II Emisión térmica Curso: Radiación en la atmósfera

Agustín Laguarda laguarda@fing.edu.uy

Universidad de la República

2023

Leyes de radiación de cuerpo negro

2 Propiedades radiativas de cuerpos opacos y Cuerpo Gris

3 Ejemplos y aplicaciones

 Un cuerpo de con temperatura T > 0 K emite radiación en amplio rango de longitudes de onda. Para cada λ, el valor está acotado por un límite teórico determinado por la emisión de Cuerpo Negro (CN) a través de la función de Planck.

- Un cuerpo de con temperatura T > 0 K emite radiación en amplio rango de longitudes de onda. Para cada λ, el valor está acotado por un límite teórico determinado por la emisión de Cuerpo Negro (CN) a través de la función de Planck.
- Para un T fijo, el máximo de emisión se da en un λ que es es inversamente proporcional a T (Ley de Wien).

- Un cuerpo de con temperatura T > 0 K emite radiación en amplio rango de longitudes de onda. Para cada λ, el valor está acotado por un límite teórico determinado por la emisión de Cuerpo Negro (CN) a través de la función de Planck.
- Para un T fijo, el máximo de emisión se da en un λ que es es inversamente proporcional a T (Ley de Wien).
- La radiación total emitida (de banda ancha) es proporcional a T^4 (Ley de Stefan-Boltzmann).

- Un cuerpo de con temperatura T > 0 K emite radiación en amplio rango de longitudes de onda. Para cada λ, el valor está acotado por un límite teórico determinado por la emisión de Cuerpo Negro (CN) a través de la función de Planck.
- Para un T fijo, el máximo de emisión se da en un λ que es es inversamente proporcional a T (Ley de Wien).
- La radiación total emitida (de banda ancha) es proporcional a T^4 (Ley de Stefan-Boltzmann).
- Dado un rango espectral (entre λ y $\lambda + d\lambda$) un buen absorbedor es un buen emisor (Ley de Kirchhoff).

Las cámaras infrarrojas permiten "ver" aunque no haya luz visible. Están diseñadas para ver en el rango del infrarrojo térmico. Usualmente estiman temperatura.

1 Leyes de radiación de cuerpo negro

Propiedades radiativas de cuerpos opacos y Cuerpo Gris

3 Ejemplos y aplicaciones

Cuerpo Negro Definición

Cuerpo físico idealizado que absorbe toda la radiación electromagnética incidente (absorbedor perfecto).

Ejemplos: Cavidad con pequeño hueco (figura), un cristal infinito, una nube grande donde se produce multiple-scattering.

En la figura, la radiación que entra por el hueco queda mayoritariamente "atrapada" en la cavidad. Las reflexiones que se producen dentro hacen que las paredes internas absorban todo el flujo. Como la probabilidad de que la radiación escape es muy baja, el interior se ve "negro". Las paredes que absorben energía, también comenzarán a emitir y parte de ese flujo emitido también estará atrapado. Luego de numerosos eventos de interacción, la emisión y absorción en las paredes llegan a un equilibrio, en función de la temperatura de las paredes.

A. Laguarda (Fing, Udelar)

Radiación en la atmósfera

2023

Función de Planck

Intensidad monocromática emitida por un CN

$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5 [\exp(hc/k_B\lambda T) - 1]}$$

T, Temperatura (en Kelvin)

•
$$h = 6.626 \times 10^{-34}$$
 J.s, cte. de Planck

•
$$k_B = 1.381 \times 10^{-23} \text{ J/K}$$
, cte. de Boltzmann

•
$$c = 2.998 \times 10^8$$
 m/s, velocidad de la luz en el vacío

Figure: $B_{\lambda}(T)$ para temperaturas típicas en la atmósfera (G. Petty).

A mayor temperatura mayor emisión para toda longitud de onda

Función de Planck

Casos extremos

- Cuando $\frac{hc}{\lambda} << k_B T$ (zona menos energética), tenemos la aproximación de Rayleigh-Jean (clásica): $B_{\lambda}(T) \propto \frac{T}{\lambda^4}$
- Cuando $\frac{hc}{\lambda} >> k_B T$ (zona más energética), tenemos la distribución de Wien: $B(T) \propto \frac{\exp(-hc/k_B\lambda T)}{\lambda^5}$

Ejercicio:

Demuestre las dos aproximaciones anteriores.

A. Laguarda (Fing, Udelar)

Radiación en la atmósfera

2023

8/31

La longitud de onda que maximiza la radiación de CN es inversamente proporcional a la temperatura.

El color de brillo de un cuerpo queda determinado por λ_m

• El máximo del "Sol" se de en el entorno de los 500 nm (color verde), mientras que el de la "Tierra" se da en los 10µm.

