
1 Alan Turing, “Computing Machinery and Intelligence”, Mind 49 (1950): 433–460.
2 Of course, the word chatbot came much later. Turing called his test the imitation game: machine A and human

B chat with human interrogator C via text messages; the interrogator asks questions to figure out which one is
the machine (A or B). The machine passes the test if it can fool the interrogator, while the human B must try
to help the interrogator.

CHAPTER 16

Natural Language Processing
with RNNs and Attention

When Alan Turing imagined his famous Turing test1 in 1950, he proposed a way to
evaluate a machine’s ability to match human intelligence. He could have tested for
many things, such as the ability to recognize cats in pictures, play chess, compose
music, or escape a maze, but, interestingly, he chose a linguistic task. More specifi‐
cally, he devised a chatbot capable of fooling its interlocutor into thinking it was
human.2 This test does have its weaknesses: a set of hardcoded rules can fool unsus‐
pecting or naive humans (e.g., the machine could give vague predefined answers in
response to some keywords, it could pretend that it is joking or drunk to get a pass on
its weirdest answers, or it could escape difficult questions by answering them with its
own questions), and many aspects of human intelligence are utterly ignored (e.g., the
ability to interpret nonverbal communication such as facial expressions, or to learn a
manual task). But the test does highlight the fact that mastering language is arguably
Homo sapiens’s greatest cognitive ability.

Can we build a machine that can master written and spoken language? This is the
ultimate goal of NLP research, but it’s a bit too broad, so in practice researchers
focus on more specific tasks, such as text classification, translation, summarization,
question answering, and many more.

577

https://homl.info/turingtest

A common approach for natural language tasks is to use recurrent neural networks.
We will therefore continue to explore RNNs (introduced in Chapter 15), starting with
a character RNN, or char-RNN, trained to predict the next character in a sentence.
This will allow us to generate some original text. We will first use a stateless RNN
(which learns on random portions of text at each iteration, without any information
on the rest of the text), then we will build a stateful RNN (which preserves the hidden
state between training iterations and continues reading where it left off, allowing it
to learn longer patterns). Next, we will build an RNN to perform sentiment analysis
(e.g., reading movie reviews and extracting the rater’s feeling about the movie), this
time treating sentences as sequences of words, rather than characters. Then we will
show how RNNs can be used to build an encoder–decoder architecture capable of
performing neural machine translation (NMT), translating English to Spanish.

In the second part of this chapter, we will explore attention mechanisms. As their
name suggests, these are neural network components that learn to select the part of
the inputs that the rest of the model should focus on at each time step. First, we will
boost the performance of an RNN-based encoder–decoder architecture using atten‐
tion. Next, we will drop RNNs altogether and use a very successful attention-only
architecture, called the transformer, to build a translation model. We will then discuss
some of the most important advances in NLP in the last few years, including incredi‐
bly powerful language models such as GPT and BERT, both based on transformers.
Lastly, I will show you how to get started with the excellent Transformers library by
Hugging Face.

Let’s start with a simple and fun model that can write like Shakespeare (sort of).

Generating Shakespearean Text Using a Character RNN
In a famous 2015 blog post titled “The Unreasonable Effectiveness of Recurrent
Neural Networks”, Andrej Karpathy showed how to train an RNN to predict the next
character in a sentence. This char-RNN can then be used to generate novel text, one
character at a time. Here is a small sample of the text generated by a char-RNN model
after it was trained on all of Shakespeare’s works:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain’d into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Not exactly a masterpiece, but it is still impressive that the model was able to learn
words, grammar, proper punctuation, and more, just by learning to predict the next
character in a sentence. This is our first example of a language model; similar (but

578 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/charrnn

much more powerful) language models, discussed later in this chapter, are at the core
of modern NLP. In the remainder of this section we’ll build a char-RNN step by step,
starting with the creation of the dataset.

Creating the Training Dataset
First, using Keras’s handy tf.keras.utils.get_file() function, let’s download all of
Shakespeare’s works. The data is loaded from Andrej Karpathy’s char-rnn project:

import tensorflow as tf

shakespeare_url = "https://homl.info/shakespeare" # shortcut URL
filepath = tf.keras.utils.get_file("shakespeare.txt", shakespeare_url)
with open(filepath) as f:
 shakespeare_text = f.read()

Let’s print the first few lines:
>>> print(shakespeare_text[:80])
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

Looks like Shakespeare all right!

Next, we’ll use a tf.keras.layers.TextVectorization layer (introduced in Chap‐
ter 13) to encode this text. We set split="character" to get character-level encoding
rather than the default word-level encoding, and we use standardize="lower" to
convert the text to lowercase (which will simplify the task):

text_vec_layer = tf.keras.layers.TextVectorization(split="character",
 standardize="lower")
text_vec_layer.adapt([shakespeare_text])
encoded = text_vec_layer([shakespeare_text])[0]

Each character is now mapped to an integer, starting at 2. The TextVectorization
layer reserved the value 0 for padding tokens, and it reserved 1 for unknown char‐
acters. We won’t need either of these tokens for now, so let’s subtract 2 from the
character IDs and compute the number of distinct characters and the total number of
characters:

encoded -= 2 # drop tokens 0 (pad) and 1 (unknown), which we will not use
n_tokens = text_vec_layer.vocabulary_size() - 2 # number of distinct chars = 39
dataset_size = len(encoded) # total number of chars = 1,115,394

Next, just like we did in Chapter 15, we can turn this very long sequence into a
dataset of windows that we can then use to train a sequence-to-sequence RNN. The
targets will be similar to the inputs, but shifted by one time step into the “future”. For
example, one sample in the dataset may be a sequence of character IDs representing

Generating Shakespearean Text Using a Character RNN | 579

https://github.com/karpathy/char-rnn

the text “to be or not to b” (without the final “e”), and the corresponding target—a
sequence of character IDs representing the text “o be or not to be” (with the final
“e”, but without the leading “t”). Let’s write a small utility function to convert a long
sequence of character IDs into a dataset of input/target window pairs:

def to_dataset(sequence, length, shuffle=False, seed=None, batch_size=32):
 ds = tf.data.Dataset.from_tensor_slices(sequence)
 ds = ds.window(length + 1, shift=1, drop_remainder=True)
 ds = ds.flat_map(lambda window_ds: window_ds.batch(length + 1))
 if shuffle:
 ds = ds.shuffle(buffer_size=100_000, seed=seed)
 ds = ds.batch(batch_size)
 return ds.map(lambda window: (window[:, :-1], window[:, 1:])).prefetch(1)

This function starts much like the to_windows() custom utility function we created
in Chapter 15:

• It takes a sequence as input (i.e., the encoded text), and creates a dataset contain‐•
ing all the windows of the desired length.

• It increases the length by one, since we need the next character for the target.•
• Then, it shuffles the windows (optionally), batches them, splits them into input/•

output pairs, and activates prefetching.

Figure 16-1 summarizes the dataset preparation steps: it shows windows of length 11,
and a batch size of 3. The start index of each window is indicated next to it.

Figure 16-1. Preparing a dataset of shu!ed windows

580 | Chapter 16: Natural Language Processing with RNNs and Attention

Now we’re ready to create the training set, the validation set, and the test set. We will
use roughly 90% of the text for training, 5% for validation, and 5% for testing:

length = 100
tf.random.set_seed(42)
train_set = to_dataset(encoded[:1_000_000], length=length, shuffle=True,
 seed=42)
valid_set = to_dataset(encoded[1_000_000:1_060_000], length=length)
test_set = to_dataset(encoded[1_060_000:], length=length)

We set the window length to 100, but you can try tuning it: it’s
easier and faster to train RNNs on shorter input sequences, but the
RNN will not be able to learn any pattern longer than length, so
don’t make it too small.

That’s it! Preparing the dataset was the hardest part. Now let’s create the model.

Building and Training the Char-RNN Model
Since our dataset is reasonably large, and modeling language is quite a difficult task,
we need more than a simple RNN with a few recurrent neurons. Let’s build and train
a model with one GRU layer composed of 128 units (you can try tweaking the number
of layers and units later, if needed):

model = tf.keras.Sequential([
 tf.keras.layers.Embedding(input_dim=n_tokens, output_dim=16),
 tf.keras.layers.GRU(128, return_sequences=True),
 tf.keras.layers.Dense(n_tokens, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
model_ckpt = tf.keras.callbacks.ModelCheckpoint(
 "my_shakespeare_model", monitor="val_accuracy", save_best_only=True)
history = model.fit(train_set, validation_data=valid_set, epochs=10,
 callbacks=[model_ckpt])

Let’s go over this code:

• We use an Embedding layer as the first layer, to encode the character IDs (embed‐•
dings were introduced in Chapter 13). The Embedding layer’s number of input
dimensions is the number of distinct character IDs, and the number of output
dimensions is a hyperparameter you can tune—we’ll set it to 16 for now. Whereas
the inputs of the Embedding layer will be 2D tensors of shape [batch size, window
length], the output of the Embedding layer will be a 3D tensor of shape [batch size,
window length, embedding size].

• We use a Dense layer for the output layer: it must have 39 units (n_tokens)•
because there are 39 distinct characters in the text, and we want to output a

Generating Shakespearean Text Using a Character RNN | 581

3 Since the input windows overlap, the concept of epoch is not so clear in this case: during each epoch (as
implemented by Keras), the model will actually see the same character multiple times.

probability for each possible character (at each time step). The 39 output proba‐
bilities should sum up to 1 at each time step, so we apply the softmax activation
function to the outputs of the Dense layer.

• Lastly, we compile this model, using the "sparse_categorical_crossentropy"•
loss and a Nadam optimizer, and we train the model for several epochs,3 using
a ModelCheckpoint callback to save the best model (in terms of validation accu‐
racy) as training progresses.

If you are running this code on Colab with a GPU activated, then
training should take roughly one to two hours. You can reduce
the number of epochs if you don’t want to wait that long, but of
course the model’s accuracy will probably be lower. If the Colab
session times out, make sure to reconnect quickly, or else the Colab
runtime will be destroyed.

This model does not handle text preprocessing, so let’s wrap it in a final model
containing the tf.keras.layers.TextVectorization layer as the first layer, plus a
tf.keras.layers.Lambda layer to subtract 2 from the character IDs since we’re not
using the padding and unknown tokens for now:

shakespeare_model = tf.keras.Sequential([
 text_vec_layer,
 tf.keras.layers.Lambda(lambda X: X - 2), # no <PAD> or <UNK> tokens
 model
])

And now let’s use it to predict the next character in a sentence:
>>> y_proba = shakespeare_model.predict(["To be or not to b"])[0, -1]
>>> y_pred = tf.argmax(y_proba) # choose the most probable character ID
>>> text_vec_layer.get_vocabulary()[y_pred + 2]
'e'

Great, the model correctly predicted the next character. Now let’s use this model to
pretend we’re Shakespeare!

Generating Fake Shakespearean Text
To generate new text using the char-RNN model, we could feed it some text, make
the model predict the most likely next letter, add it to the end of the text, then give
the extended text to the model to guess the next letter, and so on. This is called greedy
decoding. But in practice this often leads to the same words being repeated over and

582 | Chapter 16: Natural Language Processing with RNNs and Attention

over again. Instead, we can sample the next character randomly, with a probability
equal to the estimated probability, using TensorFlow’s tf.random.categorical()
function. This will generate more diverse and interesting text. The categorical()
function samples random class indices, given the class log probabilities (logits). For
example:

>>> log_probas = tf.math.log([[0.5, 0.4, 0.1]]) # probas = 50%, 40%, and 10%
>>> tf.random.set_seed(42)
>>> tf.random.categorical(log_probas, num_samples=8) # draw 8 samples
<tf.Tensor: shape=(1, 8), dtype=int64, numpy=array([[0, 1, 0, 2, 1, 0, 0, 1]])>

To have more control over the diversity of the generated text, we can divide the logits
by a number called the temperature, which we can tweak as we wish. A temperature
close to zero favors high-probability characters, while a high temperature gives all
characters an equal probability. Lower temperatures are typically preferred when
generating fairly rigid and precise text, such as mathematical equations, while higher
temperatures are preferred when generating more diverse and creative text. The
following next_char() custom helper function uses this approach to pick the next
character to add to the input text:

def next_char(text, temperature=1):
 y_proba = shakespeare_model.predict([text])[0, -1:]
 rescaled_logits = tf.math.log(y_proba) / temperature
 char_id = tf.random.categorical(rescaled_logits, num_samples=1)[0, 0]
 return text_vec_layer.get_vocabulary()[char_id + 2]

Next, we can write another small helper function that will repeatedly call
next_char() to get the next character and append it to the given text:

def extend_text(text, n_chars=50, temperature=1):
 for _ in range(n_chars):
 text += next_char(text, temperature)
 return text

We are now ready to generate some text! Let’s try with different temperature values:
>>> tf.random.set_seed(42)
>>> print(extend_text("To be or not to be", temperature=0.01))
To be or not to be the duke
as it is a proper strange death,
and the
>>> print(extend_text("To be or not to be", temperature=1))
To be or not to behold?

second push:
gremio, lord all, a sistermen,
>>> print(extend_text("To be or not to be", temperature=100))
To be or not to bef ,mt'&o3fpadm!$
wh!nse?bws3est--vgerdjw?c-y-ewznq

Generating Shakespearean Text Using a Character RNN | 583

Shakespeare seems to be suffering from a heatwave. To generate more convincing
text, a common technique is to sample only from the top k characters, or only from
the smallest set of top characters whose total probability exceeds some threshold (this
is called nucleus sampling). Alternatively, you could try using beam search, which we
will discuss later in this chapter, or using more GRU layers and more neurons per
layer, training for longer, and adding some regularization if needed. Also note that
the model is currently incapable of learning patterns longer than length, which is
just 100 characters. You could try making this window larger, but it will also make
training harder, and even LSTM and GRU cells cannot handle very long sequences.
An alternative approach is to use a stateful RNN.

Stateful RNN
Until now, we have only used stateless RNNs: at each training iteration the model
starts with a hidden state full of zeros, then it updates this state at each time step,
and after the last time step, it throws it away as it is not needed anymore. What if
we instructed the RNN to preserve this final state after processing a training batch
and use it as the initial state for the next training batch? This way the model could
learn long-term patterns despite only backpropagating through short sequences. This
is called a stateful RNN. Let’s go over how to build one.

First, note that a stateful RNN only makes sense if each input sequence in a batch
starts exactly where the corresponding sequence in the previous batch left off. So the
first thing we need to do to build a stateful RNN is to use sequential and nonoverlap‐
ping input sequences (rather than the shuffled and overlapping sequences we used
to train stateless RNNs). When creating the tf.data.Dataset, we must therefore use
shift=length (instead of shift=1) when calling the window() method. Moreover, we
must not call the shuffle() method.

Unfortunately, batching is much harder when preparing a dataset for a stateful
RNN than it is for a stateless RNN. Indeed, if we were to call batch(32), then 32
consecutive windows would be put in the same batch, and the following batch would
not continue each of these windows where it left off. The first batch would contain
windows 1 to 32 and the second batch would contain windows 33 to 64, so if you
consider, say, the first window of each batch (i.e., windows 1 and 33), you can see that
they are not consecutive. The simplest solution to this problem is to just use a batch
size of 1. The following to_dataset_for_stateful_rnn() custom utility function
uses this strategy to prepare a dataset for a stateful RNN:

584 | Chapter 16: Natural Language Processing with RNNs and Attention

def to_dataset_for_stateful_rnn(sequence, length):
 ds = tf.data.Dataset.from_tensor_slices(sequence)
 ds = ds.window(length + 1, shift=length, drop_remainder=True)
 ds = ds.flat_map(lambda window: window.batch(length + 1)).batch(1)
 return ds.map(lambda window: (window[:, :-1], window[:, 1:])).prefetch(1)

stateful_train_set = to_dataset_for_stateful_rnn(encoded[:1_000_000], length)
stateful_valid_set = to_dataset_for_stateful_rnn(encoded[1_000_000:1_060_000],
 length)
stateful_test_set = to_dataset_for_stateful_rnn(encoded[1_060_000:], length)

Figure 16-2 summarizes the main steps of this function.

