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a b s t r a c t

Experimental design procedures for model discrimination and for estimation of precise model

parameters are usually treated as independent techniques. In order to conciliate the objectives of both

experimental design procedures, the present paper proposes the use of experimental design criteria

that are based on measures of the information gain when new experiments are carried out. The

proposed criterion depends on the volumes of the confidence regions of the model parameters and

presents a number of advantageous aspects, such as the conciliation of the usual experimental design

objectives and the fact that the obtained criterion values can be easily interpreted in terms of the

information eliminated after carrying out additional experiments. Besides, the proposed design

criterion can easily accommodate multiobjective experimental design approaches, as shown in the

examples.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling of chemical processes comprises the development of
mathematical expressions to describe the correlations that exist
among the observed process variables. Model development can be
based on theoretical reasoning or on empirical procedures, but
certain unknown model parameters must always be estimated
from available experimental data. Several models can be pro-
posed simultaneously and successfully to explain the available
data after suitable estimation of model parameters and within the
experimental precision; therefore, the true state of nature is
uncertain and not known. The main objective pursued by experi-
mental design procedures is to approach the true state of nature

through reduction of the uncertainty content of the modeling
problem, described in terms of the number of candidate models
and the uncertainties of the respective model parameters
(Chernoff, 1972; Lauter, 1974; Dette and O’Brien, 1999).

1.1. Information measures

The concept of information is associated with the number of
distinct states that can be regarded as the true state of nature

(DeGroot, 1962); the higher the number of plausible states, the

lower the information content of the analyzed problem. Entropy is
an information measure that was originally developed by Shannon
(1948) to represent the information content in discrete problems. If
the discrete variable Yd can assume the values {Yd

(1), Yd
(2), y, Yd

(n)}
with probabilities {pd

(1), pd
(2), y, pd(n)}, then the entropy H of the

analyzed discrete problem can be written as

HðYdÞ ¼ �
Xn

i ¼ 1

pdðY
ðiÞ
d ÞlogðpdðY

ðiÞ
d ÞÞ ð1Þ

For continuous random variables described by the probability
distribution function (pdf) p(Y), the entropy can be written in the
form (Cover and Thomas, 1991):

HðYÞ ¼ Epð�logpðYÞÞ ¼�
Z

pðYÞ logðpðYÞÞdY ð2Þ

As the number of plausible states that can be used to represent
the analyzed problem decreases, entropy also decreases (desired
scenario). For this reason, entropy functions have been used to
formulate experimental design procedures (Lindley, 1956; Bard,
1974; Soofi, 1994), although Eq. (2) can be negative and sensitive
to reparameterization, which can cause some application pro-
blems (Soofi, 1994).

In order to compare two distinct pdfs p(1)(Y) and p(2)(Y) and
characterize the information gain in a stochastic problem, the
Kullback–Leibler divergence criterion (DKL, also known as relative
entropy) has been widely used (Kullback and Leibler, 1951;
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Kullback, 1959) in the form:

DKLðpð1Þ:pð2ÞÞ ¼ Epð1Þ ðYÞ log
pð1ÞðYÞ
pð2ÞðYÞ

� �� �
ð3aÞ

DKLðpð1Þ:pð2ÞÞ ¼
Z

pð1ÞðYÞ ln pð1ÞðYÞ
pð2ÞðYÞ

� �
dY ð3bÞ

where p(1)(Y) is usually regarded as the true or best representation
of the pdf. Eq. (3) is strictly positive, is invariant to reparameteriza-
tion and can be interpreted in terms of the information contained in
p(1)(Y) that can lead to discrimination between p(1)(Y) and p(2)(Y)
(Cover and Thomas, 1991). Despite that, Eq. (3) is not commutative,
cannot be used for comparison of multiple pdfs and is not a true
information measure (Cover and Thomas, 1991), making its use
difficult when one does not know which pdf is the true or the best
one. In order to overcome some of these drawbacks, the mutual

Kullback–Leilber divergence criterion (MDKL) has been proposed as
(Soofi, 1994)

MDKLðpð1Þ,pð2ÞÞ ¼DKLðpð1Þ:pð2ÞÞþDKLðpð2Þ:pð1ÞÞ ð4Þ

Nevertheless, it is not possible to use and evaluate the MDKL

when more than two pdfs are considered simultaneously. Besides,
as the computation of DKL(p(1):p(2)) can lead to spurious numer-
ical values, some additional works proposed the renormalization
of Eq. (4) (López-Fidalgo et al., 2007, 2008).

Another classical information measure is the Lindley informa-
tion (Lindley, 1956). Let us denote x0 as the experimental results
already obtained and x as the set of plausible experimental
conditions, containing one or more experiments that can be
performed by the analyst. The Lindley information measures the
information gain of the experimental design x as the change in
entropy of the analyzed variable Y as (Lindley, 1956; Parmigiani
and Inoue, 2009)

IðxÞ ¼ Ep9xðYÞð�logpðYÞÞ�Ep9xðYÞð�logp9xðYÞÞ ð5aÞ

IðxÞ ¼
Z

p9xðYÞ ln
p9xðYÞ
pðYÞ

 !
dY ð5bÞ

where p9x(Y) represents the posterior pdf of Y, given the
experimental design x; and p(Y) represents the prior pdf of Y.
Therefore, the Lindley information as presented in (5b) is the DKL

when the posterior and prior pdfs of variable Y are considered. As
a consequence, all drawbacks described below for DKL-based
information measures also apply to Eq. (5).

In order to formulate a more general measure of the informa-
tion content of a particular problem, it is important to emphasize
that the reduction of uncertainty is related to the elimination of
possible states of nature, allowing for presentation of the following
postulate (DeGroot, 1962):

Postulate I: ‘‘The information gain when a set of experiments x
is performed can be described as the percentage of the states of
the nature that were regarded as possible states of nature before
performing x and that were discarded after performing x.’’

Elimination of 100% of the possible states of nature after perform-
ing x indicates that an absolutely true solution was found by the
researcher (which is indeed impossible, given the unavoidable
experimental errors of variable measurements) or that preliminary
propositions were proved to be incorrect after observation of x
(meaning that additional propositions are required). It must be
observed that the number of possible states of nature can increase
after performing x, indicating that the researcher knew less about
the analyzed phenomenon than initially imagined (DeGroot, 1962;
Parmigiani and Inoue, 2009). As the information gain must always
be positive (Ginebra, 2007), the gain of information must consider
the knowledge that the researcher had before performing x, as
evaluated after performing x (DeGroot; 1962, Ginebra, 2007). In

more concrete mathematical terms, let us consider x0 as the set of
preliminary experimental data and x as the set of experimental
results for which one wants to evaluate the information gain.
Therefore, if cY(x) represents the information gain after performing
x, then (DeGroot, 1962)

cY
ðxÞ ¼ 1�

Uncertainty after ðx0
þxÞ

� �
Uncertainty after x0, assuming that x is known
� �

ð6Þ

One can assume that the term in the denominator of Eq. (6)
(the uncertainty after x0, assuming that x was known) can be
represented by the union of the uncertainty that the researcher
imagined to have at x0 (S1) and the uncertainty that the
researcher really had at x0 (S2), as illustrated in Fig. 1 (the
uncertainty can be computed as the total number of possible
parameter values). S1 represents the set of possible parameter
values after x0; however, after performing x, the researcher can
re-evaluate the set of possible parameter values at x0 as the ones
contained in region S2. Finally, after performing the design x0+x,
the researcher concludes that the possible parameters values are
the ones contained in region S3. Thus, Eq. (6) can be rewritten as

cY
ðxÞ ¼ 1�

S3

S1 [ S2
ð7Þ

which can be applied as illustrated in the following illustrative
example.

