Computacién en la nube con
virtualizacion liviana (Kubernetes)

Edgar Magana, PhD

Temas del Curso

Temario

* Introduction to Containers

* Setting up and getting started

** Installing docker

** Installing Minikube

** Explore minikube and operations

* Kubernetes and the Cloud-native ecosystem
** Deep dive in kubernetes

* Application Deployment

** Reading and creating YAML
** Creating a namespace

** Deploy an application

** Verify health of application
** Review application logs

** K9s

* Kubernetes Architecture

** K8s Control Plane

** K8s Data Plane

** Communication between Control and Data Planes
** Exercises

* Complex Application Deployment
** Expose app to internet via LB
** Add resource requests and limits
** Operations on K8s resources

Introduction to Containers

Edgar Magana, PhD

Outline

e Container recipe

Containers? These?

Before containers ...things were messy

App
#1

Bins/
Libs

Containers

Bins/
Libs

Host OS

App
#3

Container

Bins/
Libs

Docker Engine

Server

App App App
#1 #2 #3
Bins/ Bins/ Bins/
Libs Libs Libs
Guest Guest Guest
oS oS (015
Hypervisor
Host OS

source: https:/medium.com

Containers

\

M . b e All containers share the same kernel

#';p #pzp 43 of the host system.

[Container Pro: Extremely reduced performance
overhead.

Bins/ Bins/ Bins/

2 - L' ofs o
Libs Libs ibs e Better utilization of resources due to

S
0 shared kernel.
Docker Engine

e Lightweight and uses less space on
Host OS disk
Server e Portable and better dependency

management

source: https://medium.com

Outline

e Why should | care?

Deploy anywhere and anything

’

e webapps

e backends

e SQL, NoSQL

e big data

e load balancing

e .. and more

{CODE WAS WORKINGION[DEY

-! haf

_BUT BROKE DOWN IN Pnonucnou

... but, it was working on my machine.

Deploy reliably & consistently

e If it works locally, it will work on the server

e With exactly the same behavior

e Regardless of versions

e Regardless of distros

e Regardless of dependencies

e Typical laptop runs 10-100 containers easily

e Typical server can run 100-1000 containers

e A quick docker demo

e Docker Installation

o CLI
o Basic Commands
o Pull Images
o Deploy Containers
e Docker Hub

s docker running?

docker run hello-world

docker run

docker run -ti debian bash

-ti -> terminal interactive

Check list of images

docker images

Pulling images

docker pull ubuntu:xenial

Terminology

Images - The blueprints of our application which form the basis of containers. In the demo above, we used the docker pull
command to download the busybox or ubuntu image.

Containers - Created from Docker images and run the actual application. We create a container using docker run which we
did using the busybox image that we downloaded. A list of running containers can be seen using the docker ps command.

Docker Daemon - The background service running on the host that manages building, running and distributing Docker
containers. The daemon is the process that runs in the operating system to which clients talk to.

Docker Client - The command line tool that allows the user to interact with the daemon. More generally, there can be other
forms of clients too - such as Kitematic which provide a GUI to the users.

Docker Hub - A registry of Docker images. You can think of the registry as a directory of all available Docker images. If
required, one can host their own Docker registries and can use them for pulling images.

Run docker container from images

docker run -ti ubuntu:latest bash

ubuntu -> image
latest -> tag (optional, by default it's latest)
bash -> what do we want to do with the image.

Leave container running in
background(detatch)

docker run -d -ti ubuntu /bin/bash

-d -> detaches the container

Additional commands

docker ps -a

docker info

docker restart zeolous_darwin
docker inspect blisful_saha
docker inspect blisful_saha | gre
=1 Ip

Dockerfile

e A Dockerfile is a simple text-file that contains a list of commands that the Docker client calls while creating
an image.
e |It's a simple way to automate the image creation process.

Let's create a Dockerfile:

mkdir build

cd build

vim Dockerfile

Dockerfile

#This is a custom ubuntu image with vim already installed
FROM ubuntu:xenial

MAINTAINER emagana <emagana@gmail.com>

RUN apt-get update

RUN apt-get install -y vim

Dockerfile

#Build the new docker image

docker build -t="emagana/ubuntuvim:v3” .

-t -> title
. -> dot, because Dockerfile is in the same folder.

Apache Web Server

‘ Chrome File Edit View History Bookmarks Profiles Tab Window Help

e unmmsEa v wEv CD (D CEIED XD
#Building our own web server €5 C 0 O

ES DP Confluence ES HR - Benefits [E5 Gittab E5 CO02 [E5 Personal E5 SCS E5 DSP E5 WFE groups.

docker pull httpd It works!
docker run -d --name apache -p 80:80 httpd
http://localhost:80

docker stop [container-name-or-id]

mkdir apache && cd apache

vim index.html

<h1>Test</h1>

<p>This is a test page for the Apache deployment in Docker</p>

Apache Web Server

@ Chrome File Edit View History Bookmarks Profiles Tab Windo

#Let's build/customize our web server | T Bl v B CD
& CcC 0O i) localhost

ES DP Confluence [E5 HR - Benefits [E5 Gittab E3J CO2 [E3 Personal

Test

This is a test page for the Apache deployment in Docker

vim Dockerfile

FROM httpd:latest

COPY index.html /usr/local/apache2/htdocs

EXPOSE 80

docker build -t [image-name]

docker run -d --name apachevl -p 80:80 apache:vl

http://localhost:80

Outline

e (Container recipe

e Why should | care?

e A quick docker demo
e Building blocks

e Security

Building blocks of containers

e Again.. what is a container?
e Cgroups
e Namespaces

What is a container?

e How it "feels" like:

Own process space

own network space

run stuff as root

can install packages

can run services

can mess up routing, iptables ...