Figure 16-2. Preparing a dataset of consecutive sequence fragments for a stateful RNN

Batching is harder, but it is not impossible. For example, we could chop Shakespeare’s
text into 32 texts of equal length, create one dataset of consecutive input sequen‐
ces for each of them, and finally use tf.data.Dataset.zip(datasets).map(lambda
*windows: tf.stack(windows)) to create proper consecutive batches, where the nth

input sequence in a batch starts off exactly where the nth input sequence ended in the
previous batch (see the notebook for the full code).

Now, let’s create the stateful RNN. We need to set the stateful argument to True
when creating each recurrent layer, and because the stateful RNN needs to know
the batch size (since it will preserve a state for each input sequence in the batch).
Therefore we must set the batch_input_shape argument in the first layer. Note that
we can leave the second dimension unspecified, since the input sequences could have
any length:

Generating Shakespearean Text Using a Character RNN | 585

4 Alec Radford et al., “Learning to Generate Reviews and Discovering Sentiment”, arXiv preprint
arXiv:1704.01444 (2017).

model = tf.keras.Sequential([
 tf.keras.layers.Embedding(input_dim=n_tokens, output_dim=16,
 batch_input_shape=[1, None]),
 tf.keras.layers.GRU(128, return_sequences=True, stateful=True),
 tf.keras.layers.Dense(n_tokens, activation="softmax")
])

At the end of each epoch, we need to reset the states before we go back to the
beginning of the text. For this, we can use a small custom Keras callback:

class ResetStatesCallback(tf.keras.callbacks.Callback):
 def on_epoch_begin(self, epoch, logs):
 self.model.reset_states()

And now we can compile the model and train it using our callback:
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
history = model.fit(stateful_train_set, validation_data=stateful_valid_set,
 epochs=10, callbacks=[ResetStatesCallback(), model_ckpt])

After this model is trained, it will only be possible to use it to make
predictions for batches of the same size as were used during train‐
ing. To avoid this restriction, create an identical stateless model, and
copy the stateful model’s weights to this model.

Interestingly, although a char-RNN model is just trained to predict the next character,
this seemingly simple task actually requires it to learn some higher-level tasks as
well. For example, to find the next character after “Great movie, I really”, it’s helpful
to understand that the sentence is positive, so what follows is more likely to be
the letter “l” (for “loved”) rather than “h” (for “hated”). In fact, a 2017 paper4 by
Alec Radford and other OpenAI researchers describes how the authors trained a big
char-RNN-like model on a large dataset, and found that one of the neurons acted as
an excellent sentiment analysis classifier: although the model was trained without any
labels, the sentiment neuron—as they called it—reached state-of-the-art performance
on sentiment analysis benchmarks. This foreshadowed and motivated unsupervised
pretraining in NLP.

But before we explore unsupervised pretraining, let’s turn our attention to word-level
models and how to use them in a supervised fashion for sentiment analysis. In the
process, you will learn how to handle sequences of variable lengths using masking.

586 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/sentimentneuron

Sentiment Analysis
Generating text can be fun and instructive, but in real-life projects, one of the most
common applications of NLP is text classification—especially sentiment analysis. If
image classification on the MNIST dataset is the “Hello world!” of computer vision,
then sentiment analysis on the IMDb reviews dataset is the “Hello world!” of natural
language processing. The IMDb dataset consists of 50,000 movie reviews in English
(25,000 for training, 25,000 for testing) extracted from the famous Internet Movie
Database, along with a simple binary target for each review indicating whether it is
negative (0) or positive (1). Just like MNIST, the IMDb reviews dataset is popular for
good reasons: it is simple enough to be tackled on a laptop in a reasonable amount of
time, but challenging enough to be fun and rewarding.

Let’s load the IMDb dataset using the TensorFlow Datasets library (introduced in
Chapter 13). We’ll use the first 90% of the training set for training, and the remaining
10% for validation:

import tensorflow_datasets as tfds

raw_train_set, raw_valid_set, raw_test_set = tfds.load(
 name="imdb_reviews",
 split=["train[:90%]", "train[90%:]", "test"],
 as_supervised=True
)
tf.random.set_seed(42)
train_set = raw_train_set.shuffle(5000, seed=42).batch(32).prefetch(1)
valid_set = raw_valid_set.batch(32).prefetch(1)
test_set = raw_test_set.batch(32).prefetch(1)

Keras also includes a function for loading the IMDb dataset, if
you prefer: tf.keras.datasets.imdb.load_data(). The reviews
are already preprocessed as sequences of word IDs.

Let’s inspect a few reviews:
>>> for review, label in raw_train_set.take(4):
... print(review.numpy().decode("utf-8"))
... print("Label:", label.numpy())
...
This was an absolutely terrible movie. Don't be lured in by Christopher [...]
Label: 0
I have been known to fall asleep during films, but this is usually due to [...]
Label: 0
Mann photographs the Alberta Rocky Mountains in a superb fashion, and [...]
Label: 0
This is the kind of film for a snowy Sunday afternoon when the rest of the [...]
Label: 1

Sentiment Analysis | 587

https://imdb.com
https://imdb.com

5 Rico Sennrich et al., “Neural Machine Translation of Rare Words with Subword Units”, Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics 1 (2016): 1715–1725.

6 Taku Kudo, “Subword Regularization: Improving Neural Network Translation Models with Multiple Subword
Candidates”, arXiv preprint arXiv:1804.10959 (2018).

7 Taku Kudo and John Richardson, “SentencePiece: A Simple and Language Independent Subword Tokenizer
and Detokenizer for Neural Text Processing”, arXiv preprint arXiv:1808.06226 (2018).

Some reviews are easy to classify. For example, the first review includes the words
“terrible movie” in the very first sentence. But in many cases things are not that
simple. For example, the third review starts off positively, even though it’s ultimately a
negative review (label 0).

To build a model for this task, we need to preprocess the text, but this time we
will chop it into words instead of characters. For this, we can use the tf.keras.
layers.TextVectorization layer again. Note that it uses spaces to identify word
boundaries, which will not work well in some languages. For example, Chinese
writing does not use spaces between words, Vietnamese uses spaces even within
words, and German often attaches multiple words together, without spaces. Even in
English, spaces are not always the best way to tokenize text: think of “San Francisco”
or “#ILoveDeepLearning”.

Fortunately, there are solutions to address these issues. In a 2016 paper,5 Rico Senn‐
rich et al. from the University of Edinburgh explored several methods to tokenize
and detokenize text at the subword level. This way, even if your model encounters
a rare word it has never seen before, it can still reasonably guess what it means.
For example, even if the model never saw the word “smartest” during training, if it
learned the word “smart” and it also learned that the suffix “est” means “the most”,
it can infer the meaning of “smartest”. One of the techniques the authors evaluated
is byte pair encoding (BPE). BPE works by splitting the whole training set into
individual characters (including spaces), then repeatedly merging the most frequent
adjacent pairs until the vocabulary reaches the desired size.

A 2018 paper6 by Taku Kudo at Google further improved subword tokenization,
often removing the need for language-specific preprocessing prior to tokenization.
Moreover, the paper proposed a novel regularization technique called subword regula‐
rization, which improves accuracy and robustness by introducing some randomness
in tokenization during training: for example, “New England” may be tokenized as
“New” + “England”, or “New” + “Eng” + “land”, or simply “New England” (just
one token). Google’s SentencePiece project provides an open source implementation,
which is described in a paper7 by Taku Kudo and John Richardson.

588 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/rarewords
https://homl.info/subword
https://github.com/google/sentencepiece
https://homl.info/sentencepiece

8 Yonghui Wu et al., “Google’s Neural Machine Translation System: Bridging the Gap Between Human and
Machine Translation”, arXiv preprint arXiv:1609.08144 (2016).

The TensorFlow Text library also implements various tokenization strategies, includ‐
ing WordPiece8 (a variant of BPE), and last but not least, the Tokenizers library by
Hugging Face implements a wide range of extremely fast tokenizers.

However, for the IMDb task in English, using spaces for token boundaries should be
good enough. So let’s go ahead with creating a TextVectorization layer and adapting
it to the training set. We will limit the vocabulary to 1,000 tokens, including the most
frequent 998 words plus a padding token and a token for unknown words, since
it’s unlikely that very rare words will be important for this task, and limiting the
vocabulary size will reduce the number of parameters the model needs to learn:

vocab_size = 1000
text_vec_layer = tf.keras.layers.TextVectorization(max_tokens=vocab_size)
text_vec_layer.adapt(train_set.map(lambda reviews, labels: reviews))

Finally, we can create the model and train it:
embed_size = 128
tf.random.set_seed(42)
model = tf.keras.Sequential([
 text_vec_layer,
 tf.keras.layers.Embedding(vocab_size, embed_size),
 tf.keras.layers.GRU(128),
 tf.keras.layers.Dense(1, activation="sigmoid")
])
model.compile(loss="binary_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
history = model.fit(train_set, validation_data=valid_set, epochs=2)

The first layer is the TextVectorization layer we just prepared, followed by an
Embedding layer that will convert word IDs into embeddings. The embedding matrix
needs to have one row per token in the vocabulary (vocab_size) and one column per
embedding dimension (this example uses 128 dimensions, but this is a hyperparame‐
ter you could tune). Next we use a GRU layer and a Dense layer with a single neuron
and the sigmoid activation function, since this is a binary classification task: the
model’s output will be the estimated probability that the review expresses a positive
sentiment regarding the movie. We then compile the model, and we fit it on the
dataset we prepared earlier for a couple of epochs (or you can train for longer to get
better results).

Sentiment Analysis | 589

https://homl.info/tftext
https://homl.info/wordpiece
https://homl.info/tokenizers
https://homl.info/tokenizers

Sadly, if you run this code, you will generally find that the model fails to learn
anything at all: the accuracy remains close to 50%, no better than random chance.
Why is that? The reviews have different lengths, so when the TextVectorization
layer converts them to sequences of token IDs, it pads the shorter sequences using the
padding token (with ID 0) to make them as long as the longest sequence in the batch.
As a result, most sequences end with many padding tokens—often dozens or even
hundreds of them. Even though we’re using a GRU layer, which is much better than
a SimpleRNN layer, its short-term memory is still not great, so when it goes through
many padding tokens, it ends up forgetting what the review was about! One solution
is to feed the model with batches of equal-length sentences (which also speeds up
training). Another solution is to make the RNN ignore the padding tokens. This can
be done using masking.

Masking
Making the model ignore padding tokens is trivial using Keras: simply add
mask_zero=True when creating the Embedding layer. This means that padding tokens
(whose ID is 0) will be ignored by all downstream layers. That’s all! If you retrain the
previous model for a few epochs, you will find that the validation accuracy quickly
reaches over 80%.

The way this works is that the Embedding layer creates a mask tensor equal to
tf.math.not_equal(inputs, 0): it is a Boolean tensor with the same shape as the
inputs, and it is equal to False anywhere the token IDs are 0, or True otherwise. This
mask tensor is then automatically propagated by the model to the next layer. If that
layer’s call() method has a mask argument, then it automatically receives the mask.
This allows the layer to ignore the appropriate time steps. Each layer may handle
the mask differently, but in general they simply ignore masked time steps (i.e., time
steps for which the mask is False). For example, when a recurrent layer encounters a
masked time step, it simply copies the output from the previous time step.

Next, if the layer’s supports_masking attribute is True, then the mask is automati‐
cally propagated to the next layer. It keeps propagating this way for as long as the
layers have supports_masking=True. As an example, a recurrent layer’s supports_
masking attribute is True when return_sequences=True, but it’s False when return_
sequences=False since there’s no need for a mask anymore in this case. So if you
have a model with several recurrent layers with return_sequences=True, followed
by a recurrent layer with return_sequences=False, then the mask will automatically
propagate up to the last recurrent layer: that layer will use the mask to ignore
masked steps, but it will not propagate the mask any further. Similarly, if you set
mask_zero=True when creating the Embedding layer in the sentiment analysis model
we just built, then the GRU layer will receive and use the mask automatically, but it will
not propagate it any further, since return_sequences is not set to True.

590 | Chapter 16: Natural Language Processing with RNNs and Attention

Some layers need to update the mask before propagating it to
the next layer: they do so by implementing the compute_mask()
method, which takes two arguments: the inputs and the previous
mask. It then computes the updated mask and returns it. The
default implementation of compute_mask() just returns the previ‐
ous mask unchanged.

Many Keras layers support masking: SimpleRNN, GRU, LSTM, Bidirectional, Dense,
TimeDistributed, Add, and a few others (all in the tf.keras.layers package).
However, convolutional layers (including Conv1D) do not support masking—it’s not
obvious how they would do so anyway.

If the mask propagates all the way to the output, then it gets applied to the losses as
well, so the masked time steps will not contribute to the loss (their loss will be 0). This
assumes that the model outputs sequences, which is not the case in our sentiment
analysis model.

The LSTM and GRU layers have an optimized implementation for
GPUs, based on Nvidia’s cuDNN library. However, this implemen‐
tation only supports masking if all the padding tokens are at the
end of the sequences. It also requires you to use the default values
for several hyperparameters: activation, recurrent_activation,
recurrent_dropout, unroll, use_bias, and reset_after. If that’s
not the case, then these layers will fall back to the (much slower)
default GPU implementation.

If you want to implement your own custom layer with masking support, you should
add a mask argument to the call() method, and obviously make the method use
the mask. Additionally, if the mask must be propagated to the next layers, then
you should set self.supports_masking=True in the constructor. If the mask must
be updated before it is propagated, then you must implement the compute_mask()
method.

If your model does not start with an Embedding layer, you may use the tf.
keras.layers.Masking layer instead: by default, it sets the mask to tf.math.
reduce_any(tf.math.not_equal(X, 0), axis=-1), meaning that time steps where
the last dimension is full of zeros will be masked out in subsequent layers.

Sentiment Analysis | 591

9 Ragged tensors were introduced in Chapter 12, and they are detailed in Appendix C.

Using masking layers and automatic mask propagation works best for simple models.
It will not always work for more complex models, such as when you need to mix
Conv1D layers with recurrent layers. In such cases, you will need to explicitly compute
the mask and pass it to the appropriate layers, using either the functional API or
the subclassing API. For example, the following model is equivalent to the previous
model, except it is built using the functional API and handles masking manually. It
also adds a bit of dropout since the previous model was overfitting slightly:

inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)
token_ids = text_vec_layer(inputs)
mask = tf.math.not_equal(token_ids, 0)
Z = tf.keras.layers.Embedding(vocab_size, embed_size)(token_ids)
Z = tf.keras.layers.GRU(128, dropout=0.2)(Z, mask=mask)
outputs = tf.keras.layers.Dense(1, activation="sigmoid")(Z)
model = tf.keras.Model(inputs=[inputs], outputs=[outputs])

One last approach to masking is to feed the model with ragged tensors.9 In practice,
all you need to do is to set ragged=True when creating the TextVectorization layer,
so that the input sequences are represented as ragged tensors:

>>> text_vec_layer_ragged = tf.keras.layers.TextVectorization(
... max_tokens=vocab_size, ragged=True)
...
>>> text_vec_layer_ragged.adapt(train_set.map(lambda reviews, labels: reviews))
>>> text_vec_layer_ragged(["Great movie!", "This is DiCaprio's best role."])
<tf.RaggedTensor [[86, 18], [11, 7, 1, 116, 217]]>

Compare this ragged tensor representation with the regular tensor representation,
which uses padding tokens:

>>> text_vec_layer(["Great movie!", "This is DiCaprio's best role."])
<tf.Tensor: shape=(2, 5), dtype=int64, numpy=
array([[86, 18, 0, 0, 0],
 [11, 7, 1, 116, 217]])>

Keras’s recurrent layers have built-in support for ragged tensors, so there’s nothing
else you need to do: just use this TextVectorization layer in your model. There’s
no need to pass mask_zero=True or handle masks explicitly—it’s all implemented for
you. That’s convenient! However, as of early 2022, the support for ragged tensors in
Keras is still fairly recent, so there are a few rough edges. For example, it is currently
not possible to use ragged tensors as targets when running on the GPU (but this may
be resolved by the time you read these lines).

Whichever masking approach you prefer, after training this model for a few epochs,
it will become quite good at judging whether a review is positive or not. If you use
the tf.keras.callbacks.TensorBoard() callback, you can visualize the embeddings

592 | Chapter 16: Natural Language Processing with RNNs and Attention

10 Matthew Peters et al., “Deep Contextualized Word Representations”, Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 1
(2018): 2227–2237.