- El máximo del "Sol" se de en el entorno de los 500 nm (color verde), mientras que el de la "Tierra" se da en los 10µm.
- Los espectros son casi disjuntos:

- El máximo del "Sol" se de en el entorno de los 500 nm (color verde), mientras que el de la "Tierra" se da en los 10µm.
- Los espectros son casi disjuntos:
 - En el caso del "Sol", un 99.5% de la energía está por debajo de los 5.0µm.

- El máximo del "Sol" se de en el entorno de los 500 nm (color verde), mientras que el de la "Tierra" se da en los 10µm.
- Los espectros son casi disjuntos:
 - En el caso del "Sol", un 99.5% de la energía está por debajo de los 5.0µm.
 - En el caso de la "Tierra", un 98.7% de la energía está sobre los 5.0µm.

- El máximo del "Sol" se de en el entorno de los 500 nm (color verde), mientras que el de la "Tierra" se da en los 10µm.
- Los espectros son casi disjuntos:
 - En el caso del "Sol", un 99.5% de la energía está por debajo de los 5.0µm.
 - En el caso de la "Tierra", un 98.7% de la energía está sobre los 5.0µm.

Estas características son importantes en el sensado remoto.

La intensidad radiante de banda ancha de un CN se obtiene integrando la función de Planck en λ

$$B(T) = \int_0^\infty B_\lambda(T) d\lambda \propto T^4$$

Asumiendo que el CN irradia isotrópicamente, la densidad de flujo es

$$F = \pi B(T) \qquad \Rightarrow \qquad F = \sigma_B T^4$$

con $\sigma_B = 5.67 \times 10^{-8} \text{ Jm}^{-2} \text{K}^{-4}$ (constante de Stefan-Boltzmann)

Ejercicio

Demostrar $F(T) = \sigma_B T^4$ y hallar σ_B . Sugerencia, usar c.v.: $x = hc/k\lambda T$

Para cuerpos reales definimos:

• Emisividad monocromática direccional: $\varepsilon_{\lambda,\hat{u}} = \frac{I_{\lambda}^{emi}}{B_{\lambda}(T)}$, donde I_{λ}^{emi} es la intensidad emitida en la dirección \hat{u} .

Para cuerpos reales definimos:

- Emisividad monocromática direccional: $\varepsilon_{\lambda,\hat{u}} = \frac{I_{\lambda}^{emi}}{B_{\lambda}(T)}$, donde I_{λ}^{emi} es la intensidad emitida en la dirección \hat{u} .
- Absortividad monocromática direccional: $A_{\lambda,\hat{u}} = \frac{I_{\lambda}^{abs}}{I_{\lambda}^{inc}}$, donde I_{λ}^{abs} es la intensidad absorbida e I_{λ}^{inc} la incidente desde \hat{u} .

Para cuerpos reales definimos:

- Emisividad monocromática direccional: $\varepsilon_{\lambda,\hat{u}} = \frac{I_{\lambda}^{emi}}{B_{\lambda}(T)}$, donde I_{λ}^{emi} es la intensidad emitida en la dirección \hat{u} .
- Absortividad monocromática direccional: $A_{\lambda,\hat{u}} = \frac{I_{\lambda}^{abs}}{I_{\lambda}^{inc}}$, donde I_{λ}^{abs} es la intensidad absorbida e I_{λ}^{inc} la incidente desde \hat{u} .
- $\varepsilon_{\lambda,\hat{u}}$ y $A_{\lambda,\hat{u}}$ son positivos, ≤ 1 (igual para CN) y dependen de la temperatura.

Para cuerpos reales definimos:

- Emisividad monocromática direccional: $\varepsilon_{\lambda,\hat{u}} = \frac{I_{\lambda}^{emi}}{B_{\lambda}(T)}$, donde I_{λ}^{emi} es la intensidad emitida en la dirección \hat{u} .
- Absortividad monocromática direccional: $A_{\lambda,\hat{u}} = \frac{I_{\lambda}^{abs}}{I_{\lambda}^{inc}}$, donde I_{λ}^{abs} es la intensidad absorbida e I_{λ}^{inc} la incidente desde \hat{u} .
- $\varepsilon_{\lambda,\hat{u}}$ y $A_{\lambda,\hat{u}}$ son positivos, ≤ 1 (igual para CN) y dependen de la temperatura.
- La Ley de Kirchhoff establece que en equilibrio termodinámico se verifica:

$$\varepsilon_{\lambda,\hat{u}} = A_{\lambda,\hat{u}}$$

$$\varepsilon_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{emi} \cos\theta \sin\theta d\theta d\varphi}{\pi B_{\lambda}(T)} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} \varepsilon_{\lambda,\hat{u}} \cos\theta \sin\theta d\theta d\varphi}{\pi} \qquad (1)$$

$$\varepsilon_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{emi} \cos\theta \sin\theta d\theta d\varphi}{\pi B_{\lambda}(T)} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} \varepsilon_{\lambda,\hat{u}} \cos\theta \sin\theta d\theta d\varphi}{\pi} \qquad (1)$$

