

IABMAS2016

8th International Conference on Bridge Maintenance, Safety and Management June 26 - 30, 2016 | Foz do Iguaçu | Brazil

First Applications Of Structural Redundancy In Chilean Bridges

Pablo Figueroa. P.E, Universidad de Los Andes Matías A. Valenzuela. P.E, Ph.D, Public Works Ministry Chile

2

3

5

Contents

Introduction

- Chilean Experience
- Redundancy index
- Analysys: Ramadilla Case
- Results and Final Comments

1. Introduction

1. Introduction

Redundancy in structural design higher degrees of structural safety.

(Frangopol & Curley 1987)	 Defined it as in case of absence of one or more critical components the structure will eventually collapse. 	
(Ghosn & Moses 1998)	 Studied bridge type structures and defined the redundancy as the capability to keep sustaining loads after the failure of one of its members. 	
(Kanno & Ben-Haim 2010).	 The extent of degradation that a structure can suffer without losing functionality 	

Chilean proposal Definition

(Figueroa 2015)	 The structural property of being able to redistribute loads off members that exceeded their design limit state.

2. Chilean experience

Design of traditional bridges: Manual de Carreteras + AASHTO Standard New codes application → AASHTO LRFD 2012 (redundancy)

Relation between seismic loads and scour \rightarrow Seismic scour hazard (PSS)

Figure 1. Eroded soil around the pier of the Curacavi Bridge, in Metropolitan Region, Chile.

2. Chilean experience

2010 earthquake in Chile

Many cases of soil liquefaction which reduces the bearing capacity

Study Justification

Structural redundancy in bridges with special focus in pier failure to make sure that designs have enough of it to prevent loss of functionality

No experience in the Chilean design

Figure 2. Loncomilla Bridge collapsed due to scour. (Fisco deberá pagar. 2011)

3. Redundancy Indices

Liu et al. 2000 : Deterministic and non linear incremental

"A bridge substructure is considered as safe if it provides a reasonable safety margin against ultimate failure(whether due to excessive component damage or overall system collapse) and it does not exhibit excessive displacements that render the bridge inadequate for use"

Ultimate Limite State (LFu)

Ultimate limit state for damaged condition (LFd)

Reserve ratios (1.2<Ru, 0.5<Rd)

Redundancy factor, 1.0<φs

4. Case Study

Ramadillas 2 Bridge

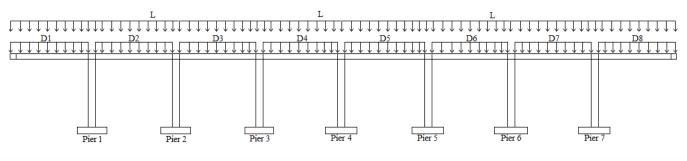
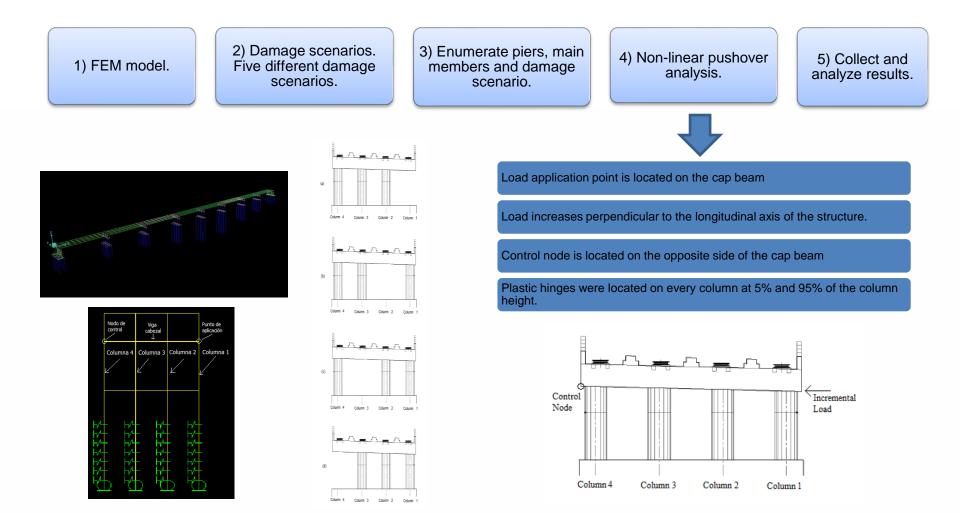
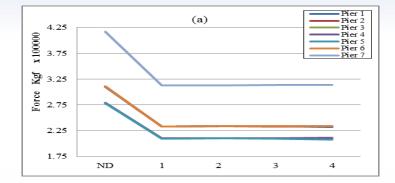


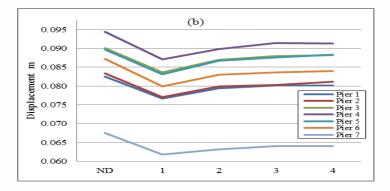
Figure 5. Load distribution in the case study.

