Algoritmos de Aproximación

Clase 5 Problemas de Steiner y del Vendedor Ambulante

Pablo Romero

Lunes 21 de agosto de 2023. Montevideo, Uruguay.

Problema de Steiner

Problema de Steiner (STP)

Dado un grafo G=(V,E), una partición $V=R\cup S$ y costos en las aristas $c:E\to\mathbb{Q}^+$, el STP consiste en hallar el árbol de Steiner T que cubre a todos los vértices requeridos de R (y que contenga cualquier subconjunto de vértices de Stieiner S). Sea \mathcal{T} la clase de todos los árboles. Entonces, el STP es el problema $\Pi_3=(\mathcal{I}_3,S_{\Pi_3},f_3)$, donde

- $\mathcal{I}_3 = \{(G, R, c) : G \in \mathcal{G}, G = (V, E), R \subseteq V, c : E \rightarrow \mathbb{Q}^+\}.$
- $S_{\Pi_3}(G,R,c) = \{T \in \mathcal{T} : T \subseteq G, R \subseteq V(T)\}.$
- $f_3((G, R, c), T) = \sum_{e \in E(T)} c(e)$.
- $OPT_{\Pi_3}((G,R,c)) = \min_{\{T \in S_{\Pi_3}(G,R,c)\}} \sum_{e \in E(T)} c(e).$

Problema de Steiner Métrico

Problema de Steiner Métrico (MSTP)

Dado un grafo completo K_n , una partición de sus vértices $V(K_n)=R\cup S$ y costos métricos en sus aristas $c^*:E\to \mathbb{Q}^+$, el MSTP consiste en hallar el árbol de Steiner T que cubre a todos los vértices requeridos de R (y que contenga cualquier subconjunto de vértices de Stieiner S)

Entonces, el MSTP es el problema $\Pi^* = (\mathcal{I}^*, \mathcal{S}_{\Pi}^*, f^*)$, donde

$$\bullet \ \mathcal{I}^* = \{(K_n, R, c^*) : R \subseteq V,$$

$$c^*: E(K_n) \to \mathbb{Q}^+, c^*(xz) \le c^*(xy) + c^*(yz)$$
.

•
$$S_{\Pi^*}(K_n, R, c^*) = \{T \in \mathcal{T} : T \subseteq K_n, R \subseteq V(T)\}.$$

•
$$f^*((K_n, R, c), T) = \sum_{e \in E(T)} c^*(e)$$
.

•
$$OPT_{\Pi^*}((K_n, R, c^*)) = \min_{\{T \in S_{\Pi^*}(G, R, c^*)\}} \sum_{e \in E(T)} c^*(e).$$

Reducción de STP a MSTP

Teorema 1.

Existe una reducción de Π_3 a Π^* que preserva el factor de aproximación.

Prueba. Sea $I = (G, R, c) \in \mathcal{I}_3$, donde G = (V, E). Sea n = |V| y $g_1(I) = I^* = (K_n, R, c^*)$, donde $K_n = G \cup G^c$ y $c^*(uv)$ el menor costo de un camino entre u y v. Si $uv \in E$ entonces $c^*(uv) \le c(uv)$, puesto que uv es un camino entre u y v. Como cada solución factible para I^* lo es para I pero con costo no mayor, entonces $OPT_{\Pi^*}(I^*) \leq OPT_{\Pi_3}(I)$. Por Dijkstra, g_1 es de tiempo polinomial. Sea T^* es un árbol de Steiner en (K_n, R, c^*) . Cada arista uv de T^* se corresponde con un camino mínimo P_{uv} en Gtal que $\sum_{e \in P} c(e) = c^*(uv)$. Tomando un árbol T de $\bigcup_{uv \in T^*} P_{uv}$ y definiendo $T = g_2(T^*)$ es claro que T cubre a R y que $f_3(T) \leq f^*(T^*)$. Luego, el par (g_1,g_2) es la reducción buscada. \blacksquare

Problema de Steiner

Factor 2 para el Problema de Steiner (STP)

Teorema 2.

El algoritmo de Kruskal sobre R es un factor 2 en el MSTP.

Idea de la Prueba. Sea $I^* = (K_n, R, c^*)$ una instancia del MST, y sea T^* un árbol de Steiner con costo OPT para I^* . Sea G el grafo que se obtiene de T^* tras duplicar a todas sus aristas. Como todos los vértices de G tienen grado par entonces existe un circuito euleriano en G con costo 2OPT. Armemos un ciclo que contiene a los vértices de R tomando atajos. Su costo es inferior a 2OPT. Al eliminarle una arista tenemos un camino en R cuyo costo es nuevamente menor que $2OPT_{\Pi^*}(I^*)$. \square

Problema de Steiner

Factor 2 para el Problema de Steiner (STP)

Ejercicio 3

Completar los detalles de la demostración del Teorema 2.

