Modelo Relacional

Fundamentos de Bases de Datos Inco – Fing - Udelar

Modelo Relacional

Temas

- Conceptos Generales
- Restricciones de Integridad
- Creación y Modificación de Relaciones
- Algebra Relacional
- Cálculo Relacional
- SQL

Modelo Relacional

Referencia

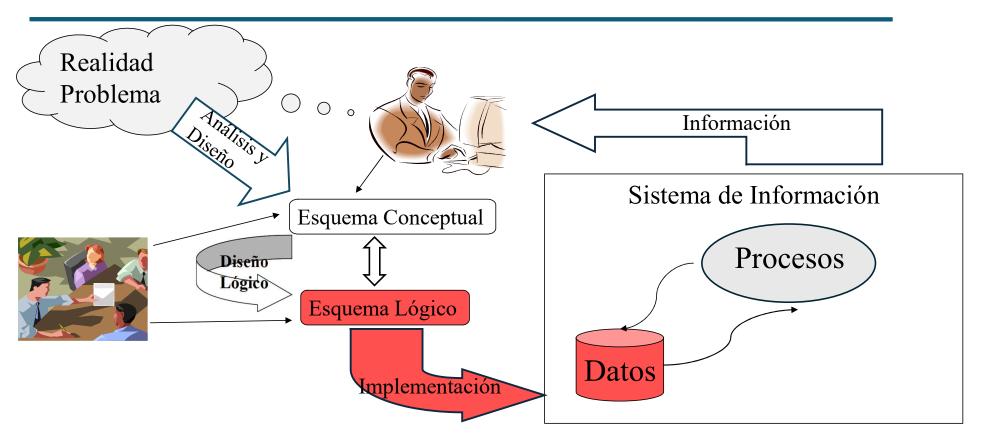
• Elmasri -Navathe. 7ª Edición. Capítulo 5

Es un Modelo de Datos Lógico

Se usa como Modelo implementado por DBMS.

Creado por Codd en 1970

- Se comenzó con una definición teórica.
- Se proponía un modelo con fuertes elementos matemáticos para BDs.


Actualmente: modelo lógico dominante

- Los DBMS Relacionales son la enorme mayoría.
- Este modelo se ha implementado en una gran cantidad de sistemas comerciales, así como en sistemas de código abierto.

Visión informal del modelo

- Las estructuras consisten en TABLAS,
 - cuyas columnas corresponden a ATRIBUTOS de tipo atómico
 - · y las filas corresponden a registros de datos
- Las operaciones están fundamentalmente orientadas a manejo de TABLAS, como conjuntos de registros.
- Es un modelo de datos extremadamente simple y claro, que también ha resultado potente para la mayor parte de las aplicaciones de BDs.

Construcción de un Sistema de Información

InCo - Facultad de Ingeniería - Udelar

Curso: Fundamentos de Bases de Datos

Dominio D

• Es un conjunto de valores atómicos

Esquema de relación R(A₁,...,A_n)

- R es el nombre de relación
- $A_1,...,A_n$ son los atributos con dominios $D_1,...,D_n$

Relación r(R)

- Es una instancia de un esquema de relación R
- Consiste en un conjunto de t-uplas (o tuplas)

•
$$r = \{ \langle a_1, ..., a_n \rangle, \langle b_1, ..., b_n \rangle, \langle c_1, ..., c_n \rangle, \}$$

- También puede interpretarse a r como:
 - $r(R) \subseteq (D_1 \times ... \times D_n)$

Tupla

- La instancia de un esquema de relación es un conjunto de tuplas.
 - Esquema: ESTUDIANTES(CI, nombre, dir)
 - Instancia: {<1.876.543, "Juan", "Bvar Artigas 1232">, <...>}
- Una tupla es un elemento de un producto cartesiano de N dominios.

Curso: Fundamentos de Bases de Datos

- Puede verse como un "array":
 - <1.876.543, "Juan", "Bvar Artigas 1232">[1] = 1.876.543
- Función del nombre de los atributos en el contenido:
 - t: {CI, nombre, dir} \rightarrow Nro \cup Strings
 - <1.876.543, "Juan", "Bvar Artigas 1232">(CI) = 1.876.543

- Esquema de BD Relacional o Esquema Relacional:
 - Conjunto de esquemas de relación

Ejemplo de esquema relacional

- EMPLEADO (Nombre, Apellido, CI, FechaN, Direccion, Sexo, Salario, CISuper, ND)
- DEPARTAMENTO (Nombre, NumeroD, CIGte, FechalnicGte)

