Stochastic gradient descent

GD minimizes:

$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \underbrace{\mathbf{e}\left(\mathbf{h}(\mathbf{x}_n), y_n\right)}_{\ln\left(1 + e^{-y_n \mathbf{w}^\mathsf{T}} \mathbf{x}_n\right)} \leftarrow \text{in logistic regression}$$

by iterative steps along $-\nabla E_{
m in}$:

$$\Delta \mathbf{w} = - \eta \nabla E_{\text{in}}(\mathbf{w})$$

 $\nabla E_{
m in}$ is based on all examples (\mathbf{x}_n,y_n)

"batch" GD

The stochastic aspect

Pick one $(\mathbf{x_n}, y_n)$ at a time. Apply GD to $\mathbf{e}(h(\mathbf{x_n}), y_n)$

$$\mathbb{E}_{\mathbf{n}}\left[-\nabla \mathbf{e}\left(h(\mathbf{x}_{\mathbf{n}}), y_{\mathbf{n}}\right)\right] = \frac{1}{N} \sum_{n=1}^{N} -\nabla \mathbf{e}\left(h(\mathbf{x}_{n}), y_{n}\right)$$

$$=-\nabla E_{\mathrm{in}}$$

randomized version of GD

stochastic gradient descent (SGD)

Benefits of SGD

- 1. cheaper computation
- 2. randomization
- 3. simple

Rule of thumb:

 $\eta = 0.1$ works

5/21