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Abstract—Mathematical models are of widespread usage for simulating process behavior,
designing new processes and equipment and, in a more general sense, decision making.
However, as model parameters are uncertain, due to model inaccuracies and experimental
errors, all model results are subject to uncertainties. It is shown here that an economical value
may be assigned to parameter uncertainties, which can then be used for both process optimiza-
tion and specially for taking decisions during sequential experimental designs. © 1998 Elsevier

Science Ltd. All rights reserved.
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1. INTRODUCTION

In order to take decisions, engineers and business
people usually rely on mathematical models. Such
models, no matter whether they are developed within
the framework of a certain theory or whether they are
completely empirical, are built in order to record
experimental observations, particularly, the relation-
ships and interactions which exist among the various
variables of interest, in a compact way. When a
model is validated, it is generally used for predic-
ting how a certain group of variables will change
when other variables are modified (simulation), for
finding the conditions or variable settings that will
maximize a certain performance index (optimization)
or for designing new equipment and/or enterprise
(project).

Usually, for a model to be useful, certain numbers
or parameters must be either measured or estimated,
by obliging the mathematical structure to fit the ex-
perimental data. So, knowing that the relationship
between two variables may be described by a straight
line is of no use unless the angular and linear coeffi-
cients are known. The problem is that measurements
and experimental observations are subject to errors,
caused either by natural fluctuations or by the limita-
tions of real measurement devices. Besides, model and
reality are not identical, as many variables are not
taken into consideration during the model develop-
ment (hopefully the least important ones) and because
reality is not completely understood (and even if it
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were understood, the model would probably be too
complex to be of practical use). For all these reasons,
model predictions are uncertain to some extent. As
model predictions depend on model parameters, the
measured or estimated parameters may be regarded
as uncertain, although this uncertainty actually re-
flects model inaccuracies and experimental errors and
fluctuations.

Parameter estimation procedures for different
model structures have been extensively studied in the
literature (see Bard, 1974). Some techniques have also
been developed for designing experiments for reduc-
ing parameter uncertainties (see Pinto et al, 1990,
1991). The impact of parameter uncertainties on
the performance of control algorithms has been
extensively studied in the literature and has led to
the development of a class of process controllers
known as robust controllers (for examples, see
Keel and Bhattacharyya, 1994; Oldak et al., 1994;
Schaper et al., 1992). Similarly, parameter uncertain-
ties are usually taken into consideration to study
the sensitivity of process responses to variable
changes, which is usually known as sensitivity analy-
sis (for example see Fotopoulos et al., 1994; Reed
and Whiting, 1993; Seferlis and Hrymak, 1996;
Ganesh and Biegler, 1987, Volin and Ostrovskiy,
1981a, b). The impact caused by parameter uncertain-
ties on variables of economic significance for chemical
processes has been largely overlooked though. Be-
sides, to our knowledge, the economics of process
variables and parameter uncertainties have not been
taken into consideration for proper experimental
design for both model discrimination and parameter
estimation.
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If one realizes that in a real production environ-
ment models are mostly used and developed to maxi-
mize profits, it may be concluded that parameter
uncertainties lead to profit uncertainties. Moreover,
as model parameters are uncertain, optimum variable
settings obtained with the model are also uncertain.
By not setting the variables to their real optimum
values, the entrepreneur loses money. Therefore, an
economical value may be assigned to parameter un-
certainties.

Seemingly, Weisman and Holzman (1972) were the
first to analyze the importance of variable uncertain-
ties during process design. They proposed that the
total expected cost of the process be given by

E(C) =Y E(Cy) + ¥, P E(C) V)
h i

where the first term on the right-hand side represents
total costs of normal capital and operating items,
while the second term on the right-hand side repres-
ents the expected failure costs, where p; are the failure
probabilities of the ith process constraint. The failure
costs include costs introduced by process variable and
parameter uncertainties. Particularly, Weisman and
Holzman (1972} showed that cost variances are pro-
portional to variable and parameter variances and
that the optimum process design should minimize
both process costs and cost variability.