1.2. Illustrative Example 1

Let us assume that an analyst wants to design the number of
stages for a distillation column. According to available experi-
mental data (x0), the analyst estimates some model parameters
and concludes that the number of stages y should be in the range
19–21. New experiments are then performed (x), allowing the
analyst to re-estimate model parameters. When this new set of
parameters are used to analyze the data available at x0 (for
instance, as initial guesses for a new round of parameter estima-
tion), the analyst concludes that the number of stages y should be
in the range 20–23 after x0. Taking into account the new
experimental design x, the analyst concludes that the number of
stages y should be in the range 22–23. In this case, assuming
that the size of the uncertainty region can be calculated as the
range of plausible number of stages (Y¼{y}), S1¼{19,20,21},
S2¼{20,21,22,23}, S1[S2¼{19,20,21,22,23} and S3¼{22,23}.
Thus, according to Eq. (7), it is possible to obtain:

cY
ðxÞ ¼ 1�

2

5
, cY

ðxÞ ¼ 0:6

meaning that 60% of the possible states of nature were eliminated
after x, which corresponds to the information gain after x.

As shown below, Eqs. (6) and (7) can be extended to allow for
analysis of problems involving continuous variables, multiple
pdfs and multiple candidate models.

S1

S2

S3 

Fig. 1. Information gain in terms of confidence regions of the states of nature.
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1.3. Parameter estimation and the Fisher information matrix

Given some experimental data Z, which are subject to normal
fluctuations, and assuming that the proposed model is correct, the
maximum likelihood principle states that the parameters can be
obtained through minimization of the following objective func-
tion (Bard, 1974; Schwaab and Pinto, 2007):

F ¼ ðZexp�ZcalcÞ
T V�1

Z ðZ
exp�ZcalcÞ ð8Þ

where VZ represents the covariance matrix of experimental
uncertainties and Zexp and Zcalc represent the experimental and
calculated variables, respectively. During the estimation of model
parameters, the experimental uncertainties are transferred to
parametric uncertainties, which are usually described by the
covariance matrix of parameter estimates VY, as (Bard, 1974;
Schwaab and Pinto, 2007)

VY ¼
@Z

@Y

� �T

V�1
Z

@Z

@Y

� � !�1

ð9Þ

where the sensitivity matrix @Z=@Y
� �

must be calculated with the
estimated model parameters. V�1

Y is also known as the Fisher
information matrix, as it can be used to describe the information
content of the estimated states Y.

Parameter uncertainties can be described in terms of the
confidence regions of model parameters, which can be understood
as the set of plausible parameter values that can describe the
available experimental data in accordance with the distributions
of measurement errors and proper statistical tests, after establish-
ing a desired confidence level. Detailed definition and computa-
tion of confidence regions of model parameters are presented
elsewhere (Koch, 2007; Buzzi-Ferraris and Manenti, 2009).

If normal fluctuation of parameter uncertainties is assumed,
which is rigorously valid only when the model is linear in the
parameters and/or when experimental errors are small (Chernoff,
1972; Schwaab and Pinto, 2007), the confidence region of parameter
estimates has the well-known ellipsoidal shape and VY contains
information about the confidence region of model parameters, as
illustrated in Fig. 2 for a model containing two parameters y1 and y2.
When the model is nonlinear, the confidence region of parameter
estimates may present very complex shapes, as shown by Schwaab
et al. (2008a). Even so, for practical reasons the ellipsoidal shape of

the confidence region has been always assumed for formulation of
experimental design criteria for estimation of precise parameters
(Bard, 1974; Atkinson et al., 2007; Schwaab and Pinto, 2007;
Franceschini and Macchietto, 2008).

The adequacy of the model fit is usually evaluated in terms of
the chi-square distribution, as (Bard, 1974; Schwaab and Pinto,
2007)

w2
N�Np,ð1�aÞ=2rFrw2

N�Np,ð1þaÞ=2 ð10Þ

where w2 represents the chi-square function calculated with N–Np

degrees of freedom and confidence level a, N represents the
number of experimental points and Np represents the number
of parameters of the model. Based on Eq. (10), Schwaab et al.
(2006) proposed the definition of model probabilities in the form

P¼ 1�Prðw2
n ¼ FÞ ð11Þ

where P represents the model probability and Prðw2
n ¼ FÞ is the

cumulative pdf of the chi-square function evaluated at w2
n ¼ F. The

analyzed model can be regarded as good if the model probability
is inside the range:

ð1�aÞ
2

rPr
ð1þaÞ

2
ð12Þ

1.4. Experimental design

Criteria for design of experiments for estimation of precise
parameters are normally associated with the minimization of
some metric of the posterior covariance matrix of parameter
uncertainties V̂Y. The matrix V̂Y differs from matrix V̂Y because
V̂Y is estimated with the help of available models and respective
parameter values at the analyzed experimental condition, which
means that some prior knowledge of the model and respective
parameters is assumed. The matrix V̂Y can be calculated as (Bard,
1974; Atkinson et al., 2007)

V̂Y ¼
@ZðxÞ
@Y

� �T

Zcalc

VZðxÞ�1 @ZðxÞ
@Y

� �
Zcalc

þVY
�1

 !�1

ð13Þ

where the sensitivity matrix ð@ZðxÞ=@YÞ must be computed at x.
Experimental design criteria for estimation of precise parameters are
generally defined as the minimization of some function of the
eigenvalues of matrix V̂Y: summation of the eigenvalues (A-optimal,
trace criterion), multiplication of the eigenvalues (D-optimal, volume
criterion), ratio between the maximum and minimum eigenvalues
(E-optimal, shape criterion), among others. Some other criteria are
defined in terms of the eigenvalues of the covariance matrix of
model prediction uncertainties, although application of different
criteria frequently lead to similar results, as stated by the General
Equivalence Theorem (Kiefer and Wolfowitz, 1960; White, 1973;
Bard, 1974; Atkinson et al., 2007).

In order to avoid the inversion of the covariance matrix of
model parameters, the Fisher information matrix (J) is frequently
used and defined as

J¼ ðV̂YÞ
�1
¼

@ZðxÞ
@Y

� �T

Zcalc

VZðxÞ�1 @ZðxÞ
@Y

� �
Zcalc

þV�1
Y ð14Þ

The extension of the previously described criteria to Eq. (14) is
straightforward, as the eigenvalues of J are the inverse of the
eigenvalues of V̂Y.