Análogamente, definimos la absortividad espectral

$$A_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{abs} \cos\theta \sin\theta d\theta d\varphi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{inc} \cos\theta \sin\theta d\theta d\varphi} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} A_{\lambda,\hat{u}} I_{\lambda}^{inc}(T) \cos\theta \sin\theta d\theta d\varphi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{inc} \cos\theta \sin\theta d\theta d\varphi}$$
(2)

$$\varepsilon_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{emi} \cos\theta \sin\theta d\theta d\varphi}{\pi B_{\lambda}(T)} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} \varepsilon_{\lambda,\hat{u}} \cos\theta \sin\theta d\theta d\varphi}{\pi} \qquad (1)$$

Análogamente, definimos la absortividad espectral

$$A_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{abs} \cos\theta \sin\theta d\theta d\varphi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{inc} \cos\theta \sin\theta d\theta d\varphi} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} A_{\lambda,\hat{u}} I_{\lambda}^{inc}(T) \cos\theta \sin\theta d\theta d\varphi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{inc} \cos\theta \sin\theta d\theta d\varphi}$$
(2)

Se pueden definir la emisividad y la absortancia totales integrando en todas las longitudes de onda.

$$\varepsilon_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{emi} \cos\theta \sin\theta d\theta d\varphi}{\pi B_{\lambda}(T)} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} \varepsilon_{\lambda,\hat{u}} \cos\theta \sin\theta d\theta d\varphi}{\pi} \qquad (1)$$

Análogamente, definimos la absortividad espectral

$$A_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{abs} \cos\theta \sin\theta d\theta d\varphi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{inc} \cos\theta \sin\theta d\theta d\varphi} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} A_{\lambda,\hat{u}} I_{\lambda}^{inc} (T) \cos\theta \sin\theta d\theta d\varphi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{inc} \cos\theta \sin\theta d\theta d\varphi} \quad (2)$$

Se pueden definir la emisividad y la absortancia totales integrando en todas las longitudes de onda.

Observación

La absortividad espectral y total no sólo dependen de la absortividad la superficie, sino que depende de la radiancia incidente.

$$\varepsilon_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} \varepsilon_{\lambda,\hat{\mu}} \cos \theta \sin \theta d\theta d\varphi}{\pi} = ? = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} A_{\lambda,\hat{\mu}} I_{\lambda}^{inc}(T) \cos \theta \sin \theta d\theta d\varphi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{inc} \cos \theta \sin \theta d\theta d\varphi} = A_{\lambda}$$

$$\varepsilon_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} \varepsilon_{\lambda,\hat{u}} \cos \theta \sin \theta d\theta d\varphi}{\pi} = ? = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} A_{\lambda,\hat{u}} I_{\lambda}^{inc}(T) \cos \theta \sin \theta d\theta d\varphi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{inc} \cos \theta \sin \theta d\theta d\varphi} = A_{\lambda}$$

La igualdad vale si además de estar en equilibrio termodinámico, se cumple una de las siguientes condiciones:

$$\varepsilon_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} \varepsilon_{\lambda,\hat{\mu}} \cos \theta \sin \theta d\theta d\varphi}{\pi} = ? = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} A_{\lambda,\hat{\mu}} I_{\lambda}^{inc}(T) \cos \theta \sin \theta d\theta d\varphi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{inc} \cos \theta \sin \theta d\theta d\varphi} = A_{\lambda}$$

La igualdad vale si además de estar en equilibrio termodinámico, se cumple una de las siguientes condiciones:

(i) La radiancia incidente es isotrópica, es decir ,no depende de (φ, θ) .

$$\varepsilon_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} \varepsilon_{\lambda,\hat{\mu}} \cos \theta \sin \theta d\theta d\varphi}{\pi} = ? = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} A_{\lambda,\hat{\mu}} I_{\lambda}^{inc}(T) \cos \theta \sin \theta d\theta d\varphi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{inc} \cos \theta \sin \theta d\theta d\varphi} = A_{\lambda}$$

La igualdad vale si además de estar en equilibrio termodinámico, se cumple una de las siguientes condiciones:

(i) La radiancia incidente es isotrópica, es decir ,no depende de (φ, θ) .

(ii) $\varepsilon_{\lambda,\hat{u}}$ (y por tanto $A_{\lambda,\hat{u}}$) es isotrópica.

$$\varepsilon_{\lambda} = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} \varepsilon_{\lambda,\hat{u}} \cos\theta \sin\theta d\theta d\varphi}{\pi} = ? = \frac{\int_{0}^{2\pi} \int_{0}^{\pi/2} A_{\lambda,\hat{u}} I_{\lambda}^{inc}(T) \cos\theta \sin\theta d\theta d\varphi}{\int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda}^{inc} \cos\theta \sin\theta d\theta d\varphi} = A_{\lambda}$$

La igualdad vale si además de estar en equilibrio termodinámico, se cumple una de las siguientes condiciones:

(i) La radiancia incidente es isotrópica, es decir ,no depende de (φ, θ) .