O O O O O O

What is a container?

e |[t's not quite like a VM:

uses the host kernel

can't boot a different OS

can't have its own modules

doesn't need init as PID 1

doesn't need syslogd, cron...

e It's just normal processes on the host machine
o contrast with VMs which are opaque

c O O O O

Building blocks of containers

e Again.. what is a container?
e Cgroups
e Namespaces

Control Groups (Cgroups)

e Resource metering and limiting
o memory
o CPU
o block /0
o network*
e Device node (/dev/*) access control

e Crowd control

Memory cgroup: limits

e Each group can have its own limits
o limits are optional
o two kinds of limits:
m Soft limits
m Hard limits
e Soft limits are not enforced
o they influence reclaim memory pressure

Memory cgroup: limits

e Hard limits will trigger a per-group OOM Kkiller
e Limits can be set for different kinds of memory
o physical memory
o kernel memory
o total memory
e Multiple groups use the same page, only first one is "charged"
o but if it stops using it, the charge is moved to another group.

CPU cgroup

e Keep track of user/system CPU time
e Keeps track of usage per CPU

e Allows to set weights

CPUset cgroup

e Pin groups to specific CPU(s)

e Reserve CPUs for specific apps

e Avoid processes bouncing between CPUs

Building blocks of containers

e Again.. what is a container?
e Cgroups
e Namespaces

Namespaces

e Provide processes with their own system view
o Cgroups = limits how much you can use;
o Namespaces = limits what you can see

e Multiple namespaces:

pid

net

mnt

uts

ipc
o user

e Each process is in one namespace of each type

0O O O O O

pid namespace

e Processes within a PID namespace only see processes in the
same PID namespace
e Each PID namespace has its own numbering
o starting at 1
e If PID 1 goes away, whole namespace is killed
e Those namespaces can be nested
e A process ends up having multiple PIDs
o one per namespace in which its nested

Network namespaces: in theory

e Processes within a given network namespace get
their own private network stack, including:
o network interfaces
o routing tables
o iptable rules
o sockets

Network namespaces: in practice

e Use virtual interfaces acting as a cross-over cable

e ethO in container network namespace, paired with
vethXX in host network namespace.

e All the vethXX are bridged together via virtual
switch inside the container host.
o Docker calls the bridge docker0

Outline

e (Container recipe

e Why should I care?

e A quick docker demo
e Building blocks

e Security

Use RunC Flaw to gain Root access on Host

e The vulnerability, identified as CVE-2019-5736, was discovered by
two open source security researchers on 11th Feb 2019.
e “High level” container runtimes like Docker does image creation
and management
e Use "Low level” runC to handle tasks related to running containers
o creating a container
o attaching a process to an existing container (docker exec)

The Vulnerability

Overview given by the runC team:

The vulnerability allows a malicious container to (with minimal user
interaction) overwrite the host runc binary and thus gain root-level
code execution on the host. The level of user interaction is being
able to run any command ... as root within a container in either of
these contexts:

® (Creating a new container using an attacker-controlled image.
e Attaching (docker exec) into an existing container which the
attacker had previous write access to.

Bibliography

What is container? | https://www.docker.com/resources/what-container

Demystifying containers 101 | https://tinyurl.com/yxd7fnpe

Getting started with Docker | https://tinyurl.com/y35e879j , http://bit.do/eJwmy

Docker for development and deployment | http://bit.do/eJwmH

RunC Flaw Lets Attackers Escape Linux Containers to Gain Root on Hosts | https://is.gd/3gPVsQ
CVE-2019-5736 | https://nvd.nist.gov/vuln/detail/CVE-2019-5736

Explaining CVE-2019-5736 | http://bit.do/eJLcG

LXC | https://linuxcontainers.org/Ixc/introduction/ , https://is.gd/iOF9i4

Container basics | https://is.gd/Eq4gaP https://is.gd/pGgMgqW

https://is.gd/pGgMqW

Bibliography

Namespaces in operation | https://lwn.net/Articles/531114/

Future of Linux Containers | https://is.gd/U0OQR9K

cgroups | https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt , https://is.gd/1x1ihc

Attacks on Linux Containers | https://ieeexplore.ieee.org/document/7854163

Comparing different containers | https://ieeexplore.ieee.org/document/8075934

Beginners Guide to Containers Technology and How it Actually Works|video] | https://is.qd/CzTb1d
My Docker Guide | https://github.com/w4rbOy/devOpsNotes/blob/master/dockerGuide.md

Google Cloud | https://cloud.google.com/containers/

Containers from scratch | https://ericchiang.github.io/post/containers-from-scratch/

https://lwn.net/Articles/531114/
https://is.gd/U0QR9K
https://is.gd/1x1ihc
https://ieeexplore.ieee.org/document/7854163
https://ieeexplore.ieee.org/document/8075934
https://is.gd/CzTb1d
https://github.com/w4rb0y/devOpsNotes/blob/master/dockerGuide.md
https://cloud.google.com/containers/

Thank you!