Curso: Fundamentos de Bases de Datos

- LUGARES-DEPTOS(NumeroD, LugarD)
- PROYECTO (Nombre, NumeroP, LugarP, NumD)
- TRABAJA-EN (CIE, NumP, Horas)

Ejemplo de instancia de BD relacional

Fabricantes que venden Productos

FABS

NumF	Nombre	Dir
1	Juan	d1
2	Pedro	d2
3	María	d3
6	Ana	d1
7	Pedro	d4
9	Pepe	d5
10	Laura	d2
11	María	d6
12	Oscar	d7
14	Juan	d8

PRODS

NumP	Desc
1	p1
2	p2
4	р3
5	p4
7	р3
9	p1
10	p6
12	p5
13	р7
15	р9

VENTAS

NumF	NumP	Precio
1	1	100
1	2	156
1	4	25
2	4	40
2	7	250
3	1	150
3	10	400
6	2	200
6	12	300
11	4	50

Características de las relaciones

Es un conjunto de tuplas

- No está ordenado
- No hay repetidos

Valores de Atributos en tuplas

- Son valores atómicos (indivisibles)
 - Propiedad: primera forma normal

Atributos ordenados o no?

- Visión "producto cartesiano": SI
- Visión "tuplas como funciones": NO
 - t: R → D1 U ... U Dn

Restricciones de Integridad (RI) en el Modelo Relacional

Superclave

• Dado $R(A_1,...,A_n)$, se dice que $X \subseteq \{A_1,...,A_n\}$ es superclave en un esquema R, si no puede existir ninguna r(R) tal que tenga dos tuplas con valores iguales de X (t[X] = t'[X])

Restricciones de Dominios

- Restricciones de tipo en los D_i
 - Indica a qué tipo pertenecen los valores
 - Pueden incluir subrangos o enumerados

Ejemplo:

- FUNCIONARIO (CI, Nombre, Dir, Edad)
 - CI: number(9)
 - Nombre, Dir: String
 - Edad: number(2)
 - Edad > 18

Clave

• Una *clave* es una *superclave* que no contiene propiamente una *superclave* (o sea minimal).

• Ej:

- Fabs (NumF, Nom, Dir)
- Prods (NumP, Desc)
- Ventas (NumF, NumP, Precio)

Claves Foráneas (Foreign Keys)

- Dado R, un conjunto de atributos X es una FK de R si:
 - Los atributos de X coinciden en dominio con los de una clave Y de S
 - Los valores de X en tuplas de r(R) (para toda r) corresponden a valores de Y en la relación s(S)

Integridad Referencial

- Se dice que existe una RI Referencial entre R y S, donde R referencia a S
- Es otra forma de decir que en R hay una foreign key sobre S

• Ejemplo de RI Referenciales:

- Departamento.CIGte FK Empleado.CI
- Empleado.CISuper FK Empleado.CI
- Proyecto.NumD **FK** Departamento.NumeroD

EMPLEADO (Nombre, Apellido, <u>CI</u>, FechaN, Direccion, Sexo, Salario, CISuper, ND)
DEPARTAMENTO (Nombre, <u>NumeroD</u>, CIGte, FechalnicGte)
LUGARES-DEPTOS(<u>NumeroD</u>, <u>LugarD</u>)
PROYECTO (Nombre, <u>NumeroP</u>, LugarP, NumD)
TRABAJA-EN (<u>CIE, NumP</u>, Horas)

Curso: Fundamentos de Bases de Datos

Una BD se considera válida si:

- Todas las relaciones r satisfacen las RIs
 - Todas las instancias actuales de todas las relaciones declaradas en el esquema relacional satisfacen todas las RIs

Propiedades importantes

- Las RI surgen de:
 - · La observación de la realidad
 - NO de la observación de relaciones
- Las RI se definen a nivel de:
 - ESQUEMA RELACIÓN
 - NO a nivel de instancia
- Las RI son verificadas o violadas por:
 - relaciones (instancias)
 - NO por esquemas de relación

Operaciones de Modificación

Insert

• Sea R(A,B,C) y r(R),

Incluye la tupla <a,b,c> en la relación r

Las tuplas insertadas deben cumplir las RI

Operaciones de Modificación

Delete

• Sea R(A,B,C) y r(R),

delete from R where <cond>

Borra de las tuplas de r las que cumplen la condición < cond>

- Borrar tuplas puede generar violaciones a RI
 - ¿En qué casos?

Operaciones de Modificación

Update

• Sea R(A,B,C) y r(R),

```
update R set <atributo> = <valor>,... where <cond>
modifica las tuplas de r que cumplen la condición <cond>.
```

- · Actualizar tuplas puede generar violaciones a RI,
 - ¿En qué casos?