

- FUNCIONES HASH
- I. Complete el enunciado con las siguientes Herramientas:
- Software REMAKE CriptoRes o Software SAMCript. Editor Hexed.it: <u>https://hexed.it/</u>

I. MD5: sistema little endian, relleno y tamaño archivo Ejercicio 1)

- Usando el botón de generación de resumen, encuentre el hash MD5 del mensaje M = Hola. Para el mismo mensaje, repita el resumen para SHA-1, SHA-256 y SHA-512.
- Busque en su computador el archivo RemakeCriptoRes, encuentre el hash MD5, el hash SHA-1, SHA-256 y SHA-512. Repita un par de veces la operación de resumen y compare la velocidad de cálculo de cada función.
- 1.3. Obtenga la función hash MD5 de M = Prueba 122 del hash. Abra otra ventana y encuentre ahora el hash de M = Prueba 123 del hash. Observe que los mensajes difieren sólo en un bit (2 = 0011 0010; 3 = 0011 0011).
- 1.4. Abra la calculadora de Windows dos veces y copie el hexadecimal de cada hash en cada una, cambie luego a binario. Haga un XOR entre los dos valores y compruebe que con cambiar sólo un bit del mensaje, el hash cambia más de la mitad de bits. Recuerde que estas calculadoras trabajan con 64 bits. Asegúrese que ambos valores tengan el mismo número de bits.
- 1.5. Para el mensaje M = 123, encuentre el hash MD5 a través del botón de seguimiento. Abra la pestaña del seguimiento del algoritmo y observe que se ha operado con un solo bloque.
- 1.6. Active la opción A Nivel de Pasos y vuelva a calcular el hash. Observe los valores 313233 (hexadecimal de 123) y luego el valor 80 que significa un relleno (1 seguido de ceros). Al final verá un bloque de 64 bits (últimas dos palabras) cuyo valor es 18. Con la calculadora de Windows compruebe que ese valor en decimal corresponde a 24, los 3 bytes del mensaje.
- 1.7. Observe ahora el relleno y el número de bits para el hash MD5 del mensaje
 M = En este caso tenemos 232 bits. Compruebe este valor.
- 1.8. Si el mensaje tiene exactamente 512 bits, siempre se incluye un bloque con relleno. Compruébelo con el mensaje de 64 bytes M = Y en este caso habrá siempre un bloque extra como ya se ha dicho. Recuerde: h = 68 y o = 6F. Observe que a nivel de pasos no se ve relleno (se muestra sólo el primer bloque) y que a nivel de bloques muestra el procesamiento de dos bloques.
- 1.9. Compruebe gráficamente la paradoja del cumpleaños pinchando en el icono con figura de tarta. Primero indique 5 iteraciones y acepte las opciones por defecto de un seguimiento preciso de cada cumpleaños. A continuación introduzca otros números, juegue un poco con las opciones del programa y observe que el valor medio de intentos es cercano a 23
- 1.10. Con el software RemakeCriptoRes, en modo "Seguimiento del algoritmo MD5" (lupa) y con seguimiento a "Nivel de Pasos", obtén el hash MD5 de este mensaje de 31 bytes: Hola, buenos días. ¿Cómo estás?

- 1.2. Comprueba la escritura en formato little endian de MD5 leyendo los bytes que aparecen en código hexadecimal (usa la tabla de códigos ASCII).
- 1.3. Marca el inicio del relleno (primer byte) que se ha usado en el cálculo del hash e indica cuántos bits y cuántos bytes son.
- 1.4. Marca las palabras que entregan el tamaño del archivo (o texto) y comprueba que el valor en hexadecimal indicado es la cantidad de bits en decimal del mensaje.
- 1.5. ¿Crees que es suficiente dejar 64 bits para el tamaño del archivo? Busca en Internet la cantidad de información que maneja Google o bien que se genera mundialmente.
- 1.6. Haz un esquema donde se indiquen los bytes del mensaje, los bytes usados para el relleno y los bytes reservados para el tamaño del archivo. Comprueba que la suma de ellos corresponde al tamaño de bloque que usa esta función hash.
- 1.7. ¿Por qué en la ventana de Datos Estadísticos al hacer el hash se nos indica que se han procesado 64 bytes?

Comprueba tu trabajo:

Valor in	ici	al :01234567 89ABCDEF FEDCBA98 76543210	
Donde	105	s bytes menos significativos de cada palabra (A,B,C,D)	ч
están a	la	izquierda. Si los representamos en el orden natural	
(bytes m	end	os significativos a la derecha), se obtiene:	
Valor in	ici	al´ :67452301 EFCDAB89 98BADCFE 10325476	
		Procesamiento del único bloque:	
Las pala	bra	as del bloque 1 del mensaje son:	
(Los byt	es	menos significativos a la derecha)	
Palabra	1	01100001011011000110111101001000 = 616C6F48	
Palabra	2	01110101011000100010000000101100 = 7562202C	
Palabra	3	0111001101101111011011001100101 = 736F6E65	
Palabra	4	01100001111011010110010000100000 = 61ED6420	
Palabra	5	1011111100100000010111001110011 = BF202E73	
Palabra	6	01101111011011011111001101000011 = 6F6DF343	
Palabra	7	0111010001110011011001000000 = 74736520	
Palabra	8	10000000001111110111001111100001 = 803F73E1	-

