Solución Práctico 7

- 1. Ver el manual del curso o las notas de Marco.
- 2. Para cada parte se muestra una de las propiedades que falla, pero puede haber otras.
 - a. No existe el neutro del producto.
 - b. No existe el neutro del producto.
 - c. No existe el neutro de la suma.
 - d. No existe el opuesto.
 - e. No se cumple la propiedad asociativa.
- 3. No se cumple la propiedad asociativa.
- 4. Ver el manual del curso o las notas de Marco.
- 5. a. Es un subespacio vectorial.
 - b. Es un subespacio vectorial.
 - c. No es un subespacio vectorial: La matriz nula no es una matriz invertible.
 - d. No es un subespacio vectorial: la suma de dos matrices no invertibles puede dar una invertible.
 - e. No es un subespacio vectorial: el rango no se preserva al sumar matrices.
 - f. Es un subespacio vectorial: La matriz nula tiene traza cero. Además, sean A,B dos matrices de traza 0 y $\lambda \in \mathbb{R}$. Veamos que A+B y λA tienen traza 0.

$$tr(A+B) = tr(A) + tr(B) = 0 + 0 = 0$$
$$tr(\lambda A) = \lambda tr(A) = \lambda 0 = 0$$

Tenemos que el conjunto es cerrado bajo la suma y el producto por escalar.

Aquí usamos propiedades sobre la traza vistas en el teórico y prácticos anteriores.

- 6. a. S es un subespacio vectorial sii d = 0.
 - b. S es un subespacio vectorial sii v=0.
 - c. S es un subespacio vectorial sii r=0.
- 7. a. 1) No es un subespacio vectorial: El vector (0,0,0) no pertenece a S.

- 2) No es un subespacio vectorial: Podemos escribir a S como $S = \{(a,b,c \in V: 3a-3b-c=2)\}$ y vemos que el vector (0,0,0) no cumple la condición.
- 3) Es un subespacio vectorial.
- b. 1) No es un subespacio vectorial: Sea $(x_1,...,x_n) \in S$ tal que $x_1 > 0$ y $\lambda < 0$. Es claro que $\lambda x_1 < 0$ por lo que $\lambda(x_1,...,x_n) = (\lambda x_1,...,\lambda x_n) \notin S$.
 - 2) Es un subespacio vectorial.
 - 3) No es un subespacio vectorial: Sea $(x_1,...,x_n) \in S$ y $\lambda \neq 1$, entonces $\lambda x_1 = ... = \lambda x_n = \lambda 1 \neq 1$ por lo que $\lambda(x_1,...,x_n) \notin S$.
- c. 1) Es un subespacio vectorial.
 - 2) Es un subespacio vectorial: El polinomio nulo tiene raíz en α trivialmente. Sean $p,q\in S$ y $\lambda\in\mathbb{R}$. Tenemos que

$$(p+q)(\alpha) = p(\alpha) + q(\alpha) = 0 + 0 = 0$$
$$(\lambda p)(\alpha) = \lambda p(\alpha) = \lambda 0 = 0$$
$$(p+q)'(\alpha) = (p'+q')(\alpha) = p'(\alpha) + q'(\alpha) = 0 + 0 = 0$$
$$(\lambda p)'(\alpha) = \lambda p'(\alpha) = \lambda 0 = 0$$

Es decir, $p + q, \lambda p \in S$.

- 3) No es un subespacio vectorial: sumar dos polinomios del mismo grado puede dar un polinomio de menor grado.
- d. 1) Es un subespacio vectorial.
 - 2) No es un subespacio vectorial: Si $f \in S$ y $\lambda \neq 0, 1$ entonces

$$(\lambda f)(x^2) = \lambda f(x^2) = \lambda f(x)^2 \neq (\lambda f(x))^2$$

3) Es un subespacio vectorial: Recordar que f es par si f(-x) = f(x). Claramente la función nula cumple esta propiedad. Sean $f, g \in S$ y $\lambda \in \mathbb{R}$, entonces

$$(f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x)$$

 $(\lambda f)(-x) = \lambda f(-x) = \lambda f(x) = (\lambda f)(x)$

Es decir, $f + g, \lambda f \in S$.

- 8. b) Debemos probar que $S = \{f : \mathbb{R} \to \mathbb{R} : f(x_0) = f(x_1) = \dots = f(x_n) = 0\}$ es un subespacio vectorial. Para esto podemos pensar a S como intersección de conjuntos del tipo $S_i = \{f : \mathbb{R} \to \mathbb{R} : f(x_i) = 0\}$.
- 9. a. Es un subespacio vectorial.
 - b. Es un subespacio vectorial: La función nula es derivable, la suma de funciones derivables es derivable y el producto de una función derivable por un escalar, es una función derivable.

- c. Es un subespacio vectorial.
- d. Es un subespacio vectorial: La función nula es acotada. Además, sean $f,g \in S$, entonces existen K,K' reales positivos tales que |f(x)| < K para todo $x \in \mathbb{R}$ y |g(x)| < K' para todo $x \in \mathbb{R}$. Sea $\lambda \in \mathbb{R}$. Tenemos entonces que para todo $x \in \mathbb{R}$

$$|(f+g)(x)| = |f(x) + g(x)| \le |f(x)| + |g(x)| \le K + K'$$
$$|(\lambda f)(x)| = |\lambda f(x)| = |\lambda||f(x)| \le |\lambda|K$$

Es decir, f + g y λf son funciones acotadas.

10. b. Probamos solo que $W_1\subset W$ pues la otra demostración es análoga. Sea $w_1\in W_1,$ entonces, es claro que

$$w_1 = w_1 + 0_V$$

Como W_2 es un subespacio vectorial, $0_V \in W_2$ y logramos escribir a w_1 como una suma de un elemento de W_1 más uno de W_2 , entonces $w_1 \in W$.

c. Sea S un subespacio vectorial de V que contiene a W_1 y W_2 y sea $w \in W$. Sabemos que existen $w_1 \in W_1$ y $w_2 \in W_2$ tales que $w = w_1 + w_2$. Como W_1 y W_2 son subconjuntos de S, tenemos que $w_1, w_2 \in S$ y como éste es un subespacio vectorial, $w_1 + w_2 \in S$. Es decir $w \in S$.