Sistemas de numeración

Arquitectura de Computadoras - Práctico 0

1

Conversión de base de números enteros

Tenemos un número entero N representado en una base B:

$$N = A_n B^n + ... + A_0 B^0$$

y queremos hallar su expresión en la base b, es decir encontrar los valores a_m , a_{m-1} , ..., a_0 tal que:

$$N = a_m b^m + ... + a_0 b^0$$

(B -> b) Usando la aritmética de la base b

expreso símbolos en base b (10):

- $A_{16} \rightarrow 10_{10}$
- $F_{16} \rightarrow 15_{10}$

muy útil para pasar de cualquier base a base 10

a través del polinomio característico, expresando los símbolos y la base B en la base b, y usando la aritmética de la base b

Convertir A2Fh a decimal

A2Fh =
$$10 \times 16^2 + 2 \times 16^1 + 15 \times 16^0 = 2607$$

expreso base B (10_{16}) en la base b (16_{10})

OPCIÓN 1

Usando la aritmética de la base B

muy útil para pasar de base 10 a cualquier base

los valores a₀, ..., a_n son los restos de las divisiones de N entre b realizadas en la aritmética de la base B.

Índice de la base en el polinomio y posición

•
$$1\times2^7 + 1\times2^6 + 0\times2^5 + 0\times2^4 + 1\times2^3 + 1\times2^2 + 0\times2^1 + 1\times2^0$$

Conversión de números con parte fraccionaria

Sea N = N_e + N_f =
$$a_nb^n + ... + a_1b^1 + a_0 + a_{-1}b^{-1} + ...$$

parte
entera parte
fraccionaria

la parte entera puede convertirse igual que antes y la parte fraccionaria se convierte por separado

Usando la aritmética de la base b

muy útil para pasar de cualquier base a base 10

tenemos $N_f = A_{-1}B^{-1} + A_{-2}B^{-2} + ... + A_{-m}B^{-m}$ y desarrollamos el polinomio equivalente, P(x), obteniendo su valor numérico

Usando la aritmética de la base B

muy útil para pasar de base 10 a cualquier base

tenemos
$$N_f = a_{-1}b^{-1} + a_{-2}b^{-2} + ... + a_{-m}b^{-m}$$
 y multiplicamos por b
=> $N_f.b = a_{-1} + a_{-2}b^{-1} + ...$ donde a_{-1} es la parte entera de $N_f.b$

Convertir 653.61 a base 2

$$2(0,61) = 1,22 \Rightarrow \alpha_{-1} = 1$$
 $2(0,88) = 1,76 \Rightarrow \alpha_{-4} = 1$
 $2(0,22) = 0,44 \Rightarrow \alpha_{-2} = 0$ $2(0,76) = 1,52 \Rightarrow \alpha_{-5} = 1$
 $2(0,44) = 0,88 \Rightarrow \alpha_{-3} = 0$

653 = 1010001101b => 653.61 = 1010001101.10011...b

Representación exacta y aproximada

El proceso de conversión de números entre bases no necesariamente es exacto

Al convertir de una base a la otra puede ocurrir que se requiera un número infinito de dígitos para representar el número en la nueva base

En estos casos es necesario definir un criterio de parada

Sistemas de numeración y el lenguaje C

Los lenguajes de programación posibilitan definir constantes numéricas en distintas bases

<u>Hexadecimal</u>

- prefijo 0x
- Ejemplo: 0x10

<u>Octal</u>

- prefijo 0
- Ejemplo: 020

Decimal

- no requiere prefijo
- Ejemplo: 10000

Ejercicio 2 d) y 2 e)

- Convertir a base 10 los siguientes números:
 - d) DB₁₆
 - e) 111110₂

Ejercicios 2 b) y 5 a)

- Realizar las siguientes conversiones:
 - 2 b) 63₁₀ a base 2
 - 5 a) 100110111011₂ a hexadecimal

Ejercicios de práctico

- Ejercicios 2 d) y 2 e):
 d) DB₁₆ a base 10
 e) 111110₂ a base 10
- Ejercicio 1 b):
 b) 63₁₀ a base 2
- Ejercicio 5 a):
 a) 100110111011₂ a hexadecimal