When poor prior knowledge of the models and respective
parameters values is available, the efficiency of experimental
designs based on Eqs. (13)–(14) can be significantly reduced
(Asprey and Macchietto, 2002). In these cases, robust experimen-
tal designs may be required, assuming that model parameters are
known in a range YminrYrYmax (Dette et al., 2005) and

�2

�2∝

∝

�1

�1

Fig. 2. Confidence region of parameters y1 and y2 for model y¼xy1+y2. The radii

of the ellipsis are proportional to the square roots of eigenvalues of the matrix VY.
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defining the efficiency of estimation as (Atkinson et al., 2007)

effEðx,YÞ ¼
Jðx,YÞð Þ
�� ��

maxx Jðx,YÞð Þ
�� ��

 !1=Np

ð15Þ

where 9.9 represents a measure (usually the determinant) of the
Fisher information matrix and 1/Np is a normalization factor
(Atkinson et al., 2007). The experimental design is carried out
with the help of the Maximin, introduced by Dette (1997), or
Bayesian criteria, in the form (Dette et al., 2005, 2007):

xotm ¼maxxminYeffEðx,YÞ ð16Þ

xotm ¼ argmaxx

Z
pðYÞeffEðx,YÞdY ð17Þ

where p(Y) represent the pdf of Y. Eqs. (16), (17) pose a very
hard optimization task, as multiple Fisher information matrices,
determinants and integrals must be computed. Nevertheless, the
use of Eqs. (16) and (17) can lead to significant reduction of the
experimental efforts required to estimate the model parameters
with good precision (Dette et al., 2005). The above criteria have
been extensively studied for classes of polynomial models (Dette,
1993, 1994; Dette and Studden, 1995).

Experimental design procedures for model discrimination
usually seek for experimental conditions where divergence (D)
among model predictions is highest. Published criteria propose
that model predictions should be performed with estimated
model parameters (Hunter and Reiner, 1965; Buzzi-Ferraris and
Forzatti, 1983; Schwaab et al., 2006; Atkinson and Fedorov,
1975a, 1975b), and the efficiency of a discrimination function
can be obtained as

effDðx,YðnÞÞ ¼
Dðx,YðnÞÞ

maxx Dðx,YðnÞÞ
� � ð18Þ

Based on principles of the Information Theory and following a
Bayesian approach, Box and Hill (1967) defined a set of model
probabilities and took into account model uncertainties in order to
formulate a Kullback–Leibler divergence measure of the model
responses. Buzzi-Ferraris and Forzatti (1983) showed that the
divergence measure defined by Box and Hill presented many
undesired mathematical properties, such as the dependence on
experimental ordering; for this reason, Buzzi-Ferraris and co-work-
ers introduced new design criteria based on the divergence among
model responses, taking into account model uncertainties, but
without use of model probabilities (Buzzi-Ferraris and Forzatti,
1983; Buzzi-Ferraris et al., 1984, 1990). Recent propositions (Otsu,
2008; López-Fidalgo et al., 2008; Tommasi, 2007; Tommasi and
Lopez-Fidalgo, 2010) also make use of the Kullback–Leibler diver-
gence criterion. In some cases, a normalization of the Kullback–
Leibler divergence criterion is necessary to avoid computation of
spurious numerical values (López-Fidalgo et al., 2007, 2008), as
already described. More recently, Alberton et al. (submitted for
publication) proposed that each model could be regarded as a
possible true state of nature, so that the discriminant D should
contain two distinct terms: the number of models discriminated
after performing the experimental design x and the relative dis-
crimination efficiency, as described in Eq. (18).

Seemingly, Hill et al. (1968) were the first to propose the
conciliation of experimental design criteria for precise parameter
estimation and model discrimination. They proposed the max-
imization of a weighted sum of efficiencies for discrimination and
precise parameters estimation, although weighting values were
defined heuristically as a function of the number of experi-
ments. Atkinson (2008) proposed a similar approach, based on
the multiplication of the design efficiencies, including the weight-
ing values in the optimization scheme. Tommasi (2009) followed

a similar approach, based on the Kullback–Leibler divergence
criterion. Biswas and Chaudhuri (2002) presented a procedure for
the simultaneous experimental design for model discrimination
and precise parameter estimation for a class of nested models.

Lauter (1974) proposed a criterion for robust experimental
design that can be used when multiple models are considered
simultaneously, as

xotm ¼ argmaxx

XM
n ¼ 1

log Jðx,YðnÞÞ
� ���� ��� ð19Þ

Such criterion has been extensively explored for polynomial
models in the works of Dette (1990, 1992). Similar criteria were
proposed by different authors (Atkinson and Donev, 1992; O’Brien
and Rawlings, 1996), after modification of the weighting factors as

xotm ¼ argmaxx

XM
n ¼ 1

log Jðx,YðnÞÞ
� ���� ���wðnÞ=NpðnÞ

ð20Þ

where w(n) represents the weight (importance) given to model n and
Np(n) represents the number of parameters of model n.

Atkinson and Fedorov (1975a, 1975b) presented a robust
optimal design for model discrimination, where one model is
considered to be the true one and re-estimation of the parameters
values is performed for all the remaining models. This procedure
was analyzed in detail by Dette and Titoff (2009) in a series of
practical problems. In other approaches that do not consider one
model as the true one and do not re-estimate the parameters of
the models, Schwaab et al. (2008b) and Donckels et al. (2009)
showed that model discrimination can be improved when the
covariance matrix of parameter estimates is updated during the
experimental design procedure. This was also supported
by Alberton et al. (2010), who proposed a multiobjective for-
mulation of the simultaneous experimental design problems for
parameter estimation and model discrimination.

In all previously analyzed procedures, a great number of
objective functions can be formulated for estimation of precise
model parameters of multiple models, discrimination of multiple
model candidates, simultaneous estimation of model parameters
and discrimination of rival models, etc. As a consequence, multi-
objective formulations of the experimental design problem have
been proposed by Cook and Wong (1994) and Clyde and Chaloner
(1996). Particularly, Donckels et al. (2010) considered a multi-
objective formulation when more than one model is analyzed
simultaneously and concluded that it may be preferable to per-
form the design for estimation of precise model parameters than
for model discrimination when the initial uncertainty of model
parameters is high. Alberton et al. (2010) also analyzed the
simultaneous experimental design problems for parameter esti-
mation and model discrimination and concluded that both objec-
tives can be frequently conciliated.

In a complex scenario, when multiple rival models are con-
sidered simultaneously and multiple objectives are pursued, one
can wonder whether the analyst can indeed understand the
meaning of the proposed optimization problem and of the
selected experimental condition. Therefore, it seems convenient
to develop a design criterion that can be easily interpreted by the
analyst and hopefully conciliate the different pursued objectives.

