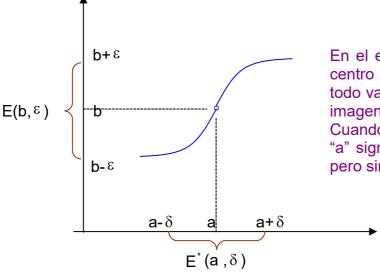
Límites de Funciones

1. DEFINICIÓN TOPOLÓGICA DE LÍMITE

a) Límite finito para x finito

Dada una función f / a es un punto de acumulación de su dominio,

$$\lim_{x\to a} f(x) = b \iff \forall \ \epsilon > 0 \ \exists \ \delta = \delta(\epsilon) > 0 \ / \ \forall \ x \in E^*(a,\delta) \cap Dom(f) \ \text{s.c.q.} \ f(x) \in E(b,\epsilon)$$



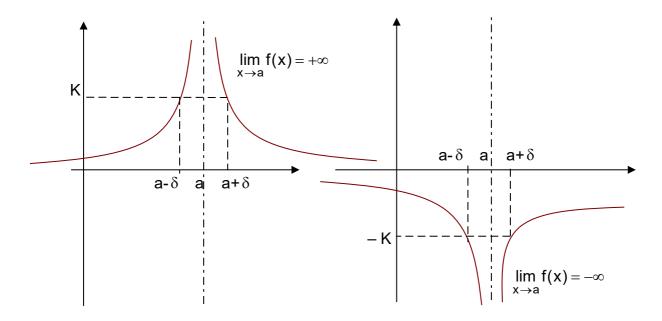
En el entorno reducido de "a"_el centro "a" queda excluido. Para todo valor de x en ese entorno la imagen cae en el entorno de b. Cuando decimos que x tiende a "a" significa que se acerca a "a" pero sin llegar a alcanzarlo.

b) Límite infinito para x finito

Dada una función $f:D \rightarrow R/a \in R$ es un punto de acumulación de D

$$\lim_{x\to a} f(x) = +\infty \iff \forall \ K>0 \ \exists \delta = \delta(K)>0 \ / \ \forall \ x\in E^*(a,\,\delta)\cap D \ s.c.q. \ f(x)>K$$

$$\lim_{x\to a} f(x) = -\infty \iff \forall \ K > 0 \ \exists \delta = \delta(K) > 0 \ / \ \forall \ x \in E^*(a, \delta) \cap D \ \text{s.c.q.} \ f(x) < -K$$



Nota: en estos casos la recta x = a se llama asíntota vertical

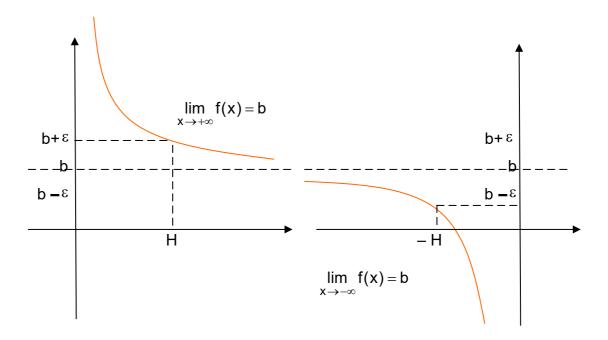
c) Límite finito para x infinito

Dada una función $f:D \to R \ / \ \forall r \in R^+ \ \exists \ x \in D \ / \ x > r$

$$\lim_{x\to +\infty} f(x) = b \iff \forall \varepsilon > 0 \ \exists \ H = H(\varepsilon) > 0 \ / \ \forall x \in D \ \land \ x > H \ \text{s.c.q.} \ |f(x) - b| < \varepsilon$$

Dada una función $f:D \rightarrow R / \forall r \in R^+ \exists x \in D / x < -r$

LÍMITES DE FUNCIONES



Nota: en estos casos la recta y = b se llama asíntota horizontal

d) Límite infinito para x infinito

Dada una función $f:D \to R \ / \ \forall r \in R^+ \ \exists \ x \in D \ / \ x > r$

$$\lim_{X\to +\infty} f(x) = +\infty \iff \forall \ K>0 \ \exists \ H=H(K)>0 \ / \ \forall \ x\in D \ \land \ x>H \quad s.c.q. \ f(x)>K$$

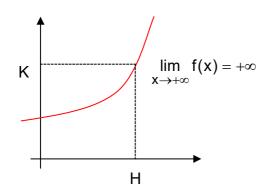
$$\lim_{x \to +\infty} f(x) = -\infty \iff \forall K > 0 \exists H = H(K) > 0 / \forall x \in D \land x > H \text{ s.c.q. } f(x) < -K$$

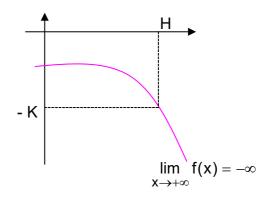
Dada una función $f:D \rightarrow R / \forall r \in R^+ \exists x \in D/x < -r$

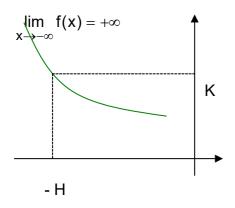
$$\lim_{x\to -\infty} f(x) = +\infty \iff \forall \ K>0 \ \exists \ H=H(K)>0 \ / \ \forall \ x\in D \ \land \ x<-H \ \text{s.c.q.} \ f(x)>K$$

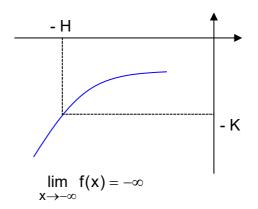
$$\lim_{x\to -\infty} f(x) = -\infty \iff \forall \ \ K>0 \ \exists \ \ H=H(K)>0 \ \ / \ \ \forall \ \ x\in D \ \land \ \ x<-H \ \ s.c.q. \ \ f(x)<-K$$

LÍMITES DE FUNCIONES









Ejemplos

1°) Utilizando la definición de límite mostrar que: $\lim_{x\to 2} \frac{x+3}{x-1} = 5$

Resolución:

Se debe comprobar que cualquiera sea $\epsilon > 0$ $\exists \delta = \delta(\epsilon) / \forall x \in E^*(2, \delta)$

s.c.q.
$$\left| \frac{x+3}{x-1} - 5 \right| < \varepsilon$$

$$\left| \frac{x+3}{x-1} - 5 \right| = \left| \frac{x+3-5x+5}{x-1} \right| = \left| \frac{-4x+8}{x-1} \right| = \left| \frac{4(x-2)}{x-1} \right| = \frac{4}{|x-1|} |x-2| < \epsilon$$

$$\Leftrightarrow |x-2| < \frac{\epsilon}{4} |x-1| \le \frac{\epsilon}{4}$$

para esta última desigualdad suponemos que x debe estar en un entorno

de centro 2 y radio a lo sumo 1, donde $|x - 1| \le 1$.

Finalmente concluimos que si $x \in E^*(2, \frac{\epsilon}{4}) \Rightarrow f(x) \in E(5, \epsilon)$ #

2°) Utilizando la definición de límite mostrar que: $\lim_{x\to 1} \frac{x+3}{x-1} = \infty$

Ahora se debe comprobar que cualquiera sea $K > 0 \exists \delta = \delta(K) > 0$ /

$$\forall x \in E^{*}(1, \delta) \text{ s.c.q. } \left| \frac{x+3}{x-1} \right| > K$$

$$\left| \frac{x+3}{x-1} \right| < K \Leftrightarrow |x+3| < K \cdot |x-1| \Leftrightarrow |x-1| < \frac{|x+3|}{K} \le \frac{4}{K}$$

esta última desigualdad se justifica admitiendo que x debe estar en un entorno de centro 1 y radio a lo sumo 1.

En conclusión: si
$$x \in E^{*}(1, \frac{4}{\kappa}) \Rightarrow |f(x)| > K$$
 #

1. TEOREMA DE UNICIDAD DEL LÍMITE.

"Si una función tiene límite, cuando $x \rightarrow a$ dicho límite es único"

H)
$$\lim_{x\to a} f(x) = b \wedge \lim_{x\to a} f(x) = c$$

$$T)$$
 $b = c$

2. ALGEBRA DE LÍMITES.

- a) Linealidad.
 - 1º) Propiedad homogénea.

$$H) \lim_{x \to a} f(x) = b \ y \ K \in R$$

- $T) \quad \lim_{x \to a} K \cdot f(x) = K \cdot b$
- 2º) Propiedad aditiva. (Teorema del límite de la suma)

$$H) \lim_{x \to a} f(x) = b \wedge \lim_{x \to a} g(x) = c$$

T)
$$\lim_{x\to a} (f(x)+g(x)) = b+c$$

3°) Propiedad lineal.

$$H) \lim_{x \to a} f(x) = b \wedge \lim_{x \to a} g(x) = c \; ; \; \; k, \; m \in R$$

T)
$$\lim_{x\to a} (k f(x) + m g(x)) = k b + m c$$

b) Teorema del límite del producto

$$H) \lim_{x \to a} f(x) = b \wedge \lim_{x \to a} g(x) = c$$

$$T) \lim_{x\to a} (f(x)\cdot g(x)) = b\cdot c$$

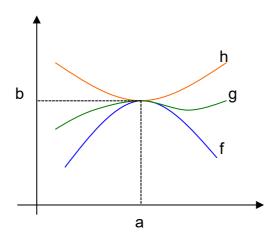
c) Teorema del límite del cociente

$$H) \quad \lim_{x \to a} f(x) = b \wedge \lim_{x \to a} g(x) = c \neq 0$$

T)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{b}{c}$$

3. TEOREMA DEL LÍMITE DE LA FUNCIÓN COMPRENDIDA

"Si una función está constantemente comprendida, en un entorno de a, entre otras dos que tienen igual límite, cuando $x \to a$, entonces ella también tiene ese límite para $x \to a$ "



$$H) \left\{ \begin{array}{l} f,\,g,\,h:D \to R \ / \ a \in R \ \ es \ punto \ de \ acumulación \ de \ D \\ \\ \exists \delta_1 > 0 \ / \ \forall \ x \in E^*(a,\delta_1) \cap D \ \ s.c.q. \ f(x) < g(x) < h(x) \\ \\ \lim_{x \to a} f(x) = b \ _{\bigwedge} \lim_{x \to a} h(x) = b \end{array} \right.$$

T)
$$\lim_{x \to a} g(x) = b$$

D/ Por entornos:

Dado $\varepsilon > 0$ hay que probar que $\exists \delta = \delta(\varepsilon) > 0$ / $\forall x \in E^*(a, \delta) \cap D$

s.c.q.
$$|g(x)-b| < \varepsilon$$
 (o, lo que es igual: $b-\varepsilon < g(x) < b+\varepsilon$)

1°)
$$\lim_{x \to a} f(x) = b \Rightarrow \text{Por definición de límite: } \exists \delta_2 = \delta_2(\epsilon) > 0 \text{ /} \\ \forall x \in E^*(a, \delta_2) \cap D \text{ s.c.q. } b - \epsilon < f(x) < b + \epsilon$$

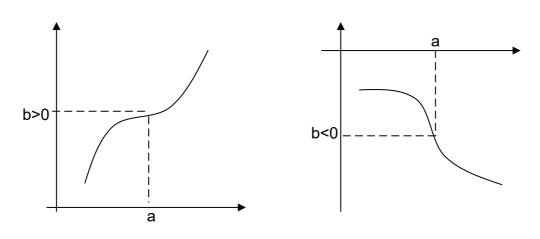
2°)
$$\lim_{x \to a} h(x) = b \implies$$
 Por definición de límite: $\exists \delta_3 = \delta_3(\epsilon) > 0$ / $\forall x \in E^*(a, \delta_3) \cap D$ s.c.q. $b - \epsilon < h(x) < b + \epsilon$

Entonces si ahora se elige $\delta = \min\{\delta_1, \delta_2, \delta_3\}$, $\forall x \in E^*(a, \delta) \cap D$ s.c.q.:

$$b - \varepsilon < f(x) < g(x) < h(x) < b + \varepsilon \implies b - \varepsilon < g(x) < b + \varepsilon$$

 \therefore por definición de límite: $\lim_{x\to a} g(x) = b$ #

4. TEOREMA DE CONSERVACIÓN DEL SIGNO



"Si una función tiene límite $b \neq 0$, cuando $x \rightarrow a$, entonces existe un entorno reducido de "a" donde el signo de f(x) coincide con el de b"

H)
$$f: D \to R/a \in R$$
 es punto de acumulación de D, $\lim_{x \to a} f(x) = b \neq 0$

T)
$$\exists \delta > 0 \ / \ \forall x \in E^*(a,\delta) \cap D$$
 s.c.q. $f(x) \cdot b > 0$

D/ Por definición de límite $\forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0 \ / \ \forall x \in E^*(a, \delta) \cap D$ s.c.q. b - $\epsilon < f(x) < b + \epsilon$

Entonces se consideran dos casos de acuerdo al signo de b.