(ii) $\varepsilon_{\lambda,\hat{u}}$ (y por tanto $A_{\lambda,\hat{u}}$) es isotrópica.

Observación

La condición (i) no es razonable cuando está involucrada la radiación solar *directa*. La condición (ii) es razonable varios casos de superficies rugosas.

1 Leyes de radiación de cuerpo negro

2 Propiedades radiativas de cuerpos opacos y Cuerpo Gris

3 Ejemplos y aplicaciones

Absortividad v reflectividad

Consideremos una irradiancia incidente sobre una superficie opaca (con transmisión despreciable). Parte de esa irradiancia será reflejada y parte absorbida. Si definimos ρ_{λ} como la reflectividad espectral, tenemos:

$$A_{\lambda} + \rho_{\lambda} = 1$$

Al igual que A_{λ} , ρ_{λ} dependerá de características de la superficie pero también de la irradiancia incidente. En particular, la distribución de la irradiancia reflejada dependerá de estas propiedades. Consideremos un haz monocromático de radiación incidente. Podemos distinguir tipos de superficies:

Reflectividad direccional

Si $I_{\lambda}^{inc}(\hat{u}_i)$ incide desde una dirección $\hat{u}_i = \hat{u}_i(\varphi_i, \theta_i)$, la componente reflejada, $I_{\lambda}^{ref}(\hat{u}_R)$, en la dirección $\hat{u}_R = \hat{u}_R(\varphi_R, \theta_R)$ se puede escribir como:

$$I_{\lambda}^{ref}(\hat{u_R}) = \rho_{\lambda}(\hat{u_i}, \hat{u_R}) I_{\lambda}^{inc}(\hat{u_i})$$

 \bullet Usualmente superficies naturales son azimutalmente isotrópicas (propiedades no dependen de $\varphi_i)$

(3)

Reflectividad direccional

Si $I_{\lambda}^{inc}(\hat{u}_i)$ incide desde una dirección $\hat{u}_i = \hat{u}_i(\varphi_i, \theta_i)$, la componente reflejada, $I_{\lambda}^{ref}(\hat{u}_R)$, en la dirección $\hat{u}_R = \hat{u}_R(\varphi_R, \theta_R)$ se puede escribir como:

$$I_{\lambda}^{ref}(\hat{u_R}) =
ho_{\lambda}(\hat{u_i}, \hat{u_R}) I_{\lambda}^{inc}(\hat{u_i})$$

 \bullet Usualmente superficies naturales son azimutalmente isotrópicas (propiedades no dependen de $\varphi_i)$

(3)

 Adicionalmente, en superficies rugosas (bosques, praderas, etc.) la dependencia zenital es débil, por lo que no hay dependencia en û_i.

Reflectividad direccional

Si $I_{\lambda}^{inc}(\hat{u}_i)$ incide desde una dirección $\hat{u}_i = \hat{u}_i(\varphi_i, \theta_i)$, la componente reflejada, $I_{\lambda}^{ref}(\hat{u}_R)$, en la dirección $\hat{u}_R = \hat{u}_R(\varphi_R, \theta_R)$ se puede escribir como:

$$I_{\lambda}^{ref}(\hat{u_R}) =
ho_{\lambda}(\hat{u_i}, \hat{u_R}) I_{\lambda}^{inc}(\hat{u_i})$$

 \bullet Usualmente superficies naturales son azimutalmente isotrópicas (propiedades no dependen de $\varphi_i)$

(3)

- Adicionalmente, en superficies rugosas (bosques, praderas, etc.) la dependencia zenital es débil, por lo que no hay dependencia en \hat{u}_i .
- En ausencia de radiación directa del Sol, es usual considerar difusores perfectos (independencia en φ_R y θ_R)
Reflectividad direccional

Si $I_{\lambda}^{inc}(\hat{u}_i)$ incide desde una dirección $\hat{u}_i = \hat{u}_i(\varphi_i, \theta_i)$, la componente reflejada, $I_{\lambda}^{ref}(\hat{u}_R)$, en la dirección $\hat{u}_R = \hat{u}_R(\varphi_R, \theta_R)$ se puede escribir como:

$$I_{\lambda}^{ref}(\hat{u_R}) =
ho_{\lambda}(\hat{u_i}, \hat{u_R}) I_{\lambda}^{inc}(\hat{u_i})$$

 \bullet Usualmente superficies naturales son azimutalmente isotrópicas (propiedades no dependen de $\varphi_i)$

(3)

- Adicionalmente, en superficies rugosas (bosques, praderas, etc.) la dependencia zenital es débil, por lo que no hay dependencia en \hat{u}_i .
- En ausencia de radiación directa del Sol, es usual considerar difusores perfectos (independencia en φ_R y θ_R)
- Para calcular la *irradiancia* reflejada en el caso de un haz incidente, hay que integrar la Ec. 3 entre todas las direcciones *u*_R.