Sugerencias para resolver el Ejercicio 3

- Probar que Kruskal es un algoritmo de tiempo polinomial.
- Revisar una demostración constructiva del Teorema de Euler sobre la existencia de circuitos eulerianos (recursiva).
- Presentar un algoritmo de tiempo polinomial para hallar los atajos.

Problema del vendedor ambulante (TSP)

Problema del vendedor ambulante (TSP)

Dado un grafo completo con al menos 3 vértices y con costos racionales no negativos en sus aristas, el TSP consiste en hallar un ciclo hamiltoniano en tal grafo con costo mínimo.

Entonces, el TSP es el problema $\Pi_4 = (\mathcal{I}_4, S_{\Pi_4}, f_4)$, donde

•
$$\mathcal{I}_4 = \{ (K_n, c) : n \in \mathbb{Z}^+, n \geq 3, c : E(K_n) \to \mathbb{Q}^+ \cup \{0\} \}.$$

•
$$S_{\Pi_4}((K_n,c)) = \{C \subseteq K_n : C \cong C_n\}, \forall I \in \mathcal{I}_4.$$

•
$$f_4((K_n,c),C) = \sum_{e \in E(C)} c(e)$$
.

•
$$OPT_{\Pi_4}((K_n, c)) = \min_{\{\mathcal{C}: \mathcal{C} \subseteq K_n\}} \sum_{e \in E(\mathcal{C})} c(e).$$

Inaproximabilidad del TSP

Teorema 3.

El TSP no admite ningún algoritmo de aproximación de factor $\alpha(n)$ siendo $\alpha: \mathbb{Z}^+ \to \mathbb{Q}^+$ de tiempo polinomial, a menos que $\mathcal{P} = \mathcal{NP}$.

Prueba. Supongamos por absurdo que sí existe tal algoritmo \mathcal{A} con factor $\alpha(n)$. Para cada grafo G con n vértices consideramos la instancia $I=(K_n,c)$ de TSP, donde $K_n=G\cup G^c$, y c(e)=1 si $e\in G$ o $c(e)=n\alpha(n)$ en caso contrario. Notemos que si G tiene un ciclo hamiltoniano entonces $OPT_{\Pi_4}(I)=n$, mientras que si no lo tiene entonces $OPT_{\Pi_4}(I)>n\alpha(n)$. Como $\mathcal{A}(I)\leq \alpha(n)OPT_{\Pi_4}(n)$, podemos concluir que $\mathcal{A}(I)=n$ si y sólo si G tiene un ciclo hamiltoniano. Como el problema de decisión que consiste en determinar si un grafo G tiene o no un ciclo hamiltoniano es \mathcal{NP} -completo, se concluye el resultado.

Problema de TSP métrico

Problema del TSP métrico

Dado un grafo completo con al menos 3 vértices y con costos métricos racionales y no negativos en sus aristas, el TSP métrico o MTSP consiste en hallar un ciclo hamiltoniano en tal grafo con costo mínimo.

Entonces, el MTSP es el problema $\Pi_4^* = (\mathcal{I}_4^*, S_{\Pi_4^*}, f_4^*)$, donde

•
$$\mathcal{I}_{4}^{*} = \{(K_{n}, c) : n \in \mathbb{Z}^{+}, n \geq 3,$$

$$c^*: E(K_n) \to \mathbb{Q}^+ \cup \{0\}: c(xz) \le c(xy) + c(yz)\}.$$

$$\bullet \ S_{\Pi_4^*}((K_n,c)) = \{ \mathcal{C} \subseteq K_n : \mathcal{C} \cong C_n \}, \, \forall I \in \mathcal{I}_4^*.$$

•
$$f_4^*((K_n,c),\mathcal{C}) = \sum_{e \in E(\mathcal{C})} c(e)$$
.

•
$$OPT_{\Pi_4^*}((K_n, c)) = \min_{\{\mathcal{C}: \mathcal{C} \subseteq K_n\}} \sum_{e \in E(\mathcal{C})} c(e).$$

Factor 2 para el MTSP

Teorema 4.

Existe un algoritmo de aproximación de factor 2 para el MTSP.

