IV. DI‘SCRETIZATION PROBLEMS:
ADVECTION SCHEMES

A. INTRODUCTION

The problem of discretizing the advection equation, or the advection
terms in other prognostic equations, is still one of the unsettled problems
in numerical modeling of the atmosphere. A number of approaches,
methods and techniques have been proposed and used for this prot:flcm.:
with terminology such as “Eulerian,” “Lagrangian.” “semi-Lagrangian,
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“advective form,” “flux (dwcrgcncc) form,” “flux correction,” “constancy,”
“conservation,” “dispersion,” “dissipation,” “overshooting/ under-
shooting.™ “positive-definite,” “monotonic,” and “shape-preserving.” It is
beyond the scope of this chapter to review these subjects even briefly.
Instead. toward the end of the section, I present the major concern I have
with this problem.

In any case, discretization of the advection equation is based on one of
the following three forms: 3

1. Eulerian advective form:

aq

— +V-Vg=0, (12)
at '

for which “canstancy™ is automatic

2. Eulerian flux (divergence) form:

a(mgq)
+ V-(mVgq) = 0, (13)
at
for which "con‘scrvation" is automatic <
3. Lagrangian form: -
Dq
— =0, (14
Dt )

for which “stability” is (almost) automatic.

Here g is a quantity per unit mass to be advected, V is the advecting
velocity, m is the pseudo-density (i.e., the mass per unit horizontal area
per unit increment of the vertical coordinate) predicted by the continuity
equation, and D /D is the material time derivative. “Constancy” means

that if initially g = constant, it remains so in time.-“Conservation” means

that mq does not change in time, where the overbar denotes the area-aver-
age over a closed domain. [Note that “conservation” here is that of the
first moment, mg, not that of the second moment mq* as in (potential)
enstrophy conservation or energy conservation (e.g., Arakawa and Lamb,
1981).] Finally. “stability” here means the boundedness of predicted q.
“Constancy” is perhaps one of the minimum requirements for any
advection scheme. It is not automatically satisfied, however, in a scheme
based on the flux (divergence) form, Eq. (13), which is a combination of
the advection equation. Eq. (12), and the continuity equation, unless the
scheme becomes equivalent to the discrete continuity equation used in the
model when g is identically 1. Any reasonable Eulerian scheme should be
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able to be rewritten from the advective form to the flux (divergence) form,
or vice versa, although actual computations are done using one of the two.
Lagrangian (or semi-Lagrangian) schemes satisfy “constancy™ but usually
not “conservation.” The time step of any explicit Eulerian schemes are
restricted by the Courant-Friedrich-Levy (CFL) stability condition while
such a restriction does not exist in Lagrangian (or semi-Lagrangian)
schemes.

B. ComruratioNnaL Mope IN Discrete ApvectioN EQuaTions

Most of the difficulties in discretizing the advection equation are
associated with multidimensionality, nonuniformity (of the current), and
nonlincarity. Problems, however, can exist even without these features.
The existence of a computational mode is an example. As in Section 111.B,
a “‘computational mode” refers to a mode in the solutions of a finite-dif-
ference equation that has no counterpart in the solutions of the original
differential equation. Because there is no corresponding true solution to
compare with, a computational mode cannot be made more “accurate™ by
increasing the resolution or using a higher order scheme.

The existence of a computational mode in time with the leapfrog time
differencing is well known. When the frequency is given, however, the
relevant computational mode is in space, which commonly exists in most
finite-difference schemes for the advection equation. The mode is espe-
cially visible in solutions with space-centered nondissipative schemes. To
see the existence of a computational mode following Matsuno (1966), let
us consider Eq. (12) in its simplest case of one-dimensional advection
equation with a constant current U given by

U— =0. (15)

When the space derivative is replaced by the usual second-order centered
finite difference, the relation between » and kAx becomes as shown by
the heavy half-sine curve in Fig. 10. Here v is the frequency, & is the wave
number, and Ax is the grid size. Unlike the continuous case, there are two
wave numbers for a given frequency. As the grid size approaches zero for a
given frequency, only the smaller wave number approaches the true wave
number. The other wave number then represents a spurious mode, the
computational mode in space. The group velocity associated with this
mode is negative when U > 0, i.e., against the current. When the order of
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Figure 10 Dispersion relations for solutions of the advection cquation. Eq. (15), with
centered space finite differencing. See text for further explanation.

accuracy is raised to 4, for example, the relation becomes as shown by the
thin solid line in Fig. 10, with a faster group velocity associated with the
computational mode. When the order of accuracy is further increased to
infinity, corresponding to the use of a spectral model, the relation becomes
as shown by the dashed lines in Fig. 10. The computational mode still
exists, now with the wave number equal to 7/Ax (i.e., wavelength equal to
2Ax), with an infinite group velocity. This is a well-known problem with a
spectral method applied to the Eulerian advection equation.

Note that. in the simple cases presented above with a umform current
and centered space finite differences, conservation of g¢° is automatic
when time is continuous. Thus controlling a computational mode is a
separate problem from the problem of conserving the second moment,
such as the problem of enstrophy conservation in the nondivergent vortic-
ity equation. In practice, the computational mode can only be handled by
sacrificing the exact conservation of the second moment (while there is no
justification for not conserving the«first moment.) In the case of the
nondivergent vorticity equation, however, enstrophy conservation helps the
situation by preventing (or reducing) the spurious-energy cascade to small
scales, which may generate the computational mode. Also, the method of
conserving the second moment for a nonlinear system can be applied in a
modified way to guarantee that the deviation from conservation is dissipa-
tion, rather than generation, of the second moment (Takacs, 1985; Arakawa
and Hsu. 1990; Hsu and Arakawa, 1990).



D. AN InuerenT Dirricurty IN DiscreTizING
THE ADVECTION EQUATION

In my mind, an inherent difficulty in a discrete advection equation is in
defining what we want in the solutions. To illustrate this point, let us
consider solutions similar to those in Fig. 12. Figure 13 shows three
hypothetical solutions: a solution with a perfect Lagrangian accuracy both
in magnitude and phase (Fig. 13a), a solution satisfying conservation with

no dispersion error (Fig. 13b), and a solution satisfying conservation with a
perfect Lagrangian accuracy for the major peak but with dispersion error
(Fig. 13c). All of these solutions are hypothetical and cannot be obtained
in practice. Still they illustrate the problem of defining what we ultimately
want in the solutions in view of their impact on the performance of the
entire model.

If tht quantity advected is the specific humidity, the solution of Fig. 13a
does not conserve the total water content, while the solution of Fig. 13b
gives excessive drying and, therefore, less cloudiness. Both of these cases
are simple translations and, therefore, they are “shape preserving.” The
solution of Fig. 13c seems to be the optimum, but there is a question of
whether we can tolerate such a large distortion of the shape. This kind of
consideration makes me feel that the use of a grid fixed in space has
inherent difficulties for both Eulerian and semi-Lagrangian schemes. This
is one of the major reasons why I am in favor of the quasi-Lagrangian
vertical coordinate, such as an isentropic coordinate, at least as one of the
promising options.
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Figure 13 Three hypothetical solutions of the advection equation. Eq. (15). on a stretched
grid: (a) a solution with a perfect Lagrangian accuracy both in magnitude and phase. (b) a
solution satisfying conservation with no dispersion error. and (c) a solution satisfyving conser-
vation with a perfect Lagrangian accuracy for the major peak but with dispersion error.