Reflectividad direccional

Si $I_{\lambda}^{inc}(\hat{u}_i)$ incide desde una dirección $\hat{u}_i = \hat{u}_i(\varphi_i, \theta_i)$, la componente reflejada, $I_{\lambda}^{ref}(\hat{u}_R)$, en la dirección $\hat{u}_R = \hat{u}_R(\varphi_R, \theta_R)$ se puede escribir como:

$$I_{\lambda}^{ref}(\hat{u_R}) =
ho_{\lambda}(\hat{u_i}, \hat{u_R}) I_{\lambda}^{inc}(\hat{u_i})$$

 \bullet Usualmente superficies naturales son azimutalmente isotrópicas (propiedades no dependen de $\varphi_i)$

(3)

- Adicionalmente, en superficies rugosas (bosques, praderas, etc.) la dependencia zenital es débil, por lo que no hay dependencia en û_i.
- En ausencia de radiación directa del Sol, es usual considerar difusores perfectos (independencia en φ_R y θ_R)
- Para calcular la *irradiancia* reflejada en el caso de un haz incidente, hay que integrar la Ec. 3 entre todas las direcciones $\hat{u_R}$.
- Para el caso general, hay que integrar además sobre los aportes de radiancia desde todas las direcciones û_i.

Reflectividad direccional

Si $I_{\lambda}^{inc}(\hat{u}_i)$ incide desde una dirección $\hat{u}_i = \hat{u}_i(\varphi_i, \theta_i)$, la componente reflejada, $I_{\lambda}^{ref}(\hat{u}_R)$, en la dirección $\hat{u}_R = \hat{u}_R(\varphi_R, \theta_R)$ se puede escribir como:

$$I_{\lambda}^{ref}(\hat{u_R}) =
ho_{\lambda}(\hat{u_i}, \hat{u_R}) I_{\lambda}^{inc}(\hat{u_i})$$

 \bullet Usualmente superficies naturales son azimutalmente isotrópicas (propiedades no dependen de $\varphi_i)$

(3)

- Adicionalmente, en superficies rugosas (bosques, praderas, etc.) la dependencia zenital es débil, por lo que no hay dependencia en û_i.
- En ausencia de radiación directa del Sol, es usual considerar difusores perfectos (independencia en φ_R y θ_R)
- Para calcular la *irradiancia* reflejada en el caso de un haz incidente, hay que integrar la Ec. 3 entre todas las direcciones $\hat{u_R}$.
- Para el caso general, hay que integrar además sobre los aportes de radiancia desde todas las direcciones û_i.

Reflectividad direccional

Si $I_{\lambda}^{inc}(\hat{u}_i)$ incide desde una dirección $\hat{u}_i = \hat{u}_i(\varphi_i, \theta_i)$, la componente reflejada, $I_{\lambda}^{ref}(\hat{u}_R)$, en la dirección $\hat{u}_R = \hat{u}_R(\varphi_R, \theta_R)$ se puede escribir como:

$$I_{\lambda}^{ref}(\hat{u_R}) =
ho_{\lambda}(\hat{u_i}, \hat{u_R}) I_{\lambda}^{inc}(\hat{u_i})$$

 \bullet Usualmente superficies naturales son azimutalmente isotrópicas (propiedades no dependen de $\varphi_i)$

(3)

- Adicionalmente, en superficies rugosas (bosques, praderas, etc.) la dependencia zenital es débil, por lo que no hay dependencia en û_i.
- En ausencia de radiación directa del Sol, es usual considerar difusores perfectos (independencia en φ_R y θ_R)
- Para calcular la *irradiancia* reflejada en el caso de un haz incidente, hay que integrar la Ec. 3 entre todas las direcciones $\hat{u_R}$.
- Para el caso general, hay que integrar además sobre los aportes de radiancia desde todas las direcciones û_i.

El término $\rho_{\lambda}(\hat{u}_i, \hat{u}_R)$ es conocido como *bidirectional reflection distribution function* o BRDF. Esta variable es importante para el análisis de imágenes satelitales. También es usado en áreas como animación y computación gráfica.

A. Laguarda (Fing, Udelar)

Radiación en la atmósfera

2023

17 / 31

Superficies naturales opacas Ejemplo

Figure: Reflectancia espectral de superficies naturales.

Table 5.1: Shortwave (solar) reflectivity (in percent) of various surfaces.

Fresh, dry snow	70-90
Old, melting snow	35-65
Sand, desert	25-40
Dry vegetation	20-30
Deciduous Forest	15-25
Grass	15-25
Ocean surface (low sun)	10-70
Bare soil	10-25
Coniferous Forest	10-15
Ocean surface (high sun)	<10

Figure: G. Petty.