Idea de la Prueba. Sea $I = (K_n, c) \in \mathcal{I}_4$ una instancia arbitraria del MTSP, y sea C algún n-ciclo en K_n tal que $OPT_{\Pi_{\bullet}^{*}}(I) = f_{\bullet}^{*}(I, C)$. Apliquemos el algoritmo de Kruskal para hallar un árbol generador T de K_n de costo mínimo. Sea e una arista cualquiera de C, y sea P = C - e. Como P es un árbol, es claro que $f_4^*(I,T) \leq f_4^*(I,P) \leq OPT_{\Pi_4^*}(I)$. Sea G el multigrafo obtenido de T tras duplicar sus aristas. Como todos los vértices de G tienen grado par, existe algún circuito euleriano \mathcal{E} en G, cuyo costo cumple que $f_4^*(I,\mathcal{E}) \leq 2OPT_{\Pi_4^*}(I)$. Tomemos un ciclo hamiltoniano C^* en K_n usando atajos con \mathcal{E} . Gracias a la desigualdad triangular de c se obtiene que $f_4^*(I, C^*) \leq f_4^*(I, \mathcal{E}) \leq 2OPT_{\Pi_4^*}(I)$. 4 D > 4 A > 4 B > 4 B > B

Factor 2 en TSP Métrico

Algoritmo de Christofides para el MTSP

Algoritmo 1 $C' = Christofides(K_n, c)$

- 1: $V \leftarrow Vertices(K_n)$
- 2: $T \leftarrow MST(K_n, c)$
- 3: $V' \leftarrow OddVertices(T')$
- 4: $M \leftarrow MinimumMatching(V, c)$
- 5: $\mathcal{E} \leftarrow EulerTour(V, E(T) \cup M)$
- 6: $C' \leftarrow Shortcuts(V, \mathcal{E})$
- 7: **return** *C'*

Rendimiento de Christofides en el MTSP

Lema 1.

Si $I = (K_n, c)$ es una instancia del MTSP, $V' \subseteq V(K_n)$ es tal que |V'| es par y M es un emparejamiento perfecto de V' de costo mínimo, entonces $f_4^*(I, M) \leq \frac{1}{2}OPT_{\Pi_4^*}(I)$.

Idea de la Prueba. Sea C un ciclo hamiltoniano tal que $f_4^*(I,C) = OPT_{\Pi_a^*}(I)$. Construyamos un ciclo $C_{V'}$ conteniendo a todos los vértices de V' visitados en el orden de C tomando atajos. Como V' es par, el conjunto de aristas de $C_{V'}$ se pueden intercalar de modo de tener dos emparejamientos M_1 y M_2 de V' tales que $M_1 \cup M_2 = E(C_{V'})$. Claramente, el costo de alguno de M_1 o M_2 no supera la mitad del costo de $E(C_{V'})$. En particular, el emparejamiento perfecto M de V' de costo mínimo cumple que $f_4^*(I, M) \leq \frac{1}{2} f_4^*(I, C_{V'}) \leq \frac{1}{2} OPT_{\Pi_4}(I)$. \square

Rendimiento de Christofides en el MTSP

Teorema 5.

El algoritmo de Christofides es un algoritmo de aproximación de factor 3/2 para el MTSP.

Idea de la Prueba. Sea $I=(K_n,c)$ una instancia del MTSP, y sea C un ciclo hamiltoniano que alcanza el óptimo global para I. Sean \mathcal{E} el circuito euleriano construido mediante Christofides que usa exactamente las aristas de $E(T)\cup M$. Sea e una arista de C y P=C-e. Como T es un MST para I tenemos que $f_4^*(I,T)\leq OPT_{\Pi_4^*}(I)$, y por el Lema 1 tenemos que $f_4^*(I,M)\leq \frac{1}{2}OPT_{\Pi_4^*}(I)$. Entonces, $f_4^*(I,\mathcal{E})\leq \frac{3}{2}OPT_{\Pi_4^*}(I)$. Como el ciclo hamiltoniano C' obtenido toma atajos a partir de \mathcal{E} , tenemos que $f_4^*(I,C')\leq \frac{3}{2}OPT_{\Pi_2^*}(I)$, como queríamos demostrar. \square

Rendimiento de Christofides en el MTSP

Ejercicio 4

Completar los detalles de la demostración del Teorema 5.

Sugerencias para el Ejercicio 4

- Falta probar que *Christofides* es un algoritmo de tiempo polinomial.
- Probar que el algoritmo de Edmonds para hallar un emparejamiento de costo mínimo es un algoritmo de tiempo polinomial.
- Reutilizar algunos algoritmos descriptos en la resolución del Ejercicio 3.

Preguntas para profundizar

Preguntas

- ¿Se puede mejorar el factor 2 en emparejamientos?
- ¿El problema de Steiner admite un mejor factor que 2?
- ¿Se puede mejorar el algoritmo de Christofides?
- ¿El TSP métrico admite un FPTAS?