2. Conciliating model discrimination and precise parameter
estimation through information measures

Let us assume that M rival models are considered, that some
experimental data Zexp from experimental design x0 are available
and that model parameters can be estimated.

A.L. Alberton et al. / Chemical Engineering Science 66 (2011) 1940–1952 1943
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The volume of the confidence region of parameter estimates
obtained for model n at x0 is VCRðnÞðx0

Þ. As a new experimental
design x may reveal that the parameter uncertainty was different
from imagined (see Fig. 1), VCRðnÞ

9ZðxÞðx
0
Þ represents the volume of

the confidence region of parameter estimates for model n at x0,
but with knowledge of x. Thus, let us denote VCRTðnÞðx0

Þ as the
total uncertainty at x0, which can be represented in the form:

VCRT ðnÞðx0
Þ ¼ Volume CRðnÞðx0

Þ [ CRðnÞ
9ZðxÞðx

0
Þ

� �
ð21Þ

where CRðnÞðx0
Þ and CRðnÞ

9ZðxÞðx
0
Þ represent the confidence regions of

the parameters of model n at x0, not considering and considering

the data at x, respectively.

The final volumes of the confidence regions at x0+x are

VCRðnÞðx0
þxÞ. In Fig. 1, the volume VCRðnÞðx0

Þ is related to the number

of elements of S1, the volume VCRðnÞ
9ZðxÞðx

0
Þ is related to the number of

elements of S2, the volume VCRTðnÞðx0
Þ is related to the number of

elements of S1[S2 and the volume VCRðnÞðx0
þxÞ is related to the

number of elements of S3. Although the number of elements may be
infinite in the case of continuous variables, the ratio between the
number of elements in S3 and the number of elements in (S1[S2) for

model n corresponds to the ratio between the volumes VCRðnÞðx0
þxÞ=

VCRTðnÞðx0
Þ.

Based on Postulate I (and as shown in Appendix A), it is
possible to derive the following criterion for determination of the
information gain after design x:

cY
ðxÞ ¼

XM
n ¼ 1

wðnÞ 1�
VCRðnÞðx0

þxÞ
VCRT ðnÞðx0

Þ

 !
ð22Þ

where w(n) are a weighting factors given to model n.
One must observe that Eq. (22) leads to conciliation of the two

pursued objectives: model discrimination and precise parameters
estimation. If one model is eliminated after performing x, the volume
of the confidence region of the respective parameter estimates
vanishes, meaning that model discrimination leads to high informa-
tion gain. On the other hand, improvement of the precision of the
parameter estimates of any of the analyzed models also leads to
information gain. Besides, the information function presented in the
Eq. (22) is very informative, as the information gain values lie
between 0 and 1 and provide information about the relative amount
of possible states of nature that was eliminated after performing x.
For this reason, the use of Eq. (22) may be advantageous during the
experimental design for model discrimination and estimation of
precise model parameters.

2.1. Illustrative Example 2

Let us assume that the researcher is analyzing four models

(n¼1,2,3,4), each of them containing two parameters y1
(n) and y2

(n).

After execution of the initial experimental design x0, the volumes

of the confidence regions of the parameter estimates VCRðnÞðx0
Þ

are presented in Fig. 3. After the design of the additional set of

experiments x, the evaluation of the confidence regions with

experimental data at x0 but for parameter estimated at x0+x lead

to the volume of confidence regions VCRðnÞ
9ZðxÞðx

0
Þ and VCRT ðnÞðx0

Þ, as

illustrated in Fig. 4. After re-estimation of model parameters and
model probabilities, model 4 can be eliminated (P is lower than
the minimum limit in Eq. (12)), so that the confidence regions of
parameter estimates become as illustrated in Fig. 4C.

2.2. Weighting factors

w(n) weighs the importance of model n and can be defined by
following distinct lines of thought. For instance, in terms of the
plausible states of nature, w(n) can be written as

wðnÞ ¼
VCRT ðnÞðx0

ÞPM
k ¼ 1 VCRT ðkÞðx0

Þ
ð23aÞ

Alternatively, if similar importance is assigned to all models,
then:

wðnÞ ¼
1

M
ð23bÞ

One can also assume that w(n) should be related to the model
probability P(n), as

wðnÞ ¼ PðnÞ ð23cÞ

Other weighting factors can be adopted; however, for the sake
of simplicity, the use the weighting factors presented in Eq. (23b)
or (23c) can be recommended (Alberton, 2010).

2.3. Calculating the volumes of the confidence regions

The confidence regions of parameter estimates are generally
assumed to be ellipsoidal, as illustrated in Figs. 3 and 4. The
determination of VCRT ðnÞðx0

Þmay pose a very hard numerical task,
as the ellipses are likely to present intersections (or the con-
fidence regions are not ellipsoidal at all, as shown by Schwaab
et al., 2008a), so that

VCRTðnÞðx0
Þ ¼ VCRðnÞðx0

ÞþVCRðnÞ
9ZðxÞðx

0
Þ�Volume CRðnÞðx0

Þ \ CRðnÞ
9ZðxÞðx

0
Þ

� �
ð24Þ

If there is no intersection between the confidence regions

CRðnÞðx0
Þ and CRðnÞ

9ZðxÞðx
0
Þ, then the total volume is given as the sum

of the individual volumes. On the other hand, if one region is
contained by another, than the total volume of the confidence

region is equal to the maximum value of VCRðnÞðx0
Þ or VCRðnÞ

9ZðxÞðx
0
Þ.

Then, it is possible to write:

max VCRðnÞðx0
Þ,VCRðnÞ9ZðxÞðx

0
Þ

� �
rVCRT ðnÞðx0

ÞrVCRðnÞðx0
ÞþVCRðnÞ9ZðxÞðx

0
Þ ð25Þ

θ1
(2)

θ2
(2)

θ1
(1)

θ2
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θ1
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θ2
(3)

θ1
(4)

θ2
(4)

Model 01 Model 02 Model 03 Model 04

Fig. 3. Initial confidence regions of model parameters in the illustrative example.
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If the parameter estimates do not change very significantly
during the analysis, as usually assumed, it is reasonable to write:

VCRT ðnÞðx0
Þ �max VCRðnÞðx0

Þ,VCRðnÞ
9ZðxÞðx

0
Þ

� �
ð26Þ

Therefore,

VCRðnÞðx0
þxÞ

VCRT ðnÞðx0
Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9V ðnÞY ðx

0
þxÞ9

q
max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9V ðnÞY ðx

0
Þ9

q
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9V ðnÞY9ZðxÞðx

0
Þ9

q� � ð27Þ

and

cY
ðxÞ ¼

XM
n ¼ 1

wðnÞ 1�

min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðnÞðx0

Þ

��� ���r
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðnÞ
9ZðxÞðx

0
Þ

��� ���r� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðnÞðx0

þxÞ
��� ���r

0
BBB@

1
CCCA ð28Þ

Eqs. (27) and (28) seem more appropriate for implementation
of numerical procedures.