• La emisividad de banda ancha ε , se define en un rango espectral $[\lambda_1, \lambda_2]$ como el cociente entre la densidad de flujo emitida real y la de CN en ese rango:

$$\varepsilon(\lambda_1,\lambda_2) = \frac{\int \int I_{\lambda}^{emi} d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}} = \frac{\int \int \varepsilon_{\lambda} \, B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}$$

 La emisividad de banda ancha ε, se define en un rango espectral [λ₁, λ₂] como el cociente entre la densidad de flujo emitida real y la de CN en ese rango:

$$\varepsilon(\lambda_1,\lambda_2) = \frac{\int \int I_{\lambda}^{emi} d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}} = \frac{\int \int \varepsilon_{\lambda} \, B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}$$

• Cuando consideramos todo el espectro (utilizando la Ley de Stefan-Boltzman):

$$\varepsilon = \frac{F}{\sigma_B T^4},\tag{4}$$

donde F es la intensidad de flujo de banda ancha.

 La emisividad de banda ancha ε, se define en un rango espectral [λ₁, λ₂] como el cociente entre la densidad de flujo emitida real y la de CN en ese rango:

$$\varepsilon(\lambda_1,\lambda_2) = \frac{\int \int I_{\lambda}^{emi} d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}} = \frac{\int \int \varepsilon_{\lambda} \, B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}$$

• Cuando consideramos todo el espectro (utilizando la Ley de Stefan-Boltzman):

$$\varepsilon = \frac{F}{\sigma_B T^4},\tag{4}$$

donde F es la intensidad de flujo de banda ancha.

 La emisividad de banda ancha ε, se define en un rango espectral [λ₁, λ₂] como el cociente entre la densidad de flujo emitida real y la de CN en ese rango:

$$\varepsilon(\lambda_1,\lambda_2) = \frac{\int \int I_{\lambda}^{emi} d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}} = \frac{\int \int \varepsilon_{\lambda} \, B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}$$

• Cuando consideramos todo el espectro (utilizando la Ley de Stefan-Boltzman):

$$\varepsilon = \frac{F}{\sigma_B T^4},\tag{4}$$

donde F es la intensidad de flujo de banda ancha.

Cuerpo gris

 La emisividad de banda ancha ε, se define en un rango espectral [λ₁, λ₂] como el cociente entre la densidad de flujo emitida real y la de CN en ese rango:

$$\varepsilon(\lambda_1,\lambda_2) = \frac{\int \int I_{\lambda}^{emi} d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}} = \frac{\int \int \varepsilon_{\lambda} \, B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}$$

• Cuando consideramos todo el espectro (utilizando la Ley de Stefan-Boltzman):

$$\varepsilon = \frac{F}{\sigma_B T^4},\tag{4}$$

donde F es la intensidad de flujo de banda ancha.

Cuerpo gris

• Nos referimos a **cuerpo gris** cuando la radiancia emitida es isotrópica y ε_{λ} no depende de λ (la emisividad no depende del rango espectral)

 La emisividad de banda ancha ε, se define en un rango espectral [λ₁, λ₂] como el cociente entre la densidad de flujo emitida real y la de CN en ese rango:

$$\varepsilon(\lambda_1,\lambda_2) = \frac{\int \int I_{\lambda}^{emi} d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}} = \frac{\int \int \varepsilon_{\lambda} \, B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}{\int \int B_{\lambda}(T) \, d\lambda \, d\hat{\Omega}}$$

• Cuando consideramos todo el espectro (utilizando la Ley de Stefan-Boltzman):

$$\varepsilon = \frac{F}{\sigma_B T^4},\tag{4}$$

donde F es la intensidad de flujo de banda ancha.

Cuerpo gris

- Nos referimos a **cuerpo gris** cuando la radiancia emitida es isotrópica y ε_{λ} no depende de λ (la emisividad no depende del rango espectral)
- Considerar a un cuerpo como un cuerpo gris (al menos en el rango espectral utilizado) es una aproximación útil.

Table 6.1: Typical infrared emissivities (in percent) of various surfaces.

Water	92-96
Fresh, dry snow	82-99.5
Ice	96
Sand, dry	84-90
Soil, moist	95-98
Soil, dry plowed	90
Desert	90-91
Forest and shrubs	90
Skin, human	95
Concrete	71-88
Polished aluminum	1-5

Figure: (G.Petty)

Ejemplo: Ley de Kirchhoff

Un buen absorbedor también es un buen emisor

Figure: Placas de aluminio pintadas con diferente pintura

Ejemplo: Ley de Kirchhoff

Un buen absorbedor también es un buen emisor

Figure: Placas de aluminio pintadas con diferente pintura

Figure: Luego de calentarlas con una lámpara hasta lograr el equilibrio térmico

A. Laguarda (Fing, Udelar)

Radiación en la atmósfera

 $\bullet\,$ Función de Planck: cuerpos con $\mathcal{T}>0$ K emiten radiación, acotadas por límite teórico

- $\bullet\,$ Función de Planck: cuerpos con ${\cal T}>0$ K emiten radiación, acotadas por límite teórico
- Ley de Wien: λ_{MAX} es inversamente proporcional a T.