Although developed independently, similar con-
cepts were used by many other researchers in order to
develop the set of techniques which are known now-
adays as Taguchi’s design procedures (for examples,
see Taguchi, 1986; Shoemaker et al., 1991; Coleman
and Montgomery, 1993; Lucas, 1994). Assuming that
linear models may be built to describe process re-
sponses and assuming that economical losses are pro-
portional to cost variances, it is possible to provide an
experimental design that will allow the proper
modeling and optimization of process conditions.
Very often, however, the assumptions presented
above are not valid for both process and experimental
design and final results obtained with Taguchi’s de-
signs may not be adequate.

More recently, Becker et al. (1994) and Pis-
tikopoulos (1995) presented new algorithms for taking
decisions and optimizing process performance in un-
certain conditions. Becker er al’s procedure is an
extension of the basic procedure developed by Weis-
man and Holzman (1972), which proposes the simul-
taneous minimization of process costs and cost
variabilities. Pistikopoulos’s procedure is based on
the minimization of the average process cost, which is
computed as a weighed summation of local costs
obtained by optimizing process operation conditions
at different points inside the domain where variables
are allowed to vary. The weight factors may be the
joint probability of finding the specified parameter
combinations used for computing the local optima.

Our main concern here is showing that an economi-
cal value may be assigned to parameter uncertainties,
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which can then be used for both process optimization
and specially for taking decisions during sequential
experimental designs. The approach used here is sim-
ilar to the approach used originally by Weisman and
Holzman (1972), which means that process models
and objective functions may be linearized in the vicin-
ities of the optimum to allow the computation of the
sensitivities of the model responses to parameter per-
turbations. Although the introduction of equality and
inequality constraints into the optimization problem
is much more difficult in this case, this approach is
appealing because it preserves the basic nonlinear
behavior of process responses, allows the derivation of
simple mathematical expressions to describe the op-
timization problem and does not require that exten-
sive computer simulations be carried out for optimum
solutions to be found.

2. THEORETICAL FRAMEWORK

Let us assume that a certain objective function
(expected profits) L(z, w,) is to be maximized, where
z, wand « are vectors of decision variables (that will be
manipulated during optimization), fixed variables
(that will remain fixed during the optimization) and
model parameters. Thus, optimization here means
selecting optimal values for z. If the optimum condi-
tions of the maximization problem are found but are
subject to uncertainties, which may be due to experi-
mental errors or model inaccuracies, the actual profits
obtained during operation will be different from the
expected ones. If variable deviations are not large, the
following expression may be written:

AL = L(Z* + & W+ &y + Eu) - L(Z*: w, a)
=(V.L) e + (V,L)Tew + (VL) &,

3T VLD 6) + 56" (Vaul)e)

43T (VAuD) @) + @7 (V200) o)

+(e)7 (V2.L) (6a) + (24)7 (V3,.2L) (22)
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and the derivatives are computed at the nominal
optimum conditions. If AL is positive, uncertainties
have a positive net effect on the process operation, as
profits are larger than expected. The opposite hap-
pens when AL is negative.

Assuming that uncertainties are centered at zero
and that the different groups of variables are not
correlated, which is reasonable in most cases as these
variables are usually measured and/or evaluated by
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independent procedures, then eq. (2) may be averaged
to allow the computation of the average profit devi-
ation as

NZ Nll azL 2

A=3 %,

u}
1_11_1262161

Nz Nz ] 62 L 2
APy
which is often different from zero, due to the nonlinear
behavior of the profit function, and may be called the
bias of the optimization procedure, as suggested by
Becker et al. (1994).
The variance of the cost deviation can be computed
as
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where ¢ is the covariance of elements i and j of
vector x.

