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In the figure of the control loop above, we want to find the transfer function, so we solve for:
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In the time domain representation, we have:

polnl = poln — 11+ a[¢;[n] — Ppo[n]] + Zﬂ[(i’l[n —i]— poln — 1]
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The last integral is a first-order filter, which is easily shown to be represented in the z-domain as:
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So using the bilinear z-transform, we convert the discrete time series to:
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Dplz] = Pplzlz™t + a[d;[z] — Dy z]] + B[P;[z] — Pplz]]

Rearranging, weget:

z
z—1

ol [1 -2 +a+ﬁ%] = &, [a+p

Multiplying both sides by ;—1 gives us:



q>0[z][z:1+[a+ﬁzfl Zi1]=q>1[z][a+ﬁzil Zil
| L P G e P,

Therefore,
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We want to reformat this equation into the classical 2" loop function:
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Using Tustin’s method to move Hgg[s] to the z-domain:
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If we work through the algebra, and substitute 6,, = w’;TS, where 6, is the undamped natural frequency,
we get:
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This looks messy now, but we can find substitutions for this equation in terms of our loop gains, a and B,
where a is known as the proportional gain and 8 is known as the integral gain. Specifically,

1+ 02 _ 1 a+p
142060, +62 2

a+,8_1 1+67  1+206,+67 1+67 200, + 267
2 14200, +02 14200,+62 1+206,+6% 1+270,+62
400, + 462
(Z+B= {n le
1+ 26, +62
Similarly,
1—270, +62

1+206, +62



1-200,+67 1+206,+6; 1-2{6,+6;
14200, +602 1+206,+62 1+276,+6%

4¢0n

a=—""-
1+ 276, + 62

Which leaves,
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