11 Jeremy Howard and Sebastian Ruder, “Universal Language Model Fine-Tuning for Text Classification”, Pro‐
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics 1 (2018): 328–339.

in TensorBoard as they are being learned: it is fascinating to see words like “awesome”
and “amazing” gradually cluster on one side of the embedding space, while words like
“awful” and “terrible” cluster on the other side. Some words are not as positive as you
might expect (at least with this model), such as the word “good”, presumably because
many negative reviews contain the phrase “not good”.

Reusing Pretrained Embeddings and Language Models
It’s impressive that the model is able to learn useful word embeddings based on just
25,000 movie reviews. Imagine how good the embeddings would be if we had billions
of reviews to train on! Unfortunately, we don’t, but perhaps we can reuse word
embeddings trained on some other (very) large text corpus (e.g., Amazon reviews,
available on TensorFlow Datasets), even if it is not composed of movie reviews?
After all, the word “amazing” generally has the same meaning whether you use it to
talk about movies or anything else. Moreover, perhaps embeddings would be useful
for sentiment analysis even if they were trained on another task: since words like
“awesome” and “amazing” have a similar meaning, they will likely cluster in the
embedding space even for tasks such as predicting the next word in a sentence. If
all positive words and all negative words form clusters, then this will be helpful for
sentiment analysis. So, instead of training word embeddings, we could just download
and use pretrained embeddings, such as Google’s Word2vec embeddings, Stanford’s
GloVe embeddings, or Facebook’s FastText embeddings.

Using pretrained word embeddings was popular for several years, but this approach
has its limits. In particular, a word has a single representation, no matter the context.
For example, the word “right” is encoded the same way in “left and right” and “right
and wrong”, even though it means two very different things. To address this limita‐
tion, a 2018 paper10 by Matthew Peters introduced Embeddings from Language Models
(ELMo): these are contextualized word embeddings learned from the internal states
of a deep bidirectional language model. Instead of just using pretrained embeddings
in your model, you reuse part of a pretrained language model.

At roughly the same time, the Universal Language Model Fine-Tuning (ULMFiT)
paper11 by Jeremy Howard and Sebastian Ruder demonstrated the effectiveness of
unsupervised pretraining for NLP tasks: the authors trained an LSTM language
model on a huge text corpus using self-supervised learning (i.e., generating the
labels automatically from the data), then they fine-tuned it on various tasks. Their
model outperformed the state of the art on six text classification tasks by a large

Sentiment Analysis | 593

https://homl.info/word2vec
https://homl.info/glove
https://fasttext.cc
https://homl.info/elmo
https://homl.info/ulmfit
https://homl.info/ulmfit

12 Daniel Cer et al., “Universal Sentence Encoder”, arXiv preprint arXiv:1803.11175 (2018).

margin (reducing the error rate by 18–24% in most cases). Moreover, the authors
showed a pretrained model fine-tuned on just 100 labeled examples could achieve
the same performance as one trained from scratch on 10,000 examples. Before the
ULMFiT paper, using pretrained models was only the norm in computer vision; in
the context of NLP, pretraining was limited to word embeddings. This paper marked
the beginning of a new era in NLP: today, reusing pretrained language models is the
norm.

For example, let’s build a classifier based on the Universal Sentence Encoder, a model
architecture introduced in a 2018 paper12 by a team of Google researchers. This
model is based on the transformer architecture, which we will look at later in this
chapter. Conveniently, the model is available on TensorFlow Hub:

import os
import tensorflow_hub as hub

os.environ["TFHUB_CACHE_DIR"] = "my_tfhub_cache"
model = tf.keras.Sequential([
 hub.KerasLayer("https://tfhub.dev/google/universal-sentence-encoder/4",
 trainable=True, dtype=tf.string, input_shape=[]),
 tf.keras.layers.Dense(64, activation="relu"),
 tf.keras.layers.Dense(1, activation="sigmoid")
])
model.compile(loss="binary_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
model.fit(train_set, validation_data=valid_set, epochs=10)

This model is quite large—close to 1 GB in size—so it may take a
while to download. By default, TensorFlow Hub modules are saved
to a temporary directory, and they get downloaded again and again
every time you run your program. To avoid that, you must set
the TFHUB_CACHE_DIR environment variable to a directory of your
choice: the modules will then be saved there, and only downloaded
once.

Note that the last part of the TensorFlow Hub module URL specifies that we want
version 4 of the model. This versioning ensures that if a new module version is
released on TF Hub, it will not break our model. Conveniently, if you just enter this
URL in a web browser, you will get the documentation for this module.

594 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/139

13 Ilya Sutskever et al., “Sequence to Sequence Learning with Neural Networks”, arXiv preprint (2014).

Also note that we set trainable=True when creating the hub.KerasLayer. This way,
the pretrained Universal Sentence Encoder is fine-tuned during training: some of its
weights are tweaked via backprop. Not all TensorFlow Hub modules are fine-tunable,
so make sure to check the documentation for each pretrained module you’re interes‐
ted in.

After training, this model should reach a validation accuracy of over 90%. That’s
actually really good: if you try to perform the task yourself, you will probably do only
marginally better since many reviews contain both positive and negative comments.
Classifying these ambiguous reviews is like flipping a coin.

So far we have looked at text generation using a char-RNN, and sentiment analysis
with word-level RNN models (based on trainable embeddings) and using a powerful
pretrained language model from TensorFlow Hub. In the next section, we will explore
another important NLP task: neural machine translation (NMT).

An Encoder–Decoder Network for Neural Machine
Translation
Let’s begin with a simple NMT model13 that will translate English sentences to Span‐
ish (see Figure 16-3).

In short, the architecture is as follows: English sentences are fed as inputs to the
encoder, and the decoder outputs the Spanish translations. Note that the Spanish
translations are also used as inputs to the decoder during training, but shifted back
by one step. In other words, during training the decoder is given as input the word
that it should have output at the previous step, regardless of what it actually output.
This is called teacher forcing—a technique that significantly speeds up training and
improves the model’s performance. For the very first word, the decoder is given the
start-of-sequence (SOS) token, and the decoder is expected to end the sentence with
an end-of-sequence (EOS) token.

Each word is initially represented by its ID (e.g., 854 for the word “soccer”). Next, an
Embedding layer returns the word embedding. These word embeddings are then fed
to the encoder and the decoder.

At each step, the decoder outputs a score for each word in the output vocabulary (i.e.,
Spanish), then the softmax activation function turns these scores into probabilities.
For example, at the first step the word “Me” may have a probability of 7%, “Yo” may
have a probability of 1%, and so on. The word with the highest probability is output.
This is very much like a regular classification task, and indeed you can train the

An Encoder–Decoder Network for Neural Machine Translation | 595

https://homl.info/103

14 Samy Bengio et al., “Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks”, arXiv
preprint arXiv:1506.03099 (2015).

model using the "sparse_categorical_crossentropy" loss, much like we did in the
char-RNN model.

Figure 16-3. A simple machine translation model

Note that at inference time (after training), you will not have the target sentence to
feed to the decoder. Instead, you need to feed it the word that it has just output at the
previous step, as shown in Figure 16-4 (this will require an embedding lookup that is
not shown in the diagram).

In a 2015 paper,14 Samy Bengio et al. proposed gradually switching
from feeding the decoder the previous target token to feeding it the
previous output token during training.

596 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/scheduledsampling

15 This dataset is composed of sentence pairs created by contributors of the Tatoeba project. About 120,000
sentence pairs were selected by the authors of the website https://manythings.org/anki. This dataset is released
under the Creative Commons Attribution 2.0 France license. Other language pairs are available.

Figure 16-4. At inference time, the decoder is fed as input the word it just output at the
previous time step

Let’s build and train this model! First, we need to download a dataset of English/
Spanish sentence pairs:15

url = "https://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip"
path = tf.keras.utils.get_file("spa-eng.zip", origin=url, cache_dir="datasets",
 extract=True)
text = (Path(path).with_name("spa-eng") / "spa.txt").read_text()

Each line contains an English sentence and the corresponding Spanish translation,
separated by a tab. We’ll start by removing the Spanish characters “¡” and “¿”, which
the TextVectorization layer doesn’t handle, then we will parse the sentence pairs
and shuffle them. Finally, we will split them into two separate lists, one per language:

import numpy as np

text = text.replace("¡", "").replace("¿", "")
pairs = [line.split("\t") for line in text.splitlines()]
np.random.shuffle(pairs)
sentences_en, sentences_es = zip(*pairs) # separates the pairs into 2 lists

Let’s take a look at the first three sentence pairs:
>>> for i in range(3):
... print(sentences_en[i], "=>", sentences_es[i])
...
How boring! => Qué aburrimiento!
I love sports. => Adoro el deporte.
Would you like to swap jobs? => Te gustaría que intercambiemos los trabajos?

An Encoder–Decoder Network for Neural Machine Translation | 597

https://tatoeba.org
https://manythings.org/anki

Next, let’s create two TextVectorization layers—one per language—and adapt them
to the text:

vocab_size = 1000
max_length = 50
text_vec_layer_en = tf.keras.layers.TextVectorization(
 vocab_size, output_sequence_length=max_length)
text_vec_layer_es = tf.keras.layers.TextVectorization(
 vocab_size, output_sequence_length=max_length)
text_vec_layer_en.adapt(sentences_en)
text_vec_layer_es.adapt([f"startofseq {s} endofseq" for s in sentences_es])

There are a few things to note here:

• We limit the vocabulary size to 1,000, which is quite small. That’s because the•
training set is not very large, and because using a small value will speed up
training. State-of-the-art translation models typically use a much larger vocabu‐
lary (e.g., 30,000), a much larger training set (gigabytes), and a much larger
model (hundreds or even thousands of megabytes). For example, check out the
Opus-MT models by the University of Helsinki, or the M2M-100 model by
Facebook.

• Since all sentences in the dataset have a maximum of 50 words, we set•
output_sequence_length to 50: this way the input sequences will automatically
be padded with zeros until they are all 50 tokens long. If there was any sentence
longer than 50 tokens in the training set, it would be cropped to 50 tokens.

• For the Spanish text, we add “startofseq” and “endofseq” to each sentence when•
adapting the TextVectorization layer: we will use these words as SOS and EOS
tokens. You could use any other words, as long as they are not actual Spanish
words.

Let’s inspect the first 10 tokens in both vocabularies. They start with the padding
token, the unknown token, the SOS and EOS tokens (only in the Spanish vocabu‐
lary), then the actual words, sorted by decreasing frequency:

>>> text_vec_layer_en.get_vocabulary()[:10]
['', '[UNK]', 'the', 'i', 'to', 'you', 'tom', 'a', 'is', 'he']
>>> text_vec_layer_es.get_vocabulary()[:10]
['', '[UNK]', 'startofseq', 'endofseq', 'de', 'que', 'a', 'no', 'tom', 'la']

Next, let’s create the training set and the validation set (you could also create a test
set if you needed it). We will use the first 100,000 sentence pairs for training, and the
rest for validation. The decoder’s inputs are the Spanish sentences plus an SOS token
prefix. The targets are the Spanish sentences plus an EOS suffix:

X_train = tf.constant(sentences_en[:100_000])
X_valid = tf.constant(sentences_en[100_000:])
X_train_dec = tf.constant([f"startofseq {s}" for s in sentences_es[:100_000]])
X_valid_dec = tf.constant([f"startofseq {s}" for s in sentences_es[100_000:]])

598 | Chapter 16: Natural Language Processing with RNNs and Attention

16 In Python, if you run a, *b = [1, 2, 3, 4], then a equals 1 and b equals [2, 3, 4].

Y_train = text_vec_layer_es([f"{s} endofseq" for s in sentences_es[:100_000]])
Y_valid = text_vec_layer_es([f"{s} endofseq" for s in sentences_es[100_000:]])

OK, we’re now ready to build our translation model. We will use the functional API
for that since the model is not sequential. It requires two text inputs—one for the
encoder and one for the decoder—so let’s start with that:

encoder_inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)
decoder_inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)

Next, we need to encode these sentences using the TextVectorization layers
we prepared earlier, followed by an Embedding layer for each language, with
mask_zero=True to ensure masking is handled automatically. The embedding size
is a hyperparameter you can tune, as always:

embed_size = 128
encoder_input_ids = text_vec_layer_en(encoder_inputs)
decoder_input_ids = text_vec_layer_es(decoder_inputs)
encoder_embedding_layer = tf.keras.layers.Embedding(vocab_size, embed_size,
 mask_zero=True)
decoder_embedding_layer = tf.keras.layers.Embedding(vocab_size, embed_size,
 mask_zero=True)
encoder_embeddings = encoder_embedding_layer(encoder_input_ids)
decoder_embeddings = decoder_embedding_layer(decoder_input_ids)

When the languages share many words, you may get better perfor‐
mance using the same embedding layer for both the encoder and
the decoder.

Now let’s create the encoder and pass it the embedded inputs:
encoder = tf.keras.layers.LSTM(512, return_state=True)
encoder_outputs, *encoder_state = encoder(encoder_embeddings)

To keep things simple, we just used a single LSTM layer, but you could stack several
of them. We also set return_state=True to get a reference to the layer’s final state.
Since we’re using an LSTM layer, there are actually two states: the short-term state and
the long-term state. The layer returns these states separately, which is why we had to
write *encoder_state to group both states in a list.16 Now we can use this (double)
state as the initial state of the decoder:

decoder = tf.keras.layers.LSTM(512, return_sequences=True)
decoder_outputs = decoder(decoder_embeddings, initial_state=encoder_state)

An Encoder–Decoder Network for Neural Machine Translation | 599

17 Sébastien Jean et al., “On Using Very Large Target Vocabulary for Neural Machine Translation”, Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the Asian Federation of Natural Language Processing 1 (2015):
1–10.

Next, we can pass the decoder’s outputs through a Dense layer with the softmax
activation function to get the word probabilities for each step:

output_layer = tf.keras.layers.Dense(vocab_size, activation="softmax")
Y_proba = output_layer(decoder_outputs)

Optimizing the Output Layer
When the output vocabulary is large, outputting a probability for each and every
possible word can be quite slow. If the target vocabulary contained, say, 50,000
Spanish words instead of 1,000, then the decoder would output 50,000-dimensional
vectors, and computing the softmax function over such a large vector would be very
computationally intensive. To avoid this, one solution is to look only at the logits out‐
put by the model for the correct word and for a random sample of incorrect words,
then compute an approximation of the loss based only on these logits. This sampled
so"max technique was introduced in 2015 by Sébastien Jean et al.17 In TensorFlow
you can use the tf.nn.sampled_softmax_loss() function for this during training
and use the normal softmax function at inference time (sampled softmax cannot be
used at inference time because it requires knowing the target).

Another thing you can do to speed up training—which is compatible with sampled
softmax—is to tie the weights of the output layer to the transpose of the decoder’s
embedding matrix (you will see how to tie weights in Chapter 17). This significantly
reduces the number of model parameters, which speeds up training and may some‐
times improve the model’s accuracy as well, especially if you don’t have a lot of
training data. The embedding matrix is equivalent to one-hot encoding followed by
a linear layer with no bias term and no activation function that maps the one-hot
vectors to the embedding space. The output layer does the reverse. So, if the model
can find an embedding matrix whose transpose is close to its inverse (such a matrix is
called an orthogonal matrix), then there’s no need to learn a separate set of weights for
the output layer.

And that’s it! We just need to create the Keras Model, compile it, and train it:
model = tf.keras.Model(inputs=[encoder_inputs, decoder_inputs],
 outputs=[Y_proba])
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
model.fit((X_train, X_train_dec), Y_train, epochs=10,
 validation_data=((X_valid, X_valid_dec), Y_valid))

600 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/104

After training, we can use the model to translate new English sentences to Spanish.
But it’s not as simple as calling model.predict(), because the decoder expects as
input the word that was predicted at the previous time step. One way to do this is
to write a custom memory cell that keeps track of the previous output and feeds it
to the encoder at the next time step. However, to keep things simple, we can just call
the model multiple times, predicting one extra word at each round. Let’s write a little
utility function for that:

def translate(sentence_en):
 translation = ""
 for word_idx in range(max_length):
 X = np.array([sentence_en]) # encoder input
 X_dec = np.array(["startofseq " + translation]) # decoder input
 y_proba = model.predict((X, X_dec))[0, word_idx] # last token's probas
 predicted_word_id = np.argmax(y_proba)
 predicted_word = text_vec_layer_es.get_vocabulary()[predicted_word_id]
 if predicted_word == "endofseq":
 break
 translation += " " + predicted_word
 return translation.strip()

The function simply keeps predicting one word at a time, gradually completing the
translation, and it stops once it reaches the EOS token. Let’s give it a try!