2.4. Predicting experimental responses

In order to evaluate the volumes of confidence regions after
performing x for a given mathematical model, it is necessary to
know the experimental response and re-estimate the model
parameters. In order to predict the experimental responses, one
may rely on the available models or not. For instance, it seems
reasonable to assume that the response variables for a given
experimental design x can be anywhere inside the experimental
range DZ(x). If one does not want to rely on model predictions, it
is possible to maximize the information gain for the worst

possible response value in DZ(x), as

x¼ argmaxxminZðxÞ � DZðxÞ

XM
n ¼ 1

wðnÞ 1�
VCRðnÞðx0

þxÞ
VCRT ðnÞðx0

Þ

 ! !
ð29Þ

Subject to :
XM

n ¼ 1
jðx,nÞoM

where j(x,n) is a binary function, which is equal to 1 if model n is
eliminated and 0 otherwise. One should observe that the optimi-
zation problem proposed in Eq. (29) may become untreatable by
numerical reasons.

It is certainly preferable to believe that experimental
responses can be predicted by the models as usual criterions in
the literature (Atkinson and Fedorov, 1975a, 1975b; Buzzi-
Ferraris and Forzatti, 1983; Schwaab et al., 2006). However, one
might also consider a multiobjective problem, where each model
can be regarded as the true model for computation of experi-
mental responses. As a consequence, the number of objective
functions becomes equal to M and the set of objective functions
OF can be given as

OF ¼ cY
9Zð1ÞðxÞ,c

Y
9Zð2ÞðxÞ,c

Y
9Zð3ÞðxÞ,. . .,c

Y
9ZðM�1ÞðxÞ,c

Y
9ZðMÞðxÞ

n o
ð30Þ

where the volumes of confidence regions at x0+x and at x0 can be
evaluated with outputs of model m as

VCRðnÞðx0
þxÞ ¼ VCRðnÞ9ZðmÞðxÞðx

0
þxÞ ð31aÞ

VCRTðnÞðx0
Þ ¼max VCRðnÞðx0

Þ,VCRðnÞ
9ZðmÞ ðxÞðx

0
Þ

� �
ð31bÞ

As originally suggested by Atkinson and Fedorov (1975a,
1975b), the parameters of the rival models can be re-estimated
when one of the models is assumed to be the true one. Since

VCR(n)(�0)

VCRT(n)(�0)

VCR(n)(�0+�)

|Z(�)VCR(n)
Confidence regions at �0

Confidence regions at �0

Information gain 

Fig. 4. Confidence regions of model parameters and information gains in the illustrative example, after performing the additional set of experiments.
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several objectives can be formulated, the number of possible
solutions can be infinite and the selection of a particular experi-
mental design in the Pareto front must follow some multiobjec-
tive decision criterion, such as the Maximin, Bayesian or weighted
sum of criteria, as (Alberton et al., submitted for publication;
Chernoff and Moses, 1959; Donckels et al., 2010)

xotm ¼ argmaxxminm cY
9ZðmÞ ðxÞðxÞ

h i
ð32aÞ

xotm ¼ argmaxx

XM
m ¼ 1

PðmÞcY
9ZðmÞðxÞðxÞ ð32bÞ

xotm ¼ argmaxx
1

M

XM
m ¼ 1

cY
9ZðmÞ ðxÞðxÞ ð32cÞ

3. Numerical procedure

The algorithm used for evaluation of the experimental design
criteria at x is presented in Fig. 5. For simplicity and if necessary,
the re-estimation step can be skipped and parameters can be
assumed to be the same, while the covariance matrix of model
parameters can be updated with the help of Eq. (13). In this case,

the adequacy of the model fit can also be updated in the form:

FðnÞ9ZðmÞ ðxÞ ¼ FðnÞ þ ZðnÞðxÞ�ZðmÞðxÞ
� �T

VZðxÞ�1 ZðnÞðxÞ�ZðmÞðxÞ
� �

ð33Þ

where FðnÞ9ZðmÞðxÞ is the objective function for model n calculated with

experimental data at x0 and data at x simulated with model m, F(n)

is the objective function for model n calculated with data at x0,

VZ(x) is the covariance matrix of experimental uncertainties at x,

Z(n)(x) is the response of models n at x and Z(m)(x) is the response

of models m at x. With this simplification, the algorithm becomes
simpler and more robust, as iterative model computations
required by the parameter estimation procedure are avoided.
Despite that, it becomes impossible to evaluate how flexible the
proposed models are to accommodate new experimental data and
the evaluation becomes certainly poorer (Alberton et al.,
submitted for publication).

In order to obtain the optimal experimental design, an opti-
mization algorithm must be employed. In this work, optimization
was performed through grid search. This choice does not affect
any of the conclusions presented here, as other alternative
techniques might certainly be used to perform the optimization
task proposed here. Besides, in most practical experimental
design problems, the candidate experiments are indeed presented
in the discrete form, as a set of discrete experimental conditions
that can be performed at the experimental plant.

−

−

−

Fig. 5. Algorithm used for computation of cY
9Z mð Þ ðxÞðxÞ for all models m (m¼1,M) for an experimental design candidate x.
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4. Examples

Two numerical examples are presented below to illustrate the
applicability of the new proposed procedure. In both examples,
preliminary experiments were carried out to allow for initial
estimation of model parameters. In both examples, the confidence
level was considered to be equal to 95%. Models probabilities
were calculated as recommended by Schwaab et al. (2006),
according to Eq. (11).

Parameter estimation was performed with a hybrid numerical
procedure, as described by Schwaab et al. (2008a, 2008b).
Initially, parameter search was carried out with the Particle
Swarm Optmization (PSO) procedure (Kennedy and Eberhart,
1995); afterwards, the best parameter values were used as initial
guesses in a Gauss–Newton procedure (Schwaab et al., 2010), as
described in the classical literature (Bard, 1974).

For selection of the optimal design, a simple grid search
technique was implemented. In this case, the experimental range
was divided into a finite number of distinct characteristic experi-
mental conditions (discretization of the original experimental
region). Afterwards, the procedure described in Fig. 5 was applied
to each individual experimental condition. Re-estimation of
model parameters was performed as described previously
(Schwaab and Pinto, 2007; Schwaab et al., 2010). The obtained
criterion values, obtained when each of the rival models was
assumed to be the correct one, were stored for all experimental
conditions. Finally, the Maximin, Bayesian and Equal Model
Weights criteria were computed, as presented in Eq. (32). All
numerical procedures were implemented in Fortran.

4.1. Example 1—a simple linear problem

The main objective of Example 1 is providing a simple test
case, which allows for simple computations and easy under-
standing of the obtained results. Let us consider two models:

Model 01: y¼ yð1Þ x
Model 02: y¼ yð2Þ x1,5

The experimental variance is assumed to be constant and
equal to sy

2
¼4�10�4. The true model used for generation of

pseudo-experimental data was the second model, with y(2)
¼1.