Assuming additionally that the uncertainties re-
garding the expected profits may be described locally
by a Gaussian distribution, the following equation
may be written as:

ng% = L + KZ _ 235 OAL (8)

which represents the minimum profit expected, with
a confidence level of 99%, given the uncertainties of
the optimization problem. Equation (8) gives a lower
boundary for the expected profit, so that profits are
not expected to be below this value. In order to take
a decision, it may be interesting then to maximize this
riskless profit function, as described by eq. (8), instead
of maximizing the nominal profit function. In this
case, calling L the nominal profit of the enterprise, the
risk may be defined as

R=AL—2350,. ©)

It is interesting to observe that eq. (8) implies that
both the nominal costs and process variability have to
be minimized simultaneously, as described by Weis-
man and Holzman (1972), Taguchi (1986) and Becker
et al. (1994), in order to minimize the risk of the
enterprise and maximize the actual profits obtained.
Eq. (8), however, preserves the nonlinear behavior of
both the process model and the objective function, as
both AL and o2, are nonlinear functions of the local
variables. For all these reasons, it is proposed here
that Equation (8) be used for taking robust decisions
and minimizing the risks of the enterprise.

As already discussed, the actual optimum solution
1s unknown, as both the fixed variables and model
parameters are uncertain. At the optimum, however, it
is possible to write

V.L(z* + Az%,w+ 6y, 0+ &) =0 (10)
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which may be rewritten as

(V2,L)Az* + (ViuL) e, + (ViL)e, =0 (11)
so that
Az* = — (V3,L) ' {(Vi,L) &y + (Vi L) &a} (12)

which shows explicitly how the optimum solution
changes when fixed variables and model parameters
vary. The value of Az* may be added to ¢, in eq. (2), as

L* = L(z* + &, + Az*, w + &,, @ + &) — L(z*, w, a)
= (VZL)T (Sz + AZ*) + (VWL)T &y + (VaL)Tsaz

+ % (e, + Az¥)T (V2,L) (e, + Az*)

4367 (VD) (6

+ 2T (VAL @) + (o + A (VAL 6

+ (e + Az%)T (V2.L) () + (e) (V3aL) (&)
+ o (13)

allowing the computation of the difference between
the new optimum profit that would be obtained, if the
variables were allowed to vary and the optimum con-
dition were calculated properly, and the nominal
profit expected. This difference represents what is lost
for not knowing exactly what the real values are. If it
is positive, a certain amount of money is being lost for
not operating at the actual optimum conditions. In-
serting eq. (12) into eq. (13) and averaging the result-
ing expression, it is possible to write

NZ NZ l 62L NW NW
Z Z 2 a 5 az'i + Z Z g'l UWIJ
i=1j=1 i=1 j= 1

Na N: ]

Z h) 3 = hy; aau (14)
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which represents the average loss that is caused by not
operating at the actual optimum conditions due to
uncertainties. g;; and h;; are

G = [gilwwxnw = (Vi L) — (V2,L)T (V2.L) 7" (V,L)
(15)
) (V2LL).
(16)

Finally, calculating the difference between eqs (14)
and (5),

H= [hi}']NaxNaz = (Va%.aL) - (sz.aL)T (Vf,zL

NW NW
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which represents the total average loss that can be
expected for not operating at the unknown optimum
conditions. C takes into account the fact that part of
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the total loss is caused by not knowing the correct
values of process variables (AL*) during the optimiza-
tion and that a second part is caused by process
uncertainties (AL), which may have a positive or
a negative net effect on the process operation, as
discussed previously. If C is positive, a certain amount
of money is being wasted for not operating at the
actual optimum conditions. g§; and hf; are

G = [giidnwww = (VELL)T (V2. L)™' (VL) (18)
H® = [h{jInexna = (VZLL)T (V2:L) "' (VLL).  (19)

As averaging is a linear operation, eq. (2) may be
subtracted from eq. (13) before averaging. After some
algebraic manipulation, it is possible to show that C is
always positive, as shown in the appendix. This means
that uncertainties always have a deleterious net effect
on process operation.

Therefore, an economical value (C) may be assigned
to the uncertainties, as this is the recoverable loss
caused by not knowing the fixed variables and model
parameters properly. Notice that the losses caused by
the uncertainties of the manipulated variables is not
recoverable, as they do not lead to any change of the
computed optimum solutions. C is called here the cost
of uncertainties. The second summation of eq. (17) is
called here the cost of parameter uncertainties and is
linked to the parameter estimation procedure used to
evaluate the model parameters. Therefore, an econ-
omical value may be assigned to any experiment dur-
ing a sequential experimental design procedure,
intended to reduce the uncertainty of model para-
meters. This will be shown in the examples presented
in the next section.