>>> translate("I like soccer")
'me gusta el fútbol'

Hurray, it works! Well, at least it does with very short sentences. If you try playing
with this model for a while, you will find that it’s not bilingual yet, and in particular it
really struggles with longer sentences. For example:

>>> translate("I like soccer and also going to the beach")
'me gusta el fútbol y a veces mismo al bus'

The translation says “I like soccer and sometimes even the bus”. So how can you
improve it? One way is to increase the training set size and add more LSTM layers in
both the encoder and the decoder. But this will only get you so far, so let’s look at
more sophisticated techniques, starting with bidirectional recurrent layers.

Bidirectional RNNs
At each time step, a regular recurrent layer only looks at past and present inputs
before generating its output. In other words, it is causal, meaning it cannot look
into the future. This type of RNN makes sense when forecasting time series, or
in the decoder of a sequence-to-sequence (seq2seq) model. But for tasks like text
classification, or in the encoder of a seq2seq model, it is often preferable to look
ahead at the next words before encoding a given word.

An Encoder–Decoder Network for Neural Machine Translation | 601

For example, consider the phrases “the right arm”, “the right person”, and “the right to
criticize”: to properly encode the word “right”, you need to look ahead. One solution
is to run two recurrent layers on the same inputs, one reading the words from left
to right and the other reading them from right to left, then combine their outputs at
each time step, typically by concatenating them. This is what a bidirectional recurrent
layer does (see Figure 16-5).

Figure 16-5. A bidirectional recurrent layer

To implement a bidirectional recurrent layer in Keras, just wrap a recurrent layer in
a tf.keras.layers.Bidirectional layer. For example, the following Bidirectional
layer could be used as the encoder in our translation model:

encoder = tf.keras.layers.Bidirectional(
 tf.keras.layers.LSTM(256, return_state=True))

The Bidirectional layer will create a clone of the GRU layer (but
in the reverse direction), and it will run both and concatenate their
outputs. So although the GRU layer has 10 units, the Bidirectional
layer will output 20 values per time step.

There’s just one problem. This layer will now return four states instead of two: the
final short-term and long-term states of the forward LSTM layer, and the final short-
term and long-term states of the backward LSTM layer. We cannot use this quadruple
state directly as the initial state of the decoder’s LSTM layer, since it expects just two
states (short-term and long-term). We cannot make the decoder bidirectional, since it
must remain causal: otherwise it would cheat during training and it would not work.
Instead, we can concatenate the two short-term states, and also concatenate the two
long-term states:

602 | Chapter 16: Natural Language Processing with RNNs and Attention

encoder_outputs, *encoder_state = encoder(encoder_embeddings)
encoder_state = [tf.concat(encoder_state[::2], axis=-1), # short-term (0 & 2)
 tf.concat(encoder_state[1::2], axis=-1)] # long-term (1 & 3)

Now let’s look at another popular technique that can greatly improve the performance
of a translation model at inference time: beam search.

Beam Search
Suppose you have trained an encoder–decoder model, and you use it to translate the
sentence “I like soccer” to Spanish. You are hoping that it will output the proper
translation “me gusta el fútbol”, but unfortunately it outputs “me gustan los juga‐
dores”, which means “I like the players”. Looking at the training set, you notice many
sentences such as “I like cars”, which translates to “me gustan los autos”, so it wasn’t
absurd for the model to output “me gustan los” after seeing “I like”. Unfortunately, in
this case it was a mistake since “soccer” is singular. The model could not go back and
fix it, so it tried to complete the sentence as best it could, in this case using the word
“jugadores”. How can we give the model a chance to go back and fix mistakes it made
earlier? One of the most common solutions is beam search: it keeps track of a short
list of the k most promising sentences (say, the top three), and at each decoder step
it tries to extend them by one word, keeping only the k most likely sentences. The
parameter k is called the beam width.

For example, suppose you use the model to translate the sentence “I like soccer”
using beam search with a beam width of 3 (see Figure 16-6). At the first decoder
step, the model will output an estimated probability for each possible first word
in the translated sentence. Suppose the top three words are “me” (75% estimated
probability), “a” (3%), and “como” (1%). That’s our short list so far. Next, we use the
model to find the next word for each sentence. For the first sentence (“me”), perhaps
the model outputs a probability of 36% for the word “gustan”, 32% for the word
“gusta”, 16% for the word “encanta”, and so on. Note that these are actually conditional
probabilities, given that the sentence starts with “me”. For the second sentence (“a”),
the model might output a conditional probability of 50% for the word “mi”, and so
on. Assuming the vocabulary has 1,000 words, we will end up with 1,000 probabilities
per sentence.

Next, we compute the probabilities of each of the 3,000 two-word sentences we
considered (3 × 1,000). We do this by multiplying the estimated conditional proba‐
bility of each word by the estimated probability of the sentence it completes. For
example, the estimated probability of the sentence “me” was 75%, while the estimated
conditional probability of the word “gustan” (given that the first word is “me”) was
36%, so the estimated probability of the sentence “me gustan” is 75% × 36% = 27%.
After computing the probabilities of all 3,000 two-word sentences, we keep only
the top 3. In this example they all start with the word “me”: “me gustan” (27%),

An Encoder–Decoder Network for Neural Machine Translation | 603

“me gusta” (24%), and “me encanta” (12%). Right now, the sentence “me gustan” is
winning, but “me gusta” has not been eliminated.

Figure 16-6. Beam search, with a beam width of 3

Then we repeat the same process: we use the model to predict the next word in each
of these three sentences, and we compute the probabilities of all 3,000 three-word
sentences we considered. Perhaps the top three are now “me gustan los” (10%), “me
gusta el” (8%), and “me gusta mucho” (2%). At the next step we may get “me gusta el
fútbol” (6%), “me gusta mucho el” (1%), and “me gusta el deporte” (0.2%). Notice that
“me gustan” was eliminated, and the correct translation is now ahead. We boosted our
encoder–decoder model’s performance without any extra training, simply by using it
more wisely.

The TensorFlow Addons library includes a full seq2seq API that
lets you build encoder–decoder models with attention, including
beam search, and more. However, its documentation is currently
very limited. Implementing beam search is a good exercise, so give
it a try! Check out this chapter’s notebook for a possible solution.

With all this, you can get reasonably good translations for fairly short sentences.
Unfortunately, this model will be really bad at translating long sentences. Once
again, the problem comes from the limited short-term memory of RNNs. Attention
mechanisms are the game-changing innovation that addressed this problem.

Attention Mechanisms
Consider the path from the word “soccer” to its translation “fútbol” back in Fig‐
ure 16-3: it is quite long! This means that a representation of this word (along with all

604 | Chapter 16: Natural Language Processing with RNNs and Attention

18 Dzmitry Bahdanau et al., “Neural Machine Translation by Jointly Learning to Align and Translate”, arXiv
preprint arXiv:1409.0473 (2014).

the other words) needs to be carried over many steps before it is actually used. Can’t
we make this path shorter?

This was the core idea in a landmark 2014 paper18 by Dzmitry Bahdanau et al.,
where the authors introduced a technique that allowed the decoder to focus on the
appropriate words (as encoded by the encoder) at each time step. For example, at
the time step where the decoder needs to output the word “fútbol”, it will focus its
attention on the word “soccer”. This means that the path from an input word to its
translation is now much shorter, so the short-term memory limitations of RNNs have
much less impact. Attention mechanisms revolutionized neural machine translation
(and deep learning in general), allowing a significant improvement in the state of the
art, especially for long sentences (e.g., over 30 words).

The most common metric used in NMT is the bilingual evalua‐
tion understudy (BLEU) score, which compares each translation
produced by the model with several good translations produced by
humans: it counts the number of n-grams (sequences of n words)
that appear in any of the target translations and adjusts the score
to take into account the frequency of the produced n-grams in the
target translations.

Figure 16-7 shows our encoder–decoder model with an added attention mechanism.
On the left, you have the encoder and the decoder. Instead of just sending the
encoder’s final hidden state to the decoder, as well as the previous target word at each
step (which is still done, although it is not shown in the figure), we now send all
of the encoder’s outputs to the decoder as well. Since the decoder cannot deal with
all these encoder outputs at once, they need to be aggregated: at each time step, the
decoder’s memory cell computes a weighted sum of all the encoder outputs. This
determines which words it will focus on at this step. The weight α(t,i) is the weight
of the ith encoder output at the tth decoder time step. For example, if the weight
α(3,2) is much larger than the weights α(3,0) and α(3,1), then the decoder will pay much
more attention to the encoder’s output for word #2 (“soccer”) than to the other two
outputs, at least at this time step. The rest of the decoder works just like earlier: at
each time step the memory cell receives the inputs we just discussed, plus the hidden
state from the previous time step, and finally (although it is not represented in the
diagram) it receives the target word from the previous time step (or at inference time,
the output from the previous time step).

Attention Mechanisms | 605

https://homl.info/attention

Figure 16-7. Neural machine translation using an encoder–decoder network with an
attention model

But where do these α(t,i) weights come from? Well, they are generated by a small
neural network called an alignment model (or an attention layer), which is trained
jointly with the rest of the encoder–decoder model. This alignment model is illustra‐
ted on the righthand side of Figure 16-7. It starts with a Dense layer composed of a
single neuron that processes each of the encoder’s outputs, along with the decoder’s
previous hidden state (e.g., h(2)). This layer outputs a score (or energy) for each
encoder output (e.g., e(3, 2)): this score measures how well each output is aligned
with the decoder’s previous hidden state. For example, in Figure 16-7, the model
has already output “me gusta el” (meaning “I like”), so it’s now expecting a noun:
the word “soccer” is the one that best aligns with the current state, so it gets a high
score. Finally, all the scores go through a softmax layer to get a final weight for
each encoder output (e.g., α(3,2)). All the weights for a given decoder time step add
up to 1. This particular attention mechanism is called Bahdanau attention (named
after the 2014 paper’s first author). Since it concatenates the encoder output with
the decoder’s previous hidden state, it is sometimes called concatenative attention (or
additive attention).

606 | Chapter 16: Natural Language Processing with RNNs and Attention

19 Minh-Thang Luong et al., “Effective Approaches to Attention-Based Neural Machine Translation”, Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing (2015): 1412–1421.

If the input sentence is n words long, and assuming the output sen‐
tence is about as long, then this model will need to compute about
n2 weights. Fortunately, this quadratic computational complexity is
still tractable because even long sentences don’t have thousands of
words.

Another common attention mechanism, known as Luong attention or multiplicative
attention, was proposed shortly after, in 2015,19 by Minh-Thang Luong et al. Because
the goal of the alignment model is to measure the similarity between one of the
encoder’s outputs and the decoder’s previous hidden state, the authors proposed to
simply compute the dot product (see Chapter 4) of these two vectors, as this is often a
fairly good similarity measure, and modern hardware can compute it very efficiently.
For this to be possible, both vectors must have the same dimensionality. The dot
product gives a score, and all the scores (at a given decoder time step) go through a
softmax layer to give the final weights, just like in Bahdanau attention. Another sim‐
plification Luong et al. proposed was to use the decoder’s hidden state at the current
time step rather than at the previous time step (i.e., h(t) rather than h(t–1)), then to use
the output of the attention mechanism (noted h t) directly to compute the decoder’s
predictions, rather than using it to compute the decoder’s current hidden state. The
researchers also proposed a variant of the dot product mechanism where the encoder
outputs first go through a fully connected layer (without a bias term) before the
dot products are computed. This is called the “general” dot product approach. The
researchers compared both dot product approaches with the concatenative attention
mechanism (adding a rescaling parameter vector v), and they observed that the
dot product variants performed better than concatenative attention. For this reason,
concatenative attention is much less used now. The equations for these three attention
mechanisms are summarized in Equation 16-1.

Equation 16-1. Attention mechanisms

h t = ∑
i
α t, i y i

 with α t, i =
exp e t, i

∑
i′

exp e t, i′

 and e t, i =
h t

⊺y i dot

h t
⊺Wy i general

v⊺tanh W h t ; y i concat

Attention Mechanisms | 607

https://homl.info/luongattention

Keras provides a tf.keras.layers.Attention layer for Luong attention, and an
AdditiveAttention layer for Bahdanau attention. Let’s add Luong attention to our
encoder–decoder model. Since we will need to pass all the encoder’s outputs to the
Attention layer, we first need to set return_sequences=True when creating the
encoder:

encoder = tf.keras.layers.Bidirectional(
 tf.keras.layers.LSTM(256, return_sequences=True, return_state=True))

Next, we need to create the attention layer and pass it the decoder’s states and the
encoder’s outputs. However, to access the decoder’s states at each step we would need
to write a custom memory cell. For simplicity, let’s use the decoder’s outputs instead
of its states: in practice this works well too, and it’s much easier to code. Then we
just pass the attention layer’s outputs directly to the output layer, as suggested in the
Luong attention paper:

attention_layer = tf.keras.layers.Attention()
attention_outputs = attention_layer([decoder_outputs, encoder_outputs])
output_layer = tf.keras.layers.Dense(vocab_size, activation="softmax")
Y_proba = output_layer(attention_outputs)

And that’s it! If you train this model, you will find that it now handles much longer
sentences. For example:

>>> translate("I like soccer and also going to the beach")
'me gusta el fútbol y también ir a la playa'

In short, the attention layer provides a way to focus the attention of the model on part
of the inputs. But there’s another way to think of this layer: it acts as a differentiable
memory retrieval mechanism.

For example, let’s suppose the encoder analyzed the input sentence “I like soccer”,
and it managed to understand that the word “I” is the subject and the word “like” is
the verb, so it encoded this information in its outputs for these words. Now suppose
the decoder has already translated the subject, and it thinks that it should translate
the verb next. For this, it needs to fetch the verb from the input sentence. This
is analogous to a dictionary lookup: it’s as if the encoder had created a dictionary
{"subject”: “They”, “verb”: “played”, …} and the decoder wanted to look up the value
that corresponds to the key “verb”.

However, the model does not have discrete tokens to represent the keys (like “subject”
or “verb”); instead, it has vectorized representations of these concepts that it learned
during training, so the query it will use for the lookup will not perfectly match any
key in the dictionary. The solution is to compute a similarity measure between the
query and each key in the dictionary, and then use the softmax function to convert
these similarity scores to weights that add up to 1. As we saw earlier, that’s exactly
what the attention layer does. If the key that represents the verb is by far the most
similar to the query, then that key’s weight will be close to 1.

608 | Chapter 16: Natural Language Processing with RNNs and Attention

20 Ashish Vaswani et al., “Attention Is All You Need”, Proceedings of the 31st International Conference on Neural
Information Processing Systems (2017): 6000–6010.

21 Since the transformer uses time-distributed dense layers, you could argue that it uses 1D convolutional layers
with a kernel size of 1.

Next, the attention layer computes a weighted sum of the corresponding values: if the
weight of the “verb” key is close to 1, then the weighted sum will be very close to the
representation of the word “played”.

This is why the Keras Attention and AdditiveAttention layers both expect a list as
input, containing two or three items: the queries, the keys, and optionally the values. If
you do not pass any values, then they are automatically equal to the keys. So, looking
at the previous code example again, the decoder outputs are the queries, and the
encoder outputs are both the keys and the values. For each decoder output (i.e., each
query), the attention layer returns a weighted sum of the encoder outputs (i.e., the
keys/values) that are most similar to the decoder output.

The bottom line is that an attention mechanism is a trainable memory retrieval
system. It is so powerful that you can actually build state-of-the-art models using only
attention mechanisms. Enter the transformer architecture.