Three initial experiments were simulated with model 2, as shown
in Table 1. The experimental data were corrupted with a random
noise signal generated in accordance with a normal distribution,
with zero mean and variance sy

2.
The sets of model parameters contain a single parameter for

each model: Y(1)
¼{y(1)} and Y(2)

¼{y(2)}. Parameters y(1) and y(2)

can be estimated, as

yð1Þest
¼

P3
i ¼ 1 yi

expxiP3
i ¼ 1 x2

i

¼ 0:6676 ð34aÞ

VCRð1Þðx0
Þ ¼

ffiffiffiffiffiffiffiffiffi
s2
yð1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

yP3
i ¼ 1 x2

i

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00133
p

ð34bÞ

yð2Þest
¼

P3
i ¼ 1 yexp

i x1,5
iP3

i ¼ 1 x3
i

¼ 1:0059 ð34cÞ

VCRð2Þðx0
Þ ¼

ffiffiffiffiffiffiffiffiffi
s2
yð2Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

yP3
i ¼ 1 x3

i

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00298
p

ð34dÞ

Final objective functions for models 1 and 2 are F(1)
¼5.1738

and F(2)
¼0.5341. The upper limit of the chi-square function with

two degrees of freedom and confidence level of 97.5% is equal to
Fw2¼7.3777. Therefore, both objective functions can be regarded
as good model candidates. The initial experimental design con-
tains three experiments x0

¼{x1, x2, x3} and a fourth experiment
x¼{x4} must be performed to improve the parameter quality and
allow for model discrimination. Given the previous results, both
models should be regarded as true models. Taking model 1 as the
true model, the parameters values y(1) and y(2) and their respec-
tive variances can be calculated as

yð1Þest
9Zð1ÞðxÞ ¼ yð1Þest

ð35aÞ

VCRð1Þ9Zð1ÞðxÞðx
0
þxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yð1Þ9Zð1ÞðxÞ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

y

x2
4þ

P3
i ¼ 1 x2

i

vuut ð35bÞ

yð2Þest
9Zð1ÞðxÞ ¼

y1
estx4

� �zfflfflfflfflfflffl}|fflfflfflfflfflffl{y4
exp

x1,5
4 þ

P3
i ¼ 1 yi

expx1,5
i

x3
4þ

P3
i ¼ 1 x3

i

ð35cÞ

VCRð2Þ
9Zð1ÞðxÞðx

0
þxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yð2Þ9Zð1ÞðxÞ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

y

x4
3þ

P3
i ¼ 1 x3

i

vuut ð35dÞ

Calculation of the total uncertainty at x0 requires the calcula-
tion of the determinant at x0 with parameters estimated at x0+x.
As the analyzed models are linear with respect to model para-
meters, the parameter uncertainty does not depend on the
parameters values. Thus, in this case one can observe that the
uncertainty at x0 with parameters estimated at x0+x is equal to
the uncertainty at x0 with parameters estimated at x0. Therefore:

VCRðnÞ
9ZðmÞðxÞðx

0
Þ ¼ VCRðnÞðx0

Þ ð36Þ

VCRTðnÞðx0
Þ ¼max VCRðnÞðx0

Þ,VCRðnÞ
9Z mð Þ ðxÞðx

0
Þ

� �
¼ VCRðnÞðx0

Þ ð37Þ

The experimental result obtained at x4 can lead to elimination
of model 2 if

j2 ¼
1 if Fð2Þ4Fw2

0 if Fð2ÞrFw2

(
ð38Þ

where Fw2¼9.3484. Then,

cY
9Zð1ÞðxÞðxÞ ¼wð1Þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yð1Þ9Z1ðxÞ

s2
yð1Þ

vuut
0
B@

1
CAþwð2Þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yð2Þ9Z1ðxÞ

s2
yð2Þ

vuut
ð1�j2Þ

0
B@

1
CA
ð39Þ

If w(1) and w(2) are assumed to be equal:

cY
9Zð1ÞðxÞðxÞ ¼

1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yð1Þ9Z1ðxÞ

s2
yð1Þ

vuut
0
B@

1
CAþ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yð2Þ9Z1ðxÞ

s2
yð2Þ

vuut
ð1�j2Þ

0
B@

1
CA ð40Þ

which can be promptly computed with standard spreadsheets.

Table 1
Initial experiments for Example 1.

x yexp

0.1 0.0405

0.2 0.1010

0.5 0.3520
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Similar computations can be performed, by assuming that
model 2 is the correct one, leading to

yð2Þest
9Zð2ÞðxÞ ¼

yest
2 x4

1,5
� �zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{yexp

4

x4þ
P3

i ¼ 1 yexp
i xi

x2
4þ

P3
i ¼ 1 x2

i

ð41aÞ

VCRð1Þ9Zð2ÞðxÞðx
0
þxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yð1Þ9Zð2ÞðxÞ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

y

x4
2þ

P3
i ¼ 1 x2

i

vuut ð41bÞ

yð2Þest
9Zð2ÞðxÞ ¼ yest

2 ð41cÞ

VCRð2Þ
9Zð2ÞðxÞðx

0
þxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yð2Þ9Zð2ÞðxÞ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

y

x3
4þ

P3
i ¼ 1 x3

i

vuut ð41dÞ

j1 ¼
1 se Fð1Þ4Fw2

0 se Fð1ÞrFw2

(
ð42Þ

cY
9Zð2ÞðxÞðxÞ ¼

1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yð1Þ9Zð2ÞðxÞ

s2
yð1Þ

vuut
ð1�j1Þ

0
B@

1
CAþ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yð2Þ9Zð2Þ ðxÞ

s2
yð2Þ

vuut
0
B@

1
CA
ð43Þ

The values of the analyzed experimental design criteria are
presented in Fig. 6. Considering model 1 as the true model, one
should not expect to eliminate model 2 when x4o0.68. Never-
theless, for x4Z0.68 model 2 can be discriminated from model 1,
which is indicated by the discontinuity in the value of the
information criterion in Fig. 6A. Considering model 2 as the true
one, a narrow discriminating region is observed for x4 near to 0.2,
as indicated by the discontinuity in Fig. 6B. However, despite the
existence of this narrow region, model 1 is sufficiently flexible to
accommodate the additional experimental point when x4o0.59.
For x4Z0.59, model 1 is expected to be discriminated from
model 2, as indicated by the discontinuity in Fig. 6B. In this
simple problem, the optimum experimental design is x4¼1.00
where the information gain is maximum for both models 1 and 2.
Considering model 1 as the true model, 76% of the original
uncertainty can be eliminated at x4¼1.00; if model 2 is the true

state of nature, 83% of the original uncertainty can be eliminated
at x4¼1.00. In both cases, one can expect to discriminate model
1 from model 2.