Caso 1: si b > 0 elegimos
$$\varepsilon = \frac{b}{2} > 0$$

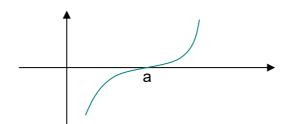
$$\Rightarrow 0 < b - \varepsilon = b - \frac{b}{2} = \frac{b}{2} < f(x) \text{ si } x \in E^*(a, \delta) \cap D \#$$
Caso 2: si b < 0 elegimos $\varepsilon = -\frac{b}{2} > 0$

$$\Rightarrow f(x) < b + \varepsilon = b + \left(-\frac{b}{2}\right) = \frac{b}{2} < 0 \text{ si } x \in E^*(a, \delta) \cap D \#$$

Contrarrecíproco

" Si en todo entorno reducido de a, f(x) admite signos positivos y negativos,

y existe
$$\lim_{x\to a} f(x) = b \implies b = 0$$
"

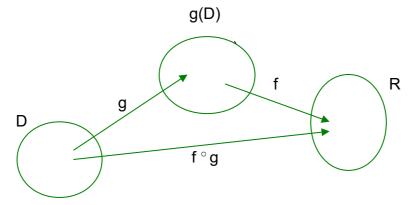


D/ Si suponemos $b \neq 0$, por el teorema de conservación del signo existe un entorno de a donde el signo de f(x) es constante (igual al de b), y esto contradice la hipótesis, por lo tanto se debe admitir que b = 0.

6. LÍMITE DE LA FUNCIÓN COMPUESTA

a) Definición:

Dadas dos funciones reales de variable real: $g: D \to R$ \land $f: g(D) \to R$ se define la función compuesta $f \circ g: D \to R / (f \circ g)(x) = f(g(x))$



Obs: el dominio de la función compuesta es $Dom(f \circ g) = g^{-1}(Dom(f))$.

Ejemplos:

1º) Dadas $f: f(x) = \frac{3x+2}{sen(x)}$ y g: g(x) = L(3-x) hallar $f \circ g$, $g \circ f$ y determinar sus respectivos dominios.

¿la composición de funciones es conmutativa?

$$(f \circ g)(x) = f(g(x)) = \frac{3g(x)+2}{sen(g(x))} = \frac{3L(3-x)+2}{sen(L(3-x))}$$

$$Dom(f \circ g) = g^{-1}(Dom(f)) = g^{-1}(R - \{k\pi/k \in Z\}) = \{x \in R/L(3-x) \neq k\pi\} = \{x \in R/L($$

$$\{x \in R \mid x < 3 \land 3 - x \neq e^{k\pi}\} = \{x \in R \mid x < 3 \land x \neq 3 - e^{k\pi}\}$$

$$(g \circ f)(x) = g(f(x)) = L(3 - f(x)) = L\left(3 - \frac{3x + 2}{sen(x)}\right)$$

$$Dom(g \circ f) = f^{-1}(Dom(g)) = f^{-1}(-\infty,3) = \{x \in R \, / \, \frac{3x+2}{sen(x)} < 3\}$$

Se observa que $(f \circ g)(x) \neq (g \circ f)(x)$: la composición no es conmutativa.

2°) Dadas las funciones polinómicas $f: f(x) = 2x^3 + 3x \wedge g: g(x) = 5x^2 - 2x$ Hallar $f \circ g \ y \ g \circ f$.

¿Qué se observa con respecto al grado de la composición? Generalice el resultado para polinomios de grados m y n.

$$f \circ g(x) = f(g(x)) = f(5x^2 - 2x) = 2(5x^2 - 2x)^3 + 3(5x^2 - 2x)$$

queda:
$$f \circ g(x) = 250x^6 - 300x^5 + 120x^4 - 16x^3 + 15x^2 - 6x$$

Análogamente:
$$g^{\circ} f(x) = 20x^6 + 60x^4 - 4x^3 + 45x^2 - 6x$$

El grado de la composición es igual al producto de los grados de las componentes

- b) Teorema del límite de la función compuesta
 - $\begin{cases} & \lim_{x\to a} g(x) = b \wedge \lim_{z\to b} f(z) = c \text{, donde } f \text{ y g son funciones tales que} \\ & Dom(f) \cap Im(g) \neq \emptyset \text{, } a \in R \text{ es punto de acumulación del } Dom(g) \\ & \text{y } b \in R \text{ es punto de acumulación de } Dom(f) \cap Im(g) / g(x) \neq b. \end{cases}$
 - $T) \quad \lim_{x\to a} (f\circ g)(x) = c$
 - D / Se tiene que demostrar que dado $\epsilon > 0$ $\exists \delta = \delta(\epsilon) > 0$ /

$$\forall x \in E^*(a,\delta) \cap Dom(f \circ g) \text{ s.c.q. } (f \circ g)(x) \in E(c,\epsilon)$$

1°)
$$\lim_{z\to b} f(z) = c \implies \forall \epsilon > 0 \exists \gamma = \gamma(\epsilon) > 0$$
 /

$$\forall z \in E^*(b,\gamma) \cap [Dom(f) \cap Im(g)]$$
 s.c.q. $f(z) \in E(c,\epsilon)$

2°)
$$\lim_{x\to a} g(x) = b \implies \text{Con } \gamma \text{ de la parte (1°), } \exists \delta' = \delta'(\gamma) > 0$$
,

pero a su vez
$$\gamma = \gamma(\epsilon) \Rightarrow \delta' = \delta'(\gamma(\epsilon)) = \delta(\epsilon)$$
 y se verifica:

$$\forall x \in E^*(a,\delta) \cap Dom(f \circ g) \text{ s.c.q. } g(x) \in E(b,\gamma), \text{ además } g(x) \neq b$$

 3°) Observamos que g(x) de 2°) verifica las condiciones de z en 1°)

∴ si se sustituye z por g(x) resulta la tesis.#

7. FUNCIONES EQUIVALENTES

a) Definición.

Dos funciones $f \land g : D \to R / a \in R$ es punto de acumulación de D, son equivalentes cuando $x\to a$ si y sólo si el límite del cociente entre ellas cuando $x\to a$ es igual a 1.

$$f(x) \underset{x \to a}{\sim} g(x) \iff \lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Ejemplos.

1°)
$$\lim_{x\to 3} \frac{x^2 + 5x - 6}{6x} = 1 \implies x^2 + 5x - 6 \underset{x\to 3}{\sim} 6x$$

2°)
$$\lim_{x \to +\infty} \frac{2x^2 - 3x + 5}{2x^2} = 1 \implies 2x^2 - 3x + 5 \underset{x \to +\infty}{\sim} 2x^2$$

3°) El resultado del ejemplo (2°) vale en general:

Si
$$a \neq 0$$
 y $\alpha > \beta > \gamma > \Rightarrow ax^{\alpha} \pm bx^{\beta} \pm cx^{\gamma} \pm \underset{x \to \infty}{\sim} ax^{\alpha}$

"Cuando $x \to \infty$, todo polinomio es equivalente a su monomio de mayor grado"

b) Teorema.

La relación que hemos definido con el símbolo $"_{x\to a}^{\ \sim}"$ es de equivalencia.

D/ Hay que demostrar que se cumplen las propiedades idéntica, recíproca y transitiva:

Idéntica: $f(x) \sim f(x)$

D/
$$\lim_{x\to a} \frac{f(x)}{f(x)} = 1$$
 #

Recíproca: si $f(x) \sim g(x) \Rightarrow g(x) \sim f(x)$

$$\lim_{D/x\to a} \frac{g(x)}{f(x)} = \lim_{x\to a} \frac{1}{\frac{f(x)}{g(x)}} = \frac{1}{1} = 1 \quad \#$$

Transitiva: si $f(x) \sim g(x) \wedge g(x) \sim h(x) \Rightarrow f(x) \sim h(x)$

D/
$$\lim_{x\to a} \frac{f(x)}{h(x)} = \frac{f(x)/g(x)}{h(x)/g(x)} = \frac{1}{1} = 1$$
 #

c) Teoremas relativos a las funciones equivalentes.

Teorema 1:

"Toda función es equivalente a su límite si éste es distinto de cero"

H)
$$\lim_{x\to a} f(x) = b \neq 0$$

$$T)$$
 $f(x) \sim b$

D/
$$\lim_{x\to a} \frac{f(x)}{h} = \frac{b}{h} = 1$$
 #

Teorema 2:

"Si el límite del cociente de dos funciones es un real distinto de 0, entonces el numerador es equivalente al producto del límite multiplicado por el denominador"

H)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = b \neq 0$$

$$T$$
) $f(x) \sim b \cdot g(x)$

D/
$$\lim_{x\to a} \frac{f(x)}{b \cdot g(x)} = \lim_{x\to a} \frac{f(x)/g(x)}{b} = \frac{b}{b} = 1$$
 #

Teorema 3:

Principio de sustitución de la función equivalente: "En el cálculo de un límite se puede sustituir un factor o divisor por otro equivalente y el límite no cambia"

H)
$$f(x),g(x),h(x)$$
 son functiones $y f(x) \sim g(x)$

T)
$$\lim_{x\to a} h(x) \cdot f(x) = \lim_{x\to a} h(x) \cdot g(x)$$

D/
$$\lim_{x \to a} h(x) \cdot f(x) = \lim_{x \to a} \frac{h(x)f(x) \cdot g(x)}{g(x)} = \lim_{x \to a} h(x) \cdot \frac{f(x)}{g(x)} \cdot g(x) = \lim_{x \to a} h(x) \cdot g(x) \#$$

8. EQUIVALENCIAS FUNDAMENTALES. LÍMITES TIPO

Límites tipo:

i.
$$\lim_{x\to 0} \frac{L(1+x)}{x} = \lim_{x\to 0} \frac{1}{x} L(1+x) = \lim_{x\to 0} L(1+x)^{\frac{1}{x}} = Le = 1$$
 #

ii.
$$\lim_{x\to 0} \frac{e^x - 1}{x} = \lim_{z\to 0} \frac{z}{L(1+z)} = 1$$
 #

Se realizó el cambio de variable $z = e^x - 1$ \therefore $e^x = 1 + z$ \therefore x = L(1+z)