Attention Is All You Need: The Original Transformer Architecture
In a groundbreaking 2017 paper,20 a team of Google researchers suggested that
“Attention Is All You Need”. They created an architecture called the transformer,
which significantly improved the state-of-the-art in NMT without using any recur‐
rent or convolutional layers,21 just attention mechanisms (plus embedding layers,
dense layers, normalization layers, and a few other bits and pieces). Because the
model is not recurrent, it doesn’t suffer as much from the vanishing or exploding
gradients problems as RNNs, it can be trained in fewer steps, it’s easier to parallelize
across multiple GPUs, and it can better capture long-range patterns than RNNs. The
original 2017 transformer architecture is represented in Figure 16-8.

In short, the left part of Figure 16-8 is the encoder, and the right part is the
decoder. Each embedding layer outputs a 3D tensor of shape [batch size, sequence
length, embedding size]. After that, the tensors are gradually transformed as they flow
through the transformer, but their shape remains the same.

Attention Mechanisms | 609

https://homl.info/transformer

22 This is figure 1 from the “Attention Is All You Need” paper, reproduced with the kind permission of the
authors.

Figure 16-8. #e original 2017 transformer architecture22

If you use the transformer for NMT, then during training you must feed the English
sentences to the encoder and the corresponding Spanish translations to the decoder,
with an extra SOS token inserted at the start of each sentence. At inference time, you
must call the transformer multiple times, producing the translations one word at a
time and feeding the partial translations to the decoder at each round, just like we did
earlier in the translate() function.

610 | Chapter 16: Natural Language Processing with RNNs and Attention

The encoder’s role is to gradually transform the inputs—word representations of the
English sentence—until each word’s representation perfectly captures the meaning of
the word, in the context of the sentence. For example, if you feed the encoder with
the sentence “I like soccer”, then the word “like” will start off with a rather vague
representation, since this word could mean different things in different contexts:
think of “I like soccer” versus “It’s like that”. But after going through the encoder,
the word’s representation should capture the correct meaning of “like” in the given
sentence (i.e., to be fond of), as well as any other information that may be required
for translation (e.g., it’s a verb).

The decoder’s role is to gradually transform each word representation in the trans‐
lated sentence into a word representation of the next word in the translation. For
example, if the sentence to translate is “I like soccer”, and the decoder’s input sentence
is “<SOS> me gusta el fútbol”, then after going through the decoder, the word
representation of the word “el” will end up transformed into a representation of the
word “fútbol”. Similarly, the representation of the word “fútbol” will be transformed
into a representation of the EOS token.

After going through the decoder, each word representation goes through a final
Dense layer with a softmax activation function, which will hopefully output a high
probability for the correct next word and a low probability for all other words. The
predicted sentence should be “me gusta el fútbol <EOS>”.

That was the big picture; now let’s walk through Figure 16-8 in more detail:

• First, notice that both the encoder and the decoder contain modules that are•
stacked N times. In the paper, N = 6. The final outputs of the whole encoder stack
are fed to the decoder at each of these N levels.

• Zooming in, you can see that you are already familiar with most components:•
there are two embedding layers; several skip connections, each of them followed
by a layer normalization layer; several feedforward modules that are composed
of two dense layers each (the first one using the ReLU activation function, the
second with no activation function); and finally the output layer is a dense layer
using the softmax activation function. You can also sprinkle a bit of dropout
after the attention layers and the feedforward modules, if needed. Since all of
these layers are time-distributed, each word is treated independently from all the
others. But how can we translate a sentence by looking at the words completely
separately? Well, we can’t, so that’s where the new components come in:
— The encoder’s multi-head attention layer updates each word representation by—

attending to (i.e., paying attention to) all other words in the same sentence.
That’s where the vague representation of the word “like” becomes a richer
and more accurate representation, capturing its precise meaning in the given
sentence. We will discuss exactly how this works shortly.

Attention Mechanisms | 611

— The decoder’s masked multi-head attention layer does the same thing, but—
when it processes a word, it doesn’t attend to words located after it: it’s a causal
layer. For example, when it processes the word “gusta”, it only attends to the
words “<SOS> me gusta”, and it ignores the words “el fútbol” (or else that
would be cheating).

— The decoder’s upper multi-head attention layer is where the decoder pays—
attention to the words in the English sentence. This is called cross-attention,
not self-attention in this case. For example, the decoder will probably pay close
attention to the word “soccer” when it processes the word “el” and transforms
its representation into a representation of the word “fútbol”.

— The positional encodings are dense vectors (much like word embeddings)—
that represent the position of each word in the sentence. The nth positional
encoding is added to the word embedding of the nth word in each sentence.
This is needed because all layers in the transformer architecture ignore word
positions: without positional encodings, you could shuffle the input sequen‐
ces, and it would just shuffle the output sequences in the same way. Obviously,
the order of words matters, which is why we need to give positional informa‐
tion to the transformer somehow: adding positional encodings to the word
representations is a good way to achieve this.

The first two arrows going into each multi-head attention layer
in Figure 16-8 represent the keys and values, and the third arrow
represents the queries. In the self-attention layers, all three are
equal to the word representations output by the previous layer,
while in the decoder’s upper attention layer, the keys and values are
equal to the encoder’s final word representations, and the queries
are equal to the word representations output by the previous layer.

Let’s go through the novel components of the transformer architecture in more detail,
starting with the positional encodings.

Positional encodings
A positional encoding is a dense vector that encodes the position of a word within a
sentence: the ith positional encoding is added to the word embedding of the ith word
in the sentence. The easiest way to implement this is to use an Embedding layer and
make it encode all the positions from 0 to the maximum sequence length in the batch,
then add the result to the word embeddings. The rules of broadcasting will ensure
that the positional encodings get applied to every input sequence. For example, here
is how to add positional encodings to the encoder and decoder inputs:

612 | Chapter 16: Natural Language Processing with RNNs and Attention

23 It’s possible to use ragged tensors instead, if you are using the latest version of TensorFlow.

max_length = 50 # max length in the whole training set
embed_size = 128
pos_embed_layer = tf.keras.layers.Embedding(max_length, embed_size)
batch_max_len_enc = tf.shape(encoder_embeddings)[1]
encoder_in = encoder_embeddings + pos_embed_layer(tf.range(batch_max_len_enc))
batch_max_len_dec = tf.shape(decoder_embeddings)[1]
decoder_in = decoder_embeddings + pos_embed_layer(tf.range(batch_max_len_dec))

Note that this implementation assumes that the embeddings are represented as reg‐
ular tensors, not ragged tensors.23 The encoder and the decoder share the same
Embedding layer for the positional encodings, since they have the same embedding
size (this is often the case).

Instead of using trainable positional encodings, the authors of the transformer paper
chose to use fixed positional encodings, based on the sine and cosine functions at
different frequencies. The positional encoding matrix P is defined in Equation 16-2
and represented at the top of Figure 16-9 (transposed), where Pp,i is the ith component
of the encoding for the word located at the pth position in the sentence.

Equation 16-2. Sine/cosine positional encodings

Pp, i =
sin p/10000i/d if i is even

cos p/10000 i − 1 /d if i is odd

Figure 16-9. Sine/cosine positional encoding matrix (transposed, top) with a focus on
two values of i (bottom)

Attention Mechanisms | 613

This solution can give the same performance as trainable positional encodings, and it
can extend to arbitrarily long sentences without adding any parameters to the model
(however, when there is a large amount of pretraining data, trainable positional
encodings are usually favored). After these positional encodings are added to the
word embeddings, the rest of the model has access to the absolute position of each
word in the sentence because there is a unique positional encoding for each position
(e.g., the positional encoding for the word located at the 22nd position in a sentence
is represented by the vertical dashed line at the top left of Figure 16-9, and you can
see that it is unique to that position). Moreover, the choice of oscillating functions
(sine and cosine) makes it possible for the model to learn relative positions as well.
For example, words located 38 words apart (e.g., at positions p = 22 and p = 60)
always have the same positional encoding values in the encoding dimensions i = 100
and i = 101, as you can see in Figure 16-9. This explains why we need both the sine
and the cosine for each frequency: if we only used the sine (the blue wave at i = 100),
the model would not be able to distinguish positions p = 22 and p = 35 (marked by a
cross).

There is no PositionalEncoding layer in TensorFlow, but it is not too hard to
create one. For efficiency reasons, we precompute the positional encoding matrix
in the constructor. The call() method just truncates this encoding matrix to the
max length of the input sequences, and it adds them to the inputs. We also set
supports_masking=True to propagate the input’s automatic mask to the next layer:

class PositionalEncoding(tf.keras.layers.Layer):
 def __init__(self, max_length, embed_size, dtype=tf.float32, **kwargs):
 super().__init__(dtype=dtype, **kwargs)
 assert embed_size % 2 == 0, "embed_size must be even"
 p, i = np.meshgrid(np.arange(max_length),
 2 * np.arange(embed_size // 2))
 pos_emb = np.empty((1, max_length, embed_size))
 pos_emb[0, :, ::2] = np.sin(p / 10_000 ** (i / embed_size)).T
 pos_emb[0, :, 1::2] = np.cos(p / 10_000 ** (i / embed_size)).T
 self.pos_encodings = tf.constant(pos_emb.astype(self.dtype))
 self.supports_masking = True

 def call(self, inputs):
 batch_max_length = tf.shape(inputs)[1]
 return inputs + self.pos_encodings[:, :batch_max_length]

Let’s use this layer to add the positional encoding to the encoder’s inputs:
pos_embed_layer = PositionalEncoding(max_length, embed_size)
encoder_in = pos_embed_layer(encoder_embeddings)
decoder_in = pos_embed_layer(decoder_embeddings)

Now let’s look deeper into the heart of the transformer model, at the multi-head
attention layer.

614 | Chapter 16: Natural Language Processing with RNNs and Attention

Multi-head attention
To understand how a multi-head attention layer works, we must first understand
the scaled dot-product attention layer, which it is based on. Its equation is shown in
Equation 16-3, in a vectorized form. It’s the same as Luong attention, except for a
scaling factor.

Equation 16-3. Scaled dot-product attention

Attention Q,K,V = softmax QK⊺

dkeys
V

In this equation:

• Q is a matrix containing one row per query. Its shape is [nqueries, dkeys], where•
nqueries is the number of queries and dkeys is the number of dimensions of each
query and each key.

• K is a matrix containing one row per key. Its shape is [nkeys, dkeys], where nkeys is•
the number of keys and values.

• V is a matrix containing one row per value. Its shape is [nkeys, dvalues], where dvalues•
is the number of dimensions of each value.

• The shape of Q K⊺ is [nqueries, nkeys]: it contains one similarity score for each•
query/key pair. To prevent this matrix from being huge, the input sequences must
not be too long (we will discuss how to overcome this limitation later in this
chapter). The output of the softmax function has the same shape, but all rows
sum up to 1. The final output has a shape of [nqueries, dvalues]: there is one row per
query, where each row represents the query result (a weighted sum of the values).

• The scaling factor 1 / (dkeys) scales down the similarity scores to avoid saturat‐•
ing the softmax function, which would lead to tiny gradients.

• It is possible to mask out some key/value pairs by adding a very large negative•
value to the corresponding similarity scores, just before computing the softmax.
This is useful in the masked multi-head attention layer.

If you set use_scale=True when creating a tf.keras.layers.Attention layer, then
it will create an additional parameter that lets the layer learn how to properly down‐
scale the similarity scores. The scaled dot-product attention used in the transformer
model is almost the same, except it always scales the similarity scores by the same
factor, 1 / (dkeys).

Note that the Attention layer’s inputs are just like Q, K, and V, except with an extra
batch dimension (the first dimension). Internally, the layer computes all the attention
scores for all sentences in the batch with just one call to tf.matmul(queries, keys):

Attention Mechanisms | 615

24 This is the righthand part of figure 2 from “Attention Is All You Need”, reproduced with the kind authoriza‐
tion of the authors.

this makes it extremely efficient. Indeed, in TensorFlow, if A and B are tensors with
more than two dimensions—say, of shape [2, 3, 4, 5] and [2, 3, 5, 6], respectively—
then tf.matmul(A, B) will treat these tensors as 2 × 3 arrays where each cell contains
a matrix, and it will multiply the corresponding matrices: the matrix at the ith row and
jth column in A will be multiplied by the matrix at the ith row and jth column in B. Since
the product of a 4 × 5 matrix with a 5 × 6 matrix is a 4 × 6 matrix, tf.matmul(A, B)
will return an array of shape [2, 3, 4, 6].

Now we’re ready to look at the multi-head attention layer. Its architecture is shown in
Figure 16-10.

Figure 16-10. Multi-head attention layer architecture24

As you can see, it is just a bunch of scaled dot-product attention layers, each preceded
by a linear transformation of the values, keys, and queries (i.e., a time-distributed
dense layer with no activation function). All the outputs are simply concatenated, and
they go through a final linear transformation (again, time-distributed).

But why? What is the intuition behind this architecture? Well, consider once again
the word “like” in the sentence “I like soccer”. The encoder was smart enough to

616 | Chapter 16: Natural Language Processing with RNNs and Attention

25 This will most likely change by the time you read this; check out Keras issue #16248 for more details. When
this happens, there will be no need to set the attention_mask argument, and therefore no need to create
encoder_pad_mask.

encode the fact that it is a verb. But the word representation also includes its position
in the text, thanks to the positional encodings, and it probably includes many other
features that are useful for its translation, such as the fact that it is in the present
tense. In short, the word representation encodes many different characteristics of the
word. If we just used a single scaled dot-product attention layer, we would only be
able to query all of these characteristics in one shot.

This is why the multi-head attention layer applies multiple different linear transfor‐
mations of the values, keys, and queries: this allows the model to apply many different
projections of the word representation into different subspaces, each focusing on a
subset of the word’s characteristics. Perhaps one of the linear layers will project the
word representation into a subspace where all that remains is the information that the
word is a verb, another linear layer will extract just the fact that it is present tense, and
so on. Then the scaled dot-product attention layers implement the lookup phase, and
finally we concatenate all the results and project them back to the original space.

Keras includes a tf.keras.layers.MultiHeadAttention layer, so we now have
everything we need to build the rest of the transformer. Let’s start with the full
encoder, which is exactly like in Figure 16-8, except we use a stack of two blocks (N =
2) instead of six, since we don’t have a huge training set, and we add a bit of dropout
as well:

N = 2 # instead of 6
num_heads = 8
dropout_rate = 0.1
n_units = 128 # for the first dense layer in each feedforward block
encoder_pad_mask = tf.math.not_equal(encoder_input_ids, 0)[:, tf.newaxis]
Z = encoder_in
for _ in range(N):
 skip = Z
 attn_layer = tf.keras.layers.MultiHeadAttention(
 num_heads=num_heads, key_dim=embed_size, dropout=dropout_rate)
 Z = attn_layer(Z, value=Z, attention_mask=encoder_pad_mask)
 Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))
 skip = Z
 Z = tf.keras.layers.Dense(n_units, activation="relu")(Z)
 Z = tf.keras.layers.Dense(embed_size)(Z)
 Z = tf.keras.layers.Dropout(dropout_rate)(Z)
 Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))

This code should be mostly straightforward, except for one thing: masking. As of the
time of writing, the MultiHeadAttention layer does not support automatic masking,25

so we must handle it manually. How can we do that?

Attention Mechanisms | 617

https://github.com/keras-team/keras/issues/16248

26 Currently Z + skip does not support automatic masking, which is why we had to write tf.keras.
layers.Add()([Z, skip]) instead. Again, this may change by the time you read this.

The MultiHeadAttention layer accepts an attention_mask argument, which is a
Boolean tensor of shape [batch size, max query length, max value length]: for every
token in every query sequence, this mask indicates which tokens in the correspond‐
ing value sequence should be attended to. We want to tell the MultiHeadAttention
layer to ignore all the padding tokens in the values. So, we first compute the padding
mask using tf.math.not_equal(encoder_input_ids, 0). This returns a Boolean
tensor of shape [batch size, max sequence length]. We then insert a second axis
using [:, tf.newaxis], to get a mask of shape [batch size, 1, max sequence length].
This allows us to use this mask as the attention_mask when calling the MultiHead
Attention layer: thanks to broadcasting, the same mask will be used for all tokens in
each query. This way, the padding tokens in the values will be ignored correctly.

