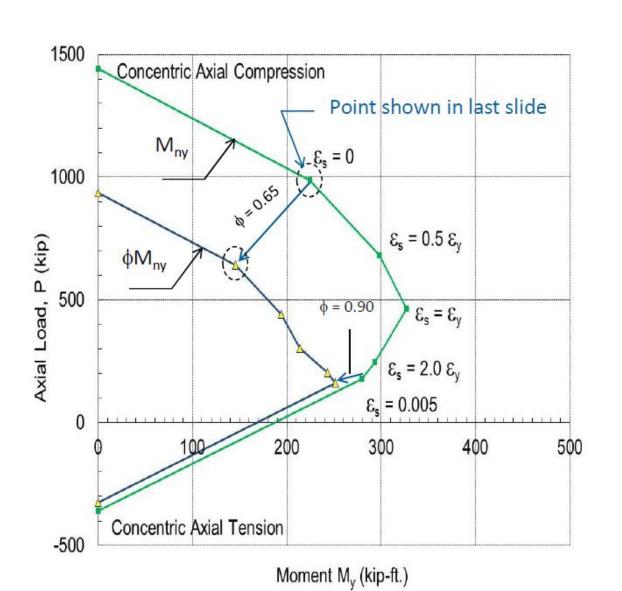


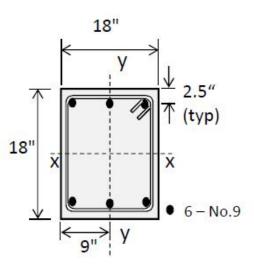

$$f'_c$$
 = 4,000 psi
 f_y = 60,000 psi

Factor de Reduction de Resistencia, φ (ACI)

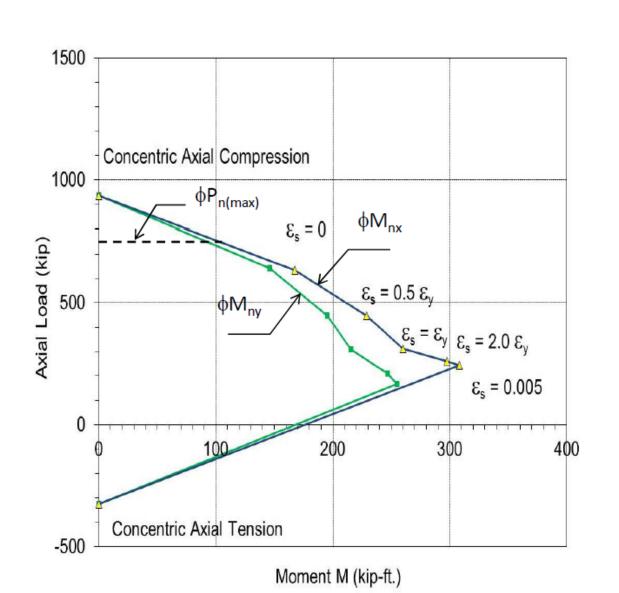
Para obtener el diagrame de diseño, cada punto en el diagrama de interacción nominal [Punto i (M_n , P_n) $_i$] es reducido por ϕ . El Momento y la carga axial son reducidos por el mismo valor de ϕ . El valor del factor de reducción, f, depende de la región donde se encuentra el punto: controlado por tensión, controlado por compresión o en la región de transición.

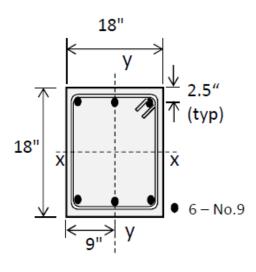

Factor de Reduction de Resistencia, ϕ (AASHTO)


Donde:


- e_t = net tensile strain in the extreme tension steel at nominal resistance (in./in.)
- ε_{cl} = compression-controlled strain limit in the extreme tension steel (in./in.)
- ε_{tl} = tension-controlled strain limit in the extreme tension steel (in./in.)

Ejemplo: Flexión alrededor del eje y, $\varepsilon_{\rm t}$ = 0


Diagramas de Interacción P-M, Nominal y de Diseño



$$f'_c$$
 = 4,000 psi
 f_y = 60,000 psi

Efecto de la Distribución del Refuerzo en la Resistencia de Diseño

$$f'_c$$
 = 4,000 psi
 f_y = 60,000 psi

$$\phi P_{n(\text{max})} = 0.80 \ \phi P_{no} \text{ (tied)}$$
or = 0.85 $\phi P_{no} \text{ (spiral)}$

Diagrama de Interacción P-M para una columna Pretensada

El calculo manual de los puntos mas importantes de un diagrama de interacción P-M para una columna pretensada son presentados en el Apéndice 2.