It is important to emphasize that eq. (17) shows that
the values assigned to parameter uncertainties and
experiments depend heavily on the problem that is
being analysed. Unless the objective function is
known, which means that it is known precisely what
model parameters are used for, the value of model
parameters and additional experiments cannot be de-
fined. This is a strong link which may be built between
the design procedure and the more fundamental
modeling studies and parameter estimation routines.
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3. EXAMPLES

Example 1: The design of a chemical reactor
Let us assume that a CSTR must be designed in
order to carry out the following chemical reaction:

K1 K2
A——> B—> C

(20)
where B is the desired product. The available data are
presented in Table 1. It may be seen that kinetic
parameters are assumed to be known with a fair
amount of uncertainty, as it is not unusual to face
kinetic constants with standard deviations that are
larger than the absolute value of the kinetic constant.
According to the available data, the second kinetic
parameter, which is related to the formation of the
by-product, is more uncertain than the first one,
which is related to the formation of the desired prod-
uct B, as it usually happens. Besides, kinetic para-
meters are assumed to be independent of each other,
which is not always true, as kinetic parameters are
often estimated simultaneously, based on available
experimental data (see Bard, 1974).

The optimization problem consists of finding the
optimum reactor volume and feed rate (residence
time) in order to maximize the profits of the operation
in two years, which is assumed to be the investment
lifetime. The kinetic model can be described by

CA()
C =—-2 21
4T (1 +K19) @)
K10C 4
= 2
Cs (1 + K18X1 + K20) (22)
K 2
C. 1K202C @)

(1 + K19)(1 + K20)
while the profit function to be maximized is
LV, ®; K1, K2)

_(Ca USS$B + Cc USSC — C 4o US$A4 — US$Q) VAt
B ®

— US$V V2 (24)

Table 1. Available data for example 1

Variable Value Meaning
US$A 4.0 US$/Kg Price of reactant
USS$B 20.0 US$/Kg Price of desired product
USs$C 3.0 US$/Kg Price of by-product
US$Q 0.50 US$/Kg A Specific operational cost
Ussv 20 x 10® US$/(m3)? Specific investment cost
Cao 1000 Kg/m? Feed concentration
K1 25h7! Kinetic constant
K2 1.0h! Kinetic constant
At 2 years Investment lifetime
oty 0.09h2 Variance of K1
a3, 0.16h"2 Variance of K2
ai,, 0%, 0 Covariances of K1 and K2
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In this problem, z7 = (V, ®) and «” = (K1, K2). All
other parameters belong to w.

Figure 1 shows the optimum volume as a function
of residence time for different combinations of K1 and
K2, within the range where these parameters are al-
lowed to vary with 99% of confidence. It may be
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observed that significant variations of the optimum
conditions occur. At the nominal value, Figs 1 and
2 show that the optimum is placed at ® = 0.283 h and
¥V =423 m3, allowing total profits of L = US$
357 x 10¢. However, Fig. 2 shows that significant vari-
ations may occur. Particularly, if K2 is larger and K1

Optimum Volume (m:’)

0.40

0.80

1.20 2.00

Residence Time (h)

Fig. 1. Optimum reactor volume as a function of residence time. (1) Nominal conditions; (2) K1 = 3.1 h~ L,
(3)K2=02h";; (4 K2=18h"%(5) K1 =19h71)

8E+8

Nominal Profit (US$)

0.80
Residence Time (h)

1.20

Fig. 2. Maximum profits as a function of residence time. (1) Nominal conditions; (2) K1 =3.1h7; (3)
K2=02h"';(4 K2=18h"%(5) K1 =19h"1).
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Fig. 3. Maximum nominal and riskless profits as functions of the residence time.

is lower than the nominal values, process operation
may lead to a no-profit situation.

Figure 3 shows optimum profits as a function of
residence time. If the riskless profit function Lggo, is
used for reactor design, the optimum condition is
placed at ® = 0.388 h and V = 3.95 m>. In this case,
a minimum profit of L = US$ 30 x 10° is guaranteed,
although the average profit expected equals L = US$
340 x 10°. This is a much more robust operation con-
dition, as profits cannot be guaranteed with confi-
dence of 99% at the conditions presented before.
Comparing the results obtained through maximiza-
tion of L and Lggs, the second set indicates that
smaller reactors and feed rates are advised, given the
parameter uncertainties.