Además como $x \rightarrow 0 \Rightarrow z = e^x - 1 \rightarrow 0$

iii.
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \lim_{x\to 0} \frac{e^{La^x} - 1}{x} = \lim_{x\to 0} \frac{e^{x \cdot La} - 1}{x} = \lim_{x\to 0} \frac{x \cdot La}{x} = La$$
 #

En el penúltimo paso se aplicó la equivalencia (ii)

$$\text{iv. } \lim_{x \to 0} \frac{(1+x)^m - 1}{x} = \lim_{x \to 0} \frac{e^{L(1+x)^m} - 1}{x} = \lim_{x \to 0} \frac{e^{m \cdot L(1+x)} - 1}{x} = \lim_{x \to 0} \frac{m \cdot L(1+x)}{x} = \lim_{x \to 0} \frac{m \cdot x}{x} = m \quad \#$$

En el antepenúltimo paso se aplicó la equivalencia (ii) y en el penúltimo se aplicó la equivalencia (i).

v.
$$\lim_{x\to 1} \frac{Lx}{x-1} = \lim_{z\to 0} \frac{L(1+z)}{z} = 1$$
 #

Se realizó el cambio de variable z = x - 1 y en el último paso se aplicó el límite tipo (i)

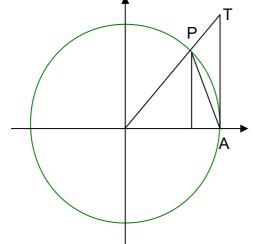
vi.
$$\lim_{x\to 1} \frac{x^m - 1}{x - 1} = \lim_{z\to 0} \frac{(1+z)^m - 1}{z} = m$$
 #

Se realizó el cambio de variable z = x - 1 y se aplicó el límite tipo (iv)

vii.
$$\lim_{x \to a} \frac{x^m - a^m}{x - a} = \lim_{x \to a} \frac{a^m \left(\frac{x^m}{a^m} - 1\right)}{a \left(\frac{x}{a} - 1\right)} = \lim_{z \to 1} a^{m-1} \left(\frac{z^m - 1}{z - 1}\right) = m \cdot a^{m-1}$$
 #

Se hizo el cambio de variable $z = \frac{x}{a}$ y se usó el límite tipo (vi)

viii.



Se considera el círculo trigonométrico de la figura.
Designaremos con «x» al arco AP medido en radianes.

Entonces:

$$sen(x) = BP$$

$$cos(x) = OB$$

$$tg(x) = AT$$

$$\lim_{x\to 0} \operatorname{sen}(x) = 0 \wedge \lim_{x\to 0} \cos(x) = 1$$

Además, geométricamente tenemos que: el triángulo OAP está contenido en el sector circular OAP el que a su vez está contenido en el triángulo OAT, entonces sus respectivas áreas (suponiendo x > 0) verifican la desigualdad:

$$\frac{(OA) \cdot (BP)}{2} < \frac{x \cdot (OP)^2}{2} < \frac{(OA) \cdot (AT)}{2} \implies \frac{1 \cdot sen(x)}{2} < \frac{x \cdot 1^2}{2} < \frac{1 \cdot tg(x)}{2} \implies$$

$$sen(x) < x < \frac{sen(x)}{cos(x)} \implies 1 < \frac{x}{sen(x)} < \frac{1}{cos(x)}$$

En esta última desigualdad, tomando límite para $x \to 0$, como $\lim_{x\to 0} \frac{1}{\cos(x)} = 1$, por el teorema del límite de la función comprendida, se deduce que:

$$\lim_{x\to 0} \frac{x}{\operatorname{sen}(x)} = 1 \qquad \therefore \quad x \underset{x\to 0}{\sim} \operatorname{sen}(x) \quad \#$$

ix.
$$\lim_{x\to 0} \frac{1-\cos(x)}{x^2} = \lim_{x\to 0} \frac{(1-\cos(x))\cdot(1+\cos(x))}{x^2\cdot(1+\cos(x))} = \lim_{x\to 0} \frac{1-\cos^2(x)}{2x^2} = \lim_{x\to 0} \frac{\sin^2(x)}{2x^2} = \frac{1}{2}$$

x.
$$\lim_{x\to 0} \frac{\text{tg}(x)}{x} = \lim_{x\to 0} \frac{\frac{\text{sen}(x)}{\cos(x)}}{x} = \lim_{x\to 0} \frac{\frac{\text{sen}(x)}{x}}{x} = 1$$

xi.
$$\lim_{x\to 0} \frac{Arc sen(x)}{x} = \lim_{z\to 0} \frac{z}{sen(z)} = 1$$
 #

Se efectuó el cambio de variable z = Arcsen(x)

xii.
$$\lim_{x\to 0} \frac{\text{Arc tg}(x)}{x} = \lim_{z\to 0} \frac{z}{\text{tg}(z)} = 1$$
 #

Se realizó el cambio de variable z = Arctg(x)

LÍMITES DE FUNCIONES

TABLA DE EQUIVALENCIAS

LÍMITES TIPO

i)
$$L(1+x) \underset{x\to 0}{\sim} x$$

$$\lim_{x\to 0}\frac{L(1+x)}{x}=1$$

ii)
$$e^x - 1 \sim x$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

iii)
$$a^x - 1 \sim_{x \to 0} x \cdot La$$

$$\lim_{x\to 0}\frac{a^x-1}{x}=La$$

$$iv) \qquad (1+x)^m - 1 \underset{x\to 0}{\sim} m \cdot x$$

$$\lim_{x \to 0} \frac{(1+x)^{m} - 1}{x} = m$$

iv')
$$\sqrt{1+x}-1\underset{x\to 0}{\sim}\frac{1}{2}x$$

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} = \frac{1}{2}$$

iv")
$$\sqrt[n]{1+x}-1 \sim \frac{1}{x \to 0} \cdot x$$

$$\lim_{x \to 0} \frac{\sqrt[n]{1 + x} - 1}{x} = \frac{1}{n}$$

$$v) \qquad Lx \underset{x\to 1}{\sim} x-1$$

$$\lim_{x\to 1}\frac{Lx}{x-1}=1$$

vi)
$$x^m - 1 \sim m \cdot (x - 1)$$

$$\lim_{x\to 1}\frac{x^m-1}{x-1}=m$$

vi')
$$\sqrt{x} - 1 \sim \frac{1}{x \to 1} \cdot (x - 1)$$

$$\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1} = \frac{1}{2}$$

vi")
$$\sqrt[n]{x} - 1 \sim \frac{1}{x \rightarrow 1} \cdot (x - 1)$$

$$\lim_{x\to 1}\frac{\sqrt[n]{x}-1}{x-1}=\frac{1}{n}$$

vii)
$$x^m - a^m \underset{x \to a}{\sim} m \cdot a^{m-1} (x - a)$$

$$\lim_{x\to a} \frac{x^m - a^m}{x - a} = m \cdot a^{m-1}$$

$$viii)$$
 sen(x) $\sim_{x\to 0} x$

$$\lim_{x\to 0}\frac{sen(x)}{x}=1$$

ix)
$$1-\cos(x) \sim \frac{1}{x\to 0} \cdot x^2$$

$$\lim_{x\to 0}\frac{1-\cos(x)}{x^2}=\frac{1}{2}$$

$$x)$$
 $tg(x) \sim x$

$$\lim_{x\to 0}\frac{tg(x)}{x}=1$$

xi) Arc sen(x)
$$\sim_{x\to 0} x$$

$$\lim_{x\to 0}\frac{\operatorname{Arc\,sen}(x)}{x}=1$$

xii)
$$Arctg(x) \sim x$$

$$\lim_{x\to 0}\frac{\operatorname{Arc}\operatorname{tg}(x)}{x}=1$$

9. INFINITOS

a) Definición:

"Una función f es un infinito, cuando x \rightarrow a , si y sólo si $\lim_{x\to a} f(x) = \infty$ "

Ejemplos:

1.
$$f(x) = \frac{x^2 + 2}{x - 2}$$
 es infinito cuando $x \rightarrow 2$ y cuando $x \rightarrow \infty$

2.
$$f(x) = \frac{e^x}{x}$$
 es infinito si $x \to +\infty$ y si $x \to 0$

b) Órdenes (comparación de infinitos)

Suponiendo que f(x) y g(x) son infinitos cuando $x \rightarrow a$:

Simbolizaremos con O: "orden de", entonces:

i.
$$O[f(x)] = O[g(x)] \iff \lim_{x \to a} \frac{f(x)}{g(x)} = b \in R^*,$$

Dos infinitos son de igual orden cuando el límite de su cociente es un real distinto de 0.

En el caso particular que sea b = 1, diremos que los infinitos son equivalentes.

ii.
$$O[f(x)] < O[g(x)] \Leftrightarrow \lim_{x\to a} \frac{f(x)}{g(x)} = 0$$

Si el límite del cociente de dos infinitos es 0, el infinito del numerador es de menor orden que el del denominador.

iii.
$$O[f(x)] > O[g(x)] \iff \lim_{x \to a} \frac{f(x)}{g(x)} = \infty$$

Si el límite del cociente de dos infinitos es ∞ , el infinito del numerador es de mayor orden que el del denominador.

iv Infinitos no comparables:

Si no existe el limite del cociente de dos infinitos entonces no son de órdenes comparables.

c) Teoremas relativos a los infinitos.

Los teoremas que a continuación se exponen constituyen la base para resolver los problemas de límites donde intervengan los infinitos.

Teorema 1:

"La suma algebraica de varios infinitos de diferentes órdenes es equivalente al de mayor orden de ellos"

H)
$$\begin{cases} f(x), g(x), h(x) \text{ son infinitos para } x \rightarrow a \\ O[f(x)] > O[x)] > O[x] \end{cases}$$

T)
$$f(x) \pm g(x) \pm h(x) \sim_{x\to a} f(x)$$

LÍMITES DE FUNCIONES

$$D/\lim_{x\to a}\frac{f(x)\pm g(x)\pm h(x)}{f(x)}=\lim_{x\to a}\left\lceil\frac{f(x)}{g(x)}\pm\frac{g(x)}{f(x)}\pm\frac{h(x)}{f(x)}\right\rceil=1$$

Porque por hipótesis f(x) es el de mayor orden, entonces:

$$\lim_{x\to a} \frac{g(x)}{f(x)} = 0 \quad y \quad \lim_{x\to a} \frac{h(x)}{f(x)} = 0 \quad \#$$

Teorema 2:

"La diferencia entre dos infinitos equivalentes es de menor orden que cualquiera de ellos"

- H) f(x) y g(x) son infinitos equivalentes para $x \rightarrow a$
- T) O[f(x)-g(x)] < O[f(x)]
- D/ $\lim_{x\to a} \frac{f(x)-g(x)}{f(x)} = \lim_{x\to a} \left(\frac{f(x)}{f(x)} \frac{g(x)}{f(x)}\right) = 1-1=0$ porque por hipótesis $f(x) \underset{x\to a}{\sim} g(x)$, por ende: $\lim_{x\to a} \frac{g(x)}{f(x)} = 1$ #

10. INFINITOS FUNDAMENTALES

Definiciones

Las siguientes funciones son infinitos cuando $x \to +\infty$

- i. Infinito logarítmico: $(\log_b(x))^m \text{ con b > 1 y m > 0}$
- ii. Infinito potencial: $\chi^{\alpha} \cos \alpha > 0$

Infinito exponencial: a^x con a > 1iii.