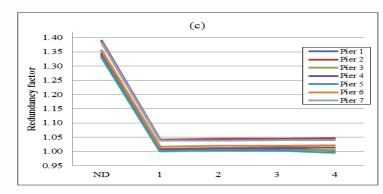

- Route 160 Concepción Lebu
- Carampangue river
- Concrete slab. Semi-continuos span
- 4 concrete precast beam
- Total length 280 [m]

- Concrete column piers
- Foudation: Piles (1.2 9.5 m)
- width of the deck 12.85 m
- Loads: DD- LL 4000 kgf

5. Application Methodology

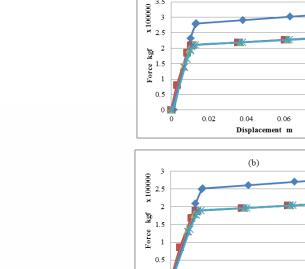

6. Results


	Redundancy Factors ND
Pier 1	1.3404
Pier 2	1.3895
Pier 3	1.3316
Pier 4	1.3437
Pier 5	1.3332
Pier 6	1.3548
Pier 7	1.3835


Maximum variation of 4.3%

	1	2	3	4
Pier 1	1.005	1.009	1.009	1.004
Pier 2	1.042	1.045	1.044	1.046
Pier 3	1.000	1.004	1.003	1.005
Pier 4	1.009	1.012	1.013	1.014
Pier 5	1.001	1.005	1.004	0.995
Pier 6	1.016	1.020	1.020	1.021
Pier 7	1.037	1.038	1.040	1.040

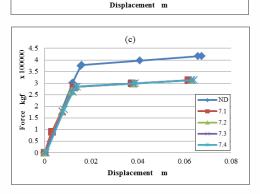
Pier 7 Critical (near abutment)!!



6. Results

Damage Scenario	Ru/1.2	Rd/0.5
Pier 7		
Collapse ND	1.1529	
Collapse 7.1		2.0750
Collapse 7.2		2.0750
Collapse 7.3		2.0798
Collapse 7.4		2.0805

The Pile Soft property (similar to the case study) Failure of first member 0.05 m Mechanism state before reaching 0.1 m,


Solid structural redundancy.

0 0

0.02

3.5

0.04

0.06

(a)

ND

0.1

- 1.1 1.3

ND

4 1 4.2

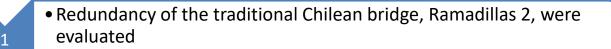
> 4.3 4.4

> > 0.1

0.08

0.08

2


3

Δ

5

6

6. Final Comments

- Incremental lateral loads emulate the plastification at the piers due to seismic loads and scour.
- 2010 earthquake. Bridges withstand the damage because of their redundancy
- Transition Manual de Carreteras / AASHTO LRFD
- Identified different alternatives to increase this capacity.
- Future research ongoing (superestructure)

Santiago – CHILE 18 al 20 de Octubre de 2017 October 18 to 20, 2017

SECOND INTERNATIONAL BRIDGES CONGRESS - CHILE 2017, DESIGN, CONSTRUCTION AND MAINTENANCE

Venue Santiago - Chile

Dates 18 - 20 October 2017

Organizan / Organized by

Second International Bridges Congress - CHILE 2017: Design, Construction and Maintenance

Santiago – CHILE 16 al 21 de Octubre de 2017 - October 18 to 20, 2017

INFORMATION and CONTACT

Dr. Matías Valenzuela Saavedra, Bridge Department, Public Works Ministry of Chile

matias.valenzuela@mop.gov.cl

Venue – Santiago Chile

Technical Visit – Puerto Montt, Chile Chacao Bridge Project

IABMAS2016

8th International Conference on Bridge Maintenance, Safety and Management June 26 - 30, 2016 | Foz do Iguaçu | Brazil

ement zil

First Applications Of Structural Redundancy In Chilean Bridges

Thank you

Pablo Figueroa. P.E, Universidad de Los Andes Matías A. Valenzuela. P.E, Ph.D, Public Works Ministry Chile