Columnas – Limites en el Refuerzo Longitudinal

AASHTO 5.6.4.2 provee limites al máximo y mínimo refuerzo en la sección.

La limitación en el <u>refuerzo máximo</u> garantiza una sección dúctil y son:

$$\frac{A_s}{A_g} + \frac{A_{ps} f_{pu}}{A_g f_y} \le 0.08 \tag{5.6.4.2-1}$$

Para secciones con $\frac{A_{ps} f_{pe}}{A_g f'_c} \le 0.30$ (5.6.4.2-2) pretensado solamente:

 A_s = area of nonprestressed tension reinforcement (in.²)

 $A_g = \text{gross area of section (in.}^2)$

 A_{ps} = area of prestressing steel (in.²)

 f_{pu} = specified tensile strength of prestressing steel (ksi)

Donde:

 $f_y = \begin{cases} \text{(ksi)} \\ \text{specified minimum yield strength of reinforcement (ksi)} \end{cases}$

 f'_c = compressive strength of concrete for use in design (ksi)

 f_{pe} = effective stress in the prestressing steel after losses (ksi)

Columnas – Limites en el Refuerzo Longitudinal

Para zonas de alta sismicidad (3 y 4), ASSHTO limita As/Ag ≤0.4.

La limitación en el <u>refuerzo mínimo</u> asegura que las deformaciones dependientes del tiempo son limitadas, pero también proporciona un límite inferior para el comportamiento dúctil. Estas son:

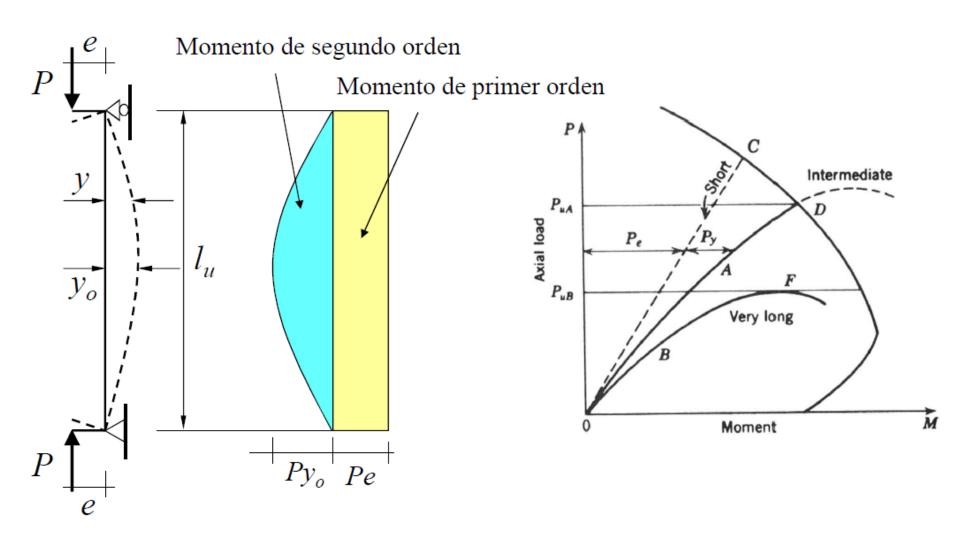
$$\frac{A_s}{A_g} + \frac{A_{ps} f_{pu}}{A_g f_v} \ge 0.135 \frac{f_c'}{f_v}$$
 (5.6.4.2-3)

Si las cargas permanentes no factoradas no exceden 0.4Ag f'c entonces:

$$\frac{A_s}{A_\sigma} + \frac{A_{ps} f_{pu}}{A_\sigma f_v} \le 0.015 \tag{5.6.4.2-4}$$

Columnas – Efectos de Esbeltez

- Para columnas esbeltas el efecto de la tendencia de la columna al pandeo necesita ser considerada.
- ASSHTO endorsa dos metodologías
 - » Análisis de segundo orden (equilibrio de la estructura en la posición deformada, análisis no lineal geométrico).
 - » Método de amplificación de momentos el la cual los momentos basados en un análisis lineal de primer orden son amplificados.
- La relación de esbeltez de una columna se define por el parametro:
 K L, /r donde:

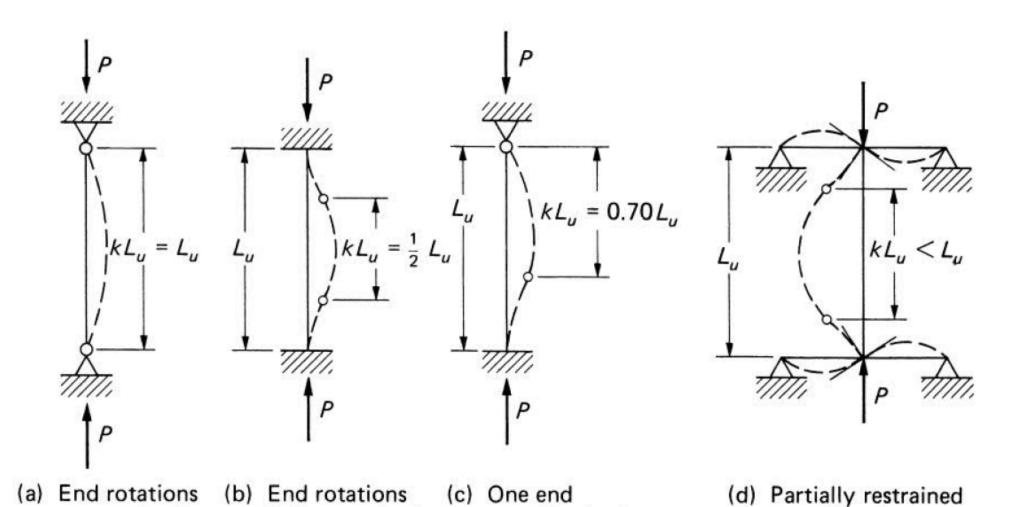

K es el factor efectivo de longitud no arriostrada de la columna y es dependiente de las condiciones de soporte de la columna.

Lu es la longitud entre soportes de la columna y

r es el radio de giro de la sección =
$$\sqrt{\frac{I}{A}}$$

 AASHTO define limites de (K L_u/r) para los cuales el efecto de esbeltez puede ser ignorado.