Infinito potencial-exponencial: χ^{kx} con k > 0 ίV.

Estos infinitos están ordenados de menor a mayor, como lo establecen los siguientes teoremas.

b) Teorema sobre los órdenes de los infinitos:

Teorema 1

$$O\left[\left(\log_b(x)\right)^m\right] {\begin{array}{c} < \\ x \to +\infty \end{array}} O\left[x^{\alpha}\right] \ \ donde \ b > 1, \ m > 0 \ \ y \ \ \alpha > 0$$

Teorema 2

$$O\left[x^{\alpha}\right]$$
 $\underset{x\to+\infty}{<}$ $O\left[a^{x}\right]$ donde $\alpha > 0$ y $a > 1$

Teorema 3

$$O\left[a^{x}\right]$$
 $\underset{x\to +\infty}{<}$ $O\left[x^{kx}\right]$ donde $a > 1$ y $k > 0$

Previo a la demostración veamos una propiedad de las sucesiones:

Propiedad (*)

H)
$$\{a_n : n \in N\} / a_n > 0 \ \forall n \in N \ y \ \exists \ k < 1 / \frac{a_n}{a_{n-1}} \le k \ \forall n \in N^*$$

$$T$$
) $\lim_{n\to+\infty} a_n = 0$

D/ Por hipótesis $\forall n \in \mathbb{N}^*$ s.c.q. $a_n \le k \cdot a_{n-1}$,

entonces aplicando esta condición sucesivamente se tiene:

$$\begin{vmatrix} a_1 \leq k \cdot a_0 \\ a_2 \leq k \cdot a_1 \\ \dots \\ a_n \leq k \cdot a_{n-1} \end{vmatrix} \Rightarrow a_1 \cdot a_2 \cdot \dots \cdot a_n \leq k \cdot a_0 \cdot k \cdot a_1 \cdot \dots \cdot k \cdot a_{n-1} \\ \Rightarrow a_n \leq k \cdot a_{n-1} \end{vmatrix}$$

$$\Rightarrow a_n \leq k^n \cdot a_0 \Rightarrow 0 \leq \lim_{n \to +\infty} a_n \leq \lim_{n \to +\infty} k^n \cdot a_0 = 0$$
#

Demostración de los teoremas de órdenes de los infinitos.

Comenzaremos demostrando el teorema 2:

D/ Hay que demostrar que
$$\lim_{x\to +\infty} \frac{x^{\alpha}}{a^{x}} = 0$$
 $\forall \alpha > 0 \land a > 1$

1°) Consideramos el caso $x=n\in N$, entonces hay que demostrar que la sucesión $a_n=\frac{n^\alpha}{a^n}$ tiene límite 0, para esto utilizamos la propiedad $\langle * \rangle$

$$\frac{a_{n}}{a_{n-1}} = \frac{n^{\alpha}/a^{n}}{(n-1)^{\alpha}/a^{n-1}} = \frac{n^{\alpha}}{a^{n}} \cdot \frac{a^{n-1}}{(n-1)^{\alpha}} = \frac{1}{a} \left(\frac{n}{n-1}\right)^{\alpha} < \frac{1}{a} < 1 \implies \lim_{n \to +\infty} a_{n} = 0$$

con esto queda demostrado que: $O^{(n^{\alpha})}_{n\to +\infty} < O^{(a^{n})}$

2°) Ahora generalizamos para $x \in R^+$.

Consideramos la parte entera de x, que es un número natural

$$n = E(x)$$
 \Rightarrow $n \le x < n+1$ \Rightarrow $n^{\alpha} \le x^{\alpha} < (n+1)^{\alpha}$ (1)

Por otro lado:
$$a^n \le a^x < a^{n+1}$$
 \Rightarrow $\frac{1}{a^{n+1}} < \frac{1}{a^x} \le \frac{1}{a^n}$ (2)

de las desigualdades (1) y (2)
$$\frac{n^{\alpha}}{a^{n+1}} < \frac{x^{\alpha}}{a^{x}} < \frac{(n+1)^{\alpha}}{a^{n}}$$
 (3)

Ahora bien, si $x \to +\infty \implies n \to +\infty \implies$

Usando el resultado obtenido en la parte (1º)

$$\begin{cases} \lim_{n \to +\infty} \frac{n^{\alpha}}{a^{n+1}} = \lim_{n \to +\infty} \frac{1}{a} \cdot \frac{n^{\alpha}}{a^{n}} = \frac{1}{a} \cdot \lim_{n \to +\infty} \frac{n^{\alpha}}{a^{n}} = 0 \\ \lim_{n \to +\infty} \frac{(n+1)^{\alpha}}{a^{n}} = \lim_{n \to +\infty} \frac{a \cdot (n+1)^{\alpha}}{a^{n+1}} = a \cdot \lim_{n \to +\infty} \frac{(n+1)^{\alpha}}{a^{n+1}} = a \cdot \lim_{m \to +\infty} \frac{m^{\alpha}}{a^{m}} = 0 \end{cases}$$

Finalmente, de estos dos resultados y de la desigualdad (3) se concluye

que
$$\lim_{x\to +\infty} \frac{x^{\alpha}}{a^x} = 0$$
, de donde: $O(x^{\alpha}) < O(a^x)$ #

Veamos ahora la demostración del teorema 1

D/ Hay que comprobar que
$$\lim_{x \to +\infty} \frac{\left(\log_b x\right)^m}{x^{\alpha}} = 0$$
 siendo $\begin{cases} b > 1 \land m > 0 \\ \alpha > 0 \end{cases}$

Vamos a realizar el cambio de variable: $z = log_b x$

entonces $z \to +\infty$ y $x = b^z$, luego:

observase que se ha aplicado, en el último paso, el teorema 2. #

La demostración del teorema 3 no ofrece dificultades:

D/
$$\lim_{x \to +\infty} \frac{a^x}{x^{kx}} = \lim_{x \to +\infty} \left(\frac{a}{x^k}\right)^x = 0$$
 #

11. INFINITÉSIMOS

a) Definición:

"Una función f(x) es un infinitésimo cuando $x \to a \Leftrightarrow \lim_{x \to a} f(x) = 0$ "

Ejemplos:

1.
$$f(x) = \frac{x^2 - 4}{x^3}$$
 es infinitésimo cuando $x \to \pm 2$ y cuando $x \to \pm \infty$

2.
$$f(x) = \frac{x}{e^x}$$
 es infinitésimo cuando $x \to 0$ y cuando $x \to +\infty$

b) Órdenes (comparación de infinitésimos)

Si f(x) y g(x) son infinitésimos cuando $x \rightarrow a$:

i)
$$O[f(x)] = O[g(x)] \Leftrightarrow \lim_{x\to a} \frac{f(x)}{g(x)} = b \neq 0$$

Dos infinitésimos son de igual orden cuando el límite del cociente es un número real "b" distinto de 0

En el caso b = 1 los infinitésimos son equivalentes.

ii)
$$O[f(x)] > O[g(x)] \Leftrightarrow \lim_{x\to a} \frac{f(x)}{g(x)} = 0$$

El límite del cociente de dos infinitésimos es 0 si y sólo si el infinitésimo del numerador es de mayor orden que el infinitésimo del denominador

iii)
$$O[f(x)] < O[g(x)] \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \infty$$

El límite del cociente de dos infinitésimos es ∞ si y sólo si el infinitésimo del numerador es de menor orden que el del denominador

LÍMITES DE FUNCIONES

c) Teoremas relativos a los infinitésimos

Teorema 1

- "La suma algebraica de varios infinitésimos de diferentes órdenes es equivalente al de menor orden de ellos"
- H) f(x), g(x), h(x) son infinitésimos para $x \rightarrow a$ tales que:

T)
$$f(x) \pm g(x) \pm h(x) \sim_{x\to a} f(x)$$

D/
$$\lim_{x \to a} \frac{f(x) \pm g(x) \pm h(x)}{f(x)} = \lim_{x \to a} \left[\frac{f(x)}{g(x)} \pm \frac{g(x)}{f(x)} \pm \frac{h(x)}{f(x)} \right] = 1$$

Porque por hipótesis f(x) es el de menor orden, entonces:

$$\lim_{x \to a} \frac{g(x)}{f(x)} = 0$$
 y $\lim_{x \to a} \frac{h(x)}{f(x)} = 0$ #

Teorema 2:

- "La diferencia entre dos infinitésimos equivalentes es de mayor orden que cualquiera de ellos"
- H) f(x) y g(x) son infinitésimos equivalentes para $x \rightarrow a$

T)
$$O[f(x) - g(x)] > O[f(x)]$$

D/
$$\lim_{x\to a} \frac{f(x) - g(x)}{f(x)} = \lim_{x\to a} \left(\frac{f(x)}{f(x)} - \frac{g(x)}{f(x)} \right) = 1 - 1 = 0$$
 porque por hipótesis $f(x) \underset{x\to a}{\sim} g(x)$, por ende: $\lim_{x\to a} \frac{g(x)}{f(x)} = 1$ #

Ejemplo

Ya hemos visto que $sen(x) \underset{x\to 0}{\sim} x$ y $tg(x) \underset{x\to 0}{\sim} x \Rightarrow sen(x) \underset{x\to 0}{\sim} tg(x)$

Por otro lado
$$tg(x) - sen(x) = \frac{sen(x)}{cos(x)} - sen(x) = \frac{sen(x) - sen(x) \cdot cos(x)}{cos(x)} = \frac{sen(x) - sen(x)}{cos(x)} = \frac{sen(x)}{cos(x)} = \frac$$

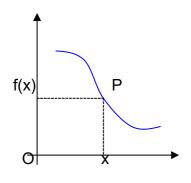
$$\frac{\text{sen}(x)\cdot \left(1-\cos(x)\right)}{\cos(x)} \underset{x\to 0}{\sim} \frac{x\cdot \frac{1}{2}\cdot x^2}{1} = \frac{1}{2}\cdot x^3 \quad \therefore \quad \text{tg}(x) - \text{sen}(x) \underset{x\to 0}{\sim} \frac{1}{2}\cdot x^3$$

En este ejemplo se aprecia que en la diferencia de dos infinitésimos equivalentes se obtiene otro infinitésimo de orden superior.

12. RAMAS INFINITAS Y ASÍNTOTAS

a) Definición de rama infinita (R.I.)