At the optimum conditions, the cost of parameter
uncertainties may then be calculated with egs
(17)«19). The value obtained is US$ 29 x 10°, which
means that average losses of 30 million dollars may be
expected by not placing the operation conditions at
the actual unknown optimum values. This is a small
fortune and indicates that 10% of the average profits
that may be obtained with the reactor operation may
be lost, due to the parameter uncertainties.

In this case, it seems fair to analyze the possibility of
evaluating the kinetic parameters more precisely in
a research laboratory before designing the final reac-
tor operation conditions. In order to do that, it is
assumed here that the financial market pays 12% of
bonus per year for money deposits. The financial
losses are then computed by calculating the amount of
money that is lost by not investing the profits in the
financial market during the plant lifetime, due to
delaying the building of the reaction plant. In this

case, assuming that parameters with variances equal
to zero may be obtained in the laboratory (which is
not true), the entrepreneur would have a maximum
time of approximately two months to obtain the kin-
etic constants in the laboratory, as shown in Fig. 4.
That means that a very well defined time horizon can
be established to drive the experimental investigation
and improve the process knowledge.

These computations can be made more precise by
including the costs of carrying out experiments and
considering that parameter variances cannot be made
equal to zero. In both cases, however, the time hor-
izon will be even smaller, which means that going on
with the reactor design and plant building is probably
the best solution in this case, in spite of the cost of
parameter uncertainties.

Example 2: A sequential experimental design procedure

A solution of two isomers (A and B) in a natural
solvent (S) can be obtained as the extract of a certain
bio-process. Component B presents optical activity
and can be used in many applications, so that its
economical value is much higher than the value of
isomer A. A second solvent (S,) can be used to extract
component B from the natural solution, as isomer
A does not dissclve very well in S;,. The main objective
is designing a single stage extractor for separating
isomer B from the natural solution, using solvent S,.
Model equations are:

X40

T1+K.0 @5)

XA1

K4 x40

“T+K.0 (26)

X42
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XBo
=B 27
BT Ky 0 @7
Kp xpo
= —— 28
T Ky @8

where indices 0, 1 and 2 mean feed, solvent 1 and
solvent 2, respectively, K, and Kj are the partition
coefficients and ¢ is the ratio between the feed rates of
solvent 2 and solvent 1. Therefore, the design variable
is ¢. In order to compute the optimal ¢ value, the
following profit function must be maximized:

L
Sy

) = x,“US$A + szUS$B —_ xBIUS$Q

- x4, US$Q — ¢ USSS (29)
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where the total profit obtained depends on the purity
of the output streams, discounted additional neces-
sary purification (with adsorption columns) and sol-
vent costs. The data available is presented in Table 2.
In this problem, z7 == (¢) and o™ = (K4, K3). All other
parameters belong to w.

Figure S shows how the L and Lo, functions
depend on ¢. As it can be seen, the optimum nominal
¢ value is 1.00, although a higher value of ¢ around
1.20 is recommended in order to increase robustness
due to parameter uncertainties. At the nominal max-
imum, the cost of parameter uncertainties is equal to
USS$ 0.14/Kg S,. If | m®/h of S, is processed, average
losses induced by parameter uncertainties are about
US$ 1.2 x 10° per year. Therefore, an experimental
design procedure is to be implemented, in order to
improve the accuracy of the partition coefficients and

2.0E+8

1.6E+8 —

1.2E+8 —

Costs (US$)

8.0E+7 —

4.0E+7 —

Financial Costs

Cost of Parameter Uncertainties

0.0E+0

|
100

Fig. 4. Parameter and financial cos

Table 2. Available

200
Days of Delay

300 400

ts as functions of project time delay.

data for example 2

Variable Value Meaning
US$A4 0.0 US$/Kg Market value of A
USS$B 20.0 US$/Kg Market value of B
Uss$g 0.50 US$/Kg Additional purification cost
Usss 20 x 10 US$/(m?)® Solvent cost
X 40 0.05 Feed concentration of A
Xpo 0.05 Feed concentration of B
K, 0.10 Partition coefficient of A
K 3.0 Partition coefficient of B
o}, 0.1 Variance of K,
d, 1.0 Variance of K3
63,, 6%, 0 Covariances of K, and Ky
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Fig. 5. Maximum nominal and riskless profits as functions of solvent feed ratio.

hopefully diminish the annual losses caused by para-
meter uncertainties.