However, the layer will compute outputs for every single query token, including
the padding tokens. We need to mask the outputs that correspond to these pad‐
ding tokens. Recall that we used mask_zero in the Embedding layers, and we set
supports_masking to True in the PositionalEncoding layer, so the automatic mask
was propagated all the way to the MultiHeadAttention layer’s inputs (encoder_in).
We can use this to our advantage in the skip connection: indeed, the Add layer
supports automatic masking, so when we add Z and skip (which is initially equal
to encoder_in), the outputs get automatically masked correctly.26 Yikes! Masking
required much more explanation than code.

Now on to the decoder! Once again, masking is going to be the only tricky part, so
let’s start with that. The first multi-head attention layer is a self-attention layer, like
in the encoder, but it is a masked multi-head attention layer, meaning it is causal: it
should ignore all tokens in the future. So, we need two masks: a padding mask and a
causal mask. Let’s create them:

decoder_pad_mask = tf.math.not_equal(decoder_input_ids, 0)[:, tf.newaxis]
causal_mask = tf.linalg.band_part(# creates a lower triangular matrix
 tf.ones((batch_max_len_dec, batch_max_len_dec), tf.bool), -1, 0)

The padding mask is exactly like the one we created for the encoder, except it’s based
on the decoder’s inputs rather than the encoder’s. The causal mask is created using
the tf.linalg.band_part() function, which takes a tensor and returns a copy with
all the values outside a diagonal band set to zero. With these arguments, we get a
square matrix of size batch_max_len_dec (the max length of the input sequences in
the batch), with 1s in the lower-left triangle and 0s in the upper right. If we use this
mask as the attention mask, we will get exactly what we want: the first query token
will only attend to the first value token, the second will only attend to the first two,

618 | Chapter 16: Natural Language Processing with RNNs and Attention

the third will only attend to the first three, and so on. In other words, query tokens
cannot attend to any value token in the future.

Let’s now build the decoder:
encoder_outputs = Z # let's save the encoder's final outputs
Z = decoder_in # the decoder starts with its own inputs
for _ in range(N):
 skip = Z
 attn_layer = tf.keras.layers.MultiHeadAttention(
 num_heads=num_heads, key_dim=embed_size, dropout=dropout_rate)
 Z = attn_layer(Z, value=Z, attention_mask=causal_mask & decoder_pad_mask)
 Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))
 skip = Z
 attn_layer = tf.keras.layers.MultiHeadAttention(
 num_heads=num_heads, key_dim=embed_size, dropout=dropout_rate)
 Z = attn_layer(Z, value=encoder_outputs, attention_mask=encoder_pad_mask)
 Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))
 skip = Z
 Z = tf.keras.layers.Dense(n_units, activation="relu")(Z)
 Z = tf.keras.layers.Dense(embed_size)(Z)
 Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))

For the first attention layer, we use causal_mask & decoder_pad_mask to mask both
the padding tokens and future tokens. The causal mask only has two dimensions: it’s
missing the batch dimension, but that’s okay since broadcasting ensures that it gets
copied across all the instances in the batch.

For the second attention layer, there’s nothing special. The only thing to note is that
we are using encoder_pad_mask, not decoder_pad_mask, because this attention layer
uses the encoder’s final outputs as its values.

We’re almost done. We just need to add the final output layer, create the model,
compile it, and train it:

Y_proba = tf.keras.layers.Dense(vocab_size, activation="softmax")(Z)
model = tf.keras.Model(inputs=[encoder_inputs, decoder_inputs],
 outputs=[Y_proba])
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
 metrics=["accuracy"])
model.fit((X_train, X_train_dec), Y_train, epochs=10,
 validation_data=((X_valid, X_valid_dec), Y_valid))

Congratulations! You’ve built a full transformer from scratch, and trained it for
automatic translation. This is getting quite advanced!

The Keras team has created a new Keras NLP project, including an
API to build a transformer more easily. You may also be interested
in the new Keras CV project for computer vision.

Attention Mechanisms | 619

https://github.com/keras-team/keras-nlp
https://github.com/keras-team/keras-cv

27 Alec Radford et al., “Improving Language Understanding by Generative Pre-Training” (2018).
28 For example, the sentence “Jane had a lot of fun at her friend’s birthday party” entails “Jane enjoyed the party”,

but it is contradicted by “Everyone hated the party” and it is unrelated to “The Earth is flat”.
29 Jacob Devlin et al., “BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding”,

Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies 1 (2019).

But the field didn’t stop there. Let’s now explore some of the recent advances.

An Avalanche of Transformer Models
The year 2018 has been called the “ImageNet moment for NLP”. Since then, progress
has been astounding, with larger and larger transformer-based architectures trained
on immense datasets.

First, the GPT paper27 by Alec Radford and other OpenAI researchers once again
demonstrated the effectiveness of unsupervised pretraining, like the ELMo and
ULMFiT papers before it, but this time using a transformer-like architecture. The
authors pretrained a large but fairly simple architecture composed of a stack of
12 transformer modules using only masked multi-head attention layers, like in the
original transformer’s decoder. They trained it on a very large dataset, using the
same autoregressive technique we used for our Shakespearean char-RNN: just predict
the next token. This is a form of self-supervised learning. Then they fine-tuned it
on various language tasks, using only minor adaptations for each task. The tasks
were quite diverse: they included text classification, entailment (whether sentence A
imposes, involves, or implies sentence B as a necessary consequence),28 similarity
(e.g., “Nice weather today” is very similar to “It is sunny”), and question answering
(given a few paragraphs of text giving some context, the model must answer some
multiple-choice questions).

Then Google’s BERT paper29 came out: it also demonstrated the effectiveness of
self-supervised pretraining on a large corpus, using a similar architecture to GPT
but with nonmasked multi-head attention layers only, like in the original transform‐
er’s encoder. This means that the model is naturally bidirectional; hence the B in
BERT (Bidirectional Encoder Representations from Transformers). Most importantly,
the authors proposed two pretraining tasks that explain most of the model’s strength:

Masked language model (MLM)
Each word in a sentence has a 15% probability of being masked, and the model
is trained to predict the masked words. For example, if the original sentence is
“She had fun at the birthday party”, then the model may be given the sentence
“She <mask> fun at the <mask> party” and it must predict the words “had” and
“birthday” (the other outputs will be ignored). To be more precise, each selected
word has an 80% chance of being masked, a 10% chance of being replaced by a

620 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/gpt
https://homl.info/bert

30 This is figure 1 from the paper, reproduced with the kind authorization of the authors.

random word (to reduce the discrepancy between pretraining and fine-tuning,
since the model will not see <mask> tokens during fine-tuning), and a 10%
chance of being left alone (to bias the model toward the correct answer).

Next sentence prediction (NSP)
The model is trained to predict whether two sentences are consecutive or not.
For example, it should predict that “The dog sleeps” and “It snores loudly” are
consecutive sentences, while “The dog sleeps” and “The Earth orbits the Sun” are
not consecutive. Later research showed that NSP was not as important as was
initially thought, so it was dropped in most later architectures.

The model is trained on these two tasks simultaneously (see Figure 16-11). For the
NSP task, the authors inserted a class token (<CLS>) at the start of every input, and
the corresponding output token represents the model’s prediction: sentence B follows
sentence A, or it does not. The two input sentences are concatenated, separated only
by a special separation token (<SEP>), and they are fed as input to the model. To help
the model know which sentence each input token belongs to, a segment embedding
is added on top of each token’s positional embeddings: there are just two possible
segment embeddings, one for sentence A and one for sentence B. For the MLM task,
some input words are masked (as we just saw) and the model tries to predict what
those words were. The loss is only computed on the NSP prediction and the masked
tokens, not on the unmasked ones.

Figure 16-11. BERT training and $ne-tuning process30

After this unsupervised pretraining phase on a very large corpus of text, the model
is then fine-tuned on many different tasks, changing very little for each task. For
example, for text classification such as sentiment analysis, all output tokens are

An Avalanche of Transformer Models | 621

31 Alec Radford et al., “Language Models Are Unsupervised Multitask Learners” (2019).
32 William Fedus et al., “Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient

Sparsity” (2021).
33 Victor Sanh et al., “DistilBERT, A Distilled Version of Bert: Smaller, Faster, Cheaper and Lighter”, arXiv

preprint arXiv:1910.01108 (2019).

ignored except for the first one, corresponding to the class token, and a new output
layer replaces the previous one, which was just a binary classification layer for NSP.

In February 2019, just a few months after BERT was published, Alec Radford, Jeffrey
Wu, and other OpenAI researchers published the GPT-2 paper,31 which proposed a
very similar architecture to GPT, but larger still (with over 1.5 billion parameters!).
The researchers showed that the new and improved GPT model could perform
zero-shot learning (ZSL), meaning it could achieve good performance on many tasks
without any fine-tuning. This was just the start of a race toward larger and larger
models: Google’s Switch Transformers32 (introduced in January 2021) used 1 trillion
parameters, and soon much larger models came out, such as the Wu Dao 2.0 model
by the Beijing Academy of Artificial Intelligence (BAII), announced in June 2021.

An unfortunate consequence of this trend toward gigantic models is that only well-
funded organizations can afford to train such models: it can easily cost hundreds
of thousands of dollars or more. And the energy required to train a single model
corresponds to an American household’s electricity consumption for several years;
it’s not eco-friendly at all. Many of these models are just too big to even be used on
regular hardware: they wouldn’t fit in RAM, and they would be horribly slow. Lastly,
some are so costly that they are not released publicly.

Luckily, ingenious researchers are finding new ways to downsize transformers and
make them more data-efficient. For example, the DistilBERT model,33 introduced in
October 2019 by Victor Sanh et al. from Hugging Face, is a small and fast transformer
model based on BERT. It is available on Hugging Face’s excellent model hub, along
with thousands of others—you’ll see an example later in this chapter.

DistilBERT was trained using distillation (hence the name): this means transferring
knowledge from a teacher model to a student one, which is usually much smaller
than the teacher model. This is typically done by using the teacher’s predicted proba‐
bilities for each training instance as targets for the student. Surprisingly, distillation
often works better than training the student from scratch on the same dataset as the
teacher! Indeed, the student benefits from the teacher’s more nuanced labels.

Many more transformer architectures came out after BERT, almost on a monthly
basis, often improving on the state of the art across all NLP tasks: XLNet (June 2019),
RoBERTa (July 2019), StructBERT (August 2019), ALBERT (September 2019), T5
(October 2019), ELECTRA (March 2020), GPT3 (May 2020), DeBERTa (June 2020),

622 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/gpt2
https://homl.info/switch
https://homl.info/distilbert

34 Mariya Yao summarized many of these models in this post: https://homl.info/yaopost.
35 Colin Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”, arXiv

preprint arXiv:1910.10683 (2019).
36 Aakanksha Chowdhery et al., “PaLM: Scaling Language Modeling with Pathways”, arXiv preprint

arXiv:2204.02311 (2022).
37 Jason Wei et al., “Chain of Thought Prompting Elicits Reasoning in Large Language Models”, arXiv preprint

arXiv:2201.11903 (2022).

Switch Transformers (January 2021), Wu Dao 2.0 (June 2021), Gopher (December
2021), GPT-NeoX-20B (February 2022), Chinchilla (March 2022), OPT (May 2022),
and the list goes on and on. Each of these models brought new ideas and techniques,34

but I particularly like the T5 paper35 by Google researchers: it frames all NLP tasks
as text-to-text, using an encoder–decoder transformer. For example, to translate “I
like soccer” to Spanish, you can just call the model with the input sentence “translate
English to Spanish: I like soccer” and it outputs “me gusta el fútbol”. To summarize
a paragraph, you just enter “summarize:” followed by the paragraph, and it outputs
the summary. For classification, you only need to change the prefix to “classify:” and
the model outputs the class name, as text. This simplifies using the model, and it also
makes it possible to pretrain it on even more tasks.

Last but not least, in April 2022, Google researchers used a new large-scale training
platform named Pathways (which we will briefly discuss in Chapter 19) to train a
humongous language model named the Pathways Language Model (PaLM),36 with a
whopping 540 billion parameters, using over 6,000 TPUs. Other than its incredible
size, this model is a standard transformer, using decoders only (i.e., with masked
multi-head attention layers), with just a few tweaks (see the paper for details).
This model achieved incredible performance on all sorts of NLP tasks, particularly
in natural language understanding (NLU). It’s capable of impressive feats, such as
explaining jokes, giving detailed step-by-step answers to questions, and even coding.
This is in part due to the model’s size, but also thanks to a technique called Chain of
thought prompting,37 which was introduced a couple months earlier by another team
of Google researchers.

In question answering tasks, regular prompting typically includes a few examples of
questions and answers, such as: “Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? A:
11.” The prompt then continues with the actual question, such as “Q: John takes care
of 10 dogs. Each dog takes .5 hours a day to walk and take care of their business. How
many hours a week does he spend taking care of dogs? A:”, and the model’s job is to
append the answer: in this case, “35.”

An Avalanche of Transformer Models | 623

https://homl.info/yaopost
https://homl.info/t5
https://homl.info/palm
https://homl.info/ctp
https://homl.info/ctp

38 Kelvin Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, Proceedings
of the 32nd International Conference on Machine Learning (2015): 2048–2057.

But with chain of thought prompting, the example answers include all the reasoning
steps that lead to the conclusion. For example, instead of “A: 11”, the prompt contains
“A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 =
11.” This encourages the model to give a detailed answer to the actual question, such
as “John takes care of 10 dogs. Each dog takes .5 hours a day to walk and take care
of their business. So that is 10 × .5 = 5 hours a day. 5 hours a day × 7 days a week =
35 hours a week. The answer is 35 hours a week.” This is an actual example from the
paper!

Not only does the model give the right answer much more frequently than using
regular prompting—we’re encouraging the model to think things through—but it
also provides all the reasoning steps, which can be useful to better understand the
rationale behind a model’s answer.

Transformers have taken over NLP, but they didn’t stop there: they soon expanded to
computer vision as well.

Vision Transformers
One of the first applications of attention mechanisms beyond NMT was in generating
image captions using visual attention:38 a convolutional neural network first processes
the image and outputs some feature maps, then a decoder RNN equipped with an
attention mechanism generates the caption, one word at a time.

At each decoder time step (i.e., each word), the decoder uses the attention model to
focus on just the right part of the image. For example, in Figure 16-12, the model
generated the caption “A woman is throwing a frisbee in a park”, and you can see what
part of the input image the decoder focused its attention on when it was about to
output the word “frisbee”: clearly, most of its attention was focused on the frisbee.

624 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/visualattention

39 This is a part of figure 3 from the paper. It is reproduced with the kind authorization of the authors.
40 Marco Tulio Ribeiro et al., “‘Why Should I Trust You?’: Explaining the Predictions of Any Classifier”, Proceed‐

ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016):
1135–1144.

Figure 16-12. Visual attention: an input image (le") and the model’s focus before
producing the word “frisbee” (right)39

Explainability
One extra benefit of attention mechanisms is that they make it easier to understand
what led the model to produce its output. This is called explainability. It can be
especially useful when the model makes a mistake: for example, if an image of a dog
walking in the snow is labeled as “a wolf walking in the snow”, then you can go back
and check what the model focused on when it output the word “wolf ”. You may find
that it was paying attention not only to the dog, but also to the snow, hinting at a
possible explanation: perhaps the way the model learned to distinguish dogs from
wolves is by checking whether or not there’s a lot of snow around. You can then
fix this by training the model with more images of wolves without snow, and dogs
with snow. This example comes from a great 2016 paper40 by Marco Tulio Ribeiro et
al. that uses a different approach to explainability: learning an interpretable model
locally around a classifier’s prediction.

In some applications, explainability is not just a tool to debug a model; it can be a
legal requirement—think of a system deciding whether or not it should grant you a
loan.

Vision Transformers | 625

https://homl.info/explainclass

41 Nicolas Carion et al., “End-to-End Object Detection with Transformers”, arXiv preprint arxiv:2005.12872
(2020).

42 Alexey Dosovitskiy et al., “An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale”,
arXiv preprint arxiv:2010.11929 (2020).

When transformers came out in 2017 and people started to experiment with them
beyond NLP, they were first used alongside CNNs, without replacing them. Instead,
transformers were generally used to replace RNNs, for example, in image captioning
models. Transformers became slightly more visual in a 2020 paper41 by Facebook
researchers, which proposed a hybrid CNN–transformer architecture for object
detection. Once again, the CNN first processes the input images and outputs a set
of feature maps, then these feature maps are converted to sequences and fed to a
transformer, which outputs bounding box predictions. But again, most of the visual
work is still done by the CNN.