Columna bajo Carga Axial y Momentos



Carga excéntrica

Diagrama de momentos

Diagrama de Interacción

Longitudes Equivalentes: Columnas Arriostradas

restrained, other

unrestrained

at each end

fully restrained

unrestrained

Longitud Equivalente: Columnas no Arriostradas

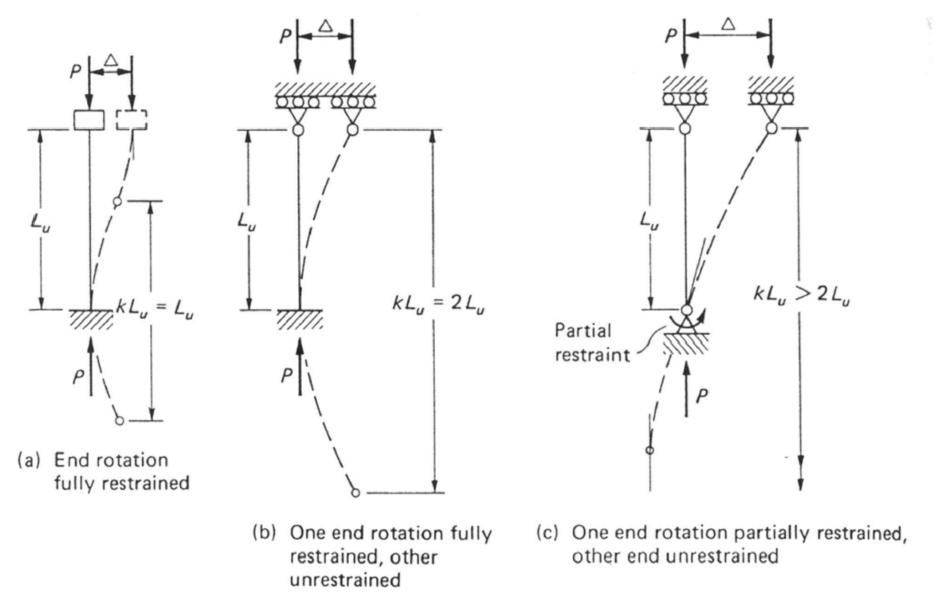
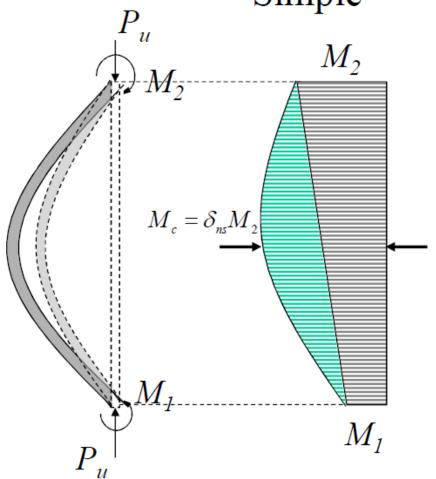
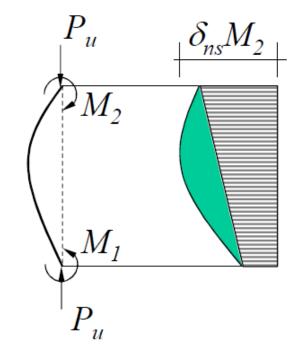
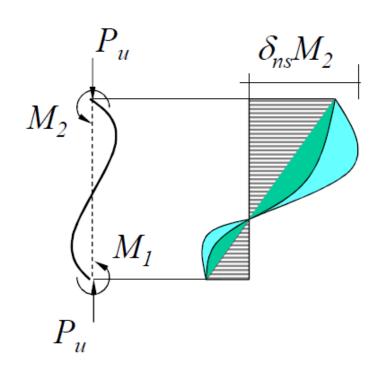



Figure 15.3.2 Equivalent pin-end (i.e., effective) lengths; joint translation possible.

Concepto de amplificación de Momentos: Curvatura Simple

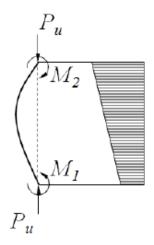

Momento de primer orden

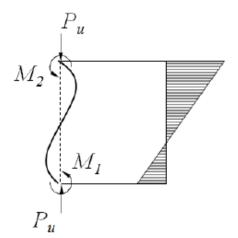

Momento de segundo orden

Efecto de la Curvatura en el Momento Amplificado

Caso de curvatura simple

Caso de curvatura doble


Columnas – Efectos de Esbeltez


• Columnas no arriostradas para desplazamientos laterales:

Si $K \ell_u/r < 22$ El efecto de esbeltez puede ser ignorado (columna corta)

Columnas arriostradas para desplazamientos laterales:

Si $K \ell_u/r < 34-12(M_1/M_2) < 40$ Columna corta

 M_1 = Smaller end moment.

 M_2 = Larger end moment.

 $\frac{M_1}{M_2}$ = negative for single curvature, positive for double.

Columnas – Efectos de Esbeltez

El momento magnificado viene dado por:

$$M_c = \delta_b M_{2b} + \delta_s M_{2s}$$
 Con

$$\delta_b = \frac{C_m}{1 - \frac{P_u}{\phi_K P_e}} \ge 1.0$$

$$\delta_s = \frac{1}{1 - \frac{\sum P_u}{\phi_K \sum P_u}}$$

Donde:

 M_{2b} = Momento en la columna debido a cargas factoradas de gravedad que resultan el desplazamiento lateral despreciable.

 M_{2s} = Momento en la columna debido a cargas factoradas de gravedad o laterales que resultan el desplazamiento lateral Δ , mayor que ℓu / 1500,

Pu = Carga Factorada

 Φ_k = Factor de reducción de la rigidez; 0.75 para concreto y 1.0 para acero y aluminio.