Si G(f) es el gráfico de una función y = f(x) y el punto P(x, f(x)) \in G(f)



La distancia desde el origen al punto P

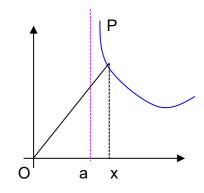
está dada por
$$\overline{OP} = \sqrt{x^2 + (f(x))^2}$$

La función y = f(x) tiene una R.I.

cuando
$$x \to \begin{cases} a^{\pm} \Leftrightarrow \lim_{x \to \begin{cases} a^{\pm} \\ \pm \infty \end{cases}} \overline{OP} = \infty$$

Obs.1 Si $x \rightarrow a^{\pm}$

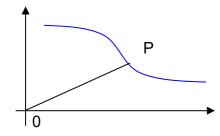
$$\lim_{x\to a^{\pm}} \overline{\mathsf{OP}} = \infty \iff \lim_{x\to a^{\pm}} \sqrt{x^2 + \big(\mathsf{f}(x)\big)^2} = \infty \iff \lim_{x\to a^{\pm}} \mathsf{f}(x) = \infty$$



Cuando x tiende a un valor finito una función presenta una R.I. si y sólo si el límite de la función es infinito

Obs.2 Si $x \to \pm \infty$

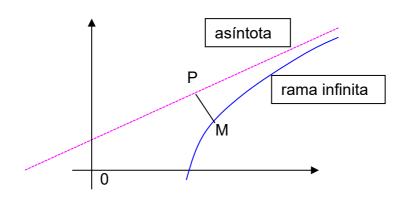
 $\lim_{x\to\pm\infty}\overline{\text{OP}}=\infty\iff\lim_{x\to\pm\infty}\sqrt{x^2+\big(f(x)\big)^2}=\infty\quad\text{y este resultado se cumple siempre con la única condición de que }\text{Dom}(f)\cap(\text{ H, }+\infty\text{ })\neq\phi\quad\forall\text{ }\text{ }\text{H}\in\text{R}$



Cuando la variable x tiende a infinito, si la función está definida, siempre presenta una R.I.

b) Definición de asíntota

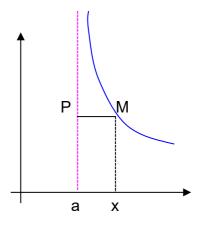
Una R.I. cuando $x \to \begin{cases} a^{\pm} \\ \pm \infty \end{cases}$ admite como asíntota a una recta (r) si y sólo si $\lim_{x \to \begin{cases} a^{\pm} \\ \pm \infty \end{cases}} \overline{PM} = 0$, donde \overline{PM} representa la distancia de la R.I. a la asíntota



c) Asíntota vertical

$$H) \lim_{x\to a^{\pm}} f(x) = \infty$$

T) La recta
$$x = a$$
 es asíntota



D/ Estamos como en el caso de la observación 1, entonces la función presenta una R.I.

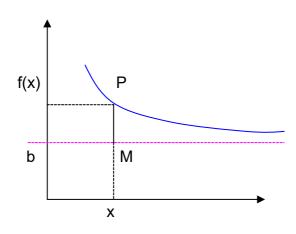
Solo resta demostrar que $\lim_{x\to a^{\pm}} \overline{PM} = 0$

$$\overline{PM} = |x - a| \Rightarrow \lim_{x \to a^{\pm}} \overline{PM} = \lim_{x \to a^{\pm}} |x - a| = 0$$
 #

d) Asíntota horizontal

H)
$$\lim_{x\to\pm\infty} f(x) = b$$
 donde $b \in R$

T) La recta y = b es asíntota



D/ Estamos como en el caso de la observación 2 , por lo tanto la función presenta una R.I.

Solo resta demostrar que $\lim_{x \to \pm \infty} \overline{PM} = 0$

$$\overline{PM} \; = \; |\; f(x) - b\;| \;\; \Rightarrow \;\; \lim_{x \to \pm \infty} \overline{PM} \; = \; \lim_{x \to \pm \infty} |\; f(x) - b\;| = 0 \qquad \#$$

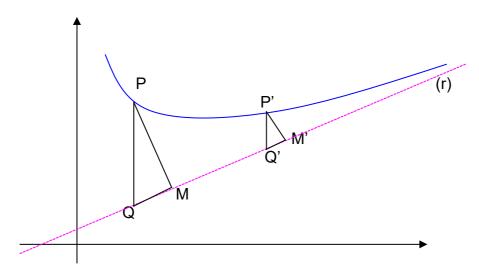
e) Asíntota oblicua

La condición necesaria y suficiente para que la recta y = mx + nsea asíntota de la función y = f(x) es que s.c.q.:

$$m = \lim_{x \to \infty} \frac{f(x)}{x}$$
 y $n = \lim_{x \to \infty} (f(x) - mx)$

1º) Condición necesaria

- H) La recta (r) y = mx + n es asíntota de y = f(x)
- T) $m = \lim_{x \to \infty} \frac{f(x)}{x}$ y $n = \lim_{x \to \infty} (f(x) mx)$
- D/ Por hipótesis y por definición de asíntota $\lim_{x\to\infty} \overline{PM} = 0$



Consideremos los triángulos de la forma PMQ donde P(x , f(x)) es un punto genérico del gráfico de f , $\overline{PM} \perp (r)$, $\overline{PQ} \parallel (OY)$ y $\overline{QM} \subseteq (r)$.

PMQ y P'M'Q' son semejantes
$$\Rightarrow \frac{\overline{PQ}}{\overline{PM}} = \frac{\overline{P'Q'}}{\overline{P'M'}} = k$$
 (constante)

$$\Rightarrow \ \overline{PQ} = k \cdot \overline{PM} \ \Rightarrow \ \lim_{x \to \infty} \overline{PQ} = \lim_{x \to \infty} k \cdot \overline{PM} = 0$$

 $\overline{PQ} = |f(x) - (mx+n)|$ porque Q(x, mx+n) es un punto de la recta (r).

$$\Rightarrow$$
 g(x) = f(x) – (mx+n) es un infinitésimo cuando x $\rightarrow \infty$

Podemos escribir f(x) = mx + n + g(x)

$$\Rightarrow \begin{cases} \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{mx + n + g(x)}{x} = \lim_{x \to \infty} \left(m + \frac{n + g(x)}{x} \right) = m \\ \lim_{x \to \infty} \left(f(x) - mx \right) = \lim_{x \to \infty} \left(n + g(x) \right) = n \end{cases}$$

2º) Condición suficiente

H)
$$\lim_{x\to\infty} \frac{f(x)}{x} = m$$
 y $\lim_{x\to\infty} (f(x) - mx) = n$

T) La recta y = mx + n es asíntota

D/ Utilizando la misma semejanza de triángulos que en el teorema directo

$$\frac{\overline{PM}}{\overline{PQ}} = \frac{\overline{P'M'}}{\overline{P'Q'}} = c$$
 (constante) $\Rightarrow \overline{PM} = c \cdot \overline{PQ}$ de donde, para demostrar que

LÍMITES DE FUNCIONES

 $\lim_{x\to\infty} \overline{PM} = 0$, será suficiente con demostrar que $\lim_{x\to\infty} \overline{PQ} = 0$.

Ahora bien $\overline{PQ} = | f(x) - (mx+n) | = | f(x) - mx - n |$

$$\Rightarrow \lim_{x \to \infty} \overline{PQ} = \lim_{x \to \infty} \left| \left(f(x) - mx \right) - n \right| = n - n = 0 \quad \#$$

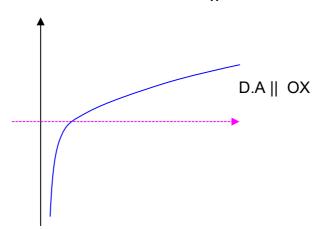
f) Direcciones asintóticas

i) Dirección asintótica paralela al eje OX (D.A. | OX)

Una función y = f(x) presenta una D.A. || OX cuando

$$\lim_{x\to\infty} f(x) = \infty \quad \text{y} \quad \lim_{x\to\infty} \frac{f(x)}{x} = 0$$

Ejemplo:
$$f(x) = Lx$$
 $\Rightarrow \lim_{x \to +\infty} L(x) = +\infty$ $y \lim_{x \to +\infty} \frac{L(x)}{x} = 0$



ii) Dirección asintótica paralela al eje OY $\,$ (D.A. || OY)

Una función presenta una dirección asintótica paralela al eje OY

$$\text{cuando } \lim_{x \to +\infty} f(x) = \infty \qquad \text{y} \quad \lim_{x \to \infty} \frac{f(x)}{x} = \infty$$

Ejemplo:
$$f(x) = x^2$$
 $\Rightarrow \lim_{x \to \infty} x^2 = \infty$ $y \lim_{x \to \infty} \frac{x^2}{x} = \infty$ D.A. $|| OY$

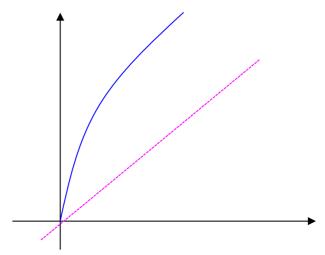
iii) Dirección asintótica paralela a una recta y = mx

Una función presenta una D.A.|| y = mx cuando:

$$\lim_{x\to\infty}\frac{f(x)}{x}=m \qquad \quad y \qquad \lim_{x\to\infty} \bigl(f(x)-mx\bigr)=\infty$$

Ejemplo:
$$f(x) = x + \sqrt{x}$$
 $\Rightarrow \lim_{x \to \infty} \frac{x + \sqrt{x}}{x} = 1$ y $\lim_{x \to \infty} (x + \sqrt{x} - x) = \infty$

Tiene una dirección asintótica paralela a la recta y = x



EJERCICIOS

I. Calcular los siguientes límites:

$$1. \lim_{\substack{x \to 1 \\ x \to \pm \infty}} \frac{\sqrt{x-2}}{x-1} \qquad 2. \lim_{\substack{x \to 1 \\ x \to \pm \infty}} \frac{x^2-1}{x-1} \qquad 3. \lim_{\substack{x \to 2 \\ x \to \pm \infty}} \frac{x^2-x-2}{x^3-4x} \qquad 4. \lim_{\substack{x \to 3 \\ x \to \pm \infty}} \frac{x^2-6x+9}{x^3-7x^2+15x-9}$$

5.
$$\lim_{\substack{x \to -1 \\ x \to \pm \infty}} \frac{x^4 + x^3}{5x^2 + x - 4}$$
 6. $\lim_{\substack{x \to 2 \\ x \to 5}} \frac{(x^2 + 3)(x^2 - 5x + 6)}{(x - 5)(x^2 + 5x - 14)}$ 7. $\lim_{\substack{x \to 1 \\ x \to 3}} \frac{x^3 - 9x}{x^2 - 4x + 3}$

8.
$$\lim_{\substack{x \to 3 \ x \to -3 \ x \to +\infty}} \frac{\sqrt{9 - x^2}}{x - 3}$$
 9. $\lim_{\substack{x \to 1 \ x \to \pm \infty}} \frac{\sqrt{9x^2 + 4x + 3}}{x - 1}$ 10. $\lim_{x \to 1} \frac{2x^2 - 5x + 3}{x^2 - 1}$ 11. $\lim_{x \to 1} \sqrt{2^{x - 1} - 1}$

$$12. \quad \lim_{x \to \pm \infty} \left(\sqrt{2x+3} - \sqrt{x+2} \right) \\ \quad 13. \quad \lim_{x \to \pm \infty} \left(\sqrt{x+6} - \sqrt{x+4} \right) \\ \quad 14. \quad \lim_{x \to \pm \infty} \sqrt{x+\sqrt{x}} - \sqrt{x}$$

15.
$$\lim_{x \to \pm \infty} \left(\sqrt{x^2 - 5x + 6} - \sqrt{x^2 - 3x + 2} \right)$$
 16. $\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$ 17. $\lim_{x \to 0} \frac{\sqrt{x^2 + x + 1} - 1}{x}$

18.
$$\lim_{x \to 3} \frac{\sqrt{x^2 - 2x + 6} - \sqrt{x^2 + 2x - 6}}{x^2 - 4x + 3}$$
 19. $\lim_{x \to 0} \frac{\sqrt{x + 2} - \sqrt{2}}{x}$ 20. $\lim_{x \to 0} \frac{\sqrt{x + 1} - 1}{\sqrt{x + 4} - 2}$

$$21. \lim_{x \to -1} \frac{\sqrt{x^3 + 10} + 3x}{\sqrt{x^2 - x + 2} + 2x} \qquad 22. \lim_{x \to 2} \frac{\sqrt{4x + 8} - \sqrt{7x + 2}}{\sqrt{3x + 3} - 3} \qquad 23. \lim_{x \to \pm \infty} \left(\sqrt{x^2 - 4x} + x\right)$$

$$24. \lim_{x \to \pm \infty} \left(\sqrt[3]{x^3 + 4x^2 - x} - \sqrt[3]{x^3 + 2x^2 - x + 1} \right) \\ \qquad 25. \lim_{x \to \pm \infty} \left(\sqrt[3]{-8x^3 + 5x^2} + 2x \right)$$

$$26. \lim_{x \to 0} \frac{\sqrt[3]{x+2} - \sqrt[3]{2}}{\sqrt{x+2} - \sqrt{2}} \qquad 27. \lim_{x \to 0} \frac{\sqrt[3]{5x+1} - \sqrt{5x+1}}{2x} \qquad 28. \lim_{x \to \pm \infty} \left(\sqrt[3]{(x+1)^2(x+8)} - x\right)$$

Resolución Ejercicio I

En la resolución del límite de una función entra en juego el manejo de varias técnicas operatorias, el conocimiento de los teoremas y propiedades de los límites, el reconocimiento de los casos indeterminados y los caminos que conduzcan a su determinación.