Different design criteria may be used in order to
improve the accuracy of model parameters (see Pinto
et al., 1990,1991). Most experimental design criteria,
however, are based on the following equation (see
Bard, 1974), which describes how parameter variances
are expected to change when an additional experi-
ment is carried out, added to the previous experi-
mental set and used for parameter estimation:

Vil =Val + Bl

@k 41 A+ 1

V! By

Y+ 1

(30)

where V,, is the covariance matrix of model para-
meters after k experiments, V¥, is the covariance
matrix of model output variables at experiment k + 1
and By, is the sensitivity matrix of model output
variables at experiment k + 1, defined as:

Oy
Bk+1=[—}i’ J .
k+1_JNY x Na

S j

Two common experimental design criteria are the
f-trace design criterion, which proposes that the best
experiment is the one which allows the minimization
of the trace of V,,, ,, and the volume design criterion,
which proposes that the best experiment is the one
which allows the minimization of the determinant of
V.., In both cases, the design criteria are based on
the idea that the region of parameter uncertainties
should be minimized. A full description of these and
other experimental design criteria can be found else-
where (Pinto et al., 1990, 1991). As model parameters
will be used for designing the single-stage extractor
and as the main objective is reducing the losses caused

(€3]

by parameter uncertainty, we propose here that min-
imizing the cost function described by eq. (17) be used
as the proper experimental design criterion for experi-
mentation and parameter estimation.

In order to choose the best experimental condition
for experimentation, additional data are required.
First of all, as the sum of the fractions of isomers
A and B is equal to 0.1 in the original solution, it is
proposed here that the total fraction of A and B in
S, in the additional experiment be equal to 0.1. There-
fore, the experimental grid analysed is composed by
synthetic solutions where (x o + Xgpo) is equal to 0.1.
Besides, it is important to say that A and B fractions
may be measured experimentally with a precision of
6} =1x10"% Finally, as the optimum solution
seems to be around ¢ = 1.00, this is the value that will
be used in all experiments analysed. Therefore, defin-
ing the best experiment for additional experimenta-
tion is equivalent to defining the best value of x 4.

Figures 6-8 show how ir(V, ), det(¥, ) and
C depend on the value of x4, selected. The S-trace
design criterion selects the condition where x,q is
equal to zero, mostly because the variance of Kjp,
which is the most uncertain parameter, may be de-
creased significantly at such conditions (see Fig. 10).
The volume design criterion selects the condition
where x5, is equal to zero, because the variance of K ,,
which has the smallest variance, can be decreased
even further at such conditions (see Fig. 9). From an
economical point of view, however, the best choice
seems to be the experiment where x . is equal to
0.032, which allows a significant decrease of both
parameter variance and the largest decrease of the
cost of parameter uncertainties.
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Fig. 6. Using the B-trace design criterion to select the next experiment.
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Fig. 7. Using the volume design criterion to select the next experiment.

According to the usual sequential experimental de-
sign procedure, the experiment with x40 = 0.032 and
xgo = 0.068 should be carried out and a new set of
parameter estimates and variances should be pro-
vided. Assuming that the parameter estimates will

remain the same and that the new parameter vari-
ances will be given by eq. (30), the costs induced by
parameter uncertainties will be reduced to US$
0.73 x 10% per year, leading to additional savings of
US$ 0.47 x 10° per year. If the B-trace design criterion
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Fig. 8. Using the cost of parameter uncertainties to select the next experiment.
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Fig. 9. Expected variance of K, as a function of the selected experimental condition.

is used, annual savings will be of US$ 0.42 x 10° per
year, while if the volume design criterion is used,
annual savings will be of US$ 0.36 x 10°. Therefore,
choosing the right experiment in this case is worth at
least US$ 50000,00 a year.