P_e = Carga de Pandeo de Euler

Columnas – Efectos de Esbeltez

Carga de Pandeo
$$P_e = \frac{\pi^2 EI}{(K \ell_e)^2}$$

Cm es dada por:
$$C_m = 0.6 + 0.4 \frac{M_{1b}}{M_{2b}}$$

En el Calculo de Pe deberá usarse la rigidez de flexión efectiva. Para columnas de concreto el mas grande de las siguientes dos formulas debe usarse.

where:

$$EI = \frac{\frac{E_c I_g}{5} + E_s I_s}{1 + \beta_d}$$

$$EI = \frac{\frac{E_c I_g}{5}}{1 + \beta_d}$$

$$EI = \frac{\frac{E_c I_g}{5}}{1 + \beta_d}$$

$$EI = \frac{\frac{E_c I_g}{2.5}}{1 + \beta_d}$$

$$EI = \frac{E_c I_g}{2.5}$$

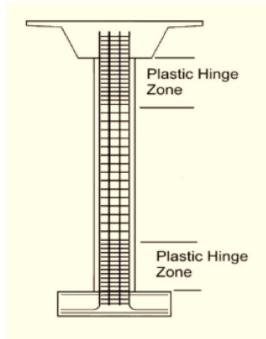
$$I_g = \frac{E_c I_g}{2.5}}{1 + \beta_d}$$

$$I_g = \frac{E_c I_g}{2.5}$$

$$I_g = \frac{E_c I_g}$$

moment; always positive

Diseño de los Elementos Sismo Resistentes

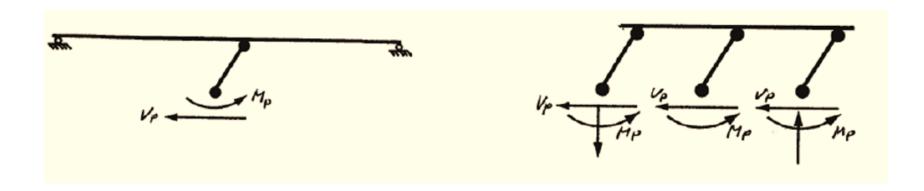

- Típicamente, las columnas de los pilares son los componentes claves que son diseñados para la acción potencial de flexión inelástica (articulación plástica).
- Se requiere refuerzo para proporcionar tanto confinamiento como resistencia cuando se produce la flexión. El confinamiento es proporcionado por refuerzo transversal, que pueden ser espirales o aros en secciones circulares y estribos en secciones rectangulares. El refuerzo transversal también contribuye a la resistencia de corte necesaria del miembro.
- La resistencia a la flexión es provista por el acero longitudinal.
 La capacidad de ductilidad de flexión es controlada por el
 tamaño y la separación del acero de confinamiento y la
 capacidad de momento de la articulación plástica es controlada
 por la cantidad de acero longitudinal.
- El acero de confinamiento permite que se desarrollen esfuerzos altos de compresión dentro del núcleo de hormigón después del desprendimiento de la cubierta de hormigón.

Diseño de los Elementos Sismo Resistentes

- El refuerzo transversal también restringe el refuerzo longitudinal contra el pandeo.
- Los requerimientos de refuerzo en la zona de la articulación plástica están dadas en el articulo 5.11 de la Norma AASHTO.

 La columna o pilar se diseña o verifica para el Estado Limite Extremo 1.

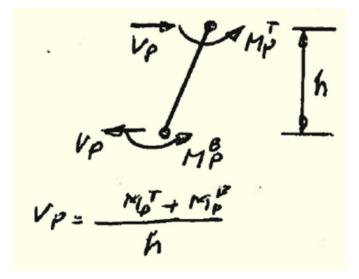
> Refuerzo lateral en la zona de articulación plástica



Puentes de un solo tramo (3.10.9.1)

- Los requisitos de diseño están limitados a longitudes de soporte y fuerzas de conexión mínimas.
- Las fuerzas de conexión se basan en la premisa de que el puente es rígido y que el período fundamental de respuesta será corto; Por lo que se supone que el puente se mueve en fase con el suelo con poca o ninguna amplificación dinámica.
- La fuerza de conexión en las direcciones restringidas entre la superestructura y la subestructura debe ser al menos tan grande como el producto del factor de sitio, Fpga, la aceleración pico del terreno (para sitio tipo B), As, y la carga permanente tributaria.

Fuerzas debido a las articulaciones plásticas (3.10.9.4.3)


- Fuerzas que se desarrollan debido a la plastificación de la articulación plástica en la parte superior e inferior de las columnas.
- Utilice las fuerzas desarrolladas por las articulaciones plásticas para determinar las fuerzas de diseño en los elementos que se mantendrán elásticos.

