Práctico 0 – Octave y repaso

Octave

Los siguientes ejercicios están orientados especialmente a aquellos estudiantes que no tengan experiencia previa en Octave.

Ejercicio 1 (Funciones).

- a) Escribir una función llamada norma que reciba un vector v y devuelva la norma euclídea de v.
- b) Escribir una función llamada sustitucion que reciba como parámetros una matriz A, un vector fila v del mismo largo que la cantidad de columnas de A, y un número natural n, y devuelva la matriz A luego de sustituir la fila n por el vector v.
- c) Escribir una función llamada intercambio que reciba como parámetros una matriz A y naturales n y m, y devuelva la matriz A luego de intercambiar las filas n y m.

Ejercicio 2 (If).

- a) Escribir una función maximo que reciba dos reales a y b, y devuelva el máximo entre ellos.
- b) Escribir una función signo que reciba un real x y devuelva 1 si x>0, 0 si x=0 y -1 si x<0.
- c) Escribir una función esPar que reciba un natural n y devuelva 1 si n es par, o 0 si es impar. [Sugerencia: la función mod(n,m) devuelve el resto de la división entera de n entre m.]

Ejercicio 3 (For).

- a) Modificar la función maximo del ejercicio anterior para que reciba una matriz A y devuelva el elemento máximo de A.
- b) Escribir una función serie que reciba una función f y un natural N y devuelva la suma parcial $\sum_{n=0}^{N} f(n)$.

Ejercicio 4 (While). Escribir una función serie2 que reciba una función decreciente f y un real positivo epsilon y devuelva la suma parcial $\sum_{n=0}^{N} f(n)$, donde N es el primer natural tal que f(N)<epsilon.

Ejercicio 5 (Fibonacci). La sucesión de Fibonacci se define de la siguiente forma:

$$f_0 = 1$$
, $f_1 = 1$, y $f_{n+1} = f_n + f_{n-1} \ \forall n \ge 1$.

a) Escribir una funión fibonacci que reciba un número natural n y devuelva un vector conteniendo los primeros n+1 números en la sucesión de Fibonacci.

b) Demostrar que, cuando $n \to \infty$, $\frac{f_{n+1}}{f_n} \to \varphi = \frac{1+\sqrt{5}}{2}$ (el llamado número áureo). Usar la función fibonacci para calcular, en forma vectorizada los cocientes $\frac{f_1}{f_0} \dots \frac{f_{20}}{f_{19}}$.

Ejercicio 6 (Collatz). La conjetura de Collatz es uno de los problemas sin resolver más famosos en matemática, y consiste en preguntarse si la repetición de dos operaciones aritméticas simples eventualmente transforma cualquier número natural en 1. Se considera la función $f: \mathbb{N} \to \mathbb{N}$,

$$f(m) = \begin{cases} \frac{m}{2} & \text{si } m \text{ es par,} \\ 3m+1 & \text{si } m \text{ es impar,} \end{cases}$$

y se define una sucesión mediante $a_0 = m$ (con m un número a elegir, al que llamaremos semilla) y $a_{n+1} = f(a_n)$ para todo $n \ge 0$.

a) Notar que si se toma la semilla m=1, se obtiene el ciclo

$$1 \mapsto 4 \mapsto 2 \mapsto 1 \mapsto \dots$$

- b) Escribir una función collatz que reciba un número natural m y devuelva un vector conteniendo los elementos de la sucesión $\{a_n\}$ obtenida al usar m como semilla hasta que se llegue al valor 1. Para evitar que el programa corra indefinidamente, establecer una cota superior a la cantidad de veces que se puede aplicar f.
- c) Mostrar que usando como semilla cualquier valor de m menor que 1000 se llega al 1 en menos de 200 pasos. ¿Para qué valor m< 1000 de semilla es para el que se tiene mayor cantidad de pasos antes de llegar al 1?

Repaso

Los siguientes ejercicios tocan contenidos cubiertos en cursos que son previaturas de éste.

Ejercicio 7 (Taylor en una variable, CDIV). Para cada una de las siguientes funciones, hallar el polinomio de Taylor en el punto x_0 y del orden n indicado:

$$f(x) = \frac{1}{1+x}, \quad x_0 = 0, \qquad n = 3,$$

$$f(x) = \cos(x), \quad x_0 = \pi/2, \qquad n = 4,$$

$$f(x) = e^x, \quad x_0 = 0, \qquad n \in \mathbb{N},$$

$$f(x) = 1 - 3x + x^5, \quad x_0 = \sqrt{17}, \quad n = 23.$$

Ejercicio 8 (Taylor en varias variables, CDIVV). Para cada una de las siguientes funciones, hallar el polinomio de Taylor en el punto (x_0, y_0) y del orden n indicado:

$$f(x,y) = \frac{y}{x}$$
, $(x_0, y_0) = (1,1)$, $n = 2$,
 $f(x,y) = e^x$, $(x_0, y_0) = (0,8)$, $n = 4$.

Ejercicio 9 (Escalerización gaussiana, GAL 1). Resolver los siguientes sistemas de ecuaciones usando el método de escalerización gaussiana:

$$\begin{cases}
-x + y - z = 1 \\
4x + 2y - z = 5, \\
x + y + z = 5
\end{cases} \begin{cases}
2x + y + z = 3 \\
x - y - 2z = 3, \\
y - 5z = -1
\end{cases}, \begin{cases}
x + 2y - z = 1 \\
2x + 4y - 2z = 0
\end{cases}.$$

Ejercicio 10 (Método de Gram-Schmidt, GAL 2). Aplicar el método de ortonormalización de Gram-Schmidt a las columnas de las matriz

$$A = \begin{pmatrix} 2 & 3 & 0 \\ 2 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix},$$

y hallar matrices Q ortogonal y R triangular superior tales que A = QR.