4.2. Example 2—a kinetic problem

This problem has been studied previously (Buzzi-Ferraris
et al., 1984; Schwaab et al., 2006; Alberton et al., submitted for
publication) and constitutes a more complex benchmark for
comparative analyses, when multiple-input multiple-output
models are considered. In the proposed kinetic problem, four
rival models are proposed to describe the behavior of a system
containing two response variables, two design variables and four
parameters. The models are presented below:

Model 1: y1 ¼
yð1Þ1 x1 x2

1þyð1Þ3 x1þy
ð1Þ
4 x2

, y2 ¼
yð1Þ2 x1 x2

1þyð1Þ3 x1þy
ð1Þ
4 x2

Model 2: y1 ¼
yð2Þ1 x1 x2

1þyð2Þ3 x1þy
ð2Þ
4 x2

� �2
, y2 ¼

yð2Þ2 x1 x2

1þyð2Þ3 x1

� �2

Model 3: y1 ¼
yð3Þ1 x1 x2

1þyð3Þ4 x2

� �2
, y2 ¼

yð3Þ2 x1 x2

1þyð3Þ3 x1

� �2

Model 4: y1 ¼
yð4Þ1 x1 x2

1þyð4Þ3 x1þy
ð4Þ
4 x2

, y2 ¼
yð4Þ2 x1 x2

1þyð4Þ3 x1

Each model presents four parameters: Y(1)
¼{y1

(1),y2
(1),y3

(1),y4
(1)};

Y(2)
¼{y1

(2),y2
(2),y3

(2),y4
(2)}; Y(3)

¼{y1
(3),y2

(3),y3
(3),y4

(3)}; and Y(4)
¼{y1

(4),

y2
(4),y3

(4),y4
(4)}. In this case, it is assumed that model 1 is the true

model, with parameter values equal to: y1
(1)
¼0.1; y2

(1)
¼0.01;

y3
(1)
¼0.1; and y4

(1)
¼0.01. Experimental variances were considered

constant and equal to 0.35 and 2.3�10�2 for variables y1 and y2,
respectively. Five initial experiments were generated with the
true model, as presented in Table 2. The estimation of the model
parameters was performed for the four models with the pre-
liminary experiments presented in Table 2, as shown in Table 3.

Model 3 if found to be inadequate after the preliminary
experiments it is rejected. Models 1, 2 and 4 are still valid after
the initial preliminary experiments, justifying the implementa-
tion of the discrimination procedure. The grid search is applied in
the experimental ranges 5.0rx1r55.0 and 5.0rx2r55.0. In this
example, 20 equally spaced nodal points were defined for each
variable, resulting in 400 possible trials inside the experimental
range. Values of the experimental design criteria and of the
number of discriminated models are presented in Fig. 7 for all
analyzed experimental conditions. Discontinuities correspond to
experimental conditions where the number of discriminated
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Fig. 6. Experimental design criteria when models (A) 1 and (B) 2 are considered as

the true states of nature in Example 1.
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models changes. According to the Maxmin criterion, the next
experiment should be performed at x1¼12.9 and x2¼55.0. At this
point, the number of discriminated models is not maximum, but
the precise estimation of model parameters leads to elimination
of almost 90% of the possible states of nature. This indicates the
high sensitivity of the confidence regions to variations of the
experimental conditions. When the experiment is performed,
model 4 becomes inadequate and models 1 and 2 are still
probable. The procedure can be repeated again, as indicated in
Table 4, leading to selection of the true model 1 and improvement
of the parameter estimates. Compared to the results presented
by Schwaab et al. (2006) and Alberton et al. (submitted for
publication), one additional experiment was required for

discrimination of the true model; however, model parameters
were obtained with higher precision. Therefore, from this point of
view, the overall performance can be regarded as better in the
present case, as one might already expect because of the con-
ciliation of the distinct experimental criteria in terms of the
information content of the problem.

Fig. 8 presents the information gain, cY
ðxÞ, and the logarithm

of the Fisher information matrix for model 1 as functions of the
additional experiments that are carried out. The information gain
is very high in the initial experiments, as uncertainties of model
parameters can be reduced significantly, and afterwards
approaches the value of 20%. At the end, as observed with the
logarithm of the Fisher information matrix, the parameter uncer-
tainties do not change very significantly and the analyst might
wonder whether the experimental plan should be interrupted. It
is interesting to observe how the proposed design procedure
conciliates the model discrimination and the precise parameter
estimation procedures: if model parameters are known with low
precision, it may be important to estimate the parameters more
precisely in order to guarantee more accurate model predictions,
as observed by Donckels et al. (2010); on the other hand, model
discrimination leads to high information gain and is convenient
for reduction of the design criterion values.

5. Conclusions

In order to conciliate the objectives of experimental design
procedures for both model discrimination and estimation of
model parameters, an experimental design criterion based on
measures of the information gain was proposed. The proposed
criterion depends on the volumes of the confidence regions of the
model parameters and presents a number of advantageous
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Fig. 7. Values of the experimental design criteria (A) cY
9Zð1Þ ðxÞðxÞ, (B) cY

9Zð2Þ ðxÞðxÞ, and (C) cY
9Zð4Þ ðxÞðxÞ when models m¼1,2,4 are the true models in Example 2.

Table 2
Initial experiments in Example 2.

Run x1 x2 y1 y2

01 20.0 20.0 13.443 1.299

02 30.0 20.0 13.817 1.433

03 20.0 30.0 17.809 1.885

04 30.0 30.0 21.139 2.118

05 25.0 25.0 16.039 1.635

Table 3
Parameters estimates and adequacy of model fits in Example 2.

Model y1
(m) y2

(m) y3
(m) y4

(m) Model is good?

01 0.1311 0.0134 0.1431 0.0145 Yes

02 0.0743 0.0068 0.0233 0.0034 Yes

03 0.0281 0.0067 0.0017 0.0232 No
04 0.1162 0.0107 0.1187 0.0162 Yes
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aspects, such as the conciliation of the usual experimental design
objectives and the fact that the obtained criterion values can be
easily interpreted in terms of the information eliminated after
carrying out additional experiments. Besides, the proposed design
criterion can easily accommodate multiobjective experimental
design approaches, as shown in the examples. Compared to
results presented previously in the literature, it can be said that

the overall performance obtained with the present design criter-
ion was better, as similar number of experiments were performed
to discriminate among candidate models, although the final
obtained parameter estimates were more precise because of the
conciliation of the distinct experimental criteria in terms of the
information content of the problem.

Nomenclature

CR(n)(x0) confidence region at x0

CRðnÞ
9ZðxÞðx

0
Þ confidence region at x0, after performing x

D and Dmax discriminant function and maximum value of the
discriminant function

DKL Kullback–Leibler divergence criterion
effD(x,Y(n)) and effE(x,Y(n)) efficiency of discrimination and pre-

cise parameter estimation, when the parameters values
are Y(n) and experiments in x are performed

F likelihood function
H entropy
I(x) Lindley information of an experimental design x
J(n) Fisher information matrix for model n

OF set of objective functions
pd probability of the state of nature Yd

(n)

P(n) probability of model n

S1, S1, S3 sets of possible parameter values

Table 4
Design criteria, designed experimental conditions, parameter estimates and adequacy of model fits for three additional sequential experiments in Example 2.