- $\bullet\,$ Función de Planck: cuerpos con ${\cal T}>0$ K emiten radiación, acotadas por límite teórico
- Ley de Wien: λ_{MAX} es inversamente proporcional a T.
- Ley de Stefan-Boltzman: Flujo radiativo es proporcional a T^4 .

- $\bullet\,$ Función de Planck: cuerpos con ${\cal T}>0$ K emiten radiación, acotadas por límite teórico
- Ley de Wien: λ_{MAX} es inversamente proporcional a T.
- Ley de Stefan-Boltzman: Flujo radiativo es proporcional a T^4 .
- Ley de Kirchhoff: abortividad es igual a emisividad (en eq. termodinámico)

1 Leyes de radiación de cuerpo negro

Propiedades radiativas de cuerpos opacos y Cuerpo Gris

3 Ejemplos y aplicaciones

Dada la radiancia espectral emitida de un cuerpo cualquiera, se define la *temperatura de brillo*, T_B , como la temperatura a la cual un CN emitiría la radiancia observada:

$$T_B = B_\lambda^{-1}[\epsilon B_\lambda(T)]$$

Fig. 6.6: Example of an actual infrared emission spectrum observed by the Ninbus 4 satellite over a point in the tropical Pacific Ocean. Dashed curves represent blackbody radiances at the indicated temperatures in Kelvin. (IRIS data courtey of the Goldard EOS Distributed Active Archive Center (DAAC) and instrument team leader Dr. Rudolf A. Hand.)

Figure: Petty Pag. 129

La principal fuente de radiación de onda larga en la atmósfera es la emisión de la tierra (y la atmósfera en sí).

• La atmósfera (sin nubes) es "transparente" en ciertas *ventanas espectrales*: regiones del visible, infrarrojo térmico y de microondas.

La principal fuente de radiación de onda larga en la atmósfera es la emisión de la tierra (y la atmósfera en sí).

- La atmósfera (sin nubes) es "transparente" en ciertas *ventanas espectrales*: regiones del visible, infrarrojo térmico y de microondas.
- $\bullet\,$ Los satélites meteorológicos tienen usualmente algún sensor espectral cercano al rango 11 μm (IRT).

La principal fuente de radiación de onda larga en la atmósfera es la emisión de la tierra (y la atmósfera en sí).

- La atmósfera (sin nubes) es "transparente" en ciertas *ventanas espectrales*: regiones del visible, infrarrojo térmico y de microondas.
- $\bullet\,$ Los satélites meteorológicos tienen usualmente algún sensor espectral cercano al rango 11 μm (IRT).
- Estos sensores miden radiancia, y como la atm. en ese rango es translúcida (excepto un poco de abs. por vapor de agua) las imágenes captan la emisión térmica ,ya sea de la superficie o del tope de nubes.

La principal fuente de radiación de onda larga en la atmósfera es la emisión de la tierra (y la atmósfera en sí).

- La atmósfera (sin nubes) es "transparente" en ciertas *ventanas espectrales*: regiones del visible, infrarrojo térmico y de microondas.
- $\bullet\,$ Los satélites meteorológicos tienen usualmente algún sensor espectral cercano al rango 11 μm (IRT).
- Estos sensores miden radiancia, y como la atm. en ese rango es translúcida (excepto un poco de abs. por vapor de agua) las imágenes captan la emisión térmica ,ya sea de la superficie o del tope de nubes.
- Esta medida se expresa típicamente como temperatura de brillo.

A. Laguarda (Fing, Udelar)

Radiación en la atmósfera

Temperatura de brillo

Imágenes satelitales en el infrarrojo

Figure: Imagen del satélite GOES 16. (izq.) Canal 2 - visible rojo, centrado en 0.64 μ m .(der.) Canal 13 - infrarrojo térmico, centrado en 10.3 μ m. Imagen descargada de les.edy.uy/online.

Comentarios:

- Si $\epsilon \simeq 1$, entonces, $T_B \simeq T$.
- Esta info. es útil para detectar nubes incluso de noche, y en particular para detectar la altura del tope de las nubes.

Figure: Petty. Pág 127.

Modelo simplificado 1: Equilibrio en el tope de la atmósfera

• Modelemos a la Tierra como un cuerpo gris esférico de radio R_T de reflectancia R y emisividad total ε .

Modelo simplificado 1: Equilibrio en el tope de la atmósfera

- Modelemos a la Tierra como un cuerpo gris esférico de radio R_T de reflectancia R y emisividad total ε .
- La densidad de flujo (irradiancia, en W/m²) que llega desde el Sol es S_o (que dependerá de la distancia Tierra-Sol).

Modelo simplificado 1: Equilibrio en el tope de la atmósfera

- Modelemos a la Tierra como un cuerpo gris esférico de radio R_T de reflectancia R y emisividad total ε .
- La densidad de flujo (irradiancia, en W/m²) que llega desde el Sol es S_o (que dependerá de la distancia Tierra-Sol).
- La Tierra emitirá radiación según su temperatura (Ley de Stefan-Boltzmann).