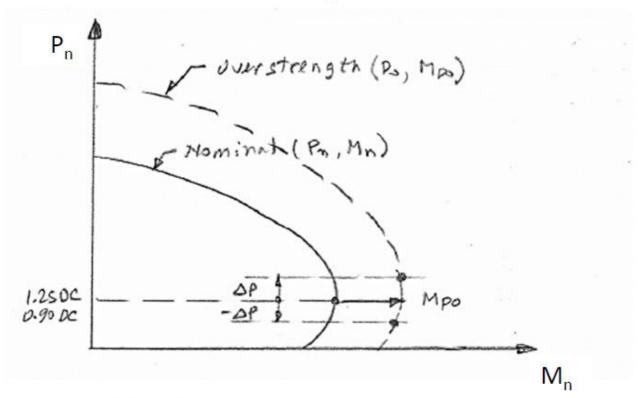
Fuerzas debido a las articulaciones plásticas Columna Simple y Pilares:

Para los 2 ejes de la columna y eje débil del pilar

- Paso 1: Hallar la sobrecapacidad de la columna; Usar Φ = 1.3 para R / C y 1.25 para acero
- Paso 2: Utilizando el momento de sobrecapacidad de la columna, calcule la fuerza de corte correspondiente
- Fuerzas: Axial = Evento Extremo 1 (EE-1) con carga axial sísmica max/min no reducida; $M_p = 1.3 \; M_n$ (concreto) & $V_p = \frac{M_{p-top} + M_{p-bot}}{h}$

Fuerzas debido a las articulaciones plásticas Pilares con dos o más columnas : Para los 2 ejes

- Paso 1: Hallar la sobrecapacidad de la columna; Φ = 1.3 para R/C y 1.25 para acero. Carga axial usando la combinación EE-1 con EQ = 0.
- Paso 2: Utilizando el momento de sobrecapacidad de la columna (concreto Mp = 1.3 Mn), calcular la fuerza de corte correspondiente, Vp. La máxima fuerza de corte en el pilar es, Vtotal = Σ Vp
- Paso 3: Aplicar la fuerza cortante en el centro de gravedad de la superestructura y encontrar las fuerzas axiales en las columnas (ΔP) cuando se desarrolla Mp en las columnas.
- Paso 4: Utilizando ΔP como EQ en la combinación EE-1, revise la sobrecapacidad de momento de la columna; Recalcule Vp & Vtotal. Si Vtotal está dentro del 10% de la del Paso 3, BIEN; De lo contrario, vuelva al Paso 3.

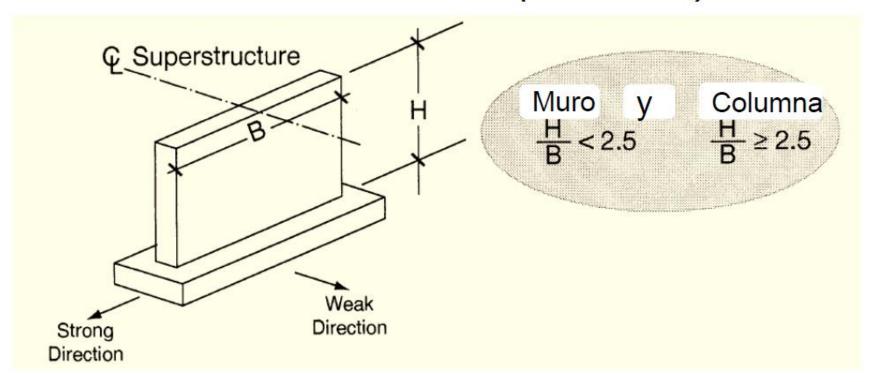

Fuerzas debido a las articulaciones plásticas Pilares con dos o más columnas :

$$\Delta P = \frac{H \, V_{TOTAL} - \sum M_P}{l}$$

- Fuerzas: Axial = EE-1 con carga axial de la última iteración del Paso 3; Mp = 1.3 Mn (concreto) correspondiente a la carga axial máxima & Vp
- Fuerzas en la fundación (zapatas, cabezal de los pilotes y pilotes)
 = min (fuerzas elásticas, fuerzas debidas a las articulaciones plásticas)

Sobre-Resistencia de Columnas

> Fuerzas debidas a plastificación de rotulas

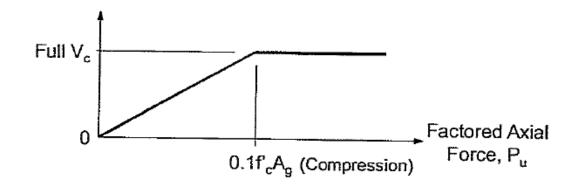

Initial axial load:

3.10.9.4.3b Single column: $1.25DC + 1.00 EQ \rightarrow 1.25P_{DC}$ ($P_{EQ} = 0 \text{ in } 100\%/30\% \text{ rule}$)

3.10.9.4.3c 2 or more cols: 1.25DC + 1.00 EQ \rightarrow 1.25 P_{DC} (w. EQ=0 \rightarrow P_{EO} = 0)

Requerimientos Sísmicos para columnas en Zonas Sísmicas 3 y 4

Clasificaciones de Columnas (5.10.11.4.1)

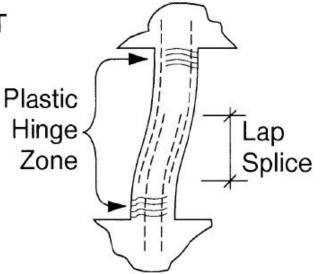


Articulación plástica

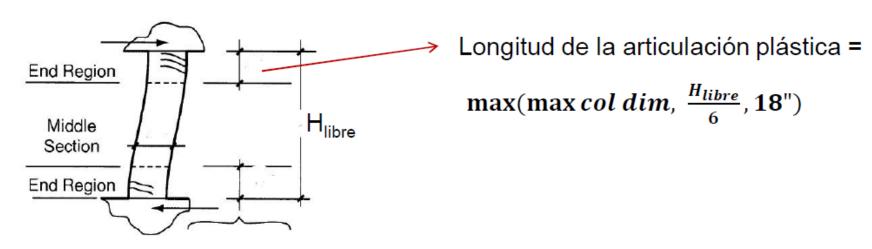
Refuerzo longitudinal de la columna

$$0.01 \le \rho_{long} \le 0.04$$

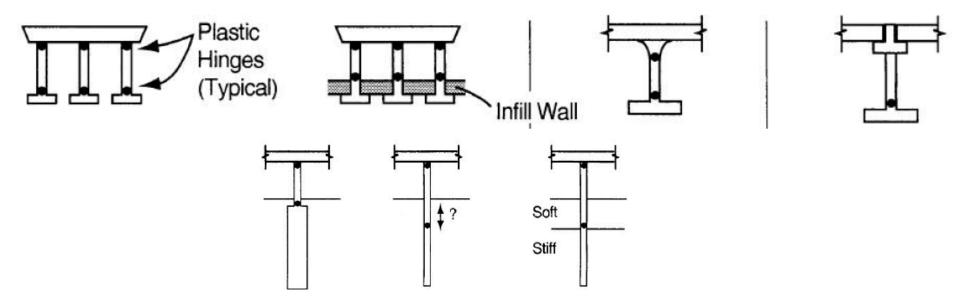
- Factor de resistencia de flexión φ = 0.9, para espiral o lazos de refuerzo. Resistencia basada en momentos elásticos reducidos por R.
- Refuerzo de cortante y refuerzo transversal @ zonas extremas (zonas de articulaciones plásticas):
 - Vc igual que para las cargas por gravedad, siempre que la fuerza mínima de compresión axial > 0.10 f'c Ag
 - Si la fuerza de compresión factorizada < 0.10 f'c Ag, Vc disminuye linealmente a cero.


Empalmes de refuerzo:

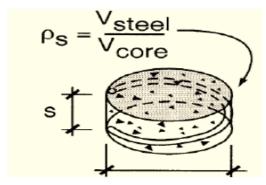
 El refuerzo longitudinal no debe ser empalmado en la zona de la articulación plástica


T - de

 Empalmes en la zona central de la columna (momentos bajos)


 Perdida de la cubierta del refuerzo debido a altos esfuerzos axiales

Dimensiones de la articulación plástica:


Localización de las articulaciones plásticas:

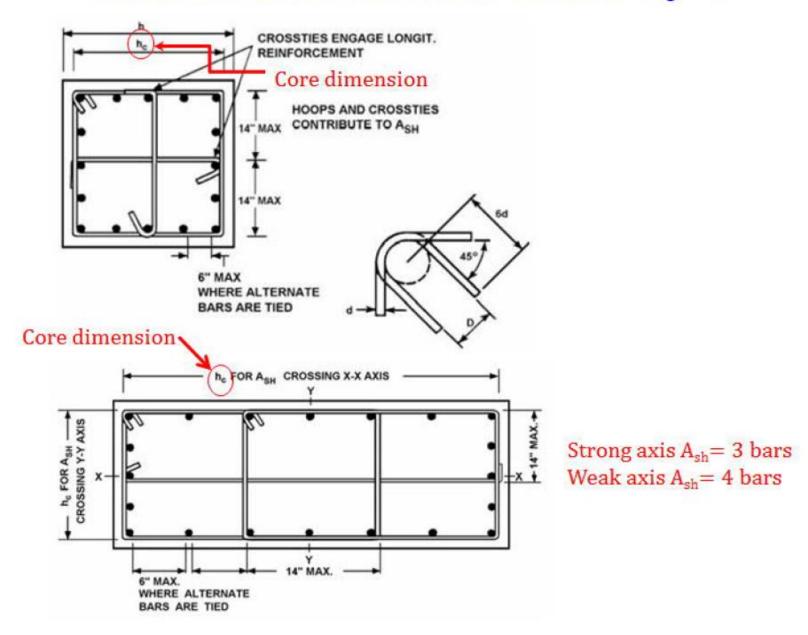
- Refuerzo transversal en las articulaciones plásticas (5.10.11.4.1d) -Confinamiento
 - » El refuerzo transversal es para asegurar que la carga axial soportada por la columna se mantenga cuando se pierda la cubertura de concreto
 - » Columnas circulares: relación volumétrica de espirales

$$\rho_s \ge 0.45 \frac{f_c'}{f_y} \left[\frac{A_g}{A_c} - 1 \right] \text{ donde } \rho_{s,min} \ge 0.12 \frac{f_c'}{f_y}$$

- Dentro de la articulación: Los empalmes en la espiral deben estar totalmente soldados o con acopladores mecánicos
- Dentro de la articulación, $s_{max} = \min(D/4, 4'')$ 5.10.6 2
- Fuera de la articulación, $s_{max} = \min(6\emptyset_{long\ bars}, 6")$ 5.10.11.4.1e

Nota: en el refuerzo de confinamiento la idea es <u>preservar</u>
<u>la integridad del "nucleo"</u> para garantizar un comportamiento dúctil

Columnas rectangulares:


área bruta total, A_{sh} , de estribos rectangulares debe satisfacer:

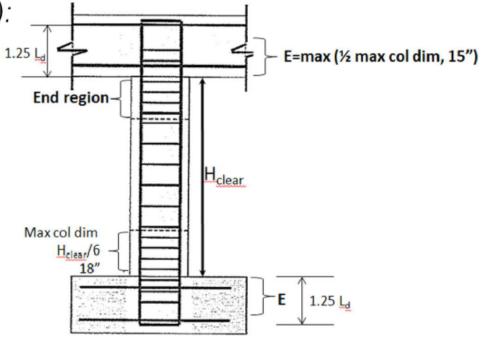
$$A_{sh} \ge 0.30 \ sh_c \frac{f'_c}{f_y} \left[\frac{A_g}{A_c} - 1 \right], \ o \ A_{sh} \ge 0.12 \ sh_c \frac{f'_c}{f_y}$$

 A_{sh} = área total de los estribos cerrados y abiertos a un espaciamiento vertical s y cruzan una sección de dimensión central de hc.

- » Los estribos deben ser cerrados o estar enrollados continuamente
- » Dentro de la articulación plastica, $s_{max} = espaciamiento vertical de estribos <math>\leq 4$ "
- » Fuera de la articulacion plastica,

$$s_{max} = \min(b_{min}, 12")$$

Espaciamiento transversal (5.10.11.4.1e):


- » Requerido en la zona de la articulación plástica (en la parte inferior y superior de la columna)
- » Espaciado máx. ¼ de la dimensión mínima de la columna pero no mas de 4 "

Conexiones de columna (5.10.11.4.3):

» Extiéndase el refuerzo transversal en las conexiones superior e inferior (viga superior del pilar o la fundación);

 $E = M\acute{a}x (\frac{1}{2} Max.$

Dimensión de la columna máxima, 15 ")

» La para el acero longitudinal será de 1.25 x la longitud de desarrollo del refuerzo