Design criterion (Maximin) x1 x2 cY
9Zð1Þ ðxÞðxÞ cY

9Zð2Þ ðxÞðxÞ cY
9Zð4Þ ðxÞðxÞ minmðc

Y
9ZðmÞ ðxÞðxÞÞ

12.9 55.0 0.95 0.97 0.96 0.95

Experiment Run x1 x2 y1 y2 cY
ðxÞ

06 12.9 55.0 24.859 2.488 0.93

Parameter estimates Model y1
(m) y2

(m) y3
(m) y4

(m) Model is good?

01 0.1413 0.0143 0.1523 0.0199 Yes

02 0.0537 0.0053 0.0164 0.0005 Yes

03 – – – – No
04 0.0592 0.0059 0.0486 0.0011 No

Design criterion (Maximin) x1 x2 cY
9Zð1Þ ðxÞðxÞ cY

9Zð2Þ ðxÞðxÞ cY
9Zð4Þ ðxÞðxÞ minmðc

Y
9ZðmÞ ðxÞðxÞÞ

55.0 55.0 0.92 0.90 – 0.92

Experiment Run x1 x2 y1 y2 cY
ðxÞ

07 55.0 55.0 43.523 4.341 0.89

Parameter estimates Model y1
(m) y2

(m) y3
(m) y4

(m) Model is good?

01 0.1074 0.0108 0.1084 0.0122 Yes

02 0.0561 0.0054 0.0173 0.0007 Yes

03 – – – – No
04 – – – – No

Design criterion (Maximin) x1 x2 cY
9Zð1Þ ðxÞðxÞ cY

9Zð2Þ ðxÞðxÞ cY
9Zð4Þ ðxÞðxÞ minmðc

Y
9ZðmÞ ðxÞðxÞÞ

39.2 55.0 0.67 0.68 0.0 0.67

Experiment Run x1 x2 y1 y2 cY
ðxÞ

08 39.2 55.0 39.970 3.987 0.74

Parameter estimates Model y1
(m) y2

(m) y3
(m) y4

(m) Model is good?

01 0.1033 0.0104 0.1033 0.0109 Yes

02 0.0570 0.0054 0.0176 0.0010 No
03 – – – – No
04 – – – – No
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Fig. 8. Information gain cY
ðxÞ and log9J(1)9 as additional experiments are carried

out in Example 2.
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VCRðnÞðx0
Þ volume of the confidence region of parameter uncer-
tainties for model n, calculated with data obtained at x0

VCRðnÞ9ZðxÞðx
0
Þ volume of the confidence region of parameter uncer-

tainties for model n, calculated with data obtained at x0

with parameters obtained at x0+x
VCRT(n) total volume of the confidence region x0

VCRðnÞðx0
þxÞ volume of the confidence region of parameter
uncertainties for model n, calculated with data obtained
at x0+x

VZ covariance matrix of experimental uncertainties
VY covariance matrix of parameter estimates
w weighting values
Zexp, Zcalc experimental and calculated variables

Greek symbols

x0 initial set of experiments
x additional set of experiments
y model parameter
Y set of model parameters
Yd discrete variables
Yd

(n) possible states of nature of discrete variable Yd

j(x,n) or jðx,YðGÞi Þ binary function, equal to 1 if model n or
possible parameter values Yi

(G) are eliminated after
performing experiments in x and equal to 0 otherwise

p(Y) probability distribution function of the parameters Y
cY
ðxÞ information gain at x

cY
9ZðmÞ ðxÞðxÞ information gain at x given model predictions

obtained with model m

w2
N�Np,a chi-square function with N–Np degrees of freedom and

confidence interval a
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Appendix A. Information gain derived from Postulate I

Let us assume that M rival models are considered, that some
experimental data Zexp from experimental design x0 are available
and that model parameters can be estimated. Therefore, it is
possible to evaluate the confidence regions for all model para-
meters of all analyzed rival models. Y(n) represents all possible
parameter values for model n and Y(G) represents the total set of
parameter values for all models, as illustrated in Fig. A1.

According to Postulate I, the following function can be pro-
posed as a measure of the information gain when the experiments
in x are performed:

cY
ðxÞ ¼

X
i

wðGÞðYðGÞi Þ
j x,YðGÞi

� �
NYðGÞ

ðA:1Þ

where wðGÞðYðGÞi Þ is a weighting value given to element i of Y(G),
NY(G) represents the number of elements in Y(G) and jðx,YðGÞi Þ is
a binary function, which assumes the value 1 when the element i

is eliminated after performing x and 0 otherwise. Assuming that
all parameters that belong to the same model structure can be
weighted equally:

cY
ðxÞ ¼

XM
n ¼ 1

wðG,nÞ

PNYðnÞ
j ¼ 1 j x,YðnÞj

� �
NYðGÞ

0
@

1
A ðA:2Þ

where wðG,nÞ is the weight given to parameters of model n and
NY(n) represents the number of possible parameter values for
model n. A simple weighting value for model n can be defined as

wðG,nÞ ¼
wðnÞ

NYðnÞ=NðGÞ
� � ðA:3Þ

where w(n) weights the relative importance of model n and
ðNYðnÞ=NYðGÞÞ weights the precision of model n, as NY(n) is
smaller for more accurate model candidates. In this case:

cY
ðxÞ ¼

XM
n ¼ 1

wðnÞ

P
jj x,YðnÞj

� �
NYðnÞ

0
@

1
A ðA:4Þ

The term
P

jjðx,YðnÞj Þ=NYðnÞ represents the percentage of
possible parameter values for model n that are eliminated after
performing experiments at x. Therefore, the information gain can
be written as

cY
ðxÞ ¼

XM
n ¼ 1

wðnÞ
VCRTðnÞðx0

Þ�VCRðnÞ x0
þx

� �
VCRT ðnÞðx0

Þ

0
@

1
A ðA:5Þ

cY
ðxÞ ¼

XM
n ¼ 1

wðnÞ 1�
VCRðnÞðx0

þxÞ
VCRT ðnÞðx0

Þ

 !
ðA:6Þ
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models. In: López-Fidalgo, J., Rodrı́guez-Dı́az, J.M., Torsney, B. (Eds.), Advances
in Model-Oriented Design and Analysis. Physica-Verlag, New York, pp.
213–220.

Tommasi, C., 2009. Optimal designs for both model discrimination and parameter
estimation. Journal of Statistical Planning and Inference 139, 4123–4132.

Tommasi, C., Lopez-Fidalgo, J., 2010. Bayesian optimum designs for discriminating
between models with any distribution. Computational Statistics, & Data
Analysis 54, 143–150.

White, L.V., 1973. An extension of the general equivalence theorem to nonlinear
models. Biometrika 60, 345–348.

A.L. Alberton et al. / Chemical Engineering Science 66 (2011) 1940–19521952