Then, in October 2020, a team of Google researchers released a paper42 that intro‐
duced a fully transformer-based vision model, called a vision transformer (ViT). The
idea is surprisingly simple: just chop the image into little 16 × 16 squares, and treat
the sequence of squares as if it were a sequence of word representations. To be
more precise, the squares are first flattened into 16 × 16 × 3 = 768-dimensional
vectors—the 3 is for the RGB color channels—then these vectors go through a linear
layer that transforms them but retains their dimensionality. The resulting sequence
of vectors can then be treated just like a sequence of word embeddings: this means
adding positional embeddings, and passing the result to the transformer. That’s it!
This model beat the state of the art on ImageNet image classification, but to be fair
the authors had to use over 300 million additional images for training. This makes
sense since transformers don’t have as many inductive biases as convolution neural
nets, so they need extra data just to learn things that CNNs implicitly assume.

An inductive bias is an implicit assumption made by the model,
due to its architecture. For example, linear models implicitly
assume that the data is, well, linear. CNNs implicitly assume that
patterns learned in one location will likely be useful in other loca‐
tions as well. RNNs implicitly assume that the inputs are ordered,
and that recent tokens are more important than older ones. The
more inductive biases a model has, assuming they are correct,
the less training data the model will require. But if the implicit
assumptions are wrong, then the model may perform poorly even
if it is trained on a large dataset.

626 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/detr
https://homl.info/vit

43 Hugo Touvron et al., “Training Data-Efficient Image Transformers & Distillation Through Attention”, arXiv
preprint arxiv:2012.12877 (2020).

44 Andrew Jaegle et al., “Perceiver: General Perception with Iterative Attention”, arXiv preprint arxiv:2103.03206
(2021).

45 Mathilde Caron et al., “Emerging Properties in Self-Supervised Vision Transformers”, arXiv preprint
arxiv:2104.14294 (2021).

Just two months later, a team of Facebook researchers released a paper43 that intro‐
duced data-e%cient image transformers (DeiTs). Their model achieved competitive
results on ImageNet without requiring any additional data for training. The model’s
architecture is virtually the same as the original ViT, but the authors used a distil‐
lation technique to transfer knowledge from state-of-the-art CNN models to their
model.

Then, in March 2021, DeepMind released an important paper44 that introduced the
Perceiver architecture. It is a multimodal transformer, meaning you can feed it text,
images, audio, or virtually any other modality. Until then, transformers had been
restricted to fairly short sequences because of the performance and RAM bottleneck
in the attention layers. This excluded modalities such as audio or video, and it forced
researchers to treat images as sequences of patches, rather than sequences of pixels.
The bottleneck is due to self-attention, where every token must attend to every other
token: if the input sequence has M tokens, then the attention layer must compute
an M × M matrix, which can be huge if M is very large. The Perceiver solves this
problem by gradually improving a fairly short latent representation of the inputs,
composed of N tokens—typically just a few hundred. (The word latent means hidden,
or internal.) The model uses cross-attention layers only, feeding them the latent
representation as the queries, and the (possibly large) inputs as the values. This only
requires computing an M × N matrix, so the computational complexity is linear with
regard to M, instead of quadratic. After going through several cross-attention layers,
if everything goes well, the latent representation ends up capturing everything that
matters in the inputs. The authors also suggested sharing the weights between con‐
secutive cross-attention layers: if you do that, then the Perceiver effectively becomes
an RNN. Indeed, the shared cross-attention layers can be seen as the same memory
cell at different time steps, and the latent representation corresponds to the cell’s
context vector. The same inputs are repeatedly fed to the memory cell at every time
step. It looks like RNNs are not dead after all!

Just a month later, Mathilde Caron et al. introduced DINO,45 an impressive vision
transformer trained entirely without labels, using self-supervision, and capable of
high-accuracy semantic segmentation. The model is duplicated during training, with
one network acting as a teacher and the other acting as a student. Gradient descent
only affects the student, while the teacher’s weights are just an exponential moving
average of the student’s weights. The student is trained to match the teacher’s predic‐

Vision Transformers | 627

https://homl.info/deit
https://homl.info/perceiver
https://homl.info/dino

46 Xiaohua Zhai et al., “Scaling Vision Transformers”, arXiv preprint arxiv:2106.04560v1 (2021).
47 Mitchell Wortsman et al., “Model Soups: Averaging Weights of Multiple Fine-tuned Models Improves Accu‐

racy Without Increasing Inference Time”, arXiv preprint arxiv:2203.05482v1 (2022).
48 Alec Radford et al., “Learning Transferable Visual Models From Natural Language Supervision”, arXiv pre‐

print arxiv:2103.00020 (2021).
49 Aditya Ramesh et al., “Zero-Shot Text-to-Image Generation”, arXiv preprint arxiv:2102.12092 (2021).
50 Aditya Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv preprint

arxiv:2204.06125 (2022).

tions: since they’re almost the same model, this is called self-distillation. At each
training step, the input images are augmented in different ways for the teacher and
the student, so they don’t see the exact same image, but their predictions must
match. This forces them to come up with high-level representations. To prevent
mode collapse, where both the student and the teacher would always output the same
thing, completely ignoring the inputs, DINO keeps track of a moving average of the
teacher’s outputs, and it tweaks the teacher’s predictions to ensure that they remain
centered on zero, on average. DINO also forces the teacher to have high confidence in
its predictions: this is called sharpening. Together, these techniques preserve diversity
in the teacher’s outputs.

In a 2021 paper,46 Google researchers showed how to scale ViTs up or down, depend‐
ing on the amount of data. They managed to create a huge 2 billion parameter model
that reached over 90.4% top-1 accuracy on ImageNet. Conversely, they also trained a
scaled-down model that reached over 84.8% top-1 accuracy on ImageNet, using only
10,000 images: that’s just 10 images per class!

And progress in visual transformers has continued steadily to this day. For example,
in March 2022, a paper47 by Mitchell Wortsman et al. demonstrated that it’s possible
to first train multiple transformers, then average their weights to create a new and
improved model. This is similar to an ensemble (see Chapter 7), except there’s just
one model in the end, which means there’s no inference time penalty.

The latest trend in transformers consists in building large multimodal models, often
capable of zero-shot or few-shot learning. For example, OpenAI’s 2021 CLIP paper48

proposed a large transformer model pretrained to match captions with images: this
task allows it to learn excellent image representations, and the model can then be
used directly for tasks such as image classification using simple text prompts such as
“a photo of a cat”. Soon after, OpenAI announced DALL·E,49 capable of generating
amazing images based on text prompts. The DALL·E 2,50 which generates even higher
quality images using a diffusion model (see Chapter 17).

In April 2022, DeepMind released the Flamingo paper,51 which introduced a family
of models pretrained on a wide variety of tasks across multiple modalities, including
text, images, and videos. A single model can be used across very different tasks,

628 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/scalingvits
https://homl.info/modelsoups
https://homl.info/clip
https://homl.info/dalle
https://homl.info/dalle2
https://homl.info/flamingo

51 Jean-Baptiste Alayrac et al., “Flamingo: a Visual Language Model for Few-Shot Learning”, arXiv preprint
arxiv:2204.14198 (2022).

52 Scott Reed et al., “A Generalist Agent”, arXiv preprint arxiv:2205.06175 (2022).

such as question answering, image captioning, and more. Soon after, in May 2022,
DeepMind introduced GATO,52 a multimodal model that can be used as a policy
for a reinforcement learning agent (RL will be introduced in Chapter 18). The same
transformer can chat with you, caption images, play Atari games, control (simulated)
robotic arms, and more, all with “only” 1.2 billion parameters. And the adventure
continues!

These astounding advances have led some researchers to claim that
human-level AI is near, that “scale is all you need”, and that some
of these models may be “slightly conscious”. Others point out that
despite the amazing progress, these models still lack the reliability
and adaptability of human intelligence, our ability to reason sym‐
bolically, to generalize based on a single example, and more.

As you can see, transformers are everywhere! And the good news is that you gener‐
ally won’t have to implement transformers yourself since many excellent pretrained
models are readily available for download via TensorFlow Hub or Hugging Face’s
model hub. You’ve already seen how to use a model from TF Hub, so let’s close this
chapter by taking a quick look at Hugging Face’s ecosystem.

Hugging Face’s Transformers Library
It’s impossible to talk about transformers today without mentioning Hugging Face,
an AI company that has built a whole ecosystem of easy-to-use open source tools for
NLP, vision, and beyond. The central component of their ecosystem is the Transform‐
ers library, which allows you to easily download a pretrained model, including its
corresponding tokenizer, and then fine-tune it on your own dataset, if needed. Plus,
the library supports TensorFlow, PyTorch, and JAX (with the Flax library).

The simplest way to use the Transformers library is to use the transformers.
pipeline() function: you just specify which task you want, such as sentiment analy‐
sis, and it downloads a default pretrained model, ready to be used—it really couldn’t
be any simpler:

Hugging Face’s Transformers Library | 629

https://homl.info/gato

from transformers import pipeline

classifier = pipeline("sentiment-analysis") # many other tasks are available
result = classifier("The actors were very convincing".)

The result is a Python list containing one dictionary per input text:
>>> result
[{'label': 'POSITIVE', 'score': 0.9998071789741516}]

In this example, the model correctly found that the sentence is positive, with around
99.98% confidence. Of course, you can also pass a batch of sentences to the model:

>>> classifier(["I am from India.", "I am from Iraq."])
[{'label': 'POSITIVE', 'score': 0.9896161556243896},
 {'label': 'NEGATIVE', 'score': 0.9811071157455444}]

Bias and Fairness
As the output suggests, this specific classifier loves Indians, but is severely biased
against Iraqis. You can try this code with your own country or city. Such an undesira‐
ble bias generally comes in large part from the training data itself: in this case, there
were plenty of negative sentences related to the wars in Iraq in the training data. This
bias was then amplified during the fine-tuning process since the model was forced to
choose between just two classes: positive or negative. If you add a neutral class when
fine-tuning, then the country bias mostly disappears. But the training data is not the
only source of bias: the model’s architecture, the type of loss or regularization used for
training, the optimizer; all of these can affect what the model ends up learning. Even
a mostly unbiased model can be used in a biased way, much like survey questions can
be biased.

Understanding bias in AI and mitigating its negative effects is still an area of active
research, but one thing is certain: you should pause and think before you rush to
deploy a model to production. Ask yourself how the model could do harm, even
indirectly. For example, if the model’s predictions are used to decide whether or not
to give someone a loan, the process should be fair. So, make sure you evaluate the
model’s performance not just on average over the whole test set, but across various
subsets as well: for example, you may find that although the model works very well
on average, its performance is abysmal for some categories of people. You may also
want to run counterfactual tests: for example, you may want to check that the model’s
predictions do not change when you simply switch someone’s gender.

If the model works well on average, it’s tempting to push it to production and
move on to something else, especially if it’s just one component of a much larger
system. But in general, if you don’t fix such issues, no one else will, and your model
may end up doing more harm than good. The solution depends on the problem: it
may require rebalancing the dataset, fine-tuning on a different dataset, switching to
another pretrained model, tweaking the model’s architecture or hyperparameters, etc.

630 | Chapter 16: Natural Language Processing with RNNs and Attention

The pipeline() function uses the default model for the given task. For example, for
text classification tasks such as sentiment analysis, at the time of writing, it defaults to
distilbert-base-uncased-finetuned-sst-2-english—a DistilBERT model with
an uncased tokenizer, trained on English Wikipedia and a corpus of English books,
and fine-tuned on the Stanford Sentiment Treebank v2 (SST 2) task. It’s also possible
to manually specify a different model. For example, you could use a DistilBERT
model fine-tuned on the Multi-Genre Natural Language Inference (MultiNLI) task,
which classifies two sentences into three classes: contradiction, neutral, or entailment.
Here is how:

>>> model_name = "huggingface/distilbert-base-uncased-finetuned-mnli"
>>> classifier_mnli = pipeline("text-classification", model=model_name)
>>> classifier_mnli("She loves me. [SEP] She loves me not.")
[{'label': 'contradiction', 'score': 0.9790192246437073}]

You can find the available models at https://huggingface.co/models,
and the list of tasks at https://huggingface.co/tasks.

The pipeline API is very simple and convenient, but sometimes you will need more
control. For such cases, the Transformers library provides many classes, including all
sorts of tokenizers, models, configurations, callbacks, and much more. For example,
let’s load the same DistilBERT model, along with its corresponding tokenizer, using
the TFAutoModelForSequenceClassification and AutoTokenizer classes:

from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)

Next, let’s tokenize a couple of pairs of sentences. In this code, we activate padding
and specify that we want TensorFlow tensors instead of Python lists:

token_ids = tokenizer(["I like soccer. [SEP] We all love soccer!",
 "Joe lived for a very long time. [SEP] Joe is old."],
 padding=True, return_tensors="tf")

Instead of passing "Sentence 1 [SEP] Sentence 2" to the
tokenizer, you can equivalently pass it a tuple: ("Sentence 1",
"Sentence 2").

Hugging Face’s Transformers Library | 631

https://huggingface.co/models
https://huggingface.co/tasks

The output is a dictionary-like instance of the BatchEncoding class, which contains
the sequences of token IDs, as well as a mask containing 0s for the padding tokens:

>>> token_ids
{'input_ids': <tf.Tensor: shape=(2, 15), dtype=int32, numpy=
array([[101, 1045, 2066, 4715, 1012, 102, 2057, 2035, 2293, 4715, 999,
 102, 0, 0, 0],
 [101, 3533, 2973, 2005, 1037, 2200, 2146, 2051, 1012, 102, 3533,
 2003, 2214, 1012, 102]], dtype=int32)>,
 'attention_mask': <tf.Tensor: shape=(2, 15), dtype=int32, numpy=
array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int32)>}

If you set return_token_type_ids=True when calling the tokenizer, you will also get
an extra tensor that indicates which sentence each token belongs to. This is needed by
some models, but not DistilBERT.

Next, we can directly pass this BatchEncoding object to the model; it returns a
TFSequenceClassifierOutput object containing its predicted class logits:

>>> outputs = model(token_ids)
>>> outputs
TFSequenceClassifierOutput(loss=None, logits=[<tf.Tensor: [...] numpy=
array([[-2.1123817 , 1.1786783 , 1.4101017],
 [-0.01478387, 1.0962474 , -0.9919954]], dtype=float32)>], [...])

Lastly, we can apply the softmax activation function to convert these logits to class
probabilities, and use the argmax() function to predict the class with the highest
probability for each input sentence pair:

>>> Y_probas = tf.keras.activations.softmax(outputs.logits)
>>> Y_probas
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0.01619702, 0.43523544, 0.5485676],
 [0.08672056, 0.85204804, 0.06123142]], dtype=float32)>
>>> Y_pred = tf.argmax(Y_probas, axis=1)
>>> Y_pred # 0 = contradiction, 1 = entailment, 2 = neutral
<tf.Tensor: shape=(2,), dtype=int64, numpy=array([2, 1])>

In this example, the model correctly classifies the first sentence pair as neutral (the
fact that I like soccer does not imply that everyone else does) and the second pair as
an entailment (Joe must indeed be quite old).

If you wish to fine-tune this model on your own dataset, you can train the model
as usual with Keras since it’s just a regular Keras model with a few extra methods.
However, because the model outputs logits instead of probabilities, you must use
the tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss
instead of the usual "sparse_categorical_crossentropy" loss. Moreover, the model
does not support BatchEncoding inputs during training, so you must use its data
attribute to get a regular dictionary instead:

632 | Chapter 16: Natural Language Processing with RNNs and Attention

sentences = [("Sky is blue", "Sky is red"), ("I love her", "She loves me")]
X_train = tokenizer(sentences, padding=True, return_tensors="tf").data
y_train = tf.constant([0, 2]) # contradiction, neutral
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(loss=loss, optimizer="nadam", metrics=["accuracy"])
history = model.fit(X_train, y_train, epochs=2)

Hugging Face has also built a Datasets library that you can use to easily download a
standard dataset (such as IMDb) or a custom one, and use it to fine-tune your model.
It’s similar to TensorFlow Datasets, but it also provides tools to perform common
preprocessing tasks on the fly, such as masking. The list of datasets is available at
https://huggingface.co/datasets.
This should get you started with Hugging Face’s ecosystem. To learn more, you can
head over to https://huggingface.co/docs for the documentation, which includes many
tutorial notebooks, videos, the full API, and more. I also recommend you check out
the O’Reilly book Natural Language Processing with Transformers: Building Language
Applications with Hugging Face by Lewis Tunstall, Leandro von Werra, and Thomas
Wolf—all from the Hugging Face team.