 $\begin{array}{l} {\rm Datos:} R\simeq 0.30 \mbox{ (considerando la cobertura nubosa promedio y el suelo),}\\ {\it S_o\simeq 1360W/m^2,} R_T\simeq 6.3\times 10^6 \mbox{ m}. \end{array}$

Modelo simplificado 1: Equilibrio en el tope de la atmósfera

- Modelemos a la Tierra como un cuerpo gris esférico de radio R_T de reflectancia R y emisividad total ε .
- La densidad de flujo (irradiancia, en W/m²) que llega desde el Sol es S_o (que dependerá de la distancia Tierra-Sol).
- La Tierra emitirá radiación según su temperatura (Ley de Stefan-Boltzmann).

 $\begin{array}{l} {\rm Datos:} R\simeq 0.30 \mbox{ (considerando la cobertura nubosa promedio y el suelo),}\\ {\it S_o\simeq 1360W/m^2,} R_T\simeq 6.3\times 10^6 \mbox{ m}. \end{array}$

• Si consideramos que hay equilibrio, la potencia emitida por el sistema será igual a la absorbida.

Modelo simplificado 1: Equilibrio en el tope de la atmósfera

- Modelemos a la Tierra como un cuerpo gris esférico de radio R_T de reflectancia R y emisividad total ε .
- La densidad de flujo (irradiancia, en W/m²) que llega desde el Sol es S_o (que dependerá de la distancia Tierra-Sol).
- La Tierra emitirá radiación según su temperatura (Ley de Stefan-Boltzmann).

 $\begin{array}{l} {\rm Datos:} R\simeq 0.30 \mbox{ (considerando la cobertura nubosa promedio y el suelo),}\\ {\it S_o\simeq 1360W/m^2,} R_T\simeq 6.3\times 10^6 \mbox{ m}. \end{array}$

- Si consideramos que hay equilibrio, la potencia emitida por el sistema será igual a la absorbida.
- La potencia absorbida será $P^{abs} = S_o (1 R) \pi R_T^2$, mientras que la emitida será $P^{emi} = 4\pi R_T^2 \sigma_B T_T^4$

Modelo simplificado 1: Equilibrio en el tope de la atmósfera

- Modelemos a la Tierra como un cuerpo gris esférico de radio R_T de reflectancia R y emisividad total ε .
- La densidad de flujo (irradiancia, en W/m²) que llega desde el Sol es S_o (que dependerá de la distancia Tierra-Sol).
- La Tierra emitirá radiación según su temperatura (Ley de Stefan-Boltzmann).

 $\begin{array}{l} {\rm Datos:} R\simeq 0.30 \mbox{ (considerando la cobertura nubosa promedio y el suelo),}\\ S_o\simeq 1360 {\rm W/m^2}, \ R_T\simeq 6.3\times 10^6 \mbox{ m}. \end{array}$

- Si consideramos que hay equilibrio, la potencia emitida por el sistema será igual a la absorbida.
- La potencia absorbida será $P^{abs} = S_o (1 R) \pi R_T^2$, mientras que la emitida será $P^{emi} = 4\pi R_T^2 \sigma_B T_T^4$

• Igualando tenemos
$$T_T = \left[\frac{S_o(1-\rho)}{4\sigma_B}\right]^{1/4} \simeq 255 \mathcal{K} = -18^{\circ} C$$
(!!!)

A. Laguarda (Fing, Udelar)

El problema es un poco más complejo...

Modelo simplificado 2: Modelo de atmósfera de una capa

Hipótesis:

• Atmósfera no dispersiva y transparente para onda corta.

Modelo simplificado 2: Modelo de atmósfera de una capa

Hipótesis:

- Atmósfera no dispersiva y transparente para onda corta.
- Completamente absorbente en la onda larga (cuerpo negro).

Modelo simplificado 2: Modelo de atmósfera de una capa

Hipótesis:

- Atmósfera no dispersiva y transparente para onda corta.
- Completamente absorbente en la onda larga (cuerpo negro).
- Superficie terrestre como cuerpo negro.
Modelo simplificado 2: Modelo de atmósfera de una capa

Hipótesis:

- Atmósfera no dispersiva y transparente para onda corta.
- Completamente absorbente en la onda larga (cuerpo negro).
- Superficie terrestre como cuerpo negro.

Modelo simplificado 2: Modelo de atmósfera de una capa

Hipótesis:

- Atmósfera no dispersiva y transparente para onda corta.
- Completamente absorbente en la onda larga (cuerpo negro).
- Superficie terrestre como cuerpo negro.

usando los valores el ejemplo anterior, demostrar que

$$T_T = \left[\frac{2S_o(1-\rho)}{4\sigma_B}\right]^{1/4} \simeq 300K = 27^{\circ}C$$

A. Laguarda (Fing, Udelar)

2023

Fin