1)
$$\lim_{x\to 1} \frac{\sqrt{x-2}}{x-1}$$
 \exists porque el dominio de esta función es $\{x \in R : x \ge 2\}$

Por igual razón
$$\exists \lim_{x \to -\infty} \frac{\sqrt{x-2}}{x-1}$$

$$\lim_{x \to +\infty} \frac{\sqrt{x-2}}{x-1} = 0$$
 es del tipo de indeterminación $\frac{\infty}{\infty}$ y se resuelve por

órdenes, el numerador es infinito de menor orden que el del numerador.

2)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 2} (x + 1) = 3$$
 es del tipo indeterminado $\frac{0}{0}$

se resuelve aplicando el teorema de descomposición factorial, aprovechando que el valor al que tiende x es raíz del polinomio, luego se simplifica y el límite queda determinado

 $\lim_{x\to\pm\infty}\frac{x^2-1}{x-1}=\pm\infty\quad\text{en este caso el numerador es infinito de mayor orden que el denominador.}$

3)
$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^3 - 4x} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{(x - 2)(x^2 + 2x)} = \lim_{x \to 2} \frac{x + 1}{x^2 + 2x} = \frac{3}{8}$$
$$\lim_{x \to \pm \infty} \frac{x^2 - x - 2}{x^3 - 4x} = 0$$

4)
$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x^3 - 7x^2 + 15x - 9} = \lim_{x \to 3} \frac{(x - 3)^2}{(x - 3)^2 (x - 1)} = \lim_{x \to 3} \frac{1}{x - 1} = \frac{1}{2}$$
$$\lim_{x \to \pm \infty} \frac{x^2 - 6x + 9}{x^3 - 7x^2 + 15x - 9} = 0$$

5)
$$\lim_{x \to -1} \frac{x^4 + x^3}{5x^2 + x - 4} = \lim_{x \to -1} \frac{(x+1)x^3}{(x+1)(5x-4)} = \lim_{x \to -1} \frac{x^3}{5x - 4} = \frac{1}{9}$$
$$\lim_{x \to \pm \infty} \frac{x^4 + x^3}{5x^2 + x - 4} = + \infty$$

6)
$$\lim_{x \to 2} \frac{(x^2 + 3)(x^2 - 5x + 6)}{(x - 5)(x^2 + 5x - 14)} = \lim_{x \to 2} \frac{7(x - 2)(x - 3)}{-3(x - 2)(x + 7)} = \lim_{x \to 2} \frac{-7(x - 3)}{3(x + 7)} = \frac{7}{27}$$
$$\lim_{x \to 5} \frac{(x^2 + 3)(x^2 - 5x + 6)}{(x - 5)(x^2 + 5x - 14)} = \lim_{x \to 5^{\pm}} \frac{28 \times 6}{(x - 5) \times 36} = \pm \infty$$

es de la forma constante distinta de 0 sobre 0 que es infinito, se consideran los límites laterales porque en 5 cambia el signo.

7)
$$\lim_{x \to 1} \frac{x^3 - 9x}{x^2 - 4x + 3} = \lim_{x \to 1} \frac{-8}{(x - 1)(x - 3)} = \lim_{x \to 1^{\pm}} \frac{4}{x - 1} = \pm \infty$$

$$\lim_{x \to 3} \frac{x^3 - 9x}{x^2 - 4x + 3} = \lim_{x \to 3} \frac{(x - 3)(x^2 + 3x)}{(x - 3)(x - 1)} = \lim_{x \to 3} \frac{x^2 + 3x}{x - 1} = 9$$

8)
$$\lim_{x \to 3^{-}} \frac{\sqrt{9-x^2}}{x-3} =$$

$$\lim_{x \to 3^{-}} \frac{\sqrt{(3-x)(3+x)}}{-(3-x)} = \lim_{x \to 3^{-}} -\frac{\sqrt{6}(3-x)^{\frac{1}{2}}}{(3-x)^{\frac{2}{2}}} = \lim_{x \to 3^{-}} \frac{-\sqrt{6}}{(3-x)^{\frac{1}{2}}} = -\infty$$

$$\lim_{x \to -3^+} \frac{\sqrt{9 - x^2}}{x - 3} = 0$$

Se calcula sólo estos límites laterales porque el dominio de la función es el intervalo [-3 , 3) : los límites para $x \rightarrow 3^+$, $x \rightarrow -3^-$, $x \rightarrow \pm \infty$ no existen.

9)
$$\lim_{x \to 1^{\pm}} \frac{\sqrt{9x^2 + 4x + 3}}{x - 1} = \pm \infty$$

$$\lim_{x \to \pm \infty} \frac{\sqrt{9x^2 + 4x + 3}}{x - 1} = \lim_{x \to \pm \infty} \frac{3|x|}{x} = \pm 3$$

10)
$$\lim_{x \to 1} \frac{2x^2 - 5x + 3}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1)(2x - 3)}{(x - 1)(x + 1)} = -\frac{1}{2}$$

11)
$$\lim_{x \to 1^+} \sqrt{2^{x-1} - 1} = 0$$

El límite por la izquierda de 1 no existe ya que el dominio de esta función es $\{x \in R : x \ge 1\}$

12)
$$\lim_{x \to +\infty} \left(\sqrt{2x+3} - \sqrt{x+2} \right) = +\infty$$

Es del tipo indeterminado $\infty - \infty$ pero el primero es superior al segundo. Por otro lado el dominio de la función es $\{x \in R : x \ge -2\}$, entonces no se puede calcular el límite para $x \to -\infty$

13)
$$\lim_{x \to +\infty} \left(\sqrt{x+6} - \sqrt{x+4} \right) = \lim_{x \to +\infty} \frac{x+6-x-4}{\sqrt{x+6} + \sqrt{x+4}} = \lim_{x \to +\infty} \frac{2}{\sqrt{x+6} + \sqrt{x+4}} = 0$$

Es del tipo indeterminado $\infty-\infty$, con ambos infinitos equivalentes, para resolver esta indeterminación se utiliza el producto de expresiones

conjugadas:
$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = a - b \implies \sqrt{a} - \sqrt{b} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$$

Por otro lado, para $x \to -\infty$ no existe la función, entonces no tiene sentido plantear su límite.

$$14) \lim_{x \to +\infty} \sqrt{x + \sqrt{x}} - \sqrt{x} = \lim_{x \to +\infty} \frac{x + \sqrt{x} - x}{\sqrt{x + \sqrt{x}} + \sqrt{x}} = \lim_{x \to +\infty} \frac{\sqrt{x}}{2\sqrt{x}} = \frac{1}{2}$$

$$15) \lim_{x \to \pm \infty} \left(\sqrt{x^2 - 5x + 6} - \sqrt{x^2 - 3x + 2} \right) = \lim_{x \to \pm \infty} \frac{x^2 - 5x + 6 - x^2 + 3x - 2}{\sqrt{x^2 - 5x + 6} + \sqrt{x^2 - 3x + 2}} =$$

$$\lim_{x \to \pm \infty} \frac{-2x}{2 \mid x \mid} = \mp 1$$

16)
$$\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3} = \lim_{x \to 3} \frac{\frac{x - 3}{\sqrt{x} + \sqrt{3}}}{x - 3} = \lim_{x \to 3} \frac{1}{\sqrt{x} + \sqrt{3}} = \frac{1}{2\sqrt{3}}$$

17)
$$\lim_{x \to 0} \frac{\sqrt{x^2 + x + 1} - 1}{x} = \lim_{x \to 0} \frac{\frac{x^2 + x + 1 - 1}{\sqrt{x^2 + x + 1} + 1}}{x} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + x + 1} + 1} = \frac{1}{2}$$

18)
$$\lim_{x \to 3} \frac{\sqrt{x^2 - 2x + 6} - \sqrt{x^2 + 2x - 6}}{x^2 - 4x + 3} = \lim_{x \to 3} \frac{x^2 - 2x + 6 - x^2 - 2x + 6}{(x^2 - 4x + 3)(\sqrt{x^2 - 2x + 6} + \sqrt{x^2 + 2x - 6})}$$
$$\lim_{x \to 3} \frac{-4(x - 3)}{6(x - 3)(x - 1)} = \lim_{x \to 3} \frac{-2}{3(x - 1)} = -\frac{1}{3}$$

19)
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x} = \lim_{x \to 0} \frac{x+2-2}{x(\sqrt{x+2} + \sqrt{2})} = \lim_{x \to 0} \frac{1}{\sqrt{x+2} + \sqrt{2}} = \frac{1}{2\sqrt{2}}$$

20)
$$\lim_{x\to 0} \frac{\sqrt{x+1}-1}{\sqrt{x+4}-2} = \lim_{x\to 0} \frac{(x+1-1)(\sqrt{x+4}+2)}{(\sqrt{x+1}+1)(x+4-4)} = \lim_{x\to 0} \frac{\sqrt{x+4}+2}{\sqrt{x+1}+1} = 2$$

21)
$$\lim_{x \to -1} \frac{\sqrt{x^3 + 10} + 3x}{\sqrt{x^2 - x + 2} + 2x} = \lim_{x \to -1} \frac{(x^3 + 10 - 9x^2)(\sqrt{x^2 - x + 2} - 2x)}{(x^2 - x + 2 - 4x^2)(\sqrt{x^3 + 10} - 3x)} = \lim_{x \to -1} \frac{4(x^3 - 9x^2 + 10)}{6(-3x^2 - x + 2)} = \lim_{x \to -1} \frac{2(x + 1)(x^2 - 10x + 10)}{3(x + 1)(-3x + 2)} = \frac{42}{15}$$