Additional remarks

It is clear that the equations developed and present-
ed here may be used very successfully while designing
process conditions and taking decisions, specially
those related to the design of experiments. More
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Fig. 10. Expected variance of K as a function of the selected experimental condition.

important, the equations developed and the examples
presented provide a clear link between the process
economics, the process modeling and experimentation
and parameter estimation. This is very interesting
because uncertainties of parameter estimates are usu-
ally much more significant than the uncertainties of
the other process variables. However, it is important
to say that design variables are not alike, so that it
may be useful to separate them in different groups
based on the easiness of manipulation at actual pro-
cess conditions, as proposed originally by Taguchi
(see Taguchi, 1986). For instance, in Example 1 V and
O present very different characteristics, as ® may be
manipulated at the actual plant site according to an
EVOP—evolutionary operation procedure—tech-
nique (see Himmelblau, 1970), which means that er-
rors may be corrected as time goes on. This is not
possible with V', unless another reactor is bought and
installed, which means that design errors are difficult
to correct. The theoretical framework is being im-
proved in order to allow the inclusion of EVOP
and other stochastic optimization techniques in the
analysis.

4. CONCLUSIONS

A theoretical framework was developed in order to
allow the analysis of economical losses introduced in
design problems by parameter uncertainties. It was
shown here that an economical value may be assigned
to parameter uncertainties, which can then be used for
both process optimization and specially for taking
decisions during sequential experimental designs. The
examples show that taking parameter uncertainties

into consideration during the design stage can im-
prove the robustness of process economics and pro-
vide a link to process modeling and experimentation
for parameter estimation.
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NOTATION
A, B, C chemical species
C cost of uncertainties
C; concentration of species i
K; model parameter (kinetic constant of reac-
tion i, partition coefficient of species i)

L profit function

Lggs,  riskless profit function

R risk of the enterprise

S1, S, solvents, solvent feed rates

US$ value

14 volume

v, covariance matrix of model output variables
Ve covariance matrix of parameters

x mass fraction

w vector of fixed variables

y model output variables

z vector of manipulated (decision) variables

Greek letters
o vector of model parameters
A deterministic variable deviation
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AL bias of the profit function
At lifetime of the enterprise

& random variable deviation
¢ ratio of solvent feed rates
of covariance of variables i and j
0 residence time

Superscript

* nominal condition
Subscript

0 feed
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APPENDIX A

If eq. (2) is subtracted from eq. (13) before averaging, it is
possible to write:

AL* — AL = (V,L)"Az*
1 [2 (e2)7 (VI .L) Az* + (Az%)" (V2,L) Az* ]
2 +2(Az%T(V2,L) &, + 2(Az")T (V2,L)e, |
{A1)
It may be noted that the first two terms on the right-hand
side of eq. (A1) will be nullified by the averaging operation, as
they contain first-order terms and uncorrelated uncertain-

ties. Therefore, by neglecting these two terms and inserting
eq. (12) into eq. (A1), it is possible to write

E{AL* — AL}

(e (V2 L) (V2.L) 1 (V2,L) &y

+ ()" (V2. L)T (VE.L)" ' (VL) e,

= 2" (V2L (V2,L)" " (V2,L) &,
= 2(e)" (V2L (V2.L) ! (VL) &,

N |

(A2)

where E { } stands for the averaging. After summing up the
terms on the right hand-side of eq. (A2),

E{AL* — AL} =

Wt (V2LL)T (VZ.L) " (V2 Le,,
_EE{[(SA(, )y (VzL) " (VZul)e :I} (A3)
2 + (&) (VLT (VE.L) ™! (ViaL) &

As the kernel (V2_L)is negative definite (otherwise it is not
possible to find an optimum for the problem), the terms
inside the brackets on the right-hand side are guaranteed to
be negative. Therefore, it may be concluded that C, as pre-
sented in eq. (17), is always positive, which means that
a certain amount of money is always lost due to the para-
meter uncertainties.