In the next chapter we will discuss how to learn deep representations in an unsuper‐
vised way using autoencoders, and we will use generative adversarial networks to
produce images and more!

Exercises
1. What are the pros and cons of using a stateful RNN versus a stateless RNN?1.
2. Why do people use encoder–decoder RNNs rather than plain sequence-to-2.

sequence RNNs for automatic translation?
3. How can you deal with variable-length input sequences? What about variable-3.

length output sequences?
4. What is beam search, and why would you use it? What tool can you use to4.

implement it?
5. What is an attention mechanism? How does it help?5.
6. What is the most important layer in the transformer architecture? What is its6.

purpose?
7. When would you need to use sampled softmax?7.
8. Embedded Reber grammars were used by Hochreiter and Schmidhuber in their8.

paper about LSTMs. They are artificial grammars that produce strings such as
“BPBTSXXVPSEPE”. Check out Jenny Orr’s nice introduction to this topic, then
choose a particular embedded Reber grammar (such as the one represented
on Orr’s page), then train an RNN to identify whether a string respects that

Exercises | 633

https://huggingface.co/datasets
https://huggingface.co/docs
https://homl.info/hfbook
https://homl.info/hfbook
https://homl.info/93
https://homl.info/93
https://homl.info/108

grammar or not. You will first need to write a function capable of generating a
training batch containing about 50% strings that respect the grammar, and 50%
that don’t.

9. Train an encoder–decoder model that can convert a date string from one format9.
to another (e.g., from “April 22, 2019” to “2019-04-22”).

10. Go through the example on the Keras website for “Natural language image10.
search with a Dual Encoder”. You will learn how to build a model capable of
representing both images and text within the same embedding space. This makes
it possible to search for images using a text prompt, like in the CLIP model by
OpenAI.

11. Use the Hugging Face Transformers library to download a pretrained language11.
model capable of generating text (e.g., GPT), and try generating more convincing
Shakespearean text. You will need to use the model’s generate() method—see
Hugging Face’s documentation for more details.

Solutions to these exercises are available at the end of this chapter’s notebook, at
https://homl.info/colab3.

634 | Chapter 16: Natural Language Processing with RNNs and Attention

https://homl.info/dualtuto
https://homl.info/dualtuto
https://homl.info/colab3

	Copyright
	Table of Contents
	Preface
	The Machine Learning Tsunami
	Machine Learning in Your Projects
	Objective and Approach
	Code Examples
	Prerequisites
	Roadmap
	Changes Between the First and the Second Edition
	Changes Between the Second and the Third Edition
	Other Resources
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. The Fundamentals of Machine Learning
	Chapter 1. The Machine Learning Landscape
	What Is Machine Learning?
	Why Use Machine Learning?
	Examples of Applications
	Types of Machine Learning Systems
	Training Supervision
	Batch Versus Online Learning
	Instance-Based Versus Model-Based Learning

	Main Challenges of Machine Learning
	Insufficient Quantity of Training Data
	Nonrepresentative Training Data
	Poor-Quality Data
	Irrelevant Features
	Overfitting the Training Data
	Underfitting the Training Data
	Stepping Back

	Testing and Validating
	Hyperparameter Tuning and Model Selection
	Data Mismatch

	Exercises

	Chapter 2. End-to-End Machine Learning Project
	Working with Real Data
	Look at the Big Picture
	Frame the Problem
	Select a Performance Measure
	Check the Assumptions

	Get the Data
	Running the Code Examples Using Google Colab
	Saving Your Code Changes and Your Data
	The Power and Danger of Interactivity
	Book Code Versus Notebook Code
	Download the Data
	Take a Quick Look at the Data Structure
	Create a Test Set

	Explore and Visualize the Data to Gain Insights
	Visualizing Geographical Data
	Look for Correlations
	Experiment with Attribute Combinations

	Prepare the Data for Machine Learning Algorithms
	Clean the Data
	Handling Text and Categorical Attributes
	Feature Scaling and Transformation
	Custom Transformers
	Transformation Pipelines

	Select and Train a Model
	Train and Evaluate on the Training Set
	Better Evaluation Using Cross-Validation

	Fine-Tune Your Model
	Grid Search
	Randomized Search
	Ensemble Methods
	Analyzing the Best Models and Their Errors
	Evaluate Your System on the Test Set

	Launch, Monitor, and Maintain Your System
	Try It Out!
	Exercises

	Chapter 3. Classification
	MNIST
	Training a Binary Classifier
	Performance Measures
	Measuring Accuracy Using Cross-Validation
	Confusion Matrices
	Precision and Recall
	The Precision/Recall Trade-off
	The ROC Curve

	Multiclass Classification
	Error Analysis
	Multilabel Classification
	Multioutput Classification
	Exercises

	Chapter 4. Training Models
	Linear Regression
	The Normal Equation
	Computational Complexity

	Gradient Descent
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-Batch Gradient Descent

	Polynomial Regression
	Learning Curves
	Regularized Linear Models
	Ridge Regression
	Lasso Regression
	Elastic Net Regression
	Early Stopping

	Logistic Regression
	Estimating Probabilities
	Training and Cost Function
	Decision Boundaries
	Softmax Regression

	Exercises

	Chapter 5. Support Vector Machines
	Linear SVM Classification
	Soft Margin Classification

	Nonlinear SVM Classification
	Polynomial Kernel
	Similarity Features
	Gaussian RBF Kernel
	SVM Classes and Computational Complexity

	SVM Regression
	Under the Hood of Linear SVM Classifiers
	The Dual Problem
	Kernelized SVMs

	Exercises

	Chapter 6. Decision Trees
	Training and Visualizing a Decision Tree
	Making Predictions
	Estimating Class Probabilities
	The CART Training Algorithm
	Computational Complexity
	Gini Impurity or Entropy?
	Regularization Hyperparameters
	Regression
	Sensitivity to Axis Orientation
	Decision Trees Have a High Variance
	Exercises

	Chapter 7. Ensemble Learning and Random Forests
	Voting Classifiers
	Bagging and Pasting
	Bagging and Pasting in Scikit-Learn
	Out-of-Bag Evaluation
	Random Patches and Random Subspaces

	Random Forests
	Extra-Trees
	Feature Importance

	Boosting
	AdaBoost
	Gradient Boosting
	Histogram-Based Gradient Boosting

	Stacking
	Exercises

	Chapter 8. Dimensionality Reduction
	The Curse of Dimensionality
	Main Approaches for Dimensionality Reduction
	Projection
	Manifold Learning

	PCA
	Preserving the Variance
	Principal Components
	Projecting Down to d Dimensions
	Using Scikit-Learn
	Explained Variance Ratio
	Choosing the Right Number of Dimensions
	PCA for Compression
	Randomized PCA
	Incremental PCA

	Random Projection
	LLE
	Other Dimensionality Reduction Techniques
	Exercises

	Chapter 9. Unsupervised Learning Techniques
	Clustering Algorithms: k-means and DBSCAN
	k-means
	Limits of k-means
	Using Clustering for Image Segmentation
	Using Clustering for Semi-Supervised Learning
	DBSCAN
	Other Clustering Algorithms

	Gaussian Mixtures
	Using Gaussian Mixtures for Anomaly Detection
	Selecting the Number of Clusters
	Bayesian Gaussian Mixture Models
	Other Algorithms for Anomaly and Novelty Detection

	Exercises

	Part II. Neural Networks and Deep Learning
	Chapter 10. Introduction to Artificial Neural
Networks with Keras
	From Biological to Artificial Neurons
	Biological Neurons
	Logical Computations with Neurons
	The Perceptron
	The Multilayer Perceptron and Backpropagation
	Regression MLPs
	Classification MLPs

	Implementing MLPs with Keras
	Building an Image Classifier Using the Sequential API
	Building a Regression MLP Using the Sequential API
	Building Complex Models Using the Functional API
	Using the Subclassing API to Build Dynamic Models
	Saving and Restoring a Model
	Using Callbacks
	Using TensorBoard for Visualization

	Fine-Tuning Neural Network Hyperparameters
	Number of Hidden Layers
	Number of Neurons per Hidden Layer
	Learning Rate, Batch Size, and Other Hyperparameters

	Exercises

	Chapter 11. Training Deep Neural Networks
	The Vanishing/Exploding Gradients Problems
	Glorot and He Initialization
	Better Activation Functions
	Batch Normalization
	Gradient Clipping

	Reusing Pretrained Layers
	Transfer Learning with Keras
	Unsupervised Pretraining
	Pretraining on an Auxiliary Task

	Faster Optimizers
	Momentum
	Nesterov Accelerated Gradient
	AdaGrad
	RMSProp
	Adam
	AdaMax
	Nadam
	AdamW

	Learning Rate Scheduling
	Avoiding Overfitting Through Regularization
	ℓ1 and ℓ2 Regularization
	Dropout
	Monte Carlo (MC) Dropout
	Max-Norm Regularization

	Summary and Practical Guidelines
	Exercises

	Chapter 12. Custom Models and Training with TensorFlow
	A Quick Tour of TensorFlow
	Using TensorFlow like NumPy
	Tensors and Operations
	Tensors and NumPy
	Type Conversions
	Variables
	Other Data Structures

	Customizing Models and Training Algorithms
	Custom Loss Functions
	Saving and Loading Models That Contain Custom Components
	Custom Activation Functions, Initializers, Regularizers,
and Constraints
	Custom Metrics
	Custom Layers
	Custom Models
	Losses and Metrics Based on Model Internals
	Computing Gradients Using Autodiff
	Custom Training Loops

	TensorFlow Functions and Graphs
	AutoGraph and Tracing
	TF Function Rules

	Exercises

	Chapter 13. Loading and Preprocessing Data with TensorFlow
	The tf.data API
	Chaining Transformations
	Shuffling the Data
	Interleaving Lines from Multiple Files
	Preprocessing the Data
	Putting Everything Together
	Prefetching
	Using the Dataset with Keras

	The TFRecord Format
	Compressed TFRecord Files
	A Brief Introduction to Protocol Buffers
	TensorFlow Protobufs
	Loading and Parsing Examples
	Handling Lists of Lists Using the SequenceExample Protobuf

	Keras Preprocessing Layers
	The Normalization Layer
	The Discretization Layer
	The CategoryEncoding Layer
	The StringLookup Layer
	The Hashing Layer
	Encoding Categorical Features Using Embeddings
	Text Preprocessing
	Using Pretrained Language Model Components
	Image Preprocessing Layers

	The TensorFlow Datasets Project
	Exercises

	Chapter 14. Deep Computer Vision Using Convolutional Neural Networks
	The Architecture of the Visual Cortex
	Convolutional Layers
	Filters
	Stacking Multiple Feature Maps
	Implementing Convolutional Layers with Keras
	Memory Requirements

	Pooling Layers
	Implementing Pooling Layers with Keras
	CNN Architectures
	LeNet-5
	AlexNet
	GoogLeNet
	VGGNet
	ResNet
	Xception
	SENet
	Other Noteworthy Architectures
	Choosing the Right CNN Architecture

	Implementing a ResNet-34 CNN Using Keras
	Using Pretrained Models from Keras
	Pretrained Models for Transfer Learning
	Classification and Localization
	Object Detection
	Fully Convolutional Networks
	You Only Look Once

	Object Tracking
	Semantic Segmentation
	Exercises

	Chapter 15. Processing Sequences Using RNNs and CNNs
	Recurrent Neurons and Layers
	Memory Cells
	Input and Output Sequences

	Training RNNs
	Forecasting a Time Series
	The ARMA Model Family
	Preparing the Data for Machine Learning Models
	Forecasting Using a Linear Model
	Forecasting Using a Simple RNN
	Forecasting Using a Deep RNN
	Forecasting Multivariate Time Series
	Forecasting Several Time Steps Ahead
	Forecasting Using a Sequence-to-Sequence Model

	Handling Long Sequences
	Fighting the Unstable Gradients Problem
	Tackling the Short-Term Memory Problem

	Exercises

	Chapter 16. Natural Language Processing with RNNs and Attention
	Generating Shakespearean Text Using a Character RNN
	Creating the Training Dataset
	Building and Training the Char-RNN Model
	Generating Fake Shakespearean Text
	Stateful RNN

	Sentiment Analysis
	Masking
	Reusing Pretrained Embeddings and Language Models

	An Encoder–Decoder Network for Neural Machine Translation
	Bidirectional RNNs
	Beam Search

	Attention Mechanisms
	Attention Is All You Need: The Original Transformer Architecture

	An Avalanche of Transformer Models
	Vision Transformers
	Hugging Face’s Transformers Library
	Exercises

	Chapter 17. Autoencoders, GANs, and Diffusion Models
	Efficient Data Representations
	Performing PCA with an Undercomplete Linear Autoencoder
	Stacked Autoencoders
	Implementing a Stacked Autoencoder Using Keras
	Visualizing the Reconstructions
	Visualizing the Fashion MNIST Dataset
	Unsupervised Pretraining Using Stacked Autoencoders
	Tying Weights
	Training One Autoencoder at a Time

	Convolutional Autoencoders
	Denoising Autoencoders
	Sparse Autoencoders
	Variational Autoencoders
	Generating Fashion MNIST Images
	Generative Adversarial Networks
	The Difficulties of Training GANs
	Deep Convolutional GANs
	Progressive Growing of GANs
	StyleGANs

	Diffusion Models
	Exercises

	Chapter 18. Reinforcement Learning
	Learning to Optimize Rewards
	Policy Search
	Introduction to OpenAI Gym
	Neural Network Policies
	Evaluating Actions: The Credit Assignment Problem
	Policy Gradients
	Markov Decision Processes
	Temporal Difference Learning
	Q-Learning
	Exploration Policies
	Approximate Q-Learning and Deep Q-Learning

	Implementing Deep Q-Learning
	Deep Q-Learning Variants
	Fixed Q-value Targets
	Double DQN
	Prioritized Experience Replay
	Dueling DQN

	Overview of Some Popular RL Algorithms
	Exercises

	Chapter 19. Training and Deploying TensorFlow Models at Scale
	Serving a TensorFlow Model
	Using TensorFlow Serving
	Creating a Prediction Service on Vertex AI
	Running Batch Prediction Jobs on Vertex AI

	Deploying a Model to a Mobile or Embedded Device
	Running a Model in a Web Page
	Using GPUs to Speed Up Computations
	Getting Your Own GPU
	Managing the GPU RAM
	Placing Operations and Variables on Devices
	Parallel Execution Across Multiple Devices

	Training Models Across Multiple Devices
	Model Parallelism
	Data Parallelism
	Training at Scale Using the Distribution Strategies API
	Training a Model on a TensorFlow Cluster
	Running Large Training Jobs on Vertex AI
	Hyperparameter Tuning on Vertex AI

	Exercises
	Thank You!

	Appendix A. Machine Learning Project Checklist
	Frame the Problem and Look at the Big Picture
	Get the Data
	Explore the Data
	Prepare the Data
	Shortlist Promising Models
	Fine-Tune the System
	Present Your Solution
	Launch!

	Appendix B. Autodiff
	Manual Differentiation
	Finite Difference Approximation
	Forward-Mode Autodiff
	Reverse-Mode Autodiff

	Appendix C. Special Data Structures
	Strings
	Ragged Tensors
	Sparse Tensors
	Tensor Arrays
	Sets
	Queues

	Appendix D. TensorFlow Graphs
	TF Functions and Concrete Functions
	Exploring Function Definitions and Graphs
	A Closer Look at Tracing
	Using AutoGraph to Capture Control Flow
	Handling Variables and Other Resources in TF Functions
	Using TF Functions with Keras (or Not)

	Index
	About the Author
	Colophon