22)
$$\lim_{x\to 2} \frac{\sqrt{4x+8} - \sqrt{7x+2}}{\sqrt{3x+3} - 3} = \lim_{x\to 2} \frac{(4x+8-7x-2)(\sqrt{3x+3}+3)}{(3x+3-9)(\sqrt{4x+8}+\sqrt{7x+2})} =$$

$$\lim_{x\to 2}\frac{6(-3x+6)}{8(3x-6)}=-\frac{3}{4}$$

23)
$$\lim_{x \to +\infty} \left(\sqrt{x^2 - 4x} + x \right) = +\infty$$

$$\lim_{x \to -\infty} \left(\sqrt{x^2 - 4x} + x \right) = \lim_{x \to -\infty} \frac{(\sqrt{x^2 - 4x} + x)(\sqrt{x^2 - 4x} - x)}{\sqrt{x^2 - 4x} - x} = \lim_{x \to -\infty} \frac{x^2 - 4x - x^2}{2|x|} = \lim_{x \to -\infty} \frac{4|x|}{2|x|} = 2$$

Se ha utilizado que $\sqrt{x^2} = |x|$ y que para x < 0: |x| = -x

24) En éste y los ejercicios que siguen se utilizan las expresiones conjugadas:

$$(\sqrt[3]{a} - \sqrt[3]{b})(\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}) = a - b \implies \sqrt[3]{a} - \sqrt[3]{b} = \frac{a - b}{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}}$$
$$\lim_{x \to \pm \infty} \left(\sqrt[3]{x^3 + 4x^2 - x} - \sqrt[3]{x^3 + 2x^2 - x + 1}\right) =$$

$$\lim_{x \to \pm \infty} \frac{x^3 + 4x^2 - x - x^3 - 2x^2 + x - 1}{\sqrt[3]{(x^3 + 4x^2 - x)^2} + \sqrt[3]{(x^3 + 4x^2 - x)(x^3 + 2x^2 - x + 1)} + \sqrt[3]{(x^3 + 2x^2 - x + 1)^2}} = \lim_{x \to \pm \infty} \frac{2x^2}{3x^2} = \frac{2}{3}$$

25)
$$\lim_{x \to \pm \infty} \left(\sqrt[3]{-8x^3 + 5x^2} + 2x \right) = \lim_{x \to \pm \infty} \left(2x - \sqrt[3]{8x^3 - 5x^2 - 2x} \right) =$$

$$\lim_{x \to \pm \infty} \frac{8x^3 - 8x^3 + 5x^2 + 2}{4x^2 + 2x\sqrt[3]{8x^3 - 5x^2 - 2x} + \sqrt[3]{(8x^3 - 5x^2 - 2x)^2}} = \lim_{x \to \pm \infty} \frac{5x^2}{12x^2} = \frac{5}{12}$$

26)
$$\lim_{x \to 0} \frac{\sqrt[3]{x+2} - \sqrt[3]{2}}{\sqrt{x+2} - \sqrt{2}} = \lim_{x \to 0} \frac{(x+2-2)(\sqrt{x+2} + \sqrt{2})}{(\sqrt[3]{(x+2)^2} + \sqrt[3]{(x+2)^2} + \sqrt[3]{4})(x+2-2)} = \frac{2\sqrt{2}}{3\sqrt[3]{4}}$$

27)
$$\lim_{x\to 0} \frac{\sqrt[3]{5x+1} - \sqrt{5x+1}}{2x} = \lim_{x\to 0} \frac{(\sqrt[3]{5x+1} - 1) + (1 - \sqrt{5x+1})}{2x} =$$

$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{\frac{1}{3}(5x) - \frac{1}{2}(5x)}{2x} = \lim_{\substack{x \to 0}} -\frac{5x}{12x} = -\frac{5}{12}$$

28)
$$\lim_{x \to \pm \infty} \left(\sqrt[3]{(x+1)^2(x+8)} - x \right) = \lim_{x \to \pm \infty} \frac{(x^2 + 2x + 1)(x+8) - x^3}{\sqrt[3]{(x+1)^4(x+8)^3} + x\sqrt[3]{(x+1)^2(x+8)} + x^2} =$$

II. Hallar a y b tales que cumplan las condiciones dadas:

a)
$$\lim_{x \to -2} \frac{x^2 + a \cdot x + 2b - 2}{2x^2 + (b+4) \cdot x + 2b} = \frac{1}{2}$$
 b) $\lim_{x \to +\infty} (\frac{x^3}{x^2 + 1} - 5a \cdot x + 7b) = 0$

b)
$$\lim_{x \to +\infty} (\frac{x^3}{x^2 + 1} - 5a \cdot x + 7b) = 0$$

c)
$$\lim_{x \to -1^+} \frac{e^{x-2}}{x^2 + a \cdot x + b} = -\infty$$

c)
$$\lim_{x \to -1^+} \frac{e^{x-2}}{x^2 + a \cdot x + b} = -\infty$$
 d) $\lim_{x \to +\infty} \left(\sqrt{4x^2 + 6x - 3} - (a \cdot x + b) \right) = 0$

III. Calcular los siguientes límites:

1.
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1}$$

2.
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[4]{x} - 1}$$

3.
$$\lim_{x\to 0} \frac{3^x-1}{e^{2x}-1}$$

1.
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1}$$
 2. $\lim_{x \to 1} \frac{\sqrt[3]{x}-1}{\sqrt[4]{x}-1}$ 3. $\lim_{x \to 0} \frac{3^{x}-1}{e^{2x}-1}$ 4. $\lim_{x \to 0} \frac{L(1+5x)}{L(1+3x^{2})}$

5.
$$\lim_{x\to 2} \frac{L(2x-3)}{x^5-32}$$

6.
$$\lim_{x\to 2} \frac{e^{4x} - e^8}{16 - x^4}$$

7.
$$\lim_{x\to 2} \frac{2^{x+1}-8}{4-2x}$$

5.
$$\lim_{x \to 2} \frac{L(2x-3)}{x^5-32}$$
 6. $\lim_{x \to 2} \frac{e^{4x}-e^8}{16-x^4}$ 7. $\lim_{x \to 2} \frac{2^{x+1}-8}{4-2x}$ 8. $\lim_{x \to 2} \frac{\sqrt{x+2}-2}{L(\frac{x+1}{3})}$

9.
$$\lim_{x \to +\infty} x \cdot L\left(\frac{x+1}{x}\right)$$

10.
$$\lim_{x\to 1} \frac{L3-L(2+x)}{x-1}$$

$$9. \lim_{x \to +\infty} x \cdot L\left(\frac{x+1}{x}\right) \qquad 10. \lim_{x \to 1} \frac{L3 - L(2+x)}{x-1} \qquad 11. \lim_{x \to 0} \frac{L(1+x+x^2) - L(1-x+x^2)}{x^2 - 2x}$$

12.
$$\lim_{x \to \pm \infty} x \cdot L \left| \frac{3x - 2}{3x + 1} \right|$$

12.
$$\lim_{x \to \pm \infty} x \cdot L \frac{|3x - 2|}{|3x + 1|}$$
 13. $\lim_{x \to 2} \frac{L |1 + 2x - x^2|}{|x - 2|}$ 14. $\lim_{x \to \pm \infty} \frac{L \frac{|x - 2|}{|x + 1|}}{\frac{1}{2}}$

14.
$$\lim_{x \to \pm \infty} \frac{L \left| \frac{x-2}{x+1} \right|}{\frac{1}{e^x} - 1}$$

15.
$$\lim_{x \to +\infty} \left(x \cdot e^{\frac{1}{x}} - x \right)$$

15.
$$\lim_{x \to +\infty} \left(x \cdot e^{\frac{1}{x}} - x \right)$$
 16.
$$\lim_{x \to +\infty} \left((x+2) \cdot e^{\frac{1}{x}} - x \right)$$
 17.
$$\lim_{x \to +\infty} \left(x \cdot e^{\frac{x+1}{x}} - e \cdot x \right)$$

17.
$$\lim_{x \to +\infty} \left(x \cdot e^{\frac{x+1}{x}} - e \cdot x \right)$$

18.
$$\lim_{x \to +\infty} \left(\frac{x^2 + 2}{x} \cdot e^{\frac{x+1}{x}} - e \cdot x \right)$$
 19. $\lim_{x \to 0} \frac{\sqrt[3]{x+1} - e^{3x}}{x^2 - 3x}$ 20. $\lim_{x \to 0} \frac{\cos(2x) - 1}{L(1 + tgx^2)}$

19.
$$\lim_{x\to 0} \frac{\sqrt[3]{x+1} - e^{3x}}{x^2 - 3x}$$

20.
$$\lim_{x\to 0} \frac{\cos(2x)-1}{L(1+tgx^2)}$$

21.
$$\lim_{x\to 0} \frac{L(\cos x + \sin x)}{x}$$

21.
$$\lim_{x\to 0} \frac{L(\cos x + \sin x)}{x}$$
 22. $\lim_{x\to 0} \frac{1-\cos^3 x + \sin^2 x}{x^2}$ 23. $\lim_{x\to \frac{3}{2}} \frac{L(1+\cos \pi x)}{e^{2x-3}-1}$

23.
$$\lim_{x \to \frac{3}{2}} \frac{L(1 + \cos \pi x)}{e^{2x-3} - 1}$$

24.
$$\lim_{x\to 0} \frac{\sqrt{1-\cos(2x)}}{\sin(x^3)\cdot\cos x}$$

25.
$$\lim_{x \to 0} \frac{\sqrt{1 - \cos(\frac{x}{2})}}{\tan^2 x}$$

24.
$$\lim_{x \to 0} \frac{\sqrt{1 - \cos(2x)}}{\sin(x^3) \cdot \cos x}$$
 25. $\lim_{x \to 0} \frac{\sqrt{1 - \cos(\frac{x}{2})}}{\tan(x^2)}$ 26. $\lim_{x \to +\infty} \frac{L\left(1 + \sin(\frac{x}{2})\right)}{\sqrt{1 + \tan(\frac{x}{2})}}$

27.
$$\lim_{x\to 0} (\cos 2x)^{\frac{1}{x^2}}$$

RESOLUCIÓN

Ejercicio II

Hallar a y b tales que cumplan las condiciones dadas:

a)
$$\lim_{x\to -2} \frac{x^2 + a \cdot x + 2b - 2}{2x^2 + (b+4) \cdot x + 2b} = \frac{1}{2}$$

Primero observemos que el denominador tiene límite 0, entonces para que el límite sea finito es necesario que el numerador también tenga límite 0.

$$\Rightarrow \lim_{x \to -2} (x^2 + ax + 2b - 2) = 4 - 2a + 2b - 2 = 0 \Rightarrow a = b + 1$$

Ahora para calcular el límite debemos considerar que –2 es raíz del numerador y el denominador, podemos aplicar el teorema de descomposición factorial:

$$\lim_{x \to -2} \frac{(x+2)(x+b-1)}{(x+2)(2x+b)} = \lim_{x \to -2} \frac{x+b-1}{2x+b} = \frac{b-3}{b-4} = \frac{1}{2} \implies 2b-6 = b-4$$

$$\Rightarrow$$
 b = 2 a = 3

b)
$$\lim_{x \to +\infty} (\frac{x^3}{x^2 + 1} - 5a \cdot x + 7b) = 0$$

$$\lim_{x \to +\infty} \frac{x^3 - 5ax^3 - 5ax}{x^2 + 1} + 7b = \lim_{x \to +\infty} \frac{(1 - 5a)x^3 - 5ax}{x^2 + 1} + 7b$$

Para que este límite sea 0, una primer condición es que 1 - 5a = 0 (sino el límite sería infinito) con esa condición el límite es 7b que también debe ser 0

$$\Rightarrow$$
 $a = \frac{1}{5}$ $b = 0$

c)
$$\lim_{\substack{x \to -1^+ \\ x \to 2^-}} \frac{e^{x-2}}{x^2 + a \cdot x + b} = -\infty$$