Procesamiento del único bloque: ^	La palabra B pasa a ocupar el lugar de C ^
Las palabras del bloque 1 del mensaje son:	
(Los bytes menos significativos a la derecha)	Salida: t = 64 68BB6CD1 31FAF7B2 508F1DE3 8D02A3E1
Palabra 1 01100001011011000110111101001000 = 616C6F48	
Palabra 2 01110101010001000000000101100 = 7562202C	
Palabra 3 01110011011011011011001100101 = 736F6E65	Actualización final: (valores iniciales + valores paso 64)
Palabra 4 01100001111011010010000100000 = 61ED6420	67452301 EFCDAB89 98BADCFE 10325476
Palabra 5 1011111100100000010111001110011 = BF202E73	+ 68BB6CD1 31FAF7B2 508F1DE3 8D02A3E1
Palabra 6 0110111101101101101101000011 = 6F6DF343	
Palabra 7 01110100011100101001000000 = 74736520	D0008FD2 21C8A33B E949FAE1 9D34F857
Palabra 8 10000000001111110111001111100001 = 803F73E1	
Palabra 9 00000000000000000000000000000000000	Valor hash o resumen final del primer bloque
Palabra 10 0000000000000000000000000000000000	Deshaciendo la inversión inicial, es decir, representando
Palabra 11 0000000000000000000000000000000000	los bytes menos significativos de cada palabra a la izquierda
Falabra 12 000000000000000000000000000000000 = 00000000	se obtiene:
Palabra 13 0000000000000000000000000000000000 = 000000	D28F00D0 3BA3C821 E1FA49E9 57F8349D
Palabra 14 00000000000000000000000000000000000	
Palabra 15 00000000000000000000000000000000000	Luego el resumen final será:
Palabra 16 00000000000000000000000000000000000	D28F00D03BA3C821E1FA49E957F8349D
	1

Figura 2. Seguimiento del hash MD5: tamaño del archivo.

SHA-1: sistema big endian, relleno y tamaño archivo ejercicio 2

2.1. Repite la práctica anterior, calculando ahora el hash SHA-1 SHA-256 y SHA-512del mensaje y realizando su seguimiento.

M Hola, buenos días. ¿Cómo estás?

Comprueba tu trabajo:	Procesamiento del único bloque:
	Las palabras del bloque 1 del mensaje son:
	Palabra 1 01001000011011110110110001100001 = 486F6C61
	Palabra 2 00101100001000000110001001110101 = 2C206275
	Palabra 3 0110010101101110011011110011 = 656E6F73
	Palabra 4 0010000001100100111011010100001 = 2064ED61
	Palabra 5 01110011001011100010000010111111 = 732E20BF
	Palabra 6 0100001111110011011011011011011111 = 43F36D6F
	Palabra 7 00100000011001010111001101110100 = 20657374
	Palabra 8 11100001011100110011111111100000000 = E1733F80
	Palabra 9 00000000000000000000000000000000000
	Palabra 10 0000000000000000000000000000000000
	Palabra 11 0000000000000000000000000000000000
	Palabra 12 00000000000000000000000000000000000
	Palabra 13 00000000000000000000000000000000000
	Palabra 14 00000000000000000000000000000000000
	Palabra 15 00000000000000000000000000000000000
	Palabra 16 00000000000000000000000000000000000

Figura 3. Seguimiento del hash SHA-1: inicio del relleno.

			Proce	esam	iento	del	únic	o blo	que	:		
Las pala	abra	as del	blo	ne :	l del	mens	saje :	son:				
Palabra	1	01001	0000	1101:	11101	10110	00011	00001	=	486F	6C61	
Palabra	2	00101	10000	01000	00001	10001	10011	10101	=	2C20	6275	
Palabra	3	01100	1010:	1101:	11001	10111	1011	10011	=	656E	6F73	
Palabra	4	00100	0000	1100	10011	10110	01011	00001	=	20641	ED61	
Palabra	5	01110	0110	0101	11000	10000	00101	11111	=	732E	20BF	
Palabra	6	01000	01111	1110	01101	10110	01011	01111	=	43F3	6D6F	
Palabra	7	00100	0000	1100	10101	11001	1011	10100	=	2065	7374	
Palabra	8	11100	0010:	1110	01100	11111	11100	00000	=	E173	3 F 80	
Palabra	9	00000	00000	0000	00000	00000	00000	00000	-	0000	0000	
Palabra	10	00000	00000	0000	00000	00000	00000	00000	-	00000	0000	
Palabra	11	00000	00000	00000	00000	00000	00000	00000	=	00000	0000	
Palabra	12	00000	00000	00000	00000	00000	00000	00000	=	00000	0000	
Palabra	13	00000	00000	00000	00000	00000	00000	00000	=	00000	0000	
Palabra	14	00000	00000	0000	00000	00000	00000	00000	=	0000	0000	
Palabra	15	00000	00000	0000	00000	00000	00000	00000	=	00000	0000	
Palabra	16	00000	00000	0000	00000	00000	00111	11000	=	0000	00 F 8	

Figura 4. Seguimiento del hash SHA-1: tamaño del archivo.

- 2.2 Para el mensaje M = 123, encuentre ahora el hash SHA-1 a través del botón de seguimiento. Abra la pestaña del seguimiento del algoritmo y observe que se ha operado con un solo bloque. Observe el vector ABCDE.
- 2.3 Active la opción A Nivel de Pasos y vuelva a calcular el hash. Compare la representación del valor 123 en hexadecimal (313233) con el resultado de MD5, notación little-endian versus big-endian.
- 2.4 Observe que en SHA-1 no se reservan los últimos 64 bits para indicar el tamaño del archivo.
- 2.5 SHA-1 no acepta mensajes de tamaño mayores que 264 bits. Aunque pudiera parecer una limitación, ¿a cuántos bytes correspondería este valor?