En ambos casos el límite del numerador es finito y distinto de 0, para que el límite sea infinito será condición que el límite del denominador sea 0, de donde se concluye que –1 y 2 son raíces del denominador.

$$D(x) = x^2 + ax + b$$
 tiene raíces -1 y 2

$$\begin{cases} D(-1) = 1 - a + b = 0 \\ D(2) = 4 + 2a + b = 0 \end{cases}$$

$$\Rightarrow$$
 a = -1 b = -2

d)
$$\lim_{x \to +\infty} \left(\sqrt{4x^2 + 6x - 3} - (a \cdot x + b) \right) = 0$$

$$\lim_{x \to +\infty} \frac{4x^2 + 6x - 3 - (a^2x^2 + 2abx + b^2)}{\sqrt{4x^2 + 6x - 3} + ax + b} = \lim_{x \to +\infty} \frac{(4 - a^2)x^2 + (6 - 2ab)x - (3 + b^2)}{(2 + a)x}$$

Primero observamos que debe ser a > 0, sino el límite sería $+\infty$, aplicamos el producto de conjugadas y ordenamos. Para que el límite sea 0 el numerador debe ser de menor orden que el denominador instancia que se verificará si se cumplen las condiciones: $4-a^2=0$ y 6-2ab=0, de donde

$$a = 2$$
 $b = \frac{3}{2}$

Ejercicio III

En la resolución de esta lista de límites se debe aplicar la tabla de equivalencias:

1)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{\sqrt[3]{1+x} - 1} = \lim_{x \to 0} \frac{\frac{1}{2}x}{\frac{1}{3}x} = \frac{3}{2}$$

2)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[4]{x} - 1} = \lim_{x \to 1} \frac{\frac{1}{3}(x - 1)}{\frac{1}{4}(x - 1)} = \frac{4}{3}$$

3)
$$\lim_{x\to 0} \frac{3^x-1}{e^{2x}-1} = \lim_{x\to 0} \frac{xL(3)}{2x} = \frac{L(3)}{2} = L(3^{\frac{1}{2}}) = L(\sqrt{3})$$

4)
$$\lim_{x\to 0} \frac{L(1+5x)}{L(1+3x^2)} = \lim_{x\to 0^{\pm}} \frac{5x}{3x^2} = \pm \infty$$

5)
$$\lim_{x \to 2} \frac{L(2x-3)}{x^5 - 32} = \lim_{x \to 2} \frac{2x-4}{x^5 - 2^5} = \lim_{x \to 2} \frac{2(x-2)}{52^4(x-2)} = \frac{1}{40}$$

6)
$$\lim_{x \to 2} \frac{e^{4x} - e^8}{16 - x^4} = \lim_{x \to 2} \frac{e^8 (e^{4x - 8} - 1)}{-(x^4 - 2^4)} = \lim_{x \to 2} -\frac{e^8 (4x - 8)}{4 \cdot 2^3 (x - 2)} = -\frac{e^8}{8}$$

7)
$$\lim_{x \to 2} \frac{2^{x+1} - 8}{4 - 2x} = \lim_{x \to 2} \frac{2^3 (2^{x-2} - 1)}{-2(x-2)} = -\lim_{x \to 2} \frac{2^3 (x-2)L(2)}{2(x-2)} = -4L(2)$$

8)
$$\lim_{x \to 2} \frac{\sqrt{x+2}-2}{L(\frac{x+1}{3})} = \lim_{x \to 2} \frac{(x+2)^{\frac{1}{2}}-4^{\frac{1}{2}}}{\left(\frac{x+1}{3}-1\right)} = \lim_{x \to 2} \frac{\frac{1}{2}4^{-\frac{1}{2}}(x+2-4)}{\frac{x+1-3}{3}} = \frac{3}{4}$$

9)
$$\lim_{x \to +\infty} x \cdot L\left(\frac{x+1}{x}\right) = \lim_{x \to +\infty} x \left(\frac{x+1}{x} - 1\right) = \lim_{x \to +\infty} x \frac{x+1-x}{x} = 1$$

10)
$$\lim_{x \to 1} \frac{L3 - L(2 + x)}{x - 1} = \lim_{x \to 1} \frac{L\left(\frac{3}{2 + x}\right)}{x - 1} = \lim_{x \to 1} \frac{\frac{3}{x + 2} - 1}{x - 1} = \lim_{x \to 2} \frac{3 - x - 2}{(x + 2)(x - 1)} = \lim_{x \to 1} \frac{-(x - 1)}{3(x - 1)} = -\frac{1}{3}$$

$$\lim_{x \to 0} \frac{L(1+x+x^2) - L(1-x+x^2)}{x^2 - 2x} = \lim_{x \to 0} \frac{L\left(\frac{1+x+x^2}{1-x+x^2}\right)}{x(x-2)} = \lim_{x \to 0} \frac{\frac{1+x+x^2}{1-x+x^2} - 1}{x(x-2)} = \lim_{x \to 0} \frac{1+x+x^2}{x(x-2)} = \lim_{x \to 0} \frac{1+x+$$

12)
$$\lim_{x \to \pm \infty} x \cdot L \left| \frac{3x - 2}{3x + 1} \right| = \lim_{x \to \pm \infty} x \left(\frac{3x - 2}{3x + 1} - 1 \right) = \lim_{x \to \pm \infty} x \left(\frac{3x - 2 - 3x - 1}{3x + 1} \right) = -1$$

13)
$$\lim_{x \to 2} \frac{L \left| 1 + 2x - x^2 \right|}{x - 2} = \lim_{x \to 2} \frac{2x - x^2}{x - 2} = \lim_{x \to 2} \frac{-x(x - 2)}{x - 2} = -2$$

14)
$$\lim_{x \to \pm \infty} \frac{L \left| \frac{x-2}{x+1} \right|}{\frac{1}{e^{\frac{1}{x}} - 1}} = \lim_{x \to \mp \infty} \frac{\frac{x-2}{x+1} - 1}{\frac{1}{x}} = \lim_{x \to \pm \infty} \frac{(x-2-x-1)x}{x+1} = -3$$

15)
$$\lim_{x \to +\infty} \left(x \cdot e^{\frac{1}{x}} - x \right) = \lim_{x \to +\infty} x \left(e^{\frac{1}{x}} - 1 \right) = \lim_{x \to +\infty} x \cdot \frac{1}{x} = 1$$

16)
$$\lim_{x \to +\infty} \left((x+2) \cdot e^{\frac{1}{x}} - x \right) = \lim_{x \to +\infty} \left(x e^{\frac{1}{x}} + 2e^{\frac{1}{x}} - x \right) = \lim_{x \to +\infty} \left[x \left(e^{\frac{1}{x}} - 1 \right) + 2e^{\frac{1}{x}} \right] = 3$$

17)
$$\lim_{x \to +\infty} \left(x \cdot e^{\frac{x+1}{x}} - e \cdot x \right) = \lim_{x \to +\infty} e^{x} \left(e^{\frac{x+1}{x} - 1} - 1 \right) = \lim_{x \to +\infty} e^{x} \frac{x+1-x}{x} = e^{x}$$

18)
$$\lim_{x \to +\infty} \left(\frac{x^2 + 2}{x} \cdot e^{\frac{x+1}{x}} - e \cdot x \right) = \lim_{x \to +\infty} \left[\left(x + \frac{2}{x} \right) e^{\frac{x+1}{x}} - e x \right] =$$

$$\lim_{x \to +\infty} \left[e x \left(e^{\frac{x+1}{x} - 1} - 1 \right) + \frac{2}{x} e^{\frac{x+1}{x}} \right] = \lim_{x \to +\infty} e x \frac{1}{x} = e$$

19)
$$\lim_{x \to 0} \frac{\sqrt[3]{x+1} - e^{3x}}{x^2 - 3x} = \lim_{x \to 0} \frac{(\sqrt[3]{x+1} - 1) + (1 - e^{3x})}{x(x-3)} = \lim_{x \to 0} \frac{\frac{1}{3}x - 3x}{-3x} = \frac{\frac{1}{3} - 3}{-3} = \frac{8}{9}$$

20)
$$\lim_{x \to 0} \frac{\cos(2x) - 1}{L(1 + \lg x^2)} = \lim_{x \to 0} \frac{-\frac{1}{2}(2x)^2}{\lg(x^2)} = \lim_{x \to 0} \frac{-2x^2}{x^2} = -2$$

21)
$$\lim_{x \to 0} \frac{L(\cos x + \sin x)}{x} = \lim_{x \to 0} \frac{\cos(x) + \sin(x) - 1}{x} = \lim_{x \to 0} \frac{x - \frac{1}{2}x^2}{x} = 1$$

22)
$$\lim_{x \to 0} \frac{1 - \cos^3 x + \sin^2 x}{x^2} = \lim_{x \to 0} \frac{(1 - \cos(x))(1 + \cos(x) + \cos^2(x)) + \sin^2(x)}{x^2} = \lim_{x \to 0} \frac{\frac{3}{2}x^2 + x^2}{x^2} = \frac{5}{2}$$

23)
$$\lim_{x \to \frac{3}{2}} \frac{L(1 + \cos \pi x)}{e^{2x - 3} - 1} = \lim_{x \to \frac{3}{2}} \frac{\cos(\pi x)}{2x - 3} = \lim_{x \to \frac{3}{2}} \frac{\cos(\pi x) - \cos(\frac{3\pi}{2})}{2(x - \frac{3}{2})} =$$

LÍMITES DE FUNCIONES

$$\lim_{\substack{x \to \frac{3}{2}}} \frac{-2 \operatorname{sen}(\frac{\pi x + \frac{3}{2}\pi}{2}) \operatorname{sen}(\frac{\pi x - \frac{3}{2}\pi}{2})}{2(x - \frac{3}{2})} = \lim_{\substack{x \to \frac{3}{2}}} \frac{-2 \operatorname{sen}\left(\frac{3\pi}{2}\right) \left(\frac{(x - \frac{3}{2})\pi}{2}\right)}{2(x - \frac{3}{2})} = \frac{\pi}{2}$$

24)
$$\lim_{x \to 0} \frac{\sqrt{1 - \cos(2x)}}{\sin(x^3) \cdot \cos x} = \lim_{x \to 0} \frac{\sqrt{2x^2}}{x^3} = \lim_{x \to 0^{\pm}} \frac{\sqrt{2} |x|}{x^3} = \pm \infty$$

25)
$$\lim_{x \to 0} \frac{\sqrt{1 - \cos(\frac{x}{2})}}{tgx^2} = \lim_{x \to 0} \frac{\sqrt{\frac{x^2}{8}}}{x^2} = \lim_{x \to 0^{\pm}} \frac{|x|}{\sqrt{8}x^2} = +\infty$$

$$26) \lim_{x \to +\infty} \frac{L\left(1 + sen\frac{2}{x}\right)}{\sqrt{1 + tg\frac{2}{x} - 1}} = \lim_{x \to +\infty} \frac{sen\left(\frac{2}{x}\right)}{\frac{1}{2}tg\left(\frac{2}{x}\right)} = 2$$

27)
$$\lim_{x \to 0} (\cos 2x)^{\frac{1}{x^2}} = \lim_{x \to 0} e^{(\cos 2x - 1)\frac{1}{x^2}} = \lim_{x \to 0} e^{-\frac{1}{2}x^2\frac{1}{x^2}} = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}$$